1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 #endif 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1136 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1274 1275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1276 // "S+X does not sign/unsign-overflow". 1277 // 1278 1279 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1282 return PreStart; 1283 1284 // 2. Direct overflow check on the step operation's expression. 1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1287 const SCEV *OperandExtendedStart = 1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1289 (SE->*GetExtendExpr)(Step, WideTy)); 1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1291 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1296 } 1297 return PreStart; 1298 } 1299 1300 // 3. Loop precondition. 1301 ICmpInst::Predicate Pred; 1302 const SCEV *OverflowLimit = 1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1304 1305 if (OverflowLimit && 1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1307 return PreStart; 1308 } 1309 return nullptr; 1310 } 1311 1312 // Get the normalized zero or sign extended expression for this AddRec's Start. 1313 template <typename ExtendOpTy> 1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1315 ScalarEvolution *SE) { 1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1317 1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1319 if (!PreStart) 1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1321 1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1323 (SE->*GetExtendExpr)(PreStart, Ty)); 1324 } 1325 1326 // Try to prove away overflow by looking at "nearby" add recurrences. A 1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1329 // 1330 // Formally: 1331 // 1332 // {S,+,X} == {S-T,+,X} + T 1333 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1334 // 1335 // If ({S-T,+,X} + T) does not overflow ... (1) 1336 // 1337 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1338 // 1339 // If {S-T,+,X} does not overflow ... (2) 1340 // 1341 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1342 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1343 // 1344 // If (S-T)+T does not overflow ... (3) 1345 // 1346 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1347 // == {Ext(S),+,Ext(X)} == LHS 1348 // 1349 // Thus, if (1), (2) and (3) are true for some T, then 1350 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1351 // 1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1353 // does not overflow" restricted to the 0th iteration. Therefore we only need 1354 // to check for (1) and (2). 1355 // 1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1357 // is `Delta` (defined below). 1358 // 1359 template <typename ExtendOpTy> 1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1361 const SCEV *Step, 1362 const Loop *L) { 1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1364 1365 // We restrict `Start` to a constant to prevent SCEV from spending too much 1366 // time here. It is correct (but more expensive) to continue with a 1367 // non-constant `Start` and do a general SCEV subtraction to compute 1368 // `PreStart` below. 1369 // 1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1371 if (!StartC) 1372 return false; 1373 1374 APInt StartAI = StartC->getValue()->getValue(); 1375 1376 for (unsigned Delta : {-2, -1, 1, 2}) { 1377 const SCEV *PreStart = getConstant(StartAI - Delta); 1378 1379 // Give up if we don't already have the add recurrence we need because 1380 // actually constructing an add recurrence is relatively expensive. 1381 const SCEVAddRecExpr *PreAR = [&]() { 1382 FoldingSetNodeID ID; 1383 ID.AddInteger(scAddRecExpr); 1384 ID.AddPointer(PreStart); 1385 ID.AddPointer(Step); 1386 ID.AddPointer(L); 1387 void *IP = nullptr; 1388 return static_cast<SCEVAddRecExpr *>( 1389 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1390 }(); 1391 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 // The cast wasn't folded; create an explicit cast node. 1563 // Recompute the insert position, as it may have been invalidated. 1564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1565 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1566 Op, Ty); 1567 UniqueSCEVs.InsertNode(S, IP); 1568 return S; 1569 } 1570 1571 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1572 Type *Ty) { 1573 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1574 "This is not an extending conversion!"); 1575 assert(isSCEVable(Ty) && 1576 "This is not a conversion to a SCEVable type!"); 1577 Ty = getEffectiveSCEVType(Ty); 1578 1579 // Fold if the operand is constant. 1580 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1581 return getConstant( 1582 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1583 1584 // sext(sext(x)) --> sext(x) 1585 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1586 return getSignExtendExpr(SS->getOperand(), Ty); 1587 1588 // sext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scSignExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 1601 // If the input value is provably positive, build a zext instead. 1602 if (isKnownNonNegative(Op)) 1603 return getZeroExtendExpr(Op, Ty); 1604 1605 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1606 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1607 // It's possible the bits taken off by the truncate were all sign bits. If 1608 // so, we should be able to simplify this further. 1609 const SCEV *X = ST->getOperand(); 1610 ConstantRange CR = getSignedRange(X); 1611 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1612 unsigned NewBits = getTypeSizeInBits(Ty); 1613 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1614 CR.sextOrTrunc(NewBits))) 1615 return getTruncateOrSignExtend(X, Ty); 1616 } 1617 1618 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1619 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1620 if (SA->getNumOperands() == 2) { 1621 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1622 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1623 if (SMul && SC1) { 1624 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1625 const APInt &C1 = SC1->getValue()->getValue(); 1626 const APInt &C2 = SC2->getValue()->getValue(); 1627 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1628 C2.ugt(C1) && C2.isPowerOf2()) 1629 return getAddExpr(getSignExtendExpr(SC1, Ty), 1630 getSignExtendExpr(SMul, Ty)); 1631 } 1632 } 1633 } 1634 } 1635 // If the input value is a chrec scev, and we can prove that the value 1636 // did not overflow the old, smaller, value, we can sign extend all of the 1637 // operands (often constants). This allows analysis of something like 1638 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1640 if (AR->isAffine()) { 1641 const SCEV *Start = AR->getStart(); 1642 const SCEV *Step = AR->getStepRecurrence(*this); 1643 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1644 const Loop *L = AR->getLoop(); 1645 1646 // If we have special knowledge that this addrec won't overflow, 1647 // we don't need to do any further analysis. 1648 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1649 return getAddRecExpr( 1650 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1651 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1652 1653 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1654 // Note that this serves two purposes: It filters out loops that are 1655 // simply not analyzable, and it covers the case where this code is 1656 // being called from within backedge-taken count analysis, such that 1657 // attempting to ask for the backedge-taken count would likely result 1658 // in infinite recursion. In the later case, the analysis code will 1659 // cope with a conservative value, and it will take care to purge 1660 // that value once it has finished. 1661 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1662 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1663 // Manually compute the final value for AR, checking for 1664 // overflow. 1665 1666 // Check whether the backedge-taken count can be losslessly casted to 1667 // the addrec's type. The count is always unsigned. 1668 const SCEV *CastedMaxBECount = 1669 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1670 const SCEV *RecastedMaxBECount = 1671 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1672 if (MaxBECount == RecastedMaxBECount) { 1673 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1674 // Check whether Start+Step*MaxBECount has no signed overflow. 1675 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1676 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1677 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1678 const SCEV *WideMaxBECount = 1679 getZeroExtendExpr(CastedMaxBECount, WideTy); 1680 const SCEV *OperandExtendedAdd = 1681 getAddExpr(WideStart, 1682 getMulExpr(WideMaxBECount, 1683 getSignExtendExpr(Step, WideTy))); 1684 if (SAdd == OperandExtendedAdd) { 1685 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1686 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1687 // Return the expression with the addrec on the outside. 1688 return getAddRecExpr( 1689 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1690 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as unsigned. 1693 // This covers loops that count up with an unsigned step. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy))); 1698 if (SAdd == OperandExtendedAdd) { 1699 // If AR wraps around then 1700 // 1701 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1702 // => SAdd != OperandExtendedAdd 1703 // 1704 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1705 // (SAdd == OperandExtendedAdd => AR is NW) 1706 1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1708 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1712 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1713 } 1714 } 1715 1716 // If the backedge is guarded by a comparison with the pre-inc value 1717 // the addrec is safe. Also, if the entry is guarded by a comparison 1718 // with the start value and the backedge is guarded by a comparison 1719 // with the post-inc value, the addrec is safe. 1720 ICmpInst::Predicate Pred; 1721 const SCEV *OverflowLimit = 1722 getSignedOverflowLimitForStep(Step, &Pred, this); 1723 if (OverflowLimit && 1724 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1725 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1726 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1727 OverflowLimit)))) { 1728 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1732 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 // If Start and Step are constants, check if we can apply this 1736 // transformation: 1737 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1738 auto SC1 = dyn_cast<SCEVConstant>(Start); 1739 auto SC2 = dyn_cast<SCEVConstant>(Step); 1740 if (SC1 && SC2) { 1741 const APInt &C1 = SC1->getValue()->getValue(); 1742 const APInt &C2 = SC2->getValue()->getValue(); 1743 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1744 C2.isPowerOf2()) { 1745 Start = getSignExtendExpr(Start, Ty); 1746 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1747 AR->getNoWrapFlags()); 1748 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1749 } 1750 } 1751 1752 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1754 return getAddRecExpr( 1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1757 } 1758 } 1759 1760 // The cast wasn't folded; create an explicit cast node. 1761 // Recompute the insert position, as it may have been invalidated. 1762 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1763 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1764 Op, Ty); 1765 UniqueSCEVs.InsertNode(S, IP); 1766 return S; 1767 } 1768 1769 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1770 /// unspecified bits out to the given type. 1771 /// 1772 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1773 Type *Ty) { 1774 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1775 "This is not an extending conversion!"); 1776 assert(isSCEVable(Ty) && 1777 "This is not a conversion to a SCEVable type!"); 1778 Ty = getEffectiveSCEVType(Ty); 1779 1780 // Sign-extend negative constants. 1781 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1782 if (SC->getValue()->getValue().isNegative()) 1783 return getSignExtendExpr(Op, Ty); 1784 1785 // Peel off a truncate cast. 1786 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1787 const SCEV *NewOp = T->getOperand(); 1788 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1789 return getAnyExtendExpr(NewOp, Ty); 1790 return getTruncateOrNoop(NewOp, Ty); 1791 } 1792 1793 // Next try a zext cast. If the cast is folded, use it. 1794 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1795 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1796 return ZExt; 1797 1798 // Next try a sext cast. If the cast is folded, use it. 1799 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1800 if (!isa<SCEVSignExtendExpr>(SExt)) 1801 return SExt; 1802 1803 // Force the cast to be folded into the operands of an addrec. 1804 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1805 SmallVector<const SCEV *, 4> Ops; 1806 for (const SCEV *Op : AR->operands()) 1807 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1808 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1809 } 1810 1811 // If the expression is obviously signed, use the sext cast value. 1812 if (isa<SCEVSMaxExpr>(Op)) 1813 return SExt; 1814 1815 // Absent any other information, use the zext cast value. 1816 return ZExt; 1817 } 1818 1819 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1820 /// a list of operands to be added under the given scale, update the given 1821 /// map. This is a helper function for getAddRecExpr. As an example of 1822 /// what it does, given a sequence of operands that would form an add 1823 /// expression like this: 1824 /// 1825 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1826 /// 1827 /// where A and B are constants, update the map with these values: 1828 /// 1829 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1830 /// 1831 /// and add 13 + A*B*29 to AccumulatedConstant. 1832 /// This will allow getAddRecExpr to produce this: 1833 /// 1834 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1835 /// 1836 /// This form often exposes folding opportunities that are hidden in 1837 /// the original operand list. 1838 /// 1839 /// Return true iff it appears that any interesting folding opportunities 1840 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1841 /// the common case where no interesting opportunities are present, and 1842 /// is also used as a check to avoid infinite recursion. 1843 /// 1844 static bool 1845 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1846 SmallVectorImpl<const SCEV *> &NewOps, 1847 APInt &AccumulatedConstant, 1848 const SCEV *const *Ops, size_t NumOperands, 1849 const APInt &Scale, 1850 ScalarEvolution &SE) { 1851 bool Interesting = false; 1852 1853 // Iterate over the add operands. They are sorted, with constants first. 1854 unsigned i = 0; 1855 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1856 ++i; 1857 // Pull a buried constant out to the outside. 1858 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1859 Interesting = true; 1860 AccumulatedConstant += Scale * C->getValue()->getValue(); 1861 } 1862 1863 // Next comes everything else. We're especially interested in multiplies 1864 // here, but they're in the middle, so just visit the rest with one loop. 1865 for (; i != NumOperands; ++i) { 1866 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1867 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1868 APInt NewScale = 1869 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1870 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1871 // A multiplication of a constant with another add; recurse. 1872 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1873 Interesting |= 1874 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1875 Add->op_begin(), Add->getNumOperands(), 1876 NewScale, SE); 1877 } else { 1878 // A multiplication of a constant with some other value. Update 1879 // the map. 1880 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1881 const SCEV *Key = SE.getMulExpr(MulOps); 1882 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1883 if (Pair.second) { 1884 NewOps.push_back(Pair.first->first); 1885 } else { 1886 Pair.first->second += NewScale; 1887 // The map already had an entry for this value, which may indicate 1888 // a folding opportunity. 1889 Interesting = true; 1890 } 1891 } 1892 } else { 1893 // An ordinary operand. Update the map. 1894 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1895 M.insert(std::make_pair(Ops[i], Scale)); 1896 if (Pair.second) { 1897 NewOps.push_back(Pair.first->first); 1898 } else { 1899 Pair.first->second += Scale; 1900 // The map already had an entry for this value, which may indicate 1901 // a folding opportunity. 1902 Interesting = true; 1903 } 1904 } 1905 } 1906 1907 return Interesting; 1908 } 1909 1910 namespace { 1911 struct APIntCompare { 1912 bool operator()(const APInt &LHS, const APInt &RHS) const { 1913 return LHS.ult(RHS); 1914 } 1915 }; 1916 } 1917 1918 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1919 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1920 // can't-overflow flags for the operation if possible. 1921 static SCEV::NoWrapFlags 1922 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1923 const SmallVectorImpl<const SCEV *> &Ops, 1924 SCEV::NoWrapFlags OldFlags) { 1925 using namespace std::placeholders; 1926 1927 bool CanAnalyze = 1928 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1929 (void)CanAnalyze; 1930 assert(CanAnalyze && "don't call from other places!"); 1931 1932 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1933 SCEV::NoWrapFlags SignOrUnsignWrap = 1934 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1935 1936 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1937 auto IsKnownNonNegative = 1938 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1939 1940 if (SignOrUnsignWrap == SCEV::FlagNSW && 1941 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1942 return ScalarEvolution::setFlags(OldFlags, 1943 (SCEV::NoWrapFlags)SignOrUnsignMask); 1944 1945 return OldFlags; 1946 } 1947 1948 /// getAddExpr - Get a canonical add expression, or something simpler if 1949 /// possible. 1950 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1951 SCEV::NoWrapFlags Flags) { 1952 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1953 "only nuw or nsw allowed"); 1954 assert(!Ops.empty() && "Cannot get empty add!"); 1955 if (Ops.size() == 1) return Ops[0]; 1956 #ifndef NDEBUG 1957 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1958 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1959 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1960 "SCEVAddExpr operand types don't match!"); 1961 #endif 1962 1963 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1964 1965 // Sort by complexity, this groups all similar expression types together. 1966 GroupByComplexity(Ops, &LI); 1967 1968 // If there are any constants, fold them together. 1969 unsigned Idx = 0; 1970 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1971 ++Idx; 1972 assert(Idx < Ops.size()); 1973 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1974 // We found two constants, fold them together! 1975 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1976 RHSC->getValue()->getValue()); 1977 if (Ops.size() == 2) return Ops[0]; 1978 Ops.erase(Ops.begin()+1); // Erase the folded element 1979 LHSC = cast<SCEVConstant>(Ops[0]); 1980 } 1981 1982 // If we are left with a constant zero being added, strip it off. 1983 if (LHSC->getValue()->isZero()) { 1984 Ops.erase(Ops.begin()); 1985 --Idx; 1986 } 1987 1988 if (Ops.size() == 1) return Ops[0]; 1989 } 1990 1991 // Okay, check to see if the same value occurs in the operand list more than 1992 // once. If so, merge them together into an multiply expression. Since we 1993 // sorted the list, these values are required to be adjacent. 1994 Type *Ty = Ops[0]->getType(); 1995 bool FoundMatch = false; 1996 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1997 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1998 // Scan ahead to count how many equal operands there are. 1999 unsigned Count = 2; 2000 while (i+Count != e && Ops[i+Count] == Ops[i]) 2001 ++Count; 2002 // Merge the values into a multiply. 2003 const SCEV *Scale = getConstant(Ty, Count); 2004 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2005 if (Ops.size() == Count) 2006 return Mul; 2007 Ops[i] = Mul; 2008 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2009 --i; e -= Count - 1; 2010 FoundMatch = true; 2011 } 2012 if (FoundMatch) 2013 return getAddExpr(Ops, Flags); 2014 2015 // Check for truncates. If all the operands are truncated from the same 2016 // type, see if factoring out the truncate would permit the result to be 2017 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2018 // if the contents of the resulting outer trunc fold to something simple. 2019 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2020 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2021 Type *DstType = Trunc->getType(); 2022 Type *SrcType = Trunc->getOperand()->getType(); 2023 SmallVector<const SCEV *, 8> LargeOps; 2024 bool Ok = true; 2025 // Check all the operands to see if they can be represented in the 2026 // source type of the truncate. 2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2028 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2029 if (T->getOperand()->getType() != SrcType) { 2030 Ok = false; 2031 break; 2032 } 2033 LargeOps.push_back(T->getOperand()); 2034 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2035 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2036 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2037 SmallVector<const SCEV *, 8> LargeMulOps; 2038 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2039 if (const SCEVTruncateExpr *T = 2040 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2041 if (T->getOperand()->getType() != SrcType) { 2042 Ok = false; 2043 break; 2044 } 2045 LargeMulOps.push_back(T->getOperand()); 2046 } else if (const SCEVConstant *C = 2047 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2048 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2049 } else { 2050 Ok = false; 2051 break; 2052 } 2053 } 2054 if (Ok) 2055 LargeOps.push_back(getMulExpr(LargeMulOps)); 2056 } else { 2057 Ok = false; 2058 break; 2059 } 2060 } 2061 if (Ok) { 2062 // Evaluate the expression in the larger type. 2063 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2064 // If it folds to something simple, use it. Otherwise, don't. 2065 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2066 return getTruncateExpr(Fold, DstType); 2067 } 2068 } 2069 2070 // Skip past any other cast SCEVs. 2071 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2072 ++Idx; 2073 2074 // If there are add operands they would be next. 2075 if (Idx < Ops.size()) { 2076 bool DeletedAdd = false; 2077 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2078 // If we have an add, expand the add operands onto the end of the operands 2079 // list. 2080 Ops.erase(Ops.begin()+Idx); 2081 Ops.append(Add->op_begin(), Add->op_end()); 2082 DeletedAdd = true; 2083 } 2084 2085 // If we deleted at least one add, we added operands to the end of the list, 2086 // and they are not necessarily sorted. Recurse to resort and resimplify 2087 // any operands we just acquired. 2088 if (DeletedAdd) 2089 return getAddExpr(Ops); 2090 } 2091 2092 // Skip over the add expression until we get to a multiply. 2093 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2094 ++Idx; 2095 2096 // Check to see if there are any folding opportunities present with 2097 // operands multiplied by constant values. 2098 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2099 uint64_t BitWidth = getTypeSizeInBits(Ty); 2100 DenseMap<const SCEV *, APInt> M; 2101 SmallVector<const SCEV *, 8> NewOps; 2102 APInt AccumulatedConstant(BitWidth, 0); 2103 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2104 Ops.data(), Ops.size(), 2105 APInt(BitWidth, 1), *this)) { 2106 // Some interesting folding opportunity is present, so its worthwhile to 2107 // re-generate the operands list. Group the operands by constant scale, 2108 // to avoid multiplying by the same constant scale multiple times. 2109 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2110 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2111 E = NewOps.end(); I != E; ++I) 2112 MulOpLists[M.find(*I)->second].push_back(*I); 2113 // Re-generate the operands list. 2114 Ops.clear(); 2115 if (AccumulatedConstant != 0) 2116 Ops.push_back(getConstant(AccumulatedConstant)); 2117 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2118 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2119 if (I->first != 0) 2120 Ops.push_back(getMulExpr(getConstant(I->first), 2121 getAddExpr(I->second))); 2122 if (Ops.empty()) 2123 return getZero(Ty); 2124 if (Ops.size() == 1) 2125 return Ops[0]; 2126 return getAddExpr(Ops); 2127 } 2128 } 2129 2130 // If we are adding something to a multiply expression, make sure the 2131 // something is not already an operand of the multiply. If so, merge it into 2132 // the multiply. 2133 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2134 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2135 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2136 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2137 if (isa<SCEVConstant>(MulOpSCEV)) 2138 continue; 2139 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2140 if (MulOpSCEV == Ops[AddOp]) { 2141 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2142 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2143 if (Mul->getNumOperands() != 2) { 2144 // If the multiply has more than two operands, we must get the 2145 // Y*Z term. 2146 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2147 Mul->op_begin()+MulOp); 2148 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2149 InnerMul = getMulExpr(MulOps); 2150 } 2151 const SCEV *One = getOne(Ty); 2152 const SCEV *AddOne = getAddExpr(One, InnerMul); 2153 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2154 if (Ops.size() == 2) return OuterMul; 2155 if (AddOp < Idx) { 2156 Ops.erase(Ops.begin()+AddOp); 2157 Ops.erase(Ops.begin()+Idx-1); 2158 } else { 2159 Ops.erase(Ops.begin()+Idx); 2160 Ops.erase(Ops.begin()+AddOp-1); 2161 } 2162 Ops.push_back(OuterMul); 2163 return getAddExpr(Ops); 2164 } 2165 2166 // Check this multiply against other multiplies being added together. 2167 for (unsigned OtherMulIdx = Idx+1; 2168 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2169 ++OtherMulIdx) { 2170 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2171 // If MulOp occurs in OtherMul, we can fold the two multiplies 2172 // together. 2173 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2174 OMulOp != e; ++OMulOp) 2175 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2176 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2177 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2178 if (Mul->getNumOperands() != 2) { 2179 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2180 Mul->op_begin()+MulOp); 2181 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2182 InnerMul1 = getMulExpr(MulOps); 2183 } 2184 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2185 if (OtherMul->getNumOperands() != 2) { 2186 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2187 OtherMul->op_begin()+OMulOp); 2188 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2189 InnerMul2 = getMulExpr(MulOps); 2190 } 2191 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2192 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2193 if (Ops.size() == 2) return OuterMul; 2194 Ops.erase(Ops.begin()+Idx); 2195 Ops.erase(Ops.begin()+OtherMulIdx-1); 2196 Ops.push_back(OuterMul); 2197 return getAddExpr(Ops); 2198 } 2199 } 2200 } 2201 } 2202 2203 // If there are any add recurrences in the operands list, see if any other 2204 // added values are loop invariant. If so, we can fold them into the 2205 // recurrence. 2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2207 ++Idx; 2208 2209 // Scan over all recurrences, trying to fold loop invariants into them. 2210 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2211 // Scan all of the other operands to this add and add them to the vector if 2212 // they are loop invariant w.r.t. the recurrence. 2213 SmallVector<const SCEV *, 8> LIOps; 2214 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2215 const Loop *AddRecLoop = AddRec->getLoop(); 2216 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2217 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2218 LIOps.push_back(Ops[i]); 2219 Ops.erase(Ops.begin()+i); 2220 --i; --e; 2221 } 2222 2223 // If we found some loop invariants, fold them into the recurrence. 2224 if (!LIOps.empty()) { 2225 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2226 LIOps.push_back(AddRec->getStart()); 2227 2228 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2229 AddRec->op_end()); 2230 AddRecOps[0] = getAddExpr(LIOps); 2231 2232 // Build the new addrec. Propagate the NUW and NSW flags if both the 2233 // outer add and the inner addrec are guaranteed to have no overflow. 2234 // Always propagate NW. 2235 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2236 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2237 2238 // If all of the other operands were loop invariant, we are done. 2239 if (Ops.size() == 1) return NewRec; 2240 2241 // Otherwise, add the folded AddRec by the non-invariant parts. 2242 for (unsigned i = 0;; ++i) 2243 if (Ops[i] == AddRec) { 2244 Ops[i] = NewRec; 2245 break; 2246 } 2247 return getAddExpr(Ops); 2248 } 2249 2250 // Okay, if there weren't any loop invariants to be folded, check to see if 2251 // there are multiple AddRec's with the same loop induction variable being 2252 // added together. If so, we can fold them. 2253 for (unsigned OtherIdx = Idx+1; 2254 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2255 ++OtherIdx) 2256 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2257 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2258 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2259 AddRec->op_end()); 2260 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2261 ++OtherIdx) 2262 if (const SCEVAddRecExpr *OtherAddRec = 2263 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2264 if (OtherAddRec->getLoop() == AddRecLoop) { 2265 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2266 i != e; ++i) { 2267 if (i >= AddRecOps.size()) { 2268 AddRecOps.append(OtherAddRec->op_begin()+i, 2269 OtherAddRec->op_end()); 2270 break; 2271 } 2272 AddRecOps[i] = getAddExpr(AddRecOps[i], 2273 OtherAddRec->getOperand(i)); 2274 } 2275 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2276 } 2277 // Step size has changed, so we cannot guarantee no self-wraparound. 2278 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2279 return getAddExpr(Ops); 2280 } 2281 2282 // Otherwise couldn't fold anything into this recurrence. Move onto the 2283 // next one. 2284 } 2285 2286 // Okay, it looks like we really DO need an add expr. Check to see if we 2287 // already have one, otherwise create a new one. 2288 FoldingSetNodeID ID; 2289 ID.AddInteger(scAddExpr); 2290 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2291 ID.AddPointer(Ops[i]); 2292 void *IP = nullptr; 2293 SCEVAddExpr *S = 2294 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2295 if (!S) { 2296 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2297 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2298 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2299 O, Ops.size()); 2300 UniqueSCEVs.InsertNode(S, IP); 2301 } 2302 S->setNoWrapFlags(Flags); 2303 return S; 2304 } 2305 2306 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2307 uint64_t k = i*j; 2308 if (j > 1 && k / j != i) Overflow = true; 2309 return k; 2310 } 2311 2312 /// Compute the result of "n choose k", the binomial coefficient. If an 2313 /// intermediate computation overflows, Overflow will be set and the return will 2314 /// be garbage. Overflow is not cleared on absence of overflow. 2315 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2316 // We use the multiplicative formula: 2317 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2318 // At each iteration, we take the n-th term of the numeral and divide by the 2319 // (k-n)th term of the denominator. This division will always produce an 2320 // integral result, and helps reduce the chance of overflow in the 2321 // intermediate computations. However, we can still overflow even when the 2322 // final result would fit. 2323 2324 if (n == 0 || n == k) return 1; 2325 if (k > n) return 0; 2326 2327 if (k > n/2) 2328 k = n-k; 2329 2330 uint64_t r = 1; 2331 for (uint64_t i = 1; i <= k; ++i) { 2332 r = umul_ov(r, n-(i-1), Overflow); 2333 r /= i; 2334 } 2335 return r; 2336 } 2337 2338 /// Determine if any of the operands in this SCEV are a constant or if 2339 /// any of the add or multiply expressions in this SCEV contain a constant. 2340 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2341 SmallVector<const SCEV *, 4> Ops; 2342 Ops.push_back(StartExpr); 2343 while (!Ops.empty()) { 2344 const SCEV *CurrentExpr = Ops.pop_back_val(); 2345 if (isa<SCEVConstant>(*CurrentExpr)) 2346 return true; 2347 2348 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2349 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2350 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2351 } 2352 } 2353 return false; 2354 } 2355 2356 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2357 /// possible. 2358 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2359 SCEV::NoWrapFlags Flags) { 2360 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2361 "only nuw or nsw allowed"); 2362 assert(!Ops.empty() && "Cannot get empty mul!"); 2363 if (Ops.size() == 1) return Ops[0]; 2364 #ifndef NDEBUG 2365 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2366 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2367 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2368 "SCEVMulExpr operand types don't match!"); 2369 #endif 2370 2371 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2372 2373 // Sort by complexity, this groups all similar expression types together. 2374 GroupByComplexity(Ops, &LI); 2375 2376 // If there are any constants, fold them together. 2377 unsigned Idx = 0; 2378 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2379 2380 // C1*(C2+V) -> C1*C2 + C1*V 2381 if (Ops.size() == 2) 2382 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2383 // If any of Add's ops are Adds or Muls with a constant, 2384 // apply this transformation as well. 2385 if (Add->getNumOperands() == 2) 2386 if (containsConstantSomewhere(Add)) 2387 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2388 getMulExpr(LHSC, Add->getOperand(1))); 2389 2390 ++Idx; 2391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2392 // We found two constants, fold them together! 2393 ConstantInt *Fold = ConstantInt::get(getContext(), 2394 LHSC->getValue()->getValue() * 2395 RHSC->getValue()->getValue()); 2396 Ops[0] = getConstant(Fold); 2397 Ops.erase(Ops.begin()+1); // Erase the folded element 2398 if (Ops.size() == 1) return Ops[0]; 2399 LHSC = cast<SCEVConstant>(Ops[0]); 2400 } 2401 2402 // If we are left with a constant one being multiplied, strip it off. 2403 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2404 Ops.erase(Ops.begin()); 2405 --Idx; 2406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2407 // If we have a multiply of zero, it will always be zero. 2408 return Ops[0]; 2409 } else if (Ops[0]->isAllOnesValue()) { 2410 // If we have a mul by -1 of an add, try distributing the -1 among the 2411 // add operands. 2412 if (Ops.size() == 2) { 2413 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2414 SmallVector<const SCEV *, 4> NewOps; 2415 bool AnyFolded = false; 2416 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2417 E = Add->op_end(); I != E; ++I) { 2418 const SCEV *Mul = getMulExpr(Ops[0], *I); 2419 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2420 NewOps.push_back(Mul); 2421 } 2422 if (AnyFolded) 2423 return getAddExpr(NewOps); 2424 } 2425 else if (const SCEVAddRecExpr * 2426 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2427 // Negation preserves a recurrence's no self-wrap property. 2428 SmallVector<const SCEV *, 4> Operands; 2429 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2430 E = AddRec->op_end(); I != E; ++I) { 2431 Operands.push_back(getMulExpr(Ops[0], *I)); 2432 } 2433 return getAddRecExpr(Operands, AddRec->getLoop(), 2434 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2435 } 2436 } 2437 } 2438 2439 if (Ops.size() == 1) 2440 return Ops[0]; 2441 } 2442 2443 // Skip over the add expression until we get to a multiply. 2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2445 ++Idx; 2446 2447 // If there are mul operands inline them all into this expression. 2448 if (Idx < Ops.size()) { 2449 bool DeletedMul = false; 2450 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2451 // If we have an mul, expand the mul operands onto the end of the operands 2452 // list. 2453 Ops.erase(Ops.begin()+Idx); 2454 Ops.append(Mul->op_begin(), Mul->op_end()); 2455 DeletedMul = true; 2456 } 2457 2458 // If we deleted at least one mul, we added operands to the end of the list, 2459 // and they are not necessarily sorted. Recurse to resort and resimplify 2460 // any operands we just acquired. 2461 if (DeletedMul) 2462 return getMulExpr(Ops); 2463 } 2464 2465 // If there are any add recurrences in the operands list, see if any other 2466 // added values are loop invariant. If so, we can fold them into the 2467 // recurrence. 2468 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2469 ++Idx; 2470 2471 // Scan over all recurrences, trying to fold loop invariants into them. 2472 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2473 // Scan all of the other operands to this mul and add them to the vector if 2474 // they are loop invariant w.r.t. the recurrence. 2475 SmallVector<const SCEV *, 8> LIOps; 2476 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2477 const Loop *AddRecLoop = AddRec->getLoop(); 2478 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2479 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2480 LIOps.push_back(Ops[i]); 2481 Ops.erase(Ops.begin()+i); 2482 --i; --e; 2483 } 2484 2485 // If we found some loop invariants, fold them into the recurrence. 2486 if (!LIOps.empty()) { 2487 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2488 SmallVector<const SCEV *, 4> NewOps; 2489 NewOps.reserve(AddRec->getNumOperands()); 2490 const SCEV *Scale = getMulExpr(LIOps); 2491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2492 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2493 2494 // Build the new addrec. Propagate the NUW and NSW flags if both the 2495 // outer mul and the inner addrec are guaranteed to have no overflow. 2496 // 2497 // No self-wrap cannot be guaranteed after changing the step size, but 2498 // will be inferred if either NUW or NSW is true. 2499 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2500 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2501 2502 // If all of the other operands were loop invariant, we are done. 2503 if (Ops.size() == 1) return NewRec; 2504 2505 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2506 for (unsigned i = 0;; ++i) 2507 if (Ops[i] == AddRec) { 2508 Ops[i] = NewRec; 2509 break; 2510 } 2511 return getMulExpr(Ops); 2512 } 2513 2514 // Okay, if there weren't any loop invariants to be folded, check to see if 2515 // there are multiple AddRec's with the same loop induction variable being 2516 // multiplied together. If so, we can fold them. 2517 2518 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2519 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2520 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2521 // ]]],+,...up to x=2n}. 2522 // Note that the arguments to choose() are always integers with values 2523 // known at compile time, never SCEV objects. 2524 // 2525 // The implementation avoids pointless extra computations when the two 2526 // addrec's are of different length (mathematically, it's equivalent to 2527 // an infinite stream of zeros on the right). 2528 bool OpsModified = false; 2529 for (unsigned OtherIdx = Idx+1; 2530 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2531 ++OtherIdx) { 2532 const SCEVAddRecExpr *OtherAddRec = 2533 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2534 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2535 continue; 2536 2537 bool Overflow = false; 2538 Type *Ty = AddRec->getType(); 2539 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2540 SmallVector<const SCEV*, 7> AddRecOps; 2541 for (int x = 0, xe = AddRec->getNumOperands() + 2542 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2543 const SCEV *Term = getZero(Ty); 2544 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2545 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2546 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2547 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2548 z < ze && !Overflow; ++z) { 2549 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2550 uint64_t Coeff; 2551 if (LargerThan64Bits) 2552 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2553 else 2554 Coeff = Coeff1*Coeff2; 2555 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2556 const SCEV *Term1 = AddRec->getOperand(y-z); 2557 const SCEV *Term2 = OtherAddRec->getOperand(z); 2558 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2559 } 2560 } 2561 AddRecOps.push_back(Term); 2562 } 2563 if (!Overflow) { 2564 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2565 SCEV::FlagAnyWrap); 2566 if (Ops.size() == 2) return NewAddRec; 2567 Ops[Idx] = NewAddRec; 2568 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2569 OpsModified = true; 2570 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2571 if (!AddRec) 2572 break; 2573 } 2574 } 2575 if (OpsModified) 2576 return getMulExpr(Ops); 2577 2578 // Otherwise couldn't fold anything into this recurrence. Move onto the 2579 // next one. 2580 } 2581 2582 // Okay, it looks like we really DO need an mul expr. Check to see if we 2583 // already have one, otherwise create a new one. 2584 FoldingSetNodeID ID; 2585 ID.AddInteger(scMulExpr); 2586 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2587 ID.AddPointer(Ops[i]); 2588 void *IP = nullptr; 2589 SCEVMulExpr *S = 2590 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2591 if (!S) { 2592 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2593 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2594 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2595 O, Ops.size()); 2596 UniqueSCEVs.InsertNode(S, IP); 2597 } 2598 S->setNoWrapFlags(Flags); 2599 return S; 2600 } 2601 2602 /// getUDivExpr - Get a canonical unsigned division expression, or something 2603 /// simpler if possible. 2604 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2605 const SCEV *RHS) { 2606 assert(getEffectiveSCEVType(LHS->getType()) == 2607 getEffectiveSCEVType(RHS->getType()) && 2608 "SCEVUDivExpr operand types don't match!"); 2609 2610 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2611 if (RHSC->getValue()->equalsInt(1)) 2612 return LHS; // X udiv 1 --> x 2613 // If the denominator is zero, the result of the udiv is undefined. Don't 2614 // try to analyze it, because the resolution chosen here may differ from 2615 // the resolution chosen in other parts of the compiler. 2616 if (!RHSC->getValue()->isZero()) { 2617 // Determine if the division can be folded into the operands of 2618 // its operands. 2619 // TODO: Generalize this to non-constants by using known-bits information. 2620 Type *Ty = LHS->getType(); 2621 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2622 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2623 // For non-power-of-two values, effectively round the value up to the 2624 // nearest power of two. 2625 if (!RHSC->getValue()->getValue().isPowerOf2()) 2626 ++MaxShiftAmt; 2627 IntegerType *ExtTy = 2628 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2629 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2630 if (const SCEVConstant *Step = 2631 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2632 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2633 const APInt &StepInt = Step->getValue()->getValue(); 2634 const APInt &DivInt = RHSC->getValue()->getValue(); 2635 if (!StepInt.urem(DivInt) && 2636 getZeroExtendExpr(AR, ExtTy) == 2637 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2638 getZeroExtendExpr(Step, ExtTy), 2639 AR->getLoop(), SCEV::FlagAnyWrap)) { 2640 SmallVector<const SCEV *, 4> Operands; 2641 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2642 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2643 return getAddRecExpr(Operands, AR->getLoop(), 2644 SCEV::FlagNW); 2645 } 2646 /// Get a canonical UDivExpr for a recurrence. 2647 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2648 // We can currently only fold X%N if X is constant. 2649 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2650 if (StartC && !DivInt.urem(StepInt) && 2651 getZeroExtendExpr(AR, ExtTy) == 2652 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2653 getZeroExtendExpr(Step, ExtTy), 2654 AR->getLoop(), SCEV::FlagAnyWrap)) { 2655 const APInt &StartInt = StartC->getValue()->getValue(); 2656 const APInt &StartRem = StartInt.urem(StepInt); 2657 if (StartRem != 0) 2658 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2659 AR->getLoop(), SCEV::FlagNW); 2660 } 2661 } 2662 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2663 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2664 SmallVector<const SCEV *, 4> Operands; 2665 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2666 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2667 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2668 // Find an operand that's safely divisible. 2669 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2670 const SCEV *Op = M->getOperand(i); 2671 const SCEV *Div = getUDivExpr(Op, RHSC); 2672 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2673 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2674 M->op_end()); 2675 Operands[i] = Div; 2676 return getMulExpr(Operands); 2677 } 2678 } 2679 } 2680 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2681 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2682 SmallVector<const SCEV *, 4> Operands; 2683 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2684 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2685 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2686 Operands.clear(); 2687 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2688 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2689 if (isa<SCEVUDivExpr>(Op) || 2690 getMulExpr(Op, RHS) != A->getOperand(i)) 2691 break; 2692 Operands.push_back(Op); 2693 } 2694 if (Operands.size() == A->getNumOperands()) 2695 return getAddExpr(Operands); 2696 } 2697 } 2698 2699 // Fold if both operands are constant. 2700 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2701 Constant *LHSCV = LHSC->getValue(); 2702 Constant *RHSCV = RHSC->getValue(); 2703 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2704 RHSCV))); 2705 } 2706 } 2707 } 2708 2709 FoldingSetNodeID ID; 2710 ID.AddInteger(scUDivExpr); 2711 ID.AddPointer(LHS); 2712 ID.AddPointer(RHS); 2713 void *IP = nullptr; 2714 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2715 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2716 LHS, RHS); 2717 UniqueSCEVs.InsertNode(S, IP); 2718 return S; 2719 } 2720 2721 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2722 APInt A = C1->getValue()->getValue().abs(); 2723 APInt B = C2->getValue()->getValue().abs(); 2724 uint32_t ABW = A.getBitWidth(); 2725 uint32_t BBW = B.getBitWidth(); 2726 2727 if (ABW > BBW) 2728 B = B.zext(ABW); 2729 else if (ABW < BBW) 2730 A = A.zext(BBW); 2731 2732 return APIntOps::GreatestCommonDivisor(A, B); 2733 } 2734 2735 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2736 /// something simpler if possible. There is no representation for an exact udiv 2737 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2738 /// We can't do this when it's not exact because the udiv may be clearing bits. 2739 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2740 const SCEV *RHS) { 2741 // TODO: we could try to find factors in all sorts of things, but for now we 2742 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2743 // end of this file for inspiration. 2744 2745 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2746 if (!Mul) 2747 return getUDivExpr(LHS, RHS); 2748 2749 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2750 // If the mulexpr multiplies by a constant, then that constant must be the 2751 // first element of the mulexpr. 2752 if (const SCEVConstant *LHSCst = 2753 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2754 if (LHSCst == RHSCst) { 2755 SmallVector<const SCEV *, 2> Operands; 2756 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2757 return getMulExpr(Operands); 2758 } 2759 2760 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2761 // that there's a factor provided by one of the other terms. We need to 2762 // check. 2763 APInt Factor = gcd(LHSCst, RHSCst); 2764 if (!Factor.isIntN(1)) { 2765 LHSCst = cast<SCEVConstant>( 2766 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2767 RHSCst = cast<SCEVConstant>( 2768 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2769 SmallVector<const SCEV *, 2> Operands; 2770 Operands.push_back(LHSCst); 2771 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2772 LHS = getMulExpr(Operands); 2773 RHS = RHSCst; 2774 Mul = dyn_cast<SCEVMulExpr>(LHS); 2775 if (!Mul) 2776 return getUDivExactExpr(LHS, RHS); 2777 } 2778 } 2779 } 2780 2781 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2782 if (Mul->getOperand(i) == RHS) { 2783 SmallVector<const SCEV *, 2> Operands; 2784 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2785 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2786 return getMulExpr(Operands); 2787 } 2788 } 2789 2790 return getUDivExpr(LHS, RHS); 2791 } 2792 2793 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2794 /// Simplify the expression as much as possible. 2795 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2796 const Loop *L, 2797 SCEV::NoWrapFlags Flags) { 2798 SmallVector<const SCEV *, 4> Operands; 2799 Operands.push_back(Start); 2800 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2801 if (StepChrec->getLoop() == L) { 2802 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2803 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2804 } 2805 2806 Operands.push_back(Step); 2807 return getAddRecExpr(Operands, L, Flags); 2808 } 2809 2810 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2811 /// Simplify the expression as much as possible. 2812 const SCEV * 2813 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2814 const Loop *L, SCEV::NoWrapFlags Flags) { 2815 if (Operands.size() == 1) return Operands[0]; 2816 #ifndef NDEBUG 2817 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2818 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2819 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2820 "SCEVAddRecExpr operand types don't match!"); 2821 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2822 assert(isLoopInvariant(Operands[i], L) && 2823 "SCEVAddRecExpr operand is not loop-invariant!"); 2824 #endif 2825 2826 if (Operands.back()->isZero()) { 2827 Operands.pop_back(); 2828 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2829 } 2830 2831 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2832 // use that information to infer NUW and NSW flags. However, computing a 2833 // BE count requires calling getAddRecExpr, so we may not yet have a 2834 // meaningful BE count at this point (and if we don't, we'd be stuck 2835 // with a SCEVCouldNotCompute as the cached BE count). 2836 2837 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2838 2839 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2840 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2841 const Loop *NestedLoop = NestedAR->getLoop(); 2842 if (L->contains(NestedLoop) 2843 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2844 : (!NestedLoop->contains(L) && 2845 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2846 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2847 NestedAR->op_end()); 2848 Operands[0] = NestedAR->getStart(); 2849 // AddRecs require their operands be loop-invariant with respect to their 2850 // loops. Don't perform this transformation if it would break this 2851 // requirement. 2852 bool AllInvariant = true; 2853 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2854 if (!isLoopInvariant(Operands[i], L)) { 2855 AllInvariant = false; 2856 break; 2857 } 2858 if (AllInvariant) { 2859 // Create a recurrence for the outer loop with the same step size. 2860 // 2861 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2862 // inner recurrence has the same property. 2863 SCEV::NoWrapFlags OuterFlags = 2864 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2865 2866 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2867 AllInvariant = true; 2868 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2869 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2870 AllInvariant = false; 2871 break; 2872 } 2873 if (AllInvariant) { 2874 // Ok, both add recurrences are valid after the transformation. 2875 // 2876 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2877 // the outer recurrence has the same property. 2878 SCEV::NoWrapFlags InnerFlags = 2879 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2880 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2881 } 2882 } 2883 // Reset Operands to its original state. 2884 Operands[0] = NestedAR; 2885 } 2886 } 2887 2888 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2889 // already have one, otherwise create a new one. 2890 FoldingSetNodeID ID; 2891 ID.AddInteger(scAddRecExpr); 2892 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2893 ID.AddPointer(Operands[i]); 2894 ID.AddPointer(L); 2895 void *IP = nullptr; 2896 SCEVAddRecExpr *S = 2897 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2898 if (!S) { 2899 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2900 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2901 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2902 O, Operands.size(), L); 2903 UniqueSCEVs.InsertNode(S, IP); 2904 } 2905 S->setNoWrapFlags(Flags); 2906 return S; 2907 } 2908 2909 const SCEV * 2910 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2911 const SmallVectorImpl<const SCEV *> &IndexExprs, 2912 bool InBounds) { 2913 // getSCEV(Base)->getType() has the same address space as Base->getType() 2914 // because SCEV::getType() preserves the address space. 2915 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2916 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2917 // instruction to its SCEV, because the Instruction may be guarded by control 2918 // flow and the no-overflow bits may not be valid for the expression in any 2919 // context. This can be fixed similarly to how these flags are handled for 2920 // adds. 2921 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2922 2923 const SCEV *TotalOffset = getZero(IntPtrTy); 2924 // The address space is unimportant. The first thing we do on CurTy is getting 2925 // its element type. 2926 Type *CurTy = PointerType::getUnqual(PointeeType); 2927 for (const SCEV *IndexExpr : IndexExprs) { 2928 // Compute the (potentially symbolic) offset in bytes for this index. 2929 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2930 // For a struct, add the member offset. 2931 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2932 unsigned FieldNo = Index->getZExtValue(); 2933 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2934 2935 // Add the field offset to the running total offset. 2936 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2937 2938 // Update CurTy to the type of the field at Index. 2939 CurTy = STy->getTypeAtIndex(Index); 2940 } else { 2941 // Update CurTy to its element type. 2942 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2943 // For an array, add the element offset, explicitly scaled. 2944 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2945 // Getelementptr indices are signed. 2946 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2947 2948 // Multiply the index by the element size to compute the element offset. 2949 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2950 2951 // Add the element offset to the running total offset. 2952 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2953 } 2954 } 2955 2956 // Add the total offset from all the GEP indices to the base. 2957 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2958 } 2959 2960 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2961 const SCEV *RHS) { 2962 SmallVector<const SCEV *, 2> Ops; 2963 Ops.push_back(LHS); 2964 Ops.push_back(RHS); 2965 return getSMaxExpr(Ops); 2966 } 2967 2968 const SCEV * 2969 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2970 assert(!Ops.empty() && "Cannot get empty smax!"); 2971 if (Ops.size() == 1) return Ops[0]; 2972 #ifndef NDEBUG 2973 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2974 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2975 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2976 "SCEVSMaxExpr operand types don't match!"); 2977 #endif 2978 2979 // Sort by complexity, this groups all similar expression types together. 2980 GroupByComplexity(Ops, &LI); 2981 2982 // If there are any constants, fold them together. 2983 unsigned Idx = 0; 2984 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2985 ++Idx; 2986 assert(Idx < Ops.size()); 2987 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2988 // We found two constants, fold them together! 2989 ConstantInt *Fold = ConstantInt::get(getContext(), 2990 APIntOps::smax(LHSC->getValue()->getValue(), 2991 RHSC->getValue()->getValue())); 2992 Ops[0] = getConstant(Fold); 2993 Ops.erase(Ops.begin()+1); // Erase the folded element 2994 if (Ops.size() == 1) return Ops[0]; 2995 LHSC = cast<SCEVConstant>(Ops[0]); 2996 } 2997 2998 // If we are left with a constant minimum-int, strip it off. 2999 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3000 Ops.erase(Ops.begin()); 3001 --Idx; 3002 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3003 // If we have an smax with a constant maximum-int, it will always be 3004 // maximum-int. 3005 return Ops[0]; 3006 } 3007 3008 if (Ops.size() == 1) return Ops[0]; 3009 } 3010 3011 // Find the first SMax 3012 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3013 ++Idx; 3014 3015 // Check to see if one of the operands is an SMax. If so, expand its operands 3016 // onto our operand list, and recurse to simplify. 3017 if (Idx < Ops.size()) { 3018 bool DeletedSMax = false; 3019 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3020 Ops.erase(Ops.begin()+Idx); 3021 Ops.append(SMax->op_begin(), SMax->op_end()); 3022 DeletedSMax = true; 3023 } 3024 3025 if (DeletedSMax) 3026 return getSMaxExpr(Ops); 3027 } 3028 3029 // Okay, check to see if the same value occurs in the operand list twice. If 3030 // so, delete one. Since we sorted the list, these values are required to 3031 // be adjacent. 3032 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3033 // X smax Y smax Y --> X smax Y 3034 // X smax Y --> X, if X is always greater than Y 3035 if (Ops[i] == Ops[i+1] || 3036 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3037 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3038 --i; --e; 3039 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3040 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3041 --i; --e; 3042 } 3043 3044 if (Ops.size() == 1) return Ops[0]; 3045 3046 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3047 3048 // Okay, it looks like we really DO need an smax expr. Check to see if we 3049 // already have one, otherwise create a new one. 3050 FoldingSetNodeID ID; 3051 ID.AddInteger(scSMaxExpr); 3052 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3053 ID.AddPointer(Ops[i]); 3054 void *IP = nullptr; 3055 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3056 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3057 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3058 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3059 O, Ops.size()); 3060 UniqueSCEVs.InsertNode(S, IP); 3061 return S; 3062 } 3063 3064 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3065 const SCEV *RHS) { 3066 SmallVector<const SCEV *, 2> Ops; 3067 Ops.push_back(LHS); 3068 Ops.push_back(RHS); 3069 return getUMaxExpr(Ops); 3070 } 3071 3072 const SCEV * 3073 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3074 assert(!Ops.empty() && "Cannot get empty umax!"); 3075 if (Ops.size() == 1) return Ops[0]; 3076 #ifndef NDEBUG 3077 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3078 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3079 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3080 "SCEVUMaxExpr operand types don't match!"); 3081 #endif 3082 3083 // Sort by complexity, this groups all similar expression types together. 3084 GroupByComplexity(Ops, &LI); 3085 3086 // If there are any constants, fold them together. 3087 unsigned Idx = 0; 3088 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3089 ++Idx; 3090 assert(Idx < Ops.size()); 3091 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3092 // We found two constants, fold them together! 3093 ConstantInt *Fold = ConstantInt::get(getContext(), 3094 APIntOps::umax(LHSC->getValue()->getValue(), 3095 RHSC->getValue()->getValue())); 3096 Ops[0] = getConstant(Fold); 3097 Ops.erase(Ops.begin()+1); // Erase the folded element 3098 if (Ops.size() == 1) return Ops[0]; 3099 LHSC = cast<SCEVConstant>(Ops[0]); 3100 } 3101 3102 // If we are left with a constant minimum-int, strip it off. 3103 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3104 Ops.erase(Ops.begin()); 3105 --Idx; 3106 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3107 // If we have an umax with a constant maximum-int, it will always be 3108 // maximum-int. 3109 return Ops[0]; 3110 } 3111 3112 if (Ops.size() == 1) return Ops[0]; 3113 } 3114 3115 // Find the first UMax 3116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3117 ++Idx; 3118 3119 // Check to see if one of the operands is a UMax. If so, expand its operands 3120 // onto our operand list, and recurse to simplify. 3121 if (Idx < Ops.size()) { 3122 bool DeletedUMax = false; 3123 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3124 Ops.erase(Ops.begin()+Idx); 3125 Ops.append(UMax->op_begin(), UMax->op_end()); 3126 DeletedUMax = true; 3127 } 3128 3129 if (DeletedUMax) 3130 return getUMaxExpr(Ops); 3131 } 3132 3133 // Okay, check to see if the same value occurs in the operand list twice. If 3134 // so, delete one. Since we sorted the list, these values are required to 3135 // be adjacent. 3136 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3137 // X umax Y umax Y --> X umax Y 3138 // X umax Y --> X, if X is always greater than Y 3139 if (Ops[i] == Ops[i+1] || 3140 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3141 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3142 --i; --e; 3143 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3144 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3145 --i; --e; 3146 } 3147 3148 if (Ops.size() == 1) return Ops[0]; 3149 3150 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3151 3152 // Okay, it looks like we really DO need a umax expr. Check to see if we 3153 // already have one, otherwise create a new one. 3154 FoldingSetNodeID ID; 3155 ID.AddInteger(scUMaxExpr); 3156 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3157 ID.AddPointer(Ops[i]); 3158 void *IP = nullptr; 3159 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3160 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3161 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3162 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3163 O, Ops.size()); 3164 UniqueSCEVs.InsertNode(S, IP); 3165 return S; 3166 } 3167 3168 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3169 const SCEV *RHS) { 3170 // ~smax(~x, ~y) == smin(x, y). 3171 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3172 } 3173 3174 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3175 const SCEV *RHS) { 3176 // ~umax(~x, ~y) == umin(x, y) 3177 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3178 } 3179 3180 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3181 // We can bypass creating a target-independent 3182 // constant expression and then folding it back into a ConstantInt. 3183 // This is just a compile-time optimization. 3184 return getConstant(IntTy, 3185 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3186 } 3187 3188 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3189 StructType *STy, 3190 unsigned FieldNo) { 3191 // We can bypass creating a target-independent 3192 // constant expression and then folding it back into a ConstantInt. 3193 // This is just a compile-time optimization. 3194 return getConstant( 3195 IntTy, 3196 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3197 FieldNo)); 3198 } 3199 3200 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3201 // Don't attempt to do anything other than create a SCEVUnknown object 3202 // here. createSCEV only calls getUnknown after checking for all other 3203 // interesting possibilities, and any other code that calls getUnknown 3204 // is doing so in order to hide a value from SCEV canonicalization. 3205 3206 FoldingSetNodeID ID; 3207 ID.AddInteger(scUnknown); 3208 ID.AddPointer(V); 3209 void *IP = nullptr; 3210 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3211 assert(cast<SCEVUnknown>(S)->getValue() == V && 3212 "Stale SCEVUnknown in uniquing map!"); 3213 return S; 3214 } 3215 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3216 FirstUnknown); 3217 FirstUnknown = cast<SCEVUnknown>(S); 3218 UniqueSCEVs.InsertNode(S, IP); 3219 return S; 3220 } 3221 3222 //===----------------------------------------------------------------------===// 3223 // Basic SCEV Analysis and PHI Idiom Recognition Code 3224 // 3225 3226 /// isSCEVable - Test if values of the given type are analyzable within 3227 /// the SCEV framework. This primarily includes integer types, and it 3228 /// can optionally include pointer types if the ScalarEvolution class 3229 /// has access to target-specific information. 3230 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3231 // Integers and pointers are always SCEVable. 3232 return Ty->isIntegerTy() || Ty->isPointerTy(); 3233 } 3234 3235 /// getTypeSizeInBits - Return the size in bits of the specified type, 3236 /// for which isSCEVable must return true. 3237 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3238 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3239 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3240 } 3241 3242 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3243 /// the given type and which represents how SCEV will treat the given 3244 /// type, for which isSCEVable must return true. For pointer types, 3245 /// this is the pointer-sized integer type. 3246 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3247 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3248 3249 if (Ty->isIntegerTy()) { 3250 return Ty; 3251 } 3252 3253 // The only other support type is pointer. 3254 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3255 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3256 } 3257 3258 const SCEV *ScalarEvolution::getCouldNotCompute() { 3259 return CouldNotCompute.get(); 3260 } 3261 3262 namespace { 3263 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3264 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3265 // is set iff if find such SCEVUnknown. 3266 // 3267 struct FindInvalidSCEVUnknown { 3268 bool FindOne; 3269 FindInvalidSCEVUnknown() { FindOne = false; } 3270 bool follow(const SCEV *S) { 3271 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3272 case scConstant: 3273 return false; 3274 case scUnknown: 3275 if (!cast<SCEVUnknown>(S)->getValue()) 3276 FindOne = true; 3277 return false; 3278 default: 3279 return true; 3280 } 3281 } 3282 bool isDone() const { return FindOne; } 3283 }; 3284 } 3285 3286 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3287 FindInvalidSCEVUnknown F; 3288 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3289 ST.visitAll(S); 3290 3291 return !F.FindOne; 3292 } 3293 3294 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3295 /// expression and create a new one. 3296 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3297 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3298 3299 const SCEV *S = getExistingSCEV(V); 3300 if (S == nullptr) { 3301 S = createSCEV(V); 3302 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3303 } 3304 return S; 3305 } 3306 3307 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3308 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3309 3310 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3311 if (I != ValueExprMap.end()) { 3312 const SCEV *S = I->second; 3313 if (checkValidity(S)) 3314 return S; 3315 ValueExprMap.erase(I); 3316 } 3317 return nullptr; 3318 } 3319 3320 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3321 /// 3322 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3323 SCEV::NoWrapFlags Flags) { 3324 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3325 return getConstant( 3326 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3327 3328 Type *Ty = V->getType(); 3329 Ty = getEffectiveSCEVType(Ty); 3330 return getMulExpr( 3331 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3332 } 3333 3334 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3335 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3336 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3337 return getConstant( 3338 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3339 3340 Type *Ty = V->getType(); 3341 Ty = getEffectiveSCEVType(Ty); 3342 const SCEV *AllOnes = 3343 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3344 return getMinusSCEV(AllOnes, V); 3345 } 3346 3347 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3348 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3349 SCEV::NoWrapFlags Flags) { 3350 // Fast path: X - X --> 0. 3351 if (LHS == RHS) 3352 return getZero(LHS->getType()); 3353 3354 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3355 // makes it so that we cannot make much use of NUW. 3356 auto AddFlags = SCEV::FlagAnyWrap; 3357 const bool RHSIsNotMinSigned = 3358 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3359 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3360 // Let M be the minimum representable signed value. Then (-1)*RHS 3361 // signed-wraps if and only if RHS is M. That can happen even for 3362 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3363 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3364 // (-1)*RHS, we need to prove that RHS != M. 3365 // 3366 // If LHS is non-negative and we know that LHS - RHS does not 3367 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3368 // either by proving that RHS > M or that LHS >= 0. 3369 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3370 AddFlags = SCEV::FlagNSW; 3371 } 3372 } 3373 3374 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3375 // RHS is NSW and LHS >= 0. 3376 // 3377 // The difficulty here is that the NSW flag may have been proven 3378 // relative to a loop that is to be found in a recurrence in LHS and 3379 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3380 // larger scope than intended. 3381 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3382 3383 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3384 } 3385 3386 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3387 /// input value to the specified type. If the type must be extended, it is zero 3388 /// extended. 3389 const SCEV * 3390 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3391 Type *SrcTy = V->getType(); 3392 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3393 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3394 "Cannot truncate or zero extend with non-integer arguments!"); 3395 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3396 return V; // No conversion 3397 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3398 return getTruncateExpr(V, Ty); 3399 return getZeroExtendExpr(V, Ty); 3400 } 3401 3402 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3403 /// input value to the specified type. If the type must be extended, it is sign 3404 /// extended. 3405 const SCEV * 3406 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3407 Type *Ty) { 3408 Type *SrcTy = V->getType(); 3409 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3410 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3411 "Cannot truncate or zero extend with non-integer arguments!"); 3412 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3413 return V; // No conversion 3414 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3415 return getTruncateExpr(V, Ty); 3416 return getSignExtendExpr(V, Ty); 3417 } 3418 3419 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3420 /// input value to the specified type. If the type must be extended, it is zero 3421 /// extended. The conversion must not be narrowing. 3422 const SCEV * 3423 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3424 Type *SrcTy = V->getType(); 3425 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3426 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3427 "Cannot noop or zero extend with non-integer arguments!"); 3428 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3429 "getNoopOrZeroExtend cannot truncate!"); 3430 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3431 return V; // No conversion 3432 return getZeroExtendExpr(V, Ty); 3433 } 3434 3435 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3436 /// input value to the specified type. If the type must be extended, it is sign 3437 /// extended. The conversion must not be narrowing. 3438 const SCEV * 3439 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3440 Type *SrcTy = V->getType(); 3441 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3442 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3443 "Cannot noop or sign extend with non-integer arguments!"); 3444 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3445 "getNoopOrSignExtend cannot truncate!"); 3446 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3447 return V; // No conversion 3448 return getSignExtendExpr(V, Ty); 3449 } 3450 3451 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3452 /// the input value to the specified type. If the type must be extended, 3453 /// it is extended with unspecified bits. The conversion must not be 3454 /// narrowing. 3455 const SCEV * 3456 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3457 Type *SrcTy = V->getType(); 3458 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3459 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3460 "Cannot noop or any extend with non-integer arguments!"); 3461 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3462 "getNoopOrAnyExtend cannot truncate!"); 3463 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3464 return V; // No conversion 3465 return getAnyExtendExpr(V, Ty); 3466 } 3467 3468 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3469 /// input value to the specified type. The conversion must not be widening. 3470 const SCEV * 3471 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3472 Type *SrcTy = V->getType(); 3473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3474 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3475 "Cannot truncate or noop with non-integer arguments!"); 3476 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3477 "getTruncateOrNoop cannot extend!"); 3478 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3479 return V; // No conversion 3480 return getTruncateExpr(V, Ty); 3481 } 3482 3483 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3484 /// the types using zero-extension, and then perform a umax operation 3485 /// with them. 3486 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3487 const SCEV *RHS) { 3488 const SCEV *PromotedLHS = LHS; 3489 const SCEV *PromotedRHS = RHS; 3490 3491 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3492 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3493 else 3494 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3495 3496 return getUMaxExpr(PromotedLHS, PromotedRHS); 3497 } 3498 3499 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3500 /// the types using zero-extension, and then perform a umin operation 3501 /// with them. 3502 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3503 const SCEV *RHS) { 3504 const SCEV *PromotedLHS = LHS; 3505 const SCEV *PromotedRHS = RHS; 3506 3507 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3508 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3509 else 3510 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3511 3512 return getUMinExpr(PromotedLHS, PromotedRHS); 3513 } 3514 3515 /// getPointerBase - Transitively follow the chain of pointer-type operands 3516 /// until reaching a SCEV that does not have a single pointer operand. This 3517 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3518 /// but corner cases do exist. 3519 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3520 // A pointer operand may evaluate to a nonpointer expression, such as null. 3521 if (!V->getType()->isPointerTy()) 3522 return V; 3523 3524 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3525 return getPointerBase(Cast->getOperand()); 3526 } 3527 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3528 const SCEV *PtrOp = nullptr; 3529 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3530 I != E; ++I) { 3531 if ((*I)->getType()->isPointerTy()) { 3532 // Cannot find the base of an expression with multiple pointer operands. 3533 if (PtrOp) 3534 return V; 3535 PtrOp = *I; 3536 } 3537 } 3538 if (!PtrOp) 3539 return V; 3540 return getPointerBase(PtrOp); 3541 } 3542 return V; 3543 } 3544 3545 /// PushDefUseChildren - Push users of the given Instruction 3546 /// onto the given Worklist. 3547 static void 3548 PushDefUseChildren(Instruction *I, 3549 SmallVectorImpl<Instruction *> &Worklist) { 3550 // Push the def-use children onto the Worklist stack. 3551 for (User *U : I->users()) 3552 Worklist.push_back(cast<Instruction>(U)); 3553 } 3554 3555 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3556 /// instructions that depend on the given instruction and removes them from 3557 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3558 /// resolution. 3559 void 3560 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3561 SmallVector<Instruction *, 16> Worklist; 3562 PushDefUseChildren(PN, Worklist); 3563 3564 SmallPtrSet<Instruction *, 8> Visited; 3565 Visited.insert(PN); 3566 while (!Worklist.empty()) { 3567 Instruction *I = Worklist.pop_back_val(); 3568 if (!Visited.insert(I).second) 3569 continue; 3570 3571 ValueExprMapType::iterator It = 3572 ValueExprMap.find_as(static_cast<Value *>(I)); 3573 if (It != ValueExprMap.end()) { 3574 const SCEV *Old = It->second; 3575 3576 // Short-circuit the def-use traversal if the symbolic name 3577 // ceases to appear in expressions. 3578 if (Old != SymName && !hasOperand(Old, SymName)) 3579 continue; 3580 3581 // SCEVUnknown for a PHI either means that it has an unrecognized 3582 // structure, it's a PHI that's in the progress of being computed 3583 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3584 // additional loop trip count information isn't going to change anything. 3585 // In the second case, createNodeForPHI will perform the necessary 3586 // updates on its own when it gets to that point. In the third, we do 3587 // want to forget the SCEVUnknown. 3588 if (!isa<PHINode>(I) || 3589 !isa<SCEVUnknown>(Old) || 3590 (I != PN && Old == SymName)) { 3591 forgetMemoizedResults(Old); 3592 ValueExprMap.erase(It); 3593 } 3594 } 3595 3596 PushDefUseChildren(I, Worklist); 3597 } 3598 } 3599 3600 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3601 /// a loop header, making it a potential recurrence, or it doesn't. 3602 /// 3603 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3604 if (const Loop *L = LI.getLoopFor(PN->getParent())) 3605 if (L->getHeader() == PN->getParent()) { 3606 // The loop may have multiple entrances or multiple exits; we can analyze 3607 // this phi as an addrec if it has a unique entry value and a unique 3608 // backedge value. 3609 Value *BEValueV = nullptr, *StartValueV = nullptr; 3610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3611 Value *V = PN->getIncomingValue(i); 3612 if (L->contains(PN->getIncomingBlock(i))) { 3613 if (!BEValueV) { 3614 BEValueV = V; 3615 } else if (BEValueV != V) { 3616 BEValueV = nullptr; 3617 break; 3618 } 3619 } else if (!StartValueV) { 3620 StartValueV = V; 3621 } else if (StartValueV != V) { 3622 StartValueV = nullptr; 3623 break; 3624 } 3625 } 3626 if (BEValueV && StartValueV) { 3627 // While we are analyzing this PHI node, handle its value symbolically. 3628 const SCEV *SymbolicName = getUnknown(PN); 3629 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3630 "PHI node already processed?"); 3631 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3632 3633 // Using this symbolic name for the PHI, analyze the value coming around 3634 // the back-edge. 3635 const SCEV *BEValue = getSCEV(BEValueV); 3636 3637 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3638 // has a special value for the first iteration of the loop. 3639 3640 // If the value coming around the backedge is an add with the symbolic 3641 // value we just inserted, then we found a simple induction variable! 3642 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3643 // If there is a single occurrence of the symbolic value, replace it 3644 // with a recurrence. 3645 unsigned FoundIndex = Add->getNumOperands(); 3646 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3647 if (Add->getOperand(i) == SymbolicName) 3648 if (FoundIndex == e) { 3649 FoundIndex = i; 3650 break; 3651 } 3652 3653 if (FoundIndex != Add->getNumOperands()) { 3654 // Create an add with everything but the specified operand. 3655 SmallVector<const SCEV *, 8> Ops; 3656 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3657 if (i != FoundIndex) 3658 Ops.push_back(Add->getOperand(i)); 3659 const SCEV *Accum = getAddExpr(Ops); 3660 3661 // This is not a valid addrec if the step amount is varying each 3662 // loop iteration, but is not itself an addrec in this loop. 3663 if (isLoopInvariant(Accum, L) || 3664 (isa<SCEVAddRecExpr>(Accum) && 3665 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3666 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3667 3668 // If the increment doesn't overflow, then neither the addrec nor 3669 // the post-increment will overflow. 3670 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3671 if (OBO->getOperand(0) == PN) { 3672 if (OBO->hasNoUnsignedWrap()) 3673 Flags = setFlags(Flags, SCEV::FlagNUW); 3674 if (OBO->hasNoSignedWrap()) 3675 Flags = setFlags(Flags, SCEV::FlagNSW); 3676 } 3677 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3678 // If the increment is an inbounds GEP, then we know the address 3679 // space cannot be wrapped around. We cannot make any guarantee 3680 // about signed or unsigned overflow because pointers are 3681 // unsigned but we may have a negative index from the base 3682 // pointer. We can guarantee that no unsigned wrap occurs if the 3683 // indices form a positive value. 3684 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3685 Flags = setFlags(Flags, SCEV::FlagNW); 3686 3687 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3688 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3689 Flags = setFlags(Flags, SCEV::FlagNUW); 3690 } 3691 3692 // We cannot transfer nuw and nsw flags from subtraction 3693 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3694 // for instance. 3695 } 3696 3697 const SCEV *StartVal = getSCEV(StartValueV); 3698 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3699 3700 // Since the no-wrap flags are on the increment, they apply to the 3701 // post-incremented value as well. 3702 if (isLoopInvariant(Accum, L)) 3703 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3704 Accum, L, Flags); 3705 3706 // Okay, for the entire analysis of this edge we assumed the PHI 3707 // to be symbolic. We now need to go back and purge all of the 3708 // entries for the scalars that use the symbolic expression. 3709 ForgetSymbolicName(PN, SymbolicName); 3710 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3711 return PHISCEV; 3712 } 3713 } 3714 } else if (const SCEVAddRecExpr *AddRec = 3715 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3716 // Otherwise, this could be a loop like this: 3717 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3718 // In this case, j = {1,+,1} and BEValue is j. 3719 // Because the other in-value of i (0) fits the evolution of BEValue 3720 // i really is an addrec evolution. 3721 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3722 const SCEV *StartVal = getSCEV(StartValueV); 3723 3724 // If StartVal = j.start - j.stride, we can use StartVal as the 3725 // initial step of the addrec evolution. 3726 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3727 AddRec->getOperand(1))) { 3728 // FIXME: For constant StartVal, we should be able to infer 3729 // no-wrap flags. 3730 const SCEV *PHISCEV = 3731 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3732 SCEV::FlagAnyWrap); 3733 3734 // Okay, for the entire analysis of this edge we assumed the PHI 3735 // to be symbolic. We now need to go back and purge all of the 3736 // entries for the scalars that use the symbolic expression. 3737 ForgetSymbolicName(PN, SymbolicName); 3738 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3739 return PHISCEV; 3740 } 3741 } 3742 } 3743 } 3744 } 3745 3746 // If the PHI has a single incoming value, follow that value, unless the 3747 // PHI's incoming blocks are in a different loop, in which case doing so 3748 // risks breaking LCSSA form. Instcombine would normally zap these, but 3749 // it doesn't have DominatorTree information, so it may miss cases. 3750 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3751 &DT, &AC)) 3752 if (LI.replacementPreservesLCSSAForm(PN, V)) 3753 return getSCEV(V); 3754 3755 // If it's not a loop phi, we can't handle it yet. 3756 return getUnknown(PN); 3757 } 3758 3759 const SCEV *ScalarEvolution::createNodeForSelect(Instruction *I, Value *Cond, 3760 Value *TrueVal, 3761 Value *FalseVal) { 3762 // Try to match some simple smax or umax patterns. 3763 auto *ICI = dyn_cast<ICmpInst>(Cond); 3764 if (!ICI) 3765 return getUnknown(I); 3766 3767 Value *LHS = ICI->getOperand(0); 3768 Value *RHS = ICI->getOperand(1); 3769 3770 switch (ICI->getPredicate()) { 3771 case ICmpInst::ICMP_SLT: 3772 case ICmpInst::ICMP_SLE: 3773 std::swap(LHS, RHS); 3774 // fall through 3775 case ICmpInst::ICMP_SGT: 3776 case ICmpInst::ICMP_SGE: 3777 // a >s b ? a+x : b+x -> smax(a, b)+x 3778 // a >s b ? b+x : a+x -> smin(a, b)+x 3779 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3780 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 3781 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 3782 const SCEV *LA = getSCEV(TrueVal); 3783 const SCEV *RA = getSCEV(FalseVal); 3784 const SCEV *LDiff = getMinusSCEV(LA, LS); 3785 const SCEV *RDiff = getMinusSCEV(RA, RS); 3786 if (LDiff == RDiff) 3787 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3788 LDiff = getMinusSCEV(LA, RS); 3789 RDiff = getMinusSCEV(RA, LS); 3790 if (LDiff == RDiff) 3791 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3792 } 3793 break; 3794 case ICmpInst::ICMP_ULT: 3795 case ICmpInst::ICMP_ULE: 3796 std::swap(LHS, RHS); 3797 // fall through 3798 case ICmpInst::ICMP_UGT: 3799 case ICmpInst::ICMP_UGE: 3800 // a >u b ? a+x : b+x -> umax(a, b)+x 3801 // a >u b ? b+x : a+x -> umin(a, b)+x 3802 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3803 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3804 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 3805 const SCEV *LA = getSCEV(TrueVal); 3806 const SCEV *RA = getSCEV(FalseVal); 3807 const SCEV *LDiff = getMinusSCEV(LA, LS); 3808 const SCEV *RDiff = getMinusSCEV(RA, RS); 3809 if (LDiff == RDiff) 3810 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3811 LDiff = getMinusSCEV(LA, RS); 3812 RDiff = getMinusSCEV(RA, LS); 3813 if (LDiff == RDiff) 3814 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3815 } 3816 break; 3817 case ICmpInst::ICMP_NE: 3818 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3819 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3820 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 3821 const SCEV *One = getOne(I->getType()); 3822 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3823 const SCEV *LA = getSCEV(TrueVal); 3824 const SCEV *RA = getSCEV(FalseVal); 3825 const SCEV *LDiff = getMinusSCEV(LA, LS); 3826 const SCEV *RDiff = getMinusSCEV(RA, One); 3827 if (LDiff == RDiff) 3828 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3829 } 3830 break; 3831 case ICmpInst::ICMP_EQ: 3832 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3833 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3834 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 3835 const SCEV *One = getOne(I->getType()); 3836 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3837 const SCEV *LA = getSCEV(TrueVal); 3838 const SCEV *RA = getSCEV(FalseVal); 3839 const SCEV *LDiff = getMinusSCEV(LA, One); 3840 const SCEV *RDiff = getMinusSCEV(RA, LS); 3841 if (LDiff == RDiff) 3842 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3843 } 3844 break; 3845 default: 3846 break; 3847 } 3848 3849 return getUnknown(I); 3850 } 3851 3852 /// createNodeForGEP - Expand GEP instructions into add and multiply 3853 /// operations. This allows them to be analyzed by regular SCEV code. 3854 /// 3855 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3856 Value *Base = GEP->getOperand(0); 3857 // Don't attempt to analyze GEPs over unsized objects. 3858 if (!Base->getType()->getPointerElementType()->isSized()) 3859 return getUnknown(GEP); 3860 3861 SmallVector<const SCEV *, 4> IndexExprs; 3862 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 3863 IndexExprs.push_back(getSCEV(*Index)); 3864 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 3865 GEP->isInBounds()); 3866 } 3867 3868 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3869 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3870 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3871 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3872 uint32_t 3873 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3874 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3875 return C->getValue()->getValue().countTrailingZeros(); 3876 3877 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3878 return std::min(GetMinTrailingZeros(T->getOperand()), 3879 (uint32_t)getTypeSizeInBits(T->getType())); 3880 3881 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3882 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3883 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3884 getTypeSizeInBits(E->getType()) : OpRes; 3885 } 3886 3887 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3888 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3889 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3890 getTypeSizeInBits(E->getType()) : OpRes; 3891 } 3892 3893 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3894 // The result is the min of all operands results. 3895 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3896 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3897 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3898 return MinOpRes; 3899 } 3900 3901 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3902 // The result is the sum of all operands results. 3903 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3904 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3905 for (unsigned i = 1, e = M->getNumOperands(); 3906 SumOpRes != BitWidth && i != e; ++i) 3907 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3908 BitWidth); 3909 return SumOpRes; 3910 } 3911 3912 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3913 // The result is the min of all operands results. 3914 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3915 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3916 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3917 return MinOpRes; 3918 } 3919 3920 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3921 // The result is the min of all operands results. 3922 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3923 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3924 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3925 return MinOpRes; 3926 } 3927 3928 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3929 // The result is the min of all operands results. 3930 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3931 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3932 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3933 return MinOpRes; 3934 } 3935 3936 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3937 // For a SCEVUnknown, ask ValueTracking. 3938 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3939 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3940 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 3941 0, &AC, nullptr, &DT); 3942 return Zeros.countTrailingOnes(); 3943 } 3944 3945 // SCEVUDivExpr 3946 return 0; 3947 } 3948 3949 /// GetRangeFromMetadata - Helper method to assign a range to V from 3950 /// metadata present in the IR. 3951 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 3952 if (Instruction *I = dyn_cast<Instruction>(V)) { 3953 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 3954 ConstantRange TotalRange( 3955 cast<IntegerType>(I->getType())->getBitWidth(), false); 3956 3957 unsigned NumRanges = MD->getNumOperands() / 2; 3958 assert(NumRanges >= 1); 3959 3960 for (unsigned i = 0; i < NumRanges; ++i) { 3961 ConstantInt *Lower = 3962 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 3963 ConstantInt *Upper = 3964 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 3965 ConstantRange Range(Lower->getValue(), Upper->getValue()); 3966 TotalRange = TotalRange.unionWith(Range); 3967 } 3968 3969 return TotalRange; 3970 } 3971 } 3972 3973 return None; 3974 } 3975 3976 /// getRange - Determine the range for a particular SCEV. If SignHint is 3977 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 3978 /// with a "cleaner" unsigned (resp. signed) representation. 3979 /// 3980 ConstantRange 3981 ScalarEvolution::getRange(const SCEV *S, 3982 ScalarEvolution::RangeSignHint SignHint) { 3983 DenseMap<const SCEV *, ConstantRange> &Cache = 3984 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 3985 : SignedRanges; 3986 3987 // See if we've computed this range already. 3988 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 3989 if (I != Cache.end()) 3990 return I->second; 3991 3992 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3993 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 3994 3995 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3996 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3997 3998 // If the value has known zeros, the maximum value will have those known zeros 3999 // as well. 4000 uint32_t TZ = GetMinTrailingZeros(S); 4001 if (TZ != 0) { 4002 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4003 ConservativeResult = 4004 ConstantRange(APInt::getMinValue(BitWidth), 4005 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4006 else 4007 ConservativeResult = ConstantRange( 4008 APInt::getSignedMinValue(BitWidth), 4009 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4010 } 4011 4012 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4013 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4014 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4015 X = X.add(getRange(Add->getOperand(i), SignHint)); 4016 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4017 } 4018 4019 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4020 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4021 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4022 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4023 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4024 } 4025 4026 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4027 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4028 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4029 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4030 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4031 } 4032 4033 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4034 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4035 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4036 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4037 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4038 } 4039 4040 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4041 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4042 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4043 return setRange(UDiv, SignHint, 4044 ConservativeResult.intersectWith(X.udiv(Y))); 4045 } 4046 4047 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4048 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4049 return setRange(ZExt, SignHint, 4050 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4051 } 4052 4053 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4054 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4055 return setRange(SExt, SignHint, 4056 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4057 } 4058 4059 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4060 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4061 return setRange(Trunc, SignHint, 4062 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4063 } 4064 4065 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4066 // If there's no unsigned wrap, the value will never be less than its 4067 // initial value. 4068 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4069 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4070 if (!C->getValue()->isZero()) 4071 ConservativeResult = 4072 ConservativeResult.intersectWith( 4073 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4074 4075 // If there's no signed wrap, and all the operands have the same sign or 4076 // zero, the value won't ever change sign. 4077 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4078 bool AllNonNeg = true; 4079 bool AllNonPos = true; 4080 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4081 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4082 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4083 } 4084 if (AllNonNeg) 4085 ConservativeResult = ConservativeResult.intersectWith( 4086 ConstantRange(APInt(BitWidth, 0), 4087 APInt::getSignedMinValue(BitWidth))); 4088 else if (AllNonPos) 4089 ConservativeResult = ConservativeResult.intersectWith( 4090 ConstantRange(APInt::getSignedMinValue(BitWidth), 4091 APInt(BitWidth, 1))); 4092 } 4093 4094 // TODO: non-affine addrec 4095 if (AddRec->isAffine()) { 4096 Type *Ty = AddRec->getType(); 4097 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4098 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4099 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4100 4101 // Check for overflow. This must be done with ConstantRange arithmetic 4102 // because we could be called from within the ScalarEvolution overflow 4103 // checking code. 4104 4105 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4106 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4107 ConstantRange ZExtMaxBECountRange = 4108 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4109 4110 const SCEV *Start = AddRec->getStart(); 4111 const SCEV *Step = AddRec->getStepRecurrence(*this); 4112 ConstantRange StepSRange = getSignedRange(Step); 4113 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4114 4115 ConstantRange StartURange = getUnsignedRange(Start); 4116 ConstantRange EndURange = 4117 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4118 4119 // Check for unsigned overflow. 4120 ConstantRange ZExtStartURange = 4121 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4122 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4123 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4124 ZExtEndURange) { 4125 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4126 EndURange.getUnsignedMin()); 4127 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4128 EndURange.getUnsignedMax()); 4129 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4130 if (!IsFullRange) 4131 ConservativeResult = 4132 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4133 } 4134 4135 ConstantRange StartSRange = getSignedRange(Start); 4136 ConstantRange EndSRange = 4137 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4138 4139 // Check for signed overflow. This must be done with ConstantRange 4140 // arithmetic because we could be called from within the ScalarEvolution 4141 // overflow checking code. 4142 ConstantRange SExtStartSRange = 4143 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4144 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4145 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4146 SExtEndSRange) { 4147 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4148 EndSRange.getSignedMin()); 4149 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4150 EndSRange.getSignedMax()); 4151 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4152 if (!IsFullRange) 4153 ConservativeResult = 4154 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4155 } 4156 } 4157 } 4158 4159 return setRange(AddRec, SignHint, ConservativeResult); 4160 } 4161 4162 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4163 // Check if the IR explicitly contains !range metadata. 4164 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4165 if (MDRange.hasValue()) 4166 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4167 4168 // Split here to avoid paying the compile-time cost of calling both 4169 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4170 // if needed. 4171 const DataLayout &DL = F.getParent()->getDataLayout(); 4172 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4173 // For a SCEVUnknown, ask ValueTracking. 4174 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4175 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4176 if (Ones != ~Zeros + 1) 4177 ConservativeResult = 4178 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4179 } else { 4180 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4181 "generalize as needed!"); 4182 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4183 if (NS > 1) 4184 ConservativeResult = ConservativeResult.intersectWith( 4185 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4186 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4187 } 4188 4189 return setRange(U, SignHint, ConservativeResult); 4190 } 4191 4192 return setRange(S, SignHint, ConservativeResult); 4193 } 4194 4195 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4196 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4197 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4198 4199 // Return early if there are no flags to propagate to the SCEV. 4200 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4201 if (BinOp->hasNoUnsignedWrap()) 4202 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4203 if (BinOp->hasNoSignedWrap()) 4204 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4205 if (Flags == SCEV::FlagAnyWrap) { 4206 return SCEV::FlagAnyWrap; 4207 } 4208 4209 // Here we check that BinOp is in the header of the innermost loop 4210 // containing BinOp, since we only deal with instructions in the loop 4211 // header. The actual loop we need to check later will come from an add 4212 // recurrence, but getting that requires computing the SCEV of the operands, 4213 // which can be expensive. This check we can do cheaply to rule out some 4214 // cases early. 4215 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4216 if (innermostContainingLoop == nullptr || 4217 innermostContainingLoop->getHeader() != BinOp->getParent()) 4218 return SCEV::FlagAnyWrap; 4219 4220 // Only proceed if we can prove that BinOp does not yield poison. 4221 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4222 4223 // At this point we know that if V is executed, then it does not wrap 4224 // according to at least one of NSW or NUW. If V is not executed, then we do 4225 // not know if the calculation that V represents would wrap. Multiple 4226 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4227 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4228 // derived from other instructions that map to the same SCEV. We cannot make 4229 // that guarantee for cases where V is not executed. So we need to find the 4230 // loop that V is considered in relation to and prove that V is executed for 4231 // every iteration of that loop. That implies that the value that V 4232 // calculates does not wrap anywhere in the loop, so then we can apply the 4233 // flags to the SCEV. 4234 // 4235 // We check isLoopInvariant to disambiguate in case we are adding two 4236 // recurrences from different loops, so that we know which loop to prove 4237 // that V is executed in. 4238 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4239 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4240 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4241 const int OtherOpIndex = 1 - OpIndex; 4242 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4243 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4244 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4245 return Flags; 4246 } 4247 } 4248 return SCEV::FlagAnyWrap; 4249 } 4250 4251 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4252 /// the expression. 4253 /// 4254 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4255 if (!isSCEVable(V->getType())) 4256 return getUnknown(V); 4257 4258 unsigned Opcode = Instruction::UserOp1; 4259 if (Instruction *I = dyn_cast<Instruction>(V)) { 4260 Opcode = I->getOpcode(); 4261 4262 // Don't attempt to analyze instructions in blocks that aren't 4263 // reachable. Such instructions don't matter, and they aren't required 4264 // to obey basic rules for definitions dominating uses which this 4265 // analysis depends on. 4266 if (!DT.isReachableFromEntry(I->getParent())) 4267 return getUnknown(V); 4268 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4269 Opcode = CE->getOpcode(); 4270 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4271 return getConstant(CI); 4272 else if (isa<ConstantPointerNull>(V)) 4273 return getZero(V->getType()); 4274 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4275 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4276 else 4277 return getUnknown(V); 4278 4279 Operator *U = cast<Operator>(V); 4280 switch (Opcode) { 4281 case Instruction::Add: { 4282 // The simple thing to do would be to just call getSCEV on both operands 4283 // and call getAddExpr with the result. However if we're looking at a 4284 // bunch of things all added together, this can be quite inefficient, 4285 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4286 // Instead, gather up all the operands and make a single getAddExpr call. 4287 // LLVM IR canonical form means we need only traverse the left operands. 4288 SmallVector<const SCEV *, 4> AddOps; 4289 for (Value *Op = U;; Op = U->getOperand(0)) { 4290 U = dyn_cast<Operator>(Op); 4291 unsigned Opcode = U ? U->getOpcode() : 0; 4292 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4293 assert(Op != V && "V should be an add"); 4294 AddOps.push_back(getSCEV(Op)); 4295 break; 4296 } 4297 4298 if (auto *OpSCEV = getExistingSCEV(U)) { 4299 AddOps.push_back(OpSCEV); 4300 break; 4301 } 4302 4303 // If a NUW or NSW flag can be applied to the SCEV for this 4304 // addition, then compute the SCEV for this addition by itself 4305 // with a separate call to getAddExpr. We need to do that 4306 // instead of pushing the operands of the addition onto AddOps, 4307 // since the flags are only known to apply to this particular 4308 // addition - they may not apply to other additions that can be 4309 // formed with operands from AddOps. 4310 const SCEV *RHS = getSCEV(U->getOperand(1)); 4311 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4312 if (Flags != SCEV::FlagAnyWrap) { 4313 const SCEV *LHS = getSCEV(U->getOperand(0)); 4314 if (Opcode == Instruction::Sub) 4315 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4316 else 4317 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4318 break; 4319 } 4320 4321 if (Opcode == Instruction::Sub) 4322 AddOps.push_back(getNegativeSCEV(RHS)); 4323 else 4324 AddOps.push_back(RHS); 4325 } 4326 return getAddExpr(AddOps); 4327 } 4328 4329 case Instruction::Mul: { 4330 SmallVector<const SCEV *, 4> MulOps; 4331 for (Value *Op = U;; Op = U->getOperand(0)) { 4332 U = dyn_cast<Operator>(Op); 4333 if (!U || U->getOpcode() != Instruction::Mul) { 4334 assert(Op != V && "V should be a mul"); 4335 MulOps.push_back(getSCEV(Op)); 4336 break; 4337 } 4338 4339 if (auto *OpSCEV = getExistingSCEV(U)) { 4340 MulOps.push_back(OpSCEV); 4341 break; 4342 } 4343 4344 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4345 if (Flags != SCEV::FlagAnyWrap) { 4346 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4347 getSCEV(U->getOperand(1)), Flags)); 4348 break; 4349 } 4350 4351 MulOps.push_back(getSCEV(U->getOperand(1))); 4352 } 4353 return getMulExpr(MulOps); 4354 } 4355 case Instruction::UDiv: 4356 return getUDivExpr(getSCEV(U->getOperand(0)), 4357 getSCEV(U->getOperand(1))); 4358 case Instruction::Sub: 4359 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4360 getNoWrapFlagsFromUB(U)); 4361 case Instruction::And: 4362 // For an expression like x&255 that merely masks off the high bits, 4363 // use zext(trunc(x)) as the SCEV expression. 4364 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4365 if (CI->isNullValue()) 4366 return getSCEV(U->getOperand(1)); 4367 if (CI->isAllOnesValue()) 4368 return getSCEV(U->getOperand(0)); 4369 const APInt &A = CI->getValue(); 4370 4371 // Instcombine's ShrinkDemandedConstant may strip bits out of 4372 // constants, obscuring what would otherwise be a low-bits mask. 4373 // Use computeKnownBits to compute what ShrinkDemandedConstant 4374 // knew about to reconstruct a low-bits mask value. 4375 unsigned LZ = A.countLeadingZeros(); 4376 unsigned TZ = A.countTrailingZeros(); 4377 unsigned BitWidth = A.getBitWidth(); 4378 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4379 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4380 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4381 4382 APInt EffectiveMask = 4383 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4384 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4385 const SCEV *MulCount = getConstant( 4386 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4387 return getMulExpr( 4388 getZeroExtendExpr( 4389 getTruncateExpr( 4390 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4391 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4392 U->getType()), 4393 MulCount); 4394 } 4395 } 4396 break; 4397 4398 case Instruction::Or: 4399 // If the RHS of the Or is a constant, we may have something like: 4400 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4401 // optimizations will transparently handle this case. 4402 // 4403 // In order for this transformation to be safe, the LHS must be of the 4404 // form X*(2^n) and the Or constant must be less than 2^n. 4405 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4406 const SCEV *LHS = getSCEV(U->getOperand(0)); 4407 const APInt &CIVal = CI->getValue(); 4408 if (GetMinTrailingZeros(LHS) >= 4409 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4410 // Build a plain add SCEV. 4411 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4412 // If the LHS of the add was an addrec and it has no-wrap flags, 4413 // transfer the no-wrap flags, since an or won't introduce a wrap. 4414 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4415 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4416 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4417 OldAR->getNoWrapFlags()); 4418 } 4419 return S; 4420 } 4421 } 4422 break; 4423 case Instruction::Xor: 4424 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4425 // If the RHS of the xor is a signbit, then this is just an add. 4426 // Instcombine turns add of signbit into xor as a strength reduction step. 4427 if (CI->getValue().isSignBit()) 4428 return getAddExpr(getSCEV(U->getOperand(0)), 4429 getSCEV(U->getOperand(1))); 4430 4431 // If the RHS of xor is -1, then this is a not operation. 4432 if (CI->isAllOnesValue()) 4433 return getNotSCEV(getSCEV(U->getOperand(0))); 4434 4435 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4436 // This is a variant of the check for xor with -1, and it handles 4437 // the case where instcombine has trimmed non-demanded bits out 4438 // of an xor with -1. 4439 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4440 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4441 if (BO->getOpcode() == Instruction::And && 4442 LCI->getValue() == CI->getValue()) 4443 if (const SCEVZeroExtendExpr *Z = 4444 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4445 Type *UTy = U->getType(); 4446 const SCEV *Z0 = Z->getOperand(); 4447 Type *Z0Ty = Z0->getType(); 4448 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4449 4450 // If C is a low-bits mask, the zero extend is serving to 4451 // mask off the high bits. Complement the operand and 4452 // re-apply the zext. 4453 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4454 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4455 4456 // If C is a single bit, it may be in the sign-bit position 4457 // before the zero-extend. In this case, represent the xor 4458 // using an add, which is equivalent, and re-apply the zext. 4459 APInt Trunc = CI->getValue().trunc(Z0TySize); 4460 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4461 Trunc.isSignBit()) 4462 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4463 UTy); 4464 } 4465 } 4466 break; 4467 4468 case Instruction::Shl: 4469 // Turn shift left of a constant amount into a multiply. 4470 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4471 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4472 4473 // If the shift count is not less than the bitwidth, the result of 4474 // the shift is undefined. Don't try to analyze it, because the 4475 // resolution chosen here may differ from the resolution chosen in 4476 // other parts of the compiler. 4477 if (SA->getValue().uge(BitWidth)) 4478 break; 4479 4480 // It is currently not resolved how to interpret NSW for left 4481 // shift by BitWidth - 1, so we avoid applying flags in that 4482 // case. Remove this check (or this comment) once the situation 4483 // is resolved. See 4484 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4485 // and http://reviews.llvm.org/D8890 . 4486 auto Flags = SCEV::FlagAnyWrap; 4487 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4488 4489 Constant *X = ConstantInt::get(getContext(), 4490 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4491 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4492 } 4493 break; 4494 4495 case Instruction::LShr: 4496 // Turn logical shift right of a constant into a unsigned divide. 4497 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4498 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4499 4500 // If the shift count is not less than the bitwidth, the result of 4501 // the shift is undefined. Don't try to analyze it, because the 4502 // resolution chosen here may differ from the resolution chosen in 4503 // other parts of the compiler. 4504 if (SA->getValue().uge(BitWidth)) 4505 break; 4506 4507 Constant *X = ConstantInt::get(getContext(), 4508 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4509 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4510 } 4511 break; 4512 4513 case Instruction::AShr: 4514 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4515 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4516 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4517 if (L->getOpcode() == Instruction::Shl && 4518 L->getOperand(1) == U->getOperand(1)) { 4519 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4520 4521 // If the shift count is not less than the bitwidth, the result of 4522 // the shift is undefined. Don't try to analyze it, because the 4523 // resolution chosen here may differ from the resolution chosen in 4524 // other parts of the compiler. 4525 if (CI->getValue().uge(BitWidth)) 4526 break; 4527 4528 uint64_t Amt = BitWidth - CI->getZExtValue(); 4529 if (Amt == BitWidth) 4530 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4531 return 4532 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4533 IntegerType::get(getContext(), 4534 Amt)), 4535 U->getType()); 4536 } 4537 break; 4538 4539 case Instruction::Trunc: 4540 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4541 4542 case Instruction::ZExt: 4543 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4544 4545 case Instruction::SExt: 4546 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4547 4548 case Instruction::BitCast: 4549 // BitCasts are no-op casts so we just eliminate the cast. 4550 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4551 return getSCEV(U->getOperand(0)); 4552 break; 4553 4554 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4555 // lead to pointer expressions which cannot safely be expanded to GEPs, 4556 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4557 // simplifying integer expressions. 4558 4559 case Instruction::GetElementPtr: 4560 return createNodeForGEP(cast<GEPOperator>(U)); 4561 4562 case Instruction::PHI: 4563 return createNodeForPHI(cast<PHINode>(U)); 4564 4565 case Instruction::Select: 4566 // U can also be a select constant expr, which let fall through. Since 4567 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4568 // constant expressions cannot have instructions as operands, we'd have 4569 // returned getUnknown for a select constant expressions anyway. 4570 if (isa<Instruction>(U)) 4571 return createNodeForSelect(cast<Instruction>(U), U->getOperand(0), 4572 U->getOperand(1), U->getOperand(2)); 4573 4574 default: // We cannot analyze this expression. 4575 break; 4576 } 4577 4578 return getUnknown(V); 4579 } 4580 4581 4582 4583 //===----------------------------------------------------------------------===// 4584 // Iteration Count Computation Code 4585 // 4586 4587 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4588 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4589 return getSmallConstantTripCount(L, ExitingBB); 4590 4591 // No trip count information for multiple exits. 4592 return 0; 4593 } 4594 4595 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4596 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4597 /// constant. Will also return 0 if the maximum trip count is very large (>= 4598 /// 2^32). 4599 /// 4600 /// This "trip count" assumes that control exits via ExitingBlock. More 4601 /// precisely, it is the number of times that control may reach ExitingBlock 4602 /// before taking the branch. For loops with multiple exits, it may not be the 4603 /// number times that the loop header executes because the loop may exit 4604 /// prematurely via another branch. 4605 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4606 BasicBlock *ExitingBlock) { 4607 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4608 assert(L->isLoopExiting(ExitingBlock) && 4609 "Exiting block must actually branch out of the loop!"); 4610 const SCEVConstant *ExitCount = 4611 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4612 if (!ExitCount) 4613 return 0; 4614 4615 ConstantInt *ExitConst = ExitCount->getValue(); 4616 4617 // Guard against huge trip counts. 4618 if (ExitConst->getValue().getActiveBits() > 32) 4619 return 0; 4620 4621 // In case of integer overflow, this returns 0, which is correct. 4622 return ((unsigned)ExitConst->getZExtValue()) + 1; 4623 } 4624 4625 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4626 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4627 return getSmallConstantTripMultiple(L, ExitingBB); 4628 4629 // No trip multiple information for multiple exits. 4630 return 0; 4631 } 4632 4633 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4634 /// trip count of this loop as a normal unsigned value, if possible. This 4635 /// means that the actual trip count is always a multiple of the returned 4636 /// value (don't forget the trip count could very well be zero as well!). 4637 /// 4638 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4639 /// multiple of a constant (which is also the case if the trip count is simply 4640 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4641 /// if the trip count is very large (>= 2^32). 4642 /// 4643 /// As explained in the comments for getSmallConstantTripCount, this assumes 4644 /// that control exits the loop via ExitingBlock. 4645 unsigned 4646 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4647 BasicBlock *ExitingBlock) { 4648 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4649 assert(L->isLoopExiting(ExitingBlock) && 4650 "Exiting block must actually branch out of the loop!"); 4651 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4652 if (ExitCount == getCouldNotCompute()) 4653 return 1; 4654 4655 // Get the trip count from the BE count by adding 1. 4656 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4657 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4658 // to factor simple cases. 4659 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4660 TCMul = Mul->getOperand(0); 4661 4662 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4663 if (!MulC) 4664 return 1; 4665 4666 ConstantInt *Result = MulC->getValue(); 4667 4668 // Guard against huge trip counts (this requires checking 4669 // for zero to handle the case where the trip count == -1 and the 4670 // addition wraps). 4671 if (!Result || Result->getValue().getActiveBits() > 32 || 4672 Result->getValue().getActiveBits() == 0) 4673 return 1; 4674 4675 return (unsigned)Result->getZExtValue(); 4676 } 4677 4678 // getExitCount - Get the expression for the number of loop iterations for which 4679 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4680 // SCEVCouldNotCompute. 4681 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4682 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4683 } 4684 4685 /// getBackedgeTakenCount - If the specified loop has a predictable 4686 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4687 /// object. The backedge-taken count is the number of times the loop header 4688 /// will be branched to from within the loop. This is one less than the 4689 /// trip count of the loop, since it doesn't count the first iteration, 4690 /// when the header is branched to from outside the loop. 4691 /// 4692 /// Note that it is not valid to call this method on a loop without a 4693 /// loop-invariant backedge-taken count (see 4694 /// hasLoopInvariantBackedgeTakenCount). 4695 /// 4696 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4697 return getBackedgeTakenInfo(L).getExact(this); 4698 } 4699 4700 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4701 /// return the least SCEV value that is known never to be less than the 4702 /// actual backedge taken count. 4703 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4704 return getBackedgeTakenInfo(L).getMax(this); 4705 } 4706 4707 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4708 /// onto the given Worklist. 4709 static void 4710 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4711 BasicBlock *Header = L->getHeader(); 4712 4713 // Push all Loop-header PHIs onto the Worklist stack. 4714 for (BasicBlock::iterator I = Header->begin(); 4715 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4716 Worklist.push_back(PN); 4717 } 4718 4719 const ScalarEvolution::BackedgeTakenInfo & 4720 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4721 // Initially insert an invalid entry for this loop. If the insertion 4722 // succeeds, proceed to actually compute a backedge-taken count and 4723 // update the value. The temporary CouldNotCompute value tells SCEV 4724 // code elsewhere that it shouldn't attempt to request a new 4725 // backedge-taken count, which could result in infinite recursion. 4726 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4727 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4728 if (!Pair.second) 4729 return Pair.first->second; 4730 4731 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4732 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4733 // must be cleared in this scope. 4734 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4735 4736 if (Result.getExact(this) != getCouldNotCompute()) { 4737 assert(isLoopInvariant(Result.getExact(this), L) && 4738 isLoopInvariant(Result.getMax(this), L) && 4739 "Computed backedge-taken count isn't loop invariant for loop!"); 4740 ++NumTripCountsComputed; 4741 } 4742 else if (Result.getMax(this) == getCouldNotCompute() && 4743 isa<PHINode>(L->getHeader()->begin())) { 4744 // Only count loops that have phi nodes as not being computable. 4745 ++NumTripCountsNotComputed; 4746 } 4747 4748 // Now that we know more about the trip count for this loop, forget any 4749 // existing SCEV values for PHI nodes in this loop since they are only 4750 // conservative estimates made without the benefit of trip count 4751 // information. This is similar to the code in forgetLoop, except that 4752 // it handles SCEVUnknown PHI nodes specially. 4753 if (Result.hasAnyInfo()) { 4754 SmallVector<Instruction *, 16> Worklist; 4755 PushLoopPHIs(L, Worklist); 4756 4757 SmallPtrSet<Instruction *, 8> Visited; 4758 while (!Worklist.empty()) { 4759 Instruction *I = Worklist.pop_back_val(); 4760 if (!Visited.insert(I).second) 4761 continue; 4762 4763 ValueExprMapType::iterator It = 4764 ValueExprMap.find_as(static_cast<Value *>(I)); 4765 if (It != ValueExprMap.end()) { 4766 const SCEV *Old = It->second; 4767 4768 // SCEVUnknown for a PHI either means that it has an unrecognized 4769 // structure, or it's a PHI that's in the progress of being computed 4770 // by createNodeForPHI. In the former case, additional loop trip 4771 // count information isn't going to change anything. In the later 4772 // case, createNodeForPHI will perform the necessary updates on its 4773 // own when it gets to that point. 4774 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4775 forgetMemoizedResults(Old); 4776 ValueExprMap.erase(It); 4777 } 4778 if (PHINode *PN = dyn_cast<PHINode>(I)) 4779 ConstantEvolutionLoopExitValue.erase(PN); 4780 } 4781 4782 PushDefUseChildren(I, Worklist); 4783 } 4784 } 4785 4786 // Re-lookup the insert position, since the call to 4787 // ComputeBackedgeTakenCount above could result in a 4788 // recusive call to getBackedgeTakenInfo (on a different 4789 // loop), which would invalidate the iterator computed 4790 // earlier. 4791 return BackedgeTakenCounts.find(L)->second = Result; 4792 } 4793 4794 /// forgetLoop - This method should be called by the client when it has 4795 /// changed a loop in a way that may effect ScalarEvolution's ability to 4796 /// compute a trip count, or if the loop is deleted. 4797 void ScalarEvolution::forgetLoop(const Loop *L) { 4798 // Drop any stored trip count value. 4799 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4800 BackedgeTakenCounts.find(L); 4801 if (BTCPos != BackedgeTakenCounts.end()) { 4802 BTCPos->second.clear(); 4803 BackedgeTakenCounts.erase(BTCPos); 4804 } 4805 4806 // Drop information about expressions based on loop-header PHIs. 4807 SmallVector<Instruction *, 16> Worklist; 4808 PushLoopPHIs(L, Worklist); 4809 4810 SmallPtrSet<Instruction *, 8> Visited; 4811 while (!Worklist.empty()) { 4812 Instruction *I = Worklist.pop_back_val(); 4813 if (!Visited.insert(I).second) 4814 continue; 4815 4816 ValueExprMapType::iterator It = 4817 ValueExprMap.find_as(static_cast<Value *>(I)); 4818 if (It != ValueExprMap.end()) { 4819 forgetMemoizedResults(It->second); 4820 ValueExprMap.erase(It); 4821 if (PHINode *PN = dyn_cast<PHINode>(I)) 4822 ConstantEvolutionLoopExitValue.erase(PN); 4823 } 4824 4825 PushDefUseChildren(I, Worklist); 4826 } 4827 4828 // Forget all contained loops too, to avoid dangling entries in the 4829 // ValuesAtScopes map. 4830 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4831 forgetLoop(*I); 4832 } 4833 4834 /// forgetValue - This method should be called by the client when it has 4835 /// changed a value in a way that may effect its value, or which may 4836 /// disconnect it from a def-use chain linking it to a loop. 4837 void ScalarEvolution::forgetValue(Value *V) { 4838 Instruction *I = dyn_cast<Instruction>(V); 4839 if (!I) return; 4840 4841 // Drop information about expressions based on loop-header PHIs. 4842 SmallVector<Instruction *, 16> Worklist; 4843 Worklist.push_back(I); 4844 4845 SmallPtrSet<Instruction *, 8> Visited; 4846 while (!Worklist.empty()) { 4847 I = Worklist.pop_back_val(); 4848 if (!Visited.insert(I).second) 4849 continue; 4850 4851 ValueExprMapType::iterator It = 4852 ValueExprMap.find_as(static_cast<Value *>(I)); 4853 if (It != ValueExprMap.end()) { 4854 forgetMemoizedResults(It->second); 4855 ValueExprMap.erase(It); 4856 if (PHINode *PN = dyn_cast<PHINode>(I)) 4857 ConstantEvolutionLoopExitValue.erase(PN); 4858 } 4859 4860 PushDefUseChildren(I, Worklist); 4861 } 4862 } 4863 4864 /// getExact - Get the exact loop backedge taken count considering all loop 4865 /// exits. A computable result can only be returned for loops with a single 4866 /// exit. Returning the minimum taken count among all exits is incorrect 4867 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 4868 /// assumes that the limit of each loop test is never skipped. This is a valid 4869 /// assumption as long as the loop exits via that test. For precise results, it 4870 /// is the caller's responsibility to specify the relevant loop exit using 4871 /// getExact(ExitingBlock, SE). 4872 const SCEV * 4873 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4874 // If any exits were not computable, the loop is not computable. 4875 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4876 4877 // We need exactly one computable exit. 4878 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4879 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4880 4881 const SCEV *BECount = nullptr; 4882 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4883 ENT != nullptr; ENT = ENT->getNextExit()) { 4884 4885 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4886 4887 if (!BECount) 4888 BECount = ENT->ExactNotTaken; 4889 else if (BECount != ENT->ExactNotTaken) 4890 return SE->getCouldNotCompute(); 4891 } 4892 assert(BECount && "Invalid not taken count for loop exit"); 4893 return BECount; 4894 } 4895 4896 /// getExact - Get the exact not taken count for this loop exit. 4897 const SCEV * 4898 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4899 ScalarEvolution *SE) const { 4900 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4901 ENT != nullptr; ENT = ENT->getNextExit()) { 4902 4903 if (ENT->ExitingBlock == ExitingBlock) 4904 return ENT->ExactNotTaken; 4905 } 4906 return SE->getCouldNotCompute(); 4907 } 4908 4909 /// getMax - Get the max backedge taken count for the loop. 4910 const SCEV * 4911 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4912 return Max ? Max : SE->getCouldNotCompute(); 4913 } 4914 4915 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4916 ScalarEvolution *SE) const { 4917 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4918 return true; 4919 4920 if (!ExitNotTaken.ExitingBlock) 4921 return false; 4922 4923 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4924 ENT != nullptr; ENT = ENT->getNextExit()) { 4925 4926 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4927 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4928 return true; 4929 } 4930 } 4931 return false; 4932 } 4933 4934 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4935 /// computable exit into a persistent ExitNotTakenInfo array. 4936 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4937 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4938 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4939 4940 if (!Complete) 4941 ExitNotTaken.setIncomplete(); 4942 4943 unsigned NumExits = ExitCounts.size(); 4944 if (NumExits == 0) return; 4945 4946 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4947 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4948 if (NumExits == 1) return; 4949 4950 // Handle the rare case of multiple computable exits. 4951 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4952 4953 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4954 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4955 PrevENT->setNextExit(ENT); 4956 ENT->ExitingBlock = ExitCounts[i].first; 4957 ENT->ExactNotTaken = ExitCounts[i].second; 4958 } 4959 } 4960 4961 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4962 void ScalarEvolution::BackedgeTakenInfo::clear() { 4963 ExitNotTaken.ExitingBlock = nullptr; 4964 ExitNotTaken.ExactNotTaken = nullptr; 4965 delete[] ExitNotTaken.getNextExit(); 4966 } 4967 4968 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4969 /// of the specified loop will execute. 4970 ScalarEvolution::BackedgeTakenInfo 4971 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4972 SmallVector<BasicBlock *, 8> ExitingBlocks; 4973 L->getExitingBlocks(ExitingBlocks); 4974 4975 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4976 bool CouldComputeBECount = true; 4977 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4978 const SCEV *MustExitMaxBECount = nullptr; 4979 const SCEV *MayExitMaxBECount = nullptr; 4980 4981 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4982 // and compute maxBECount. 4983 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4984 BasicBlock *ExitBB = ExitingBlocks[i]; 4985 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4986 4987 // 1. For each exit that can be computed, add an entry to ExitCounts. 4988 // CouldComputeBECount is true only if all exits can be computed. 4989 if (EL.Exact == getCouldNotCompute()) 4990 // We couldn't compute an exact value for this exit, so 4991 // we won't be able to compute an exact value for the loop. 4992 CouldComputeBECount = false; 4993 else 4994 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4995 4996 // 2. Derive the loop's MaxBECount from each exit's max number of 4997 // non-exiting iterations. Partition the loop exits into two kinds: 4998 // LoopMustExits and LoopMayExits. 4999 // 5000 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5001 // is a LoopMayExit. If any computable LoopMustExit is found, then 5002 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5003 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5004 // considered greater than any computable EL.Max. 5005 if (EL.Max != getCouldNotCompute() && Latch && 5006 DT.dominates(ExitBB, Latch)) { 5007 if (!MustExitMaxBECount) 5008 MustExitMaxBECount = EL.Max; 5009 else { 5010 MustExitMaxBECount = 5011 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5012 } 5013 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5014 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5015 MayExitMaxBECount = EL.Max; 5016 else { 5017 MayExitMaxBECount = 5018 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5019 } 5020 } 5021 } 5022 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5023 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5024 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5025 } 5026 5027 /// ComputeExitLimit - Compute the number of times the backedge of the specified 5028 /// loop will execute if it exits via the specified block. 5029 ScalarEvolution::ExitLimit 5030 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5031 5032 // Okay, we've chosen an exiting block. See what condition causes us to 5033 // exit at this block and remember the exit block and whether all other targets 5034 // lead to the loop header. 5035 bool MustExecuteLoopHeader = true; 5036 BasicBlock *Exit = nullptr; 5037 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5038 SI != SE; ++SI) 5039 if (!L->contains(*SI)) { 5040 if (Exit) // Multiple exit successors. 5041 return getCouldNotCompute(); 5042 Exit = *SI; 5043 } else if (*SI != L->getHeader()) { 5044 MustExecuteLoopHeader = false; 5045 } 5046 5047 // At this point, we know we have a conditional branch that determines whether 5048 // the loop is exited. However, we don't know if the branch is executed each 5049 // time through the loop. If not, then the execution count of the branch will 5050 // not be equal to the trip count of the loop. 5051 // 5052 // Currently we check for this by checking to see if the Exit branch goes to 5053 // the loop header. If so, we know it will always execute the same number of 5054 // times as the loop. We also handle the case where the exit block *is* the 5055 // loop header. This is common for un-rotated loops. 5056 // 5057 // If both of those tests fail, walk up the unique predecessor chain to the 5058 // header, stopping if there is an edge that doesn't exit the loop. If the 5059 // header is reached, the execution count of the branch will be equal to the 5060 // trip count of the loop. 5061 // 5062 // More extensive analysis could be done to handle more cases here. 5063 // 5064 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5065 // The simple checks failed, try climbing the unique predecessor chain 5066 // up to the header. 5067 bool Ok = false; 5068 for (BasicBlock *BB = ExitingBlock; BB; ) { 5069 BasicBlock *Pred = BB->getUniquePredecessor(); 5070 if (!Pred) 5071 return getCouldNotCompute(); 5072 TerminatorInst *PredTerm = Pred->getTerminator(); 5073 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5074 if (PredSucc == BB) 5075 continue; 5076 // If the predecessor has a successor that isn't BB and isn't 5077 // outside the loop, assume the worst. 5078 if (L->contains(PredSucc)) 5079 return getCouldNotCompute(); 5080 } 5081 if (Pred == L->getHeader()) { 5082 Ok = true; 5083 break; 5084 } 5085 BB = Pred; 5086 } 5087 if (!Ok) 5088 return getCouldNotCompute(); 5089 } 5090 5091 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5092 TerminatorInst *Term = ExitingBlock->getTerminator(); 5093 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5094 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5095 // Proceed to the next level to examine the exit condition expression. 5096 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5097 BI->getSuccessor(1), 5098 /*ControlsExit=*/IsOnlyExit); 5099 } 5100 5101 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5102 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 5103 /*ControlsExit=*/IsOnlyExit); 5104 5105 return getCouldNotCompute(); 5106 } 5107 5108 /// ComputeExitLimitFromCond - Compute the number of times the 5109 /// backedge of the specified loop will execute if its exit condition 5110 /// were a conditional branch of ExitCond, TBB, and FBB. 5111 /// 5112 /// @param ControlsExit is true if ExitCond directly controls the exit 5113 /// branch. In this case, we can assume that the loop exits only if the 5114 /// condition is true and can infer that failing to meet the condition prior to 5115 /// integer wraparound results in undefined behavior. 5116 ScalarEvolution::ExitLimit 5117 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 5118 Value *ExitCond, 5119 BasicBlock *TBB, 5120 BasicBlock *FBB, 5121 bool ControlsExit) { 5122 // Check if the controlling expression for this loop is an And or Or. 5123 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5124 if (BO->getOpcode() == Instruction::And) { 5125 // Recurse on the operands of the and. 5126 bool EitherMayExit = L->contains(TBB); 5127 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5128 ControlsExit && !EitherMayExit); 5129 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5130 ControlsExit && !EitherMayExit); 5131 const SCEV *BECount = getCouldNotCompute(); 5132 const SCEV *MaxBECount = getCouldNotCompute(); 5133 if (EitherMayExit) { 5134 // Both conditions must be true for the loop to continue executing. 5135 // Choose the less conservative count. 5136 if (EL0.Exact == getCouldNotCompute() || 5137 EL1.Exact == getCouldNotCompute()) 5138 BECount = getCouldNotCompute(); 5139 else 5140 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5141 if (EL0.Max == getCouldNotCompute()) 5142 MaxBECount = EL1.Max; 5143 else if (EL1.Max == getCouldNotCompute()) 5144 MaxBECount = EL0.Max; 5145 else 5146 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5147 } else { 5148 // Both conditions must be true at the same time for the loop to exit. 5149 // For now, be conservative. 5150 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5151 if (EL0.Max == EL1.Max) 5152 MaxBECount = EL0.Max; 5153 if (EL0.Exact == EL1.Exact) 5154 BECount = EL0.Exact; 5155 } 5156 5157 return ExitLimit(BECount, MaxBECount); 5158 } 5159 if (BO->getOpcode() == Instruction::Or) { 5160 // Recurse on the operands of the or. 5161 bool EitherMayExit = L->contains(FBB); 5162 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5163 ControlsExit && !EitherMayExit); 5164 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5165 ControlsExit && !EitherMayExit); 5166 const SCEV *BECount = getCouldNotCompute(); 5167 const SCEV *MaxBECount = getCouldNotCompute(); 5168 if (EitherMayExit) { 5169 // Both conditions must be false for the loop to continue executing. 5170 // Choose the less conservative count. 5171 if (EL0.Exact == getCouldNotCompute() || 5172 EL1.Exact == getCouldNotCompute()) 5173 BECount = getCouldNotCompute(); 5174 else 5175 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5176 if (EL0.Max == getCouldNotCompute()) 5177 MaxBECount = EL1.Max; 5178 else if (EL1.Max == getCouldNotCompute()) 5179 MaxBECount = EL0.Max; 5180 else 5181 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5182 } else { 5183 // Both conditions must be false at the same time for the loop to exit. 5184 // For now, be conservative. 5185 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5186 if (EL0.Max == EL1.Max) 5187 MaxBECount = EL0.Max; 5188 if (EL0.Exact == EL1.Exact) 5189 BECount = EL0.Exact; 5190 } 5191 5192 return ExitLimit(BECount, MaxBECount); 5193 } 5194 } 5195 5196 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5197 // Proceed to the next level to examine the icmp. 5198 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5199 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5200 5201 // Check for a constant condition. These are normally stripped out by 5202 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5203 // preserve the CFG and is temporarily leaving constant conditions 5204 // in place. 5205 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5206 if (L->contains(FBB) == !CI->getZExtValue()) 5207 // The backedge is always taken. 5208 return getCouldNotCompute(); 5209 else 5210 // The backedge is never taken. 5211 return getZero(CI->getType()); 5212 } 5213 5214 // If it's not an integer or pointer comparison then compute it the hard way. 5215 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5216 } 5217 5218 /// ComputeExitLimitFromICmp - Compute the number of times the 5219 /// backedge of the specified loop will execute if its exit condition 5220 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5221 ScalarEvolution::ExitLimit 5222 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5223 ICmpInst *ExitCond, 5224 BasicBlock *TBB, 5225 BasicBlock *FBB, 5226 bool ControlsExit) { 5227 5228 // If the condition was exit on true, convert the condition to exit on false 5229 ICmpInst::Predicate Cond; 5230 if (!L->contains(FBB)) 5231 Cond = ExitCond->getPredicate(); 5232 else 5233 Cond = ExitCond->getInversePredicate(); 5234 5235 // Handle common loops like: for (X = "string"; *X; ++X) 5236 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5237 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5238 ExitLimit ItCnt = 5239 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5240 if (ItCnt.hasAnyInfo()) 5241 return ItCnt; 5242 } 5243 5244 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5245 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5246 5247 // Try to evaluate any dependencies out of the loop. 5248 LHS = getSCEVAtScope(LHS, L); 5249 RHS = getSCEVAtScope(RHS, L); 5250 5251 // At this point, we would like to compute how many iterations of the 5252 // loop the predicate will return true for these inputs. 5253 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5254 // If there is a loop-invariant, force it into the RHS. 5255 std::swap(LHS, RHS); 5256 Cond = ICmpInst::getSwappedPredicate(Cond); 5257 } 5258 5259 // Simplify the operands before analyzing them. 5260 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5261 5262 // If we have a comparison of a chrec against a constant, try to use value 5263 // ranges to answer this query. 5264 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5265 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5266 if (AddRec->getLoop() == L) { 5267 // Form the constant range. 5268 ConstantRange CompRange( 5269 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5270 5271 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5272 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5273 } 5274 5275 switch (Cond) { 5276 case ICmpInst::ICMP_NE: { // while (X != Y) 5277 // Convert to: while (X-Y != 0) 5278 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5279 if (EL.hasAnyInfo()) return EL; 5280 break; 5281 } 5282 case ICmpInst::ICMP_EQ: { // while (X == Y) 5283 // Convert to: while (X-Y == 0) 5284 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5285 if (EL.hasAnyInfo()) return EL; 5286 break; 5287 } 5288 case ICmpInst::ICMP_SLT: 5289 case ICmpInst::ICMP_ULT: { // while (X < Y) 5290 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5291 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5292 if (EL.hasAnyInfo()) return EL; 5293 break; 5294 } 5295 case ICmpInst::ICMP_SGT: 5296 case ICmpInst::ICMP_UGT: { // while (X > Y) 5297 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5298 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5299 if (EL.hasAnyInfo()) return EL; 5300 break; 5301 } 5302 default: 5303 #if 0 5304 dbgs() << "ComputeBackedgeTakenCount "; 5305 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5306 dbgs() << "[unsigned] "; 5307 dbgs() << *LHS << " " 5308 << Instruction::getOpcodeName(Instruction::ICmp) 5309 << " " << *RHS << "\n"; 5310 #endif 5311 break; 5312 } 5313 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5314 } 5315 5316 ScalarEvolution::ExitLimit 5317 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5318 SwitchInst *Switch, 5319 BasicBlock *ExitingBlock, 5320 bool ControlsExit) { 5321 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5322 5323 // Give up if the exit is the default dest of a switch. 5324 if (Switch->getDefaultDest() == ExitingBlock) 5325 return getCouldNotCompute(); 5326 5327 assert(L->contains(Switch->getDefaultDest()) && 5328 "Default case must not exit the loop!"); 5329 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5330 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5331 5332 // while (X != Y) --> while (X-Y != 0) 5333 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5334 if (EL.hasAnyInfo()) 5335 return EL; 5336 5337 return getCouldNotCompute(); 5338 } 5339 5340 static ConstantInt * 5341 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5342 ScalarEvolution &SE) { 5343 const SCEV *InVal = SE.getConstant(C); 5344 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5345 assert(isa<SCEVConstant>(Val) && 5346 "Evaluation of SCEV at constant didn't fold correctly?"); 5347 return cast<SCEVConstant>(Val)->getValue(); 5348 } 5349 5350 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5351 /// 'icmp op load X, cst', try to see if we can compute the backedge 5352 /// execution count. 5353 ScalarEvolution::ExitLimit 5354 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5355 LoadInst *LI, 5356 Constant *RHS, 5357 const Loop *L, 5358 ICmpInst::Predicate predicate) { 5359 5360 if (LI->isVolatile()) return getCouldNotCompute(); 5361 5362 // Check to see if the loaded pointer is a getelementptr of a global. 5363 // TODO: Use SCEV instead of manually grubbing with GEPs. 5364 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5365 if (!GEP) return getCouldNotCompute(); 5366 5367 // Make sure that it is really a constant global we are gepping, with an 5368 // initializer, and make sure the first IDX is really 0. 5369 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5370 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5371 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5372 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5373 return getCouldNotCompute(); 5374 5375 // Okay, we allow one non-constant index into the GEP instruction. 5376 Value *VarIdx = nullptr; 5377 std::vector<Constant*> Indexes; 5378 unsigned VarIdxNum = 0; 5379 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5380 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5381 Indexes.push_back(CI); 5382 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5383 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5384 VarIdx = GEP->getOperand(i); 5385 VarIdxNum = i-2; 5386 Indexes.push_back(nullptr); 5387 } 5388 5389 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5390 if (!VarIdx) 5391 return getCouldNotCompute(); 5392 5393 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5394 // Check to see if X is a loop variant variable value now. 5395 const SCEV *Idx = getSCEV(VarIdx); 5396 Idx = getSCEVAtScope(Idx, L); 5397 5398 // We can only recognize very limited forms of loop index expressions, in 5399 // particular, only affine AddRec's like {C1,+,C2}. 5400 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5401 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5402 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5403 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5404 return getCouldNotCompute(); 5405 5406 unsigned MaxSteps = MaxBruteForceIterations; 5407 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5408 ConstantInt *ItCst = ConstantInt::get( 5409 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5410 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5411 5412 // Form the GEP offset. 5413 Indexes[VarIdxNum] = Val; 5414 5415 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5416 Indexes); 5417 if (!Result) break; // Cannot compute! 5418 5419 // Evaluate the condition for this iteration. 5420 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5421 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5422 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5423 #if 0 5424 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5425 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5426 << "***\n"; 5427 #endif 5428 ++NumArrayLenItCounts; 5429 return getConstant(ItCst); // Found terminating iteration! 5430 } 5431 } 5432 return getCouldNotCompute(); 5433 } 5434 5435 5436 /// CanConstantFold - Return true if we can constant fold an instruction of the 5437 /// specified type, assuming that all operands were constants. 5438 static bool CanConstantFold(const Instruction *I) { 5439 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5440 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5441 isa<LoadInst>(I)) 5442 return true; 5443 5444 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5445 if (const Function *F = CI->getCalledFunction()) 5446 return canConstantFoldCallTo(F); 5447 return false; 5448 } 5449 5450 /// Determine whether this instruction can constant evolve within this loop 5451 /// assuming its operands can all constant evolve. 5452 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5453 // An instruction outside of the loop can't be derived from a loop PHI. 5454 if (!L->contains(I)) return false; 5455 5456 if (isa<PHINode>(I)) { 5457 // We don't currently keep track of the control flow needed to evaluate 5458 // PHIs, so we cannot handle PHIs inside of loops. 5459 return L->getHeader() == I->getParent(); 5460 } 5461 5462 // If we won't be able to constant fold this expression even if the operands 5463 // are constants, bail early. 5464 return CanConstantFold(I); 5465 } 5466 5467 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5468 /// recursing through each instruction operand until reaching a loop header phi. 5469 static PHINode * 5470 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5471 DenseMap<Instruction *, PHINode *> &PHIMap) { 5472 5473 // Otherwise, we can evaluate this instruction if all of its operands are 5474 // constant or derived from a PHI node themselves. 5475 PHINode *PHI = nullptr; 5476 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5477 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5478 5479 if (isa<Constant>(*OpI)) continue; 5480 5481 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5482 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5483 5484 PHINode *P = dyn_cast<PHINode>(OpInst); 5485 if (!P) 5486 // If this operand is already visited, reuse the prior result. 5487 // We may have P != PHI if this is the deepest point at which the 5488 // inconsistent paths meet. 5489 P = PHIMap.lookup(OpInst); 5490 if (!P) { 5491 // Recurse and memoize the results, whether a phi is found or not. 5492 // This recursive call invalidates pointers into PHIMap. 5493 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5494 PHIMap[OpInst] = P; 5495 } 5496 if (!P) 5497 return nullptr; // Not evolving from PHI 5498 if (PHI && PHI != P) 5499 return nullptr; // Evolving from multiple different PHIs. 5500 PHI = P; 5501 } 5502 // This is a expression evolving from a constant PHI! 5503 return PHI; 5504 } 5505 5506 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5507 /// in the loop that V is derived from. We allow arbitrary operations along the 5508 /// way, but the operands of an operation must either be constants or a value 5509 /// derived from a constant PHI. If this expression does not fit with these 5510 /// constraints, return null. 5511 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5512 Instruction *I = dyn_cast<Instruction>(V); 5513 if (!I || !canConstantEvolve(I, L)) return nullptr; 5514 5515 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5516 return PN; 5517 } 5518 5519 // Record non-constant instructions contained by the loop. 5520 DenseMap<Instruction *, PHINode *> PHIMap; 5521 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5522 } 5523 5524 /// EvaluateExpression - Given an expression that passes the 5525 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5526 /// in the loop has the value PHIVal. If we can't fold this expression for some 5527 /// reason, return null. 5528 static Constant *EvaluateExpression(Value *V, const Loop *L, 5529 DenseMap<Instruction *, Constant *> &Vals, 5530 const DataLayout &DL, 5531 const TargetLibraryInfo *TLI) { 5532 // Convenient constant check, but redundant for recursive calls. 5533 if (Constant *C = dyn_cast<Constant>(V)) return C; 5534 Instruction *I = dyn_cast<Instruction>(V); 5535 if (!I) return nullptr; 5536 5537 if (Constant *C = Vals.lookup(I)) return C; 5538 5539 // An instruction inside the loop depends on a value outside the loop that we 5540 // weren't given a mapping for, or a value such as a call inside the loop. 5541 if (!canConstantEvolve(I, L)) return nullptr; 5542 5543 // An unmapped PHI can be due to a branch or another loop inside this loop, 5544 // or due to this not being the initial iteration through a loop where we 5545 // couldn't compute the evolution of this particular PHI last time. 5546 if (isa<PHINode>(I)) return nullptr; 5547 5548 std::vector<Constant*> Operands(I->getNumOperands()); 5549 5550 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5551 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5552 if (!Operand) { 5553 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5554 if (!Operands[i]) return nullptr; 5555 continue; 5556 } 5557 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5558 Vals[Operand] = C; 5559 if (!C) return nullptr; 5560 Operands[i] = C; 5561 } 5562 5563 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5564 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5565 Operands[1], DL, TLI); 5566 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5567 if (!LI->isVolatile()) 5568 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5569 } 5570 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5571 TLI); 5572 } 5573 5574 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5575 /// in the header of its containing loop, we know the loop executes a 5576 /// constant number of times, and the PHI node is just a recurrence 5577 /// involving constants, fold it. 5578 Constant * 5579 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5580 const APInt &BEs, 5581 const Loop *L) { 5582 DenseMap<PHINode*, Constant*>::const_iterator I = 5583 ConstantEvolutionLoopExitValue.find(PN); 5584 if (I != ConstantEvolutionLoopExitValue.end()) 5585 return I->second; 5586 5587 if (BEs.ugt(MaxBruteForceIterations)) 5588 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5589 5590 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5591 5592 DenseMap<Instruction *, Constant *> CurrentIterVals; 5593 BasicBlock *Header = L->getHeader(); 5594 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5595 5596 // Since the loop is canonicalized, the PHI node must have two entries. One 5597 // entry must be a constant (coming in from outside of the loop), and the 5598 // second must be derived from the same PHI. 5599 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5600 PHINode *PHI = nullptr; 5601 for (BasicBlock::iterator I = Header->begin(); 5602 (PHI = dyn_cast<PHINode>(I)); ++I) { 5603 Constant *StartCST = 5604 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5605 if (!StartCST) continue; 5606 CurrentIterVals[PHI] = StartCST; 5607 } 5608 if (!CurrentIterVals.count(PN)) 5609 return RetVal = nullptr; 5610 5611 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5612 5613 // Execute the loop symbolically to determine the exit value. 5614 if (BEs.getActiveBits() >= 32) 5615 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5616 5617 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5618 unsigned IterationNum = 0; 5619 const DataLayout &DL = F.getParent()->getDataLayout(); 5620 for (; ; ++IterationNum) { 5621 if (IterationNum == NumIterations) 5622 return RetVal = CurrentIterVals[PN]; // Got exit value! 5623 5624 // Compute the value of the PHIs for the next iteration. 5625 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5626 DenseMap<Instruction *, Constant *> NextIterVals; 5627 Constant *NextPHI = 5628 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5629 if (!NextPHI) 5630 return nullptr; // Couldn't evaluate! 5631 NextIterVals[PN] = NextPHI; 5632 5633 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5634 5635 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5636 // cease to be able to evaluate one of them or if they stop evolving, 5637 // because that doesn't necessarily prevent us from computing PN. 5638 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5639 for (DenseMap<Instruction *, Constant *>::const_iterator 5640 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5641 PHINode *PHI = dyn_cast<PHINode>(I->first); 5642 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5643 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5644 } 5645 // We use two distinct loops because EvaluateExpression may invalidate any 5646 // iterators into CurrentIterVals. 5647 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5648 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5649 PHINode *PHI = I->first; 5650 Constant *&NextPHI = NextIterVals[PHI]; 5651 if (!NextPHI) { // Not already computed. 5652 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5653 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5654 } 5655 if (NextPHI != I->second) 5656 StoppedEvolving = false; 5657 } 5658 5659 // If all entries in CurrentIterVals == NextIterVals then we can stop 5660 // iterating, the loop can't continue to change. 5661 if (StoppedEvolving) 5662 return RetVal = CurrentIterVals[PN]; 5663 5664 CurrentIterVals.swap(NextIterVals); 5665 } 5666 } 5667 5668 /// ComputeExitCountExhaustively - If the loop is known to execute a 5669 /// constant number of times (the condition evolves only from constants), 5670 /// try to evaluate a few iterations of the loop until we get the exit 5671 /// condition gets a value of ExitWhen (true or false). If we cannot 5672 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5673 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5674 Value *Cond, 5675 bool ExitWhen) { 5676 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5677 if (!PN) return getCouldNotCompute(); 5678 5679 // If the loop is canonicalized, the PHI will have exactly two entries. 5680 // That's the only form we support here. 5681 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5682 5683 DenseMap<Instruction *, Constant *> CurrentIterVals; 5684 BasicBlock *Header = L->getHeader(); 5685 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5686 5687 // One entry must be a constant (coming in from outside of the loop), and the 5688 // second must be derived from the same PHI. 5689 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5690 PHINode *PHI = nullptr; 5691 for (BasicBlock::iterator I = Header->begin(); 5692 (PHI = dyn_cast<PHINode>(I)); ++I) { 5693 Constant *StartCST = 5694 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5695 if (!StartCST) continue; 5696 CurrentIterVals[PHI] = StartCST; 5697 } 5698 if (!CurrentIterVals.count(PN)) 5699 return getCouldNotCompute(); 5700 5701 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5702 // the loop symbolically to determine when the condition gets a value of 5703 // "ExitWhen". 5704 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5705 const DataLayout &DL = F.getParent()->getDataLayout(); 5706 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5707 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>( 5708 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5709 5710 // Couldn't symbolically evaluate. 5711 if (!CondVal) return getCouldNotCompute(); 5712 5713 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5714 ++NumBruteForceTripCountsComputed; 5715 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5716 } 5717 5718 // Update all the PHI nodes for the next iteration. 5719 DenseMap<Instruction *, Constant *> NextIterVals; 5720 5721 // Create a list of which PHIs we need to compute. We want to do this before 5722 // calling EvaluateExpression on them because that may invalidate iterators 5723 // into CurrentIterVals. 5724 SmallVector<PHINode *, 8> PHIsToCompute; 5725 for (DenseMap<Instruction *, Constant *>::const_iterator 5726 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5727 PHINode *PHI = dyn_cast<PHINode>(I->first); 5728 if (!PHI || PHI->getParent() != Header) continue; 5729 PHIsToCompute.push_back(PHI); 5730 } 5731 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5732 E = PHIsToCompute.end(); I != E; ++I) { 5733 PHINode *PHI = *I; 5734 Constant *&NextPHI = NextIterVals[PHI]; 5735 if (NextPHI) continue; // Already computed! 5736 5737 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5738 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5739 } 5740 CurrentIterVals.swap(NextIterVals); 5741 } 5742 5743 // Too many iterations were needed to evaluate. 5744 return getCouldNotCompute(); 5745 } 5746 5747 /// getSCEVAtScope - Return a SCEV expression for the specified value 5748 /// at the specified scope in the program. The L value specifies a loop 5749 /// nest to evaluate the expression at, where null is the top-level or a 5750 /// specified loop is immediately inside of the loop. 5751 /// 5752 /// This method can be used to compute the exit value for a variable defined 5753 /// in a loop by querying what the value will hold in the parent loop. 5754 /// 5755 /// In the case that a relevant loop exit value cannot be computed, the 5756 /// original value V is returned. 5757 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5758 // Check to see if we've folded this expression at this loop before. 5759 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5760 for (unsigned u = 0; u < Values.size(); u++) { 5761 if (Values[u].first == L) 5762 return Values[u].second ? Values[u].second : V; 5763 } 5764 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5765 // Otherwise compute it. 5766 const SCEV *C = computeSCEVAtScope(V, L); 5767 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5768 for (unsigned u = Values2.size(); u > 0; u--) { 5769 if (Values2[u - 1].first == L) { 5770 Values2[u - 1].second = C; 5771 break; 5772 } 5773 } 5774 return C; 5775 } 5776 5777 /// This builds up a Constant using the ConstantExpr interface. That way, we 5778 /// will return Constants for objects which aren't represented by a 5779 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5780 /// Returns NULL if the SCEV isn't representable as a Constant. 5781 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5782 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5783 case scCouldNotCompute: 5784 case scAddRecExpr: 5785 break; 5786 case scConstant: 5787 return cast<SCEVConstant>(V)->getValue(); 5788 case scUnknown: 5789 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5790 case scSignExtend: { 5791 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5792 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5793 return ConstantExpr::getSExt(CastOp, SS->getType()); 5794 break; 5795 } 5796 case scZeroExtend: { 5797 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5798 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5799 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5800 break; 5801 } 5802 case scTruncate: { 5803 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5804 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5805 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5806 break; 5807 } 5808 case scAddExpr: { 5809 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5810 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5811 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5812 unsigned AS = PTy->getAddressSpace(); 5813 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5814 C = ConstantExpr::getBitCast(C, DestPtrTy); 5815 } 5816 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5817 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5818 if (!C2) return nullptr; 5819 5820 // First pointer! 5821 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5822 unsigned AS = C2->getType()->getPointerAddressSpace(); 5823 std::swap(C, C2); 5824 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5825 // The offsets have been converted to bytes. We can add bytes to an 5826 // i8* by GEP with the byte count in the first index. 5827 C = ConstantExpr::getBitCast(C, DestPtrTy); 5828 } 5829 5830 // Don't bother trying to sum two pointers. We probably can't 5831 // statically compute a load that results from it anyway. 5832 if (C2->getType()->isPointerTy()) 5833 return nullptr; 5834 5835 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5836 if (PTy->getElementType()->isStructTy()) 5837 C2 = ConstantExpr::getIntegerCast( 5838 C2, Type::getInt32Ty(C->getContext()), true); 5839 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5840 } else 5841 C = ConstantExpr::getAdd(C, C2); 5842 } 5843 return C; 5844 } 5845 break; 5846 } 5847 case scMulExpr: { 5848 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5849 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5850 // Don't bother with pointers at all. 5851 if (C->getType()->isPointerTy()) return nullptr; 5852 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5853 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5854 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5855 C = ConstantExpr::getMul(C, C2); 5856 } 5857 return C; 5858 } 5859 break; 5860 } 5861 case scUDivExpr: { 5862 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5863 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5864 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5865 if (LHS->getType() == RHS->getType()) 5866 return ConstantExpr::getUDiv(LHS, RHS); 5867 break; 5868 } 5869 case scSMaxExpr: 5870 case scUMaxExpr: 5871 break; // TODO: smax, umax. 5872 } 5873 return nullptr; 5874 } 5875 5876 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5877 if (isa<SCEVConstant>(V)) return V; 5878 5879 // If this instruction is evolved from a constant-evolving PHI, compute the 5880 // exit value from the loop without using SCEVs. 5881 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5882 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5883 const Loop *LI = this->LI[I->getParent()]; 5884 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5885 if (PHINode *PN = dyn_cast<PHINode>(I)) 5886 if (PN->getParent() == LI->getHeader()) { 5887 // Okay, there is no closed form solution for the PHI node. Check 5888 // to see if the loop that contains it has a known backedge-taken 5889 // count. If so, we may be able to force computation of the exit 5890 // value. 5891 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5892 if (const SCEVConstant *BTCC = 5893 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5894 // Okay, we know how many times the containing loop executes. If 5895 // this is a constant evolving PHI node, get the final value at 5896 // the specified iteration number. 5897 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5898 BTCC->getValue()->getValue(), 5899 LI); 5900 if (RV) return getSCEV(RV); 5901 } 5902 } 5903 5904 // Okay, this is an expression that we cannot symbolically evaluate 5905 // into a SCEV. Check to see if it's possible to symbolically evaluate 5906 // the arguments into constants, and if so, try to constant propagate the 5907 // result. This is particularly useful for computing loop exit values. 5908 if (CanConstantFold(I)) { 5909 SmallVector<Constant *, 4> Operands; 5910 bool MadeImprovement = false; 5911 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5912 Value *Op = I->getOperand(i); 5913 if (Constant *C = dyn_cast<Constant>(Op)) { 5914 Operands.push_back(C); 5915 continue; 5916 } 5917 5918 // If any of the operands is non-constant and if they are 5919 // non-integer and non-pointer, don't even try to analyze them 5920 // with scev techniques. 5921 if (!isSCEVable(Op->getType())) 5922 return V; 5923 5924 const SCEV *OrigV = getSCEV(Op); 5925 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5926 MadeImprovement |= OrigV != OpV; 5927 5928 Constant *C = BuildConstantFromSCEV(OpV); 5929 if (!C) return V; 5930 if (C->getType() != Op->getType()) 5931 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5932 Op->getType(), 5933 false), 5934 C, Op->getType()); 5935 Operands.push_back(C); 5936 } 5937 5938 // Check to see if getSCEVAtScope actually made an improvement. 5939 if (MadeImprovement) { 5940 Constant *C = nullptr; 5941 const DataLayout &DL = F.getParent()->getDataLayout(); 5942 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5943 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5944 Operands[1], DL, &TLI); 5945 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5946 if (!LI->isVolatile()) 5947 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5948 } else 5949 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 5950 DL, &TLI); 5951 if (!C) return V; 5952 return getSCEV(C); 5953 } 5954 } 5955 } 5956 5957 // This is some other type of SCEVUnknown, just return it. 5958 return V; 5959 } 5960 5961 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5962 // Avoid performing the look-up in the common case where the specified 5963 // expression has no loop-variant portions. 5964 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5965 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5966 if (OpAtScope != Comm->getOperand(i)) { 5967 // Okay, at least one of these operands is loop variant but might be 5968 // foldable. Build a new instance of the folded commutative expression. 5969 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5970 Comm->op_begin()+i); 5971 NewOps.push_back(OpAtScope); 5972 5973 for (++i; i != e; ++i) { 5974 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5975 NewOps.push_back(OpAtScope); 5976 } 5977 if (isa<SCEVAddExpr>(Comm)) 5978 return getAddExpr(NewOps); 5979 if (isa<SCEVMulExpr>(Comm)) 5980 return getMulExpr(NewOps); 5981 if (isa<SCEVSMaxExpr>(Comm)) 5982 return getSMaxExpr(NewOps); 5983 if (isa<SCEVUMaxExpr>(Comm)) 5984 return getUMaxExpr(NewOps); 5985 llvm_unreachable("Unknown commutative SCEV type!"); 5986 } 5987 } 5988 // If we got here, all operands are loop invariant. 5989 return Comm; 5990 } 5991 5992 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5993 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5994 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5995 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5996 return Div; // must be loop invariant 5997 return getUDivExpr(LHS, RHS); 5998 } 5999 6000 // If this is a loop recurrence for a loop that does not contain L, then we 6001 // are dealing with the final value computed by the loop. 6002 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6003 // First, attempt to evaluate each operand. 6004 // Avoid performing the look-up in the common case where the specified 6005 // expression has no loop-variant portions. 6006 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6007 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6008 if (OpAtScope == AddRec->getOperand(i)) 6009 continue; 6010 6011 // Okay, at least one of these operands is loop variant but might be 6012 // foldable. Build a new instance of the folded commutative expression. 6013 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6014 AddRec->op_begin()+i); 6015 NewOps.push_back(OpAtScope); 6016 for (++i; i != e; ++i) 6017 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6018 6019 const SCEV *FoldedRec = 6020 getAddRecExpr(NewOps, AddRec->getLoop(), 6021 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6022 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6023 // The addrec may be folded to a nonrecurrence, for example, if the 6024 // induction variable is multiplied by zero after constant folding. Go 6025 // ahead and return the folded value. 6026 if (!AddRec) 6027 return FoldedRec; 6028 break; 6029 } 6030 6031 // If the scope is outside the addrec's loop, evaluate it by using the 6032 // loop exit value of the addrec. 6033 if (!AddRec->getLoop()->contains(L)) { 6034 // To evaluate this recurrence, we need to know how many times the AddRec 6035 // loop iterates. Compute this now. 6036 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6037 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6038 6039 // Then, evaluate the AddRec. 6040 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6041 } 6042 6043 return AddRec; 6044 } 6045 6046 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6047 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6048 if (Op == Cast->getOperand()) 6049 return Cast; // must be loop invariant 6050 return getZeroExtendExpr(Op, Cast->getType()); 6051 } 6052 6053 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6054 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6055 if (Op == Cast->getOperand()) 6056 return Cast; // must be loop invariant 6057 return getSignExtendExpr(Op, Cast->getType()); 6058 } 6059 6060 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6061 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6062 if (Op == Cast->getOperand()) 6063 return Cast; // must be loop invariant 6064 return getTruncateExpr(Op, Cast->getType()); 6065 } 6066 6067 llvm_unreachable("Unknown SCEV type!"); 6068 } 6069 6070 /// getSCEVAtScope - This is a convenience function which does 6071 /// getSCEVAtScope(getSCEV(V), L). 6072 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6073 return getSCEVAtScope(getSCEV(V), L); 6074 } 6075 6076 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6077 /// following equation: 6078 /// 6079 /// A * X = B (mod N) 6080 /// 6081 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6082 /// A and B isn't important. 6083 /// 6084 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6085 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6086 ScalarEvolution &SE) { 6087 uint32_t BW = A.getBitWidth(); 6088 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6089 assert(A != 0 && "A must be non-zero."); 6090 6091 // 1. D = gcd(A, N) 6092 // 6093 // The gcd of A and N may have only one prime factor: 2. The number of 6094 // trailing zeros in A is its multiplicity 6095 uint32_t Mult2 = A.countTrailingZeros(); 6096 // D = 2^Mult2 6097 6098 // 2. Check if B is divisible by D. 6099 // 6100 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6101 // is not less than multiplicity of this prime factor for D. 6102 if (B.countTrailingZeros() < Mult2) 6103 return SE.getCouldNotCompute(); 6104 6105 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6106 // modulo (N / D). 6107 // 6108 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6109 // bit width during computations. 6110 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6111 APInt Mod(BW + 1, 0); 6112 Mod.setBit(BW - Mult2); // Mod = N / D 6113 APInt I = AD.multiplicativeInverse(Mod); 6114 6115 // 4. Compute the minimum unsigned root of the equation: 6116 // I * (B / D) mod (N / D) 6117 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6118 6119 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6120 // bits. 6121 return SE.getConstant(Result.trunc(BW)); 6122 } 6123 6124 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6125 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6126 /// might be the same) or two SCEVCouldNotCompute objects. 6127 /// 6128 static std::pair<const SCEV *,const SCEV *> 6129 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6130 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6131 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6132 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6133 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6134 6135 // We currently can only solve this if the coefficients are constants. 6136 if (!LC || !MC || !NC) { 6137 const SCEV *CNC = SE.getCouldNotCompute(); 6138 return std::make_pair(CNC, CNC); 6139 } 6140 6141 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6142 const APInt &L = LC->getValue()->getValue(); 6143 const APInt &M = MC->getValue()->getValue(); 6144 const APInt &N = NC->getValue()->getValue(); 6145 APInt Two(BitWidth, 2); 6146 APInt Four(BitWidth, 4); 6147 6148 { 6149 using namespace APIntOps; 6150 const APInt& C = L; 6151 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6152 // The B coefficient is M-N/2 6153 APInt B(M); 6154 B -= sdiv(N,Two); 6155 6156 // The A coefficient is N/2 6157 APInt A(N.sdiv(Two)); 6158 6159 // Compute the B^2-4ac term. 6160 APInt SqrtTerm(B); 6161 SqrtTerm *= B; 6162 SqrtTerm -= Four * (A * C); 6163 6164 if (SqrtTerm.isNegative()) { 6165 // The loop is provably infinite. 6166 const SCEV *CNC = SE.getCouldNotCompute(); 6167 return std::make_pair(CNC, CNC); 6168 } 6169 6170 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6171 // integer value or else APInt::sqrt() will assert. 6172 APInt SqrtVal(SqrtTerm.sqrt()); 6173 6174 // Compute the two solutions for the quadratic formula. 6175 // The divisions must be performed as signed divisions. 6176 APInt NegB(-B); 6177 APInt TwoA(A << 1); 6178 if (TwoA.isMinValue()) { 6179 const SCEV *CNC = SE.getCouldNotCompute(); 6180 return std::make_pair(CNC, CNC); 6181 } 6182 6183 LLVMContext &Context = SE.getContext(); 6184 6185 ConstantInt *Solution1 = 6186 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6187 ConstantInt *Solution2 = 6188 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6189 6190 return std::make_pair(SE.getConstant(Solution1), 6191 SE.getConstant(Solution2)); 6192 } // end APIntOps namespace 6193 } 6194 6195 /// HowFarToZero - Return the number of times a backedge comparing the specified 6196 /// value to zero will execute. If not computable, return CouldNotCompute. 6197 /// 6198 /// This is only used for loops with a "x != y" exit test. The exit condition is 6199 /// now expressed as a single expression, V = x-y. So the exit test is 6200 /// effectively V != 0. We know and take advantage of the fact that this 6201 /// expression only being used in a comparison by zero context. 6202 ScalarEvolution::ExitLimit 6203 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6204 // If the value is a constant 6205 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6206 // If the value is already zero, the branch will execute zero times. 6207 if (C->getValue()->isZero()) return C; 6208 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6209 } 6210 6211 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6212 if (!AddRec || AddRec->getLoop() != L) 6213 return getCouldNotCompute(); 6214 6215 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6216 // the quadratic equation to solve it. 6217 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6218 std::pair<const SCEV *,const SCEV *> Roots = 6219 SolveQuadraticEquation(AddRec, *this); 6220 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6221 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6222 if (R1 && R2) { 6223 #if 0 6224 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6225 << " sol#2: " << *R2 << "\n"; 6226 #endif 6227 // Pick the smallest positive root value. 6228 if (ConstantInt *CB = 6229 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6230 R1->getValue(), 6231 R2->getValue()))) { 6232 if (!CB->getZExtValue()) 6233 std::swap(R1, R2); // R1 is the minimum root now. 6234 6235 // We can only use this value if the chrec ends up with an exact zero 6236 // value at this index. When solving for "X*X != 5", for example, we 6237 // should not accept a root of 2. 6238 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6239 if (Val->isZero()) 6240 return R1; // We found a quadratic root! 6241 } 6242 } 6243 return getCouldNotCompute(); 6244 } 6245 6246 // Otherwise we can only handle this if it is affine. 6247 if (!AddRec->isAffine()) 6248 return getCouldNotCompute(); 6249 6250 // If this is an affine expression, the execution count of this branch is 6251 // the minimum unsigned root of the following equation: 6252 // 6253 // Start + Step*N = 0 (mod 2^BW) 6254 // 6255 // equivalent to: 6256 // 6257 // Step*N = -Start (mod 2^BW) 6258 // 6259 // where BW is the common bit width of Start and Step. 6260 6261 // Get the initial value for the loop. 6262 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6263 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6264 6265 // For now we handle only constant steps. 6266 // 6267 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6268 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6269 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6270 // We have not yet seen any such cases. 6271 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6272 if (!StepC || StepC->getValue()->equalsInt(0)) 6273 return getCouldNotCompute(); 6274 6275 // For positive steps (counting up until unsigned overflow): 6276 // N = -Start/Step (as unsigned) 6277 // For negative steps (counting down to zero): 6278 // N = Start/-Step 6279 // First compute the unsigned distance from zero in the direction of Step. 6280 bool CountDown = StepC->getValue()->getValue().isNegative(); 6281 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6282 6283 // Handle unitary steps, which cannot wraparound. 6284 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6285 // N = Distance (as unsigned) 6286 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6287 ConstantRange CR = getUnsignedRange(Start); 6288 const SCEV *MaxBECount; 6289 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6290 // When counting up, the worst starting value is 1, not 0. 6291 MaxBECount = CR.getUnsignedMax().isMinValue() 6292 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6293 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6294 else 6295 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6296 : -CR.getUnsignedMin()); 6297 return ExitLimit(Distance, MaxBECount); 6298 } 6299 6300 // As a special case, handle the instance where Step is a positive power of 6301 // two. In this case, determining whether Step divides Distance evenly can be 6302 // done by counting and comparing the number of trailing zeros of Step and 6303 // Distance. 6304 if (!CountDown) { 6305 const APInt &StepV = StepC->getValue()->getValue(); 6306 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6307 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6308 // case is not handled as this code is guarded by !CountDown. 6309 if (StepV.isPowerOf2() && 6310 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6311 // Here we've constrained the equation to be of the form 6312 // 6313 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6314 // 6315 // where we're operating on a W bit wide integer domain and k is 6316 // non-negative. The smallest unsigned solution for X is the trip count. 6317 // 6318 // (0) is equivalent to: 6319 // 6320 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6321 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6322 // <=> 2^k * Distance' - X = L * 2^(W - N) 6323 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6324 // 6325 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6326 // by 2^(W - N). 6327 // 6328 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6329 // 6330 // E.g. say we're solving 6331 // 6332 // 2 * Val = 2 * X (in i8) ... (3) 6333 // 6334 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6335 // 6336 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6337 // necessarily the smallest unsigned value of X that satisfies (3). 6338 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6339 // is i8 1, not i8 -127 6340 6341 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6342 6343 // Since SCEV does not have a URem node, we construct one using a truncate 6344 // and a zero extend. 6345 6346 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6347 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6348 auto *WideTy = Distance->getType(); 6349 6350 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6351 } 6352 } 6353 6354 // If the condition controls loop exit (the loop exits only if the expression 6355 // is true) and the addition is no-wrap we can use unsigned divide to 6356 // compute the backedge count. In this case, the step may not divide the 6357 // distance, but we don't care because if the condition is "missed" the loop 6358 // will have undefined behavior due to wrapping. 6359 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6360 const SCEV *Exact = 6361 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6362 return ExitLimit(Exact, Exact); 6363 } 6364 6365 // Then, try to solve the above equation provided that Start is constant. 6366 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6367 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6368 -StartC->getValue()->getValue(), 6369 *this); 6370 return getCouldNotCompute(); 6371 } 6372 6373 /// HowFarToNonZero - Return the number of times a backedge checking the 6374 /// specified value for nonzero will execute. If not computable, return 6375 /// CouldNotCompute 6376 ScalarEvolution::ExitLimit 6377 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6378 // Loops that look like: while (X == 0) are very strange indeed. We don't 6379 // handle them yet except for the trivial case. This could be expanded in the 6380 // future as needed. 6381 6382 // If the value is a constant, check to see if it is known to be non-zero 6383 // already. If so, the backedge will execute zero times. 6384 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6385 if (!C->getValue()->isNullValue()) 6386 return getZero(C->getType()); 6387 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6388 } 6389 6390 // We could implement others, but I really doubt anyone writes loops like 6391 // this, and if they did, they would already be constant folded. 6392 return getCouldNotCompute(); 6393 } 6394 6395 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6396 /// (which may not be an immediate predecessor) which has exactly one 6397 /// successor from which BB is reachable, or null if no such block is 6398 /// found. 6399 /// 6400 std::pair<BasicBlock *, BasicBlock *> 6401 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6402 // If the block has a unique predecessor, then there is no path from the 6403 // predecessor to the block that does not go through the direct edge 6404 // from the predecessor to the block. 6405 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6406 return std::make_pair(Pred, BB); 6407 6408 // A loop's header is defined to be a block that dominates the loop. 6409 // If the header has a unique predecessor outside the loop, it must be 6410 // a block that has exactly one successor that can reach the loop. 6411 if (Loop *L = LI.getLoopFor(BB)) 6412 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6413 6414 return std::pair<BasicBlock *, BasicBlock *>(); 6415 } 6416 6417 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6418 /// testing whether two expressions are equal, however for the purposes of 6419 /// looking for a condition guarding a loop, it can be useful to be a little 6420 /// more general, since a front-end may have replicated the controlling 6421 /// expression. 6422 /// 6423 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6424 // Quick check to see if they are the same SCEV. 6425 if (A == B) return true; 6426 6427 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6428 // Not all instructions that are "identical" compute the same value. For 6429 // instance, two distinct alloca instructions allocating the same type are 6430 // identical and do not read memory; but compute distinct values. 6431 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6432 }; 6433 6434 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6435 // two different instructions with the same value. Check for this case. 6436 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6437 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6438 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6439 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6440 if (ComputesEqualValues(AI, BI)) 6441 return true; 6442 6443 // Otherwise assume they may have a different value. 6444 return false; 6445 } 6446 6447 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6448 /// predicate Pred. Return true iff any changes were made. 6449 /// 6450 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6451 const SCEV *&LHS, const SCEV *&RHS, 6452 unsigned Depth) { 6453 bool Changed = false; 6454 6455 // If we hit the max recursion limit bail out. 6456 if (Depth >= 3) 6457 return false; 6458 6459 // Canonicalize a constant to the right side. 6460 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6461 // Check for both operands constant. 6462 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6463 if (ConstantExpr::getICmp(Pred, 6464 LHSC->getValue(), 6465 RHSC->getValue())->isNullValue()) 6466 goto trivially_false; 6467 else 6468 goto trivially_true; 6469 } 6470 // Otherwise swap the operands to put the constant on the right. 6471 std::swap(LHS, RHS); 6472 Pred = ICmpInst::getSwappedPredicate(Pred); 6473 Changed = true; 6474 } 6475 6476 // If we're comparing an addrec with a value which is loop-invariant in the 6477 // addrec's loop, put the addrec on the left. Also make a dominance check, 6478 // as both operands could be addrecs loop-invariant in each other's loop. 6479 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6480 const Loop *L = AR->getLoop(); 6481 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6482 std::swap(LHS, RHS); 6483 Pred = ICmpInst::getSwappedPredicate(Pred); 6484 Changed = true; 6485 } 6486 } 6487 6488 // If there's a constant operand, canonicalize comparisons with boundary 6489 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6490 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6491 const APInt &RA = RC->getValue()->getValue(); 6492 switch (Pred) { 6493 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6494 case ICmpInst::ICMP_EQ: 6495 case ICmpInst::ICMP_NE: 6496 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6497 if (!RA) 6498 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6499 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6500 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6501 ME->getOperand(0)->isAllOnesValue()) { 6502 RHS = AE->getOperand(1); 6503 LHS = ME->getOperand(1); 6504 Changed = true; 6505 } 6506 break; 6507 case ICmpInst::ICMP_UGE: 6508 if ((RA - 1).isMinValue()) { 6509 Pred = ICmpInst::ICMP_NE; 6510 RHS = getConstant(RA - 1); 6511 Changed = true; 6512 break; 6513 } 6514 if (RA.isMaxValue()) { 6515 Pred = ICmpInst::ICMP_EQ; 6516 Changed = true; 6517 break; 6518 } 6519 if (RA.isMinValue()) goto trivially_true; 6520 6521 Pred = ICmpInst::ICMP_UGT; 6522 RHS = getConstant(RA - 1); 6523 Changed = true; 6524 break; 6525 case ICmpInst::ICMP_ULE: 6526 if ((RA + 1).isMaxValue()) { 6527 Pred = ICmpInst::ICMP_NE; 6528 RHS = getConstant(RA + 1); 6529 Changed = true; 6530 break; 6531 } 6532 if (RA.isMinValue()) { 6533 Pred = ICmpInst::ICMP_EQ; 6534 Changed = true; 6535 break; 6536 } 6537 if (RA.isMaxValue()) goto trivially_true; 6538 6539 Pred = ICmpInst::ICMP_ULT; 6540 RHS = getConstant(RA + 1); 6541 Changed = true; 6542 break; 6543 case ICmpInst::ICMP_SGE: 6544 if ((RA - 1).isMinSignedValue()) { 6545 Pred = ICmpInst::ICMP_NE; 6546 RHS = getConstant(RA - 1); 6547 Changed = true; 6548 break; 6549 } 6550 if (RA.isMaxSignedValue()) { 6551 Pred = ICmpInst::ICMP_EQ; 6552 Changed = true; 6553 break; 6554 } 6555 if (RA.isMinSignedValue()) goto trivially_true; 6556 6557 Pred = ICmpInst::ICMP_SGT; 6558 RHS = getConstant(RA - 1); 6559 Changed = true; 6560 break; 6561 case ICmpInst::ICMP_SLE: 6562 if ((RA + 1).isMaxSignedValue()) { 6563 Pred = ICmpInst::ICMP_NE; 6564 RHS = getConstant(RA + 1); 6565 Changed = true; 6566 break; 6567 } 6568 if (RA.isMinSignedValue()) { 6569 Pred = ICmpInst::ICMP_EQ; 6570 Changed = true; 6571 break; 6572 } 6573 if (RA.isMaxSignedValue()) goto trivially_true; 6574 6575 Pred = ICmpInst::ICMP_SLT; 6576 RHS = getConstant(RA + 1); 6577 Changed = true; 6578 break; 6579 case ICmpInst::ICMP_UGT: 6580 if (RA.isMinValue()) { 6581 Pred = ICmpInst::ICMP_NE; 6582 Changed = true; 6583 break; 6584 } 6585 if ((RA + 1).isMaxValue()) { 6586 Pred = ICmpInst::ICMP_EQ; 6587 RHS = getConstant(RA + 1); 6588 Changed = true; 6589 break; 6590 } 6591 if (RA.isMaxValue()) goto trivially_false; 6592 break; 6593 case ICmpInst::ICMP_ULT: 6594 if (RA.isMaxValue()) { 6595 Pred = ICmpInst::ICMP_NE; 6596 Changed = true; 6597 break; 6598 } 6599 if ((RA - 1).isMinValue()) { 6600 Pred = ICmpInst::ICMP_EQ; 6601 RHS = getConstant(RA - 1); 6602 Changed = true; 6603 break; 6604 } 6605 if (RA.isMinValue()) goto trivially_false; 6606 break; 6607 case ICmpInst::ICMP_SGT: 6608 if (RA.isMinSignedValue()) { 6609 Pred = ICmpInst::ICMP_NE; 6610 Changed = true; 6611 break; 6612 } 6613 if ((RA + 1).isMaxSignedValue()) { 6614 Pred = ICmpInst::ICMP_EQ; 6615 RHS = getConstant(RA + 1); 6616 Changed = true; 6617 break; 6618 } 6619 if (RA.isMaxSignedValue()) goto trivially_false; 6620 break; 6621 case ICmpInst::ICMP_SLT: 6622 if (RA.isMaxSignedValue()) { 6623 Pred = ICmpInst::ICMP_NE; 6624 Changed = true; 6625 break; 6626 } 6627 if ((RA - 1).isMinSignedValue()) { 6628 Pred = ICmpInst::ICMP_EQ; 6629 RHS = getConstant(RA - 1); 6630 Changed = true; 6631 break; 6632 } 6633 if (RA.isMinSignedValue()) goto trivially_false; 6634 break; 6635 } 6636 } 6637 6638 // Check for obvious equality. 6639 if (HasSameValue(LHS, RHS)) { 6640 if (ICmpInst::isTrueWhenEqual(Pred)) 6641 goto trivially_true; 6642 if (ICmpInst::isFalseWhenEqual(Pred)) 6643 goto trivially_false; 6644 } 6645 6646 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6647 // adding or subtracting 1 from one of the operands. 6648 switch (Pred) { 6649 case ICmpInst::ICMP_SLE: 6650 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6651 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6652 SCEV::FlagNSW); 6653 Pred = ICmpInst::ICMP_SLT; 6654 Changed = true; 6655 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6656 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6657 SCEV::FlagNSW); 6658 Pred = ICmpInst::ICMP_SLT; 6659 Changed = true; 6660 } 6661 break; 6662 case ICmpInst::ICMP_SGE: 6663 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6664 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6665 SCEV::FlagNSW); 6666 Pred = ICmpInst::ICMP_SGT; 6667 Changed = true; 6668 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6669 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6670 SCEV::FlagNSW); 6671 Pred = ICmpInst::ICMP_SGT; 6672 Changed = true; 6673 } 6674 break; 6675 case ICmpInst::ICMP_ULE: 6676 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6677 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6678 SCEV::FlagNUW); 6679 Pred = ICmpInst::ICMP_ULT; 6680 Changed = true; 6681 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6682 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6683 SCEV::FlagNUW); 6684 Pred = ICmpInst::ICMP_ULT; 6685 Changed = true; 6686 } 6687 break; 6688 case ICmpInst::ICMP_UGE: 6689 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6690 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6691 SCEV::FlagNUW); 6692 Pred = ICmpInst::ICMP_UGT; 6693 Changed = true; 6694 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6695 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6696 SCEV::FlagNUW); 6697 Pred = ICmpInst::ICMP_UGT; 6698 Changed = true; 6699 } 6700 break; 6701 default: 6702 break; 6703 } 6704 6705 // TODO: More simplifications are possible here. 6706 6707 // Recursively simplify until we either hit a recursion limit or nothing 6708 // changes. 6709 if (Changed) 6710 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6711 6712 return Changed; 6713 6714 trivially_true: 6715 // Return 0 == 0. 6716 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6717 Pred = ICmpInst::ICMP_EQ; 6718 return true; 6719 6720 trivially_false: 6721 // Return 0 != 0. 6722 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6723 Pred = ICmpInst::ICMP_NE; 6724 return true; 6725 } 6726 6727 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6728 return getSignedRange(S).getSignedMax().isNegative(); 6729 } 6730 6731 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6732 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6733 } 6734 6735 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6736 return !getSignedRange(S).getSignedMin().isNegative(); 6737 } 6738 6739 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6740 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6741 } 6742 6743 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6744 return isKnownNegative(S) || isKnownPositive(S); 6745 } 6746 6747 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6748 const SCEV *LHS, const SCEV *RHS) { 6749 // Canonicalize the inputs first. 6750 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6751 6752 // If LHS or RHS is an addrec, check to see if the condition is true in 6753 // every iteration of the loop. 6754 // If LHS and RHS are both addrec, both conditions must be true in 6755 // every iteration of the loop. 6756 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6757 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6758 bool LeftGuarded = false; 6759 bool RightGuarded = false; 6760 if (LAR) { 6761 const Loop *L = LAR->getLoop(); 6762 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6763 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6764 if (!RAR) return true; 6765 LeftGuarded = true; 6766 } 6767 } 6768 if (RAR) { 6769 const Loop *L = RAR->getLoop(); 6770 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6771 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6772 if (!LAR) return true; 6773 RightGuarded = true; 6774 } 6775 } 6776 if (LeftGuarded && RightGuarded) 6777 return true; 6778 6779 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 6780 return true; 6781 6782 // Otherwise see what can be done with known constant ranges. 6783 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6784 } 6785 6786 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6787 ICmpInst::Predicate Pred, 6788 bool &Increasing) { 6789 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6790 6791 #ifndef NDEBUG 6792 // Verify an invariant: inverting the predicate should turn a monotonically 6793 // increasing change to a monotonically decreasing one, and vice versa. 6794 bool IncreasingSwapped; 6795 bool ResultSwapped = isMonotonicPredicateImpl( 6796 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6797 6798 assert(Result == ResultSwapped && "should be able to analyze both!"); 6799 if (ResultSwapped) 6800 assert(Increasing == !IncreasingSwapped && 6801 "monotonicity should flip as we flip the predicate"); 6802 #endif 6803 6804 return Result; 6805 } 6806 6807 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6808 ICmpInst::Predicate Pred, 6809 bool &Increasing) { 6810 6811 // A zero step value for LHS means the induction variable is essentially a 6812 // loop invariant value. We don't really depend on the predicate actually 6813 // flipping from false to true (for increasing predicates, and the other way 6814 // around for decreasing predicates), all we care about is that *if* the 6815 // predicate changes then it only changes from false to true. 6816 // 6817 // A zero step value in itself is not very useful, but there may be places 6818 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6819 // as general as possible. 6820 6821 switch (Pred) { 6822 default: 6823 return false; // Conservative answer 6824 6825 case ICmpInst::ICMP_UGT: 6826 case ICmpInst::ICMP_UGE: 6827 case ICmpInst::ICMP_ULT: 6828 case ICmpInst::ICMP_ULE: 6829 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 6830 return false; 6831 6832 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 6833 return true; 6834 6835 case ICmpInst::ICMP_SGT: 6836 case ICmpInst::ICMP_SGE: 6837 case ICmpInst::ICMP_SLT: 6838 case ICmpInst::ICMP_SLE: { 6839 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 6840 return false; 6841 6842 const SCEV *Step = LHS->getStepRecurrence(*this); 6843 6844 if (isKnownNonNegative(Step)) { 6845 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 6846 return true; 6847 } 6848 6849 if (isKnownNonPositive(Step)) { 6850 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 6851 return true; 6852 } 6853 6854 return false; 6855 } 6856 6857 } 6858 6859 llvm_unreachable("switch has default clause!"); 6860 } 6861 6862 bool ScalarEvolution::isLoopInvariantPredicate( 6863 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 6864 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 6865 const SCEV *&InvariantRHS) { 6866 6867 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 6868 if (!isLoopInvariant(RHS, L)) { 6869 if (!isLoopInvariant(LHS, L)) 6870 return false; 6871 6872 std::swap(LHS, RHS); 6873 Pred = ICmpInst::getSwappedPredicate(Pred); 6874 } 6875 6876 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 6877 if (!ArLHS || ArLHS->getLoop() != L) 6878 return false; 6879 6880 bool Increasing; 6881 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 6882 return false; 6883 6884 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 6885 // true as the loop iterates, and the backedge is control dependent on 6886 // "ArLHS `Pred` RHS" == true then we can reason as follows: 6887 // 6888 // * if the predicate was false in the first iteration then the predicate 6889 // is never evaluated again, since the loop exits without taking the 6890 // backedge. 6891 // * if the predicate was true in the first iteration then it will 6892 // continue to be true for all future iterations since it is 6893 // monotonically increasing. 6894 // 6895 // For both the above possibilities, we can replace the loop varying 6896 // predicate with its value on the first iteration of the loop (which is 6897 // loop invariant). 6898 // 6899 // A similar reasoning applies for a monotonically decreasing predicate, by 6900 // replacing true with false and false with true in the above two bullets. 6901 6902 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 6903 6904 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 6905 return false; 6906 6907 InvariantPred = Pred; 6908 InvariantLHS = ArLHS->getStart(); 6909 InvariantRHS = RHS; 6910 return true; 6911 } 6912 6913 bool 6914 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6915 const SCEV *LHS, const SCEV *RHS) { 6916 if (HasSameValue(LHS, RHS)) 6917 return ICmpInst::isTrueWhenEqual(Pred); 6918 6919 // This code is split out from isKnownPredicate because it is called from 6920 // within isLoopEntryGuardedByCond. 6921 switch (Pred) { 6922 default: 6923 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6924 case ICmpInst::ICMP_SGT: 6925 std::swap(LHS, RHS); 6926 case ICmpInst::ICMP_SLT: { 6927 ConstantRange LHSRange = getSignedRange(LHS); 6928 ConstantRange RHSRange = getSignedRange(RHS); 6929 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6930 return true; 6931 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6932 return false; 6933 break; 6934 } 6935 case ICmpInst::ICMP_SGE: 6936 std::swap(LHS, RHS); 6937 case ICmpInst::ICMP_SLE: { 6938 ConstantRange LHSRange = getSignedRange(LHS); 6939 ConstantRange RHSRange = getSignedRange(RHS); 6940 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6941 return true; 6942 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6943 return false; 6944 break; 6945 } 6946 case ICmpInst::ICMP_UGT: 6947 std::swap(LHS, RHS); 6948 case ICmpInst::ICMP_ULT: { 6949 ConstantRange LHSRange = getUnsignedRange(LHS); 6950 ConstantRange RHSRange = getUnsignedRange(RHS); 6951 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6952 return true; 6953 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6954 return false; 6955 break; 6956 } 6957 case ICmpInst::ICMP_UGE: 6958 std::swap(LHS, RHS); 6959 case ICmpInst::ICMP_ULE: { 6960 ConstantRange LHSRange = getUnsignedRange(LHS); 6961 ConstantRange RHSRange = getUnsignedRange(RHS); 6962 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6963 return true; 6964 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6965 return false; 6966 break; 6967 } 6968 case ICmpInst::ICMP_NE: { 6969 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6970 return true; 6971 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6972 return true; 6973 6974 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6975 if (isKnownNonZero(Diff)) 6976 return true; 6977 break; 6978 } 6979 case ICmpInst::ICMP_EQ: 6980 // The check at the top of the function catches the case where 6981 // the values are known to be equal. 6982 break; 6983 } 6984 return false; 6985 } 6986 6987 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 6988 const SCEV *LHS, 6989 const SCEV *RHS) { 6990 if (ProvingSplitPredicate) 6991 return false; 6992 6993 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 6994 // the stack can result in exponential time complexity. 6995 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 6996 6997 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 6998 // 6999 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7000 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7001 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7002 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7003 // use isKnownPredicate later if needed. 7004 if (Pred == ICmpInst::ICMP_ULT && isKnownNonNegative(RHS) && 7005 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7006 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7007 return true; 7008 7009 return false; 7010 } 7011 7012 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7013 /// protected by a conditional between LHS and RHS. This is used to 7014 /// to eliminate casts. 7015 bool 7016 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7017 ICmpInst::Predicate Pred, 7018 const SCEV *LHS, const SCEV *RHS) { 7019 // Interpret a null as meaning no loop, where there is obviously no guard 7020 // (interprocedural conditions notwithstanding). 7021 if (!L) return true; 7022 7023 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7024 7025 BasicBlock *Latch = L->getLoopLatch(); 7026 if (!Latch) 7027 return false; 7028 7029 BranchInst *LoopContinuePredicate = 7030 dyn_cast<BranchInst>(Latch->getTerminator()); 7031 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7032 isImpliedCond(Pred, LHS, RHS, 7033 LoopContinuePredicate->getCondition(), 7034 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7035 return true; 7036 7037 // We don't want more than one activation of the following loops on the stack 7038 // -- that can lead to O(n!) time complexity. 7039 if (WalkingBEDominatingConds) 7040 return false; 7041 7042 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7043 7044 // See if we can exploit a trip count to prove the predicate. 7045 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7046 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7047 if (LatchBECount != getCouldNotCompute()) { 7048 // We know that Latch branches back to the loop header exactly 7049 // LatchBECount times. This means the backdege condition at Latch is 7050 // equivalent to "{0,+,1} u< LatchBECount". 7051 Type *Ty = LatchBECount->getType(); 7052 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7053 const SCEV *LoopCounter = 7054 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7055 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7056 LatchBECount)) 7057 return true; 7058 } 7059 7060 // Check conditions due to any @llvm.assume intrinsics. 7061 for (auto &AssumeVH : AC.assumptions()) { 7062 if (!AssumeVH) 7063 continue; 7064 auto *CI = cast<CallInst>(AssumeVH); 7065 if (!DT.dominates(CI, Latch->getTerminator())) 7066 continue; 7067 7068 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7069 return true; 7070 } 7071 7072 // If the loop is not reachable from the entry block, we risk running into an 7073 // infinite loop as we walk up into the dom tree. These loops do not matter 7074 // anyway, so we just return a conservative answer when we see them. 7075 if (!DT.isReachableFromEntry(L->getHeader())) 7076 return false; 7077 7078 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7079 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7080 7081 assert(DTN && "should reach the loop header before reaching the root!"); 7082 7083 BasicBlock *BB = DTN->getBlock(); 7084 BasicBlock *PBB = BB->getSinglePredecessor(); 7085 if (!PBB) 7086 continue; 7087 7088 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7089 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7090 continue; 7091 7092 Value *Condition = ContinuePredicate->getCondition(); 7093 7094 // If we have an edge `E` within the loop body that dominates the only 7095 // latch, the condition guarding `E` also guards the backedge. This 7096 // reasoning works only for loops with a single latch. 7097 7098 BasicBlockEdge DominatingEdge(PBB, BB); 7099 if (DominatingEdge.isSingleEdge()) { 7100 // We're constructively (and conservatively) enumerating edges within the 7101 // loop body that dominate the latch. The dominator tree better agree 7102 // with us on this: 7103 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7104 7105 if (isImpliedCond(Pred, LHS, RHS, Condition, 7106 BB != ContinuePredicate->getSuccessor(0))) 7107 return true; 7108 } 7109 } 7110 7111 return false; 7112 } 7113 7114 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7115 /// by a conditional between LHS and RHS. This is used to help avoid max 7116 /// expressions in loop trip counts, and to eliminate casts. 7117 bool 7118 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7119 ICmpInst::Predicate Pred, 7120 const SCEV *LHS, const SCEV *RHS) { 7121 // Interpret a null as meaning no loop, where there is obviously no guard 7122 // (interprocedural conditions notwithstanding). 7123 if (!L) return false; 7124 7125 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7126 7127 // Starting at the loop predecessor, climb up the predecessor chain, as long 7128 // as there are predecessors that can be found that have unique successors 7129 // leading to the original header. 7130 for (std::pair<BasicBlock *, BasicBlock *> 7131 Pair(L->getLoopPredecessor(), L->getHeader()); 7132 Pair.first; 7133 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7134 7135 BranchInst *LoopEntryPredicate = 7136 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7137 if (!LoopEntryPredicate || 7138 LoopEntryPredicate->isUnconditional()) 7139 continue; 7140 7141 if (isImpliedCond(Pred, LHS, RHS, 7142 LoopEntryPredicate->getCondition(), 7143 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7144 return true; 7145 } 7146 7147 // Check conditions due to any @llvm.assume intrinsics. 7148 for (auto &AssumeVH : AC.assumptions()) { 7149 if (!AssumeVH) 7150 continue; 7151 auto *CI = cast<CallInst>(AssumeVH); 7152 if (!DT.dominates(CI, L->getHeader())) 7153 continue; 7154 7155 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7156 return true; 7157 } 7158 7159 return false; 7160 } 7161 7162 /// RAII wrapper to prevent recursive application of isImpliedCond. 7163 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7164 /// currently evaluating isImpliedCond. 7165 struct MarkPendingLoopPredicate { 7166 Value *Cond; 7167 DenseSet<Value*> &LoopPreds; 7168 bool Pending; 7169 7170 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7171 : Cond(C), LoopPreds(LP) { 7172 Pending = !LoopPreds.insert(Cond).second; 7173 } 7174 ~MarkPendingLoopPredicate() { 7175 if (!Pending) 7176 LoopPreds.erase(Cond); 7177 } 7178 }; 7179 7180 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7181 /// and RHS is true whenever the given Cond value evaluates to true. 7182 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7183 const SCEV *LHS, const SCEV *RHS, 7184 Value *FoundCondValue, 7185 bool Inverse) { 7186 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7187 if (Mark.Pending) 7188 return false; 7189 7190 // Recursively handle And and Or conditions. 7191 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7192 if (BO->getOpcode() == Instruction::And) { 7193 if (!Inverse) 7194 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7195 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7196 } else if (BO->getOpcode() == Instruction::Or) { 7197 if (Inverse) 7198 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7199 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7200 } 7201 } 7202 7203 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7204 if (!ICI) return false; 7205 7206 // Now that we found a conditional branch that dominates the loop or controls 7207 // the loop latch. Check to see if it is the comparison we are looking for. 7208 ICmpInst::Predicate FoundPred; 7209 if (Inverse) 7210 FoundPred = ICI->getInversePredicate(); 7211 else 7212 FoundPred = ICI->getPredicate(); 7213 7214 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7215 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7216 7217 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7218 } 7219 7220 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7221 const SCEV *RHS, 7222 ICmpInst::Predicate FoundPred, 7223 const SCEV *FoundLHS, 7224 const SCEV *FoundRHS) { 7225 // Balance the types. 7226 if (getTypeSizeInBits(LHS->getType()) < 7227 getTypeSizeInBits(FoundLHS->getType())) { 7228 if (CmpInst::isSigned(Pred)) { 7229 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7230 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7231 } else { 7232 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7233 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7234 } 7235 } else if (getTypeSizeInBits(LHS->getType()) > 7236 getTypeSizeInBits(FoundLHS->getType())) { 7237 if (CmpInst::isSigned(FoundPred)) { 7238 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7239 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7240 } else { 7241 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7242 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7243 } 7244 } 7245 7246 // Canonicalize the query to match the way instcombine will have 7247 // canonicalized the comparison. 7248 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7249 if (LHS == RHS) 7250 return CmpInst::isTrueWhenEqual(Pred); 7251 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7252 if (FoundLHS == FoundRHS) 7253 return CmpInst::isFalseWhenEqual(FoundPred); 7254 7255 // Check to see if we can make the LHS or RHS match. 7256 if (LHS == FoundRHS || RHS == FoundLHS) { 7257 if (isa<SCEVConstant>(RHS)) { 7258 std::swap(FoundLHS, FoundRHS); 7259 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7260 } else { 7261 std::swap(LHS, RHS); 7262 Pred = ICmpInst::getSwappedPredicate(Pred); 7263 } 7264 } 7265 7266 // Check whether the found predicate is the same as the desired predicate. 7267 if (FoundPred == Pred) 7268 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7269 7270 // Check whether swapping the found predicate makes it the same as the 7271 // desired predicate. 7272 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7273 if (isa<SCEVConstant>(RHS)) 7274 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7275 else 7276 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7277 RHS, LHS, FoundLHS, FoundRHS); 7278 } 7279 7280 // Check if we can make progress by sharpening ranges. 7281 if (FoundPred == ICmpInst::ICMP_NE && 7282 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7283 7284 const SCEVConstant *C = nullptr; 7285 const SCEV *V = nullptr; 7286 7287 if (isa<SCEVConstant>(FoundLHS)) { 7288 C = cast<SCEVConstant>(FoundLHS); 7289 V = FoundRHS; 7290 } else { 7291 C = cast<SCEVConstant>(FoundRHS); 7292 V = FoundLHS; 7293 } 7294 7295 // The guarding predicate tells us that C != V. If the known range 7296 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7297 // range we consider has to correspond to same signedness as the 7298 // predicate we're interested in folding. 7299 7300 APInt Min = ICmpInst::isSigned(Pred) ? 7301 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7302 7303 if (Min == C->getValue()->getValue()) { 7304 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7305 // This is true even if (Min + 1) wraps around -- in case of 7306 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7307 7308 APInt SharperMin = Min + 1; 7309 7310 switch (Pred) { 7311 case ICmpInst::ICMP_SGE: 7312 case ICmpInst::ICMP_UGE: 7313 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7314 // RHS, we're done. 7315 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7316 getConstant(SharperMin))) 7317 return true; 7318 7319 case ICmpInst::ICMP_SGT: 7320 case ICmpInst::ICMP_UGT: 7321 // We know from the range information that (V `Pred` Min || 7322 // V == Min). We know from the guarding condition that !(V 7323 // == Min). This gives us 7324 // 7325 // V `Pred` Min || V == Min && !(V == Min) 7326 // => V `Pred` Min 7327 // 7328 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7329 7330 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7331 return true; 7332 7333 default: 7334 // No change 7335 break; 7336 } 7337 } 7338 } 7339 7340 // Check whether the actual condition is beyond sufficient. 7341 if (FoundPred == ICmpInst::ICMP_EQ) 7342 if (ICmpInst::isTrueWhenEqual(Pred)) 7343 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7344 return true; 7345 if (Pred == ICmpInst::ICMP_NE) 7346 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7347 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7348 return true; 7349 7350 // Otherwise assume the worst. 7351 return false; 7352 } 7353 7354 // Return true if More == (Less + C), where C is a constant. 7355 static bool IsConstDiff(ScalarEvolution &SE, const SCEV *Less, const SCEV *More, 7356 APInt &C) { 7357 // We avoid subtracting expressions here because this function is usually 7358 // fairly deep in the call stack (i.e. is called many times). 7359 7360 auto SplitBinaryAdd = [](const SCEV *Expr, const SCEV *&L, const SCEV *&R) { 7361 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7362 if (!AE || AE->getNumOperands() != 2) 7363 return false; 7364 7365 L = AE->getOperand(0); 7366 R = AE->getOperand(1); 7367 return true; 7368 }; 7369 7370 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7371 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7372 const auto *MAR = cast<SCEVAddRecExpr>(More); 7373 7374 if (LAR->getLoop() != MAR->getLoop()) 7375 return false; 7376 7377 // We look at affine expressions only; not for correctness but to keep 7378 // getStepRecurrence cheap. 7379 if (!LAR->isAffine() || !MAR->isAffine()) 7380 return false; 7381 7382 if (LAR->getStepRecurrence(SE) != MAR->getStepRecurrence(SE)) 7383 return false; 7384 7385 Less = LAR->getStart(); 7386 More = MAR->getStart(); 7387 7388 // fall through 7389 } 7390 7391 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7392 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7393 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7394 C = M - L; 7395 return true; 7396 } 7397 7398 const SCEV *L, *R; 7399 if (SplitBinaryAdd(Less, L, R)) 7400 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7401 if (R == More) { 7402 C = -(LC->getValue()->getValue()); 7403 return true; 7404 } 7405 7406 if (SplitBinaryAdd(More, L, R)) 7407 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7408 if (R == Less) { 7409 C = LC->getValue()->getValue(); 7410 return true; 7411 } 7412 7413 return false; 7414 } 7415 7416 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7417 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7418 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7419 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7420 return false; 7421 7422 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7423 if (!AddRecLHS) 7424 return false; 7425 7426 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7427 if (!AddRecFoundLHS) 7428 return false; 7429 7430 // We'd like to let SCEV reason about control dependencies, so we constrain 7431 // both the inequalities to be about add recurrences on the same loop. This 7432 // way we can use isLoopEntryGuardedByCond later. 7433 7434 const Loop *L = AddRecFoundLHS->getLoop(); 7435 if (L != AddRecLHS->getLoop()) 7436 return false; 7437 7438 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7439 // 7440 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7441 // ... (2) 7442 // 7443 // Informal proof for (2), assuming (1) [*]: 7444 // 7445 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7446 // 7447 // Then 7448 // 7449 // FoundLHS s< FoundRHS s< INT_MIN - C 7450 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7451 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7452 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7453 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7454 // <=> FoundLHS + C s< FoundRHS + C 7455 // 7456 // [*]: (1) can be proved by ruling out overflow. 7457 // 7458 // [**]: This can be proved by analyzing all the four possibilities: 7459 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7460 // (A s>= 0, B s>= 0). 7461 // 7462 // Note: 7463 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7464 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7465 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7466 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7467 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7468 // C)". 7469 7470 APInt LDiff, RDiff; 7471 if (!IsConstDiff(*this, FoundLHS, LHS, LDiff) || 7472 !IsConstDiff(*this, FoundRHS, RHS, RDiff) || 7473 LDiff != RDiff) 7474 return false; 7475 7476 if (LDiff == 0) 7477 return true; 7478 7479 APInt FoundRHSLimit; 7480 7481 if (Pred == CmpInst::ICMP_ULT) { 7482 FoundRHSLimit = -RDiff; 7483 } else { 7484 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7485 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7486 } 7487 7488 // Try to prove (1) or (2), as needed. 7489 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7490 getConstant(FoundRHSLimit)); 7491 } 7492 7493 /// isImpliedCondOperands - Test whether the condition described by Pred, 7494 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7495 /// and FoundRHS is true. 7496 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7497 const SCEV *LHS, const SCEV *RHS, 7498 const SCEV *FoundLHS, 7499 const SCEV *FoundRHS) { 7500 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7501 return true; 7502 7503 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7504 return true; 7505 7506 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7507 FoundLHS, FoundRHS) || 7508 // ~x < ~y --> x > y 7509 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7510 getNotSCEV(FoundRHS), 7511 getNotSCEV(FoundLHS)); 7512 } 7513 7514 7515 /// If Expr computes ~A, return A else return nullptr 7516 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7517 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7518 if (!Add || Add->getNumOperands() != 2) return nullptr; 7519 7520 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 7521 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 7522 return nullptr; 7523 7524 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7525 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 7526 7527 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 7528 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 7529 return nullptr; 7530 7531 return AddRHS->getOperand(1); 7532 } 7533 7534 7535 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7536 template<typename MaxExprType> 7537 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7538 const SCEV *Candidate) { 7539 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7540 if (!MaxExpr) return false; 7541 7542 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7543 return It != MaxExpr->op_end(); 7544 } 7545 7546 7547 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7548 template<typename MaxExprType> 7549 static bool IsMinConsistingOf(ScalarEvolution &SE, 7550 const SCEV *MaybeMinExpr, 7551 const SCEV *Candidate) { 7552 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7553 if (!MaybeMaxExpr) 7554 return false; 7555 7556 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7557 } 7558 7559 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7560 ICmpInst::Predicate Pred, 7561 const SCEV *LHS, const SCEV *RHS) { 7562 7563 // If both sides are affine addrecs for the same loop, with equal 7564 // steps, and we know the recurrences don't wrap, then we only 7565 // need to check the predicate on the starting values. 7566 7567 if (!ICmpInst::isRelational(Pred)) 7568 return false; 7569 7570 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7571 if (!LAR) 7572 return false; 7573 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7574 if (!RAR) 7575 return false; 7576 if (LAR->getLoop() != RAR->getLoop()) 7577 return false; 7578 if (!LAR->isAffine() || !RAR->isAffine()) 7579 return false; 7580 7581 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7582 return false; 7583 7584 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7585 SCEV::FlagNSW : SCEV::FlagNUW; 7586 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7587 return false; 7588 7589 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7590 } 7591 7592 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7593 /// expression? 7594 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7595 ICmpInst::Predicate Pred, 7596 const SCEV *LHS, const SCEV *RHS) { 7597 switch (Pred) { 7598 default: 7599 return false; 7600 7601 case ICmpInst::ICMP_SGE: 7602 std::swap(LHS, RHS); 7603 // fall through 7604 case ICmpInst::ICMP_SLE: 7605 return 7606 // min(A, ...) <= A 7607 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7608 // A <= max(A, ...) 7609 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7610 7611 case ICmpInst::ICMP_UGE: 7612 std::swap(LHS, RHS); 7613 // fall through 7614 case ICmpInst::ICMP_ULE: 7615 return 7616 // min(A, ...) <= A 7617 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7618 // A <= max(A, ...) 7619 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7620 } 7621 7622 llvm_unreachable("covered switch fell through?!"); 7623 } 7624 7625 /// isImpliedCondOperandsHelper - Test whether the condition described by 7626 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7627 /// FoundLHS, and FoundRHS is true. 7628 bool 7629 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7630 const SCEV *LHS, const SCEV *RHS, 7631 const SCEV *FoundLHS, 7632 const SCEV *FoundRHS) { 7633 auto IsKnownPredicateFull = 7634 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7635 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7636 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7637 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS); 7638 }; 7639 7640 switch (Pred) { 7641 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7642 case ICmpInst::ICMP_EQ: 7643 case ICmpInst::ICMP_NE: 7644 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7645 return true; 7646 break; 7647 case ICmpInst::ICMP_SLT: 7648 case ICmpInst::ICMP_SLE: 7649 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7650 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7651 return true; 7652 break; 7653 case ICmpInst::ICMP_SGT: 7654 case ICmpInst::ICMP_SGE: 7655 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7656 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7657 return true; 7658 break; 7659 case ICmpInst::ICMP_ULT: 7660 case ICmpInst::ICMP_ULE: 7661 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7662 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7663 return true; 7664 break; 7665 case ICmpInst::ICMP_UGT: 7666 case ICmpInst::ICMP_UGE: 7667 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7668 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7669 return true; 7670 break; 7671 } 7672 7673 return false; 7674 } 7675 7676 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7677 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7678 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7679 const SCEV *LHS, 7680 const SCEV *RHS, 7681 const SCEV *FoundLHS, 7682 const SCEV *FoundRHS) { 7683 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7684 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7685 // reduce the compile time impact of this optimization. 7686 return false; 7687 7688 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7689 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7690 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7691 return false; 7692 7693 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7694 7695 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7696 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7697 ConstantRange FoundLHSRange = 7698 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7699 7700 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7701 // for `LHS`: 7702 APInt Addend = 7703 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7704 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7705 7706 // We can also compute the range of values for `LHS` that satisfy the 7707 // consequent, "`LHS` `Pred` `RHS`": 7708 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7709 ConstantRange SatisfyingLHSRange = 7710 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7711 7712 // The antecedent implies the consequent if every value of `LHS` that 7713 // satisfies the antecedent also satisfies the consequent. 7714 return SatisfyingLHSRange.contains(LHSRange); 7715 } 7716 7717 // Verify if an linear IV with positive stride can overflow when in a 7718 // less-than comparison, knowing the invariant term of the comparison, the 7719 // stride and the knowledge of NSW/NUW flags on the recurrence. 7720 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7721 bool IsSigned, bool NoWrap) { 7722 if (NoWrap) return false; 7723 7724 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7725 const SCEV *One = getOne(Stride->getType()); 7726 7727 if (IsSigned) { 7728 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7729 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7730 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7731 .getSignedMax(); 7732 7733 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7734 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7735 } 7736 7737 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7738 APInt MaxValue = APInt::getMaxValue(BitWidth); 7739 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7740 .getUnsignedMax(); 7741 7742 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7743 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7744 } 7745 7746 // Verify if an linear IV with negative stride can overflow when in a 7747 // greater-than comparison, knowing the invariant term of the comparison, 7748 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7749 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7750 bool IsSigned, bool NoWrap) { 7751 if (NoWrap) return false; 7752 7753 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7754 const SCEV *One = getOne(Stride->getType()); 7755 7756 if (IsSigned) { 7757 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7758 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7759 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7760 .getSignedMax(); 7761 7762 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7763 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7764 } 7765 7766 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7767 APInt MinValue = APInt::getMinValue(BitWidth); 7768 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7769 .getUnsignedMax(); 7770 7771 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7772 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7773 } 7774 7775 // Compute the backedge taken count knowing the interval difference, the 7776 // stride and presence of the equality in the comparison. 7777 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7778 bool Equality) { 7779 const SCEV *One = getOne(Step->getType()); 7780 Delta = Equality ? getAddExpr(Delta, Step) 7781 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7782 return getUDivExpr(Delta, Step); 7783 } 7784 7785 /// HowManyLessThans - Return the number of times a backedge containing the 7786 /// specified less-than comparison will execute. If not computable, return 7787 /// CouldNotCompute. 7788 /// 7789 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7790 /// the branch (loops exits only if condition is true). In this case, we can use 7791 /// NoWrapFlags to skip overflow checks. 7792 ScalarEvolution::ExitLimit 7793 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7794 const Loop *L, bool IsSigned, 7795 bool ControlsExit) { 7796 // We handle only IV < Invariant 7797 if (!isLoopInvariant(RHS, L)) 7798 return getCouldNotCompute(); 7799 7800 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7801 7802 // Avoid weird loops 7803 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7804 return getCouldNotCompute(); 7805 7806 bool NoWrap = ControlsExit && 7807 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7808 7809 const SCEV *Stride = IV->getStepRecurrence(*this); 7810 7811 // Avoid negative or zero stride values 7812 if (!isKnownPositive(Stride)) 7813 return getCouldNotCompute(); 7814 7815 // Avoid proven overflow cases: this will ensure that the backedge taken count 7816 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7817 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7818 // behaviors like the case of C language. 7819 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7820 return getCouldNotCompute(); 7821 7822 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7823 : ICmpInst::ICMP_ULT; 7824 const SCEV *Start = IV->getStart(); 7825 const SCEV *End = RHS; 7826 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7827 const SCEV *Diff = getMinusSCEV(RHS, Start); 7828 // If we have NoWrap set, then we can assume that the increment won't 7829 // overflow, in which case if RHS - Start is a constant, we don't need to 7830 // do a max operation since we can just figure it out statically 7831 if (NoWrap && isa<SCEVConstant>(Diff)) { 7832 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7833 if (D.isNegative()) 7834 End = Start; 7835 } else 7836 End = IsSigned ? getSMaxExpr(RHS, Start) 7837 : getUMaxExpr(RHS, Start); 7838 } 7839 7840 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7841 7842 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7843 : getUnsignedRange(Start).getUnsignedMin(); 7844 7845 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7846 : getUnsignedRange(Stride).getUnsignedMin(); 7847 7848 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7849 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7850 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7851 7852 // Although End can be a MAX expression we estimate MaxEnd considering only 7853 // the case End = RHS. This is safe because in the other case (End - Start) 7854 // is zero, leading to a zero maximum backedge taken count. 7855 APInt MaxEnd = 7856 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 7857 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 7858 7859 const SCEV *MaxBECount; 7860 if (isa<SCEVConstant>(BECount)) 7861 MaxBECount = BECount; 7862 else 7863 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 7864 getConstant(MinStride), false); 7865 7866 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7867 MaxBECount = BECount; 7868 7869 return ExitLimit(BECount, MaxBECount); 7870 } 7871 7872 ScalarEvolution::ExitLimit 7873 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 7874 const Loop *L, bool IsSigned, 7875 bool ControlsExit) { 7876 // We handle only IV > Invariant 7877 if (!isLoopInvariant(RHS, L)) 7878 return getCouldNotCompute(); 7879 7880 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7881 7882 // Avoid weird loops 7883 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7884 return getCouldNotCompute(); 7885 7886 bool NoWrap = ControlsExit && 7887 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7888 7889 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 7890 7891 // Avoid negative or zero stride values 7892 if (!isKnownPositive(Stride)) 7893 return getCouldNotCompute(); 7894 7895 // Avoid proven overflow cases: this will ensure that the backedge taken count 7896 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7897 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7898 // behaviors like the case of C language. 7899 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 7900 return getCouldNotCompute(); 7901 7902 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 7903 : ICmpInst::ICMP_UGT; 7904 7905 const SCEV *Start = IV->getStart(); 7906 const SCEV *End = RHS; 7907 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 7908 const SCEV *Diff = getMinusSCEV(RHS, Start); 7909 // If we have NoWrap set, then we can assume that the increment won't 7910 // overflow, in which case if RHS - Start is a constant, we don't need to 7911 // do a max operation since we can just figure it out statically 7912 if (NoWrap && isa<SCEVConstant>(Diff)) { 7913 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7914 if (!D.isNegative()) 7915 End = Start; 7916 } else 7917 End = IsSigned ? getSMinExpr(RHS, Start) 7918 : getUMinExpr(RHS, Start); 7919 } 7920 7921 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 7922 7923 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 7924 : getUnsignedRange(Start).getUnsignedMax(); 7925 7926 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7927 : getUnsignedRange(Stride).getUnsignedMin(); 7928 7929 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7930 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 7931 : APInt::getMinValue(BitWidth) + (MinStride - 1); 7932 7933 // Although End can be a MIN expression we estimate MinEnd considering only 7934 // the case End = RHS. This is safe because in the other case (Start - End) 7935 // is zero, leading to a zero maximum backedge taken count. 7936 APInt MinEnd = 7937 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 7938 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 7939 7940 7941 const SCEV *MaxBECount = getCouldNotCompute(); 7942 if (isa<SCEVConstant>(BECount)) 7943 MaxBECount = BECount; 7944 else 7945 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 7946 getConstant(MinStride), false); 7947 7948 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7949 MaxBECount = BECount; 7950 7951 return ExitLimit(BECount, MaxBECount); 7952 } 7953 7954 /// getNumIterationsInRange - Return the number of iterations of this loop that 7955 /// produce values in the specified constant range. Another way of looking at 7956 /// this is that it returns the first iteration number where the value is not in 7957 /// the condition, thus computing the exit count. If the iteration count can't 7958 /// be computed, an instance of SCEVCouldNotCompute is returned. 7959 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 7960 ScalarEvolution &SE) const { 7961 if (Range.isFullSet()) // Infinite loop. 7962 return SE.getCouldNotCompute(); 7963 7964 // If the start is a non-zero constant, shift the range to simplify things. 7965 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 7966 if (!SC->getValue()->isZero()) { 7967 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 7968 Operands[0] = SE.getZero(SC->getType()); 7969 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 7970 getNoWrapFlags(FlagNW)); 7971 if (const SCEVAddRecExpr *ShiftedAddRec = 7972 dyn_cast<SCEVAddRecExpr>(Shifted)) 7973 return ShiftedAddRec->getNumIterationsInRange( 7974 Range.subtract(SC->getValue()->getValue()), SE); 7975 // This is strange and shouldn't happen. 7976 return SE.getCouldNotCompute(); 7977 } 7978 7979 // The only time we can solve this is when we have all constant indices. 7980 // Otherwise, we cannot determine the overflow conditions. 7981 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7982 if (!isa<SCEVConstant>(getOperand(i))) 7983 return SE.getCouldNotCompute(); 7984 7985 7986 // Okay at this point we know that all elements of the chrec are constants and 7987 // that the start element is zero. 7988 7989 // First check to see if the range contains zero. If not, the first 7990 // iteration exits. 7991 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 7992 if (!Range.contains(APInt(BitWidth, 0))) 7993 return SE.getZero(getType()); 7994 7995 if (isAffine()) { 7996 // If this is an affine expression then we have this situation: 7997 // Solve {0,+,A} in Range === Ax in Range 7998 7999 // We know that zero is in the range. If A is positive then we know that 8000 // the upper value of the range must be the first possible exit value. 8001 // If A is negative then the lower of the range is the last possible loop 8002 // value. Also note that we already checked for a full range. 8003 APInt One(BitWidth,1); 8004 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8005 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8006 8007 // The exit value should be (End+A)/A. 8008 APInt ExitVal = (End + A).udiv(A); 8009 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8010 8011 // Evaluate at the exit value. If we really did fall out of the valid 8012 // range, then we computed our trip count, otherwise wrap around or other 8013 // things must have happened. 8014 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8015 if (Range.contains(Val->getValue())) 8016 return SE.getCouldNotCompute(); // Something strange happened 8017 8018 // Ensure that the previous value is in the range. This is a sanity check. 8019 assert(Range.contains( 8020 EvaluateConstantChrecAtConstant(this, 8021 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8022 "Linear scev computation is off in a bad way!"); 8023 return SE.getConstant(ExitValue); 8024 } else if (isQuadratic()) { 8025 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8026 // quadratic equation to solve it. To do this, we must frame our problem in 8027 // terms of figuring out when zero is crossed, instead of when 8028 // Range.getUpper() is crossed. 8029 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8030 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8031 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8032 // getNoWrapFlags(FlagNW) 8033 FlagAnyWrap); 8034 8035 // Next, solve the constructed addrec 8036 std::pair<const SCEV *,const SCEV *> Roots = 8037 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8038 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8039 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8040 if (R1) { 8041 // Pick the smallest positive root value. 8042 if (ConstantInt *CB = 8043 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8044 R1->getValue(), R2->getValue()))) { 8045 if (!CB->getZExtValue()) 8046 std::swap(R1, R2); // R1 is the minimum root now. 8047 8048 // Make sure the root is not off by one. The returned iteration should 8049 // not be in the range, but the previous one should be. When solving 8050 // for "X*X < 5", for example, we should not return a root of 2. 8051 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8052 R1->getValue(), 8053 SE); 8054 if (Range.contains(R1Val->getValue())) { 8055 // The next iteration must be out of the range... 8056 ConstantInt *NextVal = 8057 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8058 8059 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8060 if (!Range.contains(R1Val->getValue())) 8061 return SE.getConstant(NextVal); 8062 return SE.getCouldNotCompute(); // Something strange happened 8063 } 8064 8065 // If R1 was not in the range, then it is a good return value. Make 8066 // sure that R1-1 WAS in the range though, just in case. 8067 ConstantInt *NextVal = 8068 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8069 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8070 if (Range.contains(R1Val->getValue())) 8071 return R1; 8072 return SE.getCouldNotCompute(); // Something strange happened 8073 } 8074 } 8075 } 8076 8077 return SE.getCouldNotCompute(); 8078 } 8079 8080 namespace { 8081 struct FindUndefs { 8082 bool Found; 8083 FindUndefs() : Found(false) {} 8084 8085 bool follow(const SCEV *S) { 8086 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8087 if (isa<UndefValue>(C->getValue())) 8088 Found = true; 8089 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8090 if (isa<UndefValue>(C->getValue())) 8091 Found = true; 8092 } 8093 8094 // Keep looking if we haven't found it yet. 8095 return !Found; 8096 } 8097 bool isDone() const { 8098 // Stop recursion if we have found an undef. 8099 return Found; 8100 } 8101 }; 8102 } 8103 8104 // Return true when S contains at least an undef value. 8105 static inline bool 8106 containsUndefs(const SCEV *S) { 8107 FindUndefs F; 8108 SCEVTraversal<FindUndefs> ST(F); 8109 ST.visitAll(S); 8110 8111 return F.Found; 8112 } 8113 8114 namespace { 8115 // Collect all steps of SCEV expressions. 8116 struct SCEVCollectStrides { 8117 ScalarEvolution &SE; 8118 SmallVectorImpl<const SCEV *> &Strides; 8119 8120 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8121 : SE(SE), Strides(S) {} 8122 8123 bool follow(const SCEV *S) { 8124 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8125 Strides.push_back(AR->getStepRecurrence(SE)); 8126 return true; 8127 } 8128 bool isDone() const { return false; } 8129 }; 8130 8131 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8132 struct SCEVCollectTerms { 8133 SmallVectorImpl<const SCEV *> &Terms; 8134 8135 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8136 : Terms(T) {} 8137 8138 bool follow(const SCEV *S) { 8139 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8140 if (!containsUndefs(S)) 8141 Terms.push_back(S); 8142 8143 // Stop recursion: once we collected a term, do not walk its operands. 8144 return false; 8145 } 8146 8147 // Keep looking. 8148 return true; 8149 } 8150 bool isDone() const { return false; } 8151 }; 8152 } 8153 8154 /// Find parametric terms in this SCEVAddRecExpr. 8155 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8156 SmallVectorImpl<const SCEV *> &Terms) { 8157 SmallVector<const SCEV *, 4> Strides; 8158 SCEVCollectStrides StrideCollector(*this, Strides); 8159 visitAll(Expr, StrideCollector); 8160 8161 DEBUG({ 8162 dbgs() << "Strides:\n"; 8163 for (const SCEV *S : Strides) 8164 dbgs() << *S << "\n"; 8165 }); 8166 8167 for (const SCEV *S : Strides) { 8168 SCEVCollectTerms TermCollector(Terms); 8169 visitAll(S, TermCollector); 8170 } 8171 8172 DEBUG({ 8173 dbgs() << "Terms:\n"; 8174 for (const SCEV *T : Terms) 8175 dbgs() << *T << "\n"; 8176 }); 8177 } 8178 8179 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8180 SmallVectorImpl<const SCEV *> &Terms, 8181 SmallVectorImpl<const SCEV *> &Sizes) { 8182 int Last = Terms.size() - 1; 8183 const SCEV *Step = Terms[Last]; 8184 8185 // End of recursion. 8186 if (Last == 0) { 8187 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8188 SmallVector<const SCEV *, 2> Qs; 8189 for (const SCEV *Op : M->operands()) 8190 if (!isa<SCEVConstant>(Op)) 8191 Qs.push_back(Op); 8192 8193 Step = SE.getMulExpr(Qs); 8194 } 8195 8196 Sizes.push_back(Step); 8197 return true; 8198 } 8199 8200 for (const SCEV *&Term : Terms) { 8201 // Normalize the terms before the next call to findArrayDimensionsRec. 8202 const SCEV *Q, *R; 8203 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8204 8205 // Bail out when GCD does not evenly divide one of the terms. 8206 if (!R->isZero()) 8207 return false; 8208 8209 Term = Q; 8210 } 8211 8212 // Remove all SCEVConstants. 8213 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8214 return isa<SCEVConstant>(E); 8215 }), 8216 Terms.end()); 8217 8218 if (Terms.size() > 0) 8219 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8220 return false; 8221 8222 Sizes.push_back(Step); 8223 return true; 8224 } 8225 8226 namespace { 8227 struct FindParameter { 8228 bool FoundParameter; 8229 FindParameter() : FoundParameter(false) {} 8230 8231 bool follow(const SCEV *S) { 8232 if (isa<SCEVUnknown>(S)) { 8233 FoundParameter = true; 8234 // Stop recursion: we found a parameter. 8235 return false; 8236 } 8237 // Keep looking. 8238 return true; 8239 } 8240 bool isDone() const { 8241 // Stop recursion if we have found a parameter. 8242 return FoundParameter; 8243 } 8244 }; 8245 } 8246 8247 // Returns true when S contains at least a SCEVUnknown parameter. 8248 static inline bool 8249 containsParameters(const SCEV *S) { 8250 FindParameter F; 8251 SCEVTraversal<FindParameter> ST(F); 8252 ST.visitAll(S); 8253 8254 return F.FoundParameter; 8255 } 8256 8257 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8258 static inline bool 8259 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8260 for (const SCEV *T : Terms) 8261 if (containsParameters(T)) 8262 return true; 8263 return false; 8264 } 8265 8266 // Return the number of product terms in S. 8267 static inline int numberOfTerms(const SCEV *S) { 8268 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8269 return Expr->getNumOperands(); 8270 return 1; 8271 } 8272 8273 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8274 if (isa<SCEVConstant>(T)) 8275 return nullptr; 8276 8277 if (isa<SCEVUnknown>(T)) 8278 return T; 8279 8280 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8281 SmallVector<const SCEV *, 2> Factors; 8282 for (const SCEV *Op : M->operands()) 8283 if (!isa<SCEVConstant>(Op)) 8284 Factors.push_back(Op); 8285 8286 return SE.getMulExpr(Factors); 8287 } 8288 8289 return T; 8290 } 8291 8292 /// Return the size of an element read or written by Inst. 8293 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8294 Type *Ty; 8295 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8296 Ty = Store->getValueOperand()->getType(); 8297 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8298 Ty = Load->getType(); 8299 else 8300 return nullptr; 8301 8302 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8303 return getSizeOfExpr(ETy, Ty); 8304 } 8305 8306 /// Second step of delinearization: compute the array dimensions Sizes from the 8307 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8308 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8309 SmallVectorImpl<const SCEV *> &Sizes, 8310 const SCEV *ElementSize) const { 8311 8312 if (Terms.size() < 1 || !ElementSize) 8313 return; 8314 8315 // Early return when Terms do not contain parameters: we do not delinearize 8316 // non parametric SCEVs. 8317 if (!containsParameters(Terms)) 8318 return; 8319 8320 DEBUG({ 8321 dbgs() << "Terms:\n"; 8322 for (const SCEV *T : Terms) 8323 dbgs() << *T << "\n"; 8324 }); 8325 8326 // Remove duplicates. 8327 std::sort(Terms.begin(), Terms.end()); 8328 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8329 8330 // Put larger terms first. 8331 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8332 return numberOfTerms(LHS) > numberOfTerms(RHS); 8333 }); 8334 8335 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8336 8337 // Divide all terms by the element size. 8338 for (const SCEV *&Term : Terms) { 8339 const SCEV *Q, *R; 8340 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8341 Term = Q; 8342 } 8343 8344 SmallVector<const SCEV *, 4> NewTerms; 8345 8346 // Remove constant factors. 8347 for (const SCEV *T : Terms) 8348 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8349 NewTerms.push_back(NewT); 8350 8351 DEBUG({ 8352 dbgs() << "Terms after sorting:\n"; 8353 for (const SCEV *T : NewTerms) 8354 dbgs() << *T << "\n"; 8355 }); 8356 8357 if (NewTerms.empty() || 8358 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8359 Sizes.clear(); 8360 return; 8361 } 8362 8363 // The last element to be pushed into Sizes is the size of an element. 8364 Sizes.push_back(ElementSize); 8365 8366 DEBUG({ 8367 dbgs() << "Sizes:\n"; 8368 for (const SCEV *S : Sizes) 8369 dbgs() << *S << "\n"; 8370 }); 8371 } 8372 8373 /// Third step of delinearization: compute the access functions for the 8374 /// Subscripts based on the dimensions in Sizes. 8375 void ScalarEvolution::computeAccessFunctions( 8376 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8377 SmallVectorImpl<const SCEV *> &Sizes) { 8378 8379 // Early exit in case this SCEV is not an affine multivariate function. 8380 if (Sizes.empty()) 8381 return; 8382 8383 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8384 if (!AR->isAffine()) 8385 return; 8386 8387 const SCEV *Res = Expr; 8388 int Last = Sizes.size() - 1; 8389 for (int i = Last; i >= 0; i--) { 8390 const SCEV *Q, *R; 8391 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8392 8393 DEBUG({ 8394 dbgs() << "Res: " << *Res << "\n"; 8395 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8396 dbgs() << "Res divided by Sizes[i]:\n"; 8397 dbgs() << "Quotient: " << *Q << "\n"; 8398 dbgs() << "Remainder: " << *R << "\n"; 8399 }); 8400 8401 Res = Q; 8402 8403 // Do not record the last subscript corresponding to the size of elements in 8404 // the array. 8405 if (i == Last) { 8406 8407 // Bail out if the remainder is too complex. 8408 if (isa<SCEVAddRecExpr>(R)) { 8409 Subscripts.clear(); 8410 Sizes.clear(); 8411 return; 8412 } 8413 8414 continue; 8415 } 8416 8417 // Record the access function for the current subscript. 8418 Subscripts.push_back(R); 8419 } 8420 8421 // Also push in last position the remainder of the last division: it will be 8422 // the access function of the innermost dimension. 8423 Subscripts.push_back(Res); 8424 8425 std::reverse(Subscripts.begin(), Subscripts.end()); 8426 8427 DEBUG({ 8428 dbgs() << "Subscripts:\n"; 8429 for (const SCEV *S : Subscripts) 8430 dbgs() << *S << "\n"; 8431 }); 8432 } 8433 8434 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8435 /// sizes of an array access. Returns the remainder of the delinearization that 8436 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8437 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8438 /// expressions in the stride and base of a SCEV corresponding to the 8439 /// computation of a GCD (greatest common divisor) of base and stride. When 8440 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8441 /// 8442 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8443 /// 8444 /// void foo(long n, long m, long o, double A[n][m][o]) { 8445 /// 8446 /// for (long i = 0; i < n; i++) 8447 /// for (long j = 0; j < m; j++) 8448 /// for (long k = 0; k < o; k++) 8449 /// A[i][j][k] = 1.0; 8450 /// } 8451 /// 8452 /// the delinearization input is the following AddRec SCEV: 8453 /// 8454 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8455 /// 8456 /// From this SCEV, we are able to say that the base offset of the access is %A 8457 /// because it appears as an offset that does not divide any of the strides in 8458 /// the loops: 8459 /// 8460 /// CHECK: Base offset: %A 8461 /// 8462 /// and then SCEV->delinearize determines the size of some of the dimensions of 8463 /// the array as these are the multiples by which the strides are happening: 8464 /// 8465 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8466 /// 8467 /// Note that the outermost dimension remains of UnknownSize because there are 8468 /// no strides that would help identifying the size of the last dimension: when 8469 /// the array has been statically allocated, one could compute the size of that 8470 /// dimension by dividing the overall size of the array by the size of the known 8471 /// dimensions: %m * %o * 8. 8472 /// 8473 /// Finally delinearize provides the access functions for the array reference 8474 /// that does correspond to A[i][j][k] of the above C testcase: 8475 /// 8476 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8477 /// 8478 /// The testcases are checking the output of a function pass: 8479 /// DelinearizationPass that walks through all loads and stores of a function 8480 /// asking for the SCEV of the memory access with respect to all enclosing 8481 /// loops, calling SCEV->delinearize on that and printing the results. 8482 8483 void ScalarEvolution::delinearize(const SCEV *Expr, 8484 SmallVectorImpl<const SCEV *> &Subscripts, 8485 SmallVectorImpl<const SCEV *> &Sizes, 8486 const SCEV *ElementSize) { 8487 // First step: collect parametric terms. 8488 SmallVector<const SCEV *, 4> Terms; 8489 collectParametricTerms(Expr, Terms); 8490 8491 if (Terms.empty()) 8492 return; 8493 8494 // Second step: find subscript sizes. 8495 findArrayDimensions(Terms, Sizes, ElementSize); 8496 8497 if (Sizes.empty()) 8498 return; 8499 8500 // Third step: compute the access functions for each subscript. 8501 computeAccessFunctions(Expr, Subscripts, Sizes); 8502 8503 if (Subscripts.empty()) 8504 return; 8505 8506 DEBUG({ 8507 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8508 dbgs() << "ArrayDecl[UnknownSize]"; 8509 for (const SCEV *S : Sizes) 8510 dbgs() << "[" << *S << "]"; 8511 8512 dbgs() << "\nArrayRef"; 8513 for (const SCEV *S : Subscripts) 8514 dbgs() << "[" << *S << "]"; 8515 dbgs() << "\n"; 8516 }); 8517 } 8518 8519 //===----------------------------------------------------------------------===// 8520 // SCEVCallbackVH Class Implementation 8521 //===----------------------------------------------------------------------===// 8522 8523 void ScalarEvolution::SCEVCallbackVH::deleted() { 8524 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8525 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8526 SE->ConstantEvolutionLoopExitValue.erase(PN); 8527 SE->ValueExprMap.erase(getValPtr()); 8528 // this now dangles! 8529 } 8530 8531 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8532 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8533 8534 // Forget all the expressions associated with users of the old value, 8535 // so that future queries will recompute the expressions using the new 8536 // value. 8537 Value *Old = getValPtr(); 8538 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8539 SmallPtrSet<User *, 8> Visited; 8540 while (!Worklist.empty()) { 8541 User *U = Worklist.pop_back_val(); 8542 // Deleting the Old value will cause this to dangle. Postpone 8543 // that until everything else is done. 8544 if (U == Old) 8545 continue; 8546 if (!Visited.insert(U).second) 8547 continue; 8548 if (PHINode *PN = dyn_cast<PHINode>(U)) 8549 SE->ConstantEvolutionLoopExitValue.erase(PN); 8550 SE->ValueExprMap.erase(U); 8551 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8552 } 8553 // Delete the Old value. 8554 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8555 SE->ConstantEvolutionLoopExitValue.erase(PN); 8556 SE->ValueExprMap.erase(Old); 8557 // this now dangles! 8558 } 8559 8560 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8561 : CallbackVH(V), SE(se) {} 8562 8563 //===----------------------------------------------------------------------===// 8564 // ScalarEvolution Class Implementation 8565 //===----------------------------------------------------------------------===// 8566 8567 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8568 AssumptionCache &AC, DominatorTree &DT, 8569 LoopInfo &LI) 8570 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8571 CouldNotCompute(new SCEVCouldNotCompute()), 8572 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8573 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 8574 FirstUnknown(nullptr) {} 8575 8576 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8577 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8578 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8579 ValueExprMap(std::move(Arg.ValueExprMap)), 8580 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8581 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8582 ConstantEvolutionLoopExitValue( 8583 std::move(Arg.ConstantEvolutionLoopExitValue)), 8584 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8585 LoopDispositions(std::move(Arg.LoopDispositions)), 8586 BlockDispositions(std::move(Arg.BlockDispositions)), 8587 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8588 SignedRanges(std::move(Arg.SignedRanges)), 8589 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8590 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8591 FirstUnknown(Arg.FirstUnknown) { 8592 Arg.FirstUnknown = nullptr; 8593 } 8594 8595 ScalarEvolution::~ScalarEvolution() { 8596 // Iterate through all the SCEVUnknown instances and call their 8597 // destructors, so that they release their references to their values. 8598 for (SCEVUnknown *U = FirstUnknown; U;) { 8599 SCEVUnknown *Tmp = U; 8600 U = U->Next; 8601 Tmp->~SCEVUnknown(); 8602 } 8603 FirstUnknown = nullptr; 8604 8605 ValueExprMap.clear(); 8606 8607 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8608 // that a loop had multiple computable exits. 8609 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8610 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 8611 I != E; ++I) { 8612 I->second.clear(); 8613 } 8614 8615 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8616 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8617 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 8618 } 8619 8620 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8621 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8622 } 8623 8624 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8625 const Loop *L) { 8626 // Print all inner loops first 8627 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8628 PrintLoopInfo(OS, SE, *I); 8629 8630 OS << "Loop "; 8631 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8632 OS << ": "; 8633 8634 SmallVector<BasicBlock *, 8> ExitBlocks; 8635 L->getExitBlocks(ExitBlocks); 8636 if (ExitBlocks.size() != 1) 8637 OS << "<multiple exits> "; 8638 8639 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8640 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8641 } else { 8642 OS << "Unpredictable backedge-taken count. "; 8643 } 8644 8645 OS << "\n" 8646 "Loop "; 8647 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8648 OS << ": "; 8649 8650 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8651 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8652 } else { 8653 OS << "Unpredictable max backedge-taken count. "; 8654 } 8655 8656 OS << "\n"; 8657 } 8658 8659 void ScalarEvolution::print(raw_ostream &OS) const { 8660 // ScalarEvolution's implementation of the print method is to print 8661 // out SCEV values of all instructions that are interesting. Doing 8662 // this potentially causes it to create new SCEV objects though, 8663 // which technically conflicts with the const qualifier. This isn't 8664 // observable from outside the class though, so casting away the 8665 // const isn't dangerous. 8666 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8667 8668 OS << "Classifying expressions for: "; 8669 F.printAsOperand(OS, /*PrintType=*/false); 8670 OS << "\n"; 8671 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8672 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8673 OS << *I << '\n'; 8674 OS << " --> "; 8675 const SCEV *SV = SE.getSCEV(&*I); 8676 SV->print(OS); 8677 if (!isa<SCEVCouldNotCompute>(SV)) { 8678 OS << " U: "; 8679 SE.getUnsignedRange(SV).print(OS); 8680 OS << " S: "; 8681 SE.getSignedRange(SV).print(OS); 8682 } 8683 8684 const Loop *L = LI.getLoopFor((*I).getParent()); 8685 8686 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8687 if (AtUse != SV) { 8688 OS << " --> "; 8689 AtUse->print(OS); 8690 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8691 OS << " U: "; 8692 SE.getUnsignedRange(AtUse).print(OS); 8693 OS << " S: "; 8694 SE.getSignedRange(AtUse).print(OS); 8695 } 8696 } 8697 8698 if (L) { 8699 OS << "\t\t" "Exits: "; 8700 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8701 if (!SE.isLoopInvariant(ExitValue, L)) { 8702 OS << "<<Unknown>>"; 8703 } else { 8704 OS << *ExitValue; 8705 } 8706 } 8707 8708 OS << "\n"; 8709 } 8710 8711 OS << "Determining loop execution counts for: "; 8712 F.printAsOperand(OS, /*PrintType=*/false); 8713 OS << "\n"; 8714 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 8715 PrintLoopInfo(OS, &SE, *I); 8716 } 8717 8718 ScalarEvolution::LoopDisposition 8719 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8720 auto &Values = LoopDispositions[S]; 8721 for (auto &V : Values) { 8722 if (V.getPointer() == L) 8723 return V.getInt(); 8724 } 8725 Values.emplace_back(L, LoopVariant); 8726 LoopDisposition D = computeLoopDisposition(S, L); 8727 auto &Values2 = LoopDispositions[S]; 8728 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8729 if (V.getPointer() == L) { 8730 V.setInt(D); 8731 break; 8732 } 8733 } 8734 return D; 8735 } 8736 8737 ScalarEvolution::LoopDisposition 8738 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8739 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8740 case scConstant: 8741 return LoopInvariant; 8742 case scTruncate: 8743 case scZeroExtend: 8744 case scSignExtend: 8745 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8746 case scAddRecExpr: { 8747 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8748 8749 // If L is the addrec's loop, it's computable. 8750 if (AR->getLoop() == L) 8751 return LoopComputable; 8752 8753 // Add recurrences are never invariant in the function-body (null loop). 8754 if (!L) 8755 return LoopVariant; 8756 8757 // This recurrence is variant w.r.t. L if L contains AR's loop. 8758 if (L->contains(AR->getLoop())) 8759 return LoopVariant; 8760 8761 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8762 if (AR->getLoop()->contains(L)) 8763 return LoopInvariant; 8764 8765 // This recurrence is variant w.r.t. L if any of its operands 8766 // are variant. 8767 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8768 I != E; ++I) 8769 if (!isLoopInvariant(*I, L)) 8770 return LoopVariant; 8771 8772 // Otherwise it's loop-invariant. 8773 return LoopInvariant; 8774 } 8775 case scAddExpr: 8776 case scMulExpr: 8777 case scUMaxExpr: 8778 case scSMaxExpr: { 8779 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8780 bool HasVarying = false; 8781 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8782 I != E; ++I) { 8783 LoopDisposition D = getLoopDisposition(*I, L); 8784 if (D == LoopVariant) 8785 return LoopVariant; 8786 if (D == LoopComputable) 8787 HasVarying = true; 8788 } 8789 return HasVarying ? LoopComputable : LoopInvariant; 8790 } 8791 case scUDivExpr: { 8792 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8793 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8794 if (LD == LoopVariant) 8795 return LoopVariant; 8796 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8797 if (RD == LoopVariant) 8798 return LoopVariant; 8799 return (LD == LoopInvariant && RD == LoopInvariant) ? 8800 LoopInvariant : LoopComputable; 8801 } 8802 case scUnknown: 8803 // All non-instruction values are loop invariant. All instructions are loop 8804 // invariant if they are not contained in the specified loop. 8805 // Instructions are never considered invariant in the function body 8806 // (null loop) because they are defined within the "loop". 8807 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8808 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8809 return LoopInvariant; 8810 case scCouldNotCompute: 8811 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8812 } 8813 llvm_unreachable("Unknown SCEV kind!"); 8814 } 8815 8816 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8817 return getLoopDisposition(S, L) == LoopInvariant; 8818 } 8819 8820 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8821 return getLoopDisposition(S, L) == LoopComputable; 8822 } 8823 8824 ScalarEvolution::BlockDisposition 8825 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8826 auto &Values = BlockDispositions[S]; 8827 for (auto &V : Values) { 8828 if (V.getPointer() == BB) 8829 return V.getInt(); 8830 } 8831 Values.emplace_back(BB, DoesNotDominateBlock); 8832 BlockDisposition D = computeBlockDisposition(S, BB); 8833 auto &Values2 = BlockDispositions[S]; 8834 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8835 if (V.getPointer() == BB) { 8836 V.setInt(D); 8837 break; 8838 } 8839 } 8840 return D; 8841 } 8842 8843 ScalarEvolution::BlockDisposition 8844 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8845 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8846 case scConstant: 8847 return ProperlyDominatesBlock; 8848 case scTruncate: 8849 case scZeroExtend: 8850 case scSignExtend: 8851 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8852 case scAddRecExpr: { 8853 // This uses a "dominates" query instead of "properly dominates" query 8854 // to test for proper dominance too, because the instruction which 8855 // produces the addrec's value is a PHI, and a PHI effectively properly 8856 // dominates its entire containing block. 8857 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8858 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 8859 return DoesNotDominateBlock; 8860 } 8861 // FALL THROUGH into SCEVNAryExpr handling. 8862 case scAddExpr: 8863 case scMulExpr: 8864 case scUMaxExpr: 8865 case scSMaxExpr: { 8866 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8867 bool Proper = true; 8868 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8869 I != E; ++I) { 8870 BlockDisposition D = getBlockDisposition(*I, BB); 8871 if (D == DoesNotDominateBlock) 8872 return DoesNotDominateBlock; 8873 if (D == DominatesBlock) 8874 Proper = false; 8875 } 8876 return Proper ? ProperlyDominatesBlock : DominatesBlock; 8877 } 8878 case scUDivExpr: { 8879 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8880 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 8881 BlockDisposition LD = getBlockDisposition(LHS, BB); 8882 if (LD == DoesNotDominateBlock) 8883 return DoesNotDominateBlock; 8884 BlockDisposition RD = getBlockDisposition(RHS, BB); 8885 if (RD == DoesNotDominateBlock) 8886 return DoesNotDominateBlock; 8887 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 8888 ProperlyDominatesBlock : DominatesBlock; 8889 } 8890 case scUnknown: 8891 if (Instruction *I = 8892 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 8893 if (I->getParent() == BB) 8894 return DominatesBlock; 8895 if (DT.properlyDominates(I->getParent(), BB)) 8896 return ProperlyDominatesBlock; 8897 return DoesNotDominateBlock; 8898 } 8899 return ProperlyDominatesBlock; 8900 case scCouldNotCompute: 8901 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8902 } 8903 llvm_unreachable("Unknown SCEV kind!"); 8904 } 8905 8906 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 8907 return getBlockDisposition(S, BB) >= DominatesBlock; 8908 } 8909 8910 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 8911 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 8912 } 8913 8914 namespace { 8915 // Search for a SCEV expression node within an expression tree. 8916 // Implements SCEVTraversal::Visitor. 8917 struct SCEVSearch { 8918 const SCEV *Node; 8919 bool IsFound; 8920 8921 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 8922 8923 bool follow(const SCEV *S) { 8924 IsFound |= (S == Node); 8925 return !IsFound; 8926 } 8927 bool isDone() const { return IsFound; } 8928 }; 8929 } 8930 8931 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 8932 SCEVSearch Search(Op); 8933 visitAll(S, Search); 8934 return Search.IsFound; 8935 } 8936 8937 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 8938 ValuesAtScopes.erase(S); 8939 LoopDispositions.erase(S); 8940 BlockDispositions.erase(S); 8941 UnsignedRanges.erase(S); 8942 SignedRanges.erase(S); 8943 8944 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8945 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8946 BackedgeTakenInfo &BEInfo = I->second; 8947 if (BEInfo.hasOperand(S, this)) { 8948 BEInfo.clear(); 8949 BackedgeTakenCounts.erase(I++); 8950 } 8951 else 8952 ++I; 8953 } 8954 } 8955 8956 typedef DenseMap<const Loop *, std::string> VerifyMap; 8957 8958 /// replaceSubString - Replaces all occurrences of From in Str with To. 8959 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8960 size_t Pos = 0; 8961 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8962 Str.replace(Pos, From.size(), To.data(), To.size()); 8963 Pos += To.size(); 8964 } 8965 } 8966 8967 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8968 static void 8969 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8970 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8971 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8972 8973 std::string &S = Map[L]; 8974 if (S.empty()) { 8975 raw_string_ostream OS(S); 8976 SE.getBackedgeTakenCount(L)->print(OS); 8977 8978 // false and 0 are semantically equivalent. This can happen in dead loops. 8979 replaceSubString(OS.str(), "false", "0"); 8980 // Remove wrap flags, their use in SCEV is highly fragile. 8981 // FIXME: Remove this when SCEV gets smarter about them. 8982 replaceSubString(OS.str(), "<nw>", ""); 8983 replaceSubString(OS.str(), "<nsw>", ""); 8984 replaceSubString(OS.str(), "<nuw>", ""); 8985 } 8986 } 8987 } 8988 8989 void ScalarEvolution::verify() const { 8990 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8991 8992 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8993 // FIXME: It would be much better to store actual values instead of strings, 8994 // but SCEV pointers will change if we drop the caches. 8995 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8996 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 8997 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8998 8999 // Gather stringified backedge taken counts for all loops using a fresh 9000 // ScalarEvolution object. 9001 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9002 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9003 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9004 9005 // Now compare whether they're the same with and without caches. This allows 9006 // verifying that no pass changed the cache. 9007 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9008 "New loops suddenly appeared!"); 9009 9010 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9011 OldE = BackedgeDumpsOld.end(), 9012 NewI = BackedgeDumpsNew.begin(); 9013 OldI != OldE; ++OldI, ++NewI) { 9014 assert(OldI->first == NewI->first && "Loop order changed!"); 9015 9016 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9017 // changes. 9018 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9019 // means that a pass is buggy or SCEV has to learn a new pattern but is 9020 // usually not harmful. 9021 if (OldI->second != NewI->second && 9022 OldI->second.find("undef") == std::string::npos && 9023 NewI->second.find("undef") == std::string::npos && 9024 OldI->second != "***COULDNOTCOMPUTE***" && 9025 NewI->second != "***COULDNOTCOMPUTE***") { 9026 dbgs() << "SCEVValidator: SCEV for loop '" 9027 << OldI->first->getHeader()->getName() 9028 << "' changed from '" << OldI->second 9029 << "' to '" << NewI->second << "'!\n"; 9030 std::abort(); 9031 } 9032 } 9033 9034 // TODO: Verify more things. 9035 } 9036 9037 char ScalarEvolutionAnalysis::PassID; 9038 9039 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9040 AnalysisManager<Function> *AM) { 9041 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9042 AM->getResult<AssumptionAnalysis>(F), 9043 AM->getResult<DominatorTreeAnalysis>(F), 9044 AM->getResult<LoopAnalysis>(F)); 9045 } 9046 9047 PreservedAnalyses 9048 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9049 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9050 return PreservedAnalyses::all(); 9051 } 9052 9053 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9054 "Scalar Evolution Analysis", false, true) 9055 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9056 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9057 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9058 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9059 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9060 "Scalar Evolution Analysis", false, true) 9061 char ScalarEvolutionWrapperPass::ID = 0; 9062 9063 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9064 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9065 } 9066 9067 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9068 SE.reset(new ScalarEvolution( 9069 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9070 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9071 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9072 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9073 return false; 9074 } 9075 9076 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9077 9078 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9079 SE->print(OS); 9080 } 9081 9082 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9083 if (!VerifySCEV) 9084 return; 9085 9086 SE->verify(); 9087 } 9088 9089 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9090 AU.setPreservesAll(); 9091 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9092 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9093 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9094 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9095 } 9096