xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision ca04a1f720b349291b53d71d7f20046df6b3d9e5)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "scalar-evolution"
97 
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106 
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113 
114 // FIXME: Enable this with XDEBUG when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119     VerifySCEVMap("verify-scev-maps",
120                   cl::desc("Verify no dangling value in ScalarEvolution's"
121                            "ExprValueMap (slow)"));
122 
123 //===----------------------------------------------------------------------===//
124 //                           SCEV class definitions
125 //===----------------------------------------------------------------------===//
126 
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130 
131 LLVM_DUMP_METHOD
132 void SCEV::dump() const {
133   print(dbgs());
134   dbgs() << '\n';
135 }
136 
137 void SCEV::print(raw_ostream &OS) const {
138   switch (static_cast<SCEVTypes>(getSCEVType())) {
139   case scConstant:
140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141     return;
142   case scTruncate: {
143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144     const SCEV *Op = Trunc->getOperand();
145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146        << *Trunc->getType() << ")";
147     return;
148   }
149   case scZeroExtend: {
150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151     const SCEV *Op = ZExt->getOperand();
152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
153        << *ZExt->getType() << ")";
154     return;
155   }
156   case scSignExtend: {
157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158     const SCEV *Op = SExt->getOperand();
159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
160        << *SExt->getType() << ")";
161     return;
162   }
163   case scAddRecExpr: {
164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165     OS << "{" << *AR->getOperand(0);
166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167       OS << ",+," << *AR->getOperand(i);
168     OS << "}<";
169     if (AR->hasNoUnsignedWrap())
170       OS << "nuw><";
171     if (AR->hasNoSignedWrap())
172       OS << "nsw><";
173     if (AR->hasNoSelfWrap() &&
174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175       OS << "nw><";
176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177     OS << ">";
178     return;
179   }
180   case scAddExpr:
181   case scMulExpr:
182   case scUMaxExpr:
183   case scSMaxExpr: {
184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185     const char *OpStr = nullptr;
186     switch (NAry->getSCEVType()) {
187     case scAddExpr: OpStr = " + "; break;
188     case scMulExpr: OpStr = " * "; break;
189     case scUMaxExpr: OpStr = " umax "; break;
190     case scSMaxExpr: OpStr = " smax "; break;
191     }
192     OS << "(";
193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194          I != E; ++I) {
195       OS << **I;
196       if (std::next(I) != E)
197         OS << OpStr;
198     }
199     OS << ")";
200     switch (NAry->getSCEVType()) {
201     case scAddExpr:
202     case scMulExpr:
203       if (NAry->hasNoUnsignedWrap())
204         OS << "<nuw>";
205       if (NAry->hasNoSignedWrap())
206         OS << "<nsw>";
207     }
208     return;
209   }
210   case scUDivExpr: {
211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213     return;
214   }
215   case scUnknown: {
216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
217     Type *AllocTy;
218     if (U->isSizeOf(AllocTy)) {
219       OS << "sizeof(" << *AllocTy << ")";
220       return;
221     }
222     if (U->isAlignOf(AllocTy)) {
223       OS << "alignof(" << *AllocTy << ")";
224       return;
225     }
226 
227     Type *CTy;
228     Constant *FieldNo;
229     if (U->isOffsetOf(CTy, FieldNo)) {
230       OS << "offsetof(" << *CTy << ", ";
231       FieldNo->printAsOperand(OS, false);
232       OS << ")";
233       return;
234     }
235 
236     // Otherwise just print it normally.
237     U->getValue()->printAsOperand(OS, false);
238     return;
239   }
240   case scCouldNotCompute:
241     OS << "***COULDNOTCOMPUTE***";
242     return;
243   }
244   llvm_unreachable("Unknown SCEV kind!");
245 }
246 
247 Type *SCEV::getType() const {
248   switch (static_cast<SCEVTypes>(getSCEVType())) {
249   case scConstant:
250     return cast<SCEVConstant>(this)->getType();
251   case scTruncate:
252   case scZeroExtend:
253   case scSignExtend:
254     return cast<SCEVCastExpr>(this)->getType();
255   case scAddRecExpr:
256   case scMulExpr:
257   case scUMaxExpr:
258   case scSMaxExpr:
259     return cast<SCEVNAryExpr>(this)->getType();
260   case scAddExpr:
261     return cast<SCEVAddExpr>(this)->getType();
262   case scUDivExpr:
263     return cast<SCEVUDivExpr>(this)->getType();
264   case scUnknown:
265     return cast<SCEVUnknown>(this)->getType();
266   case scCouldNotCompute:
267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268   }
269   llvm_unreachable("Unknown SCEV kind!");
270 }
271 
272 bool SCEV::isZero() const {
273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274     return SC->getValue()->isZero();
275   return false;
276 }
277 
278 bool SCEV::isOne() const {
279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280     return SC->getValue()->isOne();
281   return false;
282 }
283 
284 bool SCEV::isAllOnesValue() const {
285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286     return SC->getValue()->isAllOnesValue();
287   return false;
288 }
289 
290 /// isNonConstantNegative - Return true if the specified scev is negated, but
291 /// not a constant.
292 bool SCEV::isNonConstantNegative() const {
293   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294   if (!Mul) return false;
295 
296   // If there is a constant factor, it will be first.
297   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298   if (!SC) return false;
299 
300   // Return true if the value is negative, this matches things like (-42 * V).
301   return SC->getAPInt().isNegative();
302 }
303 
304 SCEVCouldNotCompute::SCEVCouldNotCompute() :
305   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
306 
307 bool SCEVCouldNotCompute::classof(const SCEV *S) {
308   return S->getSCEVType() == scCouldNotCompute;
309 }
310 
311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
312   FoldingSetNodeID ID;
313   ID.AddInteger(scConstant);
314   ID.AddPointer(V);
315   void *IP = nullptr;
316   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
317   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
318   UniqueSCEVs.InsertNode(S, IP);
319   return S;
320 }
321 
322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
323   return getConstant(ConstantInt::get(getContext(), Val));
324 }
325 
326 const SCEV *
327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
329   return getConstant(ConstantInt::get(ITy, V, isSigned));
330 }
331 
332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
333                            unsigned SCEVTy, const SCEV *op, Type *ty)
334   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
335 
336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
337                                    const SCEV *op, Type *ty)
338   : SCEVCastExpr(ID, scTruncate, op, ty) {
339   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
341          "Cannot truncate non-integer value!");
342 }
343 
344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
345                                        const SCEV *op, Type *ty)
346   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
347   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
349          "Cannot zero extend non-integer value!");
350 }
351 
352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
353                                        const SCEV *op, Type *ty)
354   : SCEVCastExpr(ID, scSignExtend, op, ty) {
355   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
357          "Cannot sign extend non-integer value!");
358 }
359 
360 void SCEVUnknown::deleted() {
361   // Clear this SCEVUnknown from various maps.
362   SE->forgetMemoizedResults(this);
363 
364   // Remove this SCEVUnknown from the uniquing map.
365   SE->UniqueSCEVs.RemoveNode(this);
366 
367   // Release the value.
368   setValPtr(nullptr);
369 }
370 
371 void SCEVUnknown::allUsesReplacedWith(Value *New) {
372   // Clear this SCEVUnknown from various maps.
373   SE->forgetMemoizedResults(this);
374 
375   // Remove this SCEVUnknown from the uniquing map.
376   SE->UniqueSCEVs.RemoveNode(this);
377 
378   // Update this SCEVUnknown to point to the new value. This is needed
379   // because there may still be outstanding SCEVs which still point to
380   // this SCEVUnknown.
381   setValPtr(New);
382 }
383 
384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
385   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
386     if (VCE->getOpcode() == Instruction::PtrToInt)
387       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
388         if (CE->getOpcode() == Instruction::GetElementPtr &&
389             CE->getOperand(0)->isNullValue() &&
390             CE->getNumOperands() == 2)
391           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392             if (CI->isOne()) {
393               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394                                  ->getElementType();
395               return true;
396             }
397 
398   return false;
399 }
400 
401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
402   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
403     if (VCE->getOpcode() == Instruction::PtrToInt)
404       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
405         if (CE->getOpcode() == Instruction::GetElementPtr &&
406             CE->getOperand(0)->isNullValue()) {
407           Type *Ty =
408             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409           if (StructType *STy = dyn_cast<StructType>(Ty))
410             if (!STy->isPacked() &&
411                 CE->getNumOperands() == 3 &&
412                 CE->getOperand(1)->isNullValue()) {
413               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414                 if (CI->isOne() &&
415                     STy->getNumElements() == 2 &&
416                     STy->getElementType(0)->isIntegerTy(1)) {
417                   AllocTy = STy->getElementType(1);
418                   return true;
419                 }
420             }
421         }
422 
423   return false;
424 }
425 
426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
427   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
428     if (VCE->getOpcode() == Instruction::PtrToInt)
429       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430         if (CE->getOpcode() == Instruction::GetElementPtr &&
431             CE->getNumOperands() == 3 &&
432             CE->getOperand(0)->isNullValue() &&
433             CE->getOperand(1)->isNullValue()) {
434           Type *Ty =
435             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436           // Ignore vector types here so that ScalarEvolutionExpander doesn't
437           // emit getelementptrs that index into vectors.
438           if (Ty->isStructTy() || Ty->isArrayTy()) {
439             CTy = Ty;
440             FieldNo = CE->getOperand(2);
441             return true;
442           }
443         }
444 
445   return false;
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //                               SCEV Utilities
450 //===----------------------------------------------------------------------===//
451 
452 namespace {
453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454 /// than the complexity of the RHS.  This comparator is used to canonicalize
455 /// expressions.
456 class SCEVComplexityCompare {
457   const LoopInfo *const LI;
458 public:
459   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
460 
461   // Return true or false if LHS is less than, or at least RHS, respectively.
462   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463     return compare(LHS, RHS) < 0;
464   }
465 
466   // Return negative, zero, or positive, if LHS is less than, equal to, or
467   // greater than RHS, respectively. A three-way result allows recursive
468   // comparisons to be more efficient.
469   int compare(const SCEV *LHS, const SCEV *RHS) const {
470     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471     if (LHS == RHS)
472       return 0;
473 
474     // Primarily, sort the SCEVs by their getSCEVType().
475     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476     if (LType != RType)
477       return (int)LType - (int)RType;
478 
479     // Aside from the getSCEVType() ordering, the particular ordering
480     // isn't very important except that it's beneficial to be consistent,
481     // so that (a + b) and (b + a) don't end up as different expressions.
482     switch (static_cast<SCEVTypes>(LType)) {
483     case scUnknown: {
484       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
486 
487       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488       // not as complete as it could be.
489       const Value *LV = LU->getValue(), *RV = RU->getValue();
490 
491       // Order pointer values after integer values. This helps SCEVExpander
492       // form GEPs.
493       bool LIsPointer = LV->getType()->isPointerTy(),
494         RIsPointer = RV->getType()->isPointerTy();
495       if (LIsPointer != RIsPointer)
496         return (int)LIsPointer - (int)RIsPointer;
497 
498       // Compare getValueID values.
499       unsigned LID = LV->getValueID(),
500         RID = RV->getValueID();
501       if (LID != RID)
502         return (int)LID - (int)RID;
503 
504       // Sort arguments by their position.
505       if (const Argument *LA = dyn_cast<Argument>(LV)) {
506         const Argument *RA = cast<Argument>(RV);
507         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508         return (int)LArgNo - (int)RArgNo;
509       }
510 
511       // For instructions, compare their loop depth, and their operand
512       // count.  This is pretty loose.
513       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514         const Instruction *RInst = cast<Instruction>(RV);
515 
516         // Compare loop depths.
517         const BasicBlock *LParent = LInst->getParent(),
518           *RParent = RInst->getParent();
519         if (LParent != RParent) {
520           unsigned LDepth = LI->getLoopDepth(LParent),
521             RDepth = LI->getLoopDepth(RParent);
522           if (LDepth != RDepth)
523             return (int)LDepth - (int)RDepth;
524         }
525 
526         // Compare the number of operands.
527         unsigned LNumOps = LInst->getNumOperands(),
528           RNumOps = RInst->getNumOperands();
529         return (int)LNumOps - (int)RNumOps;
530       }
531 
532       return 0;
533     }
534 
535     case scConstant: {
536       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538 
539       // Compare constant values.
540       const APInt &LA = LC->getAPInt();
541       const APInt &RA = RC->getAPInt();
542       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543       if (LBitWidth != RBitWidth)
544         return (int)LBitWidth - (int)RBitWidth;
545       return LA.ult(RA) ? -1 : 1;
546     }
547 
548     case scAddRecExpr: {
549       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551 
552       // Compare addrec loop depths.
553       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554       if (LLoop != RLoop) {
555         unsigned LDepth = LLoop->getLoopDepth(),
556           RDepth = RLoop->getLoopDepth();
557         if (LDepth != RDepth)
558           return (int)LDepth - (int)RDepth;
559       }
560 
561       // Addrec complexity grows with operand count.
562       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563       if (LNumOps != RNumOps)
564         return (int)LNumOps - (int)RNumOps;
565 
566       // Lexicographically compare.
567       for (unsigned i = 0; i != LNumOps; ++i) {
568         long X = compare(LA->getOperand(i), RA->getOperand(i));
569         if (X != 0)
570           return X;
571       }
572 
573       return 0;
574     }
575 
576     case scAddExpr:
577     case scMulExpr:
578     case scSMaxExpr:
579     case scUMaxExpr: {
580       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582 
583       // Lexicographically compare n-ary expressions.
584       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585       if (LNumOps != RNumOps)
586         return (int)LNumOps - (int)RNumOps;
587 
588       for (unsigned i = 0; i != LNumOps; ++i) {
589         if (i >= RNumOps)
590           return 1;
591         long X = compare(LC->getOperand(i), RC->getOperand(i));
592         if (X != 0)
593           return X;
594       }
595       return (int)LNumOps - (int)RNumOps;
596     }
597 
598     case scUDivExpr: {
599       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601 
602       // Lexicographically compare udiv expressions.
603       long X = compare(LC->getLHS(), RC->getLHS());
604       if (X != 0)
605         return X;
606       return compare(LC->getRHS(), RC->getRHS());
607     }
608 
609     case scTruncate:
610     case scZeroExtend:
611     case scSignExtend: {
612       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614 
615       // Compare cast expressions by operand.
616       return compare(LC->getOperand(), RC->getOperand());
617     }
618 
619     case scCouldNotCompute:
620       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
621     }
622     llvm_unreachable("Unknown SCEV kind!");
623   }
624 };
625 }  // end anonymous namespace
626 
627 /// GroupByComplexity - Given a list of SCEV objects, order them by their
628 /// complexity, and group objects of the same complexity together by value.
629 /// When this routine is finished, we know that any duplicates in the vector are
630 /// consecutive and that complexity is monotonically increasing.
631 ///
632 /// Note that we go take special precautions to ensure that we get deterministic
633 /// results from this routine.  In other words, we don't want the results of
634 /// this to depend on where the addresses of various SCEV objects happened to
635 /// land in memory.
636 ///
637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
638                               LoopInfo *LI) {
639   if (Ops.size() < 2) return;  // Noop
640   if (Ops.size() == 2) {
641     // This is the common case, which also happens to be trivially simple.
642     // Special case it.
643     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644     if (SCEVComplexityCompare(LI)(RHS, LHS))
645       std::swap(LHS, RHS);
646     return;
647   }
648 
649   // Do the rough sort by complexity.
650   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651 
652   // Now that we are sorted by complexity, group elements of the same
653   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
654   // be extremely short in practice.  Note that we take this approach because we
655   // do not want to depend on the addresses of the objects we are grouping.
656   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657     const SCEV *S = Ops[i];
658     unsigned Complexity = S->getSCEVType();
659 
660     // If there are any objects of the same complexity and same value as this
661     // one, group them.
662     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663       if (Ops[j] == S) { // Found a duplicate.
664         // Move it to immediately after i'th element.
665         std::swap(Ops[i+1], Ops[j]);
666         ++i;   // no need to rescan it.
667         if (i == e-2) return;  // Done!
668       }
669     }
670   }
671 }
672 
673 // Returns the size of the SCEV S.
674 static inline int sizeOfSCEV(const SCEV *S) {
675   struct FindSCEVSize {
676     int Size;
677     FindSCEVSize() : Size(0) {}
678 
679     bool follow(const SCEV *S) {
680       ++Size;
681       // Keep looking at all operands of S.
682       return true;
683     }
684     bool isDone() const {
685       return false;
686     }
687   };
688 
689   FindSCEVSize F;
690   SCEVTraversal<FindSCEVSize> ST(F);
691   ST.visitAll(S);
692   return F.Size;
693 }
694 
695 namespace {
696 
697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
698 public:
699   // Computes the Quotient and Remainder of the division of Numerator by
700   // Denominator.
701   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702                      const SCEV *Denominator, const SCEV **Quotient,
703                      const SCEV **Remainder) {
704     assert(Numerator && Denominator && "Uninitialized SCEV");
705 
706     SCEVDivision D(SE, Numerator, Denominator);
707 
708     // Check for the trivial case here to avoid having to check for it in the
709     // rest of the code.
710     if (Numerator == Denominator) {
711       *Quotient = D.One;
712       *Remainder = D.Zero;
713       return;
714     }
715 
716     if (Numerator->isZero()) {
717       *Quotient = D.Zero;
718       *Remainder = D.Zero;
719       return;
720     }
721 
722     // A simple case when N/1. The quotient is N.
723     if (Denominator->isOne()) {
724       *Quotient = Numerator;
725       *Remainder = D.Zero;
726       return;
727     }
728 
729     // Split the Denominator when it is a product.
730     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731       const SCEV *Q, *R;
732       *Quotient = Numerator;
733       for (const SCEV *Op : T->operands()) {
734         divide(SE, *Quotient, Op, &Q, &R);
735         *Quotient = Q;
736 
737         // Bail out when the Numerator is not divisible by one of the terms of
738         // the Denominator.
739         if (!R->isZero()) {
740           *Quotient = D.Zero;
741           *Remainder = Numerator;
742           return;
743         }
744       }
745       *Remainder = D.Zero;
746       return;
747     }
748 
749     D.visit(Numerator);
750     *Quotient = D.Quotient;
751     *Remainder = D.Remainder;
752   }
753 
754   // Except in the trivial case described above, we do not know how to divide
755   // Expr by Denominator for the following functions with empty implementation.
756   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762   void visitUnknown(const SCEVUnknown *Numerator) {}
763   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764 
765   void visitConstant(const SCEVConstant *Numerator) {
766     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767       APInt NumeratorVal = Numerator->getAPInt();
768       APInt DenominatorVal = D->getAPInt();
769       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771 
772       if (NumeratorBW > DenominatorBW)
773         DenominatorVal = DenominatorVal.sext(NumeratorBW);
774       else if (NumeratorBW < DenominatorBW)
775         NumeratorVal = NumeratorVal.sext(DenominatorBW);
776 
777       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780       Quotient = SE.getConstant(QuotientVal);
781       Remainder = SE.getConstant(RemainderVal);
782       return;
783     }
784   }
785 
786   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787     const SCEV *StartQ, *StartR, *StepQ, *StepR;
788     if (!Numerator->isAffine())
789       return cannotDivide(Numerator);
790     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
792     // Bail out if the types do not match.
793     Type *Ty = Denominator->getType();
794     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
795         Ty != StepQ->getType() || Ty != StepR->getType())
796       return cannotDivide(Numerator);
797     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798                                 Numerator->getNoWrapFlags());
799     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800                                  Numerator->getNoWrapFlags());
801   }
802 
803   void visitAddExpr(const SCEVAddExpr *Numerator) {
804     SmallVector<const SCEV *, 2> Qs, Rs;
805     Type *Ty = Denominator->getType();
806 
807     for (const SCEV *Op : Numerator->operands()) {
808       const SCEV *Q, *R;
809       divide(SE, Op, Denominator, &Q, &R);
810 
811       // Bail out if types do not match.
812       if (Ty != Q->getType() || Ty != R->getType())
813         return cannotDivide(Numerator);
814 
815       Qs.push_back(Q);
816       Rs.push_back(R);
817     }
818 
819     if (Qs.size() == 1) {
820       Quotient = Qs[0];
821       Remainder = Rs[0];
822       return;
823     }
824 
825     Quotient = SE.getAddExpr(Qs);
826     Remainder = SE.getAddExpr(Rs);
827   }
828 
829   void visitMulExpr(const SCEVMulExpr *Numerator) {
830     SmallVector<const SCEV *, 2> Qs;
831     Type *Ty = Denominator->getType();
832 
833     bool FoundDenominatorTerm = false;
834     for (const SCEV *Op : Numerator->operands()) {
835       // Bail out if types do not match.
836       if (Ty != Op->getType())
837         return cannotDivide(Numerator);
838 
839       if (FoundDenominatorTerm) {
840         Qs.push_back(Op);
841         continue;
842       }
843 
844       // Check whether Denominator divides one of the product operands.
845       const SCEV *Q, *R;
846       divide(SE, Op, Denominator, &Q, &R);
847       if (!R->isZero()) {
848         Qs.push_back(Op);
849         continue;
850       }
851 
852       // Bail out if types do not match.
853       if (Ty != Q->getType())
854         return cannotDivide(Numerator);
855 
856       FoundDenominatorTerm = true;
857       Qs.push_back(Q);
858     }
859 
860     if (FoundDenominatorTerm) {
861       Remainder = Zero;
862       if (Qs.size() == 1)
863         Quotient = Qs[0];
864       else
865         Quotient = SE.getMulExpr(Qs);
866       return;
867     }
868 
869     if (!isa<SCEVUnknown>(Denominator))
870       return cannotDivide(Numerator);
871 
872     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873     ValueToValueMap RewriteMap;
874     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875         cast<SCEVConstant>(Zero)->getValue();
876     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877 
878     if (Remainder->isZero()) {
879       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881           cast<SCEVConstant>(One)->getValue();
882       Quotient =
883           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884       return;
885     }
886 
887     // Quotient is (Numerator - Remainder) divided by Denominator.
888     const SCEV *Q, *R;
889     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
890     // This SCEV does not seem to simplify: fail the division here.
891     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892       return cannotDivide(Numerator);
893     divide(SE, Diff, Denominator, &Q, &R);
894     if (R != Zero)
895       return cannotDivide(Numerator);
896     Quotient = Q;
897   }
898 
899 private:
900   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901                const SCEV *Denominator)
902       : SE(S), Denominator(Denominator) {
903     Zero = SE.getZero(Denominator->getType());
904     One = SE.getOne(Denominator->getType());
905 
906     // We generally do not know how to divide Expr by Denominator. We
907     // initialize the division to a "cannot divide" state to simplify the rest
908     // of the code.
909     cannotDivide(Numerator);
910   }
911 
912   // Convenience function for giving up on the division. We set the quotient to
913   // be equal to zero and the remainder to be equal to the numerator.
914   void cannotDivide(const SCEV *Numerator) {
915     Quotient = Zero;
916     Remainder = Numerator;
917   }
918 
919   ScalarEvolution &SE;
920   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
921 };
922 
923 }
924 
925 //===----------------------------------------------------------------------===//
926 //                      Simple SCEV method implementations
927 //===----------------------------------------------------------------------===//
928 
929 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
930 /// Assume, K > 0.
931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
932                                        ScalarEvolution &SE,
933                                        Type *ResultTy) {
934   // Handle the simplest case efficiently.
935   if (K == 1)
936     return SE.getTruncateOrZeroExtend(It, ResultTy);
937 
938   // We are using the following formula for BC(It, K):
939   //
940   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941   //
942   // Suppose, W is the bitwidth of the return value.  We must be prepared for
943   // overflow.  Hence, we must assure that the result of our computation is
944   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
945   // safe in modular arithmetic.
946   //
947   // However, this code doesn't use exactly that formula; the formula it uses
948   // is something like the following, where T is the number of factors of 2 in
949   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950   // exponentiation:
951   //
952   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
953   //
954   // This formula is trivially equivalent to the previous formula.  However,
955   // this formula can be implemented much more efficiently.  The trick is that
956   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957   // arithmetic.  To do exact division in modular arithmetic, all we have
958   // to do is multiply by the inverse.  Therefore, this step can be done at
959   // width W.
960   //
961   // The next issue is how to safely do the division by 2^T.  The way this
962   // is done is by doing the multiplication step at a width of at least W + T
963   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
964   // when we perform the division by 2^T (which is equivalent to a right shift
965   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
966   // truncated out after the division by 2^T.
967   //
968   // In comparison to just directly using the first formula, this technique
969   // is much more efficient; using the first formula requires W * K bits,
970   // but this formula less than W + K bits. Also, the first formula requires
971   // a division step, whereas this formula only requires multiplies and shifts.
972   //
973   // It doesn't matter whether the subtraction step is done in the calculation
974   // width or the input iteration count's width; if the subtraction overflows,
975   // the result must be zero anyway.  We prefer here to do it in the width of
976   // the induction variable because it helps a lot for certain cases; CodeGen
977   // isn't smart enough to ignore the overflow, which leads to much less
978   // efficient code if the width of the subtraction is wider than the native
979   // register width.
980   //
981   // (It's possible to not widen at all by pulling out factors of 2 before
982   // the multiplication; for example, K=2 can be calculated as
983   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984   // extra arithmetic, so it's not an obvious win, and it gets
985   // much more complicated for K > 3.)
986 
987   // Protection from insane SCEVs; this bound is conservative,
988   // but it probably doesn't matter.
989   if (K > 1000)
990     return SE.getCouldNotCompute();
991 
992   unsigned W = SE.getTypeSizeInBits(ResultTy);
993 
994   // Calculate K! / 2^T and T; we divide out the factors of two before
995   // multiplying for calculating K! / 2^T to avoid overflow.
996   // Other overflow doesn't matter because we only care about the bottom
997   // W bits of the result.
998   APInt OddFactorial(W, 1);
999   unsigned T = 1;
1000   for (unsigned i = 3; i <= K; ++i) {
1001     APInt Mult(W, i);
1002     unsigned TwoFactors = Mult.countTrailingZeros();
1003     T += TwoFactors;
1004     Mult = Mult.lshr(TwoFactors);
1005     OddFactorial *= Mult;
1006   }
1007 
1008   // We need at least W + T bits for the multiplication step
1009   unsigned CalculationBits = W + T;
1010 
1011   // Calculate 2^T, at width T+W.
1012   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1013 
1014   // Calculate the multiplicative inverse of K! / 2^T;
1015   // this multiplication factor will perform the exact division by
1016   // K! / 2^T.
1017   APInt Mod = APInt::getSignedMinValue(W+1);
1018   APInt MultiplyFactor = OddFactorial.zext(W+1);
1019   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020   MultiplyFactor = MultiplyFactor.trunc(W);
1021 
1022   // Calculate the product, at width T+W
1023   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1024                                                       CalculationBits);
1025   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1026   for (unsigned i = 1; i != K; ++i) {
1027     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1028     Dividend = SE.getMulExpr(Dividend,
1029                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1030   }
1031 
1032   // Divide by 2^T
1033   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1034 
1035   // Truncate the result, and divide by K! / 2^T.
1036 
1037   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1039 }
1040 
1041 /// evaluateAtIteration - Return the value of this chain of recurrences at
1042 /// the specified iteration number.  We can evaluate this recurrence by
1043 /// multiplying each element in the chain by the binomial coefficient
1044 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045 ///
1046 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1047 ///
1048 /// where BC(It, k) stands for binomial coefficient.
1049 ///
1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1051                                                 ScalarEvolution &SE) const {
1052   const SCEV *Result = getStart();
1053   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1054     // The computation is correct in the face of overflow provided that the
1055     // multiplication is performed _after_ the evaluation of the binomial
1056     // coefficient.
1057     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1058     if (isa<SCEVCouldNotCompute>(Coeff))
1059       return Coeff;
1060 
1061     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1062   }
1063   return Result;
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                    SCEV Expression folder implementations
1068 //===----------------------------------------------------------------------===//
1069 
1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1071                                              Type *Ty) {
1072   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1073          "This is not a truncating conversion!");
1074   assert(isSCEVable(Ty) &&
1075          "This is not a conversion to a SCEVable type!");
1076   Ty = getEffectiveSCEVType(Ty);
1077 
1078   FoldingSetNodeID ID;
1079   ID.AddInteger(scTruncate);
1080   ID.AddPointer(Op);
1081   ID.AddPointer(Ty);
1082   void *IP = nullptr;
1083   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084 
1085   // Fold if the operand is constant.
1086   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1087     return getConstant(
1088       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1089 
1090   // trunc(trunc(x)) --> trunc(x)
1091   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1092     return getTruncateExpr(ST->getOperand(), Ty);
1093 
1094   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1095   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1096     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097 
1098   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1099   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1100     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101 
1102   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1103   // eliminate all the truncates, or we replace other casts with truncates.
1104   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105     SmallVector<const SCEV *, 4> Operands;
1106     bool hasTrunc = false;
1107     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1109       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110         hasTrunc = isa<SCEVTruncateExpr>(S);
1111       Operands.push_back(S);
1112     }
1113     if (!hasTrunc)
1114       return getAddExpr(Operands);
1115     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1116   }
1117 
1118   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1119   // eliminate all the truncates, or we replace other casts with truncates.
1120   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121     SmallVector<const SCEV *, 4> Operands;
1122     bool hasTrunc = false;
1123     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1125       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126         hasTrunc = isa<SCEVTruncateExpr>(S);
1127       Operands.push_back(S);
1128     }
1129     if (!hasTrunc)
1130       return getMulExpr(Operands);
1131     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1132   }
1133 
1134   // If the input value is a chrec scev, truncate the chrec's operands.
1135   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1136     SmallVector<const SCEV *, 4> Operands;
1137     for (const SCEV *Op : AddRec->operands())
1138       Operands.push_back(getTruncateExpr(Op, Ty));
1139     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1140   }
1141 
1142   // The cast wasn't folded; create an explicit cast node. We can reuse
1143   // the existing insert position since if we get here, we won't have
1144   // made any changes which would invalidate it.
1145   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146                                                  Op, Ty);
1147   UniqueSCEVs.InsertNode(S, IP);
1148   return S;
1149 }
1150 
1151 // Get the limit of a recurrence such that incrementing by Step cannot cause
1152 // signed overflow as long as the value of the recurrence within the
1153 // loop does not exceed this limit before incrementing.
1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155                                                  ICmpInst::Predicate *Pred,
1156                                                  ScalarEvolution *SE) {
1157   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158   if (SE->isKnownPositive(Step)) {
1159     *Pred = ICmpInst::ICMP_SLT;
1160     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161                            SE->getSignedRange(Step).getSignedMax());
1162   }
1163   if (SE->isKnownNegative(Step)) {
1164     *Pred = ICmpInst::ICMP_SGT;
1165     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166                            SE->getSignedRange(Step).getSignedMin());
1167   }
1168   return nullptr;
1169 }
1170 
1171 // Get the limit of a recurrence such that incrementing by Step cannot cause
1172 // unsigned overflow as long as the value of the recurrence within the loop does
1173 // not exceed this limit before incrementing.
1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175                                                    ICmpInst::Predicate *Pred,
1176                                                    ScalarEvolution *SE) {
1177   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178   *Pred = ICmpInst::ICMP_ULT;
1179 
1180   return SE->getConstant(APInt::getMinValue(BitWidth) -
1181                          SE->getUnsignedRange(Step).getUnsignedMax());
1182 }
1183 
1184 namespace {
1185 
1186 struct ExtendOpTraitsBase {
1187   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188 };
1189 
1190 // Used to make code generic over signed and unsigned overflow.
1191 template <typename ExtendOp> struct ExtendOpTraits {
1192   // Members present:
1193   //
1194   // static const SCEV::NoWrapFlags WrapType;
1195   //
1196   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197   //
1198   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199   //                                           ICmpInst::Predicate *Pred,
1200   //                                           ScalarEvolution *SE);
1201 };
1202 
1203 template <>
1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206 
1207   static const GetExtendExprTy GetExtendExpr;
1208 
1209   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210                                              ICmpInst::Predicate *Pred,
1211                                              ScalarEvolution *SE) {
1212     return getSignedOverflowLimitForStep(Step, Pred, SE);
1213   }
1214 };
1215 
1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1217     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218 
1219 template <>
1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222 
1223   static const GetExtendExprTy GetExtendExpr;
1224 
1225   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226                                              ICmpInst::Predicate *Pred,
1227                                              ScalarEvolution *SE) {
1228     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229   }
1230 };
1231 
1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1233     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234 }
1235 
1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241 // expression "Step + sext/zext(PreIncAR)" is congruent with
1242 // "sext/zext(PostIncAR)"
1243 template <typename ExtendOpTy>
1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245                                         ScalarEvolution *SE) {
1246   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248 
1249   const Loop *L = AR->getLoop();
1250   const SCEV *Start = AR->getStart();
1251   const SCEV *Step = AR->getStepRecurrence(*SE);
1252 
1253   // Check for a simple looking step prior to loop entry.
1254   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255   if (!SA)
1256     return nullptr;
1257 
1258   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259   // subtraction is expensive. For this purpose, perform a quick and dirty
1260   // difference, by checking for Step in the operand list.
1261   SmallVector<const SCEV *, 4> DiffOps;
1262   for (const SCEV *Op : SA->operands())
1263     if (Op != Step)
1264       DiffOps.push_back(Op);
1265 
1266   if (DiffOps.size() == SA->getNumOperands())
1267     return nullptr;
1268 
1269   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270   // `Step`:
1271 
1272   // 1. NSW/NUW flags on the step increment.
1273   auto PreStartFlags =
1274     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1276   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278 
1279   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280   // "S+X does not sign/unsign-overflow".
1281   //
1282 
1283   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1286     return PreStart;
1287 
1288   // 2. Direct overflow check on the step operation's expression.
1289   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291   const SCEV *OperandExtendedStart =
1292       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293                      (SE->*GetExtendExpr)(Step, WideTy));
1294   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1299       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300     }
1301     return PreStart;
1302   }
1303 
1304   // 3. Loop precondition.
1305   ICmpInst::Predicate Pred;
1306   const SCEV *OverflowLimit =
1307       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308 
1309   if (OverflowLimit &&
1310       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1311     return PreStart;
1312 
1313   return nullptr;
1314 }
1315 
1316 // Get the normalized zero or sign extended expression for this AddRec's Start.
1317 template <typename ExtendOpTy>
1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319                                         ScalarEvolution *SE) {
1320   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321 
1322   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323   if (!PreStart)
1324     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325 
1326   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327                         (SE->*GetExtendExpr)(PreStart, Ty));
1328 }
1329 
1330 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333 //
1334 // Formally:
1335 //
1336 //     {S,+,X} == {S-T,+,X} + T
1337 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338 //
1339 // If ({S-T,+,X} + T) does not overflow  ... (1)
1340 //
1341 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342 //
1343 // If {S-T,+,X} does not overflow  ... (2)
1344 //
1345 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1347 //
1348 // If (S-T)+T does not overflow  ... (3)
1349 //
1350 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351 //      == {Ext(S),+,Ext(X)} == LHS
1352 //
1353 // Thus, if (1), (2) and (3) are true for some T, then
1354 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355 //
1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1358 // to check for (1) and (2).
1359 //
1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361 // is `Delta` (defined below).
1362 //
1363 template <typename ExtendOpTy>
1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365                                                 const SCEV *Step,
1366                                                 const Loop *L) {
1367   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368 
1369   // We restrict `Start` to a constant to prevent SCEV from spending too much
1370   // time here.  It is correct (but more expensive) to continue with a
1371   // non-constant `Start` and do a general SCEV subtraction to compute
1372   // `PreStart` below.
1373   //
1374   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375   if (!StartC)
1376     return false;
1377 
1378   APInt StartAI = StartC->getAPInt();
1379 
1380   for (unsigned Delta : {-2, -1, 1, 2}) {
1381     const SCEV *PreStart = getConstant(StartAI - Delta);
1382 
1383     FoldingSetNodeID ID;
1384     ID.AddInteger(scAddRecExpr);
1385     ID.AddPointer(PreStart);
1386     ID.AddPointer(Step);
1387     ID.AddPointer(L);
1388     void *IP = nullptr;
1389     const auto *PreAR =
1390       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391 
1392     // Give up if we don't already have the add recurrence we need because
1393     // actually constructing an add recurrence is relatively expensive.
1394     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1395       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398           DeltaS, &Pred, this);
1399       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1400         return true;
1401     }
1402   }
1403 
1404   return false;
1405 }
1406 
1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1408                                                Type *Ty) {
1409   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1410          "This is not an extending conversion!");
1411   assert(isSCEVable(Ty) &&
1412          "This is not a conversion to a SCEVable type!");
1413   Ty = getEffectiveSCEVType(Ty);
1414 
1415   // Fold if the operand is constant.
1416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417     return getConstant(
1418       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1419 
1420   // zext(zext(x)) --> zext(x)
1421   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1422     return getZeroExtendExpr(SZ->getOperand(), Ty);
1423 
1424   // Before doing any expensive analysis, check to see if we've already
1425   // computed a SCEV for this Op and Ty.
1426   FoldingSetNodeID ID;
1427   ID.AddInteger(scZeroExtend);
1428   ID.AddPointer(Op);
1429   ID.AddPointer(Ty);
1430   void *IP = nullptr;
1431   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432 
1433   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435     // It's possible the bits taken off by the truncate were all zero bits. If
1436     // so, we should be able to simplify this further.
1437     const SCEV *X = ST->getOperand();
1438     ConstantRange CR = getUnsignedRange(X);
1439     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440     unsigned NewBits = getTypeSizeInBits(Ty);
1441     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1442             CR.zextOrTrunc(NewBits)))
1443       return getTruncateOrZeroExtend(X, Ty);
1444   }
1445 
1446   // If the input value is a chrec scev, and we can prove that the value
1447   // did not overflow the old, smaller, value, we can zero extend all of the
1448   // operands (often constants).  This allows analysis of something like
1449   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1450   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1451     if (AR->isAffine()) {
1452       const SCEV *Start = AR->getStart();
1453       const SCEV *Step = AR->getStepRecurrence(*this);
1454       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455       const Loop *L = AR->getLoop();
1456 
1457       // If we have special knowledge that this addrec won't overflow,
1458       // we don't need to do any further analysis.
1459       if (AR->hasNoUnsignedWrap())
1460         return getAddRecExpr(
1461             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1462             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1463 
1464       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1465       // Note that this serves two purposes: It filters out loops that are
1466       // simply not analyzable, and it covers the case where this code is
1467       // being called from within backedge-taken count analysis, such that
1468       // attempting to ask for the backedge-taken count would likely result
1469       // in infinite recursion. In the later case, the analysis code will
1470       // cope with a conservative value, and it will take care to purge
1471       // that value once it has finished.
1472       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1473       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1474         // Manually compute the final value for AR, checking for
1475         // overflow.
1476 
1477         // Check whether the backedge-taken count can be losslessly casted to
1478         // the addrec's type. The count is always unsigned.
1479         const SCEV *CastedMaxBECount =
1480           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1481         const SCEV *RecastedMaxBECount =
1482           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1483         if (MaxBECount == RecastedMaxBECount) {
1484           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1485           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1486           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1487           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1488           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1489           const SCEV *WideMaxBECount =
1490             getZeroExtendExpr(CastedMaxBECount, WideTy);
1491           const SCEV *OperandExtendedAdd =
1492             getAddExpr(WideStart,
1493                        getMulExpr(WideMaxBECount,
1494                                   getZeroExtendExpr(Step, WideTy)));
1495           if (ZAdd == OperandExtendedAdd) {
1496             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1497             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1498             // Return the expression with the addrec on the outside.
1499             return getAddRecExpr(
1500                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1501                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1502           }
1503           // Similar to above, only this time treat the step value as signed.
1504           // This covers loops that count down.
1505           OperandExtendedAdd =
1506             getAddExpr(WideStart,
1507                        getMulExpr(WideMaxBECount,
1508                                   getSignExtendExpr(Step, WideTy)));
1509           if (ZAdd == OperandExtendedAdd) {
1510             // Cache knowledge of AR NW, which is propagated to this AddRec.
1511             // Negative step causes unsigned wrap, but it still can't self-wrap.
1512             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1513             // Return the expression with the addrec on the outside.
1514             return getAddRecExpr(
1515                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1516                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1517           }
1518         }
1519 
1520         // If the backedge is guarded by a comparison with the pre-inc value
1521         // the addrec is safe. Also, if the entry is guarded by a comparison
1522         // with the start value and the backedge is guarded by a comparison
1523         // with the post-inc value, the addrec is safe.
1524         if (isKnownPositive(Step)) {
1525           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1526                                       getUnsignedRange(Step).getUnsignedMax());
1527           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1528               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1529                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1530                                            AR->getPostIncExpr(*this), N))) {
1531             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1532             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1533             // Return the expression with the addrec on the outside.
1534             return getAddRecExpr(
1535                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1536                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1537           }
1538         } else if (isKnownNegative(Step)) {
1539           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1540                                       getSignedRange(Step).getSignedMin());
1541           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1542               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1543                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1544                                            AR->getPostIncExpr(*this), N))) {
1545             // Cache knowledge of AR NW, which is propagated to this AddRec.
1546             // Negative step causes unsigned wrap, but it still can't self-wrap.
1547             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1548             // Return the expression with the addrec on the outside.
1549             return getAddRecExpr(
1550                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1551                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1552           }
1553         }
1554       }
1555 
1556       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1557         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1558         return getAddRecExpr(
1559             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1560             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1561       }
1562     }
1563 
1564   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1565     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1566     if (SA->hasNoUnsignedWrap()) {
1567       // If the addition does not unsign overflow then we can, by definition,
1568       // commute the zero extension with the addition operation.
1569       SmallVector<const SCEV *, 4> Ops;
1570       for (const auto *Op : SA->operands())
1571         Ops.push_back(getZeroExtendExpr(Op, Ty));
1572       return getAddExpr(Ops, SCEV::FlagNUW);
1573     }
1574   }
1575 
1576   // The cast wasn't folded; create an explicit cast node.
1577   // Recompute the insert position, as it may have been invalidated.
1578   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1579   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1580                                                    Op, Ty);
1581   UniqueSCEVs.InsertNode(S, IP);
1582   return S;
1583 }
1584 
1585 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1586                                                Type *Ty) {
1587   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1588          "This is not an extending conversion!");
1589   assert(isSCEVable(Ty) &&
1590          "This is not a conversion to a SCEVable type!");
1591   Ty = getEffectiveSCEVType(Ty);
1592 
1593   // Fold if the operand is constant.
1594   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1595     return getConstant(
1596       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1597 
1598   // sext(sext(x)) --> sext(x)
1599   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1600     return getSignExtendExpr(SS->getOperand(), Ty);
1601 
1602   // sext(zext(x)) --> zext(x)
1603   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1604     return getZeroExtendExpr(SZ->getOperand(), Ty);
1605 
1606   // Before doing any expensive analysis, check to see if we've already
1607   // computed a SCEV for this Op and Ty.
1608   FoldingSetNodeID ID;
1609   ID.AddInteger(scSignExtend);
1610   ID.AddPointer(Op);
1611   ID.AddPointer(Ty);
1612   void *IP = nullptr;
1613   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1614 
1615   // If the input value is provably positive, build a zext instead.
1616   if (isKnownNonNegative(Op))
1617     return getZeroExtendExpr(Op, Ty);
1618 
1619   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1620   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1621     // It's possible the bits taken off by the truncate were all sign bits. If
1622     // so, we should be able to simplify this further.
1623     const SCEV *X = ST->getOperand();
1624     ConstantRange CR = getSignedRange(X);
1625     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1626     unsigned NewBits = getTypeSizeInBits(Ty);
1627     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1628             CR.sextOrTrunc(NewBits)))
1629       return getTruncateOrSignExtend(X, Ty);
1630   }
1631 
1632   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1633   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1634     if (SA->getNumOperands() == 2) {
1635       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1636       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1637       if (SMul && SC1) {
1638         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1639           const APInt &C1 = SC1->getAPInt();
1640           const APInt &C2 = SC2->getAPInt();
1641           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1642               C2.ugt(C1) && C2.isPowerOf2())
1643             return getAddExpr(getSignExtendExpr(SC1, Ty),
1644                               getSignExtendExpr(SMul, Ty));
1645         }
1646       }
1647     }
1648 
1649     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1650     if (SA->hasNoSignedWrap()) {
1651       // If the addition does not sign overflow then we can, by definition,
1652       // commute the sign extension with the addition operation.
1653       SmallVector<const SCEV *, 4> Ops;
1654       for (const auto *Op : SA->operands())
1655         Ops.push_back(getSignExtendExpr(Op, Ty));
1656       return getAddExpr(Ops, SCEV::FlagNSW);
1657     }
1658   }
1659   // If the input value is a chrec scev, and we can prove that the value
1660   // did not overflow the old, smaller, value, we can sign extend all of the
1661   // operands (often constants).  This allows analysis of something like
1662   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1663   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1664     if (AR->isAffine()) {
1665       const SCEV *Start = AR->getStart();
1666       const SCEV *Step = AR->getStepRecurrence(*this);
1667       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1668       const Loop *L = AR->getLoop();
1669 
1670       // If we have special knowledge that this addrec won't overflow,
1671       // we don't need to do any further analysis.
1672       if (AR->hasNoSignedWrap())
1673         return getAddRecExpr(
1674             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1675             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1676 
1677       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1678       // Note that this serves two purposes: It filters out loops that are
1679       // simply not analyzable, and it covers the case where this code is
1680       // being called from within backedge-taken count analysis, such that
1681       // attempting to ask for the backedge-taken count would likely result
1682       // in infinite recursion. In the later case, the analysis code will
1683       // cope with a conservative value, and it will take care to purge
1684       // that value once it has finished.
1685       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1686       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1687         // Manually compute the final value for AR, checking for
1688         // overflow.
1689 
1690         // Check whether the backedge-taken count can be losslessly casted to
1691         // the addrec's type. The count is always unsigned.
1692         const SCEV *CastedMaxBECount =
1693           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1694         const SCEV *RecastedMaxBECount =
1695           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1696         if (MaxBECount == RecastedMaxBECount) {
1697           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1698           // Check whether Start+Step*MaxBECount has no signed overflow.
1699           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1700           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1701           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1702           const SCEV *WideMaxBECount =
1703             getZeroExtendExpr(CastedMaxBECount, WideTy);
1704           const SCEV *OperandExtendedAdd =
1705             getAddExpr(WideStart,
1706                        getMulExpr(WideMaxBECount,
1707                                   getSignExtendExpr(Step, WideTy)));
1708           if (SAdd == OperandExtendedAdd) {
1709             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1710             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1711             // Return the expression with the addrec on the outside.
1712             return getAddRecExpr(
1713                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1714                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1715           }
1716           // Similar to above, only this time treat the step value as unsigned.
1717           // This covers loops that count up with an unsigned step.
1718           OperandExtendedAdd =
1719             getAddExpr(WideStart,
1720                        getMulExpr(WideMaxBECount,
1721                                   getZeroExtendExpr(Step, WideTy)));
1722           if (SAdd == OperandExtendedAdd) {
1723             // If AR wraps around then
1724             //
1725             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1726             // => SAdd != OperandExtendedAdd
1727             //
1728             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1729             // (SAdd == OperandExtendedAdd => AR is NW)
1730 
1731             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1732 
1733             // Return the expression with the addrec on the outside.
1734             return getAddRecExpr(
1735                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1736                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1737           }
1738         }
1739 
1740         // If the backedge is guarded by a comparison with the pre-inc value
1741         // the addrec is safe. Also, if the entry is guarded by a comparison
1742         // with the start value and the backedge is guarded by a comparison
1743         // with the post-inc value, the addrec is safe.
1744         ICmpInst::Predicate Pred;
1745         const SCEV *OverflowLimit =
1746             getSignedOverflowLimitForStep(Step, &Pred, this);
1747         if (OverflowLimit &&
1748             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1749              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1750               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1751                                           OverflowLimit)))) {
1752           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1753           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1754           return getAddRecExpr(
1755               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1756               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1757         }
1758       }
1759       // If Start and Step are constants, check if we can apply this
1760       // transformation:
1761       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1762       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1763       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1764       if (SC1 && SC2) {
1765         const APInt &C1 = SC1->getAPInt();
1766         const APInt &C2 = SC2->getAPInt();
1767         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1768             C2.isPowerOf2()) {
1769           Start = getSignExtendExpr(Start, Ty);
1770           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1771                                             AR->getNoWrapFlags());
1772           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1777         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1780             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // The cast wasn't folded; create an explicit cast node.
1785   // Recompute the insert position, as it may have been invalidated.
1786   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1787   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1788                                                    Op, Ty);
1789   UniqueSCEVs.InsertNode(S, IP);
1790   return S;
1791 }
1792 
1793 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1794 /// unspecified bits out to the given type.
1795 ///
1796 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1797                                               Type *Ty) {
1798   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1799          "This is not an extending conversion!");
1800   assert(isSCEVable(Ty) &&
1801          "This is not a conversion to a SCEVable type!");
1802   Ty = getEffectiveSCEVType(Ty);
1803 
1804   // Sign-extend negative constants.
1805   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1806     if (SC->getAPInt().isNegative())
1807       return getSignExtendExpr(Op, Ty);
1808 
1809   // Peel off a truncate cast.
1810   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1811     const SCEV *NewOp = T->getOperand();
1812     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1813       return getAnyExtendExpr(NewOp, Ty);
1814     return getTruncateOrNoop(NewOp, Ty);
1815   }
1816 
1817   // Next try a zext cast. If the cast is folded, use it.
1818   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1819   if (!isa<SCEVZeroExtendExpr>(ZExt))
1820     return ZExt;
1821 
1822   // Next try a sext cast. If the cast is folded, use it.
1823   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1824   if (!isa<SCEVSignExtendExpr>(SExt))
1825     return SExt;
1826 
1827   // Force the cast to be folded into the operands of an addrec.
1828   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1829     SmallVector<const SCEV *, 4> Ops;
1830     for (const SCEV *Op : AR->operands())
1831       Ops.push_back(getAnyExtendExpr(Op, Ty));
1832     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1833   }
1834 
1835   // If the expression is obviously signed, use the sext cast value.
1836   if (isa<SCEVSMaxExpr>(Op))
1837     return SExt;
1838 
1839   // Absent any other information, use the zext cast value.
1840   return ZExt;
1841 }
1842 
1843 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1844 /// a list of operands to be added under the given scale, update the given
1845 /// map. This is a helper function for getAddRecExpr. As an example of
1846 /// what it does, given a sequence of operands that would form an add
1847 /// expression like this:
1848 ///
1849 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1850 ///
1851 /// where A and B are constants, update the map with these values:
1852 ///
1853 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1854 ///
1855 /// and add 13 + A*B*29 to AccumulatedConstant.
1856 /// This will allow getAddRecExpr to produce this:
1857 ///
1858 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1859 ///
1860 /// This form often exposes folding opportunities that are hidden in
1861 /// the original operand list.
1862 ///
1863 /// Return true iff it appears that any interesting folding opportunities
1864 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1865 /// the common case where no interesting opportunities are present, and
1866 /// is also used as a check to avoid infinite recursion.
1867 ///
1868 static bool
1869 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1870                              SmallVectorImpl<const SCEV *> &NewOps,
1871                              APInt &AccumulatedConstant,
1872                              const SCEV *const *Ops, size_t NumOperands,
1873                              const APInt &Scale,
1874                              ScalarEvolution &SE) {
1875   bool Interesting = false;
1876 
1877   // Iterate over the add operands. They are sorted, with constants first.
1878   unsigned i = 0;
1879   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1880     ++i;
1881     // Pull a buried constant out to the outside.
1882     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1883       Interesting = true;
1884     AccumulatedConstant += Scale * C->getAPInt();
1885   }
1886 
1887   // Next comes everything else. We're especially interested in multiplies
1888   // here, but they're in the middle, so just visit the rest with one loop.
1889   for (; i != NumOperands; ++i) {
1890     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1891     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1892       APInt NewScale =
1893           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1894       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1895         // A multiplication of a constant with another add; recurse.
1896         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1897         Interesting |=
1898           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1899                                        Add->op_begin(), Add->getNumOperands(),
1900                                        NewScale, SE);
1901       } else {
1902         // A multiplication of a constant with some other value. Update
1903         // the map.
1904         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1905         const SCEV *Key = SE.getMulExpr(MulOps);
1906         auto Pair = M.insert({Key, NewScale});
1907         if (Pair.second) {
1908           NewOps.push_back(Pair.first->first);
1909         } else {
1910           Pair.first->second += NewScale;
1911           // The map already had an entry for this value, which may indicate
1912           // a folding opportunity.
1913           Interesting = true;
1914         }
1915       }
1916     } else {
1917       // An ordinary operand. Update the map.
1918       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1919           M.insert({Ops[i], Scale});
1920       if (Pair.second) {
1921         NewOps.push_back(Pair.first->first);
1922       } else {
1923         Pair.first->second += Scale;
1924         // The map already had an entry for this value, which may indicate
1925         // a folding opportunity.
1926         Interesting = true;
1927       }
1928     }
1929   }
1930 
1931   return Interesting;
1932 }
1933 
1934 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1935 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1936 // can't-overflow flags for the operation if possible.
1937 static SCEV::NoWrapFlags
1938 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1939                       const SmallVectorImpl<const SCEV *> &Ops,
1940                       SCEV::NoWrapFlags Flags) {
1941   using namespace std::placeholders;
1942   typedef OverflowingBinaryOperator OBO;
1943 
1944   bool CanAnalyze =
1945       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1946   (void)CanAnalyze;
1947   assert(CanAnalyze && "don't call from other places!");
1948 
1949   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1950   SCEV::NoWrapFlags SignOrUnsignWrap =
1951       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1952 
1953   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1954   auto IsKnownNonNegative = [&](const SCEV *S) {
1955     return SE->isKnownNonNegative(S);
1956   };
1957 
1958   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1959     Flags =
1960         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1961 
1962   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1963 
1964   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1965       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1966 
1967     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1968     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1969 
1970     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
1971     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1972       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1973           Instruction::Add, C, OBO::NoSignedWrap);
1974       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1975         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1976     }
1977     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1978       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1979           Instruction::Add, C, OBO::NoUnsignedWrap);
1980       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1981         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1982     }
1983   }
1984 
1985   return Flags;
1986 }
1987 
1988 /// getAddExpr - Get a canonical add expression, or something simpler if
1989 /// possible.
1990 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1991                                         SCEV::NoWrapFlags Flags) {
1992   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1993          "only nuw or nsw allowed");
1994   assert(!Ops.empty() && "Cannot get empty add!");
1995   if (Ops.size() == 1) return Ops[0];
1996 #ifndef NDEBUG
1997   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1998   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1999     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2000            "SCEVAddExpr operand types don't match!");
2001 #endif
2002 
2003   // Sort by complexity, this groups all similar expression types together.
2004   GroupByComplexity(Ops, &LI);
2005 
2006   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2007 
2008   // If there are any constants, fold them together.
2009   unsigned Idx = 0;
2010   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2011     ++Idx;
2012     assert(Idx < Ops.size());
2013     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2014       // We found two constants, fold them together!
2015       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2016       if (Ops.size() == 2) return Ops[0];
2017       Ops.erase(Ops.begin()+1);  // Erase the folded element
2018       LHSC = cast<SCEVConstant>(Ops[0]);
2019     }
2020 
2021     // If we are left with a constant zero being added, strip it off.
2022     if (LHSC->getValue()->isZero()) {
2023       Ops.erase(Ops.begin());
2024       --Idx;
2025     }
2026 
2027     if (Ops.size() == 1) return Ops[0];
2028   }
2029 
2030   // Okay, check to see if the same value occurs in the operand list more than
2031   // once.  If so, merge them together into an multiply expression.  Since we
2032   // sorted the list, these values are required to be adjacent.
2033   Type *Ty = Ops[0]->getType();
2034   bool FoundMatch = false;
2035   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2036     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2037       // Scan ahead to count how many equal operands there are.
2038       unsigned Count = 2;
2039       while (i+Count != e && Ops[i+Count] == Ops[i])
2040         ++Count;
2041       // Merge the values into a multiply.
2042       const SCEV *Scale = getConstant(Ty, Count);
2043       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2044       if (Ops.size() == Count)
2045         return Mul;
2046       Ops[i] = Mul;
2047       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2048       --i; e -= Count - 1;
2049       FoundMatch = true;
2050     }
2051   if (FoundMatch)
2052     return getAddExpr(Ops, Flags);
2053 
2054   // Check for truncates. If all the operands are truncated from the same
2055   // type, see if factoring out the truncate would permit the result to be
2056   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2057   // if the contents of the resulting outer trunc fold to something simple.
2058   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2059     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2060     Type *DstType = Trunc->getType();
2061     Type *SrcType = Trunc->getOperand()->getType();
2062     SmallVector<const SCEV *, 8> LargeOps;
2063     bool Ok = true;
2064     // Check all the operands to see if they can be represented in the
2065     // source type of the truncate.
2066     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2067       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2068         if (T->getOperand()->getType() != SrcType) {
2069           Ok = false;
2070           break;
2071         }
2072         LargeOps.push_back(T->getOperand());
2073       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2074         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2075       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2076         SmallVector<const SCEV *, 8> LargeMulOps;
2077         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2078           if (const SCEVTruncateExpr *T =
2079                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2080             if (T->getOperand()->getType() != SrcType) {
2081               Ok = false;
2082               break;
2083             }
2084             LargeMulOps.push_back(T->getOperand());
2085           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2086             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2087           } else {
2088             Ok = false;
2089             break;
2090           }
2091         }
2092         if (Ok)
2093           LargeOps.push_back(getMulExpr(LargeMulOps));
2094       } else {
2095         Ok = false;
2096         break;
2097       }
2098     }
2099     if (Ok) {
2100       // Evaluate the expression in the larger type.
2101       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2102       // If it folds to something simple, use it. Otherwise, don't.
2103       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2104         return getTruncateExpr(Fold, DstType);
2105     }
2106   }
2107 
2108   // Skip past any other cast SCEVs.
2109   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2110     ++Idx;
2111 
2112   // If there are add operands they would be next.
2113   if (Idx < Ops.size()) {
2114     bool DeletedAdd = false;
2115     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2116       // If we have an add, expand the add operands onto the end of the operands
2117       // list.
2118       Ops.erase(Ops.begin()+Idx);
2119       Ops.append(Add->op_begin(), Add->op_end());
2120       DeletedAdd = true;
2121     }
2122 
2123     // If we deleted at least one add, we added operands to the end of the list,
2124     // and they are not necessarily sorted.  Recurse to resort and resimplify
2125     // any operands we just acquired.
2126     if (DeletedAdd)
2127       return getAddExpr(Ops);
2128   }
2129 
2130   // Skip over the add expression until we get to a multiply.
2131   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2132     ++Idx;
2133 
2134   // Check to see if there are any folding opportunities present with
2135   // operands multiplied by constant values.
2136   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2137     uint64_t BitWidth = getTypeSizeInBits(Ty);
2138     DenseMap<const SCEV *, APInt> M;
2139     SmallVector<const SCEV *, 8> NewOps;
2140     APInt AccumulatedConstant(BitWidth, 0);
2141     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2142                                      Ops.data(), Ops.size(),
2143                                      APInt(BitWidth, 1), *this)) {
2144       struct APIntCompare {
2145         bool operator()(const APInt &LHS, const APInt &RHS) const {
2146           return LHS.ult(RHS);
2147         }
2148       };
2149 
2150       // Some interesting folding opportunity is present, so its worthwhile to
2151       // re-generate the operands list. Group the operands by constant scale,
2152       // to avoid multiplying by the same constant scale multiple times.
2153       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2154       for (const SCEV *NewOp : NewOps)
2155         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2156       // Re-generate the operands list.
2157       Ops.clear();
2158       if (AccumulatedConstant != 0)
2159         Ops.push_back(getConstant(AccumulatedConstant));
2160       for (auto &MulOp : MulOpLists)
2161         if (MulOp.first != 0)
2162           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2163                                    getAddExpr(MulOp.second)));
2164       if (Ops.empty())
2165         return getZero(Ty);
2166       if (Ops.size() == 1)
2167         return Ops[0];
2168       return getAddExpr(Ops);
2169     }
2170   }
2171 
2172   // If we are adding something to a multiply expression, make sure the
2173   // something is not already an operand of the multiply.  If so, merge it into
2174   // the multiply.
2175   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2176     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2177     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2178       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2179       if (isa<SCEVConstant>(MulOpSCEV))
2180         continue;
2181       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2182         if (MulOpSCEV == Ops[AddOp]) {
2183           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2184           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2185           if (Mul->getNumOperands() != 2) {
2186             // If the multiply has more than two operands, we must get the
2187             // Y*Z term.
2188             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2189                                                 Mul->op_begin()+MulOp);
2190             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2191             InnerMul = getMulExpr(MulOps);
2192           }
2193           const SCEV *One = getOne(Ty);
2194           const SCEV *AddOne = getAddExpr(One, InnerMul);
2195           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2196           if (Ops.size() == 2) return OuterMul;
2197           if (AddOp < Idx) {
2198             Ops.erase(Ops.begin()+AddOp);
2199             Ops.erase(Ops.begin()+Idx-1);
2200           } else {
2201             Ops.erase(Ops.begin()+Idx);
2202             Ops.erase(Ops.begin()+AddOp-1);
2203           }
2204           Ops.push_back(OuterMul);
2205           return getAddExpr(Ops);
2206         }
2207 
2208       // Check this multiply against other multiplies being added together.
2209       for (unsigned OtherMulIdx = Idx+1;
2210            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2211            ++OtherMulIdx) {
2212         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2213         // If MulOp occurs in OtherMul, we can fold the two multiplies
2214         // together.
2215         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2216              OMulOp != e; ++OMulOp)
2217           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2218             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2219             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2220             if (Mul->getNumOperands() != 2) {
2221               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2222                                                   Mul->op_begin()+MulOp);
2223               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2224               InnerMul1 = getMulExpr(MulOps);
2225             }
2226             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2227             if (OtherMul->getNumOperands() != 2) {
2228               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2229                                                   OtherMul->op_begin()+OMulOp);
2230               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2231               InnerMul2 = getMulExpr(MulOps);
2232             }
2233             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2234             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2235             if (Ops.size() == 2) return OuterMul;
2236             Ops.erase(Ops.begin()+Idx);
2237             Ops.erase(Ops.begin()+OtherMulIdx-1);
2238             Ops.push_back(OuterMul);
2239             return getAddExpr(Ops);
2240           }
2241       }
2242     }
2243   }
2244 
2245   // If there are any add recurrences in the operands list, see if any other
2246   // added values are loop invariant.  If so, we can fold them into the
2247   // recurrence.
2248   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2249     ++Idx;
2250 
2251   // Scan over all recurrences, trying to fold loop invariants into them.
2252   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2253     // Scan all of the other operands to this add and add them to the vector if
2254     // they are loop invariant w.r.t. the recurrence.
2255     SmallVector<const SCEV *, 8> LIOps;
2256     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2257     const Loop *AddRecLoop = AddRec->getLoop();
2258     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2259       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2260         LIOps.push_back(Ops[i]);
2261         Ops.erase(Ops.begin()+i);
2262         --i; --e;
2263       }
2264 
2265     // If we found some loop invariants, fold them into the recurrence.
2266     if (!LIOps.empty()) {
2267       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2268       LIOps.push_back(AddRec->getStart());
2269 
2270       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2271                                              AddRec->op_end());
2272       AddRecOps[0] = getAddExpr(LIOps);
2273 
2274       // Build the new addrec. Propagate the NUW and NSW flags if both the
2275       // outer add and the inner addrec are guaranteed to have no overflow.
2276       // Always propagate NW.
2277       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2278       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2279 
2280       // If all of the other operands were loop invariant, we are done.
2281       if (Ops.size() == 1) return NewRec;
2282 
2283       // Otherwise, add the folded AddRec by the non-invariant parts.
2284       for (unsigned i = 0;; ++i)
2285         if (Ops[i] == AddRec) {
2286           Ops[i] = NewRec;
2287           break;
2288         }
2289       return getAddExpr(Ops);
2290     }
2291 
2292     // Okay, if there weren't any loop invariants to be folded, check to see if
2293     // there are multiple AddRec's with the same loop induction variable being
2294     // added together.  If so, we can fold them.
2295     for (unsigned OtherIdx = Idx+1;
2296          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2297          ++OtherIdx)
2298       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2299         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2300         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2301                                                AddRec->op_end());
2302         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2303              ++OtherIdx)
2304           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2305             if (OtherAddRec->getLoop() == AddRecLoop) {
2306               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2307                    i != e; ++i) {
2308                 if (i >= AddRecOps.size()) {
2309                   AddRecOps.append(OtherAddRec->op_begin()+i,
2310                                    OtherAddRec->op_end());
2311                   break;
2312                 }
2313                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2314                                           OtherAddRec->getOperand(i));
2315               }
2316               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2317             }
2318         // Step size has changed, so we cannot guarantee no self-wraparound.
2319         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2320         return getAddExpr(Ops);
2321       }
2322 
2323     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2324     // next one.
2325   }
2326 
2327   // Okay, it looks like we really DO need an add expr.  Check to see if we
2328   // already have one, otherwise create a new one.
2329   FoldingSetNodeID ID;
2330   ID.AddInteger(scAddExpr);
2331   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2332     ID.AddPointer(Ops[i]);
2333   void *IP = nullptr;
2334   SCEVAddExpr *S =
2335     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2336   if (!S) {
2337     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2338     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2339     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2340                                         O, Ops.size());
2341     UniqueSCEVs.InsertNode(S, IP);
2342   }
2343   S->setNoWrapFlags(Flags);
2344   return S;
2345 }
2346 
2347 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2348   uint64_t k = i*j;
2349   if (j > 1 && k / j != i) Overflow = true;
2350   return k;
2351 }
2352 
2353 /// Compute the result of "n choose k", the binomial coefficient.  If an
2354 /// intermediate computation overflows, Overflow will be set and the return will
2355 /// be garbage. Overflow is not cleared on absence of overflow.
2356 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2357   // We use the multiplicative formula:
2358   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2359   // At each iteration, we take the n-th term of the numeral and divide by the
2360   // (k-n)th term of the denominator.  This division will always produce an
2361   // integral result, and helps reduce the chance of overflow in the
2362   // intermediate computations. However, we can still overflow even when the
2363   // final result would fit.
2364 
2365   if (n == 0 || n == k) return 1;
2366   if (k > n) return 0;
2367 
2368   if (k > n/2)
2369     k = n-k;
2370 
2371   uint64_t r = 1;
2372   for (uint64_t i = 1; i <= k; ++i) {
2373     r = umul_ov(r, n-(i-1), Overflow);
2374     r /= i;
2375   }
2376   return r;
2377 }
2378 
2379 /// Determine if any of the operands in this SCEV are a constant or if
2380 /// any of the add or multiply expressions in this SCEV contain a constant.
2381 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2382   SmallVector<const SCEV *, 4> Ops;
2383   Ops.push_back(StartExpr);
2384   while (!Ops.empty()) {
2385     const SCEV *CurrentExpr = Ops.pop_back_val();
2386     if (isa<SCEVConstant>(*CurrentExpr))
2387       return true;
2388 
2389     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2390       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2391       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2392     }
2393   }
2394   return false;
2395 }
2396 
2397 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2398 /// possible.
2399 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2400                                         SCEV::NoWrapFlags Flags) {
2401   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2402          "only nuw or nsw allowed");
2403   assert(!Ops.empty() && "Cannot get empty mul!");
2404   if (Ops.size() == 1) return Ops[0];
2405 #ifndef NDEBUG
2406   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2407   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2408     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2409            "SCEVMulExpr operand types don't match!");
2410 #endif
2411 
2412   // Sort by complexity, this groups all similar expression types together.
2413   GroupByComplexity(Ops, &LI);
2414 
2415   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2416 
2417   // If there are any constants, fold them together.
2418   unsigned Idx = 0;
2419   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2420 
2421     // C1*(C2+V) -> C1*C2 + C1*V
2422     if (Ops.size() == 2)
2423         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2424           // If any of Add's ops are Adds or Muls with a constant,
2425           // apply this transformation as well.
2426           if (Add->getNumOperands() == 2)
2427             if (containsConstantSomewhere(Add))
2428               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2429                                 getMulExpr(LHSC, Add->getOperand(1)));
2430 
2431     ++Idx;
2432     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2433       // We found two constants, fold them together!
2434       ConstantInt *Fold =
2435           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2436       Ops[0] = getConstant(Fold);
2437       Ops.erase(Ops.begin()+1);  // Erase the folded element
2438       if (Ops.size() == 1) return Ops[0];
2439       LHSC = cast<SCEVConstant>(Ops[0]);
2440     }
2441 
2442     // If we are left with a constant one being multiplied, strip it off.
2443     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2444       Ops.erase(Ops.begin());
2445       --Idx;
2446     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2447       // If we have a multiply of zero, it will always be zero.
2448       return Ops[0];
2449     } else if (Ops[0]->isAllOnesValue()) {
2450       // If we have a mul by -1 of an add, try distributing the -1 among the
2451       // add operands.
2452       if (Ops.size() == 2) {
2453         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2454           SmallVector<const SCEV *, 4> NewOps;
2455           bool AnyFolded = false;
2456           for (const SCEV *AddOp : Add->operands()) {
2457             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2458             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2459             NewOps.push_back(Mul);
2460           }
2461           if (AnyFolded)
2462             return getAddExpr(NewOps);
2463         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2464           // Negation preserves a recurrence's no self-wrap property.
2465           SmallVector<const SCEV *, 4> Operands;
2466           for (const SCEV *AddRecOp : AddRec->operands())
2467             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2468 
2469           return getAddRecExpr(Operands, AddRec->getLoop(),
2470                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2471         }
2472       }
2473     }
2474 
2475     if (Ops.size() == 1)
2476       return Ops[0];
2477   }
2478 
2479   // Skip over the add expression until we get to a multiply.
2480   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2481     ++Idx;
2482 
2483   // If there are mul operands inline them all into this expression.
2484   if (Idx < Ops.size()) {
2485     bool DeletedMul = false;
2486     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2487       // If we have an mul, expand the mul operands onto the end of the operands
2488       // list.
2489       Ops.erase(Ops.begin()+Idx);
2490       Ops.append(Mul->op_begin(), Mul->op_end());
2491       DeletedMul = true;
2492     }
2493 
2494     // If we deleted at least one mul, we added operands to the end of the list,
2495     // and they are not necessarily sorted.  Recurse to resort and resimplify
2496     // any operands we just acquired.
2497     if (DeletedMul)
2498       return getMulExpr(Ops);
2499   }
2500 
2501   // If there are any add recurrences in the operands list, see if any other
2502   // added values are loop invariant.  If so, we can fold them into the
2503   // recurrence.
2504   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2505     ++Idx;
2506 
2507   // Scan over all recurrences, trying to fold loop invariants into them.
2508   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2509     // Scan all of the other operands to this mul and add them to the vector if
2510     // they are loop invariant w.r.t. the recurrence.
2511     SmallVector<const SCEV *, 8> LIOps;
2512     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2513     const Loop *AddRecLoop = AddRec->getLoop();
2514     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2515       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2516         LIOps.push_back(Ops[i]);
2517         Ops.erase(Ops.begin()+i);
2518         --i; --e;
2519       }
2520 
2521     // If we found some loop invariants, fold them into the recurrence.
2522     if (!LIOps.empty()) {
2523       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2524       SmallVector<const SCEV *, 4> NewOps;
2525       NewOps.reserve(AddRec->getNumOperands());
2526       const SCEV *Scale = getMulExpr(LIOps);
2527       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2528         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2529 
2530       // Build the new addrec. Propagate the NUW and NSW flags if both the
2531       // outer mul and the inner addrec are guaranteed to have no overflow.
2532       //
2533       // No self-wrap cannot be guaranteed after changing the step size, but
2534       // will be inferred if either NUW or NSW is true.
2535       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2536       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2537 
2538       // If all of the other operands were loop invariant, we are done.
2539       if (Ops.size() == 1) return NewRec;
2540 
2541       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2542       for (unsigned i = 0;; ++i)
2543         if (Ops[i] == AddRec) {
2544           Ops[i] = NewRec;
2545           break;
2546         }
2547       return getMulExpr(Ops);
2548     }
2549 
2550     // Okay, if there weren't any loop invariants to be folded, check to see if
2551     // there are multiple AddRec's with the same loop induction variable being
2552     // multiplied together.  If so, we can fold them.
2553 
2554     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2555     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2556     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2557     //   ]]],+,...up to x=2n}.
2558     // Note that the arguments to choose() are always integers with values
2559     // known at compile time, never SCEV objects.
2560     //
2561     // The implementation avoids pointless extra computations when the two
2562     // addrec's are of different length (mathematically, it's equivalent to
2563     // an infinite stream of zeros on the right).
2564     bool OpsModified = false;
2565     for (unsigned OtherIdx = Idx+1;
2566          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2567          ++OtherIdx) {
2568       const SCEVAddRecExpr *OtherAddRec =
2569         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2570       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2571         continue;
2572 
2573       bool Overflow = false;
2574       Type *Ty = AddRec->getType();
2575       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2576       SmallVector<const SCEV*, 7> AddRecOps;
2577       for (int x = 0, xe = AddRec->getNumOperands() +
2578              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2579         const SCEV *Term = getZero(Ty);
2580         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2581           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2582           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2583                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2584                z < ze && !Overflow; ++z) {
2585             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2586             uint64_t Coeff;
2587             if (LargerThan64Bits)
2588               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2589             else
2590               Coeff = Coeff1*Coeff2;
2591             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2592             const SCEV *Term1 = AddRec->getOperand(y-z);
2593             const SCEV *Term2 = OtherAddRec->getOperand(z);
2594             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2595           }
2596         }
2597         AddRecOps.push_back(Term);
2598       }
2599       if (!Overflow) {
2600         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2601                                               SCEV::FlagAnyWrap);
2602         if (Ops.size() == 2) return NewAddRec;
2603         Ops[Idx] = NewAddRec;
2604         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2605         OpsModified = true;
2606         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2607         if (!AddRec)
2608           break;
2609       }
2610     }
2611     if (OpsModified)
2612       return getMulExpr(Ops);
2613 
2614     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2615     // next one.
2616   }
2617 
2618   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2619   // already have one, otherwise create a new one.
2620   FoldingSetNodeID ID;
2621   ID.AddInteger(scMulExpr);
2622   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2623     ID.AddPointer(Ops[i]);
2624   void *IP = nullptr;
2625   SCEVMulExpr *S =
2626     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2627   if (!S) {
2628     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2629     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2630     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2631                                         O, Ops.size());
2632     UniqueSCEVs.InsertNode(S, IP);
2633   }
2634   S->setNoWrapFlags(Flags);
2635   return S;
2636 }
2637 
2638 /// getUDivExpr - Get a canonical unsigned division expression, or something
2639 /// simpler if possible.
2640 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2641                                          const SCEV *RHS) {
2642   assert(getEffectiveSCEVType(LHS->getType()) ==
2643          getEffectiveSCEVType(RHS->getType()) &&
2644          "SCEVUDivExpr operand types don't match!");
2645 
2646   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2647     if (RHSC->getValue()->equalsInt(1))
2648       return LHS;                               // X udiv 1 --> x
2649     // If the denominator is zero, the result of the udiv is undefined. Don't
2650     // try to analyze it, because the resolution chosen here may differ from
2651     // the resolution chosen in other parts of the compiler.
2652     if (!RHSC->getValue()->isZero()) {
2653       // Determine if the division can be folded into the operands of
2654       // its operands.
2655       // TODO: Generalize this to non-constants by using known-bits information.
2656       Type *Ty = LHS->getType();
2657       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2658       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2659       // For non-power-of-two values, effectively round the value up to the
2660       // nearest power of two.
2661       if (!RHSC->getAPInt().isPowerOf2())
2662         ++MaxShiftAmt;
2663       IntegerType *ExtTy =
2664         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2665       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2666         if (const SCEVConstant *Step =
2667             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2668           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2669           const APInt &StepInt = Step->getAPInt();
2670           const APInt &DivInt = RHSC->getAPInt();
2671           if (!StepInt.urem(DivInt) &&
2672               getZeroExtendExpr(AR, ExtTy) ==
2673               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2674                             getZeroExtendExpr(Step, ExtTy),
2675                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2676             SmallVector<const SCEV *, 4> Operands;
2677             for (const SCEV *Op : AR->operands())
2678               Operands.push_back(getUDivExpr(Op, RHS));
2679             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2680           }
2681           /// Get a canonical UDivExpr for a recurrence.
2682           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2683           // We can currently only fold X%N if X is constant.
2684           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2685           if (StartC && !DivInt.urem(StepInt) &&
2686               getZeroExtendExpr(AR, ExtTy) ==
2687               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2688                             getZeroExtendExpr(Step, ExtTy),
2689                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2690             const APInt &StartInt = StartC->getAPInt();
2691             const APInt &StartRem = StartInt.urem(StepInt);
2692             if (StartRem != 0)
2693               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2694                                   AR->getLoop(), SCEV::FlagNW);
2695           }
2696         }
2697       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2698       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2699         SmallVector<const SCEV *, 4> Operands;
2700         for (const SCEV *Op : M->operands())
2701           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2702         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2703           // Find an operand that's safely divisible.
2704           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2705             const SCEV *Op = M->getOperand(i);
2706             const SCEV *Div = getUDivExpr(Op, RHSC);
2707             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2708               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2709                                                       M->op_end());
2710               Operands[i] = Div;
2711               return getMulExpr(Operands);
2712             }
2713           }
2714       }
2715       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2716       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2717         SmallVector<const SCEV *, 4> Operands;
2718         for (const SCEV *Op : A->operands())
2719           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2720         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2721           Operands.clear();
2722           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2723             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2724             if (isa<SCEVUDivExpr>(Op) ||
2725                 getMulExpr(Op, RHS) != A->getOperand(i))
2726               break;
2727             Operands.push_back(Op);
2728           }
2729           if (Operands.size() == A->getNumOperands())
2730             return getAddExpr(Operands);
2731         }
2732       }
2733 
2734       // Fold if both operands are constant.
2735       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2736         Constant *LHSCV = LHSC->getValue();
2737         Constant *RHSCV = RHSC->getValue();
2738         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2739                                                                    RHSCV)));
2740       }
2741     }
2742   }
2743 
2744   FoldingSetNodeID ID;
2745   ID.AddInteger(scUDivExpr);
2746   ID.AddPointer(LHS);
2747   ID.AddPointer(RHS);
2748   void *IP = nullptr;
2749   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2750   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2751                                              LHS, RHS);
2752   UniqueSCEVs.InsertNode(S, IP);
2753   return S;
2754 }
2755 
2756 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2757   APInt A = C1->getAPInt().abs();
2758   APInt B = C2->getAPInt().abs();
2759   uint32_t ABW = A.getBitWidth();
2760   uint32_t BBW = B.getBitWidth();
2761 
2762   if (ABW > BBW)
2763     B = B.zext(ABW);
2764   else if (ABW < BBW)
2765     A = A.zext(BBW);
2766 
2767   return APIntOps::GreatestCommonDivisor(A, B);
2768 }
2769 
2770 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2771 /// something simpler if possible. There is no representation for an exact udiv
2772 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2773 /// We can't do this when it's not exact because the udiv may be clearing bits.
2774 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2775                                               const SCEV *RHS) {
2776   // TODO: we could try to find factors in all sorts of things, but for now we
2777   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2778   // end of this file for inspiration.
2779 
2780   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2781   if (!Mul)
2782     return getUDivExpr(LHS, RHS);
2783 
2784   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2785     // If the mulexpr multiplies by a constant, then that constant must be the
2786     // first element of the mulexpr.
2787     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2788       if (LHSCst == RHSCst) {
2789         SmallVector<const SCEV *, 2> Operands;
2790         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2791         return getMulExpr(Operands);
2792       }
2793 
2794       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2795       // that there's a factor provided by one of the other terms. We need to
2796       // check.
2797       APInt Factor = gcd(LHSCst, RHSCst);
2798       if (!Factor.isIntN(1)) {
2799         LHSCst =
2800             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2801         RHSCst =
2802             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2803         SmallVector<const SCEV *, 2> Operands;
2804         Operands.push_back(LHSCst);
2805         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2806         LHS = getMulExpr(Operands);
2807         RHS = RHSCst;
2808         Mul = dyn_cast<SCEVMulExpr>(LHS);
2809         if (!Mul)
2810           return getUDivExactExpr(LHS, RHS);
2811       }
2812     }
2813   }
2814 
2815   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2816     if (Mul->getOperand(i) == RHS) {
2817       SmallVector<const SCEV *, 2> Operands;
2818       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2819       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2820       return getMulExpr(Operands);
2821     }
2822   }
2823 
2824   return getUDivExpr(LHS, RHS);
2825 }
2826 
2827 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2828 /// Simplify the expression as much as possible.
2829 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2830                                            const Loop *L,
2831                                            SCEV::NoWrapFlags Flags) {
2832   SmallVector<const SCEV *, 4> Operands;
2833   Operands.push_back(Start);
2834   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2835     if (StepChrec->getLoop() == L) {
2836       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2837       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2838     }
2839 
2840   Operands.push_back(Step);
2841   return getAddRecExpr(Operands, L, Flags);
2842 }
2843 
2844 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2845 /// Simplify the expression as much as possible.
2846 const SCEV *
2847 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2848                                const Loop *L, SCEV::NoWrapFlags Flags) {
2849   if (Operands.size() == 1) return Operands[0];
2850 #ifndef NDEBUG
2851   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2852   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2853     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2854            "SCEVAddRecExpr operand types don't match!");
2855   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2856     assert(isLoopInvariant(Operands[i], L) &&
2857            "SCEVAddRecExpr operand is not loop-invariant!");
2858 #endif
2859 
2860   if (Operands.back()->isZero()) {
2861     Operands.pop_back();
2862     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2863   }
2864 
2865   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2866   // use that information to infer NUW and NSW flags. However, computing a
2867   // BE count requires calling getAddRecExpr, so we may not yet have a
2868   // meaningful BE count at this point (and if we don't, we'd be stuck
2869   // with a SCEVCouldNotCompute as the cached BE count).
2870 
2871   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2872 
2873   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2874   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2875     const Loop *NestedLoop = NestedAR->getLoop();
2876     if (L->contains(NestedLoop)
2877             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2878             : (!NestedLoop->contains(L) &&
2879                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2880       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2881                                                   NestedAR->op_end());
2882       Operands[0] = NestedAR->getStart();
2883       // AddRecs require their operands be loop-invariant with respect to their
2884       // loops. Don't perform this transformation if it would break this
2885       // requirement.
2886       bool AllInvariant = all_of(
2887           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2888 
2889       if (AllInvariant) {
2890         // Create a recurrence for the outer loop with the same step size.
2891         //
2892         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2893         // inner recurrence has the same property.
2894         SCEV::NoWrapFlags OuterFlags =
2895           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2896 
2897         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2898         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2899           return isLoopInvariant(Op, NestedLoop);
2900         });
2901 
2902         if (AllInvariant) {
2903           // Ok, both add recurrences are valid after the transformation.
2904           //
2905           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2906           // the outer recurrence has the same property.
2907           SCEV::NoWrapFlags InnerFlags =
2908             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2909           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2910         }
2911       }
2912       // Reset Operands to its original state.
2913       Operands[0] = NestedAR;
2914     }
2915   }
2916 
2917   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2918   // already have one, otherwise create a new one.
2919   FoldingSetNodeID ID;
2920   ID.AddInteger(scAddRecExpr);
2921   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2922     ID.AddPointer(Operands[i]);
2923   ID.AddPointer(L);
2924   void *IP = nullptr;
2925   SCEVAddRecExpr *S =
2926     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2927   if (!S) {
2928     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2929     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2930     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2931                                            O, Operands.size(), L);
2932     UniqueSCEVs.InsertNode(S, IP);
2933   }
2934   S->setNoWrapFlags(Flags);
2935   return S;
2936 }
2937 
2938 const SCEV *
2939 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2940                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2941                             bool InBounds) {
2942   // getSCEV(Base)->getType() has the same address space as Base->getType()
2943   // because SCEV::getType() preserves the address space.
2944   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2945   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2946   // instruction to its SCEV, because the Instruction may be guarded by control
2947   // flow and the no-overflow bits may not be valid for the expression in any
2948   // context. This can be fixed similarly to how these flags are handled for
2949   // adds.
2950   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2951 
2952   const SCEV *TotalOffset = getZero(IntPtrTy);
2953   // The address space is unimportant. The first thing we do on CurTy is getting
2954   // its element type.
2955   Type *CurTy = PointerType::getUnqual(PointeeType);
2956   for (const SCEV *IndexExpr : IndexExprs) {
2957     // Compute the (potentially symbolic) offset in bytes for this index.
2958     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2959       // For a struct, add the member offset.
2960       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2961       unsigned FieldNo = Index->getZExtValue();
2962       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2963 
2964       // Add the field offset to the running total offset.
2965       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2966 
2967       // Update CurTy to the type of the field at Index.
2968       CurTy = STy->getTypeAtIndex(Index);
2969     } else {
2970       // Update CurTy to its element type.
2971       CurTy = cast<SequentialType>(CurTy)->getElementType();
2972       // For an array, add the element offset, explicitly scaled.
2973       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2974       // Getelementptr indices are signed.
2975       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2976 
2977       // Multiply the index by the element size to compute the element offset.
2978       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2979 
2980       // Add the element offset to the running total offset.
2981       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2982     }
2983   }
2984 
2985   // Add the total offset from all the GEP indices to the base.
2986   return getAddExpr(BaseExpr, TotalOffset, Wrap);
2987 }
2988 
2989 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2990                                          const SCEV *RHS) {
2991   SmallVector<const SCEV *, 2> Ops;
2992   Ops.push_back(LHS);
2993   Ops.push_back(RHS);
2994   return getSMaxExpr(Ops);
2995 }
2996 
2997 const SCEV *
2998 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2999   assert(!Ops.empty() && "Cannot get empty smax!");
3000   if (Ops.size() == 1) return Ops[0];
3001 #ifndef NDEBUG
3002   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3003   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3004     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3005            "SCEVSMaxExpr operand types don't match!");
3006 #endif
3007 
3008   // Sort by complexity, this groups all similar expression types together.
3009   GroupByComplexity(Ops, &LI);
3010 
3011   // If there are any constants, fold them together.
3012   unsigned Idx = 0;
3013   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3014     ++Idx;
3015     assert(Idx < Ops.size());
3016     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3017       // We found two constants, fold them together!
3018       ConstantInt *Fold = ConstantInt::get(
3019           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3020       Ops[0] = getConstant(Fold);
3021       Ops.erase(Ops.begin()+1);  // Erase the folded element
3022       if (Ops.size() == 1) return Ops[0];
3023       LHSC = cast<SCEVConstant>(Ops[0]);
3024     }
3025 
3026     // If we are left with a constant minimum-int, strip it off.
3027     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3028       Ops.erase(Ops.begin());
3029       --Idx;
3030     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3031       // If we have an smax with a constant maximum-int, it will always be
3032       // maximum-int.
3033       return Ops[0];
3034     }
3035 
3036     if (Ops.size() == 1) return Ops[0];
3037   }
3038 
3039   // Find the first SMax
3040   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3041     ++Idx;
3042 
3043   // Check to see if one of the operands is an SMax. If so, expand its operands
3044   // onto our operand list, and recurse to simplify.
3045   if (Idx < Ops.size()) {
3046     bool DeletedSMax = false;
3047     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3048       Ops.erase(Ops.begin()+Idx);
3049       Ops.append(SMax->op_begin(), SMax->op_end());
3050       DeletedSMax = true;
3051     }
3052 
3053     if (DeletedSMax)
3054       return getSMaxExpr(Ops);
3055   }
3056 
3057   // Okay, check to see if the same value occurs in the operand list twice.  If
3058   // so, delete one.  Since we sorted the list, these values are required to
3059   // be adjacent.
3060   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3061     //  X smax Y smax Y  -->  X smax Y
3062     //  X smax Y         -->  X, if X is always greater than Y
3063     if (Ops[i] == Ops[i+1] ||
3064         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3065       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3066       --i; --e;
3067     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3068       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3069       --i; --e;
3070     }
3071 
3072   if (Ops.size() == 1) return Ops[0];
3073 
3074   assert(!Ops.empty() && "Reduced smax down to nothing!");
3075 
3076   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3077   // already have one, otherwise create a new one.
3078   FoldingSetNodeID ID;
3079   ID.AddInteger(scSMaxExpr);
3080   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3081     ID.AddPointer(Ops[i]);
3082   void *IP = nullptr;
3083   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3084   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3085   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3086   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3087                                              O, Ops.size());
3088   UniqueSCEVs.InsertNode(S, IP);
3089   return S;
3090 }
3091 
3092 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3093                                          const SCEV *RHS) {
3094   SmallVector<const SCEV *, 2> Ops;
3095   Ops.push_back(LHS);
3096   Ops.push_back(RHS);
3097   return getUMaxExpr(Ops);
3098 }
3099 
3100 const SCEV *
3101 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3102   assert(!Ops.empty() && "Cannot get empty umax!");
3103   if (Ops.size() == 1) return Ops[0];
3104 #ifndef NDEBUG
3105   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3106   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3107     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3108            "SCEVUMaxExpr operand types don't match!");
3109 #endif
3110 
3111   // Sort by complexity, this groups all similar expression types together.
3112   GroupByComplexity(Ops, &LI);
3113 
3114   // If there are any constants, fold them together.
3115   unsigned Idx = 0;
3116   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3117     ++Idx;
3118     assert(Idx < Ops.size());
3119     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3120       // We found two constants, fold them together!
3121       ConstantInt *Fold = ConstantInt::get(
3122           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3123       Ops[0] = getConstant(Fold);
3124       Ops.erase(Ops.begin()+1);  // Erase the folded element
3125       if (Ops.size() == 1) return Ops[0];
3126       LHSC = cast<SCEVConstant>(Ops[0]);
3127     }
3128 
3129     // If we are left with a constant minimum-int, strip it off.
3130     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3131       Ops.erase(Ops.begin());
3132       --Idx;
3133     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3134       // If we have an umax with a constant maximum-int, it will always be
3135       // maximum-int.
3136       return Ops[0];
3137     }
3138 
3139     if (Ops.size() == 1) return Ops[0];
3140   }
3141 
3142   // Find the first UMax
3143   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3144     ++Idx;
3145 
3146   // Check to see if one of the operands is a UMax. If so, expand its operands
3147   // onto our operand list, and recurse to simplify.
3148   if (Idx < Ops.size()) {
3149     bool DeletedUMax = false;
3150     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3151       Ops.erase(Ops.begin()+Idx);
3152       Ops.append(UMax->op_begin(), UMax->op_end());
3153       DeletedUMax = true;
3154     }
3155 
3156     if (DeletedUMax)
3157       return getUMaxExpr(Ops);
3158   }
3159 
3160   // Okay, check to see if the same value occurs in the operand list twice.  If
3161   // so, delete one.  Since we sorted the list, these values are required to
3162   // be adjacent.
3163   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3164     //  X umax Y umax Y  -->  X umax Y
3165     //  X umax Y         -->  X, if X is always greater than Y
3166     if (Ops[i] == Ops[i+1] ||
3167         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3168       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3169       --i; --e;
3170     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3171       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3172       --i; --e;
3173     }
3174 
3175   if (Ops.size() == 1) return Ops[0];
3176 
3177   assert(!Ops.empty() && "Reduced umax down to nothing!");
3178 
3179   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3180   // already have one, otherwise create a new one.
3181   FoldingSetNodeID ID;
3182   ID.AddInteger(scUMaxExpr);
3183   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3184     ID.AddPointer(Ops[i]);
3185   void *IP = nullptr;
3186   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3187   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3188   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3189   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3190                                              O, Ops.size());
3191   UniqueSCEVs.InsertNode(S, IP);
3192   return S;
3193 }
3194 
3195 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3196                                          const SCEV *RHS) {
3197   // ~smax(~x, ~y) == smin(x, y).
3198   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3199 }
3200 
3201 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3202                                          const SCEV *RHS) {
3203   // ~umax(~x, ~y) == umin(x, y)
3204   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3205 }
3206 
3207 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3208   // We can bypass creating a target-independent
3209   // constant expression and then folding it back into a ConstantInt.
3210   // This is just a compile-time optimization.
3211   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3212 }
3213 
3214 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3215                                              StructType *STy,
3216                                              unsigned FieldNo) {
3217   // We can bypass creating a target-independent
3218   // constant expression and then folding it back into a ConstantInt.
3219   // This is just a compile-time optimization.
3220   return getConstant(
3221       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3222 }
3223 
3224 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3225   // Don't attempt to do anything other than create a SCEVUnknown object
3226   // here.  createSCEV only calls getUnknown after checking for all other
3227   // interesting possibilities, and any other code that calls getUnknown
3228   // is doing so in order to hide a value from SCEV canonicalization.
3229 
3230   FoldingSetNodeID ID;
3231   ID.AddInteger(scUnknown);
3232   ID.AddPointer(V);
3233   void *IP = nullptr;
3234   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3235     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3236            "Stale SCEVUnknown in uniquing map!");
3237     return S;
3238   }
3239   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3240                                             FirstUnknown);
3241   FirstUnknown = cast<SCEVUnknown>(S);
3242   UniqueSCEVs.InsertNode(S, IP);
3243   return S;
3244 }
3245 
3246 //===----------------------------------------------------------------------===//
3247 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3248 //
3249 
3250 /// isSCEVable - Test if values of the given type are analyzable within
3251 /// the SCEV framework. This primarily includes integer types, and it
3252 /// can optionally include pointer types if the ScalarEvolution class
3253 /// has access to target-specific information.
3254 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3255   // Integers and pointers are always SCEVable.
3256   return Ty->isIntegerTy() || Ty->isPointerTy();
3257 }
3258 
3259 /// getTypeSizeInBits - Return the size in bits of the specified type,
3260 /// for which isSCEVable must return true.
3261 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3262   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3263   return getDataLayout().getTypeSizeInBits(Ty);
3264 }
3265 
3266 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3267 /// the given type and which represents how SCEV will treat the given
3268 /// type, for which isSCEVable must return true. For pointer types,
3269 /// this is the pointer-sized integer type.
3270 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3271   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3272 
3273   if (Ty->isIntegerTy())
3274     return Ty;
3275 
3276   // The only other support type is pointer.
3277   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3278   return getDataLayout().getIntPtrType(Ty);
3279 }
3280 
3281 const SCEV *ScalarEvolution::getCouldNotCompute() {
3282   return CouldNotCompute.get();
3283 }
3284 
3285 
3286 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3287   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3288   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3289   // is set iff if find such SCEVUnknown.
3290   //
3291   struct FindInvalidSCEVUnknown {
3292     bool FindOne;
3293     FindInvalidSCEVUnknown() { FindOne = false; }
3294     bool follow(const SCEV *S) {
3295       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3296       case scConstant:
3297         return false;
3298       case scUnknown:
3299         if (!cast<SCEVUnknown>(S)->getValue())
3300           FindOne = true;
3301         return false;
3302       default:
3303         return true;
3304       }
3305     }
3306     bool isDone() const { return FindOne; }
3307   };
3308 
3309   FindInvalidSCEVUnknown F;
3310   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3311   ST.visitAll(S);
3312 
3313   return !F.FindOne;
3314 }
3315 
3316 namespace {
3317 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3318 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
3319 // iff if such sub scAddRecExpr type SCEV is found.
3320 struct FindAddRecurrence {
3321   bool FoundOne;
3322   FindAddRecurrence() : FoundOne(false) {}
3323 
3324   bool follow(const SCEV *S) {
3325     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3326     case scAddRecExpr:
3327       FoundOne = true;
3328     case scConstant:
3329     case scUnknown:
3330     case scCouldNotCompute:
3331       return false;
3332     default:
3333       return true;
3334     }
3335   }
3336   bool isDone() const { return FoundOne; }
3337 };
3338 }
3339 
3340 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3341   HasRecMapType::iterator I = HasRecMap.find_as(S);
3342   if (I != HasRecMap.end())
3343     return I->second;
3344 
3345   FindAddRecurrence F;
3346   SCEVTraversal<FindAddRecurrence> ST(F);
3347   ST.visitAll(S);
3348   HasRecMap.insert({S, F.FoundOne});
3349   return F.FoundOne;
3350 }
3351 
3352 /// getSCEVValues - Return the Value set from S.
3353 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3354   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3355   if (SI == ExprValueMap.end())
3356     return nullptr;
3357 #ifndef NDEBUG
3358   if (VerifySCEVMap) {
3359     // Check there is no dangling Value in the set returned.
3360     for (const auto &VE : SI->second)
3361       assert(ValueExprMap.count(VE));
3362   }
3363 #endif
3364   return &SI->second;
3365 }
3366 
3367 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3368 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3369 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3370 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3371 void ScalarEvolution::eraseValueFromMap(Value *V) {
3372   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3373   if (I != ValueExprMap.end()) {
3374     const SCEV *S = I->second;
3375     SetVector<Value *> *SV = getSCEVValues(S);
3376     // Remove V from the set of ExprValueMap[S]
3377     if (SV)
3378       SV->remove(V);
3379     ValueExprMap.erase(V);
3380   }
3381 }
3382 
3383 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3384 /// expression and create a new one.
3385 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3386   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3387 
3388   const SCEV *S = getExistingSCEV(V);
3389   if (S == nullptr) {
3390     S = createSCEV(V);
3391     // During PHI resolution, it is possible to create two SCEVs for the same
3392     // V, so it is needed to double check whether V->S is inserted into
3393     // ValueExprMap before insert S->V into ExprValueMap.
3394     std::pair<ValueExprMapType::iterator, bool> Pair =
3395         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3396     if (Pair.second)
3397       ExprValueMap[S].insert(V);
3398   }
3399   return S;
3400 }
3401 
3402 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3403   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3404 
3405   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3406   if (I != ValueExprMap.end()) {
3407     const SCEV *S = I->second;
3408     if (checkValidity(S))
3409       return S;
3410     forgetMemoizedResults(S);
3411     ValueExprMap.erase(I);
3412   }
3413   return nullptr;
3414 }
3415 
3416 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3417 ///
3418 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3419                                              SCEV::NoWrapFlags Flags) {
3420   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3421     return getConstant(
3422                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3423 
3424   Type *Ty = V->getType();
3425   Ty = getEffectiveSCEVType(Ty);
3426   return getMulExpr(
3427       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3428 }
3429 
3430 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3431 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3432   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3433     return getConstant(
3434                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3435 
3436   Type *Ty = V->getType();
3437   Ty = getEffectiveSCEVType(Ty);
3438   const SCEV *AllOnes =
3439                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3440   return getMinusSCEV(AllOnes, V);
3441 }
3442 
3443 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3444 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3445                                           SCEV::NoWrapFlags Flags) {
3446   // Fast path: X - X --> 0.
3447   if (LHS == RHS)
3448     return getZero(LHS->getType());
3449 
3450   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3451   // makes it so that we cannot make much use of NUW.
3452   auto AddFlags = SCEV::FlagAnyWrap;
3453   const bool RHSIsNotMinSigned =
3454       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3455   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3456     // Let M be the minimum representable signed value. Then (-1)*RHS
3457     // signed-wraps if and only if RHS is M. That can happen even for
3458     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3459     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3460     // (-1)*RHS, we need to prove that RHS != M.
3461     //
3462     // If LHS is non-negative and we know that LHS - RHS does not
3463     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3464     // either by proving that RHS > M or that LHS >= 0.
3465     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3466       AddFlags = SCEV::FlagNSW;
3467     }
3468   }
3469 
3470   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3471   // RHS is NSW and LHS >= 0.
3472   //
3473   // The difficulty here is that the NSW flag may have been proven
3474   // relative to a loop that is to be found in a recurrence in LHS and
3475   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3476   // larger scope than intended.
3477   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3478 
3479   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3480 }
3481 
3482 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3483 /// input value to the specified type.  If the type must be extended, it is zero
3484 /// extended.
3485 const SCEV *
3486 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3487   Type *SrcTy = V->getType();
3488   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3489          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3490          "Cannot truncate or zero extend with non-integer arguments!");
3491   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3492     return V;  // No conversion
3493   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3494     return getTruncateExpr(V, Ty);
3495   return getZeroExtendExpr(V, Ty);
3496 }
3497 
3498 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3499 /// input value to the specified type.  If the type must be extended, it is sign
3500 /// extended.
3501 const SCEV *
3502 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3503                                          Type *Ty) {
3504   Type *SrcTy = V->getType();
3505   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3506          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3507          "Cannot truncate or zero extend with non-integer arguments!");
3508   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3509     return V;  // No conversion
3510   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3511     return getTruncateExpr(V, Ty);
3512   return getSignExtendExpr(V, Ty);
3513 }
3514 
3515 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3516 /// input value to the specified type.  If the type must be extended, it is zero
3517 /// extended.  The conversion must not be narrowing.
3518 const SCEV *
3519 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3520   Type *SrcTy = V->getType();
3521   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3522          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3523          "Cannot noop or zero extend with non-integer arguments!");
3524   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3525          "getNoopOrZeroExtend cannot truncate!");
3526   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3527     return V;  // No conversion
3528   return getZeroExtendExpr(V, Ty);
3529 }
3530 
3531 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3532 /// input value to the specified type.  If the type must be extended, it is sign
3533 /// extended.  The conversion must not be narrowing.
3534 const SCEV *
3535 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3536   Type *SrcTy = V->getType();
3537   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3538          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3539          "Cannot noop or sign extend with non-integer arguments!");
3540   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3541          "getNoopOrSignExtend cannot truncate!");
3542   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3543     return V;  // No conversion
3544   return getSignExtendExpr(V, Ty);
3545 }
3546 
3547 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3548 /// the input value to the specified type. If the type must be extended,
3549 /// it is extended with unspecified bits. The conversion must not be
3550 /// narrowing.
3551 const SCEV *
3552 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3553   Type *SrcTy = V->getType();
3554   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3555          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3556          "Cannot noop or any extend with non-integer arguments!");
3557   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3558          "getNoopOrAnyExtend cannot truncate!");
3559   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3560     return V;  // No conversion
3561   return getAnyExtendExpr(V, Ty);
3562 }
3563 
3564 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3565 /// input value to the specified type.  The conversion must not be widening.
3566 const SCEV *
3567 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3568   Type *SrcTy = V->getType();
3569   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3570          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3571          "Cannot truncate or noop with non-integer arguments!");
3572   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3573          "getTruncateOrNoop cannot extend!");
3574   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3575     return V;  // No conversion
3576   return getTruncateExpr(V, Ty);
3577 }
3578 
3579 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3580 /// the types using zero-extension, and then perform a umax operation
3581 /// with them.
3582 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3583                                                         const SCEV *RHS) {
3584   const SCEV *PromotedLHS = LHS;
3585   const SCEV *PromotedRHS = RHS;
3586 
3587   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3588     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3589   else
3590     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3591 
3592   return getUMaxExpr(PromotedLHS, PromotedRHS);
3593 }
3594 
3595 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3596 /// the types using zero-extension, and then perform a umin operation
3597 /// with them.
3598 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3599                                                         const SCEV *RHS) {
3600   const SCEV *PromotedLHS = LHS;
3601   const SCEV *PromotedRHS = RHS;
3602 
3603   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3604     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3605   else
3606     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3607 
3608   return getUMinExpr(PromotedLHS, PromotedRHS);
3609 }
3610 
3611 /// getPointerBase - Transitively follow the chain of pointer-type operands
3612 /// until reaching a SCEV that does not have a single pointer operand. This
3613 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3614 /// but corner cases do exist.
3615 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3616   // A pointer operand may evaluate to a nonpointer expression, such as null.
3617   if (!V->getType()->isPointerTy())
3618     return V;
3619 
3620   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3621     return getPointerBase(Cast->getOperand());
3622   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3623     const SCEV *PtrOp = nullptr;
3624     for (const SCEV *NAryOp : NAry->operands()) {
3625       if (NAryOp->getType()->isPointerTy()) {
3626         // Cannot find the base of an expression with multiple pointer operands.
3627         if (PtrOp)
3628           return V;
3629         PtrOp = NAryOp;
3630       }
3631     }
3632     if (!PtrOp)
3633       return V;
3634     return getPointerBase(PtrOp);
3635   }
3636   return V;
3637 }
3638 
3639 /// PushDefUseChildren - Push users of the given Instruction
3640 /// onto the given Worklist.
3641 static void
3642 PushDefUseChildren(Instruction *I,
3643                    SmallVectorImpl<Instruction *> &Worklist) {
3644   // Push the def-use children onto the Worklist stack.
3645   for (User *U : I->users())
3646     Worklist.push_back(cast<Instruction>(U));
3647 }
3648 
3649 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3650 /// instructions that depend on the given instruction and removes them from
3651 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3652 /// resolution.
3653 void
3654 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3655   SmallVector<Instruction *, 16> Worklist;
3656   PushDefUseChildren(PN, Worklist);
3657 
3658   SmallPtrSet<Instruction *, 8> Visited;
3659   Visited.insert(PN);
3660   while (!Worklist.empty()) {
3661     Instruction *I = Worklist.pop_back_val();
3662     if (!Visited.insert(I).second)
3663       continue;
3664 
3665     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3666     if (It != ValueExprMap.end()) {
3667       const SCEV *Old = It->second;
3668 
3669       // Short-circuit the def-use traversal if the symbolic name
3670       // ceases to appear in expressions.
3671       if (Old != SymName && !hasOperand(Old, SymName))
3672         continue;
3673 
3674       // SCEVUnknown for a PHI either means that it has an unrecognized
3675       // structure, it's a PHI that's in the progress of being computed
3676       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3677       // additional loop trip count information isn't going to change anything.
3678       // In the second case, createNodeForPHI will perform the necessary
3679       // updates on its own when it gets to that point. In the third, we do
3680       // want to forget the SCEVUnknown.
3681       if (!isa<PHINode>(I) ||
3682           !isa<SCEVUnknown>(Old) ||
3683           (I != PN && Old == SymName)) {
3684         forgetMemoizedResults(Old);
3685         ValueExprMap.erase(It);
3686       }
3687     }
3688 
3689     PushDefUseChildren(I, Worklist);
3690   }
3691 }
3692 
3693 namespace {
3694 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3695 public:
3696   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3697                              ScalarEvolution &SE) {
3698     SCEVInitRewriter Rewriter(L, SE);
3699     const SCEV *Result = Rewriter.visit(S);
3700     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3701   }
3702 
3703   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3704       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3705 
3706   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3707     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3708       Valid = false;
3709     return Expr;
3710   }
3711 
3712   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3713     // Only allow AddRecExprs for this loop.
3714     if (Expr->getLoop() == L)
3715       return Expr->getStart();
3716     Valid = false;
3717     return Expr;
3718   }
3719 
3720   bool isValid() { return Valid; }
3721 
3722 private:
3723   const Loop *L;
3724   bool Valid;
3725 };
3726 
3727 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3728 public:
3729   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3730                              ScalarEvolution &SE) {
3731     SCEVShiftRewriter Rewriter(L, SE);
3732     const SCEV *Result = Rewriter.visit(S);
3733     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3734   }
3735 
3736   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3737       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3738 
3739   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3740     // Only allow AddRecExprs for this loop.
3741     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3742       Valid = false;
3743     return Expr;
3744   }
3745 
3746   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3747     if (Expr->getLoop() == L && Expr->isAffine())
3748       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3749     Valid = false;
3750     return Expr;
3751   }
3752   bool isValid() { return Valid; }
3753 
3754 private:
3755   const Loop *L;
3756   bool Valid;
3757 };
3758 } // end anonymous namespace
3759 
3760 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3761   const Loop *L = LI.getLoopFor(PN->getParent());
3762   if (!L || L->getHeader() != PN->getParent())
3763     return nullptr;
3764 
3765   // The loop may have multiple entrances or multiple exits; we can analyze
3766   // this phi as an addrec if it has a unique entry value and a unique
3767   // backedge value.
3768   Value *BEValueV = nullptr, *StartValueV = nullptr;
3769   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3770     Value *V = PN->getIncomingValue(i);
3771     if (L->contains(PN->getIncomingBlock(i))) {
3772       if (!BEValueV) {
3773         BEValueV = V;
3774       } else if (BEValueV != V) {
3775         BEValueV = nullptr;
3776         break;
3777       }
3778     } else if (!StartValueV) {
3779       StartValueV = V;
3780     } else if (StartValueV != V) {
3781       StartValueV = nullptr;
3782       break;
3783     }
3784   }
3785   if (BEValueV && StartValueV) {
3786     // While we are analyzing this PHI node, handle its value symbolically.
3787     const SCEV *SymbolicName = getUnknown(PN);
3788     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3789            "PHI node already processed?");
3790     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3791 
3792     // Using this symbolic name for the PHI, analyze the value coming around
3793     // the back-edge.
3794     const SCEV *BEValue = getSCEV(BEValueV);
3795 
3796     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3797     // has a special value for the first iteration of the loop.
3798 
3799     // If the value coming around the backedge is an add with the symbolic
3800     // value we just inserted, then we found a simple induction variable!
3801     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3802       // If there is a single occurrence of the symbolic value, replace it
3803       // with a recurrence.
3804       unsigned FoundIndex = Add->getNumOperands();
3805       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3806         if (Add->getOperand(i) == SymbolicName)
3807           if (FoundIndex == e) {
3808             FoundIndex = i;
3809             break;
3810           }
3811 
3812       if (FoundIndex != Add->getNumOperands()) {
3813         // Create an add with everything but the specified operand.
3814         SmallVector<const SCEV *, 8> Ops;
3815         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3816           if (i != FoundIndex)
3817             Ops.push_back(Add->getOperand(i));
3818         const SCEV *Accum = getAddExpr(Ops);
3819 
3820         // This is not a valid addrec if the step amount is varying each
3821         // loop iteration, but is not itself an addrec in this loop.
3822         if (isLoopInvariant(Accum, L) ||
3823             (isa<SCEVAddRecExpr>(Accum) &&
3824              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3825           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3826 
3827           // If the increment doesn't overflow, then neither the addrec nor
3828           // the post-increment will overflow.
3829           if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3830             if (OBO->getOperand(0) == PN) {
3831               if (OBO->hasNoUnsignedWrap())
3832                 Flags = setFlags(Flags, SCEV::FlagNUW);
3833               if (OBO->hasNoSignedWrap())
3834                 Flags = setFlags(Flags, SCEV::FlagNSW);
3835             }
3836           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3837             // If the increment is an inbounds GEP, then we know the address
3838             // space cannot be wrapped around. We cannot make any guarantee
3839             // about signed or unsigned overflow because pointers are
3840             // unsigned but we may have a negative index from the base
3841             // pointer. We can guarantee that no unsigned wrap occurs if the
3842             // indices form a positive value.
3843             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3844               Flags = setFlags(Flags, SCEV::FlagNW);
3845 
3846               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3847               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3848                 Flags = setFlags(Flags, SCEV::FlagNUW);
3849             }
3850 
3851             // We cannot transfer nuw and nsw flags from subtraction
3852             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3853             // for instance.
3854           }
3855 
3856           const SCEV *StartVal = getSCEV(StartValueV);
3857           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3858 
3859           // Since the no-wrap flags are on the increment, they apply to the
3860           // post-incremented value as well.
3861           if (isLoopInvariant(Accum, L))
3862             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3863 
3864           // Okay, for the entire analysis of this edge we assumed the PHI
3865           // to be symbolic.  We now need to go back and purge all of the
3866           // entries for the scalars that use the symbolic expression.
3867           ForgetSymbolicName(PN, SymbolicName);
3868           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3869           return PHISCEV;
3870         }
3871       }
3872     } else {
3873       // Otherwise, this could be a loop like this:
3874       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3875       // In this case, j = {1,+,1}  and BEValue is j.
3876       // Because the other in-value of i (0) fits the evolution of BEValue
3877       // i really is an addrec evolution.
3878       //
3879       // We can generalize this saying that i is the shifted value of BEValue
3880       // by one iteration:
3881       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
3882       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3883       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3884       if (Shifted != getCouldNotCompute() &&
3885           Start != getCouldNotCompute()) {
3886         const SCEV *StartVal = getSCEV(StartValueV);
3887         if (Start == StartVal) {
3888           // Okay, for the entire analysis of this edge we assumed the PHI
3889           // to be symbolic.  We now need to go back and purge all of the
3890           // entries for the scalars that use the symbolic expression.
3891           ForgetSymbolicName(PN, SymbolicName);
3892           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3893           return Shifted;
3894         }
3895       }
3896     }
3897 
3898     // Remove the temporary PHI node SCEV that has been inserted while intending
3899     // to create an AddRecExpr for this PHI node. We can not keep this temporary
3900     // as it will prevent later (possibly simpler) SCEV expressions to be added
3901     // to the ValueExprMap.
3902     ValueExprMap.erase(PN);
3903   }
3904 
3905   return nullptr;
3906 }
3907 
3908 // Checks if the SCEV S is available at BB.  S is considered available at BB
3909 // if S can be materialized at BB without introducing a fault.
3910 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3911                                BasicBlock *BB) {
3912   struct CheckAvailable {
3913     bool TraversalDone = false;
3914     bool Available = true;
3915 
3916     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
3917     BasicBlock *BB = nullptr;
3918     DominatorTree &DT;
3919 
3920     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3921       : L(L), BB(BB), DT(DT) {}
3922 
3923     bool setUnavailable() {
3924       TraversalDone = true;
3925       Available = false;
3926       return false;
3927     }
3928 
3929     bool follow(const SCEV *S) {
3930       switch (S->getSCEVType()) {
3931       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3932       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
3933         // These expressions are available if their operand(s) is/are.
3934         return true;
3935 
3936       case scAddRecExpr: {
3937         // We allow add recurrences that are on the loop BB is in, or some
3938         // outer loop.  This guarantees availability because the value of the
3939         // add recurrence at BB is simply the "current" value of the induction
3940         // variable.  We can relax this in the future; for instance an add
3941         // recurrence on a sibling dominating loop is also available at BB.
3942         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3943         if (L && (ARLoop == L || ARLoop->contains(L)))
3944           return true;
3945 
3946         return setUnavailable();
3947       }
3948 
3949       case scUnknown: {
3950         // For SCEVUnknown, we check for simple dominance.
3951         const auto *SU = cast<SCEVUnknown>(S);
3952         Value *V = SU->getValue();
3953 
3954         if (isa<Argument>(V))
3955           return false;
3956 
3957         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3958           return false;
3959 
3960         return setUnavailable();
3961       }
3962 
3963       case scUDivExpr:
3964       case scCouldNotCompute:
3965         // We do not try to smart about these at all.
3966         return setUnavailable();
3967       }
3968       llvm_unreachable("switch should be fully covered!");
3969     }
3970 
3971     bool isDone() { return TraversalDone; }
3972   };
3973 
3974   CheckAvailable CA(L, BB, DT);
3975   SCEVTraversal<CheckAvailable> ST(CA);
3976 
3977   ST.visitAll(S);
3978   return CA.Available;
3979 }
3980 
3981 // Try to match a control flow sequence that branches out at BI and merges back
3982 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
3983 // match.
3984 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3985                           Value *&C, Value *&LHS, Value *&RHS) {
3986   C = BI->getCondition();
3987 
3988   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3989   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3990 
3991   if (!LeftEdge.isSingleEdge())
3992     return false;
3993 
3994   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3995 
3996   Use &LeftUse = Merge->getOperandUse(0);
3997   Use &RightUse = Merge->getOperandUse(1);
3998 
3999   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4000     LHS = LeftUse;
4001     RHS = RightUse;
4002     return true;
4003   }
4004 
4005   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4006     LHS = RightUse;
4007     RHS = LeftUse;
4008     return true;
4009   }
4010 
4011   return false;
4012 }
4013 
4014 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4015   if (PN->getNumIncomingValues() == 2) {
4016     const Loop *L = LI.getLoopFor(PN->getParent());
4017 
4018     // We don't want to break LCSSA, even in a SCEV expression tree.
4019     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4020       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4021         return nullptr;
4022 
4023     // Try to match
4024     //
4025     //  br %cond, label %left, label %right
4026     // left:
4027     //  br label %merge
4028     // right:
4029     //  br label %merge
4030     // merge:
4031     //  V = phi [ %x, %left ], [ %y, %right ]
4032     //
4033     // as "select %cond, %x, %y"
4034 
4035     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4036     assert(IDom && "At least the entry block should dominate PN");
4037 
4038     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4039     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4040 
4041     if (BI && BI->isConditional() &&
4042         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4043         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4044         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4045       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4046   }
4047 
4048   return nullptr;
4049 }
4050 
4051 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4052   if (const SCEV *S = createAddRecFromPHI(PN))
4053     return S;
4054 
4055   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4056     return S;
4057 
4058   // If the PHI has a single incoming value, follow that value, unless the
4059   // PHI's incoming blocks are in a different loop, in which case doing so
4060   // risks breaking LCSSA form. Instcombine would normally zap these, but
4061   // it doesn't have DominatorTree information, so it may miss cases.
4062   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4063     if (LI.replacementPreservesLCSSAForm(PN, V))
4064       return getSCEV(V);
4065 
4066   // If it's not a loop phi, we can't handle it yet.
4067   return getUnknown(PN);
4068 }
4069 
4070 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4071                                                       Value *Cond,
4072                                                       Value *TrueVal,
4073                                                       Value *FalseVal) {
4074   // Handle "constant" branch or select. This can occur for instance when a
4075   // loop pass transforms an inner loop and moves on to process the outer loop.
4076   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4077     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4078 
4079   // Try to match some simple smax or umax patterns.
4080   auto *ICI = dyn_cast<ICmpInst>(Cond);
4081   if (!ICI)
4082     return getUnknown(I);
4083 
4084   Value *LHS = ICI->getOperand(0);
4085   Value *RHS = ICI->getOperand(1);
4086 
4087   switch (ICI->getPredicate()) {
4088   case ICmpInst::ICMP_SLT:
4089   case ICmpInst::ICMP_SLE:
4090     std::swap(LHS, RHS);
4091   // fall through
4092   case ICmpInst::ICMP_SGT:
4093   case ICmpInst::ICMP_SGE:
4094     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4095     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4096     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4097       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4098       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4099       const SCEV *LA = getSCEV(TrueVal);
4100       const SCEV *RA = getSCEV(FalseVal);
4101       const SCEV *LDiff = getMinusSCEV(LA, LS);
4102       const SCEV *RDiff = getMinusSCEV(RA, RS);
4103       if (LDiff == RDiff)
4104         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4105       LDiff = getMinusSCEV(LA, RS);
4106       RDiff = getMinusSCEV(RA, LS);
4107       if (LDiff == RDiff)
4108         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4109     }
4110     break;
4111   case ICmpInst::ICMP_ULT:
4112   case ICmpInst::ICMP_ULE:
4113     std::swap(LHS, RHS);
4114   // fall through
4115   case ICmpInst::ICMP_UGT:
4116   case ICmpInst::ICMP_UGE:
4117     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4118     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4119     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4120       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4121       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4122       const SCEV *LA = getSCEV(TrueVal);
4123       const SCEV *RA = getSCEV(FalseVal);
4124       const SCEV *LDiff = getMinusSCEV(LA, LS);
4125       const SCEV *RDiff = getMinusSCEV(RA, RS);
4126       if (LDiff == RDiff)
4127         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4128       LDiff = getMinusSCEV(LA, RS);
4129       RDiff = getMinusSCEV(RA, LS);
4130       if (LDiff == RDiff)
4131         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4132     }
4133     break;
4134   case ICmpInst::ICMP_NE:
4135     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4136     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4137         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4138       const SCEV *One = getOne(I->getType());
4139       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4140       const SCEV *LA = getSCEV(TrueVal);
4141       const SCEV *RA = getSCEV(FalseVal);
4142       const SCEV *LDiff = getMinusSCEV(LA, LS);
4143       const SCEV *RDiff = getMinusSCEV(RA, One);
4144       if (LDiff == RDiff)
4145         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4146     }
4147     break;
4148   case ICmpInst::ICMP_EQ:
4149     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4150     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4151         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4152       const SCEV *One = getOne(I->getType());
4153       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4154       const SCEV *LA = getSCEV(TrueVal);
4155       const SCEV *RA = getSCEV(FalseVal);
4156       const SCEV *LDiff = getMinusSCEV(LA, One);
4157       const SCEV *RDiff = getMinusSCEV(RA, LS);
4158       if (LDiff == RDiff)
4159         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4160     }
4161     break;
4162   default:
4163     break;
4164   }
4165 
4166   return getUnknown(I);
4167 }
4168 
4169 /// createNodeForGEP - Expand GEP instructions into add and multiply
4170 /// operations. This allows them to be analyzed by regular SCEV code.
4171 ///
4172 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4173   // Don't attempt to analyze GEPs over unsized objects.
4174   if (!GEP->getSourceElementType()->isSized())
4175     return getUnknown(GEP);
4176 
4177   SmallVector<const SCEV *, 4> IndexExprs;
4178   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4179     IndexExprs.push_back(getSCEV(*Index));
4180   return getGEPExpr(GEP->getSourceElementType(),
4181                     getSCEV(GEP->getPointerOperand()),
4182                     IndexExprs, GEP->isInBounds());
4183 }
4184 
4185 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4186 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
4187 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
4188 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
4189 uint32_t
4190 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4191   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4192     return C->getAPInt().countTrailingZeros();
4193 
4194   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4195     return std::min(GetMinTrailingZeros(T->getOperand()),
4196                     (uint32_t)getTypeSizeInBits(T->getType()));
4197 
4198   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4199     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4200     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4201              getTypeSizeInBits(E->getType()) : OpRes;
4202   }
4203 
4204   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4205     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4206     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4207              getTypeSizeInBits(E->getType()) : OpRes;
4208   }
4209 
4210   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4211     // The result is the min of all operands results.
4212     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4213     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4214       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4215     return MinOpRes;
4216   }
4217 
4218   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4219     // The result is the sum of all operands results.
4220     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4221     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4222     for (unsigned i = 1, e = M->getNumOperands();
4223          SumOpRes != BitWidth && i != e; ++i)
4224       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4225                           BitWidth);
4226     return SumOpRes;
4227   }
4228 
4229   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4230     // The result is the min of all operands results.
4231     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4232     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4233       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4234     return MinOpRes;
4235   }
4236 
4237   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4238     // The result is the min of all operands results.
4239     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4240     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4241       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4242     return MinOpRes;
4243   }
4244 
4245   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4246     // The result is the min of all operands results.
4247     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4248     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4249       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4250     return MinOpRes;
4251   }
4252 
4253   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4254     // For a SCEVUnknown, ask ValueTracking.
4255     unsigned BitWidth = getTypeSizeInBits(U->getType());
4256     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4257     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4258                      nullptr, &DT);
4259     return Zeros.countTrailingOnes();
4260   }
4261 
4262   // SCEVUDivExpr
4263   return 0;
4264 }
4265 
4266 /// GetRangeFromMetadata - Helper method to assign a range to V from
4267 /// metadata present in the IR.
4268 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4269   if (Instruction *I = dyn_cast<Instruction>(V))
4270     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4271       return getConstantRangeFromMetadata(*MD);
4272 
4273   return None;
4274 }
4275 
4276 /// getRange - Determine the range for a particular SCEV.  If SignHint is
4277 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4278 /// with a "cleaner" unsigned (resp. signed) representation.
4279 ///
4280 ConstantRange
4281 ScalarEvolution::getRange(const SCEV *S,
4282                           ScalarEvolution::RangeSignHint SignHint) {
4283   DenseMap<const SCEV *, ConstantRange> &Cache =
4284       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4285                                                        : SignedRanges;
4286 
4287   // See if we've computed this range already.
4288   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4289   if (I != Cache.end())
4290     return I->second;
4291 
4292   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4293     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4294 
4295   unsigned BitWidth = getTypeSizeInBits(S->getType());
4296   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4297 
4298   // If the value has known zeros, the maximum value will have those known zeros
4299   // as well.
4300   uint32_t TZ = GetMinTrailingZeros(S);
4301   if (TZ != 0) {
4302     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4303       ConservativeResult =
4304           ConstantRange(APInt::getMinValue(BitWidth),
4305                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4306     else
4307       ConservativeResult = ConstantRange(
4308           APInt::getSignedMinValue(BitWidth),
4309           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4310   }
4311 
4312   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4313     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4314     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4315       X = X.add(getRange(Add->getOperand(i), SignHint));
4316     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4317   }
4318 
4319   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4320     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4321     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4322       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4323     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4324   }
4325 
4326   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4327     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4328     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4329       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4330     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4331   }
4332 
4333   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4334     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4335     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4336       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4337     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4338   }
4339 
4340   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4341     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4342     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4343     return setRange(UDiv, SignHint,
4344                     ConservativeResult.intersectWith(X.udiv(Y)));
4345   }
4346 
4347   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4348     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4349     return setRange(ZExt, SignHint,
4350                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4351   }
4352 
4353   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4354     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4355     return setRange(SExt, SignHint,
4356                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4357   }
4358 
4359   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4360     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4361     return setRange(Trunc, SignHint,
4362                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4363   }
4364 
4365   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4366     // If there's no unsigned wrap, the value will never be less than its
4367     // initial value.
4368     if (AddRec->hasNoUnsignedWrap())
4369       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4370         if (!C->getValue()->isZero())
4371           ConservativeResult = ConservativeResult.intersectWith(
4372               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4373 
4374     // If there's no signed wrap, and all the operands have the same sign or
4375     // zero, the value won't ever change sign.
4376     if (AddRec->hasNoSignedWrap()) {
4377       bool AllNonNeg = true;
4378       bool AllNonPos = true;
4379       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4380         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4381         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4382       }
4383       if (AllNonNeg)
4384         ConservativeResult = ConservativeResult.intersectWith(
4385           ConstantRange(APInt(BitWidth, 0),
4386                         APInt::getSignedMinValue(BitWidth)));
4387       else if (AllNonPos)
4388         ConservativeResult = ConservativeResult.intersectWith(
4389           ConstantRange(APInt::getSignedMinValue(BitWidth),
4390                         APInt(BitWidth, 1)));
4391     }
4392 
4393     // TODO: non-affine addrec
4394     if (AddRec->isAffine()) {
4395       Type *Ty = AddRec->getType();
4396       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4397       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4398           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4399 
4400         // Check for overflow.  This must be done with ConstantRange arithmetic
4401         // because we could be called from within the ScalarEvolution overflow
4402         // checking code.
4403 
4404         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
4405         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4406         ConstantRange ZExtMaxBECountRange =
4407             MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4408 
4409         const SCEV *Start = AddRec->getStart();
4410         const SCEV *Step = AddRec->getStepRecurrence(*this);
4411         ConstantRange StepSRange = getSignedRange(Step);
4412         ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4413 
4414         ConstantRange StartURange = getUnsignedRange(Start);
4415         ConstantRange EndURange =
4416             StartURange.add(MaxBECountRange.multiply(StepSRange));
4417 
4418         // Check for unsigned overflow.
4419         ConstantRange ZExtStartURange =
4420             StartURange.zextOrTrunc(BitWidth * 2 + 1);
4421         ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4422         if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4423             ZExtEndURange) {
4424           APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4425                                      EndURange.getUnsignedMin());
4426           APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4427                                      EndURange.getUnsignedMax());
4428           bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4429           if (!IsFullRange)
4430             ConservativeResult =
4431                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4432         }
4433 
4434         ConstantRange StartSRange = getSignedRange(Start);
4435         ConstantRange EndSRange =
4436             StartSRange.add(MaxBECountRange.multiply(StepSRange));
4437 
4438         // Check for signed overflow. This must be done with ConstantRange
4439         // arithmetic because we could be called from within the ScalarEvolution
4440         // overflow checking code.
4441         ConstantRange SExtStartSRange =
4442             StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4443         ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4444         if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4445             SExtEndSRange) {
4446           APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4447                                      EndSRange.getSignedMin());
4448           APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4449                                      EndSRange.getSignedMax());
4450           bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4451           if (!IsFullRange)
4452             ConservativeResult =
4453                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4454         }
4455       }
4456     }
4457 
4458     return setRange(AddRec, SignHint, ConservativeResult);
4459   }
4460 
4461   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4462     // Check if the IR explicitly contains !range metadata.
4463     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4464     if (MDRange.hasValue())
4465       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4466 
4467     // Split here to avoid paying the compile-time cost of calling both
4468     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4469     // if needed.
4470     const DataLayout &DL = getDataLayout();
4471     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4472       // For a SCEVUnknown, ask ValueTracking.
4473       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4474       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4475       if (Ones != ~Zeros + 1)
4476         ConservativeResult =
4477             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4478     } else {
4479       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4480              "generalize as needed!");
4481       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4482       if (NS > 1)
4483         ConservativeResult = ConservativeResult.intersectWith(
4484             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4485                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4486     }
4487 
4488     return setRange(U, SignHint, ConservativeResult);
4489   }
4490 
4491   return setRange(S, SignHint, ConservativeResult);
4492 }
4493 
4494 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4495   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4496   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4497 
4498   // Return early if there are no flags to propagate to the SCEV.
4499   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4500   if (BinOp->hasNoUnsignedWrap())
4501     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4502   if (BinOp->hasNoSignedWrap())
4503     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4504   if (Flags == SCEV::FlagAnyWrap) {
4505     return SCEV::FlagAnyWrap;
4506   }
4507 
4508   // Here we check that BinOp is in the header of the innermost loop
4509   // containing BinOp, since we only deal with instructions in the loop
4510   // header. The actual loop we need to check later will come from an add
4511   // recurrence, but getting that requires computing the SCEV of the operands,
4512   // which can be expensive. This check we can do cheaply to rule out some
4513   // cases early.
4514   Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
4515   if (innermostContainingLoop == nullptr ||
4516       innermostContainingLoop->getHeader() != BinOp->getParent())
4517     return SCEV::FlagAnyWrap;
4518 
4519   // Only proceed if we can prove that BinOp does not yield poison.
4520   if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4521 
4522   // At this point we know that if V is executed, then it does not wrap
4523   // according to at least one of NSW or NUW. If V is not executed, then we do
4524   // not know if the calculation that V represents would wrap. Multiple
4525   // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4526   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4527   // derived from other instructions that map to the same SCEV. We cannot make
4528   // that guarantee for cases where V is not executed. So we need to find the
4529   // loop that V is considered in relation to and prove that V is executed for
4530   // every iteration of that loop. That implies that the value that V
4531   // calculates does not wrap anywhere in the loop, so then we can apply the
4532   // flags to the SCEV.
4533   //
4534   // We check isLoopInvariant to disambiguate in case we are adding two
4535   // recurrences from different loops, so that we know which loop to prove
4536   // that V is executed in.
4537   for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4538     const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4539     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4540       const int OtherOpIndex = 1 - OpIndex;
4541       const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4542       if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4543           isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4544         return Flags;
4545     }
4546   }
4547   return SCEV::FlagAnyWrap;
4548 }
4549 
4550 /// createSCEV - We know that there is no SCEV for the specified value.  Analyze
4551 /// the expression.
4552 ///
4553 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4554   if (!isSCEVable(V->getType()))
4555     return getUnknown(V);
4556 
4557   unsigned Opcode = Instruction::UserOp1;
4558   if (Instruction *I = dyn_cast<Instruction>(V)) {
4559     Opcode = I->getOpcode();
4560 
4561     // Don't attempt to analyze instructions in blocks that aren't
4562     // reachable. Such instructions don't matter, and they aren't required
4563     // to obey basic rules for definitions dominating uses which this
4564     // analysis depends on.
4565     if (!DT.isReachableFromEntry(I->getParent()))
4566       return getUnknown(V);
4567   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4568     Opcode = CE->getOpcode();
4569   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4570     return getConstant(CI);
4571   else if (isa<ConstantPointerNull>(V))
4572     return getZero(V->getType());
4573   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4574     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4575   else
4576     return getUnknown(V);
4577 
4578   Operator *U = cast<Operator>(V);
4579   switch (Opcode) {
4580   case Instruction::Add: {
4581     // The simple thing to do would be to just call getSCEV on both operands
4582     // and call getAddExpr with the result. However if we're looking at a
4583     // bunch of things all added together, this can be quite inefficient,
4584     // because it leads to N-1 getAddExpr calls for N ultimate operands.
4585     // Instead, gather up all the operands and make a single getAddExpr call.
4586     // LLVM IR canonical form means we need only traverse the left operands.
4587     SmallVector<const SCEV *, 4> AddOps;
4588     for (Value *Op = U;; Op = U->getOperand(0)) {
4589       U = dyn_cast<Operator>(Op);
4590       unsigned Opcode = U ? U->getOpcode() : 0;
4591       if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4592         assert(Op != V && "V should be an add");
4593         AddOps.push_back(getSCEV(Op));
4594         break;
4595       }
4596 
4597       if (auto *OpSCEV = getExistingSCEV(U)) {
4598         AddOps.push_back(OpSCEV);
4599         break;
4600       }
4601 
4602       // If a NUW or NSW flag can be applied to the SCEV for this
4603       // addition, then compute the SCEV for this addition by itself
4604       // with a separate call to getAddExpr. We need to do that
4605       // instead of pushing the operands of the addition onto AddOps,
4606       // since the flags are only known to apply to this particular
4607       // addition - they may not apply to other additions that can be
4608       // formed with operands from AddOps.
4609       const SCEV *RHS = getSCEV(U->getOperand(1));
4610       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4611       if (Flags != SCEV::FlagAnyWrap) {
4612         const SCEV *LHS = getSCEV(U->getOperand(0));
4613         if (Opcode == Instruction::Sub)
4614           AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4615         else
4616           AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4617         break;
4618       }
4619 
4620       if (Opcode == Instruction::Sub)
4621         AddOps.push_back(getNegativeSCEV(RHS));
4622       else
4623         AddOps.push_back(RHS);
4624     }
4625     return getAddExpr(AddOps);
4626   }
4627 
4628   case Instruction::Mul: {
4629     SmallVector<const SCEV *, 4> MulOps;
4630     for (Value *Op = U;; Op = U->getOperand(0)) {
4631       U = dyn_cast<Operator>(Op);
4632       if (!U || U->getOpcode() != Instruction::Mul) {
4633         assert(Op != V && "V should be a mul");
4634         MulOps.push_back(getSCEV(Op));
4635         break;
4636       }
4637 
4638       if (auto *OpSCEV = getExistingSCEV(U)) {
4639         MulOps.push_back(OpSCEV);
4640         break;
4641       }
4642 
4643       SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4644       if (Flags != SCEV::FlagAnyWrap) {
4645         MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4646                                     getSCEV(U->getOperand(1)), Flags));
4647         break;
4648       }
4649 
4650       MulOps.push_back(getSCEV(U->getOperand(1)));
4651     }
4652     return getMulExpr(MulOps);
4653   }
4654   case Instruction::UDiv:
4655     return getUDivExpr(getSCEV(U->getOperand(0)),
4656                        getSCEV(U->getOperand(1)));
4657   case Instruction::Sub:
4658     return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4659                         getNoWrapFlagsFromUB(U));
4660   case Instruction::And:
4661     // For an expression like x&255 that merely masks off the high bits,
4662     // use zext(trunc(x)) as the SCEV expression.
4663     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4664       if (CI->isNullValue())
4665         return getSCEV(U->getOperand(1));
4666       if (CI->isAllOnesValue())
4667         return getSCEV(U->getOperand(0));
4668       const APInt &A = CI->getValue();
4669 
4670       // Instcombine's ShrinkDemandedConstant may strip bits out of
4671       // constants, obscuring what would otherwise be a low-bits mask.
4672       // Use computeKnownBits to compute what ShrinkDemandedConstant
4673       // knew about to reconstruct a low-bits mask value.
4674       unsigned LZ = A.countLeadingZeros();
4675       unsigned TZ = A.countTrailingZeros();
4676       unsigned BitWidth = A.getBitWidth();
4677       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4678       computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4679                        0, &AC, nullptr, &DT);
4680 
4681       APInt EffectiveMask =
4682           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4683       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4684         const SCEV *MulCount = getConstant(
4685             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4686         return getMulExpr(
4687             getZeroExtendExpr(
4688                 getTruncateExpr(
4689                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4690                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4691                 U->getType()),
4692             MulCount);
4693       }
4694     }
4695     break;
4696 
4697   case Instruction::Or:
4698     // If the RHS of the Or is a constant, we may have something like:
4699     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4700     // optimizations will transparently handle this case.
4701     //
4702     // In order for this transformation to be safe, the LHS must be of the
4703     // form X*(2^n) and the Or constant must be less than 2^n.
4704     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4705       const SCEV *LHS = getSCEV(U->getOperand(0));
4706       const APInt &CIVal = CI->getValue();
4707       if (GetMinTrailingZeros(LHS) >=
4708           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4709         // Build a plain add SCEV.
4710         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4711         // If the LHS of the add was an addrec and it has no-wrap flags,
4712         // transfer the no-wrap flags, since an or won't introduce a wrap.
4713         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4714           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4715           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4716             OldAR->getNoWrapFlags());
4717         }
4718         return S;
4719       }
4720     }
4721     break;
4722   case Instruction::Xor:
4723     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4724       // If the RHS of the xor is a signbit, then this is just an add.
4725       // Instcombine turns add of signbit into xor as a strength reduction step.
4726       if (CI->getValue().isSignBit())
4727         return getAddExpr(getSCEV(U->getOperand(0)),
4728                           getSCEV(U->getOperand(1)));
4729 
4730       // If the RHS of xor is -1, then this is a not operation.
4731       if (CI->isAllOnesValue())
4732         return getNotSCEV(getSCEV(U->getOperand(0)));
4733 
4734       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4735       // This is a variant of the check for xor with -1, and it handles
4736       // the case where instcombine has trimmed non-demanded bits out
4737       // of an xor with -1.
4738       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4739         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4740           if (BO->getOpcode() == Instruction::And &&
4741               LCI->getValue() == CI->getValue())
4742             if (const SCEVZeroExtendExpr *Z =
4743                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4744               Type *UTy = U->getType();
4745               const SCEV *Z0 = Z->getOperand();
4746               Type *Z0Ty = Z0->getType();
4747               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4748 
4749               // If C is a low-bits mask, the zero extend is serving to
4750               // mask off the high bits. Complement the operand and
4751               // re-apply the zext.
4752               if (APIntOps::isMask(Z0TySize, CI->getValue()))
4753                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4754 
4755               // If C is a single bit, it may be in the sign-bit position
4756               // before the zero-extend. In this case, represent the xor
4757               // using an add, which is equivalent, and re-apply the zext.
4758               APInt Trunc = CI->getValue().trunc(Z0TySize);
4759               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4760                   Trunc.isSignBit())
4761                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4762                                          UTy);
4763             }
4764     }
4765     break;
4766 
4767   case Instruction::Shl:
4768     // Turn shift left of a constant amount into a multiply.
4769     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4770       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4771 
4772       // If the shift count is not less than the bitwidth, the result of
4773       // the shift is undefined. Don't try to analyze it, because the
4774       // resolution chosen here may differ from the resolution chosen in
4775       // other parts of the compiler.
4776       if (SA->getValue().uge(BitWidth))
4777         break;
4778 
4779       // It is currently not resolved how to interpret NSW for left
4780       // shift by BitWidth - 1, so we avoid applying flags in that
4781       // case. Remove this check (or this comment) once the situation
4782       // is resolved. See
4783       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4784       // and http://reviews.llvm.org/D8890 .
4785       auto Flags = SCEV::FlagAnyWrap;
4786       if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4787 
4788       Constant *X = ConstantInt::get(getContext(),
4789         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4790       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
4791     }
4792     break;
4793 
4794   case Instruction::LShr:
4795     // Turn logical shift right of a constant into a unsigned divide.
4796     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4797       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4798 
4799       // If the shift count is not less than the bitwidth, the result of
4800       // the shift is undefined. Don't try to analyze it, because the
4801       // resolution chosen here may differ from the resolution chosen in
4802       // other parts of the compiler.
4803       if (SA->getValue().uge(BitWidth))
4804         break;
4805 
4806       Constant *X = ConstantInt::get(getContext(),
4807         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4808       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4809     }
4810     break;
4811 
4812   case Instruction::AShr:
4813     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4814     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4815       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4816         if (L->getOpcode() == Instruction::Shl &&
4817             L->getOperand(1) == U->getOperand(1)) {
4818           uint64_t BitWidth = getTypeSizeInBits(U->getType());
4819 
4820           // If the shift count is not less than the bitwidth, the result of
4821           // the shift is undefined. Don't try to analyze it, because the
4822           // resolution chosen here may differ from the resolution chosen in
4823           // other parts of the compiler.
4824           if (CI->getValue().uge(BitWidth))
4825             break;
4826 
4827           uint64_t Amt = BitWidth - CI->getZExtValue();
4828           if (Amt == BitWidth)
4829             return getSCEV(L->getOperand(0));       // shift by zero --> noop
4830           return
4831             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4832                                               IntegerType::get(getContext(),
4833                                                                Amt)),
4834                               U->getType());
4835         }
4836     break;
4837 
4838   case Instruction::Trunc:
4839     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4840 
4841   case Instruction::ZExt:
4842     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4843 
4844   case Instruction::SExt:
4845     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4846 
4847   case Instruction::BitCast:
4848     // BitCasts are no-op casts so we just eliminate the cast.
4849     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4850       return getSCEV(U->getOperand(0));
4851     break;
4852 
4853   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4854   // lead to pointer expressions which cannot safely be expanded to GEPs,
4855   // because ScalarEvolution doesn't respect the GEP aliasing rules when
4856   // simplifying integer expressions.
4857 
4858   case Instruction::GetElementPtr:
4859     return createNodeForGEP(cast<GEPOperator>(U));
4860 
4861   case Instruction::PHI:
4862     return createNodeForPHI(cast<PHINode>(U));
4863 
4864   case Instruction::Select:
4865     // U can also be a select constant expr, which let fall through.  Since
4866     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4867     // constant expressions cannot have instructions as operands, we'd have
4868     // returned getUnknown for a select constant expressions anyway.
4869     if (isa<Instruction>(U))
4870       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4871                                       U->getOperand(1), U->getOperand(2));
4872 
4873   default: // We cannot analyze this expression.
4874     break;
4875   }
4876 
4877   return getUnknown(V);
4878 }
4879 
4880 
4881 
4882 //===----------------------------------------------------------------------===//
4883 //                   Iteration Count Computation Code
4884 //
4885 
4886 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4887   if (BasicBlock *ExitingBB = L->getExitingBlock())
4888     return getSmallConstantTripCount(L, ExitingBB);
4889 
4890   // No trip count information for multiple exits.
4891   return 0;
4892 }
4893 
4894 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4895 /// normal unsigned value. Returns 0 if the trip count is unknown or not
4896 /// constant. Will also return 0 if the maximum trip count is very large (>=
4897 /// 2^32).
4898 ///
4899 /// This "trip count" assumes that control exits via ExitingBlock. More
4900 /// precisely, it is the number of times that control may reach ExitingBlock
4901 /// before taking the branch. For loops with multiple exits, it may not be the
4902 /// number times that the loop header executes because the loop may exit
4903 /// prematurely via another branch.
4904 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4905                                                     BasicBlock *ExitingBlock) {
4906   assert(ExitingBlock && "Must pass a non-null exiting block!");
4907   assert(L->isLoopExiting(ExitingBlock) &&
4908          "Exiting block must actually branch out of the loop!");
4909   const SCEVConstant *ExitCount =
4910       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4911   if (!ExitCount)
4912     return 0;
4913 
4914   ConstantInt *ExitConst = ExitCount->getValue();
4915 
4916   // Guard against huge trip counts.
4917   if (ExitConst->getValue().getActiveBits() > 32)
4918     return 0;
4919 
4920   // In case of integer overflow, this returns 0, which is correct.
4921   return ((unsigned)ExitConst->getZExtValue()) + 1;
4922 }
4923 
4924 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4925   if (BasicBlock *ExitingBB = L->getExitingBlock())
4926     return getSmallConstantTripMultiple(L, ExitingBB);
4927 
4928   // No trip multiple information for multiple exits.
4929   return 0;
4930 }
4931 
4932 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4933 /// trip count of this loop as a normal unsigned value, if possible. This
4934 /// means that the actual trip count is always a multiple of the returned
4935 /// value (don't forget the trip count could very well be zero as well!).
4936 ///
4937 /// Returns 1 if the trip count is unknown or not guaranteed to be the
4938 /// multiple of a constant (which is also the case if the trip count is simply
4939 /// constant, use getSmallConstantTripCount for that case), Will also return 1
4940 /// if the trip count is very large (>= 2^32).
4941 ///
4942 /// As explained in the comments for getSmallConstantTripCount, this assumes
4943 /// that control exits the loop via ExitingBlock.
4944 unsigned
4945 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4946                                               BasicBlock *ExitingBlock) {
4947   assert(ExitingBlock && "Must pass a non-null exiting block!");
4948   assert(L->isLoopExiting(ExitingBlock) &&
4949          "Exiting block must actually branch out of the loop!");
4950   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4951   if (ExitCount == getCouldNotCompute())
4952     return 1;
4953 
4954   // Get the trip count from the BE count by adding 1.
4955   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
4956   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4957   // to factor simple cases.
4958   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4959     TCMul = Mul->getOperand(0);
4960 
4961   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4962   if (!MulC)
4963     return 1;
4964 
4965   ConstantInt *Result = MulC->getValue();
4966 
4967   // Guard against huge trip counts (this requires checking
4968   // for zero to handle the case where the trip count == -1 and the
4969   // addition wraps).
4970   if (!Result || Result->getValue().getActiveBits() > 32 ||
4971       Result->getValue().getActiveBits() == 0)
4972     return 1;
4973 
4974   return (unsigned)Result->getZExtValue();
4975 }
4976 
4977 // getExitCount - Get the expression for the number of loop iterations for which
4978 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4979 // SCEVCouldNotCompute.
4980 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4981   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4982 }
4983 
4984 /// getBackedgeTakenCount - If the specified loop has a predictable
4985 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4986 /// object. The backedge-taken count is the number of times the loop header
4987 /// will be branched to from within the loop. This is one less than the
4988 /// trip count of the loop, since it doesn't count the first iteration,
4989 /// when the header is branched to from outside the loop.
4990 ///
4991 /// Note that it is not valid to call this method on a loop without a
4992 /// loop-invariant backedge-taken count (see
4993 /// hasLoopInvariantBackedgeTakenCount).
4994 ///
4995 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4996   return getBackedgeTakenInfo(L).getExact(this);
4997 }
4998 
4999 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
5000 /// return the least SCEV value that is known never to be less than the
5001 /// actual backedge taken count.
5002 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5003   return getBackedgeTakenInfo(L).getMax(this);
5004 }
5005 
5006 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
5007 /// onto the given Worklist.
5008 static void
5009 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5010   BasicBlock *Header = L->getHeader();
5011 
5012   // Push all Loop-header PHIs onto the Worklist stack.
5013   for (BasicBlock::iterator I = Header->begin();
5014        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5015     Worklist.push_back(PN);
5016 }
5017 
5018 const ScalarEvolution::BackedgeTakenInfo &
5019 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5020   // Initially insert an invalid entry for this loop. If the insertion
5021   // succeeds, proceed to actually compute a backedge-taken count and
5022   // update the value. The temporary CouldNotCompute value tells SCEV
5023   // code elsewhere that it shouldn't attempt to request a new
5024   // backedge-taken count, which could result in infinite recursion.
5025   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5026       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5027   if (!Pair.second)
5028     return Pair.first->second;
5029 
5030   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5031   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5032   // must be cleared in this scope.
5033   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5034 
5035   if (Result.getExact(this) != getCouldNotCompute()) {
5036     assert(isLoopInvariant(Result.getExact(this), L) &&
5037            isLoopInvariant(Result.getMax(this), L) &&
5038            "Computed backedge-taken count isn't loop invariant for loop!");
5039     ++NumTripCountsComputed;
5040   }
5041   else if (Result.getMax(this) == getCouldNotCompute() &&
5042            isa<PHINode>(L->getHeader()->begin())) {
5043     // Only count loops that have phi nodes as not being computable.
5044     ++NumTripCountsNotComputed;
5045   }
5046 
5047   // Now that we know more about the trip count for this loop, forget any
5048   // existing SCEV values for PHI nodes in this loop since they are only
5049   // conservative estimates made without the benefit of trip count
5050   // information. This is similar to the code in forgetLoop, except that
5051   // it handles SCEVUnknown PHI nodes specially.
5052   if (Result.hasAnyInfo()) {
5053     SmallVector<Instruction *, 16> Worklist;
5054     PushLoopPHIs(L, Worklist);
5055 
5056     SmallPtrSet<Instruction *, 8> Visited;
5057     while (!Worklist.empty()) {
5058       Instruction *I = Worklist.pop_back_val();
5059       if (!Visited.insert(I).second)
5060         continue;
5061 
5062       ValueExprMapType::iterator It =
5063         ValueExprMap.find_as(static_cast<Value *>(I));
5064       if (It != ValueExprMap.end()) {
5065         const SCEV *Old = It->second;
5066 
5067         // SCEVUnknown for a PHI either means that it has an unrecognized
5068         // structure, or it's a PHI that's in the progress of being computed
5069         // by createNodeForPHI.  In the former case, additional loop trip
5070         // count information isn't going to change anything. In the later
5071         // case, createNodeForPHI will perform the necessary updates on its
5072         // own when it gets to that point.
5073         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5074           forgetMemoizedResults(Old);
5075           ValueExprMap.erase(It);
5076         }
5077         if (PHINode *PN = dyn_cast<PHINode>(I))
5078           ConstantEvolutionLoopExitValue.erase(PN);
5079       }
5080 
5081       PushDefUseChildren(I, Worklist);
5082     }
5083   }
5084 
5085   // Re-lookup the insert position, since the call to
5086   // computeBackedgeTakenCount above could result in a
5087   // recusive call to getBackedgeTakenInfo (on a different
5088   // loop), which would invalidate the iterator computed
5089   // earlier.
5090   return BackedgeTakenCounts.find(L)->second = Result;
5091 }
5092 
5093 /// forgetLoop - This method should be called by the client when it has
5094 /// changed a loop in a way that may effect ScalarEvolution's ability to
5095 /// compute a trip count, or if the loop is deleted.
5096 void ScalarEvolution::forgetLoop(const Loop *L) {
5097   // Drop any stored trip count value.
5098   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5099     BackedgeTakenCounts.find(L);
5100   if (BTCPos != BackedgeTakenCounts.end()) {
5101     BTCPos->second.clear();
5102     BackedgeTakenCounts.erase(BTCPos);
5103   }
5104 
5105   // Drop information about expressions based on loop-header PHIs.
5106   SmallVector<Instruction *, 16> Worklist;
5107   PushLoopPHIs(L, Worklist);
5108 
5109   SmallPtrSet<Instruction *, 8> Visited;
5110   while (!Worklist.empty()) {
5111     Instruction *I = Worklist.pop_back_val();
5112     if (!Visited.insert(I).second)
5113       continue;
5114 
5115     ValueExprMapType::iterator It =
5116       ValueExprMap.find_as(static_cast<Value *>(I));
5117     if (It != ValueExprMap.end()) {
5118       forgetMemoizedResults(It->second);
5119       ValueExprMap.erase(It);
5120       if (PHINode *PN = dyn_cast<PHINode>(I))
5121         ConstantEvolutionLoopExitValue.erase(PN);
5122     }
5123 
5124     PushDefUseChildren(I, Worklist);
5125   }
5126 
5127   // Forget all contained loops too, to avoid dangling entries in the
5128   // ValuesAtScopes map.
5129   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5130     forgetLoop(*I);
5131 }
5132 
5133 /// forgetValue - This method should be called by the client when it has
5134 /// changed a value in a way that may effect its value, or which may
5135 /// disconnect it from a def-use chain linking it to a loop.
5136 void ScalarEvolution::forgetValue(Value *V) {
5137   Instruction *I = dyn_cast<Instruction>(V);
5138   if (!I) return;
5139 
5140   // Drop information about expressions based on loop-header PHIs.
5141   SmallVector<Instruction *, 16> Worklist;
5142   Worklist.push_back(I);
5143 
5144   SmallPtrSet<Instruction *, 8> Visited;
5145   while (!Worklist.empty()) {
5146     I = Worklist.pop_back_val();
5147     if (!Visited.insert(I).second)
5148       continue;
5149 
5150     ValueExprMapType::iterator It =
5151       ValueExprMap.find_as(static_cast<Value *>(I));
5152     if (It != ValueExprMap.end()) {
5153       forgetMemoizedResults(It->second);
5154       ValueExprMap.erase(It);
5155       if (PHINode *PN = dyn_cast<PHINode>(I))
5156         ConstantEvolutionLoopExitValue.erase(PN);
5157     }
5158 
5159     PushDefUseChildren(I, Worklist);
5160   }
5161 }
5162 
5163 /// getExact - Get the exact loop backedge taken count considering all loop
5164 /// exits. A computable result can only be returned for loops with a single
5165 /// exit.  Returning the minimum taken count among all exits is incorrect
5166 /// because one of the loop's exit limit's may have been skipped. HowFarToZero
5167 /// assumes that the limit of each loop test is never skipped. This is a valid
5168 /// assumption as long as the loop exits via that test. For precise results, it
5169 /// is the caller's responsibility to specify the relevant loop exit using
5170 /// getExact(ExitingBlock, SE).
5171 const SCEV *
5172 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5173   // If any exits were not computable, the loop is not computable.
5174   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5175 
5176   // We need exactly one computable exit.
5177   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5178   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5179 
5180   const SCEV *BECount = nullptr;
5181   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5182        ENT != nullptr; ENT = ENT->getNextExit()) {
5183 
5184     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5185 
5186     if (!BECount)
5187       BECount = ENT->ExactNotTaken;
5188     else if (BECount != ENT->ExactNotTaken)
5189       return SE->getCouldNotCompute();
5190   }
5191   assert(BECount && "Invalid not taken count for loop exit");
5192   return BECount;
5193 }
5194 
5195 /// getExact - Get the exact not taken count for this loop exit.
5196 const SCEV *
5197 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5198                                              ScalarEvolution *SE) const {
5199   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5200        ENT != nullptr; ENT = ENT->getNextExit()) {
5201 
5202     if (ENT->ExitingBlock == ExitingBlock)
5203       return ENT->ExactNotTaken;
5204   }
5205   return SE->getCouldNotCompute();
5206 }
5207 
5208 /// getMax - Get the max backedge taken count for the loop.
5209 const SCEV *
5210 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5211   return Max ? Max : SE->getCouldNotCompute();
5212 }
5213 
5214 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5215                                                     ScalarEvolution *SE) const {
5216   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5217     return true;
5218 
5219   if (!ExitNotTaken.ExitingBlock)
5220     return false;
5221 
5222   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5223        ENT != nullptr; ENT = ENT->getNextExit()) {
5224 
5225     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5226         && SE->hasOperand(ENT->ExactNotTaken, S)) {
5227       return true;
5228     }
5229   }
5230   return false;
5231 }
5232 
5233 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5234 /// computable exit into a persistent ExitNotTakenInfo array.
5235 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5236   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5237   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5238 
5239   if (!Complete)
5240     ExitNotTaken.setIncomplete();
5241 
5242   unsigned NumExits = ExitCounts.size();
5243   if (NumExits == 0) return;
5244 
5245   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
5246   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5247   if (NumExits == 1) return;
5248 
5249   // Handle the rare case of multiple computable exits.
5250   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5251 
5252   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5253   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5254     PrevENT->setNextExit(ENT);
5255     ENT->ExitingBlock = ExitCounts[i].first;
5256     ENT->ExactNotTaken = ExitCounts[i].second;
5257   }
5258 }
5259 
5260 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
5261 void ScalarEvolution::BackedgeTakenInfo::clear() {
5262   ExitNotTaken.ExitingBlock = nullptr;
5263   ExitNotTaken.ExactNotTaken = nullptr;
5264   delete[] ExitNotTaken.getNextExit();
5265 }
5266 
5267 /// computeBackedgeTakenCount - Compute the number of times the backedge
5268 /// of the specified loop will execute.
5269 ScalarEvolution::BackedgeTakenInfo
5270 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
5271   SmallVector<BasicBlock *, 8> ExitingBlocks;
5272   L->getExitingBlocks(ExitingBlocks);
5273 
5274   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
5275   bool CouldComputeBECount = true;
5276   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5277   const SCEV *MustExitMaxBECount = nullptr;
5278   const SCEV *MayExitMaxBECount = nullptr;
5279 
5280   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5281   // and compute maxBECount.
5282   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5283     BasicBlock *ExitBB = ExitingBlocks[i];
5284     ExitLimit EL = computeExitLimit(L, ExitBB);
5285 
5286     // 1. For each exit that can be computed, add an entry to ExitCounts.
5287     // CouldComputeBECount is true only if all exits can be computed.
5288     if (EL.Exact == getCouldNotCompute())
5289       // We couldn't compute an exact value for this exit, so
5290       // we won't be able to compute an exact value for the loop.
5291       CouldComputeBECount = false;
5292     else
5293       ExitCounts.push_back({ExitBB, EL.Exact});
5294 
5295     // 2. Derive the loop's MaxBECount from each exit's max number of
5296     // non-exiting iterations. Partition the loop exits into two kinds:
5297     // LoopMustExits and LoopMayExits.
5298     //
5299     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5300     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5301     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5302     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5303     // considered greater than any computable EL.Max.
5304     if (EL.Max != getCouldNotCompute() && Latch &&
5305         DT.dominates(ExitBB, Latch)) {
5306       if (!MustExitMaxBECount)
5307         MustExitMaxBECount = EL.Max;
5308       else {
5309         MustExitMaxBECount =
5310           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5311       }
5312     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5313       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5314         MayExitMaxBECount = EL.Max;
5315       else {
5316         MayExitMaxBECount =
5317           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5318       }
5319     }
5320   }
5321   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5322     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5323   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5324 }
5325 
5326 ScalarEvolution::ExitLimit
5327 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
5328 
5329   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5330   // at this block and remember the exit block and whether all other targets
5331   // lead to the loop header.
5332   bool MustExecuteLoopHeader = true;
5333   BasicBlock *Exit = nullptr;
5334   for (auto *SBB : successors(ExitingBlock))
5335     if (!L->contains(SBB)) {
5336       if (Exit) // Multiple exit successors.
5337         return getCouldNotCompute();
5338       Exit = SBB;
5339     } else if (SBB != L->getHeader()) {
5340       MustExecuteLoopHeader = false;
5341     }
5342 
5343   // At this point, we know we have a conditional branch that determines whether
5344   // the loop is exited.  However, we don't know if the branch is executed each
5345   // time through the loop.  If not, then the execution count of the branch will
5346   // not be equal to the trip count of the loop.
5347   //
5348   // Currently we check for this by checking to see if the Exit branch goes to
5349   // the loop header.  If so, we know it will always execute the same number of
5350   // times as the loop.  We also handle the case where the exit block *is* the
5351   // loop header.  This is common for un-rotated loops.
5352   //
5353   // If both of those tests fail, walk up the unique predecessor chain to the
5354   // header, stopping if there is an edge that doesn't exit the loop. If the
5355   // header is reached, the execution count of the branch will be equal to the
5356   // trip count of the loop.
5357   //
5358   //  More extensive analysis could be done to handle more cases here.
5359   //
5360   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5361     // The simple checks failed, try climbing the unique predecessor chain
5362     // up to the header.
5363     bool Ok = false;
5364     for (BasicBlock *BB = ExitingBlock; BB; ) {
5365       BasicBlock *Pred = BB->getUniquePredecessor();
5366       if (!Pred)
5367         return getCouldNotCompute();
5368       TerminatorInst *PredTerm = Pred->getTerminator();
5369       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5370         if (PredSucc == BB)
5371           continue;
5372         // If the predecessor has a successor that isn't BB and isn't
5373         // outside the loop, assume the worst.
5374         if (L->contains(PredSucc))
5375           return getCouldNotCompute();
5376       }
5377       if (Pred == L->getHeader()) {
5378         Ok = true;
5379         break;
5380       }
5381       BB = Pred;
5382     }
5383     if (!Ok)
5384       return getCouldNotCompute();
5385   }
5386 
5387   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5388   TerminatorInst *Term = ExitingBlock->getTerminator();
5389   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5390     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5391     // Proceed to the next level to examine the exit condition expression.
5392     return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5393                                     BI->getSuccessor(1),
5394                                     /*ControlsExit=*/IsOnlyExit);
5395   }
5396 
5397   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5398     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5399                                                 /*ControlsExit=*/IsOnlyExit);
5400 
5401   return getCouldNotCompute();
5402 }
5403 
5404 /// computeExitLimitFromCond - Compute the number of times the
5405 /// backedge of the specified loop will execute if its exit condition
5406 /// were a conditional branch of ExitCond, TBB, and FBB.
5407 ///
5408 /// @param ControlsExit is true if ExitCond directly controls the exit
5409 /// branch. In this case, we can assume that the loop exits only if the
5410 /// condition is true and can infer that failing to meet the condition prior to
5411 /// integer wraparound results in undefined behavior.
5412 ScalarEvolution::ExitLimit
5413 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5414                                           Value *ExitCond,
5415                                           BasicBlock *TBB,
5416                                           BasicBlock *FBB,
5417                                           bool ControlsExit) {
5418   // Check if the controlling expression for this loop is an And or Or.
5419   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5420     if (BO->getOpcode() == Instruction::And) {
5421       // Recurse on the operands of the and.
5422       bool EitherMayExit = L->contains(TBB);
5423       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5424                                                ControlsExit && !EitherMayExit);
5425       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5426                                                ControlsExit && !EitherMayExit);
5427       const SCEV *BECount = getCouldNotCompute();
5428       const SCEV *MaxBECount = getCouldNotCompute();
5429       if (EitherMayExit) {
5430         // Both conditions must be true for the loop to continue executing.
5431         // Choose the less conservative count.
5432         if (EL0.Exact == getCouldNotCompute() ||
5433             EL1.Exact == getCouldNotCompute())
5434           BECount = getCouldNotCompute();
5435         else
5436           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5437         if (EL0.Max == getCouldNotCompute())
5438           MaxBECount = EL1.Max;
5439         else if (EL1.Max == getCouldNotCompute())
5440           MaxBECount = EL0.Max;
5441         else
5442           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5443       } else {
5444         // Both conditions must be true at the same time for the loop to exit.
5445         // For now, be conservative.
5446         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5447         if (EL0.Max == EL1.Max)
5448           MaxBECount = EL0.Max;
5449         if (EL0.Exact == EL1.Exact)
5450           BECount = EL0.Exact;
5451       }
5452 
5453       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5454       // to be more aggressive when computing BECount than when computing
5455       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
5456       // to match, but for EL0.Max and EL1.Max to not.
5457       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5458           !isa<SCEVCouldNotCompute>(BECount))
5459         MaxBECount = BECount;
5460 
5461       return ExitLimit(BECount, MaxBECount);
5462     }
5463     if (BO->getOpcode() == Instruction::Or) {
5464       // Recurse on the operands of the or.
5465       bool EitherMayExit = L->contains(FBB);
5466       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5467                                                ControlsExit && !EitherMayExit);
5468       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5469                                                ControlsExit && !EitherMayExit);
5470       const SCEV *BECount = getCouldNotCompute();
5471       const SCEV *MaxBECount = getCouldNotCompute();
5472       if (EitherMayExit) {
5473         // Both conditions must be false for the loop to continue executing.
5474         // Choose the less conservative count.
5475         if (EL0.Exact == getCouldNotCompute() ||
5476             EL1.Exact == getCouldNotCompute())
5477           BECount = getCouldNotCompute();
5478         else
5479           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5480         if (EL0.Max == getCouldNotCompute())
5481           MaxBECount = EL1.Max;
5482         else if (EL1.Max == getCouldNotCompute())
5483           MaxBECount = EL0.Max;
5484         else
5485           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5486       } else {
5487         // Both conditions must be false at the same time for the loop to exit.
5488         // For now, be conservative.
5489         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5490         if (EL0.Max == EL1.Max)
5491           MaxBECount = EL0.Max;
5492         if (EL0.Exact == EL1.Exact)
5493           BECount = EL0.Exact;
5494       }
5495 
5496       return ExitLimit(BECount, MaxBECount);
5497     }
5498   }
5499 
5500   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5501   // Proceed to the next level to examine the icmp.
5502   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5503     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5504 
5505   // Check for a constant condition. These are normally stripped out by
5506   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5507   // preserve the CFG and is temporarily leaving constant conditions
5508   // in place.
5509   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5510     if (L->contains(FBB) == !CI->getZExtValue())
5511       // The backedge is always taken.
5512       return getCouldNotCompute();
5513     else
5514       // The backedge is never taken.
5515       return getZero(CI->getType());
5516   }
5517 
5518   // If it's not an integer or pointer comparison then compute it the hard way.
5519   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5520 }
5521 
5522 ScalarEvolution::ExitLimit
5523 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5524                                           ICmpInst *ExitCond,
5525                                           BasicBlock *TBB,
5526                                           BasicBlock *FBB,
5527                                           bool ControlsExit) {
5528 
5529   // If the condition was exit on true, convert the condition to exit on false
5530   ICmpInst::Predicate Cond;
5531   if (!L->contains(FBB))
5532     Cond = ExitCond->getPredicate();
5533   else
5534     Cond = ExitCond->getInversePredicate();
5535 
5536   // Handle common loops like: for (X = "string"; *X; ++X)
5537   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5538     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5539       ExitLimit ItCnt =
5540         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5541       if (ItCnt.hasAnyInfo())
5542         return ItCnt;
5543     }
5544 
5545   ExitLimit ShiftEL = computeShiftCompareExitLimit(
5546       ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5547   if (ShiftEL.hasAnyInfo())
5548     return ShiftEL;
5549 
5550   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5551   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5552 
5553   // Try to evaluate any dependencies out of the loop.
5554   LHS = getSCEVAtScope(LHS, L);
5555   RHS = getSCEVAtScope(RHS, L);
5556 
5557   // At this point, we would like to compute how many iterations of the
5558   // loop the predicate will return true for these inputs.
5559   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5560     // If there is a loop-invariant, force it into the RHS.
5561     std::swap(LHS, RHS);
5562     Cond = ICmpInst::getSwappedPredicate(Cond);
5563   }
5564 
5565   // Simplify the operands before analyzing them.
5566   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5567 
5568   // If we have a comparison of a chrec against a constant, try to use value
5569   // ranges to answer this query.
5570   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5571     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5572       if (AddRec->getLoop() == L) {
5573         // Form the constant range.
5574         ConstantRange CompRange(
5575             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5576 
5577         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5578         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5579       }
5580 
5581   switch (Cond) {
5582   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5583     // Convert to: while (X-Y != 0)
5584     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5585     if (EL.hasAnyInfo()) return EL;
5586     break;
5587   }
5588   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5589     // Convert to: while (X-Y == 0)
5590     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5591     if (EL.hasAnyInfo()) return EL;
5592     break;
5593   }
5594   case ICmpInst::ICMP_SLT:
5595   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5596     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5597     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5598     if (EL.hasAnyInfo()) return EL;
5599     break;
5600   }
5601   case ICmpInst::ICMP_SGT:
5602   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5603     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5604     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5605     if (EL.hasAnyInfo()) return EL;
5606     break;
5607   }
5608   default:
5609     break;
5610   }
5611   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5612 }
5613 
5614 ScalarEvolution::ExitLimit
5615 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
5616                                                       SwitchInst *Switch,
5617                                                       BasicBlock *ExitingBlock,
5618                                                       bool ControlsExit) {
5619   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5620 
5621   // Give up if the exit is the default dest of a switch.
5622   if (Switch->getDefaultDest() == ExitingBlock)
5623     return getCouldNotCompute();
5624 
5625   assert(L->contains(Switch->getDefaultDest()) &&
5626          "Default case must not exit the loop!");
5627   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5628   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5629 
5630   // while (X != Y) --> while (X-Y != 0)
5631   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5632   if (EL.hasAnyInfo())
5633     return EL;
5634 
5635   return getCouldNotCompute();
5636 }
5637 
5638 static ConstantInt *
5639 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5640                                 ScalarEvolution &SE) {
5641   const SCEV *InVal = SE.getConstant(C);
5642   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5643   assert(isa<SCEVConstant>(Val) &&
5644          "Evaluation of SCEV at constant didn't fold correctly?");
5645   return cast<SCEVConstant>(Val)->getValue();
5646 }
5647 
5648 /// computeLoadConstantCompareExitLimit - Given an exit condition of
5649 /// 'icmp op load X, cst', try to see if we can compute the backedge
5650 /// execution count.
5651 ScalarEvolution::ExitLimit
5652 ScalarEvolution::computeLoadConstantCompareExitLimit(
5653   LoadInst *LI,
5654   Constant *RHS,
5655   const Loop *L,
5656   ICmpInst::Predicate predicate) {
5657 
5658   if (LI->isVolatile()) return getCouldNotCompute();
5659 
5660   // Check to see if the loaded pointer is a getelementptr of a global.
5661   // TODO: Use SCEV instead of manually grubbing with GEPs.
5662   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5663   if (!GEP) return getCouldNotCompute();
5664 
5665   // Make sure that it is really a constant global we are gepping, with an
5666   // initializer, and make sure the first IDX is really 0.
5667   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5668   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5669       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5670       !cast<Constant>(GEP->getOperand(1))->isNullValue())
5671     return getCouldNotCompute();
5672 
5673   // Okay, we allow one non-constant index into the GEP instruction.
5674   Value *VarIdx = nullptr;
5675   std::vector<Constant*> Indexes;
5676   unsigned VarIdxNum = 0;
5677   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5678     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5679       Indexes.push_back(CI);
5680     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5681       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5682       VarIdx = GEP->getOperand(i);
5683       VarIdxNum = i-2;
5684       Indexes.push_back(nullptr);
5685     }
5686 
5687   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5688   if (!VarIdx)
5689     return getCouldNotCompute();
5690 
5691   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5692   // Check to see if X is a loop variant variable value now.
5693   const SCEV *Idx = getSCEV(VarIdx);
5694   Idx = getSCEVAtScope(Idx, L);
5695 
5696   // We can only recognize very limited forms of loop index expressions, in
5697   // particular, only affine AddRec's like {C1,+,C2}.
5698   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5699   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5700       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5701       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5702     return getCouldNotCompute();
5703 
5704   unsigned MaxSteps = MaxBruteForceIterations;
5705   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5706     ConstantInt *ItCst = ConstantInt::get(
5707                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
5708     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5709 
5710     // Form the GEP offset.
5711     Indexes[VarIdxNum] = Val;
5712 
5713     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5714                                                          Indexes);
5715     if (!Result) break;  // Cannot compute!
5716 
5717     // Evaluate the condition for this iteration.
5718     Result = ConstantExpr::getICmp(predicate, Result, RHS);
5719     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5720     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5721       ++NumArrayLenItCounts;
5722       return getConstant(ItCst);   // Found terminating iteration!
5723     }
5724   }
5725   return getCouldNotCompute();
5726 }
5727 
5728 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5729     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5730   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5731   if (!RHS)
5732     return getCouldNotCompute();
5733 
5734   const BasicBlock *Latch = L->getLoopLatch();
5735   if (!Latch)
5736     return getCouldNotCompute();
5737 
5738   const BasicBlock *Predecessor = L->getLoopPredecessor();
5739   if (!Predecessor)
5740     return getCouldNotCompute();
5741 
5742   // Return true if V is of the form "LHS `shift_op` <positive constant>".
5743   // Return LHS in OutLHS and shift_opt in OutOpCode.
5744   auto MatchPositiveShift =
5745       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5746 
5747     using namespace PatternMatch;
5748 
5749     ConstantInt *ShiftAmt;
5750     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5751       OutOpCode = Instruction::LShr;
5752     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5753       OutOpCode = Instruction::AShr;
5754     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5755       OutOpCode = Instruction::Shl;
5756     else
5757       return false;
5758 
5759     return ShiftAmt->getValue().isStrictlyPositive();
5760   };
5761 
5762   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5763   //
5764   // loop:
5765   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5766   //   %iv.shifted = lshr i32 %iv, <positive constant>
5767   //
5768   // Return true on a succesful match.  Return the corresponding PHI node (%iv
5769   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5770   auto MatchShiftRecurrence =
5771       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5772     Optional<Instruction::BinaryOps> PostShiftOpCode;
5773 
5774     {
5775       Instruction::BinaryOps OpC;
5776       Value *V;
5777 
5778       // If we encounter a shift instruction, "peel off" the shift operation,
5779       // and remember that we did so.  Later when we inspect %iv's backedge
5780       // value, we will make sure that the backedge value uses the same
5781       // operation.
5782       //
5783       // Note: the peeled shift operation does not have to be the same
5784       // instruction as the one feeding into the PHI's backedge value.  We only
5785       // really care about it being the same *kind* of shift instruction --
5786       // that's all that is required for our later inferences to hold.
5787       if (MatchPositiveShift(LHS, V, OpC)) {
5788         PostShiftOpCode = OpC;
5789         LHS = V;
5790       }
5791     }
5792 
5793     PNOut = dyn_cast<PHINode>(LHS);
5794     if (!PNOut || PNOut->getParent() != L->getHeader())
5795       return false;
5796 
5797     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5798     Value *OpLHS;
5799 
5800     return
5801         // The backedge value for the PHI node must be a shift by a positive
5802         // amount
5803         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5804 
5805         // of the PHI node itself
5806         OpLHS == PNOut &&
5807 
5808         // and the kind of shift should be match the kind of shift we peeled
5809         // off, if any.
5810         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5811   };
5812 
5813   PHINode *PN;
5814   Instruction::BinaryOps OpCode;
5815   if (!MatchShiftRecurrence(LHS, PN, OpCode))
5816     return getCouldNotCompute();
5817 
5818   const DataLayout &DL = getDataLayout();
5819 
5820   // The key rationale for this optimization is that for some kinds of shift
5821   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5822   // within a finite number of iterations.  If the condition guarding the
5823   // backedge (in the sense that the backedge is taken if the condition is true)
5824   // is false for the value the shift recurrence stabilizes to, then we know
5825   // that the backedge is taken only a finite number of times.
5826 
5827   ConstantInt *StableValue = nullptr;
5828   switch (OpCode) {
5829   default:
5830     llvm_unreachable("Impossible case!");
5831 
5832   case Instruction::AShr: {
5833     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5834     // bitwidth(K) iterations.
5835     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5836     bool KnownZero, KnownOne;
5837     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5838                    Predecessor->getTerminator(), &DT);
5839     auto *Ty = cast<IntegerType>(RHS->getType());
5840     if (KnownZero)
5841       StableValue = ConstantInt::get(Ty, 0);
5842     else if (KnownOne)
5843       StableValue = ConstantInt::get(Ty, -1, true);
5844     else
5845       return getCouldNotCompute();
5846 
5847     break;
5848   }
5849   case Instruction::LShr:
5850   case Instruction::Shl:
5851     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5852     // stabilize to 0 in at most bitwidth(K) iterations.
5853     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5854     break;
5855   }
5856 
5857   auto *Result =
5858       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5859   assert(Result->getType()->isIntegerTy(1) &&
5860          "Otherwise cannot be an operand to a branch instruction");
5861 
5862   if (Result->isZeroValue()) {
5863     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5864     const SCEV *UpperBound =
5865         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5866     return ExitLimit(getCouldNotCompute(), UpperBound);
5867   }
5868 
5869   return getCouldNotCompute();
5870 }
5871 
5872 /// CanConstantFold - Return true if we can constant fold an instruction of the
5873 /// specified type, assuming that all operands were constants.
5874 static bool CanConstantFold(const Instruction *I) {
5875   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5876       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5877       isa<LoadInst>(I))
5878     return true;
5879 
5880   if (const CallInst *CI = dyn_cast<CallInst>(I))
5881     if (const Function *F = CI->getCalledFunction())
5882       return canConstantFoldCallTo(F);
5883   return false;
5884 }
5885 
5886 /// Determine whether this instruction can constant evolve within this loop
5887 /// assuming its operands can all constant evolve.
5888 static bool canConstantEvolve(Instruction *I, const Loop *L) {
5889   // An instruction outside of the loop can't be derived from a loop PHI.
5890   if (!L->contains(I)) return false;
5891 
5892   if (isa<PHINode>(I)) {
5893     // We don't currently keep track of the control flow needed to evaluate
5894     // PHIs, so we cannot handle PHIs inside of loops.
5895     return L->getHeader() == I->getParent();
5896   }
5897 
5898   // If we won't be able to constant fold this expression even if the operands
5899   // are constants, bail early.
5900   return CanConstantFold(I);
5901 }
5902 
5903 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5904 /// recursing through each instruction operand until reaching a loop header phi.
5905 static PHINode *
5906 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5907                                DenseMap<Instruction *, PHINode *> &PHIMap) {
5908 
5909   // Otherwise, we can evaluate this instruction if all of its operands are
5910   // constant or derived from a PHI node themselves.
5911   PHINode *PHI = nullptr;
5912   for (Value *Op : UseInst->operands()) {
5913     if (isa<Constant>(Op)) continue;
5914 
5915     Instruction *OpInst = dyn_cast<Instruction>(Op);
5916     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5917 
5918     PHINode *P = dyn_cast<PHINode>(OpInst);
5919     if (!P)
5920       // If this operand is already visited, reuse the prior result.
5921       // We may have P != PHI if this is the deepest point at which the
5922       // inconsistent paths meet.
5923       P = PHIMap.lookup(OpInst);
5924     if (!P) {
5925       // Recurse and memoize the results, whether a phi is found or not.
5926       // This recursive call invalidates pointers into PHIMap.
5927       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5928       PHIMap[OpInst] = P;
5929     }
5930     if (!P)
5931       return nullptr;  // Not evolving from PHI
5932     if (PHI && PHI != P)
5933       return nullptr;  // Evolving from multiple different PHIs.
5934     PHI = P;
5935   }
5936   // This is a expression evolving from a constant PHI!
5937   return PHI;
5938 }
5939 
5940 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5941 /// in the loop that V is derived from.  We allow arbitrary operations along the
5942 /// way, but the operands of an operation must either be constants or a value
5943 /// derived from a constant PHI.  If this expression does not fit with these
5944 /// constraints, return null.
5945 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5946   Instruction *I = dyn_cast<Instruction>(V);
5947   if (!I || !canConstantEvolve(I, L)) return nullptr;
5948 
5949   if (PHINode *PN = dyn_cast<PHINode>(I))
5950     return PN;
5951 
5952   // Record non-constant instructions contained by the loop.
5953   DenseMap<Instruction *, PHINode *> PHIMap;
5954   return getConstantEvolvingPHIOperands(I, L, PHIMap);
5955 }
5956 
5957 /// EvaluateExpression - Given an expression that passes the
5958 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5959 /// in the loop has the value PHIVal.  If we can't fold this expression for some
5960 /// reason, return null.
5961 static Constant *EvaluateExpression(Value *V, const Loop *L,
5962                                     DenseMap<Instruction *, Constant *> &Vals,
5963                                     const DataLayout &DL,
5964                                     const TargetLibraryInfo *TLI) {
5965   // Convenient constant check, but redundant for recursive calls.
5966   if (Constant *C = dyn_cast<Constant>(V)) return C;
5967   Instruction *I = dyn_cast<Instruction>(V);
5968   if (!I) return nullptr;
5969 
5970   if (Constant *C = Vals.lookup(I)) return C;
5971 
5972   // An instruction inside the loop depends on a value outside the loop that we
5973   // weren't given a mapping for, or a value such as a call inside the loop.
5974   if (!canConstantEvolve(I, L)) return nullptr;
5975 
5976   // An unmapped PHI can be due to a branch or another loop inside this loop,
5977   // or due to this not being the initial iteration through a loop where we
5978   // couldn't compute the evolution of this particular PHI last time.
5979   if (isa<PHINode>(I)) return nullptr;
5980 
5981   std::vector<Constant*> Operands(I->getNumOperands());
5982 
5983   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5984     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5985     if (!Operand) {
5986       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5987       if (!Operands[i]) return nullptr;
5988       continue;
5989     }
5990     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5991     Vals[Operand] = C;
5992     if (!C) return nullptr;
5993     Operands[i] = C;
5994   }
5995 
5996   if (CmpInst *CI = dyn_cast<CmpInst>(I))
5997     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5998                                            Operands[1], DL, TLI);
5999   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6000     if (!LI->isVolatile())
6001       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6002   }
6003   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6004 }
6005 
6006 
6007 // If every incoming value to PN except the one for BB is a specific Constant,
6008 // return that, else return nullptr.
6009 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6010   Constant *IncomingVal = nullptr;
6011 
6012   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6013     if (PN->getIncomingBlock(i) == BB)
6014       continue;
6015 
6016     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6017     if (!CurrentVal)
6018       return nullptr;
6019 
6020     if (IncomingVal != CurrentVal) {
6021       if (IncomingVal)
6022         return nullptr;
6023       IncomingVal = CurrentVal;
6024     }
6025   }
6026 
6027   return IncomingVal;
6028 }
6029 
6030 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6031 /// in the header of its containing loop, we know the loop executes a
6032 /// constant number of times, and the PHI node is just a recurrence
6033 /// involving constants, fold it.
6034 Constant *
6035 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6036                                                    const APInt &BEs,
6037                                                    const Loop *L) {
6038   auto I = ConstantEvolutionLoopExitValue.find(PN);
6039   if (I != ConstantEvolutionLoopExitValue.end())
6040     return I->second;
6041 
6042   if (BEs.ugt(MaxBruteForceIterations))
6043     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6044 
6045   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6046 
6047   DenseMap<Instruction *, Constant *> CurrentIterVals;
6048   BasicBlock *Header = L->getHeader();
6049   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6050 
6051   BasicBlock *Latch = L->getLoopLatch();
6052   if (!Latch)
6053     return nullptr;
6054 
6055   for (auto &I : *Header) {
6056     PHINode *PHI = dyn_cast<PHINode>(&I);
6057     if (!PHI) break;
6058     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6059     if (!StartCST) continue;
6060     CurrentIterVals[PHI] = StartCST;
6061   }
6062   if (!CurrentIterVals.count(PN))
6063     return RetVal = nullptr;
6064 
6065   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6066 
6067   // Execute the loop symbolically to determine the exit value.
6068   if (BEs.getActiveBits() >= 32)
6069     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6070 
6071   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6072   unsigned IterationNum = 0;
6073   const DataLayout &DL = getDataLayout();
6074   for (; ; ++IterationNum) {
6075     if (IterationNum == NumIterations)
6076       return RetVal = CurrentIterVals[PN];  // Got exit value!
6077 
6078     // Compute the value of the PHIs for the next iteration.
6079     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6080     DenseMap<Instruction *, Constant *> NextIterVals;
6081     Constant *NextPHI =
6082         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6083     if (!NextPHI)
6084       return nullptr;        // Couldn't evaluate!
6085     NextIterVals[PN] = NextPHI;
6086 
6087     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6088 
6089     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6090     // cease to be able to evaluate one of them or if they stop evolving,
6091     // because that doesn't necessarily prevent us from computing PN.
6092     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6093     for (const auto &I : CurrentIterVals) {
6094       PHINode *PHI = dyn_cast<PHINode>(I.first);
6095       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6096       PHIsToCompute.emplace_back(PHI, I.second);
6097     }
6098     // We use two distinct loops because EvaluateExpression may invalidate any
6099     // iterators into CurrentIterVals.
6100     for (const auto &I : PHIsToCompute) {
6101       PHINode *PHI = I.first;
6102       Constant *&NextPHI = NextIterVals[PHI];
6103       if (!NextPHI) {   // Not already computed.
6104         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6105         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6106       }
6107       if (NextPHI != I.second)
6108         StoppedEvolving = false;
6109     }
6110 
6111     // If all entries in CurrentIterVals == NextIterVals then we can stop
6112     // iterating, the loop can't continue to change.
6113     if (StoppedEvolving)
6114       return RetVal = CurrentIterVals[PN];
6115 
6116     CurrentIterVals.swap(NextIterVals);
6117   }
6118 }
6119 
6120 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6121                                                           Value *Cond,
6122                                                           bool ExitWhen) {
6123   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6124   if (!PN) return getCouldNotCompute();
6125 
6126   // If the loop is canonicalized, the PHI will have exactly two entries.
6127   // That's the only form we support here.
6128   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6129 
6130   DenseMap<Instruction *, Constant *> CurrentIterVals;
6131   BasicBlock *Header = L->getHeader();
6132   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6133 
6134   BasicBlock *Latch = L->getLoopLatch();
6135   assert(Latch && "Should follow from NumIncomingValues == 2!");
6136 
6137   for (auto &I : *Header) {
6138     PHINode *PHI = dyn_cast<PHINode>(&I);
6139     if (!PHI)
6140       break;
6141     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6142     if (!StartCST) continue;
6143     CurrentIterVals[PHI] = StartCST;
6144   }
6145   if (!CurrentIterVals.count(PN))
6146     return getCouldNotCompute();
6147 
6148   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6149   // the loop symbolically to determine when the condition gets a value of
6150   // "ExitWhen".
6151   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6152   const DataLayout &DL = getDataLayout();
6153   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6154     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6155         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6156 
6157     // Couldn't symbolically evaluate.
6158     if (!CondVal) return getCouldNotCompute();
6159 
6160     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6161       ++NumBruteForceTripCountsComputed;
6162       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6163     }
6164 
6165     // Update all the PHI nodes for the next iteration.
6166     DenseMap<Instruction *, Constant *> NextIterVals;
6167 
6168     // Create a list of which PHIs we need to compute. We want to do this before
6169     // calling EvaluateExpression on them because that may invalidate iterators
6170     // into CurrentIterVals.
6171     SmallVector<PHINode *, 8> PHIsToCompute;
6172     for (const auto &I : CurrentIterVals) {
6173       PHINode *PHI = dyn_cast<PHINode>(I.first);
6174       if (!PHI || PHI->getParent() != Header) continue;
6175       PHIsToCompute.push_back(PHI);
6176     }
6177     for (PHINode *PHI : PHIsToCompute) {
6178       Constant *&NextPHI = NextIterVals[PHI];
6179       if (NextPHI) continue;    // Already computed!
6180 
6181       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6182       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6183     }
6184     CurrentIterVals.swap(NextIterVals);
6185   }
6186 
6187   // Too many iterations were needed to evaluate.
6188   return getCouldNotCompute();
6189 }
6190 
6191 /// getSCEVAtScope - Return a SCEV expression for the specified value
6192 /// at the specified scope in the program.  The L value specifies a loop
6193 /// nest to evaluate the expression at, where null is the top-level or a
6194 /// specified loop is immediately inside of the loop.
6195 ///
6196 /// This method can be used to compute the exit value for a variable defined
6197 /// in a loop by querying what the value will hold in the parent loop.
6198 ///
6199 /// In the case that a relevant loop exit value cannot be computed, the
6200 /// original value V is returned.
6201 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6202   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6203       ValuesAtScopes[V];
6204   // Check to see if we've folded this expression at this loop before.
6205   for (auto &LS : Values)
6206     if (LS.first == L)
6207       return LS.second ? LS.second : V;
6208 
6209   Values.emplace_back(L, nullptr);
6210 
6211   // Otherwise compute it.
6212   const SCEV *C = computeSCEVAtScope(V, L);
6213   for (auto &LS : reverse(ValuesAtScopes[V]))
6214     if (LS.first == L) {
6215       LS.second = C;
6216       break;
6217     }
6218   return C;
6219 }
6220 
6221 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6222 /// will return Constants for objects which aren't represented by a
6223 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6224 /// Returns NULL if the SCEV isn't representable as a Constant.
6225 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6226   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6227     case scCouldNotCompute:
6228     case scAddRecExpr:
6229       break;
6230     case scConstant:
6231       return cast<SCEVConstant>(V)->getValue();
6232     case scUnknown:
6233       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6234     case scSignExtend: {
6235       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6236       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6237         return ConstantExpr::getSExt(CastOp, SS->getType());
6238       break;
6239     }
6240     case scZeroExtend: {
6241       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6242       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6243         return ConstantExpr::getZExt(CastOp, SZ->getType());
6244       break;
6245     }
6246     case scTruncate: {
6247       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6248       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6249         return ConstantExpr::getTrunc(CastOp, ST->getType());
6250       break;
6251     }
6252     case scAddExpr: {
6253       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6254       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6255         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6256           unsigned AS = PTy->getAddressSpace();
6257           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6258           C = ConstantExpr::getBitCast(C, DestPtrTy);
6259         }
6260         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6261           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6262           if (!C2) return nullptr;
6263 
6264           // First pointer!
6265           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6266             unsigned AS = C2->getType()->getPointerAddressSpace();
6267             std::swap(C, C2);
6268             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6269             // The offsets have been converted to bytes.  We can add bytes to an
6270             // i8* by GEP with the byte count in the first index.
6271             C = ConstantExpr::getBitCast(C, DestPtrTy);
6272           }
6273 
6274           // Don't bother trying to sum two pointers. We probably can't
6275           // statically compute a load that results from it anyway.
6276           if (C2->getType()->isPointerTy())
6277             return nullptr;
6278 
6279           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6280             if (PTy->getElementType()->isStructTy())
6281               C2 = ConstantExpr::getIntegerCast(
6282                   C2, Type::getInt32Ty(C->getContext()), true);
6283             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6284           } else
6285             C = ConstantExpr::getAdd(C, C2);
6286         }
6287         return C;
6288       }
6289       break;
6290     }
6291     case scMulExpr: {
6292       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6293       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6294         // Don't bother with pointers at all.
6295         if (C->getType()->isPointerTy()) return nullptr;
6296         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6297           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6298           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6299           C = ConstantExpr::getMul(C, C2);
6300         }
6301         return C;
6302       }
6303       break;
6304     }
6305     case scUDivExpr: {
6306       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6307       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6308         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6309           if (LHS->getType() == RHS->getType())
6310             return ConstantExpr::getUDiv(LHS, RHS);
6311       break;
6312     }
6313     case scSMaxExpr:
6314     case scUMaxExpr:
6315       break; // TODO: smax, umax.
6316   }
6317   return nullptr;
6318 }
6319 
6320 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6321   if (isa<SCEVConstant>(V)) return V;
6322 
6323   // If this instruction is evolved from a constant-evolving PHI, compute the
6324   // exit value from the loop without using SCEVs.
6325   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6326     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6327       const Loop *LI = this->LI[I->getParent()];
6328       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6329         if (PHINode *PN = dyn_cast<PHINode>(I))
6330           if (PN->getParent() == LI->getHeader()) {
6331             // Okay, there is no closed form solution for the PHI node.  Check
6332             // to see if the loop that contains it has a known backedge-taken
6333             // count.  If so, we may be able to force computation of the exit
6334             // value.
6335             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6336             if (const SCEVConstant *BTCC =
6337                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6338               // Okay, we know how many times the containing loop executes.  If
6339               // this is a constant evolving PHI node, get the final value at
6340               // the specified iteration number.
6341               Constant *RV =
6342                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6343               if (RV) return getSCEV(RV);
6344             }
6345           }
6346 
6347       // Okay, this is an expression that we cannot symbolically evaluate
6348       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6349       // the arguments into constants, and if so, try to constant propagate the
6350       // result.  This is particularly useful for computing loop exit values.
6351       if (CanConstantFold(I)) {
6352         SmallVector<Constant *, 4> Operands;
6353         bool MadeImprovement = false;
6354         for (Value *Op : I->operands()) {
6355           if (Constant *C = dyn_cast<Constant>(Op)) {
6356             Operands.push_back(C);
6357             continue;
6358           }
6359 
6360           // If any of the operands is non-constant and if they are
6361           // non-integer and non-pointer, don't even try to analyze them
6362           // with scev techniques.
6363           if (!isSCEVable(Op->getType()))
6364             return V;
6365 
6366           const SCEV *OrigV = getSCEV(Op);
6367           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6368           MadeImprovement |= OrigV != OpV;
6369 
6370           Constant *C = BuildConstantFromSCEV(OpV);
6371           if (!C) return V;
6372           if (C->getType() != Op->getType())
6373             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6374                                                               Op->getType(),
6375                                                               false),
6376                                       C, Op->getType());
6377           Operands.push_back(C);
6378         }
6379 
6380         // Check to see if getSCEVAtScope actually made an improvement.
6381         if (MadeImprovement) {
6382           Constant *C = nullptr;
6383           const DataLayout &DL = getDataLayout();
6384           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6385             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6386                                                 Operands[1], DL, &TLI);
6387           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6388             if (!LI->isVolatile())
6389               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6390           } else
6391             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6392           if (!C) return V;
6393           return getSCEV(C);
6394         }
6395       }
6396     }
6397 
6398     // This is some other type of SCEVUnknown, just return it.
6399     return V;
6400   }
6401 
6402   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6403     // Avoid performing the look-up in the common case where the specified
6404     // expression has no loop-variant portions.
6405     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6406       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6407       if (OpAtScope != Comm->getOperand(i)) {
6408         // Okay, at least one of these operands is loop variant but might be
6409         // foldable.  Build a new instance of the folded commutative expression.
6410         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6411                                             Comm->op_begin()+i);
6412         NewOps.push_back(OpAtScope);
6413 
6414         for (++i; i != e; ++i) {
6415           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6416           NewOps.push_back(OpAtScope);
6417         }
6418         if (isa<SCEVAddExpr>(Comm))
6419           return getAddExpr(NewOps);
6420         if (isa<SCEVMulExpr>(Comm))
6421           return getMulExpr(NewOps);
6422         if (isa<SCEVSMaxExpr>(Comm))
6423           return getSMaxExpr(NewOps);
6424         if (isa<SCEVUMaxExpr>(Comm))
6425           return getUMaxExpr(NewOps);
6426         llvm_unreachable("Unknown commutative SCEV type!");
6427       }
6428     }
6429     // If we got here, all operands are loop invariant.
6430     return Comm;
6431   }
6432 
6433   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6434     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6435     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6436     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6437       return Div;   // must be loop invariant
6438     return getUDivExpr(LHS, RHS);
6439   }
6440 
6441   // If this is a loop recurrence for a loop that does not contain L, then we
6442   // are dealing with the final value computed by the loop.
6443   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6444     // First, attempt to evaluate each operand.
6445     // Avoid performing the look-up in the common case where the specified
6446     // expression has no loop-variant portions.
6447     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6448       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6449       if (OpAtScope == AddRec->getOperand(i))
6450         continue;
6451 
6452       // Okay, at least one of these operands is loop variant but might be
6453       // foldable.  Build a new instance of the folded commutative expression.
6454       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6455                                           AddRec->op_begin()+i);
6456       NewOps.push_back(OpAtScope);
6457       for (++i; i != e; ++i)
6458         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6459 
6460       const SCEV *FoldedRec =
6461         getAddRecExpr(NewOps, AddRec->getLoop(),
6462                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6463       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6464       // The addrec may be folded to a nonrecurrence, for example, if the
6465       // induction variable is multiplied by zero after constant folding. Go
6466       // ahead and return the folded value.
6467       if (!AddRec)
6468         return FoldedRec;
6469       break;
6470     }
6471 
6472     // If the scope is outside the addrec's loop, evaluate it by using the
6473     // loop exit value of the addrec.
6474     if (!AddRec->getLoop()->contains(L)) {
6475       // To evaluate this recurrence, we need to know how many times the AddRec
6476       // loop iterates.  Compute this now.
6477       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6478       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6479 
6480       // Then, evaluate the AddRec.
6481       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6482     }
6483 
6484     return AddRec;
6485   }
6486 
6487   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6488     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6489     if (Op == Cast->getOperand())
6490       return Cast;  // must be loop invariant
6491     return getZeroExtendExpr(Op, Cast->getType());
6492   }
6493 
6494   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6495     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6496     if (Op == Cast->getOperand())
6497       return Cast;  // must be loop invariant
6498     return getSignExtendExpr(Op, Cast->getType());
6499   }
6500 
6501   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6502     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6503     if (Op == Cast->getOperand())
6504       return Cast;  // must be loop invariant
6505     return getTruncateExpr(Op, Cast->getType());
6506   }
6507 
6508   llvm_unreachable("Unknown SCEV type!");
6509 }
6510 
6511 /// getSCEVAtScope - This is a convenience function which does
6512 /// getSCEVAtScope(getSCEV(V), L).
6513 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6514   return getSCEVAtScope(getSCEV(V), L);
6515 }
6516 
6517 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6518 /// following equation:
6519 ///
6520 ///     A * X = B (mod N)
6521 ///
6522 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6523 /// A and B isn't important.
6524 ///
6525 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6526 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6527                                                ScalarEvolution &SE) {
6528   uint32_t BW = A.getBitWidth();
6529   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6530   assert(A != 0 && "A must be non-zero.");
6531 
6532   // 1. D = gcd(A, N)
6533   //
6534   // The gcd of A and N may have only one prime factor: 2. The number of
6535   // trailing zeros in A is its multiplicity
6536   uint32_t Mult2 = A.countTrailingZeros();
6537   // D = 2^Mult2
6538 
6539   // 2. Check if B is divisible by D.
6540   //
6541   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6542   // is not less than multiplicity of this prime factor for D.
6543   if (B.countTrailingZeros() < Mult2)
6544     return SE.getCouldNotCompute();
6545 
6546   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6547   // modulo (N / D).
6548   //
6549   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6550   // bit width during computations.
6551   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6552   APInt Mod(BW + 1, 0);
6553   Mod.setBit(BW - Mult2);  // Mod = N / D
6554   APInt I = AD.multiplicativeInverse(Mod);
6555 
6556   // 4. Compute the minimum unsigned root of the equation:
6557   // I * (B / D) mod (N / D)
6558   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6559 
6560   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6561   // bits.
6562   return SE.getConstant(Result.trunc(BW));
6563 }
6564 
6565 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6566 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
6567 /// might be the same) or two SCEVCouldNotCompute objects.
6568 ///
6569 static std::pair<const SCEV *,const SCEV *>
6570 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6571   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6572   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6573   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6574   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6575 
6576   // We currently can only solve this if the coefficients are constants.
6577   if (!LC || !MC || !NC) {
6578     const SCEV *CNC = SE.getCouldNotCompute();
6579     return {CNC, CNC};
6580   }
6581 
6582   uint32_t BitWidth = LC->getAPInt().getBitWidth();
6583   const APInt &L = LC->getAPInt();
6584   const APInt &M = MC->getAPInt();
6585   const APInt &N = NC->getAPInt();
6586   APInt Two(BitWidth, 2);
6587   APInt Four(BitWidth, 4);
6588 
6589   {
6590     using namespace APIntOps;
6591     const APInt& C = L;
6592     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6593     // The B coefficient is M-N/2
6594     APInt B(M);
6595     B -= sdiv(N,Two);
6596 
6597     // The A coefficient is N/2
6598     APInt A(N.sdiv(Two));
6599 
6600     // Compute the B^2-4ac term.
6601     APInt SqrtTerm(B);
6602     SqrtTerm *= B;
6603     SqrtTerm -= Four * (A * C);
6604 
6605     if (SqrtTerm.isNegative()) {
6606       // The loop is provably infinite.
6607       const SCEV *CNC = SE.getCouldNotCompute();
6608       return {CNC, CNC};
6609     }
6610 
6611     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6612     // integer value or else APInt::sqrt() will assert.
6613     APInt SqrtVal(SqrtTerm.sqrt());
6614 
6615     // Compute the two solutions for the quadratic formula.
6616     // The divisions must be performed as signed divisions.
6617     APInt NegB(-B);
6618     APInt TwoA(A << 1);
6619     if (TwoA.isMinValue()) {
6620       const SCEV *CNC = SE.getCouldNotCompute();
6621       return {CNC, CNC};
6622     }
6623 
6624     LLVMContext &Context = SE.getContext();
6625 
6626     ConstantInt *Solution1 =
6627       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6628     ConstantInt *Solution2 =
6629       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6630 
6631     return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
6632   } // end APIntOps namespace
6633 }
6634 
6635 /// HowFarToZero - Return the number of times a backedge comparing the specified
6636 /// value to zero will execute.  If not computable, return CouldNotCompute.
6637 ///
6638 /// This is only used for loops with a "x != y" exit test. The exit condition is
6639 /// now expressed as a single expression, V = x-y. So the exit test is
6640 /// effectively V != 0.  We know and take advantage of the fact that this
6641 /// expression only being used in a comparison by zero context.
6642 ScalarEvolution::ExitLimit
6643 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6644   // If the value is a constant
6645   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6646     // If the value is already zero, the branch will execute zero times.
6647     if (C->getValue()->isZero()) return C;
6648     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6649   }
6650 
6651   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6652   if (!AddRec || AddRec->getLoop() != L)
6653     return getCouldNotCompute();
6654 
6655   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6656   // the quadratic equation to solve it.
6657   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6658     std::pair<const SCEV *,const SCEV *> Roots =
6659       SolveQuadraticEquation(AddRec, *this);
6660     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6661     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6662     if (R1 && R2) {
6663       // Pick the smallest positive root value.
6664       if (ConstantInt *CB =
6665           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6666                                                       R1->getValue(),
6667                                                       R2->getValue()))) {
6668         if (!CB->getZExtValue())
6669           std::swap(R1, R2);   // R1 is the minimum root now.
6670 
6671         // We can only use this value if the chrec ends up with an exact zero
6672         // value at this index.  When solving for "X*X != 5", for example, we
6673         // should not accept a root of 2.
6674         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6675         if (Val->isZero())
6676           return R1;  // We found a quadratic root!
6677       }
6678     }
6679     return getCouldNotCompute();
6680   }
6681 
6682   // Otherwise we can only handle this if it is affine.
6683   if (!AddRec->isAffine())
6684     return getCouldNotCompute();
6685 
6686   // If this is an affine expression, the execution count of this branch is
6687   // the minimum unsigned root of the following equation:
6688   //
6689   //     Start + Step*N = 0 (mod 2^BW)
6690   //
6691   // equivalent to:
6692   //
6693   //             Step*N = -Start (mod 2^BW)
6694   //
6695   // where BW is the common bit width of Start and Step.
6696 
6697   // Get the initial value for the loop.
6698   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6699   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6700 
6701   // For now we handle only constant steps.
6702   //
6703   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6704   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6705   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6706   // We have not yet seen any such cases.
6707   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6708   if (!StepC || StepC->getValue()->equalsInt(0))
6709     return getCouldNotCompute();
6710 
6711   // For positive steps (counting up until unsigned overflow):
6712   //   N = -Start/Step (as unsigned)
6713   // For negative steps (counting down to zero):
6714   //   N = Start/-Step
6715   // First compute the unsigned distance from zero in the direction of Step.
6716   bool CountDown = StepC->getAPInt().isNegative();
6717   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6718 
6719   // Handle unitary steps, which cannot wraparound.
6720   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6721   //   N = Distance (as unsigned)
6722   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6723     ConstantRange CR = getUnsignedRange(Start);
6724     const SCEV *MaxBECount;
6725     if (!CountDown && CR.getUnsignedMin().isMinValue())
6726       // When counting up, the worst starting value is 1, not 0.
6727       MaxBECount = CR.getUnsignedMax().isMinValue()
6728         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6729         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6730     else
6731       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6732                                          : -CR.getUnsignedMin());
6733     return ExitLimit(Distance, MaxBECount);
6734   }
6735 
6736   // As a special case, handle the instance where Step is a positive power of
6737   // two. In this case, determining whether Step divides Distance evenly can be
6738   // done by counting and comparing the number of trailing zeros of Step and
6739   // Distance.
6740   if (!CountDown) {
6741     const APInt &StepV = StepC->getAPInt();
6742     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
6743     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6744     // case is not handled as this code is guarded by !CountDown.
6745     if (StepV.isPowerOf2() &&
6746         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6747       // Here we've constrained the equation to be of the form
6748       //
6749       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
6750       //
6751       // where we're operating on a W bit wide integer domain and k is
6752       // non-negative.  The smallest unsigned solution for X is the trip count.
6753       //
6754       // (0) is equivalent to:
6755       //
6756       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
6757       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6758       // <=>  2^k * Distance' - X = L * 2^(W - N)
6759       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
6760       //
6761       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6762       // by 2^(W - N).
6763       //
6764       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
6765       //
6766       // E.g. say we're solving
6767       //
6768       //   2 * Val = 2 * X  (in i8)   ... (3)
6769       //
6770       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6771       //
6772       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6773       // necessarily the smallest unsigned value of X that satisfies (3).
6774       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6775       // is i8 1, not i8 -127
6776 
6777       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6778 
6779       // Since SCEV does not have a URem node, we construct one using a truncate
6780       // and a zero extend.
6781 
6782       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6783       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6784       auto *WideTy = Distance->getType();
6785 
6786       return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6787     }
6788   }
6789 
6790   // If the condition controls loop exit (the loop exits only if the expression
6791   // is true) and the addition is no-wrap we can use unsigned divide to
6792   // compute the backedge count.  In this case, the step may not divide the
6793   // distance, but we don't care because if the condition is "missed" the loop
6794   // will have undefined behavior due to wrapping.
6795   if (ControlsExit && AddRec->hasNoSelfWrap()) {
6796     const SCEV *Exact =
6797         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6798     return ExitLimit(Exact, Exact);
6799   }
6800 
6801   // Then, try to solve the above equation provided that Start is constant.
6802   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6803     return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
6804                                         *this);
6805   return getCouldNotCompute();
6806 }
6807 
6808 /// HowFarToNonZero - Return the number of times a backedge checking the
6809 /// specified value for nonzero will execute.  If not computable, return
6810 /// CouldNotCompute
6811 ScalarEvolution::ExitLimit
6812 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6813   // Loops that look like: while (X == 0) are very strange indeed.  We don't
6814   // handle them yet except for the trivial case.  This could be expanded in the
6815   // future as needed.
6816 
6817   // If the value is a constant, check to see if it is known to be non-zero
6818   // already.  If so, the backedge will execute zero times.
6819   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6820     if (!C->getValue()->isNullValue())
6821       return getZero(C->getType());
6822     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6823   }
6824 
6825   // We could implement others, but I really doubt anyone writes loops like
6826   // this, and if they did, they would already be constant folded.
6827   return getCouldNotCompute();
6828 }
6829 
6830 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6831 /// (which may not be an immediate predecessor) which has exactly one
6832 /// successor from which BB is reachable, or null if no such block is
6833 /// found.
6834 ///
6835 std::pair<BasicBlock *, BasicBlock *>
6836 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6837   // If the block has a unique predecessor, then there is no path from the
6838   // predecessor to the block that does not go through the direct edge
6839   // from the predecessor to the block.
6840   if (BasicBlock *Pred = BB->getSinglePredecessor())
6841     return {Pred, BB};
6842 
6843   // A loop's header is defined to be a block that dominates the loop.
6844   // If the header has a unique predecessor outside the loop, it must be
6845   // a block that has exactly one successor that can reach the loop.
6846   if (Loop *L = LI.getLoopFor(BB))
6847     return {L->getLoopPredecessor(), L->getHeader()};
6848 
6849   return {nullptr, nullptr};
6850 }
6851 
6852 /// HasSameValue - SCEV structural equivalence is usually sufficient for
6853 /// testing whether two expressions are equal, however for the purposes of
6854 /// looking for a condition guarding a loop, it can be useful to be a little
6855 /// more general, since a front-end may have replicated the controlling
6856 /// expression.
6857 ///
6858 static bool HasSameValue(const SCEV *A, const SCEV *B) {
6859   // Quick check to see if they are the same SCEV.
6860   if (A == B) return true;
6861 
6862   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6863     // Not all instructions that are "identical" compute the same value.  For
6864     // instance, two distinct alloca instructions allocating the same type are
6865     // identical and do not read memory; but compute distinct values.
6866     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6867   };
6868 
6869   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6870   // two different instructions with the same value. Check for this case.
6871   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6872     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6873       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6874         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6875           if (ComputesEqualValues(AI, BI))
6876             return true;
6877 
6878   // Otherwise assume they may have a different value.
6879   return false;
6880 }
6881 
6882 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6883 /// predicate Pred. Return true iff any changes were made.
6884 ///
6885 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6886                                            const SCEV *&LHS, const SCEV *&RHS,
6887                                            unsigned Depth) {
6888   bool Changed = false;
6889 
6890   // If we hit the max recursion limit bail out.
6891   if (Depth >= 3)
6892     return false;
6893 
6894   // Canonicalize a constant to the right side.
6895   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6896     // Check for both operands constant.
6897     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6898       if (ConstantExpr::getICmp(Pred,
6899                                 LHSC->getValue(),
6900                                 RHSC->getValue())->isNullValue())
6901         goto trivially_false;
6902       else
6903         goto trivially_true;
6904     }
6905     // Otherwise swap the operands to put the constant on the right.
6906     std::swap(LHS, RHS);
6907     Pred = ICmpInst::getSwappedPredicate(Pred);
6908     Changed = true;
6909   }
6910 
6911   // If we're comparing an addrec with a value which is loop-invariant in the
6912   // addrec's loop, put the addrec on the left. Also make a dominance check,
6913   // as both operands could be addrecs loop-invariant in each other's loop.
6914   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6915     const Loop *L = AR->getLoop();
6916     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6917       std::swap(LHS, RHS);
6918       Pred = ICmpInst::getSwappedPredicate(Pred);
6919       Changed = true;
6920     }
6921   }
6922 
6923   // If there's a constant operand, canonicalize comparisons with boundary
6924   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6925   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6926     const APInt &RA = RC->getAPInt();
6927     switch (Pred) {
6928     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6929     case ICmpInst::ICMP_EQ:
6930     case ICmpInst::ICMP_NE:
6931       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6932       if (!RA)
6933         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6934           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6935             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6936                 ME->getOperand(0)->isAllOnesValue()) {
6937               RHS = AE->getOperand(1);
6938               LHS = ME->getOperand(1);
6939               Changed = true;
6940             }
6941       break;
6942     case ICmpInst::ICMP_UGE:
6943       if ((RA - 1).isMinValue()) {
6944         Pred = ICmpInst::ICMP_NE;
6945         RHS = getConstant(RA - 1);
6946         Changed = true;
6947         break;
6948       }
6949       if (RA.isMaxValue()) {
6950         Pred = ICmpInst::ICMP_EQ;
6951         Changed = true;
6952         break;
6953       }
6954       if (RA.isMinValue()) goto trivially_true;
6955 
6956       Pred = ICmpInst::ICMP_UGT;
6957       RHS = getConstant(RA - 1);
6958       Changed = true;
6959       break;
6960     case ICmpInst::ICMP_ULE:
6961       if ((RA + 1).isMaxValue()) {
6962         Pred = ICmpInst::ICMP_NE;
6963         RHS = getConstant(RA + 1);
6964         Changed = true;
6965         break;
6966       }
6967       if (RA.isMinValue()) {
6968         Pred = ICmpInst::ICMP_EQ;
6969         Changed = true;
6970         break;
6971       }
6972       if (RA.isMaxValue()) goto trivially_true;
6973 
6974       Pred = ICmpInst::ICMP_ULT;
6975       RHS = getConstant(RA + 1);
6976       Changed = true;
6977       break;
6978     case ICmpInst::ICMP_SGE:
6979       if ((RA - 1).isMinSignedValue()) {
6980         Pred = ICmpInst::ICMP_NE;
6981         RHS = getConstant(RA - 1);
6982         Changed = true;
6983         break;
6984       }
6985       if (RA.isMaxSignedValue()) {
6986         Pred = ICmpInst::ICMP_EQ;
6987         Changed = true;
6988         break;
6989       }
6990       if (RA.isMinSignedValue()) goto trivially_true;
6991 
6992       Pred = ICmpInst::ICMP_SGT;
6993       RHS = getConstant(RA - 1);
6994       Changed = true;
6995       break;
6996     case ICmpInst::ICMP_SLE:
6997       if ((RA + 1).isMaxSignedValue()) {
6998         Pred = ICmpInst::ICMP_NE;
6999         RHS = getConstant(RA + 1);
7000         Changed = true;
7001         break;
7002       }
7003       if (RA.isMinSignedValue()) {
7004         Pred = ICmpInst::ICMP_EQ;
7005         Changed = true;
7006         break;
7007       }
7008       if (RA.isMaxSignedValue()) goto trivially_true;
7009 
7010       Pred = ICmpInst::ICMP_SLT;
7011       RHS = getConstant(RA + 1);
7012       Changed = true;
7013       break;
7014     case ICmpInst::ICMP_UGT:
7015       if (RA.isMinValue()) {
7016         Pred = ICmpInst::ICMP_NE;
7017         Changed = true;
7018         break;
7019       }
7020       if ((RA + 1).isMaxValue()) {
7021         Pred = ICmpInst::ICMP_EQ;
7022         RHS = getConstant(RA + 1);
7023         Changed = true;
7024         break;
7025       }
7026       if (RA.isMaxValue()) goto trivially_false;
7027       break;
7028     case ICmpInst::ICMP_ULT:
7029       if (RA.isMaxValue()) {
7030         Pred = ICmpInst::ICMP_NE;
7031         Changed = true;
7032         break;
7033       }
7034       if ((RA - 1).isMinValue()) {
7035         Pred = ICmpInst::ICMP_EQ;
7036         RHS = getConstant(RA - 1);
7037         Changed = true;
7038         break;
7039       }
7040       if (RA.isMinValue()) goto trivially_false;
7041       break;
7042     case ICmpInst::ICMP_SGT:
7043       if (RA.isMinSignedValue()) {
7044         Pred = ICmpInst::ICMP_NE;
7045         Changed = true;
7046         break;
7047       }
7048       if ((RA + 1).isMaxSignedValue()) {
7049         Pred = ICmpInst::ICMP_EQ;
7050         RHS = getConstant(RA + 1);
7051         Changed = true;
7052         break;
7053       }
7054       if (RA.isMaxSignedValue()) goto trivially_false;
7055       break;
7056     case ICmpInst::ICMP_SLT:
7057       if (RA.isMaxSignedValue()) {
7058         Pred = ICmpInst::ICMP_NE;
7059         Changed = true;
7060         break;
7061       }
7062       if ((RA - 1).isMinSignedValue()) {
7063        Pred = ICmpInst::ICMP_EQ;
7064        RHS = getConstant(RA - 1);
7065         Changed = true;
7066        break;
7067       }
7068       if (RA.isMinSignedValue()) goto trivially_false;
7069       break;
7070     }
7071   }
7072 
7073   // Check for obvious equality.
7074   if (HasSameValue(LHS, RHS)) {
7075     if (ICmpInst::isTrueWhenEqual(Pred))
7076       goto trivially_true;
7077     if (ICmpInst::isFalseWhenEqual(Pred))
7078       goto trivially_false;
7079   }
7080 
7081   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7082   // adding or subtracting 1 from one of the operands.
7083   switch (Pred) {
7084   case ICmpInst::ICMP_SLE:
7085     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7086       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7087                        SCEV::FlagNSW);
7088       Pred = ICmpInst::ICMP_SLT;
7089       Changed = true;
7090     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7091       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7092                        SCEV::FlagNSW);
7093       Pred = ICmpInst::ICMP_SLT;
7094       Changed = true;
7095     }
7096     break;
7097   case ICmpInst::ICMP_SGE:
7098     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7099       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7100                        SCEV::FlagNSW);
7101       Pred = ICmpInst::ICMP_SGT;
7102       Changed = true;
7103     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7104       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7105                        SCEV::FlagNSW);
7106       Pred = ICmpInst::ICMP_SGT;
7107       Changed = true;
7108     }
7109     break;
7110   case ICmpInst::ICMP_ULE:
7111     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7112       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7113                        SCEV::FlagNUW);
7114       Pred = ICmpInst::ICMP_ULT;
7115       Changed = true;
7116     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7117       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7118       Pred = ICmpInst::ICMP_ULT;
7119       Changed = true;
7120     }
7121     break;
7122   case ICmpInst::ICMP_UGE:
7123     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7124       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7125       Pred = ICmpInst::ICMP_UGT;
7126       Changed = true;
7127     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7128       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7129                        SCEV::FlagNUW);
7130       Pred = ICmpInst::ICMP_UGT;
7131       Changed = true;
7132     }
7133     break;
7134   default:
7135     break;
7136   }
7137 
7138   // TODO: More simplifications are possible here.
7139 
7140   // Recursively simplify until we either hit a recursion limit or nothing
7141   // changes.
7142   if (Changed)
7143     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7144 
7145   return Changed;
7146 
7147 trivially_true:
7148   // Return 0 == 0.
7149   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7150   Pred = ICmpInst::ICMP_EQ;
7151   return true;
7152 
7153 trivially_false:
7154   // Return 0 != 0.
7155   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7156   Pred = ICmpInst::ICMP_NE;
7157   return true;
7158 }
7159 
7160 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7161   return getSignedRange(S).getSignedMax().isNegative();
7162 }
7163 
7164 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7165   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7166 }
7167 
7168 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7169   return !getSignedRange(S).getSignedMin().isNegative();
7170 }
7171 
7172 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7173   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7174 }
7175 
7176 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7177   return isKnownNegative(S) || isKnownPositive(S);
7178 }
7179 
7180 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7181                                        const SCEV *LHS, const SCEV *RHS) {
7182   // Canonicalize the inputs first.
7183   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7184 
7185   // If LHS or RHS is an addrec, check to see if the condition is true in
7186   // every iteration of the loop.
7187   // If LHS and RHS are both addrec, both conditions must be true in
7188   // every iteration of the loop.
7189   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7190   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7191   bool LeftGuarded = false;
7192   bool RightGuarded = false;
7193   if (LAR) {
7194     const Loop *L = LAR->getLoop();
7195     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7196         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7197       if (!RAR) return true;
7198       LeftGuarded = true;
7199     }
7200   }
7201   if (RAR) {
7202     const Loop *L = RAR->getLoop();
7203     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7204         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7205       if (!LAR) return true;
7206       RightGuarded = true;
7207     }
7208   }
7209   if (LeftGuarded && RightGuarded)
7210     return true;
7211 
7212   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7213     return true;
7214 
7215   // Otherwise see what can be done with known constant ranges.
7216   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7217 }
7218 
7219 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7220                                            ICmpInst::Predicate Pred,
7221                                            bool &Increasing) {
7222   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7223 
7224 #ifndef NDEBUG
7225   // Verify an invariant: inverting the predicate should turn a monotonically
7226   // increasing change to a monotonically decreasing one, and vice versa.
7227   bool IncreasingSwapped;
7228   bool ResultSwapped = isMonotonicPredicateImpl(
7229       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7230 
7231   assert(Result == ResultSwapped && "should be able to analyze both!");
7232   if (ResultSwapped)
7233     assert(Increasing == !IncreasingSwapped &&
7234            "monotonicity should flip as we flip the predicate");
7235 #endif
7236 
7237   return Result;
7238 }
7239 
7240 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7241                                                ICmpInst::Predicate Pred,
7242                                                bool &Increasing) {
7243 
7244   // A zero step value for LHS means the induction variable is essentially a
7245   // loop invariant value. We don't really depend on the predicate actually
7246   // flipping from false to true (for increasing predicates, and the other way
7247   // around for decreasing predicates), all we care about is that *if* the
7248   // predicate changes then it only changes from false to true.
7249   //
7250   // A zero step value in itself is not very useful, but there may be places
7251   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7252   // as general as possible.
7253 
7254   switch (Pred) {
7255   default:
7256     return false; // Conservative answer
7257 
7258   case ICmpInst::ICMP_UGT:
7259   case ICmpInst::ICMP_UGE:
7260   case ICmpInst::ICMP_ULT:
7261   case ICmpInst::ICMP_ULE:
7262     if (!LHS->hasNoUnsignedWrap())
7263       return false;
7264 
7265     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7266     return true;
7267 
7268   case ICmpInst::ICMP_SGT:
7269   case ICmpInst::ICMP_SGE:
7270   case ICmpInst::ICMP_SLT:
7271   case ICmpInst::ICMP_SLE: {
7272     if (!LHS->hasNoSignedWrap())
7273       return false;
7274 
7275     const SCEV *Step = LHS->getStepRecurrence(*this);
7276 
7277     if (isKnownNonNegative(Step)) {
7278       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7279       return true;
7280     }
7281 
7282     if (isKnownNonPositive(Step)) {
7283       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7284       return true;
7285     }
7286 
7287     return false;
7288   }
7289 
7290   }
7291 
7292   llvm_unreachable("switch has default clause!");
7293 }
7294 
7295 bool ScalarEvolution::isLoopInvariantPredicate(
7296     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7297     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7298     const SCEV *&InvariantRHS) {
7299 
7300   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7301   if (!isLoopInvariant(RHS, L)) {
7302     if (!isLoopInvariant(LHS, L))
7303       return false;
7304 
7305     std::swap(LHS, RHS);
7306     Pred = ICmpInst::getSwappedPredicate(Pred);
7307   }
7308 
7309   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7310   if (!ArLHS || ArLHS->getLoop() != L)
7311     return false;
7312 
7313   bool Increasing;
7314   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7315     return false;
7316 
7317   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7318   // true as the loop iterates, and the backedge is control dependent on
7319   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7320   //
7321   //   * if the predicate was false in the first iteration then the predicate
7322   //     is never evaluated again, since the loop exits without taking the
7323   //     backedge.
7324   //   * if the predicate was true in the first iteration then it will
7325   //     continue to be true for all future iterations since it is
7326   //     monotonically increasing.
7327   //
7328   // For both the above possibilities, we can replace the loop varying
7329   // predicate with its value on the first iteration of the loop (which is
7330   // loop invariant).
7331   //
7332   // A similar reasoning applies for a monotonically decreasing predicate, by
7333   // replacing true with false and false with true in the above two bullets.
7334 
7335   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7336 
7337   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7338     return false;
7339 
7340   InvariantPred = Pred;
7341   InvariantLHS = ArLHS->getStart();
7342   InvariantRHS = RHS;
7343   return true;
7344 }
7345 
7346 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7347     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7348   if (HasSameValue(LHS, RHS))
7349     return ICmpInst::isTrueWhenEqual(Pred);
7350 
7351   // This code is split out from isKnownPredicate because it is called from
7352   // within isLoopEntryGuardedByCond.
7353 
7354   auto CheckRanges =
7355       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7356     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7357         .contains(RangeLHS);
7358   };
7359 
7360   // The check at the top of the function catches the case where the values are
7361   // known to be equal.
7362   if (Pred == CmpInst::ICMP_EQ)
7363     return false;
7364 
7365   if (Pred == CmpInst::ICMP_NE)
7366     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7367            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7368            isKnownNonZero(getMinusSCEV(LHS, RHS));
7369 
7370   if (CmpInst::isSigned(Pred))
7371     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7372 
7373   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7374 }
7375 
7376 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7377                                                     const SCEV *LHS,
7378                                                     const SCEV *RHS) {
7379 
7380   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7381   // Return Y via OutY.
7382   auto MatchBinaryAddToConst =
7383       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7384              SCEV::NoWrapFlags ExpectedFlags) {
7385     const SCEV *NonConstOp, *ConstOp;
7386     SCEV::NoWrapFlags FlagsPresent;
7387 
7388     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7389         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7390       return false;
7391 
7392     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7393     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7394   };
7395 
7396   APInt C;
7397 
7398   switch (Pred) {
7399   default:
7400     break;
7401 
7402   case ICmpInst::ICMP_SGE:
7403     std::swap(LHS, RHS);
7404   case ICmpInst::ICMP_SLE:
7405     // X s<= (X + C)<nsw> if C >= 0
7406     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7407       return true;
7408 
7409     // (X + C)<nsw> s<= X if C <= 0
7410     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7411         !C.isStrictlyPositive())
7412       return true;
7413     break;
7414 
7415   case ICmpInst::ICMP_SGT:
7416     std::swap(LHS, RHS);
7417   case ICmpInst::ICMP_SLT:
7418     // X s< (X + C)<nsw> if C > 0
7419     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7420         C.isStrictlyPositive())
7421       return true;
7422 
7423     // (X + C)<nsw> s< X if C < 0
7424     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7425       return true;
7426     break;
7427   }
7428 
7429   return false;
7430 }
7431 
7432 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7433                                                    const SCEV *LHS,
7434                                                    const SCEV *RHS) {
7435   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7436     return false;
7437 
7438   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7439   // the stack can result in exponential time complexity.
7440   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7441 
7442   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7443   //
7444   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7445   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7446   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7447   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7448   // use isKnownPredicate later if needed.
7449   return isKnownNonNegative(RHS) &&
7450          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7451          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7452 }
7453 
7454 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7455 /// protected by a conditional between LHS and RHS.  This is used to
7456 /// to eliminate casts.
7457 bool
7458 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7459                                              ICmpInst::Predicate Pred,
7460                                              const SCEV *LHS, const SCEV *RHS) {
7461   // Interpret a null as meaning no loop, where there is obviously no guard
7462   // (interprocedural conditions notwithstanding).
7463   if (!L) return true;
7464 
7465   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7466     return true;
7467 
7468   BasicBlock *Latch = L->getLoopLatch();
7469   if (!Latch)
7470     return false;
7471 
7472   BranchInst *LoopContinuePredicate =
7473     dyn_cast<BranchInst>(Latch->getTerminator());
7474   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7475       isImpliedCond(Pred, LHS, RHS,
7476                     LoopContinuePredicate->getCondition(),
7477                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7478     return true;
7479 
7480   // We don't want more than one activation of the following loops on the stack
7481   // -- that can lead to O(n!) time complexity.
7482   if (WalkingBEDominatingConds)
7483     return false;
7484 
7485   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7486 
7487   // See if we can exploit a trip count to prove the predicate.
7488   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7489   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7490   if (LatchBECount != getCouldNotCompute()) {
7491     // We know that Latch branches back to the loop header exactly
7492     // LatchBECount times.  This means the backdege condition at Latch is
7493     // equivalent to  "{0,+,1} u< LatchBECount".
7494     Type *Ty = LatchBECount->getType();
7495     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7496     const SCEV *LoopCounter =
7497       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7498     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7499                       LatchBECount))
7500       return true;
7501   }
7502 
7503   // Check conditions due to any @llvm.assume intrinsics.
7504   for (auto &AssumeVH : AC.assumptions()) {
7505     if (!AssumeVH)
7506       continue;
7507     auto *CI = cast<CallInst>(AssumeVH);
7508     if (!DT.dominates(CI, Latch->getTerminator()))
7509       continue;
7510 
7511     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7512       return true;
7513   }
7514 
7515   // If the loop is not reachable from the entry block, we risk running into an
7516   // infinite loop as we walk up into the dom tree.  These loops do not matter
7517   // anyway, so we just return a conservative answer when we see them.
7518   if (!DT.isReachableFromEntry(L->getHeader()))
7519     return false;
7520 
7521   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7522        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7523 
7524     assert(DTN && "should reach the loop header before reaching the root!");
7525 
7526     BasicBlock *BB = DTN->getBlock();
7527     BasicBlock *PBB = BB->getSinglePredecessor();
7528     if (!PBB)
7529       continue;
7530 
7531     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7532     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7533       continue;
7534 
7535     Value *Condition = ContinuePredicate->getCondition();
7536 
7537     // If we have an edge `E` within the loop body that dominates the only
7538     // latch, the condition guarding `E` also guards the backedge.  This
7539     // reasoning works only for loops with a single latch.
7540 
7541     BasicBlockEdge DominatingEdge(PBB, BB);
7542     if (DominatingEdge.isSingleEdge()) {
7543       // We're constructively (and conservatively) enumerating edges within the
7544       // loop body that dominate the latch.  The dominator tree better agree
7545       // with us on this:
7546       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7547 
7548       if (isImpliedCond(Pred, LHS, RHS, Condition,
7549                         BB != ContinuePredicate->getSuccessor(0)))
7550         return true;
7551     }
7552   }
7553 
7554   return false;
7555 }
7556 
7557 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
7558 /// by a conditional between LHS and RHS.  This is used to help avoid max
7559 /// expressions in loop trip counts, and to eliminate casts.
7560 bool
7561 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7562                                           ICmpInst::Predicate Pred,
7563                                           const SCEV *LHS, const SCEV *RHS) {
7564   // Interpret a null as meaning no loop, where there is obviously no guard
7565   // (interprocedural conditions notwithstanding).
7566   if (!L) return false;
7567 
7568   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7569     return true;
7570 
7571   // Starting at the loop predecessor, climb up the predecessor chain, as long
7572   // as there are predecessors that can be found that have unique successors
7573   // leading to the original header.
7574   for (std::pair<BasicBlock *, BasicBlock *>
7575          Pair(L->getLoopPredecessor(), L->getHeader());
7576        Pair.first;
7577        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7578 
7579     BranchInst *LoopEntryPredicate =
7580       dyn_cast<BranchInst>(Pair.first->getTerminator());
7581     if (!LoopEntryPredicate ||
7582         LoopEntryPredicate->isUnconditional())
7583       continue;
7584 
7585     if (isImpliedCond(Pred, LHS, RHS,
7586                       LoopEntryPredicate->getCondition(),
7587                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
7588       return true;
7589   }
7590 
7591   // Check conditions due to any @llvm.assume intrinsics.
7592   for (auto &AssumeVH : AC.assumptions()) {
7593     if (!AssumeVH)
7594       continue;
7595     auto *CI = cast<CallInst>(AssumeVH);
7596     if (!DT.dominates(CI, L->getHeader()))
7597       continue;
7598 
7599     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7600       return true;
7601   }
7602 
7603   return false;
7604 }
7605 
7606 namespace {
7607 /// RAII wrapper to prevent recursive application of isImpliedCond.
7608 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7609 /// currently evaluating isImpliedCond.
7610 struct MarkPendingLoopPredicate {
7611   Value *Cond;
7612   DenseSet<Value*> &LoopPreds;
7613   bool Pending;
7614 
7615   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7616     : Cond(C), LoopPreds(LP) {
7617     Pending = !LoopPreds.insert(Cond).second;
7618   }
7619   ~MarkPendingLoopPredicate() {
7620     if (!Pending)
7621       LoopPreds.erase(Cond);
7622   }
7623 };
7624 } // end anonymous namespace
7625 
7626 /// isImpliedCond - Test whether the condition described by Pred, LHS,
7627 /// and RHS is true whenever the given Cond value evaluates to true.
7628 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
7629                                     const SCEV *LHS, const SCEV *RHS,
7630                                     Value *FoundCondValue,
7631                                     bool Inverse) {
7632   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7633   if (Mark.Pending)
7634     return false;
7635 
7636   // Recursively handle And and Or conditions.
7637   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
7638     if (BO->getOpcode() == Instruction::And) {
7639       if (!Inverse)
7640         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7641                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7642     } else if (BO->getOpcode() == Instruction::Or) {
7643       if (Inverse)
7644         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7645                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7646     }
7647   }
7648 
7649   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
7650   if (!ICI) return false;
7651 
7652   // Now that we found a conditional branch that dominates the loop or controls
7653   // the loop latch. Check to see if it is the comparison we are looking for.
7654   ICmpInst::Predicate FoundPred;
7655   if (Inverse)
7656     FoundPred = ICI->getInversePredicate();
7657   else
7658     FoundPred = ICI->getPredicate();
7659 
7660   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7661   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
7662 
7663   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7664 }
7665 
7666 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7667                                     const SCEV *RHS,
7668                                     ICmpInst::Predicate FoundPred,
7669                                     const SCEV *FoundLHS,
7670                                     const SCEV *FoundRHS) {
7671   // Balance the types.
7672   if (getTypeSizeInBits(LHS->getType()) <
7673       getTypeSizeInBits(FoundLHS->getType())) {
7674     if (CmpInst::isSigned(Pred)) {
7675       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7676       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7677     } else {
7678       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7679       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7680     }
7681   } else if (getTypeSizeInBits(LHS->getType()) >
7682       getTypeSizeInBits(FoundLHS->getType())) {
7683     if (CmpInst::isSigned(FoundPred)) {
7684       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7685       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7686     } else {
7687       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7688       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7689     }
7690   }
7691 
7692   // Canonicalize the query to match the way instcombine will have
7693   // canonicalized the comparison.
7694   if (SimplifyICmpOperands(Pred, LHS, RHS))
7695     if (LHS == RHS)
7696       return CmpInst::isTrueWhenEqual(Pred);
7697   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7698     if (FoundLHS == FoundRHS)
7699       return CmpInst::isFalseWhenEqual(FoundPred);
7700 
7701   // Check to see if we can make the LHS or RHS match.
7702   if (LHS == FoundRHS || RHS == FoundLHS) {
7703     if (isa<SCEVConstant>(RHS)) {
7704       std::swap(FoundLHS, FoundRHS);
7705       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7706     } else {
7707       std::swap(LHS, RHS);
7708       Pred = ICmpInst::getSwappedPredicate(Pred);
7709     }
7710   }
7711 
7712   // Check whether the found predicate is the same as the desired predicate.
7713   if (FoundPred == Pred)
7714     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7715 
7716   // Check whether swapping the found predicate makes it the same as the
7717   // desired predicate.
7718   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7719     if (isa<SCEVConstant>(RHS))
7720       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7721     else
7722       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7723                                    RHS, LHS, FoundLHS, FoundRHS);
7724   }
7725 
7726   // Unsigned comparison is the same as signed comparison when both the operands
7727   // are non-negative.
7728   if (CmpInst::isUnsigned(FoundPred) &&
7729       CmpInst::getSignedPredicate(FoundPred) == Pred &&
7730       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7731     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7732 
7733   // Check if we can make progress by sharpening ranges.
7734   if (FoundPred == ICmpInst::ICMP_NE &&
7735       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7736 
7737     const SCEVConstant *C = nullptr;
7738     const SCEV *V = nullptr;
7739 
7740     if (isa<SCEVConstant>(FoundLHS)) {
7741       C = cast<SCEVConstant>(FoundLHS);
7742       V = FoundRHS;
7743     } else {
7744       C = cast<SCEVConstant>(FoundRHS);
7745       V = FoundLHS;
7746     }
7747 
7748     // The guarding predicate tells us that C != V. If the known range
7749     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
7750     // range we consider has to correspond to same signedness as the
7751     // predicate we're interested in folding.
7752 
7753     APInt Min = ICmpInst::isSigned(Pred) ?
7754         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7755 
7756     if (Min == C->getAPInt()) {
7757       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7758       // This is true even if (Min + 1) wraps around -- in case of
7759       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7760 
7761       APInt SharperMin = Min + 1;
7762 
7763       switch (Pred) {
7764         case ICmpInst::ICMP_SGE:
7765         case ICmpInst::ICMP_UGE:
7766           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
7767           // RHS, we're done.
7768           if (isImpliedCondOperands(Pred, LHS, RHS, V,
7769                                     getConstant(SharperMin)))
7770             return true;
7771 
7772         case ICmpInst::ICMP_SGT:
7773         case ICmpInst::ICMP_UGT:
7774           // We know from the range information that (V `Pred` Min ||
7775           // V == Min).  We know from the guarding condition that !(V
7776           // == Min).  This gives us
7777           //
7778           //       V `Pred` Min || V == Min && !(V == Min)
7779           //   =>  V `Pred` Min
7780           //
7781           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7782 
7783           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7784             return true;
7785 
7786         default:
7787           // No change
7788           break;
7789       }
7790     }
7791   }
7792 
7793   // Check whether the actual condition is beyond sufficient.
7794   if (FoundPred == ICmpInst::ICMP_EQ)
7795     if (ICmpInst::isTrueWhenEqual(Pred))
7796       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7797         return true;
7798   if (Pred == ICmpInst::ICMP_NE)
7799     if (!ICmpInst::isTrueWhenEqual(FoundPred))
7800       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7801         return true;
7802 
7803   // Otherwise assume the worst.
7804   return false;
7805 }
7806 
7807 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7808                                      const SCEV *&L, const SCEV *&R,
7809                                      SCEV::NoWrapFlags &Flags) {
7810   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7811   if (!AE || AE->getNumOperands() != 2)
7812     return false;
7813 
7814   L = AE->getOperand(0);
7815   R = AE->getOperand(1);
7816   Flags = AE->getNoWrapFlags();
7817   return true;
7818 }
7819 
7820 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7821                                                 const SCEV *More,
7822                                                 APInt &C) {
7823   // We avoid subtracting expressions here because this function is usually
7824   // fairly deep in the call stack (i.e. is called many times).
7825 
7826   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7827     const auto *LAR = cast<SCEVAddRecExpr>(Less);
7828     const auto *MAR = cast<SCEVAddRecExpr>(More);
7829 
7830     if (LAR->getLoop() != MAR->getLoop())
7831       return false;
7832 
7833     // We look at affine expressions only; not for correctness but to keep
7834     // getStepRecurrence cheap.
7835     if (!LAR->isAffine() || !MAR->isAffine())
7836       return false;
7837 
7838     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
7839       return false;
7840 
7841     Less = LAR->getStart();
7842     More = MAR->getStart();
7843 
7844     // fall through
7845   }
7846 
7847   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7848     const auto &M = cast<SCEVConstant>(More)->getAPInt();
7849     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
7850     C = M - L;
7851     return true;
7852   }
7853 
7854   const SCEV *L, *R;
7855   SCEV::NoWrapFlags Flags;
7856   if (splitBinaryAdd(Less, L, R, Flags))
7857     if (const auto *LC = dyn_cast<SCEVConstant>(L))
7858       if (R == More) {
7859         C = -(LC->getAPInt());
7860         return true;
7861       }
7862 
7863   if (splitBinaryAdd(More, L, R, Flags))
7864     if (const auto *LC = dyn_cast<SCEVConstant>(L))
7865       if (R == Less) {
7866         C = LC->getAPInt();
7867         return true;
7868       }
7869 
7870   return false;
7871 }
7872 
7873 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7874     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7875     const SCEV *FoundLHS, const SCEV *FoundRHS) {
7876   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7877     return false;
7878 
7879   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7880   if (!AddRecLHS)
7881     return false;
7882 
7883   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7884   if (!AddRecFoundLHS)
7885     return false;
7886 
7887   // We'd like to let SCEV reason about control dependencies, so we constrain
7888   // both the inequalities to be about add recurrences on the same loop.  This
7889   // way we can use isLoopEntryGuardedByCond later.
7890 
7891   const Loop *L = AddRecFoundLHS->getLoop();
7892   if (L != AddRecLHS->getLoop())
7893     return false;
7894 
7895   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
7896   //
7897   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7898   //                                                                  ... (2)
7899   //
7900   // Informal proof for (2), assuming (1) [*]:
7901   //
7902   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7903   //
7904   // Then
7905   //
7906   //       FoundLHS s< FoundRHS s< INT_MIN - C
7907   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
7908   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7909   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
7910   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7911   // <=>  FoundLHS + C s< FoundRHS + C
7912   //
7913   // [*]: (1) can be proved by ruling out overflow.
7914   //
7915   // [**]: This can be proved by analyzing all the four possibilities:
7916   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7917   //    (A s>= 0, B s>= 0).
7918   //
7919   // Note:
7920   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7921   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
7922   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
7923   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
7924   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7925   // C)".
7926 
7927   APInt LDiff, RDiff;
7928   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7929       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
7930       LDiff != RDiff)
7931     return false;
7932 
7933   if (LDiff == 0)
7934     return true;
7935 
7936   APInt FoundRHSLimit;
7937 
7938   if (Pred == CmpInst::ICMP_ULT) {
7939     FoundRHSLimit = -RDiff;
7940   } else {
7941     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
7942     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
7943   }
7944 
7945   // Try to prove (1) or (2), as needed.
7946   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7947                                   getConstant(FoundRHSLimit));
7948 }
7949 
7950 /// isImpliedCondOperands - Test whether the condition described by Pred,
7951 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
7952 /// and FoundRHS is true.
7953 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7954                                             const SCEV *LHS, const SCEV *RHS,
7955                                             const SCEV *FoundLHS,
7956                                             const SCEV *FoundRHS) {
7957   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7958     return true;
7959 
7960   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7961     return true;
7962 
7963   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7964                                      FoundLHS, FoundRHS) ||
7965          // ~x < ~y --> x > y
7966          isImpliedCondOperandsHelper(Pred, LHS, RHS,
7967                                      getNotSCEV(FoundRHS),
7968                                      getNotSCEV(FoundLHS));
7969 }
7970 
7971 
7972 /// If Expr computes ~A, return A else return nullptr
7973 static const SCEV *MatchNotExpr(const SCEV *Expr) {
7974   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7975   if (!Add || Add->getNumOperands() != 2 ||
7976       !Add->getOperand(0)->isAllOnesValue())
7977     return nullptr;
7978 
7979   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7980   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7981       !AddRHS->getOperand(0)->isAllOnesValue())
7982     return nullptr;
7983 
7984   return AddRHS->getOperand(1);
7985 }
7986 
7987 
7988 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7989 template<typename MaxExprType>
7990 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7991                               const SCEV *Candidate) {
7992   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7993   if (!MaxExpr) return false;
7994 
7995   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
7996 }
7997 
7998 
7999 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8000 template<typename MaxExprType>
8001 static bool IsMinConsistingOf(ScalarEvolution &SE,
8002                               const SCEV *MaybeMinExpr,
8003                               const SCEV *Candidate) {
8004   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8005   if (!MaybeMaxExpr)
8006     return false;
8007 
8008   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8009 }
8010 
8011 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8012                                            ICmpInst::Predicate Pred,
8013                                            const SCEV *LHS, const SCEV *RHS) {
8014 
8015   // If both sides are affine addrecs for the same loop, with equal
8016   // steps, and we know the recurrences don't wrap, then we only
8017   // need to check the predicate on the starting values.
8018 
8019   if (!ICmpInst::isRelational(Pred))
8020     return false;
8021 
8022   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8023   if (!LAR)
8024     return false;
8025   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8026   if (!RAR)
8027     return false;
8028   if (LAR->getLoop() != RAR->getLoop())
8029     return false;
8030   if (!LAR->isAffine() || !RAR->isAffine())
8031     return false;
8032 
8033   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8034     return false;
8035 
8036   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8037                          SCEV::FlagNSW : SCEV::FlagNUW;
8038   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8039     return false;
8040 
8041   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8042 }
8043 
8044 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8045 /// expression?
8046 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8047                                         ICmpInst::Predicate Pred,
8048                                         const SCEV *LHS, const SCEV *RHS) {
8049   switch (Pred) {
8050   default:
8051     return false;
8052 
8053   case ICmpInst::ICMP_SGE:
8054     std::swap(LHS, RHS);
8055     // fall through
8056   case ICmpInst::ICMP_SLE:
8057     return
8058       // min(A, ...) <= A
8059       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8060       // A <= max(A, ...)
8061       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8062 
8063   case ICmpInst::ICMP_UGE:
8064     std::swap(LHS, RHS);
8065     // fall through
8066   case ICmpInst::ICMP_ULE:
8067     return
8068       // min(A, ...) <= A
8069       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8070       // A <= max(A, ...)
8071       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8072   }
8073 
8074   llvm_unreachable("covered switch fell through?!");
8075 }
8076 
8077 /// isImpliedCondOperandsHelper - Test whether the condition described by
8078 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
8079 /// FoundLHS, and FoundRHS is true.
8080 bool
8081 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8082                                              const SCEV *LHS, const SCEV *RHS,
8083                                              const SCEV *FoundLHS,
8084                                              const SCEV *FoundRHS) {
8085   auto IsKnownPredicateFull =
8086       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8087     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8088            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8089            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8090            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8091   };
8092 
8093   switch (Pred) {
8094   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8095   case ICmpInst::ICMP_EQ:
8096   case ICmpInst::ICMP_NE:
8097     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8098       return true;
8099     break;
8100   case ICmpInst::ICMP_SLT:
8101   case ICmpInst::ICMP_SLE:
8102     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8103         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8104       return true;
8105     break;
8106   case ICmpInst::ICMP_SGT:
8107   case ICmpInst::ICMP_SGE:
8108     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8109         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8110       return true;
8111     break;
8112   case ICmpInst::ICMP_ULT:
8113   case ICmpInst::ICMP_ULE:
8114     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8115         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8116       return true;
8117     break;
8118   case ICmpInst::ICMP_UGT:
8119   case ICmpInst::ICMP_UGE:
8120     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8121         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8122       return true;
8123     break;
8124   }
8125 
8126   return false;
8127 }
8128 
8129 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8130 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8131 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8132                                                      const SCEV *LHS,
8133                                                      const SCEV *RHS,
8134                                                      const SCEV *FoundLHS,
8135                                                      const SCEV *FoundRHS) {
8136   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8137     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8138     // reduce the compile time impact of this optimization.
8139     return false;
8140 
8141   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8142   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8143       !isa<SCEVConstant>(AddLHS->getOperand(0)))
8144     return false;
8145 
8146   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8147 
8148   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8149   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8150   ConstantRange FoundLHSRange =
8151       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8152 
8153   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8154   // for `LHS`:
8155   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8156   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8157 
8158   // We can also compute the range of values for `LHS` that satisfy the
8159   // consequent, "`LHS` `Pred` `RHS`":
8160   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8161   ConstantRange SatisfyingLHSRange =
8162       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8163 
8164   // The antecedent implies the consequent if every value of `LHS` that
8165   // satisfies the antecedent also satisfies the consequent.
8166   return SatisfyingLHSRange.contains(LHSRange);
8167 }
8168 
8169 // Verify if an linear IV with positive stride can overflow when in a
8170 // less-than comparison, knowing the invariant term of the comparison, the
8171 // stride and the knowledge of NSW/NUW flags on the recurrence.
8172 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8173                                          bool IsSigned, bool NoWrap) {
8174   if (NoWrap) return false;
8175 
8176   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8177   const SCEV *One = getOne(Stride->getType());
8178 
8179   if (IsSigned) {
8180     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8181     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8182     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8183                                 .getSignedMax();
8184 
8185     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8186     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8187   }
8188 
8189   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8190   APInt MaxValue = APInt::getMaxValue(BitWidth);
8191   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8192                               .getUnsignedMax();
8193 
8194   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8195   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8196 }
8197 
8198 // Verify if an linear IV with negative stride can overflow when in a
8199 // greater-than comparison, knowing the invariant term of the comparison,
8200 // the stride and the knowledge of NSW/NUW flags on the recurrence.
8201 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8202                                          bool IsSigned, bool NoWrap) {
8203   if (NoWrap) return false;
8204 
8205   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8206   const SCEV *One = getOne(Stride->getType());
8207 
8208   if (IsSigned) {
8209     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8210     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8211     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8212                                .getSignedMax();
8213 
8214     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8215     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8216   }
8217 
8218   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8219   APInt MinValue = APInt::getMinValue(BitWidth);
8220   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8221                             .getUnsignedMax();
8222 
8223   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8224   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8225 }
8226 
8227 // Compute the backedge taken count knowing the interval difference, the
8228 // stride and presence of the equality in the comparison.
8229 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8230                                             bool Equality) {
8231   const SCEV *One = getOne(Step->getType());
8232   Delta = Equality ? getAddExpr(Delta, Step)
8233                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8234   return getUDivExpr(Delta, Step);
8235 }
8236 
8237 /// HowManyLessThans - Return the number of times a backedge containing the
8238 /// specified less-than comparison will execute.  If not computable, return
8239 /// CouldNotCompute.
8240 ///
8241 /// @param ControlsExit is true when the LHS < RHS condition directly controls
8242 /// the branch (loops exits only if condition is true). In this case, we can use
8243 /// NoWrapFlags to skip overflow checks.
8244 ScalarEvolution::ExitLimit
8245 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
8246                                   const Loop *L, bool IsSigned,
8247                                   bool ControlsExit) {
8248   // We handle only IV < Invariant
8249   if (!isLoopInvariant(RHS, L))
8250     return getCouldNotCompute();
8251 
8252   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8253 
8254   // Avoid weird loops
8255   if (!IV || IV->getLoop() != L || !IV->isAffine())
8256     return getCouldNotCompute();
8257 
8258   bool NoWrap = ControlsExit &&
8259                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8260 
8261   const SCEV *Stride = IV->getStepRecurrence(*this);
8262 
8263   // Avoid negative or zero stride values
8264   if (!isKnownPositive(Stride))
8265     return getCouldNotCompute();
8266 
8267   // Avoid proven overflow cases: this will ensure that the backedge taken count
8268   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8269   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8270   // behaviors like the case of C language.
8271   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8272     return getCouldNotCompute();
8273 
8274   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8275                                       : ICmpInst::ICMP_ULT;
8276   const SCEV *Start = IV->getStart();
8277   const SCEV *End = RHS;
8278   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8279     const SCEV *Diff = getMinusSCEV(RHS, Start);
8280     // If we have NoWrap set, then we can assume that the increment won't
8281     // overflow, in which case if RHS - Start is a constant, we don't need to
8282     // do a max operation since we can just figure it out statically
8283     if (NoWrap && isa<SCEVConstant>(Diff)) {
8284       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8285       if (D.isNegative())
8286         End = Start;
8287     } else
8288       End = IsSigned ? getSMaxExpr(RHS, Start)
8289                      : getUMaxExpr(RHS, Start);
8290   }
8291 
8292   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8293 
8294   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8295                             : getUnsignedRange(Start).getUnsignedMin();
8296 
8297   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8298                              : getUnsignedRange(Stride).getUnsignedMin();
8299 
8300   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8301   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8302                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8303 
8304   // Although End can be a MAX expression we estimate MaxEnd considering only
8305   // the case End = RHS. This is safe because in the other case (End - Start)
8306   // is zero, leading to a zero maximum backedge taken count.
8307   APInt MaxEnd =
8308     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8309              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8310 
8311   const SCEV *MaxBECount;
8312   if (isa<SCEVConstant>(BECount))
8313     MaxBECount = BECount;
8314   else
8315     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8316                                 getConstant(MinStride), false);
8317 
8318   if (isa<SCEVCouldNotCompute>(MaxBECount))
8319     MaxBECount = BECount;
8320 
8321   return ExitLimit(BECount, MaxBECount);
8322 }
8323 
8324 ScalarEvolution::ExitLimit
8325 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8326                                      const Loop *L, bool IsSigned,
8327                                      bool ControlsExit) {
8328   // We handle only IV > Invariant
8329   if (!isLoopInvariant(RHS, L))
8330     return getCouldNotCompute();
8331 
8332   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8333 
8334   // Avoid weird loops
8335   if (!IV || IV->getLoop() != L || !IV->isAffine())
8336     return getCouldNotCompute();
8337 
8338   bool NoWrap = ControlsExit &&
8339                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8340 
8341   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8342 
8343   // Avoid negative or zero stride values
8344   if (!isKnownPositive(Stride))
8345     return getCouldNotCompute();
8346 
8347   // Avoid proven overflow cases: this will ensure that the backedge taken count
8348   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8349   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8350   // behaviors like the case of C language.
8351   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8352     return getCouldNotCompute();
8353 
8354   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8355                                       : ICmpInst::ICMP_UGT;
8356 
8357   const SCEV *Start = IV->getStart();
8358   const SCEV *End = RHS;
8359   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8360     const SCEV *Diff = getMinusSCEV(RHS, Start);
8361     // If we have NoWrap set, then we can assume that the increment won't
8362     // overflow, in which case if RHS - Start is a constant, we don't need to
8363     // do a max operation since we can just figure it out statically
8364     if (NoWrap && isa<SCEVConstant>(Diff)) {
8365       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8366       if (!D.isNegative())
8367         End = Start;
8368     } else
8369       End = IsSigned ? getSMinExpr(RHS, Start)
8370                      : getUMinExpr(RHS, Start);
8371   }
8372 
8373   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8374 
8375   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8376                             : getUnsignedRange(Start).getUnsignedMax();
8377 
8378   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8379                              : getUnsignedRange(Stride).getUnsignedMin();
8380 
8381   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8382   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8383                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8384 
8385   // Although End can be a MIN expression we estimate MinEnd considering only
8386   // the case End = RHS. This is safe because in the other case (Start - End)
8387   // is zero, leading to a zero maximum backedge taken count.
8388   APInt MinEnd =
8389     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8390              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8391 
8392 
8393   const SCEV *MaxBECount = getCouldNotCompute();
8394   if (isa<SCEVConstant>(BECount))
8395     MaxBECount = BECount;
8396   else
8397     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8398                                 getConstant(MinStride), false);
8399 
8400   if (isa<SCEVCouldNotCompute>(MaxBECount))
8401     MaxBECount = BECount;
8402 
8403   return ExitLimit(BECount, MaxBECount);
8404 }
8405 
8406 /// getNumIterationsInRange - Return the number of iterations of this loop that
8407 /// produce values in the specified constant range.  Another way of looking at
8408 /// this is that it returns the first iteration number where the value is not in
8409 /// the condition, thus computing the exit count. If the iteration count can't
8410 /// be computed, an instance of SCEVCouldNotCompute is returned.
8411 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8412                                                     ScalarEvolution &SE) const {
8413   if (Range.isFullSet())  // Infinite loop.
8414     return SE.getCouldNotCompute();
8415 
8416   // If the start is a non-zero constant, shift the range to simplify things.
8417   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8418     if (!SC->getValue()->isZero()) {
8419       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8420       Operands[0] = SE.getZero(SC->getType());
8421       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8422                                              getNoWrapFlags(FlagNW));
8423       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8424         return ShiftedAddRec->getNumIterationsInRange(
8425             Range.subtract(SC->getAPInt()), SE);
8426       // This is strange and shouldn't happen.
8427       return SE.getCouldNotCompute();
8428     }
8429 
8430   // The only time we can solve this is when we have all constant indices.
8431   // Otherwise, we cannot determine the overflow conditions.
8432   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8433     return SE.getCouldNotCompute();
8434 
8435   // Okay at this point we know that all elements of the chrec are constants and
8436   // that the start element is zero.
8437 
8438   // First check to see if the range contains zero.  If not, the first
8439   // iteration exits.
8440   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8441   if (!Range.contains(APInt(BitWidth, 0)))
8442     return SE.getZero(getType());
8443 
8444   if (isAffine()) {
8445     // If this is an affine expression then we have this situation:
8446     //   Solve {0,+,A} in Range  ===  Ax in Range
8447 
8448     // We know that zero is in the range.  If A is positive then we know that
8449     // the upper value of the range must be the first possible exit value.
8450     // If A is negative then the lower of the range is the last possible loop
8451     // value.  Also note that we already checked for a full range.
8452     APInt One(BitWidth,1);
8453     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8454     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8455 
8456     // The exit value should be (End+A)/A.
8457     APInt ExitVal = (End + A).udiv(A);
8458     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8459 
8460     // Evaluate at the exit value.  If we really did fall out of the valid
8461     // range, then we computed our trip count, otherwise wrap around or other
8462     // things must have happened.
8463     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8464     if (Range.contains(Val->getValue()))
8465       return SE.getCouldNotCompute();  // Something strange happened
8466 
8467     // Ensure that the previous value is in the range.  This is a sanity check.
8468     assert(Range.contains(
8469            EvaluateConstantChrecAtConstant(this,
8470            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8471            "Linear scev computation is off in a bad way!");
8472     return SE.getConstant(ExitValue);
8473   } else if (isQuadratic()) {
8474     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8475     // quadratic equation to solve it.  To do this, we must frame our problem in
8476     // terms of figuring out when zero is crossed, instead of when
8477     // Range.getUpper() is crossed.
8478     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8479     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8480     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8481                                              // getNoWrapFlags(FlagNW)
8482                                              FlagAnyWrap);
8483 
8484     // Next, solve the constructed addrec
8485     auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
8486     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8487     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
8488     if (R1) {
8489       // Pick the smallest positive root value.
8490       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8491               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8492         if (!CB->getZExtValue())
8493           std::swap(R1, R2);   // R1 is the minimum root now.
8494 
8495         // Make sure the root is not off by one.  The returned iteration should
8496         // not be in the range, but the previous one should be.  When solving
8497         // for "X*X < 5", for example, we should not return a root of 2.
8498         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
8499                                                              R1->getValue(),
8500                                                              SE);
8501         if (Range.contains(R1Val->getValue())) {
8502           // The next iteration must be out of the range...
8503           ConstantInt *NextVal =
8504               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8505 
8506           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8507           if (!Range.contains(R1Val->getValue()))
8508             return SE.getConstant(NextVal);
8509           return SE.getCouldNotCompute();  // Something strange happened
8510         }
8511 
8512         // If R1 was not in the range, then it is a good return value.  Make
8513         // sure that R1-1 WAS in the range though, just in case.
8514         ConstantInt *NextVal =
8515             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8516         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8517         if (Range.contains(R1Val->getValue()))
8518           return R1;
8519         return SE.getCouldNotCompute();  // Something strange happened
8520       }
8521     }
8522   }
8523 
8524   return SE.getCouldNotCompute();
8525 }
8526 
8527 namespace {
8528 struct FindUndefs {
8529   bool Found;
8530   FindUndefs() : Found(false) {}
8531 
8532   bool follow(const SCEV *S) {
8533     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8534       if (isa<UndefValue>(C->getValue()))
8535         Found = true;
8536     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8537       if (isa<UndefValue>(C->getValue()))
8538         Found = true;
8539     }
8540 
8541     // Keep looking if we haven't found it yet.
8542     return !Found;
8543   }
8544   bool isDone() const {
8545     // Stop recursion if we have found an undef.
8546     return Found;
8547   }
8548 };
8549 }
8550 
8551 // Return true when S contains at least an undef value.
8552 static inline bool
8553 containsUndefs(const SCEV *S) {
8554   FindUndefs F;
8555   SCEVTraversal<FindUndefs> ST(F);
8556   ST.visitAll(S);
8557 
8558   return F.Found;
8559 }
8560 
8561 namespace {
8562 // Collect all steps of SCEV expressions.
8563 struct SCEVCollectStrides {
8564   ScalarEvolution &SE;
8565   SmallVectorImpl<const SCEV *> &Strides;
8566 
8567   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8568       : SE(SE), Strides(S) {}
8569 
8570   bool follow(const SCEV *S) {
8571     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8572       Strides.push_back(AR->getStepRecurrence(SE));
8573     return true;
8574   }
8575   bool isDone() const { return false; }
8576 };
8577 
8578 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8579 struct SCEVCollectTerms {
8580   SmallVectorImpl<const SCEV *> &Terms;
8581 
8582   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8583       : Terms(T) {}
8584 
8585   bool follow(const SCEV *S) {
8586     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8587       if (!containsUndefs(S))
8588         Terms.push_back(S);
8589 
8590       // Stop recursion: once we collected a term, do not walk its operands.
8591       return false;
8592     }
8593 
8594     // Keep looking.
8595     return true;
8596   }
8597   bool isDone() const { return false; }
8598 };
8599 
8600 // Check if a SCEV contains an AddRecExpr.
8601 struct SCEVHasAddRec {
8602   bool &ContainsAddRec;
8603 
8604   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8605    ContainsAddRec = false;
8606   }
8607 
8608   bool follow(const SCEV *S) {
8609     if (isa<SCEVAddRecExpr>(S)) {
8610       ContainsAddRec = true;
8611 
8612       // Stop recursion: once we collected a term, do not walk its operands.
8613       return false;
8614     }
8615 
8616     // Keep looking.
8617     return true;
8618   }
8619   bool isDone() const { return false; }
8620 };
8621 
8622 // Find factors that are multiplied with an expression that (possibly as a
8623 // subexpression) contains an AddRecExpr. In the expression:
8624 //
8625 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
8626 //
8627 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8628 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8629 // parameters as they form a product with an induction variable.
8630 //
8631 // This collector expects all array size parameters to be in the same MulExpr.
8632 // It might be necessary to later add support for collecting parameters that are
8633 // spread over different nested MulExpr.
8634 struct SCEVCollectAddRecMultiplies {
8635   SmallVectorImpl<const SCEV *> &Terms;
8636   ScalarEvolution &SE;
8637 
8638   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8639       : Terms(T), SE(SE) {}
8640 
8641   bool follow(const SCEV *S) {
8642     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8643       bool HasAddRec = false;
8644       SmallVector<const SCEV *, 0> Operands;
8645       for (auto Op : Mul->operands()) {
8646         if (isa<SCEVUnknown>(Op)) {
8647           Operands.push_back(Op);
8648         } else {
8649           bool ContainsAddRec;
8650           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8651           visitAll(Op, ContiansAddRec);
8652           HasAddRec |= ContainsAddRec;
8653         }
8654       }
8655       if (Operands.size() == 0)
8656         return true;
8657 
8658       if (!HasAddRec)
8659         return false;
8660 
8661       Terms.push_back(SE.getMulExpr(Operands));
8662       // Stop recursion: once we collected a term, do not walk its operands.
8663       return false;
8664     }
8665 
8666     // Keep looking.
8667     return true;
8668   }
8669   bool isDone() const { return false; }
8670 };
8671 }
8672 
8673 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8674 /// two places:
8675 ///   1) The strides of AddRec expressions.
8676 ///   2) Unknowns that are multiplied with AddRec expressions.
8677 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8678     SmallVectorImpl<const SCEV *> &Terms) {
8679   SmallVector<const SCEV *, 4> Strides;
8680   SCEVCollectStrides StrideCollector(*this, Strides);
8681   visitAll(Expr, StrideCollector);
8682 
8683   DEBUG({
8684       dbgs() << "Strides:\n";
8685       for (const SCEV *S : Strides)
8686         dbgs() << *S << "\n";
8687     });
8688 
8689   for (const SCEV *S : Strides) {
8690     SCEVCollectTerms TermCollector(Terms);
8691     visitAll(S, TermCollector);
8692   }
8693 
8694   DEBUG({
8695       dbgs() << "Terms:\n";
8696       for (const SCEV *T : Terms)
8697         dbgs() << *T << "\n";
8698     });
8699 
8700   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8701   visitAll(Expr, MulCollector);
8702 }
8703 
8704 static bool findArrayDimensionsRec(ScalarEvolution &SE,
8705                                    SmallVectorImpl<const SCEV *> &Terms,
8706                                    SmallVectorImpl<const SCEV *> &Sizes) {
8707   int Last = Terms.size() - 1;
8708   const SCEV *Step = Terms[Last];
8709 
8710   // End of recursion.
8711   if (Last == 0) {
8712     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
8713       SmallVector<const SCEV *, 2> Qs;
8714       for (const SCEV *Op : M->operands())
8715         if (!isa<SCEVConstant>(Op))
8716           Qs.push_back(Op);
8717 
8718       Step = SE.getMulExpr(Qs);
8719     }
8720 
8721     Sizes.push_back(Step);
8722     return true;
8723   }
8724 
8725   for (const SCEV *&Term : Terms) {
8726     // Normalize the terms before the next call to findArrayDimensionsRec.
8727     const SCEV *Q, *R;
8728     SCEVDivision::divide(SE, Term, Step, &Q, &R);
8729 
8730     // Bail out when GCD does not evenly divide one of the terms.
8731     if (!R->isZero())
8732       return false;
8733 
8734     Term = Q;
8735   }
8736 
8737   // Remove all SCEVConstants.
8738   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8739                 return isa<SCEVConstant>(E);
8740               }),
8741               Terms.end());
8742 
8743   if (Terms.size() > 0)
8744     if (!findArrayDimensionsRec(SE, Terms, Sizes))
8745       return false;
8746 
8747   Sizes.push_back(Step);
8748   return true;
8749 }
8750 
8751 // Returns true when S contains at least a SCEVUnknown parameter.
8752 static inline bool
8753 containsParameters(const SCEV *S) {
8754   struct FindParameter {
8755     bool FoundParameter;
8756     FindParameter() : FoundParameter(false) {}
8757 
8758     bool follow(const SCEV *S) {
8759       if (isa<SCEVUnknown>(S)) {
8760         FoundParameter = true;
8761         // Stop recursion: we found a parameter.
8762         return false;
8763       }
8764       // Keep looking.
8765       return true;
8766     }
8767     bool isDone() const {
8768       // Stop recursion if we have found a parameter.
8769       return FoundParameter;
8770     }
8771   };
8772 
8773   FindParameter F;
8774   SCEVTraversal<FindParameter> ST(F);
8775   ST.visitAll(S);
8776 
8777   return F.FoundParameter;
8778 }
8779 
8780 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8781 static inline bool
8782 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8783   for (const SCEV *T : Terms)
8784     if (containsParameters(T))
8785       return true;
8786   return false;
8787 }
8788 
8789 // Return the number of product terms in S.
8790 static inline int numberOfTerms(const SCEV *S) {
8791   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8792     return Expr->getNumOperands();
8793   return 1;
8794 }
8795 
8796 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8797   if (isa<SCEVConstant>(T))
8798     return nullptr;
8799 
8800   if (isa<SCEVUnknown>(T))
8801     return T;
8802 
8803   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8804     SmallVector<const SCEV *, 2> Factors;
8805     for (const SCEV *Op : M->operands())
8806       if (!isa<SCEVConstant>(Op))
8807         Factors.push_back(Op);
8808 
8809     return SE.getMulExpr(Factors);
8810   }
8811 
8812   return T;
8813 }
8814 
8815 /// Return the size of an element read or written by Inst.
8816 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8817   Type *Ty;
8818   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8819     Ty = Store->getValueOperand()->getType();
8820   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
8821     Ty = Load->getType();
8822   else
8823     return nullptr;
8824 
8825   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8826   return getSizeOfExpr(ETy, Ty);
8827 }
8828 
8829 /// Second step of delinearization: compute the array dimensions Sizes from the
8830 /// set of Terms extracted from the memory access function of this SCEVAddRec.
8831 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8832                                           SmallVectorImpl<const SCEV *> &Sizes,
8833                                           const SCEV *ElementSize) const {
8834 
8835   if (Terms.size() < 1 || !ElementSize)
8836     return;
8837 
8838   // Early return when Terms do not contain parameters: we do not delinearize
8839   // non parametric SCEVs.
8840   if (!containsParameters(Terms))
8841     return;
8842 
8843   DEBUG({
8844       dbgs() << "Terms:\n";
8845       for (const SCEV *T : Terms)
8846         dbgs() << *T << "\n";
8847     });
8848 
8849   // Remove duplicates.
8850   std::sort(Terms.begin(), Terms.end());
8851   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8852 
8853   // Put larger terms first.
8854   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8855     return numberOfTerms(LHS) > numberOfTerms(RHS);
8856   });
8857 
8858   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8859 
8860   // Try to divide all terms by the element size. If term is not divisible by
8861   // element size, proceed with the original term.
8862   for (const SCEV *&Term : Terms) {
8863     const SCEV *Q, *R;
8864     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
8865     if (!Q->isZero())
8866       Term = Q;
8867   }
8868 
8869   SmallVector<const SCEV *, 4> NewTerms;
8870 
8871   // Remove constant factors.
8872   for (const SCEV *T : Terms)
8873     if (const SCEV *NewT = removeConstantFactors(SE, T))
8874       NewTerms.push_back(NewT);
8875 
8876   DEBUG({
8877       dbgs() << "Terms after sorting:\n";
8878       for (const SCEV *T : NewTerms)
8879         dbgs() << *T << "\n";
8880     });
8881 
8882   if (NewTerms.empty() ||
8883       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
8884     Sizes.clear();
8885     return;
8886   }
8887 
8888   // The last element to be pushed into Sizes is the size of an element.
8889   Sizes.push_back(ElementSize);
8890 
8891   DEBUG({
8892       dbgs() << "Sizes:\n";
8893       for (const SCEV *S : Sizes)
8894         dbgs() << *S << "\n";
8895     });
8896 }
8897 
8898 /// Third step of delinearization: compute the access functions for the
8899 /// Subscripts based on the dimensions in Sizes.
8900 void ScalarEvolution::computeAccessFunctions(
8901     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8902     SmallVectorImpl<const SCEV *> &Sizes) {
8903 
8904   // Early exit in case this SCEV is not an affine multivariate function.
8905   if (Sizes.empty())
8906     return;
8907 
8908   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
8909     if (!AR->isAffine())
8910       return;
8911 
8912   const SCEV *Res = Expr;
8913   int Last = Sizes.size() - 1;
8914   for (int i = Last; i >= 0; i--) {
8915     const SCEV *Q, *R;
8916     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
8917 
8918     DEBUG({
8919         dbgs() << "Res: " << *Res << "\n";
8920         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8921         dbgs() << "Res divided by Sizes[i]:\n";
8922         dbgs() << "Quotient: " << *Q << "\n";
8923         dbgs() << "Remainder: " << *R << "\n";
8924       });
8925 
8926     Res = Q;
8927 
8928     // Do not record the last subscript corresponding to the size of elements in
8929     // the array.
8930     if (i == Last) {
8931 
8932       // Bail out if the remainder is too complex.
8933       if (isa<SCEVAddRecExpr>(R)) {
8934         Subscripts.clear();
8935         Sizes.clear();
8936         return;
8937       }
8938 
8939       continue;
8940     }
8941 
8942     // Record the access function for the current subscript.
8943     Subscripts.push_back(R);
8944   }
8945 
8946   // Also push in last position the remainder of the last division: it will be
8947   // the access function of the innermost dimension.
8948   Subscripts.push_back(Res);
8949 
8950   std::reverse(Subscripts.begin(), Subscripts.end());
8951 
8952   DEBUG({
8953       dbgs() << "Subscripts:\n";
8954       for (const SCEV *S : Subscripts)
8955         dbgs() << *S << "\n";
8956     });
8957 }
8958 
8959 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8960 /// sizes of an array access. Returns the remainder of the delinearization that
8961 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
8962 /// the multiples of SCEV coefficients: that is a pattern matching of sub
8963 /// expressions in the stride and base of a SCEV corresponding to the
8964 /// computation of a GCD (greatest common divisor) of base and stride.  When
8965 /// SCEV->delinearize fails, it returns the SCEV unchanged.
8966 ///
8967 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
8968 ///
8969 ///  void foo(long n, long m, long o, double A[n][m][o]) {
8970 ///
8971 ///    for (long i = 0; i < n; i++)
8972 ///      for (long j = 0; j < m; j++)
8973 ///        for (long k = 0; k < o; k++)
8974 ///          A[i][j][k] = 1.0;
8975 ///  }
8976 ///
8977 /// the delinearization input is the following AddRec SCEV:
8978 ///
8979 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8980 ///
8981 /// From this SCEV, we are able to say that the base offset of the access is %A
8982 /// because it appears as an offset that does not divide any of the strides in
8983 /// the loops:
8984 ///
8985 ///  CHECK: Base offset: %A
8986 ///
8987 /// and then SCEV->delinearize determines the size of some of the dimensions of
8988 /// the array as these are the multiples by which the strides are happening:
8989 ///
8990 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8991 ///
8992 /// Note that the outermost dimension remains of UnknownSize because there are
8993 /// no strides that would help identifying the size of the last dimension: when
8994 /// the array has been statically allocated, one could compute the size of that
8995 /// dimension by dividing the overall size of the array by the size of the known
8996 /// dimensions: %m * %o * 8.
8997 ///
8998 /// Finally delinearize provides the access functions for the array reference
8999 /// that does correspond to A[i][j][k] of the above C testcase:
9000 ///
9001 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9002 ///
9003 /// The testcases are checking the output of a function pass:
9004 /// DelinearizationPass that walks through all loads and stores of a function
9005 /// asking for the SCEV of the memory access with respect to all enclosing
9006 /// loops, calling SCEV->delinearize on that and printing the results.
9007 
9008 void ScalarEvolution::delinearize(const SCEV *Expr,
9009                                  SmallVectorImpl<const SCEV *> &Subscripts,
9010                                  SmallVectorImpl<const SCEV *> &Sizes,
9011                                  const SCEV *ElementSize) {
9012   // First step: collect parametric terms.
9013   SmallVector<const SCEV *, 4> Terms;
9014   collectParametricTerms(Expr, Terms);
9015 
9016   if (Terms.empty())
9017     return;
9018 
9019   // Second step: find subscript sizes.
9020   findArrayDimensions(Terms, Sizes, ElementSize);
9021 
9022   if (Sizes.empty())
9023     return;
9024 
9025   // Third step: compute the access functions for each subscript.
9026   computeAccessFunctions(Expr, Subscripts, Sizes);
9027 
9028   if (Subscripts.empty())
9029     return;
9030 
9031   DEBUG({
9032       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9033       dbgs() << "ArrayDecl[UnknownSize]";
9034       for (const SCEV *S : Sizes)
9035         dbgs() << "[" << *S << "]";
9036 
9037       dbgs() << "\nArrayRef";
9038       for (const SCEV *S : Subscripts)
9039         dbgs() << "[" << *S << "]";
9040       dbgs() << "\n";
9041     });
9042 }
9043 
9044 //===----------------------------------------------------------------------===//
9045 //                   SCEVCallbackVH Class Implementation
9046 //===----------------------------------------------------------------------===//
9047 
9048 void ScalarEvolution::SCEVCallbackVH::deleted() {
9049   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9050   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9051     SE->ConstantEvolutionLoopExitValue.erase(PN);
9052   SE->eraseValueFromMap(getValPtr());
9053   // this now dangles!
9054 }
9055 
9056 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9057   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9058 
9059   // Forget all the expressions associated with users of the old value,
9060   // so that future queries will recompute the expressions using the new
9061   // value.
9062   Value *Old = getValPtr();
9063   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9064   SmallPtrSet<User *, 8> Visited;
9065   while (!Worklist.empty()) {
9066     User *U = Worklist.pop_back_val();
9067     // Deleting the Old value will cause this to dangle. Postpone
9068     // that until everything else is done.
9069     if (U == Old)
9070       continue;
9071     if (!Visited.insert(U).second)
9072       continue;
9073     if (PHINode *PN = dyn_cast<PHINode>(U))
9074       SE->ConstantEvolutionLoopExitValue.erase(PN);
9075     SE->eraseValueFromMap(U);
9076     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9077   }
9078   // Delete the Old value.
9079   if (PHINode *PN = dyn_cast<PHINode>(Old))
9080     SE->ConstantEvolutionLoopExitValue.erase(PN);
9081   SE->eraseValueFromMap(Old);
9082   // this now dangles!
9083 }
9084 
9085 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9086   : CallbackVH(V), SE(se) {}
9087 
9088 //===----------------------------------------------------------------------===//
9089 //                   ScalarEvolution Class Implementation
9090 //===----------------------------------------------------------------------===//
9091 
9092 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9093                                  AssumptionCache &AC, DominatorTree &DT,
9094                                  LoopInfo &LI)
9095     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9096       CouldNotCompute(new SCEVCouldNotCompute()),
9097       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9098       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9099       FirstUnknown(nullptr) {}
9100 
9101 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9102     : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9103       CouldNotCompute(std::move(Arg.CouldNotCompute)),
9104       ValueExprMap(std::move(Arg.ValueExprMap)),
9105       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9106       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9107       ConstantEvolutionLoopExitValue(
9108           std::move(Arg.ConstantEvolutionLoopExitValue)),
9109       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9110       LoopDispositions(std::move(Arg.LoopDispositions)),
9111       BlockDispositions(std::move(Arg.BlockDispositions)),
9112       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9113       SignedRanges(std::move(Arg.SignedRanges)),
9114       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9115       UniquePreds(std::move(Arg.UniquePreds)),
9116       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9117       FirstUnknown(Arg.FirstUnknown) {
9118   Arg.FirstUnknown = nullptr;
9119 }
9120 
9121 ScalarEvolution::~ScalarEvolution() {
9122   // Iterate through all the SCEVUnknown instances and call their
9123   // destructors, so that they release their references to their values.
9124   for (SCEVUnknown *U = FirstUnknown; U;) {
9125     SCEVUnknown *Tmp = U;
9126     U = U->Next;
9127     Tmp->~SCEVUnknown();
9128   }
9129   FirstUnknown = nullptr;
9130 
9131   ExprValueMap.clear();
9132   ValueExprMap.clear();
9133   HasRecMap.clear();
9134 
9135   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9136   // that a loop had multiple computable exits.
9137   for (auto &BTCI : BackedgeTakenCounts)
9138     BTCI.second.clear();
9139 
9140   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9141   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9142   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9143 }
9144 
9145 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9146   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9147 }
9148 
9149 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9150                           const Loop *L) {
9151   // Print all inner loops first
9152   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9153     PrintLoopInfo(OS, SE, *I);
9154 
9155   OS << "Loop ";
9156   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9157   OS << ": ";
9158 
9159   SmallVector<BasicBlock *, 8> ExitBlocks;
9160   L->getExitBlocks(ExitBlocks);
9161   if (ExitBlocks.size() != 1)
9162     OS << "<multiple exits> ";
9163 
9164   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9165     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9166   } else {
9167     OS << "Unpredictable backedge-taken count. ";
9168   }
9169 
9170   OS << "\n"
9171         "Loop ";
9172   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9173   OS << ": ";
9174 
9175   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9176     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9177   } else {
9178     OS << "Unpredictable max backedge-taken count. ";
9179   }
9180 
9181   OS << "\n";
9182 }
9183 
9184 void ScalarEvolution::print(raw_ostream &OS) const {
9185   // ScalarEvolution's implementation of the print method is to print
9186   // out SCEV values of all instructions that are interesting. Doing
9187   // this potentially causes it to create new SCEV objects though,
9188   // which technically conflicts with the const qualifier. This isn't
9189   // observable from outside the class though, so casting away the
9190   // const isn't dangerous.
9191   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9192 
9193   OS << "Classifying expressions for: ";
9194   F.printAsOperand(OS, /*PrintType=*/false);
9195   OS << "\n";
9196   for (Instruction &I : instructions(F))
9197     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9198       OS << I << '\n';
9199       OS << "  -->  ";
9200       const SCEV *SV = SE.getSCEV(&I);
9201       SV->print(OS);
9202       if (!isa<SCEVCouldNotCompute>(SV)) {
9203         OS << " U: ";
9204         SE.getUnsignedRange(SV).print(OS);
9205         OS << " S: ";
9206         SE.getSignedRange(SV).print(OS);
9207       }
9208 
9209       const Loop *L = LI.getLoopFor(I.getParent());
9210 
9211       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9212       if (AtUse != SV) {
9213         OS << "  -->  ";
9214         AtUse->print(OS);
9215         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9216           OS << " U: ";
9217           SE.getUnsignedRange(AtUse).print(OS);
9218           OS << " S: ";
9219           SE.getSignedRange(AtUse).print(OS);
9220         }
9221       }
9222 
9223       if (L) {
9224         OS << "\t\t" "Exits: ";
9225         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9226         if (!SE.isLoopInvariant(ExitValue, L)) {
9227           OS << "<<Unknown>>";
9228         } else {
9229           OS << *ExitValue;
9230         }
9231       }
9232 
9233       OS << "\n";
9234     }
9235 
9236   OS << "Determining loop execution counts for: ";
9237   F.printAsOperand(OS, /*PrintType=*/false);
9238   OS << "\n";
9239   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9240     PrintLoopInfo(OS, &SE, *I);
9241 }
9242 
9243 ScalarEvolution::LoopDisposition
9244 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9245   auto &Values = LoopDispositions[S];
9246   for (auto &V : Values) {
9247     if (V.getPointer() == L)
9248       return V.getInt();
9249   }
9250   Values.emplace_back(L, LoopVariant);
9251   LoopDisposition D = computeLoopDisposition(S, L);
9252   auto &Values2 = LoopDispositions[S];
9253   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9254     if (V.getPointer() == L) {
9255       V.setInt(D);
9256       break;
9257     }
9258   }
9259   return D;
9260 }
9261 
9262 ScalarEvolution::LoopDisposition
9263 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9264   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9265   case scConstant:
9266     return LoopInvariant;
9267   case scTruncate:
9268   case scZeroExtend:
9269   case scSignExtend:
9270     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9271   case scAddRecExpr: {
9272     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9273 
9274     // If L is the addrec's loop, it's computable.
9275     if (AR->getLoop() == L)
9276       return LoopComputable;
9277 
9278     // Add recurrences are never invariant in the function-body (null loop).
9279     if (!L)
9280       return LoopVariant;
9281 
9282     // This recurrence is variant w.r.t. L if L contains AR's loop.
9283     if (L->contains(AR->getLoop()))
9284       return LoopVariant;
9285 
9286     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9287     if (AR->getLoop()->contains(L))
9288       return LoopInvariant;
9289 
9290     // This recurrence is variant w.r.t. L if any of its operands
9291     // are variant.
9292     for (auto *Op : AR->operands())
9293       if (!isLoopInvariant(Op, L))
9294         return LoopVariant;
9295 
9296     // Otherwise it's loop-invariant.
9297     return LoopInvariant;
9298   }
9299   case scAddExpr:
9300   case scMulExpr:
9301   case scUMaxExpr:
9302   case scSMaxExpr: {
9303     bool HasVarying = false;
9304     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9305       LoopDisposition D = getLoopDisposition(Op, L);
9306       if (D == LoopVariant)
9307         return LoopVariant;
9308       if (D == LoopComputable)
9309         HasVarying = true;
9310     }
9311     return HasVarying ? LoopComputable : LoopInvariant;
9312   }
9313   case scUDivExpr: {
9314     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9315     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9316     if (LD == LoopVariant)
9317       return LoopVariant;
9318     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9319     if (RD == LoopVariant)
9320       return LoopVariant;
9321     return (LD == LoopInvariant && RD == LoopInvariant) ?
9322            LoopInvariant : LoopComputable;
9323   }
9324   case scUnknown:
9325     // All non-instruction values are loop invariant.  All instructions are loop
9326     // invariant if they are not contained in the specified loop.
9327     // Instructions are never considered invariant in the function body
9328     // (null loop) because they are defined within the "loop".
9329     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9330       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9331     return LoopInvariant;
9332   case scCouldNotCompute:
9333     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9334   }
9335   llvm_unreachable("Unknown SCEV kind!");
9336 }
9337 
9338 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9339   return getLoopDisposition(S, L) == LoopInvariant;
9340 }
9341 
9342 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9343   return getLoopDisposition(S, L) == LoopComputable;
9344 }
9345 
9346 ScalarEvolution::BlockDisposition
9347 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9348   auto &Values = BlockDispositions[S];
9349   for (auto &V : Values) {
9350     if (V.getPointer() == BB)
9351       return V.getInt();
9352   }
9353   Values.emplace_back(BB, DoesNotDominateBlock);
9354   BlockDisposition D = computeBlockDisposition(S, BB);
9355   auto &Values2 = BlockDispositions[S];
9356   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9357     if (V.getPointer() == BB) {
9358       V.setInt(D);
9359       break;
9360     }
9361   }
9362   return D;
9363 }
9364 
9365 ScalarEvolution::BlockDisposition
9366 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9367   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9368   case scConstant:
9369     return ProperlyDominatesBlock;
9370   case scTruncate:
9371   case scZeroExtend:
9372   case scSignExtend:
9373     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9374   case scAddRecExpr: {
9375     // This uses a "dominates" query instead of "properly dominates" query
9376     // to test for proper dominance too, because the instruction which
9377     // produces the addrec's value is a PHI, and a PHI effectively properly
9378     // dominates its entire containing block.
9379     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9380     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9381       return DoesNotDominateBlock;
9382   }
9383   // FALL THROUGH into SCEVNAryExpr handling.
9384   case scAddExpr:
9385   case scMulExpr:
9386   case scUMaxExpr:
9387   case scSMaxExpr: {
9388     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9389     bool Proper = true;
9390     for (const SCEV *NAryOp : NAry->operands()) {
9391       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9392       if (D == DoesNotDominateBlock)
9393         return DoesNotDominateBlock;
9394       if (D == DominatesBlock)
9395         Proper = false;
9396     }
9397     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9398   }
9399   case scUDivExpr: {
9400     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9401     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9402     BlockDisposition LD = getBlockDisposition(LHS, BB);
9403     if (LD == DoesNotDominateBlock)
9404       return DoesNotDominateBlock;
9405     BlockDisposition RD = getBlockDisposition(RHS, BB);
9406     if (RD == DoesNotDominateBlock)
9407       return DoesNotDominateBlock;
9408     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9409       ProperlyDominatesBlock : DominatesBlock;
9410   }
9411   case scUnknown:
9412     if (Instruction *I =
9413           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9414       if (I->getParent() == BB)
9415         return DominatesBlock;
9416       if (DT.properlyDominates(I->getParent(), BB))
9417         return ProperlyDominatesBlock;
9418       return DoesNotDominateBlock;
9419     }
9420     return ProperlyDominatesBlock;
9421   case scCouldNotCompute:
9422     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9423   }
9424   llvm_unreachable("Unknown SCEV kind!");
9425 }
9426 
9427 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9428   return getBlockDisposition(S, BB) >= DominatesBlock;
9429 }
9430 
9431 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9432   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9433 }
9434 
9435 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9436   // Search for a SCEV expression node within an expression tree.
9437   // Implements SCEVTraversal::Visitor.
9438   struct SCEVSearch {
9439     const SCEV *Node;
9440     bool IsFound;
9441 
9442     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9443 
9444     bool follow(const SCEV *S) {
9445       IsFound |= (S == Node);
9446       return !IsFound;
9447     }
9448     bool isDone() const { return IsFound; }
9449   };
9450 
9451   SCEVSearch Search(Op);
9452   visitAll(S, Search);
9453   return Search.IsFound;
9454 }
9455 
9456 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9457   ValuesAtScopes.erase(S);
9458   LoopDispositions.erase(S);
9459   BlockDispositions.erase(S);
9460   UnsignedRanges.erase(S);
9461   SignedRanges.erase(S);
9462   ExprValueMap.erase(S);
9463   HasRecMap.erase(S);
9464 
9465   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9466          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9467     BackedgeTakenInfo &BEInfo = I->second;
9468     if (BEInfo.hasOperand(S, this)) {
9469       BEInfo.clear();
9470       BackedgeTakenCounts.erase(I++);
9471     }
9472     else
9473       ++I;
9474   }
9475 }
9476 
9477 typedef DenseMap<const Loop *, std::string> VerifyMap;
9478 
9479 /// replaceSubString - Replaces all occurrences of From in Str with To.
9480 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9481   size_t Pos = 0;
9482   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9483     Str.replace(Pos, From.size(), To.data(), To.size());
9484     Pos += To.size();
9485   }
9486 }
9487 
9488 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9489 static void
9490 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9491   std::string &S = Map[L];
9492   if (S.empty()) {
9493     raw_string_ostream OS(S);
9494     SE.getBackedgeTakenCount(L)->print(OS);
9495 
9496     // false and 0 are semantically equivalent. This can happen in dead loops.
9497     replaceSubString(OS.str(), "false", "0");
9498     // Remove wrap flags, their use in SCEV is highly fragile.
9499     // FIXME: Remove this when SCEV gets smarter about them.
9500     replaceSubString(OS.str(), "<nw>", "");
9501     replaceSubString(OS.str(), "<nsw>", "");
9502     replaceSubString(OS.str(), "<nuw>", "");
9503   }
9504 
9505   for (auto *R : reverse(*L))
9506     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9507 }
9508 
9509 void ScalarEvolution::verify() const {
9510   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9511 
9512   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9513   // FIXME: It would be much better to store actual values instead of strings,
9514   //        but SCEV pointers will change if we drop the caches.
9515   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9516   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9517     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9518 
9519   // Gather stringified backedge taken counts for all loops using a fresh
9520   // ScalarEvolution object.
9521   ScalarEvolution SE2(F, TLI, AC, DT, LI);
9522   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9523     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9524 
9525   // Now compare whether they're the same with and without caches. This allows
9526   // verifying that no pass changed the cache.
9527   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9528          "New loops suddenly appeared!");
9529 
9530   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9531                            OldE = BackedgeDumpsOld.end(),
9532                            NewI = BackedgeDumpsNew.begin();
9533        OldI != OldE; ++OldI, ++NewI) {
9534     assert(OldI->first == NewI->first && "Loop order changed!");
9535 
9536     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9537     // changes.
9538     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
9539     // means that a pass is buggy or SCEV has to learn a new pattern but is
9540     // usually not harmful.
9541     if (OldI->second != NewI->second &&
9542         OldI->second.find("undef") == std::string::npos &&
9543         NewI->second.find("undef") == std::string::npos &&
9544         OldI->second != "***COULDNOTCOMPUTE***" &&
9545         NewI->second != "***COULDNOTCOMPUTE***") {
9546       dbgs() << "SCEVValidator: SCEV for loop '"
9547              << OldI->first->getHeader()->getName()
9548              << "' changed from '" << OldI->second
9549              << "' to '" << NewI->second << "'!\n";
9550       std::abort();
9551     }
9552   }
9553 
9554   // TODO: Verify more things.
9555 }
9556 
9557 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9558                                              AnalysisManager<Function> *AM) {
9559   return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9560                          AM->getResult<AssumptionAnalysis>(F),
9561                          AM->getResult<DominatorTreeAnalysis>(F),
9562                          AM->getResult<LoopAnalysis>(F));
9563 }
9564 
9565 PreservedAnalyses
9566 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9567   AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9568   return PreservedAnalyses::all();
9569 }
9570 
9571 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9572                       "Scalar Evolution Analysis", false, true)
9573 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9574 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9575 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9576 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9577 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9578                     "Scalar Evolution Analysis", false, true)
9579 char ScalarEvolutionWrapperPass::ID = 0;
9580 
9581 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9582   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9583 }
9584 
9585 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9586   SE.reset(new ScalarEvolution(
9587       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9588       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9589       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9590       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9591   return false;
9592 }
9593 
9594 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9595 
9596 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9597   SE->print(OS);
9598 }
9599 
9600 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9601   if (!VerifySCEV)
9602     return;
9603 
9604   SE->verify();
9605 }
9606 
9607 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9608   AU.setPreservesAll();
9609   AU.addRequiredTransitive<AssumptionCacheTracker>();
9610   AU.addRequiredTransitive<LoopInfoWrapperPass>();
9611   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9612   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9613 }
9614 
9615 const SCEVPredicate *
9616 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9617                                    const SCEVConstant *RHS) {
9618   FoldingSetNodeID ID;
9619   // Unique this node based on the arguments
9620   ID.AddInteger(SCEVPredicate::P_Equal);
9621   ID.AddPointer(LHS);
9622   ID.AddPointer(RHS);
9623   void *IP = nullptr;
9624   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9625     return S;
9626   SCEVEqualPredicate *Eq = new (SCEVAllocator)
9627       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9628   UniquePreds.InsertNode(Eq, IP);
9629   return Eq;
9630 }
9631 
9632 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
9633     const SCEVAddRecExpr *AR,
9634     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9635   FoldingSetNodeID ID;
9636   // Unique this node based on the arguments
9637   ID.AddInteger(SCEVPredicate::P_Wrap);
9638   ID.AddPointer(AR);
9639   ID.AddInteger(AddedFlags);
9640   void *IP = nullptr;
9641   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9642     return S;
9643   auto *OF = new (SCEVAllocator)
9644       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
9645   UniquePreds.InsertNode(OF, IP);
9646   return OF;
9647 }
9648 
9649 namespace {
9650 
9651 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9652 public:
9653   // Rewrites \p S in the context of a loop L and the predicate A.
9654   // If Assume is true, rewrite is free to add further predicates to A
9655   // such that the result will be an AddRecExpr.
9656   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
9657                              SCEVUnionPredicate &A, bool Assume) {
9658     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
9659     return Rewriter.visit(S);
9660   }
9661 
9662   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
9663                         SCEVUnionPredicate &P, bool Assume)
9664       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
9665 
9666   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9667     auto ExprPreds = P.getPredicatesForExpr(Expr);
9668     for (auto *Pred : ExprPreds)
9669       if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9670         if (IPred->getLHS() == Expr)
9671           return IPred->getRHS();
9672 
9673     return Expr;
9674   }
9675 
9676   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
9677     const SCEV *Operand = visit(Expr->getOperand());
9678     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9679     if (AR && AR->getLoop() == L && AR->isAffine()) {
9680       // This couldn't be folded because the operand didn't have the nuw
9681       // flag. Add the nusw flag as an assumption that we could make.
9682       const SCEV *Step = AR->getStepRecurrence(SE);
9683       Type *Ty = Expr->getType();
9684       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
9685         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
9686                                 SE.getSignExtendExpr(Step, Ty), L,
9687                                 AR->getNoWrapFlags());
9688     }
9689     return SE.getZeroExtendExpr(Operand, Expr->getType());
9690   }
9691 
9692   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
9693     const SCEV *Operand = visit(Expr->getOperand());
9694     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9695     if (AR && AR->getLoop() == L && AR->isAffine()) {
9696       // This couldn't be folded because the operand didn't have the nsw
9697       // flag. Add the nssw flag as an assumption that we could make.
9698       const SCEV *Step = AR->getStepRecurrence(SE);
9699       Type *Ty = Expr->getType();
9700       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
9701         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
9702                                 SE.getSignExtendExpr(Step, Ty), L,
9703                                 AR->getNoWrapFlags());
9704     }
9705     return SE.getSignExtendExpr(Operand, Expr->getType());
9706   }
9707 
9708 private:
9709   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
9710                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9711     auto *A = SE.getWrapPredicate(AR, AddedFlags);
9712     if (!Assume) {
9713       // Check if we've already made this assumption.
9714       if (P.implies(A))
9715         return true;
9716       return false;
9717     }
9718     P.add(A);
9719     return true;
9720   }
9721 
9722   SCEVUnionPredicate &P;
9723   const Loop *L;
9724   bool Assume;
9725 };
9726 } // end anonymous namespace
9727 
9728 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
9729                                                    SCEVUnionPredicate &Preds) {
9730   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
9731 }
9732 
9733 const SCEV *
9734 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
9735                                                    SCEVUnionPredicate &Preds) {
9736   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, true);
9737 }
9738 
9739 /// SCEV predicates
9740 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9741                              SCEVPredicateKind Kind)
9742     : FastID(ID), Kind(Kind) {}
9743 
9744 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9745                                        const SCEVUnknown *LHS,
9746                                        const SCEVConstant *RHS)
9747     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9748 
9749 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9750   const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9751 
9752   if (!Op)
9753     return false;
9754 
9755   return Op->LHS == LHS && Op->RHS == RHS;
9756 }
9757 
9758 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9759 
9760 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9761 
9762 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9763   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9764 }
9765 
9766 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
9767                                      const SCEVAddRecExpr *AR,
9768                                      IncrementWrapFlags Flags)
9769     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
9770 
9771 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
9772 
9773 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
9774   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
9775 
9776   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
9777 }
9778 
9779 bool SCEVWrapPredicate::isAlwaysTrue() const {
9780   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
9781   IncrementWrapFlags IFlags = Flags;
9782 
9783   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
9784     IFlags = clearFlags(IFlags, IncrementNSSW);
9785 
9786   return IFlags == IncrementAnyWrap;
9787 }
9788 
9789 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
9790   OS.indent(Depth) << *getExpr() << " Added Flags: ";
9791   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
9792     OS << "<nusw>";
9793   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
9794     OS << "<nssw>";
9795   OS << "\n";
9796 }
9797 
9798 SCEVWrapPredicate::IncrementWrapFlags
9799 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
9800                                    ScalarEvolution &SE) {
9801   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
9802   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
9803 
9804   // We can safely transfer the NSW flag as NSSW.
9805   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
9806     ImpliedFlags = IncrementNSSW;
9807 
9808   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
9809     // If the increment is positive, the SCEV NUW flag will also imply the
9810     // WrapPredicate NUSW flag.
9811     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
9812       if (Step->getValue()->getValue().isNonNegative())
9813         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
9814   }
9815 
9816   return ImpliedFlags;
9817 }
9818 
9819 /// Union predicates don't get cached so create a dummy set ID for it.
9820 SCEVUnionPredicate::SCEVUnionPredicate()
9821     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9822 
9823 bool SCEVUnionPredicate::isAlwaysTrue() const {
9824   return all_of(Preds,
9825                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
9826 }
9827 
9828 ArrayRef<const SCEVPredicate *>
9829 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9830   auto I = SCEVToPreds.find(Expr);
9831   if (I == SCEVToPreds.end())
9832     return ArrayRef<const SCEVPredicate *>();
9833   return I->second;
9834 }
9835 
9836 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9837   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
9838     return all_of(Set->Preds,
9839                   [this](const SCEVPredicate *I) { return this->implies(I); });
9840 
9841   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9842   if (ScevPredsIt == SCEVToPreds.end())
9843     return false;
9844   auto &SCEVPreds = ScevPredsIt->second;
9845 
9846   return any_of(SCEVPreds,
9847                 [N](const SCEVPredicate *I) { return I->implies(N); });
9848 }
9849 
9850 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9851 
9852 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9853   for (auto Pred : Preds)
9854     Pred->print(OS, Depth);
9855 }
9856 
9857 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9858   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9859     for (auto Pred : Set->Preds)
9860       add(Pred);
9861     return;
9862   }
9863 
9864   if (implies(N))
9865     return;
9866 
9867   const SCEV *Key = N->getExpr();
9868   assert(Key && "Only SCEVUnionPredicate doesn't have an "
9869                 " associated expression!");
9870 
9871   SCEVToPreds[Key].push_back(N);
9872   Preds.push_back(N);
9873 }
9874 
9875 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
9876                                                      Loop &L)
9877     : SE(SE), L(L), Generation(0) {}
9878 
9879 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
9880   const SCEV *Expr = SE.getSCEV(V);
9881   RewriteEntry &Entry = RewriteMap[Expr];
9882 
9883   // If we already have an entry and the version matches, return it.
9884   if (Entry.second && Generation == Entry.first)
9885     return Entry.second;
9886 
9887   // We found an entry but it's stale. Rewrite the stale entry
9888   // acording to the current predicate.
9889   if (Entry.second)
9890     Expr = Entry.second;
9891 
9892   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
9893   Entry = {Generation, NewSCEV};
9894 
9895   return NewSCEV;
9896 }
9897 
9898 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
9899   if (Preds.implies(&Pred))
9900     return;
9901   Preds.add(&Pred);
9902   updateGeneration();
9903 }
9904 
9905 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
9906   return Preds;
9907 }
9908 
9909 void PredicatedScalarEvolution::updateGeneration() {
9910   // If the generation number wrapped recompute everything.
9911   if (++Generation == 0) {
9912     for (auto &II : RewriteMap) {
9913       const SCEV *Rewritten = II.second.second;
9914       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
9915     }
9916   }
9917 }
9918 
9919 void PredicatedScalarEvolution::setNoOverflow(
9920     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
9921   const SCEV *Expr = getSCEV(V);
9922   const auto *AR = cast<SCEVAddRecExpr>(Expr);
9923 
9924   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
9925 
9926   // Clear the statically implied flags.
9927   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
9928   addPredicate(*SE.getWrapPredicate(AR, Flags));
9929 
9930   auto II = FlagsMap.insert({V, Flags});
9931   if (!II.second)
9932     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
9933 }
9934 
9935 bool PredicatedScalarEvolution::hasNoOverflow(
9936     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
9937   const SCEV *Expr = getSCEV(V);
9938   const auto *AR = cast<SCEVAddRecExpr>(Expr);
9939 
9940   Flags = SCEVWrapPredicate::clearFlags(
9941       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
9942 
9943   auto II = FlagsMap.find(V);
9944 
9945   if (II != FlagsMap.end())
9946     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
9947 
9948   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
9949 }
9950 
9951 const SCEV *PredicatedScalarEvolution::getAsAddRec(Value *V) {
9952   const SCEV *Expr = this->getSCEV(V);
9953   const SCEV *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
9954   updateGeneration();
9955   RewriteMap[SE.getSCEV(V)] = {Generation, New};
9956   return New;
9957 }
9958 
9959 PredicatedScalarEvolution::
9960 PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) :
9961   RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
9962   Generation(Init.Generation) {
9963   for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
9964     FlagsMap.insert(*I);
9965 }
9966