1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Assembly/Writer.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Support/CFG.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/InstIterator.h" 77 #include "llvm/Support/ManagedStatic.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/Streams.h" 80 #include "llvm/ADT/Statistic.h" 81 #include <ostream> 82 #include <algorithm> 83 #include <cmath> 84 using namespace llvm; 85 86 STATISTIC(NumBruteForceEvaluations, 87 "Number of brute force evaluations needed to " 88 "calculate high-order polynomial exit values"); 89 STATISTIC(NumArrayLenItCounts, 90 "Number of trip counts computed with array length"); 91 STATISTIC(NumTripCountsComputed, 92 "Number of loops with predictable loop counts"); 93 STATISTIC(NumTripCountsNotComputed, 94 "Number of loops without predictable loop counts"); 95 STATISTIC(NumBruteForceTripCountsComputed, 96 "Number of loops with trip counts computed by force"); 97 98 cl::opt<unsigned> 99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 100 cl::desc("Maximum number of iterations SCEV will " 101 "symbolically execute a constant derived loop"), 102 cl::init(100)); 103 104 namespace { 105 RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis"); 107 } 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 SCEV::~SCEV() {} 118 void SCEV::dump() const { 119 print(cerr); 120 } 121 122 /// getValueRange - Return the tightest constant bounds that this value is 123 /// known to have. This method is only valid on integer SCEV objects. 124 ConstantRange SCEV::getValueRange() const { 125 const Type *Ty = getType(); 126 assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!"); 127 // Default to a full range if no better information is available. 128 return ConstantRange(getBitWidth()); 129 } 130 131 uint32_t SCEV::getBitWidth() const { 132 if (const IntegerType* ITy = dyn_cast<IntegerType>(getType())) 133 return ITy->getBitWidth(); 134 return 0; 135 } 136 137 138 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 139 140 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 142 return false; 143 } 144 145 const Type *SCEVCouldNotCompute::getType() const { 146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 147 return 0; 148 } 149 150 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 152 return false; 153 } 154 155 SCEVHandle SCEVCouldNotCompute:: 156 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 157 const SCEVHandle &Conc) const { 158 return this; 159 } 160 161 void SCEVCouldNotCompute::print(std::ostream &OS) const { 162 OS << "***COULDNOTCOMPUTE***"; 163 } 164 165 bool SCEVCouldNotCompute::classof(const SCEV *S) { 166 return S->getSCEVType() == scCouldNotCompute; 167 } 168 169 170 // SCEVConstants - Only allow the creation of one SCEVConstant for any 171 // particular value. Don't use a SCEVHandle here, or else the object will 172 // never be deleted! 173 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 174 175 176 SCEVConstant::~SCEVConstant() { 177 SCEVConstants->erase(V); 178 } 179 180 SCEVHandle SCEVConstant::get(ConstantInt *V) { 181 SCEVConstant *&R = (*SCEVConstants)[V]; 182 if (R == 0) R = new SCEVConstant(V); 183 return R; 184 } 185 186 ConstantRange SCEVConstant::getValueRange() const { 187 return ConstantRange(V->getValue()); 188 } 189 190 const Type *SCEVConstant::getType() const { return V->getType(); } 191 192 void SCEVConstant::print(std::ostream &OS) const { 193 WriteAsOperand(OS, V, false); 194 } 195 196 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 197 // particular input. Don't use a SCEVHandle here, or else the object will 198 // never be deleted! 199 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 200 SCEVTruncateExpr*> > SCEVTruncates; 201 202 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 203 : SCEV(scTruncate), Op(op), Ty(ty) { 204 assert(Op->getType()->isInteger() && Ty->isInteger() && 205 "Cannot truncate non-integer value!"); 206 assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits() 207 && "This is not a truncating conversion!"); 208 } 209 210 SCEVTruncateExpr::~SCEVTruncateExpr() { 211 SCEVTruncates->erase(std::make_pair(Op, Ty)); 212 } 213 214 ConstantRange SCEVTruncateExpr::getValueRange() const { 215 return getOperand()->getValueRange().truncate(getBitWidth()); 216 } 217 218 void SCEVTruncateExpr::print(std::ostream &OS) const { 219 OS << "(truncate " << *Op << " to " << *Ty << ")"; 220 } 221 222 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 223 // particular input. Don't use a SCEVHandle here, or else the object will never 224 // be deleted! 225 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 226 SCEVZeroExtendExpr*> > SCEVZeroExtends; 227 228 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 229 : SCEV(scZeroExtend), Op(op), Ty(ty) { 230 assert(Op->getType()->isInteger() && Ty->isInteger() && 231 "Cannot zero extend non-integer value!"); 232 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 233 && "This is not an extending conversion!"); 234 } 235 236 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 237 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 238 } 239 240 ConstantRange SCEVZeroExtendExpr::getValueRange() const { 241 return getOperand()->getValueRange().zeroExtend(getBitWidth()); 242 } 243 244 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 245 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 246 } 247 248 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 249 // particular input. Don't use a SCEVHandle here, or else the object will never 250 // be deleted! 251 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 252 SCEVSignExtendExpr*> > SCEVSignExtends; 253 254 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 255 : SCEV(scSignExtend), Op(op), Ty(ty) { 256 assert(Op->getType()->isInteger() && Ty->isInteger() && 257 "Cannot sign extend non-integer value!"); 258 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 259 && "This is not an extending conversion!"); 260 } 261 262 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 263 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 264 } 265 266 ConstantRange SCEVSignExtendExpr::getValueRange() const { 267 return getOperand()->getValueRange().signExtend(getBitWidth()); 268 } 269 270 void SCEVSignExtendExpr::print(std::ostream &OS) const { 271 OS << "(signextend " << *Op << " to " << *Ty << ")"; 272 } 273 274 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 275 // particular input. Don't use a SCEVHandle here, or else the object will never 276 // be deleted! 277 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 278 SCEVCommutativeExpr*> > SCEVCommExprs; 279 280 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 281 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 282 std::vector<SCEV*>(Operands.begin(), 283 Operands.end()))); 284 } 285 286 void SCEVCommutativeExpr::print(std::ostream &OS) const { 287 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 288 const char *OpStr = getOperationStr(); 289 OS << "(" << *Operands[0]; 290 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 291 OS << OpStr << *Operands[i]; 292 OS << ")"; 293 } 294 295 SCEVHandle SCEVCommutativeExpr:: 296 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 297 const SCEVHandle &Conc) const { 298 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 299 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc); 300 if (H != getOperand(i)) { 301 std::vector<SCEVHandle> NewOps; 302 NewOps.reserve(getNumOperands()); 303 for (unsigned j = 0; j != i; ++j) 304 NewOps.push_back(getOperand(j)); 305 NewOps.push_back(H); 306 for (++i; i != e; ++i) 307 NewOps.push_back(getOperand(i)-> 308 replaceSymbolicValuesWithConcrete(Sym, Conc)); 309 310 if (isa<SCEVAddExpr>(this)) 311 return SCEVAddExpr::get(NewOps); 312 else if (isa<SCEVMulExpr>(this)) 313 return SCEVMulExpr::get(NewOps); 314 else 315 assert(0 && "Unknown commutative expr!"); 316 } 317 } 318 return this; 319 } 320 321 322 // SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular 323 // input. Don't use a SCEVHandle here, or else the object will never be 324 // deleted! 325 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 326 SCEVSDivExpr*> > SCEVSDivs; 327 328 SCEVSDivExpr::~SCEVSDivExpr() { 329 SCEVSDivs->erase(std::make_pair(LHS, RHS)); 330 } 331 332 void SCEVSDivExpr::print(std::ostream &OS) const { 333 OS << "(" << *LHS << " /s " << *RHS << ")"; 334 } 335 336 const Type *SCEVSDivExpr::getType() const { 337 return LHS->getType(); 338 } 339 340 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 341 // particular input. Don't use a SCEVHandle here, or else the object will never 342 // be deleted! 343 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 344 SCEVAddRecExpr*> > SCEVAddRecExprs; 345 346 SCEVAddRecExpr::~SCEVAddRecExpr() { 347 SCEVAddRecExprs->erase(std::make_pair(L, 348 std::vector<SCEV*>(Operands.begin(), 349 Operands.end()))); 350 } 351 352 SCEVHandle SCEVAddRecExpr:: 353 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 354 const SCEVHandle &Conc) const { 355 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 356 SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc); 357 if (H != getOperand(i)) { 358 std::vector<SCEVHandle> NewOps; 359 NewOps.reserve(getNumOperands()); 360 for (unsigned j = 0; j != i; ++j) 361 NewOps.push_back(getOperand(j)); 362 NewOps.push_back(H); 363 for (++i; i != e; ++i) 364 NewOps.push_back(getOperand(i)-> 365 replaceSymbolicValuesWithConcrete(Sym, Conc)); 366 367 return get(NewOps, L); 368 } 369 } 370 return this; 371 } 372 373 374 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 375 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 376 // contain L and if the start is invariant. 377 return !QueryLoop->contains(L->getHeader()) && 378 getOperand(0)->isLoopInvariant(QueryLoop); 379 } 380 381 382 void SCEVAddRecExpr::print(std::ostream &OS) const { 383 OS << "{" << *Operands[0]; 384 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 385 OS << ",+," << *Operands[i]; 386 OS << "}<" << L->getHeader()->getName() + ">"; 387 } 388 389 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 390 // value. Don't use a SCEVHandle here, or else the object will never be 391 // deleted! 392 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 393 394 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 395 396 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 397 // All non-instruction values are loop invariant. All instructions are loop 398 // invariant if they are not contained in the specified loop. 399 if (Instruction *I = dyn_cast<Instruction>(V)) 400 return !L->contains(I->getParent()); 401 return true; 402 } 403 404 const Type *SCEVUnknown::getType() const { 405 return V->getType(); 406 } 407 408 void SCEVUnknown::print(std::ostream &OS) const { 409 WriteAsOperand(OS, V, false); 410 } 411 412 //===----------------------------------------------------------------------===// 413 // SCEV Utilities 414 //===----------------------------------------------------------------------===// 415 416 namespace { 417 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 418 /// than the complexity of the RHS. This comparator is used to canonicalize 419 /// expressions. 420 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 421 bool operator()(SCEV *LHS, SCEV *RHS) { 422 return LHS->getSCEVType() < RHS->getSCEVType(); 423 } 424 }; 425 } 426 427 /// GroupByComplexity - Given a list of SCEV objects, order them by their 428 /// complexity, and group objects of the same complexity together by value. 429 /// When this routine is finished, we know that any duplicates in the vector are 430 /// consecutive and that complexity is monotonically increasing. 431 /// 432 /// Note that we go take special precautions to ensure that we get determinstic 433 /// results from this routine. In other words, we don't want the results of 434 /// this to depend on where the addresses of various SCEV objects happened to 435 /// land in memory. 436 /// 437 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 438 if (Ops.size() < 2) return; // Noop 439 if (Ops.size() == 2) { 440 // This is the common case, which also happens to be trivially simple. 441 // Special case it. 442 if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType()) 443 std::swap(Ops[0], Ops[1]); 444 return; 445 } 446 447 // Do the rough sort by complexity. 448 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 449 450 // Now that we are sorted by complexity, group elements of the same 451 // complexity. Note that this is, at worst, N^2, but the vector is likely to 452 // be extremely short in practice. Note that we take this approach because we 453 // do not want to depend on the addresses of the objects we are grouping. 454 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 455 SCEV *S = Ops[i]; 456 unsigned Complexity = S->getSCEVType(); 457 458 // If there are any objects of the same complexity and same value as this 459 // one, group them. 460 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 461 if (Ops[j] == S) { // Found a duplicate. 462 // Move it to immediately after i'th element. 463 std::swap(Ops[i+1], Ops[j]); 464 ++i; // no need to rescan it. 465 if (i == e-2) return; // Done! 466 } 467 } 468 } 469 } 470 471 472 473 //===----------------------------------------------------------------------===// 474 // Simple SCEV method implementations 475 //===----------------------------------------------------------------------===// 476 477 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 478 /// specified signed integer value and return a SCEV for the constant. 479 SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) { 480 Constant *C; 481 if (Val == 0) 482 C = Constant::getNullValue(Ty); 483 else if (Ty->isFloatingPoint()) 484 C = ConstantFP::get(Ty, Val); 485 else 486 C = ConstantInt::get(Ty, Val); 487 return SCEVUnknown::get(C); 488 } 489 490 SCEVHandle SCEVUnknown::getIntegerSCEV(const APInt& Val) { 491 return SCEVUnknown::get(ConstantInt::get(Val)); 492 } 493 494 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 495 /// input value to the specified type. If the type must be extended, it is zero 496 /// extended. 497 static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) { 498 const Type *SrcTy = V->getType(); 499 assert(SrcTy->isInteger() && Ty->isInteger() && 500 "Cannot truncate or zero extend with non-integer arguments!"); 501 if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) 502 return V; // No conversion 503 if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()) 504 return SCEVTruncateExpr::get(V, Ty); 505 return SCEVZeroExtendExpr::get(V, Ty); 506 } 507 508 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 509 /// 510 SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) { 511 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 512 return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue())); 513 514 return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType())); 515 } 516 517 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 518 /// 519 SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) { 520 // X - Y --> X + -Y 521 return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS)); 522 } 523 524 525 /// PartialFact - Compute V!/(V-NumSteps)! 526 static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) { 527 // Handle this case efficiently, it is common to have constant iteration 528 // counts while computing loop exit values. 529 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { 530 const APInt& Val = SC->getValue()->getValue(); 531 APInt Result(Val.getBitWidth(), 1); 532 for (; NumSteps; --NumSteps) 533 Result *= Val-(NumSteps-1); 534 return SCEVUnknown::get(ConstantInt::get(Result)); 535 } 536 537 const Type *Ty = V->getType(); 538 if (NumSteps == 0) 539 return SCEVUnknown::getIntegerSCEV(1, Ty); 540 541 SCEVHandle Result = V; 542 for (unsigned i = 1; i != NumSteps; ++i) 543 Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V, 544 SCEVUnknown::getIntegerSCEV(i, Ty))); 545 return Result; 546 } 547 548 549 /// evaluateAtIteration - Return the value of this chain of recurrences at 550 /// the specified iteration number. We can evaluate this recurrence by 551 /// multiplying each element in the chain by the binomial coefficient 552 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 553 /// 554 /// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3) 555 /// 556 /// FIXME/VERIFY: I don't trust that this is correct in the face of overflow. 557 /// Is the binomial equation safe using modular arithmetic?? 558 /// 559 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const { 560 SCEVHandle Result = getStart(); 561 int Divisor = 1; 562 const Type *Ty = It->getType(); 563 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 564 SCEVHandle BC = PartialFact(It, i); 565 Divisor *= i; 566 SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)), 567 SCEVUnknown::getIntegerSCEV(Divisor,Ty)); 568 Result = SCEVAddExpr::get(Result, Val); 569 } 570 return Result; 571 } 572 573 574 //===----------------------------------------------------------------------===// 575 // SCEV Expression folder implementations 576 //===----------------------------------------------------------------------===// 577 578 SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) { 579 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 580 return SCEVUnknown::get( 581 ConstantExpr::getTrunc(SC->getValue(), Ty)); 582 583 // If the input value is a chrec scev made out of constants, truncate 584 // all of the constants. 585 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 586 std::vector<SCEVHandle> Operands; 587 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 588 // FIXME: This should allow truncation of other expression types! 589 if (isa<SCEVConstant>(AddRec->getOperand(i))) 590 Operands.push_back(get(AddRec->getOperand(i), Ty)); 591 else 592 break; 593 if (Operands.size() == AddRec->getNumOperands()) 594 return SCEVAddRecExpr::get(Operands, AddRec->getLoop()); 595 } 596 597 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 598 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 599 return Result; 600 } 601 602 SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) { 603 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 604 return SCEVUnknown::get( 605 ConstantExpr::getZExt(SC->getValue(), Ty)); 606 607 // FIXME: If the input value is a chrec scev, and we can prove that the value 608 // did not overflow the old, smaller, value, we can zero extend all of the 609 // operands (often constants). This would allow analysis of something like 610 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 611 612 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 613 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 614 return Result; 615 } 616 617 SCEVHandle SCEVSignExtendExpr::get(const SCEVHandle &Op, const Type *Ty) { 618 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 619 return SCEVUnknown::get( 620 ConstantExpr::getSExt(SC->getValue(), Ty)); 621 622 // FIXME: If the input value is a chrec scev, and we can prove that the value 623 // did not overflow the old, smaller, value, we can sign extend all of the 624 // operands (often constants). This would allow analysis of something like 625 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 626 627 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 628 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 629 return Result; 630 } 631 632 // get - Get a canonical add expression, or something simpler if possible. 633 SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) { 634 assert(!Ops.empty() && "Cannot get empty add!"); 635 if (Ops.size() == 1) return Ops[0]; 636 637 // Sort by complexity, this groups all similar expression types together. 638 GroupByComplexity(Ops); 639 640 // If there are any constants, fold them together. 641 unsigned Idx = 0; 642 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 643 ++Idx; 644 assert(Idx < Ops.size()); 645 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 646 // We found two constants, fold them together! 647 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 648 RHSC->getValue()->getValue()); 649 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 650 Ops[0] = SCEVConstant::get(CI); 651 Ops.erase(Ops.begin()+1); // Erase the folded element 652 if (Ops.size() == 1) return Ops[0]; 653 LHSC = cast<SCEVConstant>(Ops[0]); 654 } else { 655 // If we couldn't fold the expression, move to the next constant. Note 656 // that this is impossible to happen in practice because we always 657 // constant fold constant ints to constant ints. 658 ++Idx; 659 } 660 } 661 662 // If we are left with a constant zero being added, strip it off. 663 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 664 Ops.erase(Ops.begin()); 665 --Idx; 666 } 667 } 668 669 if (Ops.size() == 1) return Ops[0]; 670 671 // Okay, check to see if the same value occurs in the operand list twice. If 672 // so, merge them together into an multiply expression. Since we sorted the 673 // list, these values are required to be adjacent. 674 const Type *Ty = Ops[0]->getType(); 675 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 676 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 677 // Found a match, merge the two values into a multiply, and add any 678 // remaining values to the result. 679 SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty); 680 SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two); 681 if (Ops.size() == 2) 682 return Mul; 683 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 684 Ops.push_back(Mul); 685 return SCEVAddExpr::get(Ops); 686 } 687 688 // Okay, now we know the first non-constant operand. If there are add 689 // operands they would be next. 690 if (Idx < Ops.size()) { 691 bool DeletedAdd = false; 692 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 693 // If we have an add, expand the add operands onto the end of the operands 694 // list. 695 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 696 Ops.erase(Ops.begin()+Idx); 697 DeletedAdd = true; 698 } 699 700 // If we deleted at least one add, we added operands to the end of the list, 701 // and they are not necessarily sorted. Recurse to resort and resimplify 702 // any operands we just aquired. 703 if (DeletedAdd) 704 return get(Ops); 705 } 706 707 // Skip over the add expression until we get to a multiply. 708 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 709 ++Idx; 710 711 // If we are adding something to a multiply expression, make sure the 712 // something is not already an operand of the multiply. If so, merge it into 713 // the multiply. 714 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 715 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 716 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 717 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 718 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 719 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 720 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 721 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 722 if (Mul->getNumOperands() != 2) { 723 // If the multiply has more than two operands, we must get the 724 // Y*Z term. 725 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 726 MulOps.erase(MulOps.begin()+MulOp); 727 InnerMul = SCEVMulExpr::get(MulOps); 728 } 729 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty); 730 SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One); 731 SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]); 732 if (Ops.size() == 2) return OuterMul; 733 if (AddOp < Idx) { 734 Ops.erase(Ops.begin()+AddOp); 735 Ops.erase(Ops.begin()+Idx-1); 736 } else { 737 Ops.erase(Ops.begin()+Idx); 738 Ops.erase(Ops.begin()+AddOp-1); 739 } 740 Ops.push_back(OuterMul); 741 return SCEVAddExpr::get(Ops); 742 } 743 744 // Check this multiply against other multiplies being added together. 745 for (unsigned OtherMulIdx = Idx+1; 746 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 747 ++OtherMulIdx) { 748 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 749 // If MulOp occurs in OtherMul, we can fold the two multiplies 750 // together. 751 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 752 OMulOp != e; ++OMulOp) 753 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 754 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 755 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 756 if (Mul->getNumOperands() != 2) { 757 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 758 MulOps.erase(MulOps.begin()+MulOp); 759 InnerMul1 = SCEVMulExpr::get(MulOps); 760 } 761 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 762 if (OtherMul->getNumOperands() != 2) { 763 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 764 OtherMul->op_end()); 765 MulOps.erase(MulOps.begin()+OMulOp); 766 InnerMul2 = SCEVMulExpr::get(MulOps); 767 } 768 SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2); 769 SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum); 770 if (Ops.size() == 2) return OuterMul; 771 Ops.erase(Ops.begin()+Idx); 772 Ops.erase(Ops.begin()+OtherMulIdx-1); 773 Ops.push_back(OuterMul); 774 return SCEVAddExpr::get(Ops); 775 } 776 } 777 } 778 } 779 780 // If there are any add recurrences in the operands list, see if any other 781 // added values are loop invariant. If so, we can fold them into the 782 // recurrence. 783 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 784 ++Idx; 785 786 // Scan over all recurrences, trying to fold loop invariants into them. 787 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 788 // Scan all of the other operands to this add and add them to the vector if 789 // they are loop invariant w.r.t. the recurrence. 790 std::vector<SCEVHandle> LIOps; 791 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 792 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 793 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 794 LIOps.push_back(Ops[i]); 795 Ops.erase(Ops.begin()+i); 796 --i; --e; 797 } 798 799 // If we found some loop invariants, fold them into the recurrence. 800 if (!LIOps.empty()) { 801 // NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step } 802 LIOps.push_back(AddRec->getStart()); 803 804 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 805 AddRecOps[0] = SCEVAddExpr::get(LIOps); 806 807 SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop()); 808 // If all of the other operands were loop invariant, we are done. 809 if (Ops.size() == 1) return NewRec; 810 811 // Otherwise, add the folded AddRec by the non-liv parts. 812 for (unsigned i = 0;; ++i) 813 if (Ops[i] == AddRec) { 814 Ops[i] = NewRec; 815 break; 816 } 817 return SCEVAddExpr::get(Ops); 818 } 819 820 // Okay, if there weren't any loop invariants to be folded, check to see if 821 // there are multiple AddRec's with the same loop induction variable being 822 // added together. If so, we can fold them. 823 for (unsigned OtherIdx = Idx+1; 824 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 825 if (OtherIdx != Idx) { 826 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 827 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 828 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 829 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 830 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 831 if (i >= NewOps.size()) { 832 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 833 OtherAddRec->op_end()); 834 break; 835 } 836 NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i)); 837 } 838 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); 839 840 if (Ops.size() == 2) return NewAddRec; 841 842 Ops.erase(Ops.begin()+Idx); 843 Ops.erase(Ops.begin()+OtherIdx-1); 844 Ops.push_back(NewAddRec); 845 return SCEVAddExpr::get(Ops); 846 } 847 } 848 849 // Otherwise couldn't fold anything into this recurrence. Move onto the 850 // next one. 851 } 852 853 // Okay, it looks like we really DO need an add expr. Check to see if we 854 // already have one, otherwise create a new one. 855 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 856 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 857 SCEVOps)]; 858 if (Result == 0) Result = new SCEVAddExpr(Ops); 859 return Result; 860 } 861 862 863 SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) { 864 assert(!Ops.empty() && "Cannot get empty mul!"); 865 866 // Sort by complexity, this groups all similar expression types together. 867 GroupByComplexity(Ops); 868 869 // If there are any constants, fold them together. 870 unsigned Idx = 0; 871 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 872 873 // C1*(C2+V) -> C1*C2 + C1*V 874 if (Ops.size() == 2) 875 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 876 if (Add->getNumOperands() == 2 && 877 isa<SCEVConstant>(Add->getOperand(0))) 878 return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)), 879 SCEVMulExpr::get(LHSC, Add->getOperand(1))); 880 881 882 ++Idx; 883 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 884 // We found two constants, fold them together! 885 Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 886 RHSC->getValue()->getValue()); 887 if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) { 888 Ops[0] = SCEVConstant::get(CI); 889 Ops.erase(Ops.begin()+1); // Erase the folded element 890 if (Ops.size() == 1) return Ops[0]; 891 LHSC = cast<SCEVConstant>(Ops[0]); 892 } else { 893 // If we couldn't fold the expression, move to the next constant. Note 894 // that this is impossible to happen in practice because we always 895 // constant fold constant ints to constant ints. 896 ++Idx; 897 } 898 } 899 900 // If we are left with a constant one being multiplied, strip it off. 901 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 902 Ops.erase(Ops.begin()); 903 --Idx; 904 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 905 // If we have a multiply of zero, it will always be zero. 906 return Ops[0]; 907 } 908 } 909 910 // Skip over the add expression until we get to a multiply. 911 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 912 ++Idx; 913 914 if (Ops.size() == 1) 915 return Ops[0]; 916 917 // If there are mul operands inline them all into this expression. 918 if (Idx < Ops.size()) { 919 bool DeletedMul = false; 920 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 921 // If we have an mul, expand the mul operands onto the end of the operands 922 // list. 923 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 924 Ops.erase(Ops.begin()+Idx); 925 DeletedMul = true; 926 } 927 928 // If we deleted at least one mul, we added operands to the end of the list, 929 // and they are not necessarily sorted. Recurse to resort and resimplify 930 // any operands we just aquired. 931 if (DeletedMul) 932 return get(Ops); 933 } 934 935 // If there are any add recurrences in the operands list, see if any other 936 // added values are loop invariant. If so, we can fold them into the 937 // recurrence. 938 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 939 ++Idx; 940 941 // Scan over all recurrences, trying to fold loop invariants into them. 942 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 943 // Scan all of the other operands to this mul and add them to the vector if 944 // they are loop invariant w.r.t. the recurrence. 945 std::vector<SCEVHandle> LIOps; 946 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 947 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 948 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 949 LIOps.push_back(Ops[i]); 950 Ops.erase(Ops.begin()+i); 951 --i; --e; 952 } 953 954 // If we found some loop invariants, fold them into the recurrence. 955 if (!LIOps.empty()) { 956 // NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step } 957 std::vector<SCEVHandle> NewOps; 958 NewOps.reserve(AddRec->getNumOperands()); 959 if (LIOps.size() == 1) { 960 SCEV *Scale = LIOps[0]; 961 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 962 NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i))); 963 } else { 964 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 965 std::vector<SCEVHandle> MulOps(LIOps); 966 MulOps.push_back(AddRec->getOperand(i)); 967 NewOps.push_back(SCEVMulExpr::get(MulOps)); 968 } 969 } 970 971 SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop()); 972 973 // If all of the other operands were loop invariant, we are done. 974 if (Ops.size() == 1) return NewRec; 975 976 // Otherwise, multiply the folded AddRec by the non-liv parts. 977 for (unsigned i = 0;; ++i) 978 if (Ops[i] == AddRec) { 979 Ops[i] = NewRec; 980 break; 981 } 982 return SCEVMulExpr::get(Ops); 983 } 984 985 // Okay, if there weren't any loop invariants to be folded, check to see if 986 // there are multiple AddRec's with the same loop induction variable being 987 // multiplied together. If so, we can fold them. 988 for (unsigned OtherIdx = Idx+1; 989 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 990 if (OtherIdx != Idx) { 991 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 992 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 993 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 994 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 995 SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(), 996 G->getStart()); 997 SCEVHandle B = F->getStepRecurrence(); 998 SCEVHandle D = G->getStepRecurrence(); 999 SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D), 1000 SCEVMulExpr::get(G, B), 1001 SCEVMulExpr::get(B, D)); 1002 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep, 1003 F->getLoop()); 1004 if (Ops.size() == 2) return NewAddRec; 1005 1006 Ops.erase(Ops.begin()+Idx); 1007 Ops.erase(Ops.begin()+OtherIdx-1); 1008 Ops.push_back(NewAddRec); 1009 return SCEVMulExpr::get(Ops); 1010 } 1011 } 1012 1013 // Otherwise couldn't fold anything into this recurrence. Move onto the 1014 // next one. 1015 } 1016 1017 // Okay, it looks like we really DO need an mul expr. Check to see if we 1018 // already have one, otherwise create a new one. 1019 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1020 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1021 SCEVOps)]; 1022 if (Result == 0) 1023 Result = new SCEVMulExpr(Ops); 1024 return Result; 1025 } 1026 1027 SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1028 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1029 if (RHSC->getValue()->equalsInt(1)) 1030 return LHS; // X sdiv 1 --> x 1031 if (RHSC->getValue()->isAllOnesValue()) 1032 return SCEV::getNegativeSCEV(LHS); // X sdiv -1 --> -x 1033 1034 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1035 Constant *LHSCV = LHSC->getValue(); 1036 Constant *RHSCV = RHSC->getValue(); 1037 return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV)); 1038 } 1039 } 1040 1041 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1042 1043 SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)]; 1044 if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS); 1045 return Result; 1046 } 1047 1048 1049 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1050 /// specified loop. Simplify the expression as much as possible. 1051 SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start, 1052 const SCEVHandle &Step, const Loop *L) { 1053 std::vector<SCEVHandle> Operands; 1054 Operands.push_back(Start); 1055 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1056 if (StepChrec->getLoop() == L) { 1057 Operands.insert(Operands.end(), StepChrec->op_begin(), 1058 StepChrec->op_end()); 1059 return get(Operands, L); 1060 } 1061 1062 Operands.push_back(Step); 1063 return get(Operands, L); 1064 } 1065 1066 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1067 /// specified loop. Simplify the expression as much as possible. 1068 SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands, 1069 const Loop *L) { 1070 if (Operands.size() == 1) return Operands[0]; 1071 1072 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back())) 1073 if (StepC->getValue()->isZero()) { 1074 Operands.pop_back(); 1075 return get(Operands, L); // { X,+,0 } --> X 1076 } 1077 1078 SCEVAddRecExpr *&Result = 1079 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1080 Operands.end()))]; 1081 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1082 return Result; 1083 } 1084 1085 SCEVHandle SCEVUnknown::get(Value *V) { 1086 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1087 return SCEVConstant::get(CI); 1088 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1089 if (Result == 0) Result = new SCEVUnknown(V); 1090 return Result; 1091 } 1092 1093 1094 //===----------------------------------------------------------------------===// 1095 // ScalarEvolutionsImpl Definition and Implementation 1096 //===----------------------------------------------------------------------===// 1097 // 1098 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1099 /// evolution code. 1100 /// 1101 namespace { 1102 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1103 /// F - The function we are analyzing. 1104 /// 1105 Function &F; 1106 1107 /// LI - The loop information for the function we are currently analyzing. 1108 /// 1109 LoopInfo &LI; 1110 1111 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1112 /// things. 1113 SCEVHandle UnknownValue; 1114 1115 /// Scalars - This is a cache of the scalars we have analyzed so far. 1116 /// 1117 std::map<Value*, SCEVHandle> Scalars; 1118 1119 /// IterationCounts - Cache the iteration count of the loops for this 1120 /// function as they are computed. 1121 std::map<const Loop*, SCEVHandle> IterationCounts; 1122 1123 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1124 /// the PHI instructions that we attempt to compute constant evolutions for. 1125 /// This allows us to avoid potentially expensive recomputation of these 1126 /// properties. An instruction maps to null if we are unable to compute its 1127 /// exit value. 1128 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1129 1130 public: 1131 ScalarEvolutionsImpl(Function &f, LoopInfo &li) 1132 : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {} 1133 1134 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1135 /// expression and create a new one. 1136 SCEVHandle getSCEV(Value *V); 1137 1138 /// hasSCEV - Return true if the SCEV for this value has already been 1139 /// computed. 1140 bool hasSCEV(Value *V) const { 1141 return Scalars.count(V); 1142 } 1143 1144 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1145 /// the specified value. 1146 void setSCEV(Value *V, const SCEVHandle &H) { 1147 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1148 assert(isNew && "This entry already existed!"); 1149 } 1150 1151 1152 /// getSCEVAtScope - Compute the value of the specified expression within 1153 /// the indicated loop (which may be null to indicate in no loop). If the 1154 /// expression cannot be evaluated, return UnknownValue itself. 1155 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1156 1157 1158 /// hasLoopInvariantIterationCount - Return true if the specified loop has 1159 /// an analyzable loop-invariant iteration count. 1160 bool hasLoopInvariantIterationCount(const Loop *L); 1161 1162 /// getIterationCount - If the specified loop has a predictable iteration 1163 /// count, return it. Note that it is not valid to call this method on a 1164 /// loop without a loop-invariant iteration count. 1165 SCEVHandle getIterationCount(const Loop *L); 1166 1167 /// deleteInstructionFromRecords - This method should be called by the 1168 /// client before it removes an instruction from the program, to make sure 1169 /// that no dangling references are left around. 1170 void deleteInstructionFromRecords(Instruction *I); 1171 1172 private: 1173 /// createSCEV - We know that there is no SCEV for the specified value. 1174 /// Analyze the expression. 1175 SCEVHandle createSCEV(Value *V); 1176 1177 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1178 /// SCEVs. 1179 SCEVHandle createNodeForPHI(PHINode *PN); 1180 1181 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1182 /// for the specified instruction and replaces any references to the 1183 /// symbolic value SymName with the specified value. This is used during 1184 /// PHI resolution. 1185 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1186 const SCEVHandle &SymName, 1187 const SCEVHandle &NewVal); 1188 1189 /// ComputeIterationCount - Compute the number of times the specified loop 1190 /// will iterate. 1191 SCEVHandle ComputeIterationCount(const Loop *L); 1192 1193 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1194 /// 'setcc load X, cst', try to see if we can compute the trip count. 1195 SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI, 1196 Constant *RHS, 1197 const Loop *L, 1198 ICmpInst::Predicate p); 1199 1200 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1201 /// constant number of times (the condition evolves only from constants), 1202 /// try to evaluate a few iterations of the loop until we get the exit 1203 /// condition gets a value of ExitWhen (true or false). If we cannot 1204 /// evaluate the trip count of the loop, return UnknownValue. 1205 SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond, 1206 bool ExitWhen); 1207 1208 /// HowFarToZero - Return the number of times a backedge comparing the 1209 /// specified value to zero will execute. If not computable, return 1210 /// UnknownValue. 1211 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1212 1213 /// HowFarToNonZero - Return the number of times a backedge checking the 1214 /// specified value for nonzero will execute. If not computable, return 1215 /// UnknownValue. 1216 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1217 1218 /// HowManyLessThans - Return the number of times a backedge containing the 1219 /// specified less-than comparison will execute. If not computable, return 1220 /// UnknownValue. 1221 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L); 1222 1223 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1224 /// in the header of its containing loop, we know the loop executes a 1225 /// constant number of times, and the PHI node is just a recurrence 1226 /// involving constants, fold it. 1227 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, 1228 const Loop *L); 1229 }; 1230 } 1231 1232 //===----------------------------------------------------------------------===// 1233 // Basic SCEV Analysis and PHI Idiom Recognition Code 1234 // 1235 1236 /// deleteInstructionFromRecords - This method should be called by the 1237 /// client before it removes an instruction from the program, to make sure 1238 /// that no dangling references are left around. 1239 void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) { 1240 SmallVector<Instruction *, 16> Worklist; 1241 1242 if (Scalars.erase(I)) { 1243 if (PHINode *PN = dyn_cast<PHINode>(I)) 1244 ConstantEvolutionLoopExitValue.erase(PN); 1245 Worklist.push_back(I); 1246 } 1247 1248 while (!Worklist.empty()) { 1249 Instruction *II = Worklist.back(); 1250 Worklist.pop_back(); 1251 1252 for (Instruction::use_iterator UI = II->use_begin(), UE = II->use_end(); 1253 UI != UE; ++UI) { 1254 Instruction *Inst = cast<Instruction>(*UI); 1255 if (Scalars.erase(Inst)) { 1256 if (PHINode *PN = dyn_cast<PHINode>(II)) 1257 ConstantEvolutionLoopExitValue.erase(PN); 1258 Worklist.push_back(Inst); 1259 } 1260 } 1261 } 1262 } 1263 1264 1265 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1266 /// expression and create a new one. 1267 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1268 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1269 1270 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1271 if (I != Scalars.end()) return I->second; 1272 SCEVHandle S = createSCEV(V); 1273 Scalars.insert(std::make_pair(V, S)); 1274 return S; 1275 } 1276 1277 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1278 /// the specified instruction and replaces any references to the symbolic value 1279 /// SymName with the specified value. This is used during PHI resolution. 1280 void ScalarEvolutionsImpl:: 1281 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1282 const SCEVHandle &NewVal) { 1283 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1284 if (SI == Scalars.end()) return; 1285 1286 SCEVHandle NV = 1287 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal); 1288 if (NV == SI->second) return; // No change. 1289 1290 SI->second = NV; // Update the scalars map! 1291 1292 // Any instruction values that use this instruction might also need to be 1293 // updated! 1294 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1295 UI != E; ++UI) 1296 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1297 } 1298 1299 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1300 /// a loop header, making it a potential recurrence, or it doesn't. 1301 /// 1302 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1303 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1304 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1305 if (L->getHeader() == PN->getParent()) { 1306 // If it lives in the loop header, it has two incoming values, one 1307 // from outside the loop, and one from inside. 1308 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1309 unsigned BackEdge = IncomingEdge^1; 1310 1311 // While we are analyzing this PHI node, handle its value symbolically. 1312 SCEVHandle SymbolicName = SCEVUnknown::get(PN); 1313 assert(Scalars.find(PN) == Scalars.end() && 1314 "PHI node already processed?"); 1315 Scalars.insert(std::make_pair(PN, SymbolicName)); 1316 1317 // Using this symbolic name for the PHI, analyze the value coming around 1318 // the back-edge. 1319 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1320 1321 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1322 // has a special value for the first iteration of the loop. 1323 1324 // If the value coming around the backedge is an add with the symbolic 1325 // value we just inserted, then we found a simple induction variable! 1326 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1327 // If there is a single occurrence of the symbolic value, replace it 1328 // with a recurrence. 1329 unsigned FoundIndex = Add->getNumOperands(); 1330 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1331 if (Add->getOperand(i) == SymbolicName) 1332 if (FoundIndex == e) { 1333 FoundIndex = i; 1334 break; 1335 } 1336 1337 if (FoundIndex != Add->getNumOperands()) { 1338 // Create an add with everything but the specified operand. 1339 std::vector<SCEVHandle> Ops; 1340 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1341 if (i != FoundIndex) 1342 Ops.push_back(Add->getOperand(i)); 1343 SCEVHandle Accum = SCEVAddExpr::get(Ops); 1344 1345 // This is not a valid addrec if the step amount is varying each 1346 // loop iteration, but is not itself an addrec in this loop. 1347 if (Accum->isLoopInvariant(L) || 1348 (isa<SCEVAddRecExpr>(Accum) && 1349 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1350 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1351 SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L); 1352 1353 // Okay, for the entire analysis of this edge we assumed the PHI 1354 // to be symbolic. We now need to go back and update all of the 1355 // entries for the scalars that use the PHI (except for the PHI 1356 // itself) to use the new analyzed value instead of the "symbolic" 1357 // value. 1358 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1359 return PHISCEV; 1360 } 1361 } 1362 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1363 // Otherwise, this could be a loop like this: 1364 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1365 // In this case, j = {1,+,1} and BEValue is j. 1366 // Because the other in-value of i (0) fits the evolution of BEValue 1367 // i really is an addrec evolution. 1368 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1369 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1370 1371 // If StartVal = j.start - j.stride, we can use StartVal as the 1372 // initial step of the addrec evolution. 1373 if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0), 1374 AddRec->getOperand(1))) { 1375 SCEVHandle PHISCEV = 1376 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L); 1377 1378 // Okay, for the entire analysis of this edge we assumed the PHI 1379 // to be symbolic. We now need to go back and update all of the 1380 // entries for the scalars that use the PHI (except for the PHI 1381 // itself) to use the new analyzed value instead of the "symbolic" 1382 // value. 1383 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1384 return PHISCEV; 1385 } 1386 } 1387 } 1388 1389 return SymbolicName; 1390 } 1391 1392 // If it's not a loop phi, we can't handle it yet. 1393 return SCEVUnknown::get(PN); 1394 } 1395 1396 /// GetConstantFactor - Determine the largest constant factor that S has. For 1397 /// example, turn {4,+,8} -> 4. (S umod result) should always equal zero. 1398 static APInt GetConstantFactor(SCEVHandle S) { 1399 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 1400 const APInt& V = C->getValue()->getValue(); 1401 if (!V.isMinValue()) 1402 return V; 1403 else // Zero is a multiple of everything. 1404 return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1); 1405 } 1406 1407 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) { 1408 return GetConstantFactor(T->getOperand()).trunc( 1409 cast<IntegerType>(T->getType())->getBitWidth()); 1410 } 1411 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) 1412 return GetConstantFactor(E->getOperand()).zext( 1413 cast<IntegerType>(E->getType())->getBitWidth()); 1414 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) 1415 return GetConstantFactor(E->getOperand()).sext( 1416 cast<IntegerType>(E->getType())->getBitWidth()); 1417 1418 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1419 // The result is the min of all operands. 1420 APInt Res(GetConstantFactor(A->getOperand(0))); 1421 for (unsigned i = 1, e = A->getNumOperands(); 1422 i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) { 1423 APInt Tmp(GetConstantFactor(A->getOperand(i))); 1424 Res = APIntOps::umin(Res, Tmp); 1425 } 1426 return Res; 1427 } 1428 1429 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1430 // The result is the product of all the operands. 1431 APInt Res(GetConstantFactor(M->getOperand(0))); 1432 for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) { 1433 APInt Tmp(GetConstantFactor(M->getOperand(i))); 1434 Res *= Tmp; 1435 } 1436 return Res; 1437 } 1438 1439 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1440 // For now, we just handle linear expressions. 1441 if (A->getNumOperands() == 2) { 1442 // We want the GCD between the start and the stride value. 1443 APInt Start(GetConstantFactor(A->getOperand(0))); 1444 if (Start == 1) 1445 return Start; 1446 APInt Stride(GetConstantFactor(A->getOperand(1))); 1447 return APIntOps::GreatestCommonDivisor(Start, Stride); 1448 } 1449 } 1450 1451 // SCEVSDivExpr, SCEVUnknown. 1452 return APInt(S->getBitWidth(), 1); 1453 } 1454 1455 /// createSCEV - We know that there is no SCEV for the specified value. 1456 /// Analyze the expression. 1457 /// 1458 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1459 if (Instruction *I = dyn_cast<Instruction>(V)) { 1460 switch (I->getOpcode()) { 1461 case Instruction::Add: 1462 return SCEVAddExpr::get(getSCEV(I->getOperand(0)), 1463 getSCEV(I->getOperand(1))); 1464 case Instruction::Mul: 1465 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), 1466 getSCEV(I->getOperand(1))); 1467 case Instruction::SDiv: 1468 return SCEVSDivExpr::get(getSCEV(I->getOperand(0)), 1469 getSCEV(I->getOperand(1))); 1470 break; 1471 1472 case Instruction::Sub: 1473 return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)), 1474 getSCEV(I->getOperand(1))); 1475 case Instruction::Or: 1476 // If the RHS of the Or is a constant, we may have something like: 1477 // X*4+1 which got turned into X*4|1. Handle this as an add so loop 1478 // optimizations will transparently handle this case. 1479 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 1480 SCEVHandle LHS = getSCEV(I->getOperand(0)); 1481 APInt CommonFact(GetConstantFactor(LHS)); 1482 assert(!CommonFact.isMinValue() && 1483 "Common factor should at least be 1!"); 1484 if (CommonFact.ugt(CI->getValue())) { 1485 // If the LHS is a multiple that is larger than the RHS, use +. 1486 return SCEVAddExpr::get(LHS, 1487 getSCEV(I->getOperand(1))); 1488 } 1489 } 1490 break; 1491 case Instruction::Xor: 1492 // If the RHS of the xor is a signbit, then this is just an add. 1493 // Instcombine turns add of signbit into xor as a strength reduction step. 1494 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 1495 if (CI->getValue().isSignBit()) 1496 return SCEVAddExpr::get(getSCEV(I->getOperand(0)), 1497 getSCEV(I->getOperand(1))); 1498 } 1499 break; 1500 1501 case Instruction::Shl: 1502 // Turn shift left of a constant amount into a multiply. 1503 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1504 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1505 Constant *X = ConstantInt::get( 1506 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1507 return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X)); 1508 } 1509 break; 1510 1511 case Instruction::Trunc: 1512 return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType()); 1513 1514 case Instruction::ZExt: 1515 return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType()); 1516 1517 case Instruction::SExt: 1518 return SCEVSignExtendExpr::get(getSCEV(I->getOperand(0)), I->getType()); 1519 1520 case Instruction::BitCast: 1521 // BitCasts are no-op casts so we just eliminate the cast. 1522 if (I->getType()->isInteger() && 1523 I->getOperand(0)->getType()->isInteger()) 1524 return getSCEV(I->getOperand(0)); 1525 break; 1526 1527 case Instruction::PHI: 1528 return createNodeForPHI(cast<PHINode>(I)); 1529 1530 default: // We cannot analyze this expression. 1531 break; 1532 } 1533 } 1534 1535 return SCEVUnknown::get(V); 1536 } 1537 1538 1539 1540 //===----------------------------------------------------------------------===// 1541 // Iteration Count Computation Code 1542 // 1543 1544 /// getIterationCount - If the specified loop has a predictable iteration 1545 /// count, return it. Note that it is not valid to call this method on a 1546 /// loop without a loop-invariant iteration count. 1547 SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) { 1548 std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L); 1549 if (I == IterationCounts.end()) { 1550 SCEVHandle ItCount = ComputeIterationCount(L); 1551 I = IterationCounts.insert(std::make_pair(L, ItCount)).first; 1552 if (ItCount != UnknownValue) { 1553 assert(ItCount->isLoopInvariant(L) && 1554 "Computed trip count isn't loop invariant for loop!"); 1555 ++NumTripCountsComputed; 1556 } else if (isa<PHINode>(L->getHeader()->begin())) { 1557 // Only count loops that have phi nodes as not being computable. 1558 ++NumTripCountsNotComputed; 1559 } 1560 } 1561 return I->second; 1562 } 1563 1564 /// ComputeIterationCount - Compute the number of times the specified loop 1565 /// will iterate. 1566 SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) { 1567 // If the loop has a non-one exit block count, we can't analyze it. 1568 std::vector<BasicBlock*> ExitBlocks; 1569 L->getExitBlocks(ExitBlocks); 1570 if (ExitBlocks.size() != 1) return UnknownValue; 1571 1572 // Okay, there is one exit block. Try to find the condition that causes the 1573 // loop to be exited. 1574 BasicBlock *ExitBlock = ExitBlocks[0]; 1575 1576 BasicBlock *ExitingBlock = 0; 1577 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 1578 PI != E; ++PI) 1579 if (L->contains(*PI)) { 1580 if (ExitingBlock == 0) 1581 ExitingBlock = *PI; 1582 else 1583 return UnknownValue; // More than one block exiting! 1584 } 1585 assert(ExitingBlock && "No exits from loop, something is broken!"); 1586 1587 // Okay, we've computed the exiting block. See what condition causes us to 1588 // exit. 1589 // 1590 // FIXME: we should be able to handle switch instructions (with a single exit) 1591 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1592 if (ExitBr == 0) return UnknownValue; 1593 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 1594 1595 // At this point, we know we have a conditional branch that determines whether 1596 // the loop is exited. However, we don't know if the branch is executed each 1597 // time through the loop. If not, then the execution count of the branch will 1598 // not be equal to the trip count of the loop. 1599 // 1600 // Currently we check for this by checking to see if the Exit branch goes to 1601 // the loop header. If so, we know it will always execute the same number of 1602 // times as the loop. We also handle the case where the exit block *is* the 1603 // loop header. This is common for un-rotated loops. More extensive analysis 1604 // could be done to handle more cases here. 1605 if (ExitBr->getSuccessor(0) != L->getHeader() && 1606 ExitBr->getSuccessor(1) != L->getHeader() && 1607 ExitBr->getParent() != L->getHeader()) 1608 return UnknownValue; 1609 1610 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 1611 1612 // If its not an integer comparison then compute it the hard way. 1613 // Note that ICmpInst deals with pointer comparisons too so we must check 1614 // the type of the operand. 1615 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 1616 return ComputeIterationCountExhaustively(L, ExitBr->getCondition(), 1617 ExitBr->getSuccessor(0) == ExitBlock); 1618 1619 // If the condition was exit on true, convert the condition to exit on false 1620 ICmpInst::Predicate Cond; 1621 if (ExitBr->getSuccessor(1) == ExitBlock) 1622 Cond = ExitCond->getPredicate(); 1623 else 1624 Cond = ExitCond->getInversePredicate(); 1625 1626 // Handle common loops like: for (X = "string"; *X; ++X) 1627 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 1628 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 1629 SCEVHandle ItCnt = 1630 ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond); 1631 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 1632 } 1633 1634 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 1635 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 1636 1637 // Try to evaluate any dependencies out of the loop. 1638 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 1639 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 1640 Tmp = getSCEVAtScope(RHS, L); 1641 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 1642 1643 // At this point, we would like to compute how many iterations of the 1644 // loop the predicate will return true for these inputs. 1645 if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) { 1646 // If there is a constant, force it into the RHS. 1647 std::swap(LHS, RHS); 1648 Cond = ICmpInst::getSwappedPredicate(Cond); 1649 } 1650 1651 // FIXME: think about handling pointer comparisons! i.e.: 1652 // while (P != P+100) ++P; 1653 1654 // If we have a comparison of a chrec against a constant, try to use value 1655 // ranges to answer this query. 1656 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 1657 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 1658 if (AddRec->getLoop() == L) { 1659 // Form the comparison range using the constant of the correct type so 1660 // that the ConstantRange class knows to do a signed or unsigned 1661 // comparison. 1662 ConstantInt *CompVal = RHSC->getValue(); 1663 const Type *RealTy = ExitCond->getOperand(0)->getType(); 1664 CompVal = dyn_cast<ConstantInt>( 1665 ConstantExpr::getBitCast(CompVal, RealTy)); 1666 if (CompVal) { 1667 // Form the constant range. 1668 ConstantRange CompRange( 1669 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 1670 1671 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, 1672 false /*Always treat as unsigned range*/); 1673 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 1674 } 1675 } 1676 1677 switch (Cond) { 1678 case ICmpInst::ICMP_NE: { // while (X != Y) 1679 // Convert to: while (X-Y != 0) 1680 SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L); 1681 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1682 break; 1683 } 1684 case ICmpInst::ICMP_EQ: { 1685 // Convert to: while (X-Y == 0) // while (X == Y) 1686 SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L); 1687 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1688 break; 1689 } 1690 case ICmpInst::ICMP_SLT: { 1691 SCEVHandle TC = HowManyLessThans(LHS, RHS, L); 1692 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1693 break; 1694 } 1695 case ICmpInst::ICMP_SGT: { 1696 SCEVHandle TC = HowManyLessThans(RHS, LHS, L); 1697 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 1698 break; 1699 } 1700 default: 1701 #if 0 1702 cerr << "ComputeIterationCount "; 1703 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 1704 cerr << "[unsigned] "; 1705 cerr << *LHS << " " 1706 << Instruction::getOpcodeName(Instruction::ICmp) 1707 << " " << *RHS << "\n"; 1708 #endif 1709 break; 1710 } 1711 return ComputeIterationCountExhaustively(L, ExitCond, 1712 ExitBr->getSuccessor(0) == ExitBlock); 1713 } 1714 1715 static ConstantInt * 1716 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) { 1717 SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C)); 1718 SCEVHandle Val = AddRec->evaluateAtIteration(InVal); 1719 assert(isa<SCEVConstant>(Val) && 1720 "Evaluation of SCEV at constant didn't fold correctly?"); 1721 return cast<SCEVConstant>(Val)->getValue(); 1722 } 1723 1724 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 1725 /// and a GEP expression (missing the pointer index) indexing into it, return 1726 /// the addressed element of the initializer or null if the index expression is 1727 /// invalid. 1728 static Constant * 1729 GetAddressedElementFromGlobal(GlobalVariable *GV, 1730 const std::vector<ConstantInt*> &Indices) { 1731 Constant *Init = GV->getInitializer(); 1732 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1733 uint64_t Idx = Indices[i]->getZExtValue(); 1734 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 1735 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 1736 Init = cast<Constant>(CS->getOperand(Idx)); 1737 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 1738 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 1739 Init = cast<Constant>(CA->getOperand(Idx)); 1740 } else if (isa<ConstantAggregateZero>(Init)) { 1741 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 1742 assert(Idx < STy->getNumElements() && "Bad struct index!"); 1743 Init = Constant::getNullValue(STy->getElementType(Idx)); 1744 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 1745 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 1746 Init = Constant::getNullValue(ATy->getElementType()); 1747 } else { 1748 assert(0 && "Unknown constant aggregate type!"); 1749 } 1750 return 0; 1751 } else { 1752 return 0; // Unknown initializer type 1753 } 1754 } 1755 return Init; 1756 } 1757 1758 /// ComputeLoadConstantCompareIterationCount - Given an exit condition of 1759 /// 'setcc load X, cst', try to se if we can compute the trip count. 1760 SCEVHandle ScalarEvolutionsImpl:: 1761 ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS, 1762 const Loop *L, 1763 ICmpInst::Predicate predicate) { 1764 if (LI->isVolatile()) return UnknownValue; 1765 1766 // Check to see if the loaded pointer is a getelementptr of a global. 1767 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 1768 if (!GEP) return UnknownValue; 1769 1770 // Make sure that it is really a constant global we are gepping, with an 1771 // initializer, and make sure the first IDX is really 0. 1772 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1773 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1774 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 1775 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 1776 return UnknownValue; 1777 1778 // Okay, we allow one non-constant index into the GEP instruction. 1779 Value *VarIdx = 0; 1780 std::vector<ConstantInt*> Indexes; 1781 unsigned VarIdxNum = 0; 1782 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 1783 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 1784 Indexes.push_back(CI); 1785 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 1786 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 1787 VarIdx = GEP->getOperand(i); 1788 VarIdxNum = i-2; 1789 Indexes.push_back(0); 1790 } 1791 1792 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 1793 // Check to see if X is a loop variant variable value now. 1794 SCEVHandle Idx = getSCEV(VarIdx); 1795 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 1796 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 1797 1798 // We can only recognize very limited forms of loop index expressions, in 1799 // particular, only affine AddRec's like {C1,+,C2}. 1800 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 1801 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 1802 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 1803 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 1804 return UnknownValue; 1805 1806 unsigned MaxSteps = MaxBruteForceIterations; 1807 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 1808 ConstantInt *ItCst = 1809 ConstantInt::get(IdxExpr->getType(), IterationNum); 1810 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst); 1811 1812 // Form the GEP offset. 1813 Indexes[VarIdxNum] = Val; 1814 1815 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 1816 if (Result == 0) break; // Cannot compute! 1817 1818 // Evaluate the condition for this iteration. 1819 Result = ConstantExpr::getICmp(predicate, Result, RHS); 1820 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 1821 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 1822 #if 0 1823 cerr << "\n***\n*** Computed loop count " << *ItCst 1824 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 1825 << "***\n"; 1826 #endif 1827 ++NumArrayLenItCounts; 1828 return SCEVConstant::get(ItCst); // Found terminating iteration! 1829 } 1830 } 1831 return UnknownValue; 1832 } 1833 1834 1835 /// CanConstantFold - Return true if we can constant fold an instruction of the 1836 /// specified type, assuming that all operands were constants. 1837 static bool CanConstantFold(const Instruction *I) { 1838 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 1839 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 1840 return true; 1841 1842 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1843 if (const Function *F = CI->getCalledFunction()) 1844 return canConstantFoldCallTo((Function*)F); // FIXME: elim cast 1845 return false; 1846 } 1847 1848 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 1849 /// in the loop that V is derived from. We allow arbitrary operations along the 1850 /// way, but the operands of an operation must either be constants or a value 1851 /// derived from a constant PHI. If this expression does not fit with these 1852 /// constraints, return null. 1853 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 1854 // If this is not an instruction, or if this is an instruction outside of the 1855 // loop, it can't be derived from a loop PHI. 1856 Instruction *I = dyn_cast<Instruction>(V); 1857 if (I == 0 || !L->contains(I->getParent())) return 0; 1858 1859 if (PHINode *PN = dyn_cast<PHINode>(I)) 1860 if (L->getHeader() == I->getParent()) 1861 return PN; 1862 else 1863 // We don't currently keep track of the control flow needed to evaluate 1864 // PHIs, so we cannot handle PHIs inside of loops. 1865 return 0; 1866 1867 // If we won't be able to constant fold this expression even if the operands 1868 // are constants, return early. 1869 if (!CanConstantFold(I)) return 0; 1870 1871 // Otherwise, we can evaluate this instruction if all of its operands are 1872 // constant or derived from a PHI node themselves. 1873 PHINode *PHI = 0; 1874 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 1875 if (!(isa<Constant>(I->getOperand(Op)) || 1876 isa<GlobalValue>(I->getOperand(Op)))) { 1877 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 1878 if (P == 0) return 0; // Not evolving from PHI 1879 if (PHI == 0) 1880 PHI = P; 1881 else if (PHI != P) 1882 return 0; // Evolving from multiple different PHIs. 1883 } 1884 1885 // This is a expression evolving from a constant PHI! 1886 return PHI; 1887 } 1888 1889 /// EvaluateExpression - Given an expression that passes the 1890 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 1891 /// in the loop has the value PHIVal. If we can't fold this expression for some 1892 /// reason, return null. 1893 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 1894 if (isa<PHINode>(V)) return PHIVal; 1895 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) 1896 return GV; 1897 if (Constant *C = dyn_cast<Constant>(V)) return C; 1898 Instruction *I = cast<Instruction>(V); 1899 1900 std::vector<Constant*> Operands; 1901 Operands.resize(I->getNumOperands()); 1902 1903 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 1904 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 1905 if (Operands[i] == 0) return 0; 1906 } 1907 1908 return ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 1909 } 1910 1911 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1912 /// in the header of its containing loop, we know the loop executes a 1913 /// constant number of times, and the PHI node is just a recurrence 1914 /// involving constants, fold it. 1915 Constant *ScalarEvolutionsImpl:: 1916 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){ 1917 std::map<PHINode*, Constant*>::iterator I = 1918 ConstantEvolutionLoopExitValue.find(PN); 1919 if (I != ConstantEvolutionLoopExitValue.end()) 1920 return I->second; 1921 1922 if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations))) 1923 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 1924 1925 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 1926 1927 // Since the loop is canonicalized, the PHI node must have two entries. One 1928 // entry must be a constant (coming in from outside of the loop), and the 1929 // second must be derived from the same PHI. 1930 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 1931 Constant *StartCST = 1932 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 1933 if (StartCST == 0) 1934 return RetVal = 0; // Must be a constant. 1935 1936 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 1937 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 1938 if (PN2 != PN) 1939 return RetVal = 0; // Not derived from same PHI. 1940 1941 // Execute the loop symbolically to determine the exit value. 1942 if (Its.getActiveBits() >= 32) 1943 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 1944 1945 unsigned NumIterations = Its.getZExtValue(); // must be in range 1946 unsigned IterationNum = 0; 1947 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 1948 if (IterationNum == NumIterations) 1949 return RetVal = PHIVal; // Got exit value! 1950 1951 // Compute the value of the PHI node for the next iteration. 1952 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 1953 if (NextPHI == PHIVal) 1954 return RetVal = NextPHI; // Stopped evolving! 1955 if (NextPHI == 0) 1956 return 0; // Couldn't evaluate! 1957 PHIVal = NextPHI; 1958 } 1959 } 1960 1961 /// ComputeIterationCountExhaustively - If the trip is known to execute a 1962 /// constant number of times (the condition evolves only from constants), 1963 /// try to evaluate a few iterations of the loop until we get the exit 1964 /// condition gets a value of ExitWhen (true or false). If we cannot 1965 /// evaluate the trip count of the loop, return UnknownValue. 1966 SCEVHandle ScalarEvolutionsImpl:: 1967 ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 1968 PHINode *PN = getConstantEvolvingPHI(Cond, L); 1969 if (PN == 0) return UnknownValue; 1970 1971 // Since the loop is canonicalized, the PHI node must have two entries. One 1972 // entry must be a constant (coming in from outside of the loop), and the 1973 // second must be derived from the same PHI. 1974 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 1975 Constant *StartCST = 1976 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 1977 if (StartCST == 0) return UnknownValue; // Must be a constant. 1978 1979 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 1980 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 1981 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 1982 1983 // Okay, we find a PHI node that defines the trip count of this loop. Execute 1984 // the loop symbolically to determine when the condition gets a value of 1985 // "ExitWhen". 1986 unsigned IterationNum = 0; 1987 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 1988 for (Constant *PHIVal = StartCST; 1989 IterationNum != MaxIterations; ++IterationNum) { 1990 ConstantInt *CondVal = 1991 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 1992 1993 // Couldn't symbolically evaluate. 1994 if (!CondVal) return UnknownValue; 1995 1996 if (CondVal->getValue() == uint64_t(ExitWhen)) { 1997 ConstantEvolutionLoopExitValue[PN] = PHIVal; 1998 ++NumBruteForceTripCountsComputed; 1999 return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum)); 2000 } 2001 2002 // Compute the value of the PHI node for the next iteration. 2003 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2004 if (NextPHI == 0 || NextPHI == PHIVal) 2005 return UnknownValue; // Couldn't evaluate or not making progress... 2006 PHIVal = NextPHI; 2007 } 2008 2009 // Too many iterations were needed to evaluate. 2010 return UnknownValue; 2011 } 2012 2013 /// getSCEVAtScope - Compute the value of the specified expression within the 2014 /// indicated loop (which may be null to indicate in no loop). If the 2015 /// expression cannot be evaluated, return UnknownValue. 2016 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 2017 // FIXME: this should be turned into a virtual method on SCEV! 2018 2019 if (isa<SCEVConstant>(V)) return V; 2020 2021 // If this instruction is evolves from a constant-evolving PHI, compute the 2022 // exit value from the loop without using SCEVs. 2023 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2024 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2025 const Loop *LI = this->LI[I->getParent()]; 2026 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2027 if (PHINode *PN = dyn_cast<PHINode>(I)) 2028 if (PN->getParent() == LI->getHeader()) { 2029 // Okay, there is no closed form solution for the PHI node. Check 2030 // to see if the loop that contains it has a known iteration count. 2031 // If so, we may be able to force computation of the exit value. 2032 SCEVHandle IterationCount = getIterationCount(LI); 2033 if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) { 2034 // Okay, we know how many times the containing loop executes. If 2035 // this is a constant evolving PHI node, get the final value at 2036 // the specified iteration number. 2037 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2038 ICC->getValue()->getValue(), 2039 LI); 2040 if (RV) return SCEVUnknown::get(RV); 2041 } 2042 } 2043 2044 // Okay, this is an expression that we cannot symbolically evaluate 2045 // into a SCEV. Check to see if it's possible to symbolically evaluate 2046 // the arguments into constants, and if so, try to constant propagate the 2047 // result. This is particularly useful for computing loop exit values. 2048 if (CanConstantFold(I)) { 2049 std::vector<Constant*> Operands; 2050 Operands.reserve(I->getNumOperands()); 2051 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2052 Value *Op = I->getOperand(i); 2053 if (Constant *C = dyn_cast<Constant>(Op)) { 2054 Operands.push_back(C); 2055 } else { 2056 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2057 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2058 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2059 Op->getType(), 2060 false)); 2061 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2062 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2063 Operands.push_back(ConstantExpr::getIntegerCast(C, 2064 Op->getType(), 2065 false)); 2066 else 2067 return V; 2068 } else { 2069 return V; 2070 } 2071 } 2072 } 2073 Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size()); 2074 return SCEVUnknown::get(C); 2075 } 2076 } 2077 2078 // This is some other type of SCEVUnknown, just return it. 2079 return V; 2080 } 2081 2082 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2083 // Avoid performing the look-up in the common case where the specified 2084 // expression has no loop-variant portions. 2085 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2086 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2087 if (OpAtScope != Comm->getOperand(i)) { 2088 if (OpAtScope == UnknownValue) return UnknownValue; 2089 // Okay, at least one of these operands is loop variant but might be 2090 // foldable. Build a new instance of the folded commutative expression. 2091 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2092 NewOps.push_back(OpAtScope); 2093 2094 for (++i; i != e; ++i) { 2095 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2096 if (OpAtScope == UnknownValue) return UnknownValue; 2097 NewOps.push_back(OpAtScope); 2098 } 2099 if (isa<SCEVAddExpr>(Comm)) 2100 return SCEVAddExpr::get(NewOps); 2101 assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!"); 2102 return SCEVMulExpr::get(NewOps); 2103 } 2104 } 2105 // If we got here, all operands are loop invariant. 2106 return Comm; 2107 } 2108 2109 if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) { 2110 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2111 if (LHS == UnknownValue) return LHS; 2112 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2113 if (RHS == UnknownValue) return RHS; 2114 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2115 return Div; // must be loop invariant 2116 return SCEVSDivExpr::get(LHS, RHS); 2117 } 2118 2119 // If this is a loop recurrence for a loop that does not contain L, then we 2120 // are dealing with the final value computed by the loop. 2121 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2122 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2123 // To evaluate this recurrence, we need to know how many times the AddRec 2124 // loop iterates. Compute this now. 2125 SCEVHandle IterationCount = getIterationCount(AddRec->getLoop()); 2126 if (IterationCount == UnknownValue) return UnknownValue; 2127 IterationCount = getTruncateOrZeroExtend(IterationCount, 2128 AddRec->getType()); 2129 2130 // If the value is affine, simplify the expression evaluation to just 2131 // Start + Step*IterationCount. 2132 if (AddRec->isAffine()) 2133 return SCEVAddExpr::get(AddRec->getStart(), 2134 SCEVMulExpr::get(IterationCount, 2135 AddRec->getOperand(1))); 2136 2137 // Otherwise, evaluate it the hard way. 2138 return AddRec->evaluateAtIteration(IterationCount); 2139 } 2140 return UnknownValue; 2141 } 2142 2143 //assert(0 && "Unknown SCEV type!"); 2144 return UnknownValue; 2145 } 2146 2147 2148 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2149 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2150 /// might be the same) or two SCEVCouldNotCompute objects. 2151 /// 2152 static std::pair<SCEVHandle,SCEVHandle> 2153 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) { 2154 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2155 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2156 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2157 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2158 2159 // We currently can only solve this if the coefficients are constants. 2160 if (!LC || !MC || !NC) { 2161 SCEV *CNC = new SCEVCouldNotCompute(); 2162 return std::make_pair(CNC, CNC); 2163 } 2164 2165 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2166 const APInt &L = LC->getValue()->getValue(); 2167 const APInt &M = MC->getValue()->getValue(); 2168 const APInt &N = NC->getValue()->getValue(); 2169 APInt Two(BitWidth, 2); 2170 APInt Four(BitWidth, 4); 2171 2172 { 2173 using namespace APIntOps; 2174 const APInt& C = L; 2175 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2176 // The B coefficient is M-N/2 2177 APInt B(M); 2178 B -= sdiv(N,Two); 2179 2180 // The A coefficient is N/2 2181 APInt A(N.sdiv(Two)); 2182 2183 // Compute the B^2-4ac term. 2184 APInt SqrtTerm(B); 2185 SqrtTerm *= B; 2186 SqrtTerm -= Four * (A * C); 2187 2188 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2189 // integer value or else APInt::sqrt() will assert. 2190 APInt SqrtVal(SqrtTerm.sqrt()); 2191 2192 // Compute the two solutions for the quadratic formula. 2193 // The divisions must be performed as signed divisions. 2194 APInt NegB(-B); 2195 APInt TwoA( A << 1 ); 2196 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2197 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2198 2199 return std::make_pair(SCEVUnknown::get(Solution1), 2200 SCEVUnknown::get(Solution2)); 2201 } // end APIntOps namespace 2202 } 2203 2204 /// HowFarToZero - Return the number of times a backedge comparing the specified 2205 /// value to zero will execute. If not computable, return UnknownValue 2206 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2207 // If the value is a constant 2208 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2209 // If the value is already zero, the branch will execute zero times. 2210 if (C->getValue()->isZero()) return C; 2211 return UnknownValue; // Otherwise it will loop infinitely. 2212 } 2213 2214 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2215 if (!AddRec || AddRec->getLoop() != L) 2216 return UnknownValue; 2217 2218 if (AddRec->isAffine()) { 2219 // If this is an affine expression the execution count of this branch is 2220 // equal to: 2221 // 2222 // (0 - Start/Step) iff Start % Step == 0 2223 // 2224 // Get the initial value for the loop. 2225 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2226 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2227 SCEVHandle Step = AddRec->getOperand(1); 2228 2229 Step = getSCEVAtScope(Step, L->getParentLoop()); 2230 2231 // Figure out if Start % Step == 0. 2232 // FIXME: We should add DivExpr and RemExpr operations to our AST. 2233 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2234 if (StepC->getValue()->equalsInt(1)) // N % 1 == 0 2235 return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start 2236 if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0 2237 return Start; // 0 - Start/-1 == Start 2238 2239 // Check to see if Start is divisible by SC with no remainder. 2240 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 2241 ConstantInt *StartCC = StartC->getValue(); 2242 Constant *StartNegC = ConstantExpr::getNeg(StartCC); 2243 Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue()); 2244 if (Rem->isNullValue()) { 2245 Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue()); 2246 return SCEVUnknown::get(Result); 2247 } 2248 } 2249 } 2250 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2251 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2252 // the quadratic equation to solve it. 2253 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec); 2254 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2255 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2256 if (R1) { 2257 #if 0 2258 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2259 << " sol#2: " << *R2 << "\n"; 2260 #endif 2261 // Pick the smallest positive root value. 2262 if (ConstantInt *CB = 2263 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2264 R1->getValue(), R2->getValue()))) { 2265 if (CB->getZExtValue() == false) 2266 std::swap(R1, R2); // R1 is the minimum root now. 2267 2268 // We can only use this value if the chrec ends up with an exact zero 2269 // value at this index. When solving for "X*X != 5", for example, we 2270 // should not accept a root of 2. 2271 SCEVHandle Val = AddRec->evaluateAtIteration(R1); 2272 if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val)) 2273 if (EvalVal->getValue()->isZero()) 2274 return R1; // We found a quadratic root! 2275 } 2276 } 2277 } 2278 2279 return UnknownValue; 2280 } 2281 2282 /// HowFarToNonZero - Return the number of times a backedge checking the 2283 /// specified value for nonzero will execute. If not computable, return 2284 /// UnknownValue 2285 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2286 // Loops that look like: while (X == 0) are very strange indeed. We don't 2287 // handle them yet except for the trivial case. This could be expanded in the 2288 // future as needed. 2289 2290 // If the value is a constant, check to see if it is known to be non-zero 2291 // already. If so, the backedge will execute zero times. 2292 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2293 Constant *Zero = Constant::getNullValue(C->getValue()->getType()); 2294 Constant *NonZero = 2295 ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero); 2296 if (NonZero == ConstantInt::getTrue()) 2297 return getSCEV(Zero); 2298 return UnknownValue; // Otherwise it will loop infinitely. 2299 } 2300 2301 // We could implement others, but I really doubt anyone writes loops like 2302 // this, and if they did, they would already be constant folded. 2303 return UnknownValue; 2304 } 2305 2306 /// HowManyLessThans - Return the number of times a backedge containing the 2307 /// specified less-than comparison will execute. If not computable, return 2308 /// UnknownValue. 2309 SCEVHandle ScalarEvolutionsImpl:: 2310 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) { 2311 // Only handle: "ADDREC < LoopInvariant". 2312 if (!RHS->isLoopInvariant(L)) return UnknownValue; 2313 2314 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 2315 if (!AddRec || AddRec->getLoop() != L) 2316 return UnknownValue; 2317 2318 if (AddRec->isAffine()) { 2319 // FORNOW: We only support unit strides. 2320 SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType()); 2321 if (AddRec->getOperand(1) != One) 2322 return UnknownValue; 2323 2324 // The number of iterations for "[n,+,1] < m", is m-n. However, we don't 2325 // know that m is >= n on input to the loop. If it is, the condition return 2326 // true zero times. What we really should return, for full generality, is 2327 // SMAX(0, m-n). Since we cannot check this, we will instead check for a 2328 // canonical loop form: most do-loops will have a check that dominates the 2329 // loop, that only enters the loop if [n-1]<m. If we can find this check, 2330 // we know that the SMAX will evaluate to m-n, because we know that m >= n. 2331 2332 // Search for the check. 2333 BasicBlock *Preheader = L->getLoopPreheader(); 2334 BasicBlock *PreheaderDest = L->getHeader(); 2335 if (Preheader == 0) return UnknownValue; 2336 2337 BranchInst *LoopEntryPredicate = 2338 dyn_cast<BranchInst>(Preheader->getTerminator()); 2339 if (!LoopEntryPredicate) return UnknownValue; 2340 2341 // This might be a critical edge broken out. If the loop preheader ends in 2342 // an unconditional branch to the loop, check to see if the preheader has a 2343 // single predecessor, and if so, look for its terminator. 2344 while (LoopEntryPredicate->isUnconditional()) { 2345 PreheaderDest = Preheader; 2346 Preheader = Preheader->getSinglePredecessor(); 2347 if (!Preheader) return UnknownValue; // Multiple preds. 2348 2349 LoopEntryPredicate = 2350 dyn_cast<BranchInst>(Preheader->getTerminator()); 2351 if (!LoopEntryPredicate) return UnknownValue; 2352 } 2353 2354 // Now that we found a conditional branch that dominates the loop, check to 2355 // see if it is the comparison we are looking for. 2356 if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){ 2357 Value *PreCondLHS = ICI->getOperand(0); 2358 Value *PreCondRHS = ICI->getOperand(1); 2359 ICmpInst::Predicate Cond; 2360 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2361 Cond = ICI->getPredicate(); 2362 else 2363 Cond = ICI->getInversePredicate(); 2364 2365 switch (Cond) { 2366 case ICmpInst::ICMP_UGT: 2367 std::swap(PreCondLHS, PreCondRHS); 2368 Cond = ICmpInst::ICMP_ULT; 2369 break; 2370 case ICmpInst::ICMP_SGT: 2371 std::swap(PreCondLHS, PreCondRHS); 2372 Cond = ICmpInst::ICMP_SLT; 2373 break; 2374 default: break; 2375 } 2376 2377 if (Cond == ICmpInst::ICMP_SLT) { 2378 if (PreCondLHS->getType()->isInteger()) { 2379 if (RHS != getSCEV(PreCondRHS)) 2380 return UnknownValue; // Not a comparison against 'm'. 2381 2382 if (SCEV::getMinusSCEV(AddRec->getOperand(0), One) 2383 != getSCEV(PreCondLHS)) 2384 return UnknownValue; // Not a comparison against 'n-1'. 2385 } 2386 else return UnknownValue; 2387 } else if (Cond == ICmpInst::ICMP_ULT) 2388 return UnknownValue; 2389 2390 // cerr << "Computed Loop Trip Count as: " 2391 // << // *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n"; 2392 return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)); 2393 } 2394 else 2395 return UnknownValue; 2396 } 2397 2398 return UnknownValue; 2399 } 2400 2401 /// getNumIterationsInRange - Return the number of iterations of this loop that 2402 /// produce values in the specified constant range. Another way of looking at 2403 /// this is that it returns the first iteration number where the value is not in 2404 /// the condition, thus computing the exit count. If the iteration count can't 2405 /// be computed, an instance of SCEVCouldNotCompute is returned. 2406 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 2407 bool isSigned) const { 2408 if (Range.isFullSet()) // Infinite loop. 2409 return new SCEVCouldNotCompute(); 2410 2411 // If the start is a non-zero constant, shift the range to simplify things. 2412 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 2413 if (!SC->getValue()->isZero()) { 2414 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 2415 Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType()); 2416 SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop()); 2417 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 2418 return ShiftedAddRec->getNumIterationsInRange( 2419 Range.subtract(SC->getValue()->getValue()),isSigned); 2420 // This is strange and shouldn't happen. 2421 return new SCEVCouldNotCompute(); 2422 } 2423 2424 // The only time we can solve this is when we have all constant indices. 2425 // Otherwise, we cannot determine the overflow conditions. 2426 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2427 if (!isa<SCEVConstant>(getOperand(i))) 2428 return new SCEVCouldNotCompute(); 2429 2430 2431 // Okay at this point we know that all elements of the chrec are constants and 2432 // that the start element is zero. 2433 2434 // First check to see if the range contains zero. If not, the first 2435 // iteration exits. 2436 if (!Range.contains(APInt(getBitWidth(),0))) 2437 return SCEVConstant::get(ConstantInt::get(getType(),0)); 2438 2439 if (isAffine()) { 2440 // If this is an affine expression then we have this situation: 2441 // Solve {0,+,A} in Range === Ax in Range 2442 2443 // Since we know that zero is in the range, we know that the upper value of 2444 // the range must be the first possible exit value. Also note that we 2445 // already checked for a full range. 2446 const APInt &Upper = Range.getUpper(); 2447 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 2448 APInt One(getBitWidth(),1); 2449 2450 // The exit value should be (Upper+A-1)/A. 2451 APInt ExitVal(Upper); 2452 if (A != One) 2453 ExitVal = (Upper + A - One).sdiv(A); 2454 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 2455 2456 // Evaluate at the exit value. If we really did fall out of the valid 2457 // range, then we computed our trip count, otherwise wrap around or other 2458 // things must have happened. 2459 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue); 2460 if (Range.contains(Val->getValue())) 2461 return new SCEVCouldNotCompute(); // Something strange happened 2462 2463 // Ensure that the previous value is in the range. This is a sanity check. 2464 assert(Range.contains( 2465 EvaluateConstantChrecAtConstant(this, 2466 ConstantInt::get(ExitVal - One))->getValue()) && 2467 "Linear scev computation is off in a bad way!"); 2468 return SCEVConstant::get(cast<ConstantInt>(ExitValue)); 2469 } else if (isQuadratic()) { 2470 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 2471 // quadratic equation to solve it. To do this, we must frame our problem in 2472 // terms of figuring out when zero is crossed, instead of when 2473 // Range.getUpper() is crossed. 2474 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 2475 NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get( 2476 ConstantInt::get(Range.getUpper()))); 2477 SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop()); 2478 2479 // Next, solve the constructed addrec 2480 std::pair<SCEVHandle,SCEVHandle> Roots = 2481 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec)); 2482 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2483 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2484 if (R1) { 2485 // Pick the smallest positive root value. 2486 if (ConstantInt *CB = 2487 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2488 R1->getValue(), R2->getValue()))) { 2489 if (CB->getZExtValue() == false) 2490 std::swap(R1, R2); // R1 is the minimum root now. 2491 2492 // Make sure the root is not off by one. The returned iteration should 2493 // not be in the range, but the previous one should be. When solving 2494 // for "X*X < 5", for example, we should not return a root of 2. 2495 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 2496 R1->getValue()); 2497 if (Range.contains(R1Val->getValue())) { 2498 // The next iteration must be out of the range... 2499 Constant *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 2500 2501 R1Val = EvaluateConstantChrecAtConstant(this, NextVal); 2502 if (!Range.contains(R1Val->getValue())) 2503 return SCEVUnknown::get(NextVal); 2504 return new SCEVCouldNotCompute(); // Something strange happened 2505 } 2506 2507 // If R1 was not in the range, then it is a good return value. Make 2508 // sure that R1-1 WAS in the range though, just in case. 2509 Constant *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 2510 R1Val = EvaluateConstantChrecAtConstant(this, NextVal); 2511 if (Range.contains(R1Val->getValue())) 2512 return R1; 2513 return new SCEVCouldNotCompute(); // Something strange happened 2514 } 2515 } 2516 } 2517 2518 // Fallback, if this is a general polynomial, figure out the progression 2519 // through brute force: evaluate until we find an iteration that fails the 2520 // test. This is likely to be slow, but getting an accurate trip count is 2521 // incredibly important, we will be able to simplify the exit test a lot, and 2522 // we are almost guaranteed to get a trip count in this case. 2523 ConstantInt *TestVal = ConstantInt::get(getType(), 0); 2524 ConstantInt *EndVal = TestVal; // Stop when we wrap around. 2525 do { 2526 ++NumBruteForceEvaluations; 2527 SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal)); 2528 if (!isa<SCEVConstant>(Val)) // This shouldn't happen. 2529 return new SCEVCouldNotCompute(); 2530 2531 // Check to see if we found the value! 2532 if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue())) 2533 return SCEVConstant::get(TestVal); 2534 2535 // Increment to test the next index. 2536 TestVal = ConstantInt::get(TestVal->getValue()+1); 2537 } while (TestVal != EndVal); 2538 2539 return new SCEVCouldNotCompute(); 2540 } 2541 2542 2543 2544 //===----------------------------------------------------------------------===// 2545 // ScalarEvolution Class Implementation 2546 //===----------------------------------------------------------------------===// 2547 2548 bool ScalarEvolution::runOnFunction(Function &F) { 2549 Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>()); 2550 return false; 2551 } 2552 2553 void ScalarEvolution::releaseMemory() { 2554 delete (ScalarEvolutionsImpl*)Impl; 2555 Impl = 0; 2556 } 2557 2558 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 2559 AU.setPreservesAll(); 2560 AU.addRequiredTransitive<LoopInfo>(); 2561 } 2562 2563 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 2564 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 2565 } 2566 2567 /// hasSCEV - Return true if the SCEV for this value has already been 2568 /// computed. 2569 bool ScalarEvolution::hasSCEV(Value *V) const { 2570 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 2571 } 2572 2573 2574 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 2575 /// the specified value. 2576 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 2577 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 2578 } 2579 2580 2581 SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const { 2582 return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L); 2583 } 2584 2585 bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const { 2586 return !isa<SCEVCouldNotCompute>(getIterationCount(L)); 2587 } 2588 2589 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 2590 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 2591 } 2592 2593 void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const { 2594 return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I); 2595 } 2596 2597 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 2598 const Loop *L) { 2599 // Print all inner loops first 2600 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 2601 PrintLoopInfo(OS, SE, *I); 2602 2603 cerr << "Loop " << L->getHeader()->getName() << ": "; 2604 2605 std::vector<BasicBlock*> ExitBlocks; 2606 L->getExitBlocks(ExitBlocks); 2607 if (ExitBlocks.size() != 1) 2608 cerr << "<multiple exits> "; 2609 2610 if (SE->hasLoopInvariantIterationCount(L)) { 2611 cerr << *SE->getIterationCount(L) << " iterations! "; 2612 } else { 2613 cerr << "Unpredictable iteration count. "; 2614 } 2615 2616 cerr << "\n"; 2617 } 2618 2619 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 2620 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 2621 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 2622 2623 OS << "Classifying expressions for: " << F.getName() << "\n"; 2624 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 2625 if (I->getType()->isInteger()) { 2626 OS << *I; 2627 OS << " --> "; 2628 SCEVHandle SV = getSCEV(&*I); 2629 SV->print(OS); 2630 OS << "\t\t"; 2631 2632 if ((*I).getType()->isInteger()) { 2633 ConstantRange Bounds = SV->getValueRange(); 2634 if (!Bounds.isFullSet()) 2635 OS << "Bounds: " << Bounds << " "; 2636 } 2637 2638 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 2639 OS << "Exits: "; 2640 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 2641 if (isa<SCEVCouldNotCompute>(ExitValue)) { 2642 OS << "<<Unknown>>"; 2643 } else { 2644 OS << *ExitValue; 2645 } 2646 } 2647 2648 2649 OS << "\n"; 2650 } 2651 2652 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 2653 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 2654 PrintLoopInfo(OS, this, *I); 2655 } 2656 2657