1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with XDEBUG when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 static cl::opt<bool> 119 VerifySCEVMap("verify-scev-maps", 120 cl::desc("Verify no dangling value in ScalarEvolution's" 121 "ExprValueMap (slow)")); 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 LLVM_DUMP_METHOD 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (static_cast<SCEVTypes>(getSCEVType())) { 139 case scConstant: 140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->hasNoUnsignedWrap()) 170 OS << "nuw><"; 171 if (AR->hasNoSignedWrap()) 172 OS << "nsw><"; 173 if (AR->hasNoSelfWrap() && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = nullptr; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (std::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->hasNoUnsignedWrap()) 204 OS << "<nuw>"; 205 if (NAry->hasNoSignedWrap()) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 FieldNo->printAsOperand(OS, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 U->getValue()->printAsOperand(OS, false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 } 244 llvm_unreachable("Unknown SCEV kind!"); 245 } 246 247 Type *SCEV::getType() const { 248 switch (static_cast<SCEVTypes>(getSCEVType())) { 249 case scConstant: 250 return cast<SCEVConstant>(this)->getType(); 251 case scTruncate: 252 case scZeroExtend: 253 case scSignExtend: 254 return cast<SCEVCastExpr>(this)->getType(); 255 case scAddRecExpr: 256 case scMulExpr: 257 case scUMaxExpr: 258 case scSMaxExpr: 259 return cast<SCEVNAryExpr>(this)->getType(); 260 case scAddExpr: 261 return cast<SCEVAddExpr>(this)->getType(); 262 case scUDivExpr: 263 return cast<SCEVUDivExpr>(this)->getType(); 264 case scUnknown: 265 return cast<SCEVUnknown>(this)->getType(); 266 case scCouldNotCompute: 267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 268 } 269 llvm_unreachable("Unknown SCEV kind!"); 270 } 271 272 bool SCEV::isZero() const { 273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 274 return SC->getValue()->isZero(); 275 return false; 276 } 277 278 bool SCEV::isOne() const { 279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 280 return SC->getValue()->isOne(); 281 return false; 282 } 283 284 bool SCEV::isAllOnesValue() const { 285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 286 return SC->getValue()->isAllOnesValue(); 287 return false; 288 } 289 290 /// isNonConstantNegative - Return true if the specified scev is negated, but 291 /// not a constant. 292 bool SCEV::isNonConstantNegative() const { 293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 294 if (!Mul) return false; 295 296 // If there is a constant factor, it will be first. 297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 298 if (!SC) return false; 299 300 // Return true if the value is negative, this matches things like (-42 * V). 301 return SC->getAPInt().isNegative(); 302 } 303 304 SCEVCouldNotCompute::SCEVCouldNotCompute() : 305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 306 307 bool SCEVCouldNotCompute::classof(const SCEV *S) { 308 return S->getSCEVType() == scCouldNotCompute; 309 } 310 311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 312 FoldingSetNodeID ID; 313 ID.AddInteger(scConstant); 314 ID.AddPointer(V); 315 void *IP = nullptr; 316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 318 UniqueSCEVs.InsertNode(S, IP); 319 return S; 320 } 321 322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 323 return getConstant(ConstantInt::get(getContext(), Val)); 324 } 325 326 const SCEV * 327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 329 return getConstant(ConstantInt::get(ITy, V, isSigned)); 330 } 331 332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 333 unsigned SCEVTy, const SCEV *op, Type *ty) 334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 335 336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 337 const SCEV *op, Type *ty) 338 : SCEVCastExpr(ID, scTruncate, op, ty) { 339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 340 (Ty->isIntegerTy() || Ty->isPointerTy()) && 341 "Cannot truncate non-integer value!"); 342 } 343 344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 345 const SCEV *op, Type *ty) 346 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 348 (Ty->isIntegerTy() || Ty->isPointerTy()) && 349 "Cannot zero extend non-integer value!"); 350 } 351 352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 353 const SCEV *op, Type *ty) 354 : SCEVCastExpr(ID, scSignExtend, op, ty) { 355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 356 (Ty->isIntegerTy() || Ty->isPointerTy()) && 357 "Cannot sign extend non-integer value!"); 358 } 359 360 void SCEVUnknown::deleted() { 361 // Clear this SCEVUnknown from various maps. 362 SE->forgetMemoizedResults(this); 363 364 // Remove this SCEVUnknown from the uniquing map. 365 SE->UniqueSCEVs.RemoveNode(this); 366 367 // Release the value. 368 setValPtr(nullptr); 369 } 370 371 void SCEVUnknown::allUsesReplacedWith(Value *New) { 372 // Clear this SCEVUnknown from various maps. 373 SE->forgetMemoizedResults(this); 374 375 // Remove this SCEVUnknown from the uniquing map. 376 SE->UniqueSCEVs.RemoveNode(this); 377 378 // Update this SCEVUnknown to point to the new value. This is needed 379 // because there may still be outstanding SCEVs which still point to 380 // this SCEVUnknown. 381 setValPtr(New); 382 } 383 384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 386 if (VCE->getOpcode() == Instruction::PtrToInt) 387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 388 if (CE->getOpcode() == Instruction::GetElementPtr && 389 CE->getOperand(0)->isNullValue() && 390 CE->getNumOperands() == 2) 391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 392 if (CI->isOne()) { 393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 394 ->getElementType(); 395 return true; 396 } 397 398 return false; 399 } 400 401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 403 if (VCE->getOpcode() == Instruction::PtrToInt) 404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 405 if (CE->getOpcode() == Instruction::GetElementPtr && 406 CE->getOperand(0)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 if (StructType *STy = dyn_cast<StructType>(Ty)) 410 if (!STy->isPacked() && 411 CE->getNumOperands() == 3 && 412 CE->getOperand(1)->isNullValue()) { 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 414 if (CI->isOne() && 415 STy->getNumElements() == 2 && 416 STy->getElementType(0)->isIntegerTy(1)) { 417 AllocTy = STy->getElementType(1); 418 return true; 419 } 420 } 421 } 422 423 return false; 424 } 425 426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 428 if (VCE->getOpcode() == Instruction::PtrToInt) 429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 430 if (CE->getOpcode() == Instruction::GetElementPtr && 431 CE->getNumOperands() == 3 && 432 CE->getOperand(0)->isNullValue() && 433 CE->getOperand(1)->isNullValue()) { 434 Type *Ty = 435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 436 // Ignore vector types here so that ScalarEvolutionExpander doesn't 437 // emit getelementptrs that index into vectors. 438 if (Ty->isStructTy() || Ty->isArrayTy()) { 439 CTy = Ty; 440 FieldNo = CE->getOperand(2); 441 return true; 442 } 443 } 444 445 return false; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SCEV Utilities 450 //===----------------------------------------------------------------------===// 451 452 namespace { 453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 454 /// than the complexity of the RHS. This comparator is used to canonicalize 455 /// expressions. 456 class SCEVComplexityCompare { 457 const LoopInfo *const LI; 458 public: 459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 460 461 // Return true or false if LHS is less than, or at least RHS, respectively. 462 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 463 return compare(LHS, RHS) < 0; 464 } 465 466 // Return negative, zero, or positive, if LHS is less than, equal to, or 467 // greater than RHS, respectively. A three-way result allows recursive 468 // comparisons to be more efficient. 469 int compare(const SCEV *LHS, const SCEV *RHS) const { 470 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 471 if (LHS == RHS) 472 return 0; 473 474 // Primarily, sort the SCEVs by their getSCEVType(). 475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 476 if (LType != RType) 477 return (int)LType - (int)RType; 478 479 // Aside from the getSCEVType() ordering, the particular ordering 480 // isn't very important except that it's beneficial to be consistent, 481 // so that (a + b) and (b + a) don't end up as different expressions. 482 switch (static_cast<SCEVTypes>(LType)) { 483 case scUnknown: { 484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 486 487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 488 // not as complete as it could be. 489 const Value *LV = LU->getValue(), *RV = RU->getValue(); 490 491 // Order pointer values after integer values. This helps SCEVExpander 492 // form GEPs. 493 bool LIsPointer = LV->getType()->isPointerTy(), 494 RIsPointer = RV->getType()->isPointerTy(); 495 if (LIsPointer != RIsPointer) 496 return (int)LIsPointer - (int)RIsPointer; 497 498 // Compare getValueID values. 499 unsigned LID = LV->getValueID(), 500 RID = RV->getValueID(); 501 if (LID != RID) 502 return (int)LID - (int)RID; 503 504 // Sort arguments by their position. 505 if (const Argument *LA = dyn_cast<Argument>(LV)) { 506 const Argument *RA = cast<Argument>(RV); 507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 508 return (int)LArgNo - (int)RArgNo; 509 } 510 511 // For instructions, compare their loop depth, and their operand 512 // count. This is pretty loose. 513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 514 const Instruction *RInst = cast<Instruction>(RV); 515 516 // Compare loop depths. 517 const BasicBlock *LParent = LInst->getParent(), 518 *RParent = RInst->getParent(); 519 if (LParent != RParent) { 520 unsigned LDepth = LI->getLoopDepth(LParent), 521 RDepth = LI->getLoopDepth(RParent); 522 if (LDepth != RDepth) 523 return (int)LDepth - (int)RDepth; 524 } 525 526 // Compare the number of operands. 527 unsigned LNumOps = LInst->getNumOperands(), 528 RNumOps = RInst->getNumOperands(); 529 return (int)LNumOps - (int)RNumOps; 530 } 531 532 return 0; 533 } 534 535 case scConstant: { 536 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 537 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 538 539 // Compare constant values. 540 const APInt &LA = LC->getAPInt(); 541 const APInt &RA = RC->getAPInt(); 542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 543 if (LBitWidth != RBitWidth) 544 return (int)LBitWidth - (int)RBitWidth; 545 return LA.ult(RA) ? -1 : 1; 546 } 547 548 case scAddRecExpr: { 549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 551 552 // Compare addrec loop depths. 553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 554 if (LLoop != RLoop) { 555 unsigned LDepth = LLoop->getLoopDepth(), 556 RDepth = RLoop->getLoopDepth(); 557 if (LDepth != RDepth) 558 return (int)LDepth - (int)RDepth; 559 } 560 561 // Addrec complexity grows with operand count. 562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 563 if (LNumOps != RNumOps) 564 return (int)LNumOps - (int)RNumOps; 565 566 // Lexicographically compare. 567 for (unsigned i = 0; i != LNumOps; ++i) { 568 long X = compare(LA->getOperand(i), RA->getOperand(i)); 569 if (X != 0) 570 return X; 571 } 572 573 return 0; 574 } 575 576 case scAddExpr: 577 case scMulExpr: 578 case scSMaxExpr: 579 case scUMaxExpr: { 580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 582 583 // Lexicographically compare n-ary expressions. 584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 585 if (LNumOps != RNumOps) 586 return (int)LNumOps - (int)RNumOps; 587 588 for (unsigned i = 0; i != LNumOps; ++i) { 589 if (i >= RNumOps) 590 return 1; 591 long X = compare(LC->getOperand(i), RC->getOperand(i)); 592 if (X != 0) 593 return X; 594 } 595 return (int)LNumOps - (int)RNumOps; 596 } 597 598 case scUDivExpr: { 599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 601 602 // Lexicographically compare udiv expressions. 603 long X = compare(LC->getLHS(), RC->getLHS()); 604 if (X != 0) 605 return X; 606 return compare(LC->getRHS(), RC->getRHS()); 607 } 608 609 case scTruncate: 610 case scZeroExtend: 611 case scSignExtend: { 612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 614 615 // Compare cast expressions by operand. 616 return compare(LC->getOperand(), RC->getOperand()); 617 } 618 619 case scCouldNotCompute: 620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 621 } 622 llvm_unreachable("Unknown SCEV kind!"); 623 } 624 }; 625 } // end anonymous namespace 626 627 /// GroupByComplexity - Given a list of SCEV objects, order them by their 628 /// complexity, and group objects of the same complexity together by value. 629 /// When this routine is finished, we know that any duplicates in the vector are 630 /// consecutive and that complexity is monotonically increasing. 631 /// 632 /// Note that we go take special precautions to ensure that we get deterministic 633 /// results from this routine. In other words, we don't want the results of 634 /// this to depend on where the addresses of various SCEV objects happened to 635 /// land in memory. 636 /// 637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 638 LoopInfo *LI) { 639 if (Ops.size() < 2) return; // Noop 640 if (Ops.size() == 2) { 641 // This is the common case, which also happens to be trivially simple. 642 // Special case it. 643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 644 if (SCEVComplexityCompare(LI)(RHS, LHS)) 645 std::swap(LHS, RHS); 646 return; 647 } 648 649 // Do the rough sort by complexity. 650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 651 652 // Now that we are sorted by complexity, group elements of the same 653 // complexity. Note that this is, at worst, N^2, but the vector is likely to 654 // be extremely short in practice. Note that we take this approach because we 655 // do not want to depend on the addresses of the objects we are grouping. 656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 657 const SCEV *S = Ops[i]; 658 unsigned Complexity = S->getSCEVType(); 659 660 // If there are any objects of the same complexity and same value as this 661 // one, group them. 662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 663 if (Ops[j] == S) { // Found a duplicate. 664 // Move it to immediately after i'th element. 665 std::swap(Ops[i+1], Ops[j]); 666 ++i; // no need to rescan it. 667 if (i == e-2) return; // Done! 668 } 669 } 670 } 671 } 672 673 // Returns the size of the SCEV S. 674 static inline int sizeOfSCEV(const SCEV *S) { 675 struct FindSCEVSize { 676 int Size; 677 FindSCEVSize() : Size(0) {} 678 679 bool follow(const SCEV *S) { 680 ++Size; 681 // Keep looking at all operands of S. 682 return true; 683 } 684 bool isDone() const { 685 return false; 686 } 687 }; 688 689 FindSCEVSize F; 690 SCEVTraversal<FindSCEVSize> ST(F); 691 ST.visitAll(S); 692 return F.Size; 693 } 694 695 namespace { 696 697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 698 public: 699 // Computes the Quotient and Remainder of the division of Numerator by 700 // Denominator. 701 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 702 const SCEV *Denominator, const SCEV **Quotient, 703 const SCEV **Remainder) { 704 assert(Numerator && Denominator && "Uninitialized SCEV"); 705 706 SCEVDivision D(SE, Numerator, Denominator); 707 708 // Check for the trivial case here to avoid having to check for it in the 709 // rest of the code. 710 if (Numerator == Denominator) { 711 *Quotient = D.One; 712 *Remainder = D.Zero; 713 return; 714 } 715 716 if (Numerator->isZero()) { 717 *Quotient = D.Zero; 718 *Remainder = D.Zero; 719 return; 720 } 721 722 // A simple case when N/1. The quotient is N. 723 if (Denominator->isOne()) { 724 *Quotient = Numerator; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // Split the Denominator when it is a product. 730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 731 const SCEV *Q, *R; 732 *Quotient = Numerator; 733 for (const SCEV *Op : T->operands()) { 734 divide(SE, *Quotient, Op, &Q, &R); 735 *Quotient = Q; 736 737 // Bail out when the Numerator is not divisible by one of the terms of 738 // the Denominator. 739 if (!R->isZero()) { 740 *Quotient = D.Zero; 741 *Remainder = Numerator; 742 return; 743 } 744 } 745 *Remainder = D.Zero; 746 return; 747 } 748 749 D.visit(Numerator); 750 *Quotient = D.Quotient; 751 *Remainder = D.Remainder; 752 } 753 754 // Except in the trivial case described above, we do not know how to divide 755 // Expr by Denominator for the following functions with empty implementation. 756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 762 void visitUnknown(const SCEVUnknown *Numerator) {} 763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 764 765 void visitConstant(const SCEVConstant *Numerator) { 766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 767 APInt NumeratorVal = Numerator->getAPInt(); 768 APInt DenominatorVal = D->getAPInt(); 769 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 770 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 771 772 if (NumeratorBW > DenominatorBW) 773 DenominatorVal = DenominatorVal.sext(NumeratorBW); 774 else if (NumeratorBW < DenominatorBW) 775 NumeratorVal = NumeratorVal.sext(DenominatorBW); 776 777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 780 Quotient = SE.getConstant(QuotientVal); 781 Remainder = SE.getConstant(RemainderVal); 782 return; 783 } 784 } 785 786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 787 const SCEV *StartQ, *StartR, *StepQ, *StepR; 788 if (!Numerator->isAffine()) 789 return cannotDivide(Numerator); 790 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 791 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 792 // Bail out if the types do not match. 793 Type *Ty = Denominator->getType(); 794 if (Ty != StartQ->getType() || Ty != StartR->getType() || 795 Ty != StepQ->getType() || Ty != StepR->getType()) 796 return cannotDivide(Numerator); 797 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 800 Numerator->getNoWrapFlags()); 801 } 802 803 void visitAddExpr(const SCEVAddExpr *Numerator) { 804 SmallVector<const SCEV *, 2> Qs, Rs; 805 Type *Ty = Denominator->getType(); 806 807 for (const SCEV *Op : Numerator->operands()) { 808 const SCEV *Q, *R; 809 divide(SE, Op, Denominator, &Q, &R); 810 811 // Bail out if types do not match. 812 if (Ty != Q->getType() || Ty != R->getType()) 813 return cannotDivide(Numerator); 814 815 Qs.push_back(Q); 816 Rs.push_back(R); 817 } 818 819 if (Qs.size() == 1) { 820 Quotient = Qs[0]; 821 Remainder = Rs[0]; 822 return; 823 } 824 825 Quotient = SE.getAddExpr(Qs); 826 Remainder = SE.getAddExpr(Rs); 827 } 828 829 void visitMulExpr(const SCEVMulExpr *Numerator) { 830 SmallVector<const SCEV *, 2> Qs; 831 Type *Ty = Denominator->getType(); 832 833 bool FoundDenominatorTerm = false; 834 for (const SCEV *Op : Numerator->operands()) { 835 // Bail out if types do not match. 836 if (Ty != Op->getType()) 837 return cannotDivide(Numerator); 838 839 if (FoundDenominatorTerm) { 840 Qs.push_back(Op); 841 continue; 842 } 843 844 // Check whether Denominator divides one of the product operands. 845 const SCEV *Q, *R; 846 divide(SE, Op, Denominator, &Q, &R); 847 if (!R->isZero()) { 848 Qs.push_back(Op); 849 continue; 850 } 851 852 // Bail out if types do not match. 853 if (Ty != Q->getType()) 854 return cannotDivide(Numerator); 855 856 FoundDenominatorTerm = true; 857 Qs.push_back(Q); 858 } 859 860 if (FoundDenominatorTerm) { 861 Remainder = Zero; 862 if (Qs.size() == 1) 863 Quotient = Qs[0]; 864 else 865 Quotient = SE.getMulExpr(Qs); 866 return; 867 } 868 869 if (!isa<SCEVUnknown>(Denominator)) 870 return cannotDivide(Numerator); 871 872 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 873 ValueToValueMap RewriteMap; 874 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 875 cast<SCEVConstant>(Zero)->getValue(); 876 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 877 878 if (Remainder->isZero()) { 879 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 881 cast<SCEVConstant>(One)->getValue(); 882 Quotient = 883 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 884 return; 885 } 886 887 // Quotient is (Numerator - Remainder) divided by Denominator. 888 const SCEV *Q, *R; 889 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 890 // This SCEV does not seem to simplify: fail the division here. 891 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 892 return cannotDivide(Numerator); 893 divide(SE, Diff, Denominator, &Q, &R); 894 if (R != Zero) 895 return cannotDivide(Numerator); 896 Quotient = Q; 897 } 898 899 private: 900 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 901 const SCEV *Denominator) 902 : SE(S), Denominator(Denominator) { 903 Zero = SE.getZero(Denominator->getType()); 904 One = SE.getOne(Denominator->getType()); 905 906 // We generally do not know how to divide Expr by Denominator. We 907 // initialize the division to a "cannot divide" state to simplify the rest 908 // of the code. 909 cannotDivide(Numerator); 910 } 911 912 // Convenience function for giving up on the division. We set the quotient to 913 // be equal to zero and the remainder to be equal to the numerator. 914 void cannotDivide(const SCEV *Numerator) { 915 Quotient = Zero; 916 Remainder = Numerator; 917 } 918 919 ScalarEvolution &SE; 920 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 921 }; 922 923 } 924 925 //===----------------------------------------------------------------------===// 926 // Simple SCEV method implementations 927 //===----------------------------------------------------------------------===// 928 929 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 930 /// Assume, K > 0. 931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 932 ScalarEvolution &SE, 933 Type *ResultTy) { 934 // Handle the simplest case efficiently. 935 if (K == 1) 936 return SE.getTruncateOrZeroExtend(It, ResultTy); 937 938 // We are using the following formula for BC(It, K): 939 // 940 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 941 // 942 // Suppose, W is the bitwidth of the return value. We must be prepared for 943 // overflow. Hence, we must assure that the result of our computation is 944 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 945 // safe in modular arithmetic. 946 // 947 // However, this code doesn't use exactly that formula; the formula it uses 948 // is something like the following, where T is the number of factors of 2 in 949 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 950 // exponentiation: 951 // 952 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 953 // 954 // This formula is trivially equivalent to the previous formula. However, 955 // this formula can be implemented much more efficiently. The trick is that 956 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 957 // arithmetic. To do exact division in modular arithmetic, all we have 958 // to do is multiply by the inverse. Therefore, this step can be done at 959 // width W. 960 // 961 // The next issue is how to safely do the division by 2^T. The way this 962 // is done is by doing the multiplication step at a width of at least W + T 963 // bits. This way, the bottom W+T bits of the product are accurate. Then, 964 // when we perform the division by 2^T (which is equivalent to a right shift 965 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 966 // truncated out after the division by 2^T. 967 // 968 // In comparison to just directly using the first formula, this technique 969 // is much more efficient; using the first formula requires W * K bits, 970 // but this formula less than W + K bits. Also, the first formula requires 971 // a division step, whereas this formula only requires multiplies and shifts. 972 // 973 // It doesn't matter whether the subtraction step is done in the calculation 974 // width or the input iteration count's width; if the subtraction overflows, 975 // the result must be zero anyway. We prefer here to do it in the width of 976 // the induction variable because it helps a lot for certain cases; CodeGen 977 // isn't smart enough to ignore the overflow, which leads to much less 978 // efficient code if the width of the subtraction is wider than the native 979 // register width. 980 // 981 // (It's possible to not widen at all by pulling out factors of 2 before 982 // the multiplication; for example, K=2 can be calculated as 983 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 984 // extra arithmetic, so it's not an obvious win, and it gets 985 // much more complicated for K > 3.) 986 987 // Protection from insane SCEVs; this bound is conservative, 988 // but it probably doesn't matter. 989 if (K > 1000) 990 return SE.getCouldNotCompute(); 991 992 unsigned W = SE.getTypeSizeInBits(ResultTy); 993 994 // Calculate K! / 2^T and T; we divide out the factors of two before 995 // multiplying for calculating K! / 2^T to avoid overflow. 996 // Other overflow doesn't matter because we only care about the bottom 997 // W bits of the result. 998 APInt OddFactorial(W, 1); 999 unsigned T = 1; 1000 for (unsigned i = 3; i <= K; ++i) { 1001 APInt Mult(W, i); 1002 unsigned TwoFactors = Mult.countTrailingZeros(); 1003 T += TwoFactors; 1004 Mult = Mult.lshr(TwoFactors); 1005 OddFactorial *= Mult; 1006 } 1007 1008 // We need at least W + T bits for the multiplication step 1009 unsigned CalculationBits = W + T; 1010 1011 // Calculate 2^T, at width T+W. 1012 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1013 1014 // Calculate the multiplicative inverse of K! / 2^T; 1015 // this multiplication factor will perform the exact division by 1016 // K! / 2^T. 1017 APInt Mod = APInt::getSignedMinValue(W+1); 1018 APInt MultiplyFactor = OddFactorial.zext(W+1); 1019 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1020 MultiplyFactor = MultiplyFactor.trunc(W); 1021 1022 // Calculate the product, at width T+W 1023 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1024 CalculationBits); 1025 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1026 for (unsigned i = 1; i != K; ++i) { 1027 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1028 Dividend = SE.getMulExpr(Dividend, 1029 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1030 } 1031 1032 // Divide by 2^T 1033 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1034 1035 // Truncate the result, and divide by K! / 2^T. 1036 1037 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1038 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1039 } 1040 1041 /// evaluateAtIteration - Return the value of this chain of recurrences at 1042 /// the specified iteration number. We can evaluate this recurrence by 1043 /// multiplying each element in the chain by the binomial coefficient 1044 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1045 /// 1046 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1047 /// 1048 /// where BC(It, k) stands for binomial coefficient. 1049 /// 1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1051 ScalarEvolution &SE) const { 1052 const SCEV *Result = getStart(); 1053 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1071 Type *Ty) { 1072 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1073 "This is not a truncating conversion!"); 1074 assert(isSCEVable(Ty) && 1075 "This is not a conversion to a SCEVable type!"); 1076 Ty = getEffectiveSCEVType(Ty); 1077 1078 FoldingSetNodeID ID; 1079 ID.AddInteger(scTruncate); 1080 ID.AddPointer(Op); 1081 ID.AddPointer(Ty); 1082 void *IP = nullptr; 1083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1084 1085 // Fold if the operand is constant. 1086 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1087 return getConstant( 1088 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1089 1090 // trunc(trunc(x)) --> trunc(x) 1091 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1092 return getTruncateExpr(ST->getOperand(), Ty); 1093 1094 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1095 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1096 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1097 1098 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1099 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1100 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1101 1102 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1103 // eliminate all the truncates, or we replace other casts with truncates. 1104 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1105 SmallVector<const SCEV *, 4> Operands; 1106 bool hasTrunc = false; 1107 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1108 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1109 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1110 hasTrunc = isa<SCEVTruncateExpr>(S); 1111 Operands.push_back(S); 1112 } 1113 if (!hasTrunc) 1114 return getAddExpr(Operands); 1115 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1116 } 1117 1118 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1119 // eliminate all the truncates, or we replace other casts with truncates. 1120 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1121 SmallVector<const SCEV *, 4> Operands; 1122 bool hasTrunc = false; 1123 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1124 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1125 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1126 hasTrunc = isa<SCEVTruncateExpr>(S); 1127 Operands.push_back(S); 1128 } 1129 if (!hasTrunc) 1130 return getMulExpr(Operands); 1131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1132 } 1133 1134 // If the input value is a chrec scev, truncate the chrec's operands. 1135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1136 SmallVector<const SCEV *, 4> Operands; 1137 for (const SCEV *Op : AddRec->operands()) 1138 Operands.push_back(getTruncateExpr(Op, Ty)); 1139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1140 } 1141 1142 // The cast wasn't folded; create an explicit cast node. We can reuse 1143 // the existing insert position since if we get here, we won't have 1144 // made any changes which would invalidate it. 1145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1146 Op, Ty); 1147 UniqueSCEVs.InsertNode(S, IP); 1148 return S; 1149 } 1150 1151 // Get the limit of a recurrence such that incrementing by Step cannot cause 1152 // signed overflow as long as the value of the recurrence within the 1153 // loop does not exceed this limit before incrementing. 1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1155 ICmpInst::Predicate *Pred, 1156 ScalarEvolution *SE) { 1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1158 if (SE->isKnownPositive(Step)) { 1159 *Pred = ICmpInst::ICMP_SLT; 1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1161 SE->getSignedRange(Step).getSignedMax()); 1162 } 1163 if (SE->isKnownNegative(Step)) { 1164 *Pred = ICmpInst::ICMP_SGT; 1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1166 SE->getSignedRange(Step).getSignedMin()); 1167 } 1168 return nullptr; 1169 } 1170 1171 // Get the limit of a recurrence such that incrementing by Step cannot cause 1172 // unsigned overflow as long as the value of the recurrence within the loop does 1173 // not exceed this limit before incrementing. 1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1175 ICmpInst::Predicate *Pred, 1176 ScalarEvolution *SE) { 1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1178 *Pred = ICmpInst::ICMP_ULT; 1179 1180 return SE->getConstant(APInt::getMinValue(BitWidth) - 1181 SE->getUnsignedRange(Step).getUnsignedMax()); 1182 } 1183 1184 namespace { 1185 1186 struct ExtendOpTraitsBase { 1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1188 }; 1189 1190 // Used to make code generic over signed and unsigned overflow. 1191 template <typename ExtendOp> struct ExtendOpTraits { 1192 // Members present: 1193 // 1194 // static const SCEV::NoWrapFlags WrapType; 1195 // 1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1197 // 1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1199 // ICmpInst::Predicate *Pred, 1200 // ScalarEvolution *SE); 1201 }; 1202 1203 template <> 1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1206 1207 static const GetExtendExprTy GetExtendExpr; 1208 1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1210 ICmpInst::Predicate *Pred, 1211 ScalarEvolution *SE) { 1212 return getSignedOverflowLimitForStep(Step, Pred, SE); 1213 } 1214 }; 1215 1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1218 1219 template <> 1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1222 1223 static const GetExtendExprTy GetExtendExpr; 1224 1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1226 ICmpInst::Predicate *Pred, 1227 ScalarEvolution *SE) { 1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1229 } 1230 }; 1231 1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1234 } 1235 1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1241 // expression "Step + sext/zext(PreIncAR)" is congruent with 1242 // "sext/zext(PostIncAR)" 1243 template <typename ExtendOpTy> 1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1245 ScalarEvolution *SE) { 1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1248 1249 const Loop *L = AR->getLoop(); 1250 const SCEV *Start = AR->getStart(); 1251 const SCEV *Step = AR->getStepRecurrence(*SE); 1252 1253 // Check for a simple looking step prior to loop entry. 1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1255 if (!SA) 1256 return nullptr; 1257 1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1259 // subtraction is expensive. For this purpose, perform a quick and dirty 1260 // difference, by checking for Step in the operand list. 1261 SmallVector<const SCEV *, 4> DiffOps; 1262 for (const SCEV *Op : SA->operands()) 1263 if (Op != Step) 1264 DiffOps.push_back(Op); 1265 1266 if (DiffOps.size() == SA->getNumOperands()) 1267 return nullptr; 1268 1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1270 // `Step`: 1271 1272 // 1. NSW/NUW flags on the step increment. 1273 auto PreStartFlags = 1274 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1278 1279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1280 // "S+X does not sign/unsign-overflow". 1281 // 1282 1283 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1286 return PreStart; 1287 1288 // 2. Direct overflow check on the step operation's expression. 1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1291 const SCEV *OperandExtendedStart = 1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1293 (SE->*GetExtendExpr)(Step, WideTy)); 1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1295 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1300 } 1301 return PreStart; 1302 } 1303 1304 // 3. Loop precondition. 1305 ICmpInst::Predicate Pred; 1306 const SCEV *OverflowLimit = 1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1308 1309 if (OverflowLimit && 1310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1311 return PreStart; 1312 1313 return nullptr; 1314 } 1315 1316 // Get the normalized zero or sign extended expression for this AddRec's Start. 1317 template <typename ExtendOpTy> 1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1319 ScalarEvolution *SE) { 1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1321 1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1323 if (!PreStart) 1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1325 1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1327 (SE->*GetExtendExpr)(PreStart, Ty)); 1328 } 1329 1330 // Try to prove away overflow by looking at "nearby" add recurrences. A 1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1333 // 1334 // Formally: 1335 // 1336 // {S,+,X} == {S-T,+,X} + T 1337 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1338 // 1339 // If ({S-T,+,X} + T) does not overflow ... (1) 1340 // 1341 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1342 // 1343 // If {S-T,+,X} does not overflow ... (2) 1344 // 1345 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1346 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1347 // 1348 // If (S-T)+T does not overflow ... (3) 1349 // 1350 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1351 // == {Ext(S),+,Ext(X)} == LHS 1352 // 1353 // Thus, if (1), (2) and (3) are true for some T, then 1354 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1355 // 1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1357 // does not overflow" restricted to the 0th iteration. Therefore we only need 1358 // to check for (1) and (2). 1359 // 1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1361 // is `Delta` (defined below). 1362 // 1363 template <typename ExtendOpTy> 1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1365 const SCEV *Step, 1366 const Loop *L) { 1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1368 1369 // We restrict `Start` to a constant to prevent SCEV from spending too much 1370 // time here. It is correct (but more expensive) to continue with a 1371 // non-constant `Start` and do a general SCEV subtraction to compute 1372 // `PreStart` below. 1373 // 1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1375 if (!StartC) 1376 return false; 1377 1378 APInt StartAI = StartC->getAPInt(); 1379 1380 for (unsigned Delta : {-2, -1, 1, 2}) { 1381 const SCEV *PreStart = getConstant(StartAI - Delta); 1382 1383 FoldingSetNodeID ID; 1384 ID.AddInteger(scAddRecExpr); 1385 ID.AddPointer(PreStart); 1386 ID.AddPointer(Step); 1387 ID.AddPointer(L); 1388 void *IP = nullptr; 1389 const auto *PreAR = 1390 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1391 1392 // Give up if we don't already have the add recurrence we need because 1393 // actually constructing an add recurrence is relatively expensive. 1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1398 DeltaS, &Pred, this); 1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1400 return true; 1401 } 1402 } 1403 1404 return false; 1405 } 1406 1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1408 Type *Ty) { 1409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1410 "This is not an extending conversion!"); 1411 assert(isSCEVable(Ty) && 1412 "This is not a conversion to a SCEVable type!"); 1413 Ty = getEffectiveSCEVType(Ty); 1414 1415 // Fold if the operand is constant. 1416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1417 return getConstant( 1418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1419 1420 // zext(zext(x)) --> zext(x) 1421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1422 return getZeroExtendExpr(SZ->getOperand(), Ty); 1423 1424 // Before doing any expensive analysis, check to see if we've already 1425 // computed a SCEV for this Op and Ty. 1426 FoldingSetNodeID ID; 1427 ID.AddInteger(scZeroExtend); 1428 ID.AddPointer(Op); 1429 ID.AddPointer(Ty); 1430 void *IP = nullptr; 1431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1432 1433 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1435 // It's possible the bits taken off by the truncate were all zero bits. If 1436 // so, we should be able to simplify this further. 1437 const SCEV *X = ST->getOperand(); 1438 ConstantRange CR = getUnsignedRange(X); 1439 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1440 unsigned NewBits = getTypeSizeInBits(Ty); 1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1442 CR.zextOrTrunc(NewBits))) 1443 return getTruncateOrZeroExtend(X, Ty); 1444 } 1445 1446 // If the input value is a chrec scev, and we can prove that the value 1447 // did not overflow the old, smaller, value, we can zero extend all of the 1448 // operands (often constants). This allows analysis of something like 1449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1451 if (AR->isAffine()) { 1452 const SCEV *Start = AR->getStart(); 1453 const SCEV *Step = AR->getStepRecurrence(*this); 1454 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1455 const Loop *L = AR->getLoop(); 1456 1457 // If we have special knowledge that this addrec won't overflow, 1458 // we don't need to do any further analysis. 1459 if (AR->hasNoUnsignedWrap()) 1460 return getAddRecExpr( 1461 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1462 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1463 1464 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1465 // Note that this serves two purposes: It filters out loops that are 1466 // simply not analyzable, and it covers the case where this code is 1467 // being called from within backedge-taken count analysis, such that 1468 // attempting to ask for the backedge-taken count would likely result 1469 // in infinite recursion. In the later case, the analysis code will 1470 // cope with a conservative value, and it will take care to purge 1471 // that value once it has finished. 1472 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1473 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1474 // Manually compute the final value for AR, checking for 1475 // overflow. 1476 1477 // Check whether the backedge-taken count can be losslessly casted to 1478 // the addrec's type. The count is always unsigned. 1479 const SCEV *CastedMaxBECount = 1480 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1481 const SCEV *RecastedMaxBECount = 1482 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1483 if (MaxBECount == RecastedMaxBECount) { 1484 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1485 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1486 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1487 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1488 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1489 const SCEV *WideMaxBECount = 1490 getZeroExtendExpr(CastedMaxBECount, WideTy); 1491 const SCEV *OperandExtendedAdd = 1492 getAddExpr(WideStart, 1493 getMulExpr(WideMaxBECount, 1494 getZeroExtendExpr(Step, WideTy))); 1495 if (ZAdd == OperandExtendedAdd) { 1496 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1497 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1498 // Return the expression with the addrec on the outside. 1499 return getAddRecExpr( 1500 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1501 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1502 } 1503 // Similar to above, only this time treat the step value as signed. 1504 // This covers loops that count down. 1505 OperandExtendedAdd = 1506 getAddExpr(WideStart, 1507 getMulExpr(WideMaxBECount, 1508 getSignExtendExpr(Step, WideTy))); 1509 if (ZAdd == OperandExtendedAdd) { 1510 // Cache knowledge of AR NW, which is propagated to this AddRec. 1511 // Negative step causes unsigned wrap, but it still can't self-wrap. 1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1513 // Return the expression with the addrec on the outside. 1514 return getAddRecExpr( 1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1516 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1517 } 1518 } 1519 1520 // If the backedge is guarded by a comparison with the pre-inc value 1521 // the addrec is safe. Also, if the entry is guarded by a comparison 1522 // with the start value and the backedge is guarded by a comparison 1523 // with the post-inc value, the addrec is safe. 1524 if (isKnownPositive(Step)) { 1525 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1526 getUnsignedRange(Step).getUnsignedMax()); 1527 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1528 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1529 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1530 AR->getPostIncExpr(*this), N))) { 1531 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1532 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1533 // Return the expression with the addrec on the outside. 1534 return getAddRecExpr( 1535 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1536 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1537 } 1538 } else if (isKnownNegative(Step)) { 1539 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1540 getSignedRange(Step).getSignedMin()); 1541 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1542 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1543 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1544 AR->getPostIncExpr(*this), N))) { 1545 // Cache knowledge of AR NW, which is propagated to this AddRec. 1546 // Negative step causes unsigned wrap, but it still can't self-wrap. 1547 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1548 // Return the expression with the addrec on the outside. 1549 return getAddRecExpr( 1550 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1551 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1552 } 1553 } 1554 } 1555 1556 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1558 return getAddRecExpr( 1559 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1560 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1561 } 1562 } 1563 1564 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1565 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1566 if (SA->hasNoUnsignedWrap()) { 1567 // If the addition does not unsign overflow then we can, by definition, 1568 // commute the zero extension with the addition operation. 1569 SmallVector<const SCEV *, 4> Ops; 1570 for (const auto *Op : SA->operands()) 1571 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1572 return getAddExpr(Ops, SCEV::FlagNUW); 1573 } 1574 } 1575 1576 // The cast wasn't folded; create an explicit cast node. 1577 // Recompute the insert position, as it may have been invalidated. 1578 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1579 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1580 Op, Ty); 1581 UniqueSCEVs.InsertNode(S, IP); 1582 return S; 1583 } 1584 1585 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1586 Type *Ty) { 1587 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1588 "This is not an extending conversion!"); 1589 assert(isSCEVable(Ty) && 1590 "This is not a conversion to a SCEVable type!"); 1591 Ty = getEffectiveSCEVType(Ty); 1592 1593 // Fold if the operand is constant. 1594 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1595 return getConstant( 1596 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1597 1598 // sext(sext(x)) --> sext(x) 1599 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1600 return getSignExtendExpr(SS->getOperand(), Ty); 1601 1602 // sext(zext(x)) --> zext(x) 1603 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1604 return getZeroExtendExpr(SZ->getOperand(), Ty); 1605 1606 // Before doing any expensive analysis, check to see if we've already 1607 // computed a SCEV for this Op and Ty. 1608 FoldingSetNodeID ID; 1609 ID.AddInteger(scSignExtend); 1610 ID.AddPointer(Op); 1611 ID.AddPointer(Ty); 1612 void *IP = nullptr; 1613 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1614 1615 // If the input value is provably positive, build a zext instead. 1616 if (isKnownNonNegative(Op)) 1617 return getZeroExtendExpr(Op, Ty); 1618 1619 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1620 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1621 // It's possible the bits taken off by the truncate were all sign bits. If 1622 // so, we should be able to simplify this further. 1623 const SCEV *X = ST->getOperand(); 1624 ConstantRange CR = getSignedRange(X); 1625 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1626 unsigned NewBits = getTypeSizeInBits(Ty); 1627 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1628 CR.sextOrTrunc(NewBits))) 1629 return getTruncateOrSignExtend(X, Ty); 1630 } 1631 1632 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1633 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1634 if (SA->getNumOperands() == 2) { 1635 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1636 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1637 if (SMul && SC1) { 1638 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1639 const APInt &C1 = SC1->getAPInt(); 1640 const APInt &C2 = SC2->getAPInt(); 1641 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1642 C2.ugt(C1) && C2.isPowerOf2()) 1643 return getAddExpr(getSignExtendExpr(SC1, Ty), 1644 getSignExtendExpr(SMul, Ty)); 1645 } 1646 } 1647 } 1648 1649 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1650 if (SA->hasNoSignedWrap()) { 1651 // If the addition does not sign overflow then we can, by definition, 1652 // commute the sign extension with the addition operation. 1653 SmallVector<const SCEV *, 4> Ops; 1654 for (const auto *Op : SA->operands()) 1655 Ops.push_back(getSignExtendExpr(Op, Ty)); 1656 return getAddExpr(Ops, SCEV::FlagNSW); 1657 } 1658 } 1659 // If the input value is a chrec scev, and we can prove that the value 1660 // did not overflow the old, smaller, value, we can sign extend all of the 1661 // operands (often constants). This allows analysis of something like 1662 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1663 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1664 if (AR->isAffine()) { 1665 const SCEV *Start = AR->getStart(); 1666 const SCEV *Step = AR->getStepRecurrence(*this); 1667 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1668 const Loop *L = AR->getLoop(); 1669 1670 // If we have special knowledge that this addrec won't overflow, 1671 // we don't need to do any further analysis. 1672 if (AR->hasNoSignedWrap()) 1673 return getAddRecExpr( 1674 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1675 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1676 1677 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1678 // Note that this serves two purposes: It filters out loops that are 1679 // simply not analyzable, and it covers the case where this code is 1680 // being called from within backedge-taken count analysis, such that 1681 // attempting to ask for the backedge-taken count would likely result 1682 // in infinite recursion. In the later case, the analysis code will 1683 // cope with a conservative value, and it will take care to purge 1684 // that value once it has finished. 1685 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1686 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1687 // Manually compute the final value for AR, checking for 1688 // overflow. 1689 1690 // Check whether the backedge-taken count can be losslessly casted to 1691 // the addrec's type. The count is always unsigned. 1692 const SCEV *CastedMaxBECount = 1693 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1694 const SCEV *RecastedMaxBECount = 1695 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1696 if (MaxBECount == RecastedMaxBECount) { 1697 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1698 // Check whether Start+Step*MaxBECount has no signed overflow. 1699 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1700 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1701 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1702 const SCEV *WideMaxBECount = 1703 getZeroExtendExpr(CastedMaxBECount, WideTy); 1704 const SCEV *OperandExtendedAdd = 1705 getAddExpr(WideStart, 1706 getMulExpr(WideMaxBECount, 1707 getSignExtendExpr(Step, WideTy))); 1708 if (SAdd == OperandExtendedAdd) { 1709 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1710 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1711 // Return the expression with the addrec on the outside. 1712 return getAddRecExpr( 1713 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1714 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1715 } 1716 // Similar to above, only this time treat the step value as unsigned. 1717 // This covers loops that count up with an unsigned step. 1718 OperandExtendedAdd = 1719 getAddExpr(WideStart, 1720 getMulExpr(WideMaxBECount, 1721 getZeroExtendExpr(Step, WideTy))); 1722 if (SAdd == OperandExtendedAdd) { 1723 // If AR wraps around then 1724 // 1725 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1726 // => SAdd != OperandExtendedAdd 1727 // 1728 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1729 // (SAdd == OperandExtendedAdd => AR is NW) 1730 1731 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1732 1733 // Return the expression with the addrec on the outside. 1734 return getAddRecExpr( 1735 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1736 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1737 } 1738 } 1739 1740 // If the backedge is guarded by a comparison with the pre-inc value 1741 // the addrec is safe. Also, if the entry is guarded by a comparison 1742 // with the start value and the backedge is guarded by a comparison 1743 // with the post-inc value, the addrec is safe. 1744 ICmpInst::Predicate Pred; 1745 const SCEV *OverflowLimit = 1746 getSignedOverflowLimitForStep(Step, &Pred, this); 1747 if (OverflowLimit && 1748 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1749 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1750 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1751 OverflowLimit)))) { 1752 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1754 return getAddRecExpr( 1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1757 } 1758 } 1759 // If Start and Step are constants, check if we can apply this 1760 // transformation: 1761 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1762 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1763 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1764 if (SC1 && SC2) { 1765 const APInt &C1 = SC1->getAPInt(); 1766 const APInt &C2 = SC2->getAPInt(); 1767 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1768 C2.isPowerOf2()) { 1769 Start = getSignExtendExpr(Start, Ty); 1770 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1771 AR->getNoWrapFlags()); 1772 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1773 } 1774 } 1775 1776 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1777 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1778 return getAddRecExpr( 1779 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1780 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1781 } 1782 } 1783 1784 // The cast wasn't folded; create an explicit cast node. 1785 // Recompute the insert position, as it may have been invalidated. 1786 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1787 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1788 Op, Ty); 1789 UniqueSCEVs.InsertNode(S, IP); 1790 return S; 1791 } 1792 1793 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1794 /// unspecified bits out to the given type. 1795 /// 1796 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1797 Type *Ty) { 1798 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1799 "This is not an extending conversion!"); 1800 assert(isSCEVable(Ty) && 1801 "This is not a conversion to a SCEVable type!"); 1802 Ty = getEffectiveSCEVType(Ty); 1803 1804 // Sign-extend negative constants. 1805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1806 if (SC->getAPInt().isNegative()) 1807 return getSignExtendExpr(Op, Ty); 1808 1809 // Peel off a truncate cast. 1810 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1811 const SCEV *NewOp = T->getOperand(); 1812 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1813 return getAnyExtendExpr(NewOp, Ty); 1814 return getTruncateOrNoop(NewOp, Ty); 1815 } 1816 1817 // Next try a zext cast. If the cast is folded, use it. 1818 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1819 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1820 return ZExt; 1821 1822 // Next try a sext cast. If the cast is folded, use it. 1823 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1824 if (!isa<SCEVSignExtendExpr>(SExt)) 1825 return SExt; 1826 1827 // Force the cast to be folded into the operands of an addrec. 1828 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1829 SmallVector<const SCEV *, 4> Ops; 1830 for (const SCEV *Op : AR->operands()) 1831 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1832 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1833 } 1834 1835 // If the expression is obviously signed, use the sext cast value. 1836 if (isa<SCEVSMaxExpr>(Op)) 1837 return SExt; 1838 1839 // Absent any other information, use the zext cast value. 1840 return ZExt; 1841 } 1842 1843 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1844 /// a list of operands to be added under the given scale, update the given 1845 /// map. This is a helper function for getAddRecExpr. As an example of 1846 /// what it does, given a sequence of operands that would form an add 1847 /// expression like this: 1848 /// 1849 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1850 /// 1851 /// where A and B are constants, update the map with these values: 1852 /// 1853 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1854 /// 1855 /// and add 13 + A*B*29 to AccumulatedConstant. 1856 /// This will allow getAddRecExpr to produce this: 1857 /// 1858 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1859 /// 1860 /// This form often exposes folding opportunities that are hidden in 1861 /// the original operand list. 1862 /// 1863 /// Return true iff it appears that any interesting folding opportunities 1864 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1865 /// the common case where no interesting opportunities are present, and 1866 /// is also used as a check to avoid infinite recursion. 1867 /// 1868 static bool 1869 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1870 SmallVectorImpl<const SCEV *> &NewOps, 1871 APInt &AccumulatedConstant, 1872 const SCEV *const *Ops, size_t NumOperands, 1873 const APInt &Scale, 1874 ScalarEvolution &SE) { 1875 bool Interesting = false; 1876 1877 // Iterate over the add operands. They are sorted, with constants first. 1878 unsigned i = 0; 1879 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1880 ++i; 1881 // Pull a buried constant out to the outside. 1882 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1883 Interesting = true; 1884 AccumulatedConstant += Scale * C->getAPInt(); 1885 } 1886 1887 // Next comes everything else. We're especially interested in multiplies 1888 // here, but they're in the middle, so just visit the rest with one loop. 1889 for (; i != NumOperands; ++i) { 1890 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1891 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1892 APInt NewScale = 1893 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1894 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1895 // A multiplication of a constant with another add; recurse. 1896 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1897 Interesting |= 1898 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1899 Add->op_begin(), Add->getNumOperands(), 1900 NewScale, SE); 1901 } else { 1902 // A multiplication of a constant with some other value. Update 1903 // the map. 1904 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1905 const SCEV *Key = SE.getMulExpr(MulOps); 1906 auto Pair = M.insert({Key, NewScale}); 1907 if (Pair.second) { 1908 NewOps.push_back(Pair.first->first); 1909 } else { 1910 Pair.first->second += NewScale; 1911 // The map already had an entry for this value, which may indicate 1912 // a folding opportunity. 1913 Interesting = true; 1914 } 1915 } 1916 } else { 1917 // An ordinary operand. Update the map. 1918 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1919 M.insert({Ops[i], Scale}); 1920 if (Pair.second) { 1921 NewOps.push_back(Pair.first->first); 1922 } else { 1923 Pair.first->second += Scale; 1924 // The map already had an entry for this value, which may indicate 1925 // a folding opportunity. 1926 Interesting = true; 1927 } 1928 } 1929 } 1930 1931 return Interesting; 1932 } 1933 1934 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1935 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1936 // can't-overflow flags for the operation if possible. 1937 static SCEV::NoWrapFlags 1938 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1939 const SmallVectorImpl<const SCEV *> &Ops, 1940 SCEV::NoWrapFlags Flags) { 1941 using namespace std::placeholders; 1942 typedef OverflowingBinaryOperator OBO; 1943 1944 bool CanAnalyze = 1945 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1946 (void)CanAnalyze; 1947 assert(CanAnalyze && "don't call from other places!"); 1948 1949 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1950 SCEV::NoWrapFlags SignOrUnsignWrap = 1951 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1952 1953 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1954 auto IsKnownNonNegative = [&](const SCEV *S) { 1955 return SE->isKnownNonNegative(S); 1956 }; 1957 1958 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1959 Flags = 1960 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1961 1962 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1963 1964 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1965 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1966 1967 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1968 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1969 1970 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 1971 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1972 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 1973 Instruction::Add, C, OBO::NoSignedWrap); 1974 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1975 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1976 } 1977 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1978 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 1979 Instruction::Add, C, OBO::NoUnsignedWrap); 1980 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1981 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1982 } 1983 } 1984 1985 return Flags; 1986 } 1987 1988 /// getAddExpr - Get a canonical add expression, or something simpler if 1989 /// possible. 1990 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1991 SCEV::NoWrapFlags Flags) { 1992 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1993 "only nuw or nsw allowed"); 1994 assert(!Ops.empty() && "Cannot get empty add!"); 1995 if (Ops.size() == 1) return Ops[0]; 1996 #ifndef NDEBUG 1997 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1998 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1999 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2000 "SCEVAddExpr operand types don't match!"); 2001 #endif 2002 2003 // Sort by complexity, this groups all similar expression types together. 2004 GroupByComplexity(Ops, &LI); 2005 2006 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2007 2008 // If there are any constants, fold them together. 2009 unsigned Idx = 0; 2010 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2011 ++Idx; 2012 assert(Idx < Ops.size()); 2013 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2014 // We found two constants, fold them together! 2015 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2016 if (Ops.size() == 2) return Ops[0]; 2017 Ops.erase(Ops.begin()+1); // Erase the folded element 2018 LHSC = cast<SCEVConstant>(Ops[0]); 2019 } 2020 2021 // If we are left with a constant zero being added, strip it off. 2022 if (LHSC->getValue()->isZero()) { 2023 Ops.erase(Ops.begin()); 2024 --Idx; 2025 } 2026 2027 if (Ops.size() == 1) return Ops[0]; 2028 } 2029 2030 // Okay, check to see if the same value occurs in the operand list more than 2031 // once. If so, merge them together into an multiply expression. Since we 2032 // sorted the list, these values are required to be adjacent. 2033 Type *Ty = Ops[0]->getType(); 2034 bool FoundMatch = false; 2035 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2036 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2037 // Scan ahead to count how many equal operands there are. 2038 unsigned Count = 2; 2039 while (i+Count != e && Ops[i+Count] == Ops[i]) 2040 ++Count; 2041 // Merge the values into a multiply. 2042 const SCEV *Scale = getConstant(Ty, Count); 2043 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2044 if (Ops.size() == Count) 2045 return Mul; 2046 Ops[i] = Mul; 2047 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2048 --i; e -= Count - 1; 2049 FoundMatch = true; 2050 } 2051 if (FoundMatch) 2052 return getAddExpr(Ops, Flags); 2053 2054 // Check for truncates. If all the operands are truncated from the same 2055 // type, see if factoring out the truncate would permit the result to be 2056 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2057 // if the contents of the resulting outer trunc fold to something simple. 2058 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2059 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2060 Type *DstType = Trunc->getType(); 2061 Type *SrcType = Trunc->getOperand()->getType(); 2062 SmallVector<const SCEV *, 8> LargeOps; 2063 bool Ok = true; 2064 // Check all the operands to see if they can be represented in the 2065 // source type of the truncate. 2066 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2067 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2068 if (T->getOperand()->getType() != SrcType) { 2069 Ok = false; 2070 break; 2071 } 2072 LargeOps.push_back(T->getOperand()); 2073 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2074 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2075 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2076 SmallVector<const SCEV *, 8> LargeMulOps; 2077 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2078 if (const SCEVTruncateExpr *T = 2079 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2080 if (T->getOperand()->getType() != SrcType) { 2081 Ok = false; 2082 break; 2083 } 2084 LargeMulOps.push_back(T->getOperand()); 2085 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2086 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2087 } else { 2088 Ok = false; 2089 break; 2090 } 2091 } 2092 if (Ok) 2093 LargeOps.push_back(getMulExpr(LargeMulOps)); 2094 } else { 2095 Ok = false; 2096 break; 2097 } 2098 } 2099 if (Ok) { 2100 // Evaluate the expression in the larger type. 2101 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2102 // If it folds to something simple, use it. Otherwise, don't. 2103 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2104 return getTruncateExpr(Fold, DstType); 2105 } 2106 } 2107 2108 // Skip past any other cast SCEVs. 2109 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2110 ++Idx; 2111 2112 // If there are add operands they would be next. 2113 if (Idx < Ops.size()) { 2114 bool DeletedAdd = false; 2115 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2116 // If we have an add, expand the add operands onto the end of the operands 2117 // list. 2118 Ops.erase(Ops.begin()+Idx); 2119 Ops.append(Add->op_begin(), Add->op_end()); 2120 DeletedAdd = true; 2121 } 2122 2123 // If we deleted at least one add, we added operands to the end of the list, 2124 // and they are not necessarily sorted. Recurse to resort and resimplify 2125 // any operands we just acquired. 2126 if (DeletedAdd) 2127 return getAddExpr(Ops); 2128 } 2129 2130 // Skip over the add expression until we get to a multiply. 2131 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2132 ++Idx; 2133 2134 // Check to see if there are any folding opportunities present with 2135 // operands multiplied by constant values. 2136 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2137 uint64_t BitWidth = getTypeSizeInBits(Ty); 2138 DenseMap<const SCEV *, APInt> M; 2139 SmallVector<const SCEV *, 8> NewOps; 2140 APInt AccumulatedConstant(BitWidth, 0); 2141 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2142 Ops.data(), Ops.size(), 2143 APInt(BitWidth, 1), *this)) { 2144 struct APIntCompare { 2145 bool operator()(const APInt &LHS, const APInt &RHS) const { 2146 return LHS.ult(RHS); 2147 } 2148 }; 2149 2150 // Some interesting folding opportunity is present, so its worthwhile to 2151 // re-generate the operands list. Group the operands by constant scale, 2152 // to avoid multiplying by the same constant scale multiple times. 2153 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2154 for (const SCEV *NewOp : NewOps) 2155 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2156 // Re-generate the operands list. 2157 Ops.clear(); 2158 if (AccumulatedConstant != 0) 2159 Ops.push_back(getConstant(AccumulatedConstant)); 2160 for (auto &MulOp : MulOpLists) 2161 if (MulOp.first != 0) 2162 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2163 getAddExpr(MulOp.second))); 2164 if (Ops.empty()) 2165 return getZero(Ty); 2166 if (Ops.size() == 1) 2167 return Ops[0]; 2168 return getAddExpr(Ops); 2169 } 2170 } 2171 2172 // If we are adding something to a multiply expression, make sure the 2173 // something is not already an operand of the multiply. If so, merge it into 2174 // the multiply. 2175 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2176 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2177 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2178 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2179 if (isa<SCEVConstant>(MulOpSCEV)) 2180 continue; 2181 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2182 if (MulOpSCEV == Ops[AddOp]) { 2183 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2184 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2185 if (Mul->getNumOperands() != 2) { 2186 // If the multiply has more than two operands, we must get the 2187 // Y*Z term. 2188 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2189 Mul->op_begin()+MulOp); 2190 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2191 InnerMul = getMulExpr(MulOps); 2192 } 2193 const SCEV *One = getOne(Ty); 2194 const SCEV *AddOne = getAddExpr(One, InnerMul); 2195 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2196 if (Ops.size() == 2) return OuterMul; 2197 if (AddOp < Idx) { 2198 Ops.erase(Ops.begin()+AddOp); 2199 Ops.erase(Ops.begin()+Idx-1); 2200 } else { 2201 Ops.erase(Ops.begin()+Idx); 2202 Ops.erase(Ops.begin()+AddOp-1); 2203 } 2204 Ops.push_back(OuterMul); 2205 return getAddExpr(Ops); 2206 } 2207 2208 // Check this multiply against other multiplies being added together. 2209 for (unsigned OtherMulIdx = Idx+1; 2210 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2211 ++OtherMulIdx) { 2212 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2213 // If MulOp occurs in OtherMul, we can fold the two multiplies 2214 // together. 2215 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2216 OMulOp != e; ++OMulOp) 2217 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2218 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2219 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2220 if (Mul->getNumOperands() != 2) { 2221 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2222 Mul->op_begin()+MulOp); 2223 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2224 InnerMul1 = getMulExpr(MulOps); 2225 } 2226 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2227 if (OtherMul->getNumOperands() != 2) { 2228 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2229 OtherMul->op_begin()+OMulOp); 2230 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2231 InnerMul2 = getMulExpr(MulOps); 2232 } 2233 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2234 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2235 if (Ops.size() == 2) return OuterMul; 2236 Ops.erase(Ops.begin()+Idx); 2237 Ops.erase(Ops.begin()+OtherMulIdx-1); 2238 Ops.push_back(OuterMul); 2239 return getAddExpr(Ops); 2240 } 2241 } 2242 } 2243 } 2244 2245 // If there are any add recurrences in the operands list, see if any other 2246 // added values are loop invariant. If so, we can fold them into the 2247 // recurrence. 2248 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2249 ++Idx; 2250 2251 // Scan over all recurrences, trying to fold loop invariants into them. 2252 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2253 // Scan all of the other operands to this add and add them to the vector if 2254 // they are loop invariant w.r.t. the recurrence. 2255 SmallVector<const SCEV *, 8> LIOps; 2256 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2257 const Loop *AddRecLoop = AddRec->getLoop(); 2258 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2259 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2260 LIOps.push_back(Ops[i]); 2261 Ops.erase(Ops.begin()+i); 2262 --i; --e; 2263 } 2264 2265 // If we found some loop invariants, fold them into the recurrence. 2266 if (!LIOps.empty()) { 2267 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2268 LIOps.push_back(AddRec->getStart()); 2269 2270 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2271 AddRec->op_end()); 2272 AddRecOps[0] = getAddExpr(LIOps); 2273 2274 // Build the new addrec. Propagate the NUW and NSW flags if both the 2275 // outer add and the inner addrec are guaranteed to have no overflow. 2276 // Always propagate NW. 2277 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2278 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2279 2280 // If all of the other operands were loop invariant, we are done. 2281 if (Ops.size() == 1) return NewRec; 2282 2283 // Otherwise, add the folded AddRec by the non-invariant parts. 2284 for (unsigned i = 0;; ++i) 2285 if (Ops[i] == AddRec) { 2286 Ops[i] = NewRec; 2287 break; 2288 } 2289 return getAddExpr(Ops); 2290 } 2291 2292 // Okay, if there weren't any loop invariants to be folded, check to see if 2293 // there are multiple AddRec's with the same loop induction variable being 2294 // added together. If so, we can fold them. 2295 for (unsigned OtherIdx = Idx+1; 2296 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2297 ++OtherIdx) 2298 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2299 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2300 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2301 AddRec->op_end()); 2302 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2303 ++OtherIdx) 2304 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2305 if (OtherAddRec->getLoop() == AddRecLoop) { 2306 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2307 i != e; ++i) { 2308 if (i >= AddRecOps.size()) { 2309 AddRecOps.append(OtherAddRec->op_begin()+i, 2310 OtherAddRec->op_end()); 2311 break; 2312 } 2313 AddRecOps[i] = getAddExpr(AddRecOps[i], 2314 OtherAddRec->getOperand(i)); 2315 } 2316 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2317 } 2318 // Step size has changed, so we cannot guarantee no self-wraparound. 2319 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2320 return getAddExpr(Ops); 2321 } 2322 2323 // Otherwise couldn't fold anything into this recurrence. Move onto the 2324 // next one. 2325 } 2326 2327 // Okay, it looks like we really DO need an add expr. Check to see if we 2328 // already have one, otherwise create a new one. 2329 FoldingSetNodeID ID; 2330 ID.AddInteger(scAddExpr); 2331 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2332 ID.AddPointer(Ops[i]); 2333 void *IP = nullptr; 2334 SCEVAddExpr *S = 2335 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2336 if (!S) { 2337 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2338 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2339 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2340 O, Ops.size()); 2341 UniqueSCEVs.InsertNode(S, IP); 2342 } 2343 S->setNoWrapFlags(Flags); 2344 return S; 2345 } 2346 2347 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2348 uint64_t k = i*j; 2349 if (j > 1 && k / j != i) Overflow = true; 2350 return k; 2351 } 2352 2353 /// Compute the result of "n choose k", the binomial coefficient. If an 2354 /// intermediate computation overflows, Overflow will be set and the return will 2355 /// be garbage. Overflow is not cleared on absence of overflow. 2356 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2357 // We use the multiplicative formula: 2358 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2359 // At each iteration, we take the n-th term of the numeral and divide by the 2360 // (k-n)th term of the denominator. This division will always produce an 2361 // integral result, and helps reduce the chance of overflow in the 2362 // intermediate computations. However, we can still overflow even when the 2363 // final result would fit. 2364 2365 if (n == 0 || n == k) return 1; 2366 if (k > n) return 0; 2367 2368 if (k > n/2) 2369 k = n-k; 2370 2371 uint64_t r = 1; 2372 for (uint64_t i = 1; i <= k; ++i) { 2373 r = umul_ov(r, n-(i-1), Overflow); 2374 r /= i; 2375 } 2376 return r; 2377 } 2378 2379 /// Determine if any of the operands in this SCEV are a constant or if 2380 /// any of the add or multiply expressions in this SCEV contain a constant. 2381 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2382 SmallVector<const SCEV *, 4> Ops; 2383 Ops.push_back(StartExpr); 2384 while (!Ops.empty()) { 2385 const SCEV *CurrentExpr = Ops.pop_back_val(); 2386 if (isa<SCEVConstant>(*CurrentExpr)) 2387 return true; 2388 2389 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2390 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2391 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2392 } 2393 } 2394 return false; 2395 } 2396 2397 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2398 /// possible. 2399 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2400 SCEV::NoWrapFlags Flags) { 2401 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2402 "only nuw or nsw allowed"); 2403 assert(!Ops.empty() && "Cannot get empty mul!"); 2404 if (Ops.size() == 1) return Ops[0]; 2405 #ifndef NDEBUG 2406 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2407 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2408 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2409 "SCEVMulExpr operand types don't match!"); 2410 #endif 2411 2412 // Sort by complexity, this groups all similar expression types together. 2413 GroupByComplexity(Ops, &LI); 2414 2415 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2416 2417 // If there are any constants, fold them together. 2418 unsigned Idx = 0; 2419 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2420 2421 // C1*(C2+V) -> C1*C2 + C1*V 2422 if (Ops.size() == 2) 2423 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2424 // If any of Add's ops are Adds or Muls with a constant, 2425 // apply this transformation as well. 2426 if (Add->getNumOperands() == 2) 2427 if (containsConstantSomewhere(Add)) 2428 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2429 getMulExpr(LHSC, Add->getOperand(1))); 2430 2431 ++Idx; 2432 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2433 // We found two constants, fold them together! 2434 ConstantInt *Fold = 2435 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2436 Ops[0] = getConstant(Fold); 2437 Ops.erase(Ops.begin()+1); // Erase the folded element 2438 if (Ops.size() == 1) return Ops[0]; 2439 LHSC = cast<SCEVConstant>(Ops[0]); 2440 } 2441 2442 // If we are left with a constant one being multiplied, strip it off. 2443 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2444 Ops.erase(Ops.begin()); 2445 --Idx; 2446 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2447 // If we have a multiply of zero, it will always be zero. 2448 return Ops[0]; 2449 } else if (Ops[0]->isAllOnesValue()) { 2450 // If we have a mul by -1 of an add, try distributing the -1 among the 2451 // add operands. 2452 if (Ops.size() == 2) { 2453 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2454 SmallVector<const SCEV *, 4> NewOps; 2455 bool AnyFolded = false; 2456 for (const SCEV *AddOp : Add->operands()) { 2457 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2458 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2459 NewOps.push_back(Mul); 2460 } 2461 if (AnyFolded) 2462 return getAddExpr(NewOps); 2463 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2464 // Negation preserves a recurrence's no self-wrap property. 2465 SmallVector<const SCEV *, 4> Operands; 2466 for (const SCEV *AddRecOp : AddRec->operands()) 2467 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2468 2469 return getAddRecExpr(Operands, AddRec->getLoop(), 2470 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2471 } 2472 } 2473 } 2474 2475 if (Ops.size() == 1) 2476 return Ops[0]; 2477 } 2478 2479 // Skip over the add expression until we get to a multiply. 2480 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2481 ++Idx; 2482 2483 // If there are mul operands inline them all into this expression. 2484 if (Idx < Ops.size()) { 2485 bool DeletedMul = false; 2486 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2487 // If we have an mul, expand the mul operands onto the end of the operands 2488 // list. 2489 Ops.erase(Ops.begin()+Idx); 2490 Ops.append(Mul->op_begin(), Mul->op_end()); 2491 DeletedMul = true; 2492 } 2493 2494 // If we deleted at least one mul, we added operands to the end of the list, 2495 // and they are not necessarily sorted. Recurse to resort and resimplify 2496 // any operands we just acquired. 2497 if (DeletedMul) 2498 return getMulExpr(Ops); 2499 } 2500 2501 // If there are any add recurrences in the operands list, see if any other 2502 // added values are loop invariant. If so, we can fold them into the 2503 // recurrence. 2504 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2505 ++Idx; 2506 2507 // Scan over all recurrences, trying to fold loop invariants into them. 2508 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2509 // Scan all of the other operands to this mul and add them to the vector if 2510 // they are loop invariant w.r.t. the recurrence. 2511 SmallVector<const SCEV *, 8> LIOps; 2512 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2513 const Loop *AddRecLoop = AddRec->getLoop(); 2514 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2515 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2516 LIOps.push_back(Ops[i]); 2517 Ops.erase(Ops.begin()+i); 2518 --i; --e; 2519 } 2520 2521 // If we found some loop invariants, fold them into the recurrence. 2522 if (!LIOps.empty()) { 2523 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2524 SmallVector<const SCEV *, 4> NewOps; 2525 NewOps.reserve(AddRec->getNumOperands()); 2526 const SCEV *Scale = getMulExpr(LIOps); 2527 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2528 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2529 2530 // Build the new addrec. Propagate the NUW and NSW flags if both the 2531 // outer mul and the inner addrec are guaranteed to have no overflow. 2532 // 2533 // No self-wrap cannot be guaranteed after changing the step size, but 2534 // will be inferred if either NUW or NSW is true. 2535 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2536 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2537 2538 // If all of the other operands were loop invariant, we are done. 2539 if (Ops.size() == 1) return NewRec; 2540 2541 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2542 for (unsigned i = 0;; ++i) 2543 if (Ops[i] == AddRec) { 2544 Ops[i] = NewRec; 2545 break; 2546 } 2547 return getMulExpr(Ops); 2548 } 2549 2550 // Okay, if there weren't any loop invariants to be folded, check to see if 2551 // there are multiple AddRec's with the same loop induction variable being 2552 // multiplied together. If so, we can fold them. 2553 2554 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2555 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2556 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2557 // ]]],+,...up to x=2n}. 2558 // Note that the arguments to choose() are always integers with values 2559 // known at compile time, never SCEV objects. 2560 // 2561 // The implementation avoids pointless extra computations when the two 2562 // addrec's are of different length (mathematically, it's equivalent to 2563 // an infinite stream of zeros on the right). 2564 bool OpsModified = false; 2565 for (unsigned OtherIdx = Idx+1; 2566 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2567 ++OtherIdx) { 2568 const SCEVAddRecExpr *OtherAddRec = 2569 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2570 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2571 continue; 2572 2573 bool Overflow = false; 2574 Type *Ty = AddRec->getType(); 2575 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2576 SmallVector<const SCEV*, 7> AddRecOps; 2577 for (int x = 0, xe = AddRec->getNumOperands() + 2578 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2579 const SCEV *Term = getZero(Ty); 2580 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2581 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2582 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2583 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2584 z < ze && !Overflow; ++z) { 2585 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2586 uint64_t Coeff; 2587 if (LargerThan64Bits) 2588 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2589 else 2590 Coeff = Coeff1*Coeff2; 2591 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2592 const SCEV *Term1 = AddRec->getOperand(y-z); 2593 const SCEV *Term2 = OtherAddRec->getOperand(z); 2594 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2595 } 2596 } 2597 AddRecOps.push_back(Term); 2598 } 2599 if (!Overflow) { 2600 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2601 SCEV::FlagAnyWrap); 2602 if (Ops.size() == 2) return NewAddRec; 2603 Ops[Idx] = NewAddRec; 2604 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2605 OpsModified = true; 2606 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2607 if (!AddRec) 2608 break; 2609 } 2610 } 2611 if (OpsModified) 2612 return getMulExpr(Ops); 2613 2614 // Otherwise couldn't fold anything into this recurrence. Move onto the 2615 // next one. 2616 } 2617 2618 // Okay, it looks like we really DO need an mul expr. Check to see if we 2619 // already have one, otherwise create a new one. 2620 FoldingSetNodeID ID; 2621 ID.AddInteger(scMulExpr); 2622 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2623 ID.AddPointer(Ops[i]); 2624 void *IP = nullptr; 2625 SCEVMulExpr *S = 2626 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2627 if (!S) { 2628 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2629 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2630 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2631 O, Ops.size()); 2632 UniqueSCEVs.InsertNode(S, IP); 2633 } 2634 S->setNoWrapFlags(Flags); 2635 return S; 2636 } 2637 2638 /// getUDivExpr - Get a canonical unsigned division expression, or something 2639 /// simpler if possible. 2640 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2641 const SCEV *RHS) { 2642 assert(getEffectiveSCEVType(LHS->getType()) == 2643 getEffectiveSCEVType(RHS->getType()) && 2644 "SCEVUDivExpr operand types don't match!"); 2645 2646 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2647 if (RHSC->getValue()->equalsInt(1)) 2648 return LHS; // X udiv 1 --> x 2649 // If the denominator is zero, the result of the udiv is undefined. Don't 2650 // try to analyze it, because the resolution chosen here may differ from 2651 // the resolution chosen in other parts of the compiler. 2652 if (!RHSC->getValue()->isZero()) { 2653 // Determine if the division can be folded into the operands of 2654 // its operands. 2655 // TODO: Generalize this to non-constants by using known-bits information. 2656 Type *Ty = LHS->getType(); 2657 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2658 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2659 // For non-power-of-two values, effectively round the value up to the 2660 // nearest power of two. 2661 if (!RHSC->getAPInt().isPowerOf2()) 2662 ++MaxShiftAmt; 2663 IntegerType *ExtTy = 2664 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2665 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2666 if (const SCEVConstant *Step = 2667 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2668 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2669 const APInt &StepInt = Step->getAPInt(); 2670 const APInt &DivInt = RHSC->getAPInt(); 2671 if (!StepInt.urem(DivInt) && 2672 getZeroExtendExpr(AR, ExtTy) == 2673 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2674 getZeroExtendExpr(Step, ExtTy), 2675 AR->getLoop(), SCEV::FlagAnyWrap)) { 2676 SmallVector<const SCEV *, 4> Operands; 2677 for (const SCEV *Op : AR->operands()) 2678 Operands.push_back(getUDivExpr(Op, RHS)); 2679 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2680 } 2681 /// Get a canonical UDivExpr for a recurrence. 2682 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2683 // We can currently only fold X%N if X is constant. 2684 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2685 if (StartC && !DivInt.urem(StepInt) && 2686 getZeroExtendExpr(AR, ExtTy) == 2687 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2688 getZeroExtendExpr(Step, ExtTy), 2689 AR->getLoop(), SCEV::FlagAnyWrap)) { 2690 const APInt &StartInt = StartC->getAPInt(); 2691 const APInt &StartRem = StartInt.urem(StepInt); 2692 if (StartRem != 0) 2693 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2694 AR->getLoop(), SCEV::FlagNW); 2695 } 2696 } 2697 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2698 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2699 SmallVector<const SCEV *, 4> Operands; 2700 for (const SCEV *Op : M->operands()) 2701 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2702 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2703 // Find an operand that's safely divisible. 2704 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2705 const SCEV *Op = M->getOperand(i); 2706 const SCEV *Div = getUDivExpr(Op, RHSC); 2707 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2708 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2709 M->op_end()); 2710 Operands[i] = Div; 2711 return getMulExpr(Operands); 2712 } 2713 } 2714 } 2715 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2716 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2717 SmallVector<const SCEV *, 4> Operands; 2718 for (const SCEV *Op : A->operands()) 2719 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2720 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2721 Operands.clear(); 2722 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2723 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2724 if (isa<SCEVUDivExpr>(Op) || 2725 getMulExpr(Op, RHS) != A->getOperand(i)) 2726 break; 2727 Operands.push_back(Op); 2728 } 2729 if (Operands.size() == A->getNumOperands()) 2730 return getAddExpr(Operands); 2731 } 2732 } 2733 2734 // Fold if both operands are constant. 2735 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2736 Constant *LHSCV = LHSC->getValue(); 2737 Constant *RHSCV = RHSC->getValue(); 2738 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2739 RHSCV))); 2740 } 2741 } 2742 } 2743 2744 FoldingSetNodeID ID; 2745 ID.AddInteger(scUDivExpr); 2746 ID.AddPointer(LHS); 2747 ID.AddPointer(RHS); 2748 void *IP = nullptr; 2749 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2750 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2751 LHS, RHS); 2752 UniqueSCEVs.InsertNode(S, IP); 2753 return S; 2754 } 2755 2756 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2757 APInt A = C1->getAPInt().abs(); 2758 APInt B = C2->getAPInt().abs(); 2759 uint32_t ABW = A.getBitWidth(); 2760 uint32_t BBW = B.getBitWidth(); 2761 2762 if (ABW > BBW) 2763 B = B.zext(ABW); 2764 else if (ABW < BBW) 2765 A = A.zext(BBW); 2766 2767 return APIntOps::GreatestCommonDivisor(A, B); 2768 } 2769 2770 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2771 /// something simpler if possible. There is no representation for an exact udiv 2772 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2773 /// We can't do this when it's not exact because the udiv may be clearing bits. 2774 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2775 const SCEV *RHS) { 2776 // TODO: we could try to find factors in all sorts of things, but for now we 2777 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2778 // end of this file for inspiration. 2779 2780 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2781 if (!Mul) 2782 return getUDivExpr(LHS, RHS); 2783 2784 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2785 // If the mulexpr multiplies by a constant, then that constant must be the 2786 // first element of the mulexpr. 2787 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2788 if (LHSCst == RHSCst) { 2789 SmallVector<const SCEV *, 2> Operands; 2790 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2791 return getMulExpr(Operands); 2792 } 2793 2794 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2795 // that there's a factor provided by one of the other terms. We need to 2796 // check. 2797 APInt Factor = gcd(LHSCst, RHSCst); 2798 if (!Factor.isIntN(1)) { 2799 LHSCst = 2800 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2801 RHSCst = 2802 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2803 SmallVector<const SCEV *, 2> Operands; 2804 Operands.push_back(LHSCst); 2805 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2806 LHS = getMulExpr(Operands); 2807 RHS = RHSCst; 2808 Mul = dyn_cast<SCEVMulExpr>(LHS); 2809 if (!Mul) 2810 return getUDivExactExpr(LHS, RHS); 2811 } 2812 } 2813 } 2814 2815 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2816 if (Mul->getOperand(i) == RHS) { 2817 SmallVector<const SCEV *, 2> Operands; 2818 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2819 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2820 return getMulExpr(Operands); 2821 } 2822 } 2823 2824 return getUDivExpr(LHS, RHS); 2825 } 2826 2827 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2828 /// Simplify the expression as much as possible. 2829 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2830 const Loop *L, 2831 SCEV::NoWrapFlags Flags) { 2832 SmallVector<const SCEV *, 4> Operands; 2833 Operands.push_back(Start); 2834 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2835 if (StepChrec->getLoop() == L) { 2836 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2837 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2838 } 2839 2840 Operands.push_back(Step); 2841 return getAddRecExpr(Operands, L, Flags); 2842 } 2843 2844 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2845 /// Simplify the expression as much as possible. 2846 const SCEV * 2847 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2848 const Loop *L, SCEV::NoWrapFlags Flags) { 2849 if (Operands.size() == 1) return Operands[0]; 2850 #ifndef NDEBUG 2851 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2852 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2853 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2854 "SCEVAddRecExpr operand types don't match!"); 2855 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2856 assert(isLoopInvariant(Operands[i], L) && 2857 "SCEVAddRecExpr operand is not loop-invariant!"); 2858 #endif 2859 2860 if (Operands.back()->isZero()) { 2861 Operands.pop_back(); 2862 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2863 } 2864 2865 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2866 // use that information to infer NUW and NSW flags. However, computing a 2867 // BE count requires calling getAddRecExpr, so we may not yet have a 2868 // meaningful BE count at this point (and if we don't, we'd be stuck 2869 // with a SCEVCouldNotCompute as the cached BE count). 2870 2871 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2872 2873 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2874 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2875 const Loop *NestedLoop = NestedAR->getLoop(); 2876 if (L->contains(NestedLoop) 2877 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2878 : (!NestedLoop->contains(L) && 2879 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2880 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2881 NestedAR->op_end()); 2882 Operands[0] = NestedAR->getStart(); 2883 // AddRecs require their operands be loop-invariant with respect to their 2884 // loops. Don't perform this transformation if it would break this 2885 // requirement. 2886 bool AllInvariant = all_of( 2887 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2888 2889 if (AllInvariant) { 2890 // Create a recurrence for the outer loop with the same step size. 2891 // 2892 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2893 // inner recurrence has the same property. 2894 SCEV::NoWrapFlags OuterFlags = 2895 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2896 2897 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2898 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2899 return isLoopInvariant(Op, NestedLoop); 2900 }); 2901 2902 if (AllInvariant) { 2903 // Ok, both add recurrences are valid after the transformation. 2904 // 2905 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2906 // the outer recurrence has the same property. 2907 SCEV::NoWrapFlags InnerFlags = 2908 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2909 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2910 } 2911 } 2912 // Reset Operands to its original state. 2913 Operands[0] = NestedAR; 2914 } 2915 } 2916 2917 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2918 // already have one, otherwise create a new one. 2919 FoldingSetNodeID ID; 2920 ID.AddInteger(scAddRecExpr); 2921 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2922 ID.AddPointer(Operands[i]); 2923 ID.AddPointer(L); 2924 void *IP = nullptr; 2925 SCEVAddRecExpr *S = 2926 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2927 if (!S) { 2928 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2929 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2930 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2931 O, Operands.size(), L); 2932 UniqueSCEVs.InsertNode(S, IP); 2933 } 2934 S->setNoWrapFlags(Flags); 2935 return S; 2936 } 2937 2938 const SCEV * 2939 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2940 const SmallVectorImpl<const SCEV *> &IndexExprs, 2941 bool InBounds) { 2942 // getSCEV(Base)->getType() has the same address space as Base->getType() 2943 // because SCEV::getType() preserves the address space. 2944 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2945 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2946 // instruction to its SCEV, because the Instruction may be guarded by control 2947 // flow and the no-overflow bits may not be valid for the expression in any 2948 // context. This can be fixed similarly to how these flags are handled for 2949 // adds. 2950 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2951 2952 const SCEV *TotalOffset = getZero(IntPtrTy); 2953 // The address space is unimportant. The first thing we do on CurTy is getting 2954 // its element type. 2955 Type *CurTy = PointerType::getUnqual(PointeeType); 2956 for (const SCEV *IndexExpr : IndexExprs) { 2957 // Compute the (potentially symbolic) offset in bytes for this index. 2958 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2959 // For a struct, add the member offset. 2960 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2961 unsigned FieldNo = Index->getZExtValue(); 2962 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2963 2964 // Add the field offset to the running total offset. 2965 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2966 2967 // Update CurTy to the type of the field at Index. 2968 CurTy = STy->getTypeAtIndex(Index); 2969 } else { 2970 // Update CurTy to its element type. 2971 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2972 // For an array, add the element offset, explicitly scaled. 2973 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2974 // Getelementptr indices are signed. 2975 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2976 2977 // Multiply the index by the element size to compute the element offset. 2978 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2979 2980 // Add the element offset to the running total offset. 2981 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2982 } 2983 } 2984 2985 // Add the total offset from all the GEP indices to the base. 2986 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2987 } 2988 2989 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2990 const SCEV *RHS) { 2991 SmallVector<const SCEV *, 2> Ops; 2992 Ops.push_back(LHS); 2993 Ops.push_back(RHS); 2994 return getSMaxExpr(Ops); 2995 } 2996 2997 const SCEV * 2998 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2999 assert(!Ops.empty() && "Cannot get empty smax!"); 3000 if (Ops.size() == 1) return Ops[0]; 3001 #ifndef NDEBUG 3002 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3003 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3004 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3005 "SCEVSMaxExpr operand types don't match!"); 3006 #endif 3007 3008 // Sort by complexity, this groups all similar expression types together. 3009 GroupByComplexity(Ops, &LI); 3010 3011 // If there are any constants, fold them together. 3012 unsigned Idx = 0; 3013 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3014 ++Idx; 3015 assert(Idx < Ops.size()); 3016 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3017 // We found two constants, fold them together! 3018 ConstantInt *Fold = ConstantInt::get( 3019 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3020 Ops[0] = getConstant(Fold); 3021 Ops.erase(Ops.begin()+1); // Erase the folded element 3022 if (Ops.size() == 1) return Ops[0]; 3023 LHSC = cast<SCEVConstant>(Ops[0]); 3024 } 3025 3026 // If we are left with a constant minimum-int, strip it off. 3027 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3028 Ops.erase(Ops.begin()); 3029 --Idx; 3030 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3031 // If we have an smax with a constant maximum-int, it will always be 3032 // maximum-int. 3033 return Ops[0]; 3034 } 3035 3036 if (Ops.size() == 1) return Ops[0]; 3037 } 3038 3039 // Find the first SMax 3040 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3041 ++Idx; 3042 3043 // Check to see if one of the operands is an SMax. If so, expand its operands 3044 // onto our operand list, and recurse to simplify. 3045 if (Idx < Ops.size()) { 3046 bool DeletedSMax = false; 3047 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3048 Ops.erase(Ops.begin()+Idx); 3049 Ops.append(SMax->op_begin(), SMax->op_end()); 3050 DeletedSMax = true; 3051 } 3052 3053 if (DeletedSMax) 3054 return getSMaxExpr(Ops); 3055 } 3056 3057 // Okay, check to see if the same value occurs in the operand list twice. If 3058 // so, delete one. Since we sorted the list, these values are required to 3059 // be adjacent. 3060 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3061 // X smax Y smax Y --> X smax Y 3062 // X smax Y --> X, if X is always greater than Y 3063 if (Ops[i] == Ops[i+1] || 3064 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3065 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3066 --i; --e; 3067 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3068 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3069 --i; --e; 3070 } 3071 3072 if (Ops.size() == 1) return Ops[0]; 3073 3074 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3075 3076 // Okay, it looks like we really DO need an smax expr. Check to see if we 3077 // already have one, otherwise create a new one. 3078 FoldingSetNodeID ID; 3079 ID.AddInteger(scSMaxExpr); 3080 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3081 ID.AddPointer(Ops[i]); 3082 void *IP = nullptr; 3083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3084 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3085 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3086 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3087 O, Ops.size()); 3088 UniqueSCEVs.InsertNode(S, IP); 3089 return S; 3090 } 3091 3092 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3093 const SCEV *RHS) { 3094 SmallVector<const SCEV *, 2> Ops; 3095 Ops.push_back(LHS); 3096 Ops.push_back(RHS); 3097 return getUMaxExpr(Ops); 3098 } 3099 3100 const SCEV * 3101 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3102 assert(!Ops.empty() && "Cannot get empty umax!"); 3103 if (Ops.size() == 1) return Ops[0]; 3104 #ifndef NDEBUG 3105 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3106 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3107 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3108 "SCEVUMaxExpr operand types don't match!"); 3109 #endif 3110 3111 // Sort by complexity, this groups all similar expression types together. 3112 GroupByComplexity(Ops, &LI); 3113 3114 // If there are any constants, fold them together. 3115 unsigned Idx = 0; 3116 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3117 ++Idx; 3118 assert(Idx < Ops.size()); 3119 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3120 // We found two constants, fold them together! 3121 ConstantInt *Fold = ConstantInt::get( 3122 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3123 Ops[0] = getConstant(Fold); 3124 Ops.erase(Ops.begin()+1); // Erase the folded element 3125 if (Ops.size() == 1) return Ops[0]; 3126 LHSC = cast<SCEVConstant>(Ops[0]); 3127 } 3128 3129 // If we are left with a constant minimum-int, strip it off. 3130 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3131 Ops.erase(Ops.begin()); 3132 --Idx; 3133 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3134 // If we have an umax with a constant maximum-int, it will always be 3135 // maximum-int. 3136 return Ops[0]; 3137 } 3138 3139 if (Ops.size() == 1) return Ops[0]; 3140 } 3141 3142 // Find the first UMax 3143 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3144 ++Idx; 3145 3146 // Check to see if one of the operands is a UMax. If so, expand its operands 3147 // onto our operand list, and recurse to simplify. 3148 if (Idx < Ops.size()) { 3149 bool DeletedUMax = false; 3150 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3151 Ops.erase(Ops.begin()+Idx); 3152 Ops.append(UMax->op_begin(), UMax->op_end()); 3153 DeletedUMax = true; 3154 } 3155 3156 if (DeletedUMax) 3157 return getUMaxExpr(Ops); 3158 } 3159 3160 // Okay, check to see if the same value occurs in the operand list twice. If 3161 // so, delete one. Since we sorted the list, these values are required to 3162 // be adjacent. 3163 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3164 // X umax Y umax Y --> X umax Y 3165 // X umax Y --> X, if X is always greater than Y 3166 if (Ops[i] == Ops[i+1] || 3167 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3168 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3169 --i; --e; 3170 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3171 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3172 --i; --e; 3173 } 3174 3175 if (Ops.size() == 1) return Ops[0]; 3176 3177 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3178 3179 // Okay, it looks like we really DO need a umax expr. Check to see if we 3180 // already have one, otherwise create a new one. 3181 FoldingSetNodeID ID; 3182 ID.AddInteger(scUMaxExpr); 3183 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3184 ID.AddPointer(Ops[i]); 3185 void *IP = nullptr; 3186 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3187 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3188 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3189 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3190 O, Ops.size()); 3191 UniqueSCEVs.InsertNode(S, IP); 3192 return S; 3193 } 3194 3195 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3196 const SCEV *RHS) { 3197 // ~smax(~x, ~y) == smin(x, y). 3198 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3199 } 3200 3201 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3202 const SCEV *RHS) { 3203 // ~umax(~x, ~y) == umin(x, y) 3204 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3205 } 3206 3207 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3208 // We can bypass creating a target-independent 3209 // constant expression and then folding it back into a ConstantInt. 3210 // This is just a compile-time optimization. 3211 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3212 } 3213 3214 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3215 StructType *STy, 3216 unsigned FieldNo) { 3217 // We can bypass creating a target-independent 3218 // constant expression and then folding it back into a ConstantInt. 3219 // This is just a compile-time optimization. 3220 return getConstant( 3221 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3222 } 3223 3224 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3225 // Don't attempt to do anything other than create a SCEVUnknown object 3226 // here. createSCEV only calls getUnknown after checking for all other 3227 // interesting possibilities, and any other code that calls getUnknown 3228 // is doing so in order to hide a value from SCEV canonicalization. 3229 3230 FoldingSetNodeID ID; 3231 ID.AddInteger(scUnknown); 3232 ID.AddPointer(V); 3233 void *IP = nullptr; 3234 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3235 assert(cast<SCEVUnknown>(S)->getValue() == V && 3236 "Stale SCEVUnknown in uniquing map!"); 3237 return S; 3238 } 3239 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3240 FirstUnknown); 3241 FirstUnknown = cast<SCEVUnknown>(S); 3242 UniqueSCEVs.InsertNode(S, IP); 3243 return S; 3244 } 3245 3246 //===----------------------------------------------------------------------===// 3247 // Basic SCEV Analysis and PHI Idiom Recognition Code 3248 // 3249 3250 /// isSCEVable - Test if values of the given type are analyzable within 3251 /// the SCEV framework. This primarily includes integer types, and it 3252 /// can optionally include pointer types if the ScalarEvolution class 3253 /// has access to target-specific information. 3254 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3255 // Integers and pointers are always SCEVable. 3256 return Ty->isIntegerTy() || Ty->isPointerTy(); 3257 } 3258 3259 /// getTypeSizeInBits - Return the size in bits of the specified type, 3260 /// for which isSCEVable must return true. 3261 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3262 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3263 return getDataLayout().getTypeSizeInBits(Ty); 3264 } 3265 3266 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3267 /// the given type and which represents how SCEV will treat the given 3268 /// type, for which isSCEVable must return true. For pointer types, 3269 /// this is the pointer-sized integer type. 3270 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3271 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3272 3273 if (Ty->isIntegerTy()) 3274 return Ty; 3275 3276 // The only other support type is pointer. 3277 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3278 return getDataLayout().getIntPtrType(Ty); 3279 } 3280 3281 const SCEV *ScalarEvolution::getCouldNotCompute() { 3282 return CouldNotCompute.get(); 3283 } 3284 3285 3286 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3287 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3288 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3289 // is set iff if find such SCEVUnknown. 3290 // 3291 struct FindInvalidSCEVUnknown { 3292 bool FindOne; 3293 FindInvalidSCEVUnknown() { FindOne = false; } 3294 bool follow(const SCEV *S) { 3295 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3296 case scConstant: 3297 return false; 3298 case scUnknown: 3299 if (!cast<SCEVUnknown>(S)->getValue()) 3300 FindOne = true; 3301 return false; 3302 default: 3303 return true; 3304 } 3305 } 3306 bool isDone() const { return FindOne; } 3307 }; 3308 3309 FindInvalidSCEVUnknown F; 3310 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3311 ST.visitAll(S); 3312 3313 return !F.FindOne; 3314 } 3315 3316 namespace { 3317 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3318 // a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set 3319 // iff if such sub scAddRecExpr type SCEV is found. 3320 struct FindAddRecurrence { 3321 bool FoundOne; 3322 FindAddRecurrence() : FoundOne(false) {} 3323 3324 bool follow(const SCEV *S) { 3325 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3326 case scAddRecExpr: 3327 FoundOne = true; 3328 case scConstant: 3329 case scUnknown: 3330 case scCouldNotCompute: 3331 return false; 3332 default: 3333 return true; 3334 } 3335 } 3336 bool isDone() const { return FoundOne; } 3337 }; 3338 } 3339 3340 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3341 HasRecMapType::iterator I = HasRecMap.find_as(S); 3342 if (I != HasRecMap.end()) 3343 return I->second; 3344 3345 FindAddRecurrence F; 3346 SCEVTraversal<FindAddRecurrence> ST(F); 3347 ST.visitAll(S); 3348 HasRecMap.insert({S, F.FoundOne}); 3349 return F.FoundOne; 3350 } 3351 3352 /// getSCEVValues - Return the Value set from S. 3353 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) { 3354 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3355 if (SI == ExprValueMap.end()) 3356 return nullptr; 3357 #ifndef NDEBUG 3358 if (VerifySCEVMap) { 3359 // Check there is no dangling Value in the set returned. 3360 for (const auto &VE : SI->second) 3361 assert(ValueExprMap.count(VE)); 3362 } 3363 #endif 3364 return &SI->second; 3365 } 3366 3367 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap. 3368 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S), 3369 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed 3370 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S]. 3371 void ScalarEvolution::eraseValueFromMap(Value *V) { 3372 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3373 if (I != ValueExprMap.end()) { 3374 const SCEV *S = I->second; 3375 SetVector<Value *> *SV = getSCEVValues(S); 3376 // Remove V from the set of ExprValueMap[S] 3377 if (SV) 3378 SV->remove(V); 3379 ValueExprMap.erase(V); 3380 } 3381 } 3382 3383 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3384 /// expression and create a new one. 3385 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3386 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3387 3388 const SCEV *S = getExistingSCEV(V); 3389 if (S == nullptr) { 3390 S = createSCEV(V); 3391 // During PHI resolution, it is possible to create two SCEVs for the same 3392 // V, so it is needed to double check whether V->S is inserted into 3393 // ValueExprMap before insert S->V into ExprValueMap. 3394 std::pair<ValueExprMapType::iterator, bool> Pair = 3395 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3396 if (Pair.second) 3397 ExprValueMap[S].insert(V); 3398 } 3399 return S; 3400 } 3401 3402 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3403 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3404 3405 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3406 if (I != ValueExprMap.end()) { 3407 const SCEV *S = I->second; 3408 if (checkValidity(S)) 3409 return S; 3410 forgetMemoizedResults(S); 3411 ValueExprMap.erase(I); 3412 } 3413 return nullptr; 3414 } 3415 3416 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3417 /// 3418 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3419 SCEV::NoWrapFlags Flags) { 3420 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3421 return getConstant( 3422 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3423 3424 Type *Ty = V->getType(); 3425 Ty = getEffectiveSCEVType(Ty); 3426 return getMulExpr( 3427 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3428 } 3429 3430 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3431 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3432 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3433 return getConstant( 3434 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3435 3436 Type *Ty = V->getType(); 3437 Ty = getEffectiveSCEVType(Ty); 3438 const SCEV *AllOnes = 3439 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3440 return getMinusSCEV(AllOnes, V); 3441 } 3442 3443 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3444 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3445 SCEV::NoWrapFlags Flags) { 3446 // Fast path: X - X --> 0. 3447 if (LHS == RHS) 3448 return getZero(LHS->getType()); 3449 3450 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3451 // makes it so that we cannot make much use of NUW. 3452 auto AddFlags = SCEV::FlagAnyWrap; 3453 const bool RHSIsNotMinSigned = 3454 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3455 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3456 // Let M be the minimum representable signed value. Then (-1)*RHS 3457 // signed-wraps if and only if RHS is M. That can happen even for 3458 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3459 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3460 // (-1)*RHS, we need to prove that RHS != M. 3461 // 3462 // If LHS is non-negative and we know that LHS - RHS does not 3463 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3464 // either by proving that RHS > M or that LHS >= 0. 3465 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3466 AddFlags = SCEV::FlagNSW; 3467 } 3468 } 3469 3470 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3471 // RHS is NSW and LHS >= 0. 3472 // 3473 // The difficulty here is that the NSW flag may have been proven 3474 // relative to a loop that is to be found in a recurrence in LHS and 3475 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3476 // larger scope than intended. 3477 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3478 3479 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3480 } 3481 3482 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3483 /// input value to the specified type. If the type must be extended, it is zero 3484 /// extended. 3485 const SCEV * 3486 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3487 Type *SrcTy = V->getType(); 3488 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3489 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3490 "Cannot truncate or zero extend with non-integer arguments!"); 3491 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3492 return V; // No conversion 3493 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3494 return getTruncateExpr(V, Ty); 3495 return getZeroExtendExpr(V, Ty); 3496 } 3497 3498 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3499 /// input value to the specified type. If the type must be extended, it is sign 3500 /// extended. 3501 const SCEV * 3502 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3503 Type *Ty) { 3504 Type *SrcTy = V->getType(); 3505 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3506 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3507 "Cannot truncate or zero extend with non-integer arguments!"); 3508 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3509 return V; // No conversion 3510 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3511 return getTruncateExpr(V, Ty); 3512 return getSignExtendExpr(V, Ty); 3513 } 3514 3515 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3516 /// input value to the specified type. If the type must be extended, it is zero 3517 /// extended. The conversion must not be narrowing. 3518 const SCEV * 3519 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3520 Type *SrcTy = V->getType(); 3521 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3522 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3523 "Cannot noop or zero extend with non-integer arguments!"); 3524 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3525 "getNoopOrZeroExtend cannot truncate!"); 3526 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3527 return V; // No conversion 3528 return getZeroExtendExpr(V, Ty); 3529 } 3530 3531 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3532 /// input value to the specified type. If the type must be extended, it is sign 3533 /// extended. The conversion must not be narrowing. 3534 const SCEV * 3535 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3536 Type *SrcTy = V->getType(); 3537 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3538 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3539 "Cannot noop or sign extend with non-integer arguments!"); 3540 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3541 "getNoopOrSignExtend cannot truncate!"); 3542 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3543 return V; // No conversion 3544 return getSignExtendExpr(V, Ty); 3545 } 3546 3547 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3548 /// the input value to the specified type. If the type must be extended, 3549 /// it is extended with unspecified bits. The conversion must not be 3550 /// narrowing. 3551 const SCEV * 3552 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3553 Type *SrcTy = V->getType(); 3554 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3555 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3556 "Cannot noop or any extend with non-integer arguments!"); 3557 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3558 "getNoopOrAnyExtend cannot truncate!"); 3559 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3560 return V; // No conversion 3561 return getAnyExtendExpr(V, Ty); 3562 } 3563 3564 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3565 /// input value to the specified type. The conversion must not be widening. 3566 const SCEV * 3567 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3568 Type *SrcTy = V->getType(); 3569 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3570 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3571 "Cannot truncate or noop with non-integer arguments!"); 3572 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3573 "getTruncateOrNoop cannot extend!"); 3574 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3575 return V; // No conversion 3576 return getTruncateExpr(V, Ty); 3577 } 3578 3579 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3580 /// the types using zero-extension, and then perform a umax operation 3581 /// with them. 3582 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3583 const SCEV *RHS) { 3584 const SCEV *PromotedLHS = LHS; 3585 const SCEV *PromotedRHS = RHS; 3586 3587 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3588 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3589 else 3590 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3591 3592 return getUMaxExpr(PromotedLHS, PromotedRHS); 3593 } 3594 3595 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3596 /// the types using zero-extension, and then perform a umin operation 3597 /// with them. 3598 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3599 const SCEV *RHS) { 3600 const SCEV *PromotedLHS = LHS; 3601 const SCEV *PromotedRHS = RHS; 3602 3603 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3604 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3605 else 3606 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3607 3608 return getUMinExpr(PromotedLHS, PromotedRHS); 3609 } 3610 3611 /// getPointerBase - Transitively follow the chain of pointer-type operands 3612 /// until reaching a SCEV that does not have a single pointer operand. This 3613 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3614 /// but corner cases do exist. 3615 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3616 // A pointer operand may evaluate to a nonpointer expression, such as null. 3617 if (!V->getType()->isPointerTy()) 3618 return V; 3619 3620 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3621 return getPointerBase(Cast->getOperand()); 3622 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3623 const SCEV *PtrOp = nullptr; 3624 for (const SCEV *NAryOp : NAry->operands()) { 3625 if (NAryOp->getType()->isPointerTy()) { 3626 // Cannot find the base of an expression with multiple pointer operands. 3627 if (PtrOp) 3628 return V; 3629 PtrOp = NAryOp; 3630 } 3631 } 3632 if (!PtrOp) 3633 return V; 3634 return getPointerBase(PtrOp); 3635 } 3636 return V; 3637 } 3638 3639 /// PushDefUseChildren - Push users of the given Instruction 3640 /// onto the given Worklist. 3641 static void 3642 PushDefUseChildren(Instruction *I, 3643 SmallVectorImpl<Instruction *> &Worklist) { 3644 // Push the def-use children onto the Worklist stack. 3645 for (User *U : I->users()) 3646 Worklist.push_back(cast<Instruction>(U)); 3647 } 3648 3649 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3650 /// instructions that depend on the given instruction and removes them from 3651 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3652 /// resolution. 3653 void 3654 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3655 SmallVector<Instruction *, 16> Worklist; 3656 PushDefUseChildren(PN, Worklist); 3657 3658 SmallPtrSet<Instruction *, 8> Visited; 3659 Visited.insert(PN); 3660 while (!Worklist.empty()) { 3661 Instruction *I = Worklist.pop_back_val(); 3662 if (!Visited.insert(I).second) 3663 continue; 3664 3665 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3666 if (It != ValueExprMap.end()) { 3667 const SCEV *Old = It->second; 3668 3669 // Short-circuit the def-use traversal if the symbolic name 3670 // ceases to appear in expressions. 3671 if (Old != SymName && !hasOperand(Old, SymName)) 3672 continue; 3673 3674 // SCEVUnknown for a PHI either means that it has an unrecognized 3675 // structure, it's a PHI that's in the progress of being computed 3676 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3677 // additional loop trip count information isn't going to change anything. 3678 // In the second case, createNodeForPHI will perform the necessary 3679 // updates on its own when it gets to that point. In the third, we do 3680 // want to forget the SCEVUnknown. 3681 if (!isa<PHINode>(I) || 3682 !isa<SCEVUnknown>(Old) || 3683 (I != PN && Old == SymName)) { 3684 forgetMemoizedResults(Old); 3685 ValueExprMap.erase(It); 3686 } 3687 } 3688 3689 PushDefUseChildren(I, Worklist); 3690 } 3691 } 3692 3693 namespace { 3694 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3695 public: 3696 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3697 ScalarEvolution &SE) { 3698 SCEVInitRewriter Rewriter(L, SE); 3699 const SCEV *Result = Rewriter.visit(S); 3700 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3701 } 3702 3703 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3704 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3705 3706 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3707 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3708 Valid = false; 3709 return Expr; 3710 } 3711 3712 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3713 // Only allow AddRecExprs for this loop. 3714 if (Expr->getLoop() == L) 3715 return Expr->getStart(); 3716 Valid = false; 3717 return Expr; 3718 } 3719 3720 bool isValid() { return Valid; } 3721 3722 private: 3723 const Loop *L; 3724 bool Valid; 3725 }; 3726 3727 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3728 public: 3729 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3730 ScalarEvolution &SE) { 3731 SCEVShiftRewriter Rewriter(L, SE); 3732 const SCEV *Result = Rewriter.visit(S); 3733 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3734 } 3735 3736 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3737 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3738 3739 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3740 // Only allow AddRecExprs for this loop. 3741 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3742 Valid = false; 3743 return Expr; 3744 } 3745 3746 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3747 if (Expr->getLoop() == L && Expr->isAffine()) 3748 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3749 Valid = false; 3750 return Expr; 3751 } 3752 bool isValid() { return Valid; } 3753 3754 private: 3755 const Loop *L; 3756 bool Valid; 3757 }; 3758 } // end anonymous namespace 3759 3760 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3761 const Loop *L = LI.getLoopFor(PN->getParent()); 3762 if (!L || L->getHeader() != PN->getParent()) 3763 return nullptr; 3764 3765 // The loop may have multiple entrances or multiple exits; we can analyze 3766 // this phi as an addrec if it has a unique entry value and a unique 3767 // backedge value. 3768 Value *BEValueV = nullptr, *StartValueV = nullptr; 3769 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3770 Value *V = PN->getIncomingValue(i); 3771 if (L->contains(PN->getIncomingBlock(i))) { 3772 if (!BEValueV) { 3773 BEValueV = V; 3774 } else if (BEValueV != V) { 3775 BEValueV = nullptr; 3776 break; 3777 } 3778 } else if (!StartValueV) { 3779 StartValueV = V; 3780 } else if (StartValueV != V) { 3781 StartValueV = nullptr; 3782 break; 3783 } 3784 } 3785 if (BEValueV && StartValueV) { 3786 // While we are analyzing this PHI node, handle its value symbolically. 3787 const SCEV *SymbolicName = getUnknown(PN); 3788 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3789 "PHI node already processed?"); 3790 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 3791 3792 // Using this symbolic name for the PHI, analyze the value coming around 3793 // the back-edge. 3794 const SCEV *BEValue = getSCEV(BEValueV); 3795 3796 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3797 // has a special value for the first iteration of the loop. 3798 3799 // If the value coming around the backedge is an add with the symbolic 3800 // value we just inserted, then we found a simple induction variable! 3801 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3802 // If there is a single occurrence of the symbolic value, replace it 3803 // with a recurrence. 3804 unsigned FoundIndex = Add->getNumOperands(); 3805 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3806 if (Add->getOperand(i) == SymbolicName) 3807 if (FoundIndex == e) { 3808 FoundIndex = i; 3809 break; 3810 } 3811 3812 if (FoundIndex != Add->getNumOperands()) { 3813 // Create an add with everything but the specified operand. 3814 SmallVector<const SCEV *, 8> Ops; 3815 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3816 if (i != FoundIndex) 3817 Ops.push_back(Add->getOperand(i)); 3818 const SCEV *Accum = getAddExpr(Ops); 3819 3820 // This is not a valid addrec if the step amount is varying each 3821 // loop iteration, but is not itself an addrec in this loop. 3822 if (isLoopInvariant(Accum, L) || 3823 (isa<SCEVAddRecExpr>(Accum) && 3824 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3825 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3826 3827 // If the increment doesn't overflow, then neither the addrec nor 3828 // the post-increment will overflow. 3829 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3830 if (OBO->getOperand(0) == PN) { 3831 if (OBO->hasNoUnsignedWrap()) 3832 Flags = setFlags(Flags, SCEV::FlagNUW); 3833 if (OBO->hasNoSignedWrap()) 3834 Flags = setFlags(Flags, SCEV::FlagNSW); 3835 } 3836 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3837 // If the increment is an inbounds GEP, then we know the address 3838 // space cannot be wrapped around. We cannot make any guarantee 3839 // about signed or unsigned overflow because pointers are 3840 // unsigned but we may have a negative index from the base 3841 // pointer. We can guarantee that no unsigned wrap occurs if the 3842 // indices form a positive value. 3843 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3844 Flags = setFlags(Flags, SCEV::FlagNW); 3845 3846 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3847 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3848 Flags = setFlags(Flags, SCEV::FlagNUW); 3849 } 3850 3851 // We cannot transfer nuw and nsw flags from subtraction 3852 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3853 // for instance. 3854 } 3855 3856 const SCEV *StartVal = getSCEV(StartValueV); 3857 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3858 3859 // Since the no-wrap flags are on the increment, they apply to the 3860 // post-incremented value as well. 3861 if (isLoopInvariant(Accum, L)) 3862 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3863 3864 // Okay, for the entire analysis of this edge we assumed the PHI 3865 // to be symbolic. We now need to go back and purge all of the 3866 // entries for the scalars that use the symbolic expression. 3867 ForgetSymbolicName(PN, SymbolicName); 3868 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3869 return PHISCEV; 3870 } 3871 } 3872 } else { 3873 // Otherwise, this could be a loop like this: 3874 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3875 // In this case, j = {1,+,1} and BEValue is j. 3876 // Because the other in-value of i (0) fits the evolution of BEValue 3877 // i really is an addrec evolution. 3878 // 3879 // We can generalize this saying that i is the shifted value of BEValue 3880 // by one iteration: 3881 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 3882 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 3883 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 3884 if (Shifted != getCouldNotCompute() && 3885 Start != getCouldNotCompute()) { 3886 const SCEV *StartVal = getSCEV(StartValueV); 3887 if (Start == StartVal) { 3888 // Okay, for the entire analysis of this edge we assumed the PHI 3889 // to be symbolic. We now need to go back and purge all of the 3890 // entries for the scalars that use the symbolic expression. 3891 ForgetSymbolicName(PN, SymbolicName); 3892 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 3893 return Shifted; 3894 } 3895 } 3896 } 3897 3898 // Remove the temporary PHI node SCEV that has been inserted while intending 3899 // to create an AddRecExpr for this PHI node. We can not keep this temporary 3900 // as it will prevent later (possibly simpler) SCEV expressions to be added 3901 // to the ValueExprMap. 3902 ValueExprMap.erase(PN); 3903 } 3904 3905 return nullptr; 3906 } 3907 3908 // Checks if the SCEV S is available at BB. S is considered available at BB 3909 // if S can be materialized at BB without introducing a fault. 3910 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3911 BasicBlock *BB) { 3912 struct CheckAvailable { 3913 bool TraversalDone = false; 3914 bool Available = true; 3915 3916 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3917 BasicBlock *BB = nullptr; 3918 DominatorTree &DT; 3919 3920 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3921 : L(L), BB(BB), DT(DT) {} 3922 3923 bool setUnavailable() { 3924 TraversalDone = true; 3925 Available = false; 3926 return false; 3927 } 3928 3929 bool follow(const SCEV *S) { 3930 switch (S->getSCEVType()) { 3931 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3932 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3933 // These expressions are available if their operand(s) is/are. 3934 return true; 3935 3936 case scAddRecExpr: { 3937 // We allow add recurrences that are on the loop BB is in, or some 3938 // outer loop. This guarantees availability because the value of the 3939 // add recurrence at BB is simply the "current" value of the induction 3940 // variable. We can relax this in the future; for instance an add 3941 // recurrence on a sibling dominating loop is also available at BB. 3942 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3943 if (L && (ARLoop == L || ARLoop->contains(L))) 3944 return true; 3945 3946 return setUnavailable(); 3947 } 3948 3949 case scUnknown: { 3950 // For SCEVUnknown, we check for simple dominance. 3951 const auto *SU = cast<SCEVUnknown>(S); 3952 Value *V = SU->getValue(); 3953 3954 if (isa<Argument>(V)) 3955 return false; 3956 3957 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3958 return false; 3959 3960 return setUnavailable(); 3961 } 3962 3963 case scUDivExpr: 3964 case scCouldNotCompute: 3965 // We do not try to smart about these at all. 3966 return setUnavailable(); 3967 } 3968 llvm_unreachable("switch should be fully covered!"); 3969 } 3970 3971 bool isDone() { return TraversalDone; } 3972 }; 3973 3974 CheckAvailable CA(L, BB, DT); 3975 SCEVTraversal<CheckAvailable> ST(CA); 3976 3977 ST.visitAll(S); 3978 return CA.Available; 3979 } 3980 3981 // Try to match a control flow sequence that branches out at BI and merges back 3982 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3983 // match. 3984 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3985 Value *&C, Value *&LHS, Value *&RHS) { 3986 C = BI->getCondition(); 3987 3988 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3989 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3990 3991 if (!LeftEdge.isSingleEdge()) 3992 return false; 3993 3994 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3995 3996 Use &LeftUse = Merge->getOperandUse(0); 3997 Use &RightUse = Merge->getOperandUse(1); 3998 3999 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4000 LHS = LeftUse; 4001 RHS = RightUse; 4002 return true; 4003 } 4004 4005 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4006 LHS = RightUse; 4007 RHS = LeftUse; 4008 return true; 4009 } 4010 4011 return false; 4012 } 4013 4014 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4015 if (PN->getNumIncomingValues() == 2) { 4016 const Loop *L = LI.getLoopFor(PN->getParent()); 4017 4018 // We don't want to break LCSSA, even in a SCEV expression tree. 4019 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4020 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4021 return nullptr; 4022 4023 // Try to match 4024 // 4025 // br %cond, label %left, label %right 4026 // left: 4027 // br label %merge 4028 // right: 4029 // br label %merge 4030 // merge: 4031 // V = phi [ %x, %left ], [ %y, %right ] 4032 // 4033 // as "select %cond, %x, %y" 4034 4035 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4036 assert(IDom && "At least the entry block should dominate PN"); 4037 4038 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4039 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4040 4041 if (BI && BI->isConditional() && 4042 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4043 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4044 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4045 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4046 } 4047 4048 return nullptr; 4049 } 4050 4051 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4052 if (const SCEV *S = createAddRecFromPHI(PN)) 4053 return S; 4054 4055 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4056 return S; 4057 4058 // If the PHI has a single incoming value, follow that value, unless the 4059 // PHI's incoming blocks are in a different loop, in which case doing so 4060 // risks breaking LCSSA form. Instcombine would normally zap these, but 4061 // it doesn't have DominatorTree information, so it may miss cases. 4062 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4063 if (LI.replacementPreservesLCSSAForm(PN, V)) 4064 return getSCEV(V); 4065 4066 // If it's not a loop phi, we can't handle it yet. 4067 return getUnknown(PN); 4068 } 4069 4070 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4071 Value *Cond, 4072 Value *TrueVal, 4073 Value *FalseVal) { 4074 // Handle "constant" branch or select. This can occur for instance when a 4075 // loop pass transforms an inner loop and moves on to process the outer loop. 4076 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4077 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4078 4079 // Try to match some simple smax or umax patterns. 4080 auto *ICI = dyn_cast<ICmpInst>(Cond); 4081 if (!ICI) 4082 return getUnknown(I); 4083 4084 Value *LHS = ICI->getOperand(0); 4085 Value *RHS = ICI->getOperand(1); 4086 4087 switch (ICI->getPredicate()) { 4088 case ICmpInst::ICMP_SLT: 4089 case ICmpInst::ICMP_SLE: 4090 std::swap(LHS, RHS); 4091 // fall through 4092 case ICmpInst::ICMP_SGT: 4093 case ICmpInst::ICMP_SGE: 4094 // a >s b ? a+x : b+x -> smax(a, b)+x 4095 // a >s b ? b+x : a+x -> smin(a, b)+x 4096 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4097 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4098 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4099 const SCEV *LA = getSCEV(TrueVal); 4100 const SCEV *RA = getSCEV(FalseVal); 4101 const SCEV *LDiff = getMinusSCEV(LA, LS); 4102 const SCEV *RDiff = getMinusSCEV(RA, RS); 4103 if (LDiff == RDiff) 4104 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4105 LDiff = getMinusSCEV(LA, RS); 4106 RDiff = getMinusSCEV(RA, LS); 4107 if (LDiff == RDiff) 4108 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4109 } 4110 break; 4111 case ICmpInst::ICMP_ULT: 4112 case ICmpInst::ICMP_ULE: 4113 std::swap(LHS, RHS); 4114 // fall through 4115 case ICmpInst::ICMP_UGT: 4116 case ICmpInst::ICMP_UGE: 4117 // a >u b ? a+x : b+x -> umax(a, b)+x 4118 // a >u b ? b+x : a+x -> umin(a, b)+x 4119 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4120 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4121 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4122 const SCEV *LA = getSCEV(TrueVal); 4123 const SCEV *RA = getSCEV(FalseVal); 4124 const SCEV *LDiff = getMinusSCEV(LA, LS); 4125 const SCEV *RDiff = getMinusSCEV(RA, RS); 4126 if (LDiff == RDiff) 4127 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4128 LDiff = getMinusSCEV(LA, RS); 4129 RDiff = getMinusSCEV(RA, LS); 4130 if (LDiff == RDiff) 4131 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4132 } 4133 break; 4134 case ICmpInst::ICMP_NE: 4135 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4136 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4137 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4138 const SCEV *One = getOne(I->getType()); 4139 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4140 const SCEV *LA = getSCEV(TrueVal); 4141 const SCEV *RA = getSCEV(FalseVal); 4142 const SCEV *LDiff = getMinusSCEV(LA, LS); 4143 const SCEV *RDiff = getMinusSCEV(RA, One); 4144 if (LDiff == RDiff) 4145 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4146 } 4147 break; 4148 case ICmpInst::ICMP_EQ: 4149 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4150 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4151 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4152 const SCEV *One = getOne(I->getType()); 4153 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4154 const SCEV *LA = getSCEV(TrueVal); 4155 const SCEV *RA = getSCEV(FalseVal); 4156 const SCEV *LDiff = getMinusSCEV(LA, One); 4157 const SCEV *RDiff = getMinusSCEV(RA, LS); 4158 if (LDiff == RDiff) 4159 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4160 } 4161 break; 4162 default: 4163 break; 4164 } 4165 4166 return getUnknown(I); 4167 } 4168 4169 /// createNodeForGEP - Expand GEP instructions into add and multiply 4170 /// operations. This allows them to be analyzed by regular SCEV code. 4171 /// 4172 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4173 // Don't attempt to analyze GEPs over unsized objects. 4174 if (!GEP->getSourceElementType()->isSized()) 4175 return getUnknown(GEP); 4176 4177 SmallVector<const SCEV *, 4> IndexExprs; 4178 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4179 IndexExprs.push_back(getSCEV(*Index)); 4180 return getGEPExpr(GEP->getSourceElementType(), 4181 getSCEV(GEP->getPointerOperand()), 4182 IndexExprs, GEP->isInBounds()); 4183 } 4184 4185 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4186 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4187 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4188 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4189 uint32_t 4190 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4191 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4192 return C->getAPInt().countTrailingZeros(); 4193 4194 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4195 return std::min(GetMinTrailingZeros(T->getOperand()), 4196 (uint32_t)getTypeSizeInBits(T->getType())); 4197 4198 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4199 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4200 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4201 getTypeSizeInBits(E->getType()) : OpRes; 4202 } 4203 4204 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4205 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4206 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4207 getTypeSizeInBits(E->getType()) : OpRes; 4208 } 4209 4210 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4211 // The result is the min of all operands results. 4212 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4213 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4214 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4215 return MinOpRes; 4216 } 4217 4218 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4219 // The result is the sum of all operands results. 4220 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4221 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4222 for (unsigned i = 1, e = M->getNumOperands(); 4223 SumOpRes != BitWidth && i != e; ++i) 4224 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4225 BitWidth); 4226 return SumOpRes; 4227 } 4228 4229 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4230 // The result is the min of all operands results. 4231 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4232 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4233 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4234 return MinOpRes; 4235 } 4236 4237 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4238 // The result is the min of all operands results. 4239 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4240 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4241 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4242 return MinOpRes; 4243 } 4244 4245 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4246 // The result is the min of all operands results. 4247 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4248 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4249 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4250 return MinOpRes; 4251 } 4252 4253 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4254 // For a SCEVUnknown, ask ValueTracking. 4255 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4256 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4257 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4258 nullptr, &DT); 4259 return Zeros.countTrailingOnes(); 4260 } 4261 4262 // SCEVUDivExpr 4263 return 0; 4264 } 4265 4266 /// GetRangeFromMetadata - Helper method to assign a range to V from 4267 /// metadata present in the IR. 4268 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4269 if (Instruction *I = dyn_cast<Instruction>(V)) 4270 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4271 return getConstantRangeFromMetadata(*MD); 4272 4273 return None; 4274 } 4275 4276 /// getRange - Determine the range for a particular SCEV. If SignHint is 4277 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4278 /// with a "cleaner" unsigned (resp. signed) representation. 4279 /// 4280 ConstantRange 4281 ScalarEvolution::getRange(const SCEV *S, 4282 ScalarEvolution::RangeSignHint SignHint) { 4283 DenseMap<const SCEV *, ConstantRange> &Cache = 4284 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4285 : SignedRanges; 4286 4287 // See if we've computed this range already. 4288 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4289 if (I != Cache.end()) 4290 return I->second; 4291 4292 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4293 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4294 4295 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4296 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4297 4298 // If the value has known zeros, the maximum value will have those known zeros 4299 // as well. 4300 uint32_t TZ = GetMinTrailingZeros(S); 4301 if (TZ != 0) { 4302 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4303 ConservativeResult = 4304 ConstantRange(APInt::getMinValue(BitWidth), 4305 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4306 else 4307 ConservativeResult = ConstantRange( 4308 APInt::getSignedMinValue(BitWidth), 4309 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4310 } 4311 4312 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4313 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4314 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4315 X = X.add(getRange(Add->getOperand(i), SignHint)); 4316 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4317 } 4318 4319 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4320 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4321 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4322 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4323 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4324 } 4325 4326 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4327 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4328 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4329 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4330 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4331 } 4332 4333 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4334 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4335 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4336 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4337 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4338 } 4339 4340 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4341 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4342 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4343 return setRange(UDiv, SignHint, 4344 ConservativeResult.intersectWith(X.udiv(Y))); 4345 } 4346 4347 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4348 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4349 return setRange(ZExt, SignHint, 4350 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4351 } 4352 4353 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4354 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4355 return setRange(SExt, SignHint, 4356 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4357 } 4358 4359 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4360 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4361 return setRange(Trunc, SignHint, 4362 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4363 } 4364 4365 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4366 // If there's no unsigned wrap, the value will never be less than its 4367 // initial value. 4368 if (AddRec->hasNoUnsignedWrap()) 4369 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4370 if (!C->getValue()->isZero()) 4371 ConservativeResult = ConservativeResult.intersectWith( 4372 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4373 4374 // If there's no signed wrap, and all the operands have the same sign or 4375 // zero, the value won't ever change sign. 4376 if (AddRec->hasNoSignedWrap()) { 4377 bool AllNonNeg = true; 4378 bool AllNonPos = true; 4379 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4380 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4381 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4382 } 4383 if (AllNonNeg) 4384 ConservativeResult = ConservativeResult.intersectWith( 4385 ConstantRange(APInt(BitWidth, 0), 4386 APInt::getSignedMinValue(BitWidth))); 4387 else if (AllNonPos) 4388 ConservativeResult = ConservativeResult.intersectWith( 4389 ConstantRange(APInt::getSignedMinValue(BitWidth), 4390 APInt(BitWidth, 1))); 4391 } 4392 4393 // TODO: non-affine addrec 4394 if (AddRec->isAffine()) { 4395 Type *Ty = AddRec->getType(); 4396 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4397 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4398 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4399 4400 // Check for overflow. This must be done with ConstantRange arithmetic 4401 // because we could be called from within the ScalarEvolution overflow 4402 // checking code. 4403 4404 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4405 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4406 ConstantRange ZExtMaxBECountRange = 4407 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4408 4409 const SCEV *Start = AddRec->getStart(); 4410 const SCEV *Step = AddRec->getStepRecurrence(*this); 4411 ConstantRange StepSRange = getSignedRange(Step); 4412 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4413 4414 ConstantRange StartURange = getUnsignedRange(Start); 4415 ConstantRange EndURange = 4416 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4417 4418 // Check for unsigned overflow. 4419 ConstantRange ZExtStartURange = 4420 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4421 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4422 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4423 ZExtEndURange) { 4424 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4425 EndURange.getUnsignedMin()); 4426 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4427 EndURange.getUnsignedMax()); 4428 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4429 if (!IsFullRange) 4430 ConservativeResult = 4431 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4432 } 4433 4434 ConstantRange StartSRange = getSignedRange(Start); 4435 ConstantRange EndSRange = 4436 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4437 4438 // Check for signed overflow. This must be done with ConstantRange 4439 // arithmetic because we could be called from within the ScalarEvolution 4440 // overflow checking code. 4441 ConstantRange SExtStartSRange = 4442 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4443 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4444 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4445 SExtEndSRange) { 4446 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4447 EndSRange.getSignedMin()); 4448 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4449 EndSRange.getSignedMax()); 4450 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4451 if (!IsFullRange) 4452 ConservativeResult = 4453 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4454 } 4455 } 4456 } 4457 4458 return setRange(AddRec, SignHint, ConservativeResult); 4459 } 4460 4461 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4462 // Check if the IR explicitly contains !range metadata. 4463 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4464 if (MDRange.hasValue()) 4465 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4466 4467 // Split here to avoid paying the compile-time cost of calling both 4468 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4469 // if needed. 4470 const DataLayout &DL = getDataLayout(); 4471 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4472 // For a SCEVUnknown, ask ValueTracking. 4473 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4474 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4475 if (Ones != ~Zeros + 1) 4476 ConservativeResult = 4477 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4478 } else { 4479 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4480 "generalize as needed!"); 4481 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4482 if (NS > 1) 4483 ConservativeResult = ConservativeResult.intersectWith( 4484 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4485 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4486 } 4487 4488 return setRange(U, SignHint, ConservativeResult); 4489 } 4490 4491 return setRange(S, SignHint, ConservativeResult); 4492 } 4493 4494 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4495 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4496 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4497 4498 // Return early if there are no flags to propagate to the SCEV. 4499 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4500 if (BinOp->hasNoUnsignedWrap()) 4501 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4502 if (BinOp->hasNoSignedWrap()) 4503 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4504 if (Flags == SCEV::FlagAnyWrap) { 4505 return SCEV::FlagAnyWrap; 4506 } 4507 4508 // Here we check that BinOp is in the header of the innermost loop 4509 // containing BinOp, since we only deal with instructions in the loop 4510 // header. The actual loop we need to check later will come from an add 4511 // recurrence, but getting that requires computing the SCEV of the operands, 4512 // which can be expensive. This check we can do cheaply to rule out some 4513 // cases early. 4514 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4515 if (innermostContainingLoop == nullptr || 4516 innermostContainingLoop->getHeader() != BinOp->getParent()) 4517 return SCEV::FlagAnyWrap; 4518 4519 // Only proceed if we can prove that BinOp does not yield poison. 4520 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4521 4522 // At this point we know that if V is executed, then it does not wrap 4523 // according to at least one of NSW or NUW. If V is not executed, then we do 4524 // not know if the calculation that V represents would wrap. Multiple 4525 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4526 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4527 // derived from other instructions that map to the same SCEV. We cannot make 4528 // that guarantee for cases where V is not executed. So we need to find the 4529 // loop that V is considered in relation to and prove that V is executed for 4530 // every iteration of that loop. That implies that the value that V 4531 // calculates does not wrap anywhere in the loop, so then we can apply the 4532 // flags to the SCEV. 4533 // 4534 // We check isLoopInvariant to disambiguate in case we are adding two 4535 // recurrences from different loops, so that we know which loop to prove 4536 // that V is executed in. 4537 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4538 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4539 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4540 const int OtherOpIndex = 1 - OpIndex; 4541 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4542 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4543 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4544 return Flags; 4545 } 4546 } 4547 return SCEV::FlagAnyWrap; 4548 } 4549 4550 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4551 /// the expression. 4552 /// 4553 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4554 if (!isSCEVable(V->getType())) 4555 return getUnknown(V); 4556 4557 unsigned Opcode = Instruction::UserOp1; 4558 if (Instruction *I = dyn_cast<Instruction>(V)) { 4559 Opcode = I->getOpcode(); 4560 4561 // Don't attempt to analyze instructions in blocks that aren't 4562 // reachable. Such instructions don't matter, and they aren't required 4563 // to obey basic rules for definitions dominating uses which this 4564 // analysis depends on. 4565 if (!DT.isReachableFromEntry(I->getParent())) 4566 return getUnknown(V); 4567 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4568 Opcode = CE->getOpcode(); 4569 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4570 return getConstant(CI); 4571 else if (isa<ConstantPointerNull>(V)) 4572 return getZero(V->getType()); 4573 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4574 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4575 else 4576 return getUnknown(V); 4577 4578 Operator *U = cast<Operator>(V); 4579 switch (Opcode) { 4580 case Instruction::Add: { 4581 // The simple thing to do would be to just call getSCEV on both operands 4582 // and call getAddExpr with the result. However if we're looking at a 4583 // bunch of things all added together, this can be quite inefficient, 4584 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4585 // Instead, gather up all the operands and make a single getAddExpr call. 4586 // LLVM IR canonical form means we need only traverse the left operands. 4587 SmallVector<const SCEV *, 4> AddOps; 4588 for (Value *Op = U;; Op = U->getOperand(0)) { 4589 U = dyn_cast<Operator>(Op); 4590 unsigned Opcode = U ? U->getOpcode() : 0; 4591 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4592 assert(Op != V && "V should be an add"); 4593 AddOps.push_back(getSCEV(Op)); 4594 break; 4595 } 4596 4597 if (auto *OpSCEV = getExistingSCEV(U)) { 4598 AddOps.push_back(OpSCEV); 4599 break; 4600 } 4601 4602 // If a NUW or NSW flag can be applied to the SCEV for this 4603 // addition, then compute the SCEV for this addition by itself 4604 // with a separate call to getAddExpr. We need to do that 4605 // instead of pushing the operands of the addition onto AddOps, 4606 // since the flags are only known to apply to this particular 4607 // addition - they may not apply to other additions that can be 4608 // formed with operands from AddOps. 4609 const SCEV *RHS = getSCEV(U->getOperand(1)); 4610 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4611 if (Flags != SCEV::FlagAnyWrap) { 4612 const SCEV *LHS = getSCEV(U->getOperand(0)); 4613 if (Opcode == Instruction::Sub) 4614 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4615 else 4616 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4617 break; 4618 } 4619 4620 if (Opcode == Instruction::Sub) 4621 AddOps.push_back(getNegativeSCEV(RHS)); 4622 else 4623 AddOps.push_back(RHS); 4624 } 4625 return getAddExpr(AddOps); 4626 } 4627 4628 case Instruction::Mul: { 4629 SmallVector<const SCEV *, 4> MulOps; 4630 for (Value *Op = U;; Op = U->getOperand(0)) { 4631 U = dyn_cast<Operator>(Op); 4632 if (!U || U->getOpcode() != Instruction::Mul) { 4633 assert(Op != V && "V should be a mul"); 4634 MulOps.push_back(getSCEV(Op)); 4635 break; 4636 } 4637 4638 if (auto *OpSCEV = getExistingSCEV(U)) { 4639 MulOps.push_back(OpSCEV); 4640 break; 4641 } 4642 4643 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4644 if (Flags != SCEV::FlagAnyWrap) { 4645 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4646 getSCEV(U->getOperand(1)), Flags)); 4647 break; 4648 } 4649 4650 MulOps.push_back(getSCEV(U->getOperand(1))); 4651 } 4652 return getMulExpr(MulOps); 4653 } 4654 case Instruction::UDiv: 4655 return getUDivExpr(getSCEV(U->getOperand(0)), 4656 getSCEV(U->getOperand(1))); 4657 case Instruction::Sub: 4658 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4659 getNoWrapFlagsFromUB(U)); 4660 case Instruction::And: 4661 // For an expression like x&255 that merely masks off the high bits, 4662 // use zext(trunc(x)) as the SCEV expression. 4663 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4664 if (CI->isNullValue()) 4665 return getSCEV(U->getOperand(1)); 4666 if (CI->isAllOnesValue()) 4667 return getSCEV(U->getOperand(0)); 4668 const APInt &A = CI->getValue(); 4669 4670 // Instcombine's ShrinkDemandedConstant may strip bits out of 4671 // constants, obscuring what would otherwise be a low-bits mask. 4672 // Use computeKnownBits to compute what ShrinkDemandedConstant 4673 // knew about to reconstruct a low-bits mask value. 4674 unsigned LZ = A.countLeadingZeros(); 4675 unsigned TZ = A.countTrailingZeros(); 4676 unsigned BitWidth = A.getBitWidth(); 4677 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4678 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(), 4679 0, &AC, nullptr, &DT); 4680 4681 APInt EffectiveMask = 4682 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4683 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4684 const SCEV *MulCount = getConstant( 4685 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4686 return getMulExpr( 4687 getZeroExtendExpr( 4688 getTruncateExpr( 4689 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4690 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4691 U->getType()), 4692 MulCount); 4693 } 4694 } 4695 break; 4696 4697 case Instruction::Or: 4698 // If the RHS of the Or is a constant, we may have something like: 4699 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4700 // optimizations will transparently handle this case. 4701 // 4702 // In order for this transformation to be safe, the LHS must be of the 4703 // form X*(2^n) and the Or constant must be less than 2^n. 4704 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4705 const SCEV *LHS = getSCEV(U->getOperand(0)); 4706 const APInt &CIVal = CI->getValue(); 4707 if (GetMinTrailingZeros(LHS) >= 4708 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4709 // Build a plain add SCEV. 4710 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4711 // If the LHS of the add was an addrec and it has no-wrap flags, 4712 // transfer the no-wrap flags, since an or won't introduce a wrap. 4713 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4714 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4715 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4716 OldAR->getNoWrapFlags()); 4717 } 4718 return S; 4719 } 4720 } 4721 break; 4722 case Instruction::Xor: 4723 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4724 // If the RHS of the xor is a signbit, then this is just an add. 4725 // Instcombine turns add of signbit into xor as a strength reduction step. 4726 if (CI->getValue().isSignBit()) 4727 return getAddExpr(getSCEV(U->getOperand(0)), 4728 getSCEV(U->getOperand(1))); 4729 4730 // If the RHS of xor is -1, then this is a not operation. 4731 if (CI->isAllOnesValue()) 4732 return getNotSCEV(getSCEV(U->getOperand(0))); 4733 4734 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4735 // This is a variant of the check for xor with -1, and it handles 4736 // the case where instcombine has trimmed non-demanded bits out 4737 // of an xor with -1. 4738 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4739 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4740 if (BO->getOpcode() == Instruction::And && 4741 LCI->getValue() == CI->getValue()) 4742 if (const SCEVZeroExtendExpr *Z = 4743 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4744 Type *UTy = U->getType(); 4745 const SCEV *Z0 = Z->getOperand(); 4746 Type *Z0Ty = Z0->getType(); 4747 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4748 4749 // If C is a low-bits mask, the zero extend is serving to 4750 // mask off the high bits. Complement the operand and 4751 // re-apply the zext. 4752 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4753 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4754 4755 // If C is a single bit, it may be in the sign-bit position 4756 // before the zero-extend. In this case, represent the xor 4757 // using an add, which is equivalent, and re-apply the zext. 4758 APInt Trunc = CI->getValue().trunc(Z0TySize); 4759 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4760 Trunc.isSignBit()) 4761 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4762 UTy); 4763 } 4764 } 4765 break; 4766 4767 case Instruction::Shl: 4768 // Turn shift left of a constant amount into a multiply. 4769 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4770 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4771 4772 // If the shift count is not less than the bitwidth, the result of 4773 // the shift is undefined. Don't try to analyze it, because the 4774 // resolution chosen here may differ from the resolution chosen in 4775 // other parts of the compiler. 4776 if (SA->getValue().uge(BitWidth)) 4777 break; 4778 4779 // It is currently not resolved how to interpret NSW for left 4780 // shift by BitWidth - 1, so we avoid applying flags in that 4781 // case. Remove this check (or this comment) once the situation 4782 // is resolved. See 4783 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4784 // and http://reviews.llvm.org/D8890 . 4785 auto Flags = SCEV::FlagAnyWrap; 4786 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4787 4788 Constant *X = ConstantInt::get(getContext(), 4789 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4790 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4791 } 4792 break; 4793 4794 case Instruction::LShr: 4795 // Turn logical shift right of a constant into a unsigned divide. 4796 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4797 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4798 4799 // If the shift count is not less than the bitwidth, the result of 4800 // the shift is undefined. Don't try to analyze it, because the 4801 // resolution chosen here may differ from the resolution chosen in 4802 // other parts of the compiler. 4803 if (SA->getValue().uge(BitWidth)) 4804 break; 4805 4806 Constant *X = ConstantInt::get(getContext(), 4807 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4808 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4809 } 4810 break; 4811 4812 case Instruction::AShr: 4813 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4814 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4815 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4816 if (L->getOpcode() == Instruction::Shl && 4817 L->getOperand(1) == U->getOperand(1)) { 4818 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4819 4820 // If the shift count is not less than the bitwidth, the result of 4821 // the shift is undefined. Don't try to analyze it, because the 4822 // resolution chosen here may differ from the resolution chosen in 4823 // other parts of the compiler. 4824 if (CI->getValue().uge(BitWidth)) 4825 break; 4826 4827 uint64_t Amt = BitWidth - CI->getZExtValue(); 4828 if (Amt == BitWidth) 4829 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4830 return 4831 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4832 IntegerType::get(getContext(), 4833 Amt)), 4834 U->getType()); 4835 } 4836 break; 4837 4838 case Instruction::Trunc: 4839 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4840 4841 case Instruction::ZExt: 4842 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4843 4844 case Instruction::SExt: 4845 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4846 4847 case Instruction::BitCast: 4848 // BitCasts are no-op casts so we just eliminate the cast. 4849 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4850 return getSCEV(U->getOperand(0)); 4851 break; 4852 4853 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4854 // lead to pointer expressions which cannot safely be expanded to GEPs, 4855 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4856 // simplifying integer expressions. 4857 4858 case Instruction::GetElementPtr: 4859 return createNodeForGEP(cast<GEPOperator>(U)); 4860 4861 case Instruction::PHI: 4862 return createNodeForPHI(cast<PHINode>(U)); 4863 4864 case Instruction::Select: 4865 // U can also be a select constant expr, which let fall through. Since 4866 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4867 // constant expressions cannot have instructions as operands, we'd have 4868 // returned getUnknown for a select constant expressions anyway. 4869 if (isa<Instruction>(U)) 4870 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4871 U->getOperand(1), U->getOperand(2)); 4872 4873 default: // We cannot analyze this expression. 4874 break; 4875 } 4876 4877 return getUnknown(V); 4878 } 4879 4880 4881 4882 //===----------------------------------------------------------------------===// 4883 // Iteration Count Computation Code 4884 // 4885 4886 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4887 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4888 return getSmallConstantTripCount(L, ExitingBB); 4889 4890 // No trip count information for multiple exits. 4891 return 0; 4892 } 4893 4894 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4895 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4896 /// constant. Will also return 0 if the maximum trip count is very large (>= 4897 /// 2^32). 4898 /// 4899 /// This "trip count" assumes that control exits via ExitingBlock. More 4900 /// precisely, it is the number of times that control may reach ExitingBlock 4901 /// before taking the branch. For loops with multiple exits, it may not be the 4902 /// number times that the loop header executes because the loop may exit 4903 /// prematurely via another branch. 4904 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4905 BasicBlock *ExitingBlock) { 4906 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4907 assert(L->isLoopExiting(ExitingBlock) && 4908 "Exiting block must actually branch out of the loop!"); 4909 const SCEVConstant *ExitCount = 4910 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4911 if (!ExitCount) 4912 return 0; 4913 4914 ConstantInt *ExitConst = ExitCount->getValue(); 4915 4916 // Guard against huge trip counts. 4917 if (ExitConst->getValue().getActiveBits() > 32) 4918 return 0; 4919 4920 // In case of integer overflow, this returns 0, which is correct. 4921 return ((unsigned)ExitConst->getZExtValue()) + 1; 4922 } 4923 4924 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4925 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4926 return getSmallConstantTripMultiple(L, ExitingBB); 4927 4928 // No trip multiple information for multiple exits. 4929 return 0; 4930 } 4931 4932 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4933 /// trip count of this loop as a normal unsigned value, if possible. This 4934 /// means that the actual trip count is always a multiple of the returned 4935 /// value (don't forget the trip count could very well be zero as well!). 4936 /// 4937 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4938 /// multiple of a constant (which is also the case if the trip count is simply 4939 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4940 /// if the trip count is very large (>= 2^32). 4941 /// 4942 /// As explained in the comments for getSmallConstantTripCount, this assumes 4943 /// that control exits the loop via ExitingBlock. 4944 unsigned 4945 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4946 BasicBlock *ExitingBlock) { 4947 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4948 assert(L->isLoopExiting(ExitingBlock) && 4949 "Exiting block must actually branch out of the loop!"); 4950 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4951 if (ExitCount == getCouldNotCompute()) 4952 return 1; 4953 4954 // Get the trip count from the BE count by adding 1. 4955 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4956 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4957 // to factor simple cases. 4958 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4959 TCMul = Mul->getOperand(0); 4960 4961 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4962 if (!MulC) 4963 return 1; 4964 4965 ConstantInt *Result = MulC->getValue(); 4966 4967 // Guard against huge trip counts (this requires checking 4968 // for zero to handle the case where the trip count == -1 and the 4969 // addition wraps). 4970 if (!Result || Result->getValue().getActiveBits() > 32 || 4971 Result->getValue().getActiveBits() == 0) 4972 return 1; 4973 4974 return (unsigned)Result->getZExtValue(); 4975 } 4976 4977 // getExitCount - Get the expression for the number of loop iterations for which 4978 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4979 // SCEVCouldNotCompute. 4980 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4981 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4982 } 4983 4984 /// getBackedgeTakenCount - If the specified loop has a predictable 4985 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4986 /// object. The backedge-taken count is the number of times the loop header 4987 /// will be branched to from within the loop. This is one less than the 4988 /// trip count of the loop, since it doesn't count the first iteration, 4989 /// when the header is branched to from outside the loop. 4990 /// 4991 /// Note that it is not valid to call this method on a loop without a 4992 /// loop-invariant backedge-taken count (see 4993 /// hasLoopInvariantBackedgeTakenCount). 4994 /// 4995 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4996 return getBackedgeTakenInfo(L).getExact(this); 4997 } 4998 4999 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 5000 /// return the least SCEV value that is known never to be less than the 5001 /// actual backedge taken count. 5002 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5003 return getBackedgeTakenInfo(L).getMax(this); 5004 } 5005 5006 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 5007 /// onto the given Worklist. 5008 static void 5009 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5010 BasicBlock *Header = L->getHeader(); 5011 5012 // Push all Loop-header PHIs onto the Worklist stack. 5013 for (BasicBlock::iterator I = Header->begin(); 5014 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5015 Worklist.push_back(PN); 5016 } 5017 5018 const ScalarEvolution::BackedgeTakenInfo & 5019 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5020 // Initially insert an invalid entry for this loop. If the insertion 5021 // succeeds, proceed to actually compute a backedge-taken count and 5022 // update the value. The temporary CouldNotCompute value tells SCEV 5023 // code elsewhere that it shouldn't attempt to request a new 5024 // backedge-taken count, which could result in infinite recursion. 5025 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5026 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5027 if (!Pair.second) 5028 return Pair.first->second; 5029 5030 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5031 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5032 // must be cleared in this scope. 5033 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5034 5035 if (Result.getExact(this) != getCouldNotCompute()) { 5036 assert(isLoopInvariant(Result.getExact(this), L) && 5037 isLoopInvariant(Result.getMax(this), L) && 5038 "Computed backedge-taken count isn't loop invariant for loop!"); 5039 ++NumTripCountsComputed; 5040 } 5041 else if (Result.getMax(this) == getCouldNotCompute() && 5042 isa<PHINode>(L->getHeader()->begin())) { 5043 // Only count loops that have phi nodes as not being computable. 5044 ++NumTripCountsNotComputed; 5045 } 5046 5047 // Now that we know more about the trip count for this loop, forget any 5048 // existing SCEV values for PHI nodes in this loop since they are only 5049 // conservative estimates made without the benefit of trip count 5050 // information. This is similar to the code in forgetLoop, except that 5051 // it handles SCEVUnknown PHI nodes specially. 5052 if (Result.hasAnyInfo()) { 5053 SmallVector<Instruction *, 16> Worklist; 5054 PushLoopPHIs(L, Worklist); 5055 5056 SmallPtrSet<Instruction *, 8> Visited; 5057 while (!Worklist.empty()) { 5058 Instruction *I = Worklist.pop_back_val(); 5059 if (!Visited.insert(I).second) 5060 continue; 5061 5062 ValueExprMapType::iterator It = 5063 ValueExprMap.find_as(static_cast<Value *>(I)); 5064 if (It != ValueExprMap.end()) { 5065 const SCEV *Old = It->second; 5066 5067 // SCEVUnknown for a PHI either means that it has an unrecognized 5068 // structure, or it's a PHI that's in the progress of being computed 5069 // by createNodeForPHI. In the former case, additional loop trip 5070 // count information isn't going to change anything. In the later 5071 // case, createNodeForPHI will perform the necessary updates on its 5072 // own when it gets to that point. 5073 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5074 forgetMemoizedResults(Old); 5075 ValueExprMap.erase(It); 5076 } 5077 if (PHINode *PN = dyn_cast<PHINode>(I)) 5078 ConstantEvolutionLoopExitValue.erase(PN); 5079 } 5080 5081 PushDefUseChildren(I, Worklist); 5082 } 5083 } 5084 5085 // Re-lookup the insert position, since the call to 5086 // computeBackedgeTakenCount above could result in a 5087 // recusive call to getBackedgeTakenInfo (on a different 5088 // loop), which would invalidate the iterator computed 5089 // earlier. 5090 return BackedgeTakenCounts.find(L)->second = Result; 5091 } 5092 5093 /// forgetLoop - This method should be called by the client when it has 5094 /// changed a loop in a way that may effect ScalarEvolution's ability to 5095 /// compute a trip count, or if the loop is deleted. 5096 void ScalarEvolution::forgetLoop(const Loop *L) { 5097 // Drop any stored trip count value. 5098 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 5099 BackedgeTakenCounts.find(L); 5100 if (BTCPos != BackedgeTakenCounts.end()) { 5101 BTCPos->second.clear(); 5102 BackedgeTakenCounts.erase(BTCPos); 5103 } 5104 5105 // Drop information about expressions based on loop-header PHIs. 5106 SmallVector<Instruction *, 16> Worklist; 5107 PushLoopPHIs(L, Worklist); 5108 5109 SmallPtrSet<Instruction *, 8> Visited; 5110 while (!Worklist.empty()) { 5111 Instruction *I = Worklist.pop_back_val(); 5112 if (!Visited.insert(I).second) 5113 continue; 5114 5115 ValueExprMapType::iterator It = 5116 ValueExprMap.find_as(static_cast<Value *>(I)); 5117 if (It != ValueExprMap.end()) { 5118 forgetMemoizedResults(It->second); 5119 ValueExprMap.erase(It); 5120 if (PHINode *PN = dyn_cast<PHINode>(I)) 5121 ConstantEvolutionLoopExitValue.erase(PN); 5122 } 5123 5124 PushDefUseChildren(I, Worklist); 5125 } 5126 5127 // Forget all contained loops too, to avoid dangling entries in the 5128 // ValuesAtScopes map. 5129 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5130 forgetLoop(*I); 5131 } 5132 5133 /// forgetValue - This method should be called by the client when it has 5134 /// changed a value in a way that may effect its value, or which may 5135 /// disconnect it from a def-use chain linking it to a loop. 5136 void ScalarEvolution::forgetValue(Value *V) { 5137 Instruction *I = dyn_cast<Instruction>(V); 5138 if (!I) return; 5139 5140 // Drop information about expressions based on loop-header PHIs. 5141 SmallVector<Instruction *, 16> Worklist; 5142 Worklist.push_back(I); 5143 5144 SmallPtrSet<Instruction *, 8> Visited; 5145 while (!Worklist.empty()) { 5146 I = Worklist.pop_back_val(); 5147 if (!Visited.insert(I).second) 5148 continue; 5149 5150 ValueExprMapType::iterator It = 5151 ValueExprMap.find_as(static_cast<Value *>(I)); 5152 if (It != ValueExprMap.end()) { 5153 forgetMemoizedResults(It->second); 5154 ValueExprMap.erase(It); 5155 if (PHINode *PN = dyn_cast<PHINode>(I)) 5156 ConstantEvolutionLoopExitValue.erase(PN); 5157 } 5158 5159 PushDefUseChildren(I, Worklist); 5160 } 5161 } 5162 5163 /// getExact - Get the exact loop backedge taken count considering all loop 5164 /// exits. A computable result can only be returned for loops with a single 5165 /// exit. Returning the minimum taken count among all exits is incorrect 5166 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5167 /// assumes that the limit of each loop test is never skipped. This is a valid 5168 /// assumption as long as the loop exits via that test. For precise results, it 5169 /// is the caller's responsibility to specify the relevant loop exit using 5170 /// getExact(ExitingBlock, SE). 5171 const SCEV * 5172 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5173 // If any exits were not computable, the loop is not computable. 5174 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5175 5176 // We need exactly one computable exit. 5177 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5178 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5179 5180 const SCEV *BECount = nullptr; 5181 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5182 ENT != nullptr; ENT = ENT->getNextExit()) { 5183 5184 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5185 5186 if (!BECount) 5187 BECount = ENT->ExactNotTaken; 5188 else if (BECount != ENT->ExactNotTaken) 5189 return SE->getCouldNotCompute(); 5190 } 5191 assert(BECount && "Invalid not taken count for loop exit"); 5192 return BECount; 5193 } 5194 5195 /// getExact - Get the exact not taken count for this loop exit. 5196 const SCEV * 5197 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5198 ScalarEvolution *SE) const { 5199 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5200 ENT != nullptr; ENT = ENT->getNextExit()) { 5201 5202 if (ENT->ExitingBlock == ExitingBlock) 5203 return ENT->ExactNotTaken; 5204 } 5205 return SE->getCouldNotCompute(); 5206 } 5207 5208 /// getMax - Get the max backedge taken count for the loop. 5209 const SCEV * 5210 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5211 return Max ? Max : SE->getCouldNotCompute(); 5212 } 5213 5214 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5215 ScalarEvolution *SE) const { 5216 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5217 return true; 5218 5219 if (!ExitNotTaken.ExitingBlock) 5220 return false; 5221 5222 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5223 ENT != nullptr; ENT = ENT->getNextExit()) { 5224 5225 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5226 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5227 return true; 5228 } 5229 } 5230 return false; 5231 } 5232 5233 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5234 /// computable exit into a persistent ExitNotTakenInfo array. 5235 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5236 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5237 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5238 5239 if (!Complete) 5240 ExitNotTaken.setIncomplete(); 5241 5242 unsigned NumExits = ExitCounts.size(); 5243 if (NumExits == 0) return; 5244 5245 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5246 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5247 if (NumExits == 1) return; 5248 5249 // Handle the rare case of multiple computable exits. 5250 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5251 5252 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5253 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5254 PrevENT->setNextExit(ENT); 5255 ENT->ExitingBlock = ExitCounts[i].first; 5256 ENT->ExactNotTaken = ExitCounts[i].second; 5257 } 5258 } 5259 5260 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5261 void ScalarEvolution::BackedgeTakenInfo::clear() { 5262 ExitNotTaken.ExitingBlock = nullptr; 5263 ExitNotTaken.ExactNotTaken = nullptr; 5264 delete[] ExitNotTaken.getNextExit(); 5265 } 5266 5267 /// computeBackedgeTakenCount - Compute the number of times the backedge 5268 /// of the specified loop will execute. 5269 ScalarEvolution::BackedgeTakenInfo 5270 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5271 SmallVector<BasicBlock *, 8> ExitingBlocks; 5272 L->getExitingBlocks(ExitingBlocks); 5273 5274 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5275 bool CouldComputeBECount = true; 5276 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5277 const SCEV *MustExitMaxBECount = nullptr; 5278 const SCEV *MayExitMaxBECount = nullptr; 5279 5280 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5281 // and compute maxBECount. 5282 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5283 BasicBlock *ExitBB = ExitingBlocks[i]; 5284 ExitLimit EL = computeExitLimit(L, ExitBB); 5285 5286 // 1. For each exit that can be computed, add an entry to ExitCounts. 5287 // CouldComputeBECount is true only if all exits can be computed. 5288 if (EL.Exact == getCouldNotCompute()) 5289 // We couldn't compute an exact value for this exit, so 5290 // we won't be able to compute an exact value for the loop. 5291 CouldComputeBECount = false; 5292 else 5293 ExitCounts.push_back({ExitBB, EL.Exact}); 5294 5295 // 2. Derive the loop's MaxBECount from each exit's max number of 5296 // non-exiting iterations. Partition the loop exits into two kinds: 5297 // LoopMustExits and LoopMayExits. 5298 // 5299 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5300 // is a LoopMayExit. If any computable LoopMustExit is found, then 5301 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5302 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5303 // considered greater than any computable EL.Max. 5304 if (EL.Max != getCouldNotCompute() && Latch && 5305 DT.dominates(ExitBB, Latch)) { 5306 if (!MustExitMaxBECount) 5307 MustExitMaxBECount = EL.Max; 5308 else { 5309 MustExitMaxBECount = 5310 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5311 } 5312 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5313 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5314 MayExitMaxBECount = EL.Max; 5315 else { 5316 MayExitMaxBECount = 5317 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5318 } 5319 } 5320 } 5321 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5322 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5323 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5324 } 5325 5326 ScalarEvolution::ExitLimit 5327 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5328 5329 // Okay, we've chosen an exiting block. See what condition causes us to exit 5330 // at this block and remember the exit block and whether all other targets 5331 // lead to the loop header. 5332 bool MustExecuteLoopHeader = true; 5333 BasicBlock *Exit = nullptr; 5334 for (auto *SBB : successors(ExitingBlock)) 5335 if (!L->contains(SBB)) { 5336 if (Exit) // Multiple exit successors. 5337 return getCouldNotCompute(); 5338 Exit = SBB; 5339 } else if (SBB != L->getHeader()) { 5340 MustExecuteLoopHeader = false; 5341 } 5342 5343 // At this point, we know we have a conditional branch that determines whether 5344 // the loop is exited. However, we don't know if the branch is executed each 5345 // time through the loop. If not, then the execution count of the branch will 5346 // not be equal to the trip count of the loop. 5347 // 5348 // Currently we check for this by checking to see if the Exit branch goes to 5349 // the loop header. If so, we know it will always execute the same number of 5350 // times as the loop. We also handle the case where the exit block *is* the 5351 // loop header. This is common for un-rotated loops. 5352 // 5353 // If both of those tests fail, walk up the unique predecessor chain to the 5354 // header, stopping if there is an edge that doesn't exit the loop. If the 5355 // header is reached, the execution count of the branch will be equal to the 5356 // trip count of the loop. 5357 // 5358 // More extensive analysis could be done to handle more cases here. 5359 // 5360 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5361 // The simple checks failed, try climbing the unique predecessor chain 5362 // up to the header. 5363 bool Ok = false; 5364 for (BasicBlock *BB = ExitingBlock; BB; ) { 5365 BasicBlock *Pred = BB->getUniquePredecessor(); 5366 if (!Pred) 5367 return getCouldNotCompute(); 5368 TerminatorInst *PredTerm = Pred->getTerminator(); 5369 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5370 if (PredSucc == BB) 5371 continue; 5372 // If the predecessor has a successor that isn't BB and isn't 5373 // outside the loop, assume the worst. 5374 if (L->contains(PredSucc)) 5375 return getCouldNotCompute(); 5376 } 5377 if (Pred == L->getHeader()) { 5378 Ok = true; 5379 break; 5380 } 5381 BB = Pred; 5382 } 5383 if (!Ok) 5384 return getCouldNotCompute(); 5385 } 5386 5387 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5388 TerminatorInst *Term = ExitingBlock->getTerminator(); 5389 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5390 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5391 // Proceed to the next level to examine the exit condition expression. 5392 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5393 BI->getSuccessor(1), 5394 /*ControlsExit=*/IsOnlyExit); 5395 } 5396 5397 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5398 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5399 /*ControlsExit=*/IsOnlyExit); 5400 5401 return getCouldNotCompute(); 5402 } 5403 5404 /// computeExitLimitFromCond - Compute the number of times the 5405 /// backedge of the specified loop will execute if its exit condition 5406 /// were a conditional branch of ExitCond, TBB, and FBB. 5407 /// 5408 /// @param ControlsExit is true if ExitCond directly controls the exit 5409 /// branch. In this case, we can assume that the loop exits only if the 5410 /// condition is true and can infer that failing to meet the condition prior to 5411 /// integer wraparound results in undefined behavior. 5412 ScalarEvolution::ExitLimit 5413 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5414 Value *ExitCond, 5415 BasicBlock *TBB, 5416 BasicBlock *FBB, 5417 bool ControlsExit) { 5418 // Check if the controlling expression for this loop is an And or Or. 5419 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5420 if (BO->getOpcode() == Instruction::And) { 5421 // Recurse on the operands of the and. 5422 bool EitherMayExit = L->contains(TBB); 5423 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5424 ControlsExit && !EitherMayExit); 5425 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5426 ControlsExit && !EitherMayExit); 5427 const SCEV *BECount = getCouldNotCompute(); 5428 const SCEV *MaxBECount = getCouldNotCompute(); 5429 if (EitherMayExit) { 5430 // Both conditions must be true for the loop to continue executing. 5431 // Choose the less conservative count. 5432 if (EL0.Exact == getCouldNotCompute() || 5433 EL1.Exact == getCouldNotCompute()) 5434 BECount = getCouldNotCompute(); 5435 else 5436 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5437 if (EL0.Max == getCouldNotCompute()) 5438 MaxBECount = EL1.Max; 5439 else if (EL1.Max == getCouldNotCompute()) 5440 MaxBECount = EL0.Max; 5441 else 5442 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5443 } else { 5444 // Both conditions must be true at the same time for the loop to exit. 5445 // For now, be conservative. 5446 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5447 if (EL0.Max == EL1.Max) 5448 MaxBECount = EL0.Max; 5449 if (EL0.Exact == EL1.Exact) 5450 BECount = EL0.Exact; 5451 } 5452 5453 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5454 // to be more aggressive when computing BECount than when computing 5455 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact 5456 // to match, but for EL0.Max and EL1.Max to not. 5457 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5458 !isa<SCEVCouldNotCompute>(BECount)) 5459 MaxBECount = BECount; 5460 5461 return ExitLimit(BECount, MaxBECount); 5462 } 5463 if (BO->getOpcode() == Instruction::Or) { 5464 // Recurse on the operands of the or. 5465 bool EitherMayExit = L->contains(FBB); 5466 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5467 ControlsExit && !EitherMayExit); 5468 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5469 ControlsExit && !EitherMayExit); 5470 const SCEV *BECount = getCouldNotCompute(); 5471 const SCEV *MaxBECount = getCouldNotCompute(); 5472 if (EitherMayExit) { 5473 // Both conditions must be false for the loop to continue executing. 5474 // Choose the less conservative count. 5475 if (EL0.Exact == getCouldNotCompute() || 5476 EL1.Exact == getCouldNotCompute()) 5477 BECount = getCouldNotCompute(); 5478 else 5479 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5480 if (EL0.Max == getCouldNotCompute()) 5481 MaxBECount = EL1.Max; 5482 else if (EL1.Max == getCouldNotCompute()) 5483 MaxBECount = EL0.Max; 5484 else 5485 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5486 } else { 5487 // Both conditions must be false at the same time for the loop to exit. 5488 // For now, be conservative. 5489 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5490 if (EL0.Max == EL1.Max) 5491 MaxBECount = EL0.Max; 5492 if (EL0.Exact == EL1.Exact) 5493 BECount = EL0.Exact; 5494 } 5495 5496 return ExitLimit(BECount, MaxBECount); 5497 } 5498 } 5499 5500 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5501 // Proceed to the next level to examine the icmp. 5502 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5503 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5504 5505 // Check for a constant condition. These are normally stripped out by 5506 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5507 // preserve the CFG and is temporarily leaving constant conditions 5508 // in place. 5509 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5510 if (L->contains(FBB) == !CI->getZExtValue()) 5511 // The backedge is always taken. 5512 return getCouldNotCompute(); 5513 else 5514 // The backedge is never taken. 5515 return getZero(CI->getType()); 5516 } 5517 5518 // If it's not an integer or pointer comparison then compute it the hard way. 5519 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5520 } 5521 5522 ScalarEvolution::ExitLimit 5523 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5524 ICmpInst *ExitCond, 5525 BasicBlock *TBB, 5526 BasicBlock *FBB, 5527 bool ControlsExit) { 5528 5529 // If the condition was exit on true, convert the condition to exit on false 5530 ICmpInst::Predicate Cond; 5531 if (!L->contains(FBB)) 5532 Cond = ExitCond->getPredicate(); 5533 else 5534 Cond = ExitCond->getInversePredicate(); 5535 5536 // Handle common loops like: for (X = "string"; *X; ++X) 5537 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5538 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5539 ExitLimit ItCnt = 5540 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5541 if (ItCnt.hasAnyInfo()) 5542 return ItCnt; 5543 } 5544 5545 ExitLimit ShiftEL = computeShiftCompareExitLimit( 5546 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 5547 if (ShiftEL.hasAnyInfo()) 5548 return ShiftEL; 5549 5550 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5551 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5552 5553 // Try to evaluate any dependencies out of the loop. 5554 LHS = getSCEVAtScope(LHS, L); 5555 RHS = getSCEVAtScope(RHS, L); 5556 5557 // At this point, we would like to compute how many iterations of the 5558 // loop the predicate will return true for these inputs. 5559 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5560 // If there is a loop-invariant, force it into the RHS. 5561 std::swap(LHS, RHS); 5562 Cond = ICmpInst::getSwappedPredicate(Cond); 5563 } 5564 5565 // Simplify the operands before analyzing them. 5566 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5567 5568 // If we have a comparison of a chrec against a constant, try to use value 5569 // ranges to answer this query. 5570 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5571 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5572 if (AddRec->getLoop() == L) { 5573 // Form the constant range. 5574 ConstantRange CompRange( 5575 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt())); 5576 5577 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5578 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5579 } 5580 5581 switch (Cond) { 5582 case ICmpInst::ICMP_NE: { // while (X != Y) 5583 // Convert to: while (X-Y != 0) 5584 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5585 if (EL.hasAnyInfo()) return EL; 5586 break; 5587 } 5588 case ICmpInst::ICMP_EQ: { // while (X == Y) 5589 // Convert to: while (X-Y == 0) 5590 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5591 if (EL.hasAnyInfo()) return EL; 5592 break; 5593 } 5594 case ICmpInst::ICMP_SLT: 5595 case ICmpInst::ICMP_ULT: { // while (X < Y) 5596 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5597 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5598 if (EL.hasAnyInfo()) return EL; 5599 break; 5600 } 5601 case ICmpInst::ICMP_SGT: 5602 case ICmpInst::ICMP_UGT: { // while (X > Y) 5603 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5604 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5605 if (EL.hasAnyInfo()) return EL; 5606 break; 5607 } 5608 default: 5609 break; 5610 } 5611 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5612 } 5613 5614 ScalarEvolution::ExitLimit 5615 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5616 SwitchInst *Switch, 5617 BasicBlock *ExitingBlock, 5618 bool ControlsExit) { 5619 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5620 5621 // Give up if the exit is the default dest of a switch. 5622 if (Switch->getDefaultDest() == ExitingBlock) 5623 return getCouldNotCompute(); 5624 5625 assert(L->contains(Switch->getDefaultDest()) && 5626 "Default case must not exit the loop!"); 5627 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5628 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5629 5630 // while (X != Y) --> while (X-Y != 0) 5631 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5632 if (EL.hasAnyInfo()) 5633 return EL; 5634 5635 return getCouldNotCompute(); 5636 } 5637 5638 static ConstantInt * 5639 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5640 ScalarEvolution &SE) { 5641 const SCEV *InVal = SE.getConstant(C); 5642 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5643 assert(isa<SCEVConstant>(Val) && 5644 "Evaluation of SCEV at constant didn't fold correctly?"); 5645 return cast<SCEVConstant>(Val)->getValue(); 5646 } 5647 5648 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5649 /// 'icmp op load X, cst', try to see if we can compute the backedge 5650 /// execution count. 5651 ScalarEvolution::ExitLimit 5652 ScalarEvolution::computeLoadConstantCompareExitLimit( 5653 LoadInst *LI, 5654 Constant *RHS, 5655 const Loop *L, 5656 ICmpInst::Predicate predicate) { 5657 5658 if (LI->isVolatile()) return getCouldNotCompute(); 5659 5660 // Check to see if the loaded pointer is a getelementptr of a global. 5661 // TODO: Use SCEV instead of manually grubbing with GEPs. 5662 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5663 if (!GEP) return getCouldNotCompute(); 5664 5665 // Make sure that it is really a constant global we are gepping, with an 5666 // initializer, and make sure the first IDX is really 0. 5667 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5668 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5669 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5670 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5671 return getCouldNotCompute(); 5672 5673 // Okay, we allow one non-constant index into the GEP instruction. 5674 Value *VarIdx = nullptr; 5675 std::vector<Constant*> Indexes; 5676 unsigned VarIdxNum = 0; 5677 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5678 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5679 Indexes.push_back(CI); 5680 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5681 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5682 VarIdx = GEP->getOperand(i); 5683 VarIdxNum = i-2; 5684 Indexes.push_back(nullptr); 5685 } 5686 5687 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5688 if (!VarIdx) 5689 return getCouldNotCompute(); 5690 5691 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5692 // Check to see if X is a loop variant variable value now. 5693 const SCEV *Idx = getSCEV(VarIdx); 5694 Idx = getSCEVAtScope(Idx, L); 5695 5696 // We can only recognize very limited forms of loop index expressions, in 5697 // particular, only affine AddRec's like {C1,+,C2}. 5698 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5699 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5700 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5701 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5702 return getCouldNotCompute(); 5703 5704 unsigned MaxSteps = MaxBruteForceIterations; 5705 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5706 ConstantInt *ItCst = ConstantInt::get( 5707 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5708 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5709 5710 // Form the GEP offset. 5711 Indexes[VarIdxNum] = Val; 5712 5713 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5714 Indexes); 5715 if (!Result) break; // Cannot compute! 5716 5717 // Evaluate the condition for this iteration. 5718 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5719 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5720 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5721 ++NumArrayLenItCounts; 5722 return getConstant(ItCst); // Found terminating iteration! 5723 } 5724 } 5725 return getCouldNotCompute(); 5726 } 5727 5728 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 5729 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 5730 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 5731 if (!RHS) 5732 return getCouldNotCompute(); 5733 5734 const BasicBlock *Latch = L->getLoopLatch(); 5735 if (!Latch) 5736 return getCouldNotCompute(); 5737 5738 const BasicBlock *Predecessor = L->getLoopPredecessor(); 5739 if (!Predecessor) 5740 return getCouldNotCompute(); 5741 5742 // Return true if V is of the form "LHS `shift_op` <positive constant>". 5743 // Return LHS in OutLHS and shift_opt in OutOpCode. 5744 auto MatchPositiveShift = 5745 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 5746 5747 using namespace PatternMatch; 5748 5749 ConstantInt *ShiftAmt; 5750 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5751 OutOpCode = Instruction::LShr; 5752 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5753 OutOpCode = Instruction::AShr; 5754 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5755 OutOpCode = Instruction::Shl; 5756 else 5757 return false; 5758 5759 return ShiftAmt->getValue().isStrictlyPositive(); 5760 }; 5761 5762 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 5763 // 5764 // loop: 5765 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 5766 // %iv.shifted = lshr i32 %iv, <positive constant> 5767 // 5768 // Return true on a succesful match. Return the corresponding PHI node (%iv 5769 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 5770 auto MatchShiftRecurrence = 5771 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 5772 Optional<Instruction::BinaryOps> PostShiftOpCode; 5773 5774 { 5775 Instruction::BinaryOps OpC; 5776 Value *V; 5777 5778 // If we encounter a shift instruction, "peel off" the shift operation, 5779 // and remember that we did so. Later when we inspect %iv's backedge 5780 // value, we will make sure that the backedge value uses the same 5781 // operation. 5782 // 5783 // Note: the peeled shift operation does not have to be the same 5784 // instruction as the one feeding into the PHI's backedge value. We only 5785 // really care about it being the same *kind* of shift instruction -- 5786 // that's all that is required for our later inferences to hold. 5787 if (MatchPositiveShift(LHS, V, OpC)) { 5788 PostShiftOpCode = OpC; 5789 LHS = V; 5790 } 5791 } 5792 5793 PNOut = dyn_cast<PHINode>(LHS); 5794 if (!PNOut || PNOut->getParent() != L->getHeader()) 5795 return false; 5796 5797 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 5798 Value *OpLHS; 5799 5800 return 5801 // The backedge value for the PHI node must be a shift by a positive 5802 // amount 5803 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 5804 5805 // of the PHI node itself 5806 OpLHS == PNOut && 5807 5808 // and the kind of shift should be match the kind of shift we peeled 5809 // off, if any. 5810 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 5811 }; 5812 5813 PHINode *PN; 5814 Instruction::BinaryOps OpCode; 5815 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 5816 return getCouldNotCompute(); 5817 5818 const DataLayout &DL = getDataLayout(); 5819 5820 // The key rationale for this optimization is that for some kinds of shift 5821 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 5822 // within a finite number of iterations. If the condition guarding the 5823 // backedge (in the sense that the backedge is taken if the condition is true) 5824 // is false for the value the shift recurrence stabilizes to, then we know 5825 // that the backedge is taken only a finite number of times. 5826 5827 ConstantInt *StableValue = nullptr; 5828 switch (OpCode) { 5829 default: 5830 llvm_unreachable("Impossible case!"); 5831 5832 case Instruction::AShr: { 5833 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 5834 // bitwidth(K) iterations. 5835 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 5836 bool KnownZero, KnownOne; 5837 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 5838 Predecessor->getTerminator(), &DT); 5839 auto *Ty = cast<IntegerType>(RHS->getType()); 5840 if (KnownZero) 5841 StableValue = ConstantInt::get(Ty, 0); 5842 else if (KnownOne) 5843 StableValue = ConstantInt::get(Ty, -1, true); 5844 else 5845 return getCouldNotCompute(); 5846 5847 break; 5848 } 5849 case Instruction::LShr: 5850 case Instruction::Shl: 5851 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 5852 // stabilize to 0 in at most bitwidth(K) iterations. 5853 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 5854 break; 5855 } 5856 5857 auto *Result = 5858 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 5859 assert(Result->getType()->isIntegerTy(1) && 5860 "Otherwise cannot be an operand to a branch instruction"); 5861 5862 if (Result->isZeroValue()) { 5863 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 5864 const SCEV *UpperBound = 5865 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 5866 return ExitLimit(getCouldNotCompute(), UpperBound); 5867 } 5868 5869 return getCouldNotCompute(); 5870 } 5871 5872 /// CanConstantFold - Return true if we can constant fold an instruction of the 5873 /// specified type, assuming that all operands were constants. 5874 static bool CanConstantFold(const Instruction *I) { 5875 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5876 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5877 isa<LoadInst>(I)) 5878 return true; 5879 5880 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5881 if (const Function *F = CI->getCalledFunction()) 5882 return canConstantFoldCallTo(F); 5883 return false; 5884 } 5885 5886 /// Determine whether this instruction can constant evolve within this loop 5887 /// assuming its operands can all constant evolve. 5888 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5889 // An instruction outside of the loop can't be derived from a loop PHI. 5890 if (!L->contains(I)) return false; 5891 5892 if (isa<PHINode>(I)) { 5893 // We don't currently keep track of the control flow needed to evaluate 5894 // PHIs, so we cannot handle PHIs inside of loops. 5895 return L->getHeader() == I->getParent(); 5896 } 5897 5898 // If we won't be able to constant fold this expression even if the operands 5899 // are constants, bail early. 5900 return CanConstantFold(I); 5901 } 5902 5903 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5904 /// recursing through each instruction operand until reaching a loop header phi. 5905 static PHINode * 5906 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5907 DenseMap<Instruction *, PHINode *> &PHIMap) { 5908 5909 // Otherwise, we can evaluate this instruction if all of its operands are 5910 // constant or derived from a PHI node themselves. 5911 PHINode *PHI = nullptr; 5912 for (Value *Op : UseInst->operands()) { 5913 if (isa<Constant>(Op)) continue; 5914 5915 Instruction *OpInst = dyn_cast<Instruction>(Op); 5916 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5917 5918 PHINode *P = dyn_cast<PHINode>(OpInst); 5919 if (!P) 5920 // If this operand is already visited, reuse the prior result. 5921 // We may have P != PHI if this is the deepest point at which the 5922 // inconsistent paths meet. 5923 P = PHIMap.lookup(OpInst); 5924 if (!P) { 5925 // Recurse and memoize the results, whether a phi is found or not. 5926 // This recursive call invalidates pointers into PHIMap. 5927 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5928 PHIMap[OpInst] = P; 5929 } 5930 if (!P) 5931 return nullptr; // Not evolving from PHI 5932 if (PHI && PHI != P) 5933 return nullptr; // Evolving from multiple different PHIs. 5934 PHI = P; 5935 } 5936 // This is a expression evolving from a constant PHI! 5937 return PHI; 5938 } 5939 5940 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5941 /// in the loop that V is derived from. We allow arbitrary operations along the 5942 /// way, but the operands of an operation must either be constants or a value 5943 /// derived from a constant PHI. If this expression does not fit with these 5944 /// constraints, return null. 5945 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5946 Instruction *I = dyn_cast<Instruction>(V); 5947 if (!I || !canConstantEvolve(I, L)) return nullptr; 5948 5949 if (PHINode *PN = dyn_cast<PHINode>(I)) 5950 return PN; 5951 5952 // Record non-constant instructions contained by the loop. 5953 DenseMap<Instruction *, PHINode *> PHIMap; 5954 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5955 } 5956 5957 /// EvaluateExpression - Given an expression that passes the 5958 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5959 /// in the loop has the value PHIVal. If we can't fold this expression for some 5960 /// reason, return null. 5961 static Constant *EvaluateExpression(Value *V, const Loop *L, 5962 DenseMap<Instruction *, Constant *> &Vals, 5963 const DataLayout &DL, 5964 const TargetLibraryInfo *TLI) { 5965 // Convenient constant check, but redundant for recursive calls. 5966 if (Constant *C = dyn_cast<Constant>(V)) return C; 5967 Instruction *I = dyn_cast<Instruction>(V); 5968 if (!I) return nullptr; 5969 5970 if (Constant *C = Vals.lookup(I)) return C; 5971 5972 // An instruction inside the loop depends on a value outside the loop that we 5973 // weren't given a mapping for, or a value such as a call inside the loop. 5974 if (!canConstantEvolve(I, L)) return nullptr; 5975 5976 // An unmapped PHI can be due to a branch or another loop inside this loop, 5977 // or due to this not being the initial iteration through a loop where we 5978 // couldn't compute the evolution of this particular PHI last time. 5979 if (isa<PHINode>(I)) return nullptr; 5980 5981 std::vector<Constant*> Operands(I->getNumOperands()); 5982 5983 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5984 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5985 if (!Operand) { 5986 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5987 if (!Operands[i]) return nullptr; 5988 continue; 5989 } 5990 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5991 Vals[Operand] = C; 5992 if (!C) return nullptr; 5993 Operands[i] = C; 5994 } 5995 5996 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5997 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5998 Operands[1], DL, TLI); 5999 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6000 if (!LI->isVolatile()) 6001 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6002 } 6003 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6004 } 6005 6006 6007 // If every incoming value to PN except the one for BB is a specific Constant, 6008 // return that, else return nullptr. 6009 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6010 Constant *IncomingVal = nullptr; 6011 6012 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6013 if (PN->getIncomingBlock(i) == BB) 6014 continue; 6015 6016 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6017 if (!CurrentVal) 6018 return nullptr; 6019 6020 if (IncomingVal != CurrentVal) { 6021 if (IncomingVal) 6022 return nullptr; 6023 IncomingVal = CurrentVal; 6024 } 6025 } 6026 6027 return IncomingVal; 6028 } 6029 6030 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6031 /// in the header of its containing loop, we know the loop executes a 6032 /// constant number of times, and the PHI node is just a recurrence 6033 /// involving constants, fold it. 6034 Constant * 6035 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6036 const APInt &BEs, 6037 const Loop *L) { 6038 auto I = ConstantEvolutionLoopExitValue.find(PN); 6039 if (I != ConstantEvolutionLoopExitValue.end()) 6040 return I->second; 6041 6042 if (BEs.ugt(MaxBruteForceIterations)) 6043 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6044 6045 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6046 6047 DenseMap<Instruction *, Constant *> CurrentIterVals; 6048 BasicBlock *Header = L->getHeader(); 6049 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6050 6051 BasicBlock *Latch = L->getLoopLatch(); 6052 if (!Latch) 6053 return nullptr; 6054 6055 for (auto &I : *Header) { 6056 PHINode *PHI = dyn_cast<PHINode>(&I); 6057 if (!PHI) break; 6058 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6059 if (!StartCST) continue; 6060 CurrentIterVals[PHI] = StartCST; 6061 } 6062 if (!CurrentIterVals.count(PN)) 6063 return RetVal = nullptr; 6064 6065 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6066 6067 // Execute the loop symbolically to determine the exit value. 6068 if (BEs.getActiveBits() >= 32) 6069 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6070 6071 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6072 unsigned IterationNum = 0; 6073 const DataLayout &DL = getDataLayout(); 6074 for (; ; ++IterationNum) { 6075 if (IterationNum == NumIterations) 6076 return RetVal = CurrentIterVals[PN]; // Got exit value! 6077 6078 // Compute the value of the PHIs for the next iteration. 6079 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6080 DenseMap<Instruction *, Constant *> NextIterVals; 6081 Constant *NextPHI = 6082 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6083 if (!NextPHI) 6084 return nullptr; // Couldn't evaluate! 6085 NextIterVals[PN] = NextPHI; 6086 6087 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6088 6089 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6090 // cease to be able to evaluate one of them or if they stop evolving, 6091 // because that doesn't necessarily prevent us from computing PN. 6092 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6093 for (const auto &I : CurrentIterVals) { 6094 PHINode *PHI = dyn_cast<PHINode>(I.first); 6095 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6096 PHIsToCompute.emplace_back(PHI, I.second); 6097 } 6098 // We use two distinct loops because EvaluateExpression may invalidate any 6099 // iterators into CurrentIterVals. 6100 for (const auto &I : PHIsToCompute) { 6101 PHINode *PHI = I.first; 6102 Constant *&NextPHI = NextIterVals[PHI]; 6103 if (!NextPHI) { // Not already computed. 6104 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6105 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6106 } 6107 if (NextPHI != I.second) 6108 StoppedEvolving = false; 6109 } 6110 6111 // If all entries in CurrentIterVals == NextIterVals then we can stop 6112 // iterating, the loop can't continue to change. 6113 if (StoppedEvolving) 6114 return RetVal = CurrentIterVals[PN]; 6115 6116 CurrentIterVals.swap(NextIterVals); 6117 } 6118 } 6119 6120 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6121 Value *Cond, 6122 bool ExitWhen) { 6123 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6124 if (!PN) return getCouldNotCompute(); 6125 6126 // If the loop is canonicalized, the PHI will have exactly two entries. 6127 // That's the only form we support here. 6128 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6129 6130 DenseMap<Instruction *, Constant *> CurrentIterVals; 6131 BasicBlock *Header = L->getHeader(); 6132 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6133 6134 BasicBlock *Latch = L->getLoopLatch(); 6135 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6136 6137 for (auto &I : *Header) { 6138 PHINode *PHI = dyn_cast<PHINode>(&I); 6139 if (!PHI) 6140 break; 6141 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6142 if (!StartCST) continue; 6143 CurrentIterVals[PHI] = StartCST; 6144 } 6145 if (!CurrentIterVals.count(PN)) 6146 return getCouldNotCompute(); 6147 6148 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6149 // the loop symbolically to determine when the condition gets a value of 6150 // "ExitWhen". 6151 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6152 const DataLayout &DL = getDataLayout(); 6153 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6154 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6155 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6156 6157 // Couldn't symbolically evaluate. 6158 if (!CondVal) return getCouldNotCompute(); 6159 6160 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6161 ++NumBruteForceTripCountsComputed; 6162 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6163 } 6164 6165 // Update all the PHI nodes for the next iteration. 6166 DenseMap<Instruction *, Constant *> NextIterVals; 6167 6168 // Create a list of which PHIs we need to compute. We want to do this before 6169 // calling EvaluateExpression on them because that may invalidate iterators 6170 // into CurrentIterVals. 6171 SmallVector<PHINode *, 8> PHIsToCompute; 6172 for (const auto &I : CurrentIterVals) { 6173 PHINode *PHI = dyn_cast<PHINode>(I.first); 6174 if (!PHI || PHI->getParent() != Header) continue; 6175 PHIsToCompute.push_back(PHI); 6176 } 6177 for (PHINode *PHI : PHIsToCompute) { 6178 Constant *&NextPHI = NextIterVals[PHI]; 6179 if (NextPHI) continue; // Already computed! 6180 6181 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6182 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6183 } 6184 CurrentIterVals.swap(NextIterVals); 6185 } 6186 6187 // Too many iterations were needed to evaluate. 6188 return getCouldNotCompute(); 6189 } 6190 6191 /// getSCEVAtScope - Return a SCEV expression for the specified value 6192 /// at the specified scope in the program. The L value specifies a loop 6193 /// nest to evaluate the expression at, where null is the top-level or a 6194 /// specified loop is immediately inside of the loop. 6195 /// 6196 /// This method can be used to compute the exit value for a variable defined 6197 /// in a loop by querying what the value will hold in the parent loop. 6198 /// 6199 /// In the case that a relevant loop exit value cannot be computed, the 6200 /// original value V is returned. 6201 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6202 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6203 ValuesAtScopes[V]; 6204 // Check to see if we've folded this expression at this loop before. 6205 for (auto &LS : Values) 6206 if (LS.first == L) 6207 return LS.second ? LS.second : V; 6208 6209 Values.emplace_back(L, nullptr); 6210 6211 // Otherwise compute it. 6212 const SCEV *C = computeSCEVAtScope(V, L); 6213 for (auto &LS : reverse(ValuesAtScopes[V])) 6214 if (LS.first == L) { 6215 LS.second = C; 6216 break; 6217 } 6218 return C; 6219 } 6220 6221 /// This builds up a Constant using the ConstantExpr interface. That way, we 6222 /// will return Constants for objects which aren't represented by a 6223 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6224 /// Returns NULL if the SCEV isn't representable as a Constant. 6225 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6226 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6227 case scCouldNotCompute: 6228 case scAddRecExpr: 6229 break; 6230 case scConstant: 6231 return cast<SCEVConstant>(V)->getValue(); 6232 case scUnknown: 6233 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6234 case scSignExtend: { 6235 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6236 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6237 return ConstantExpr::getSExt(CastOp, SS->getType()); 6238 break; 6239 } 6240 case scZeroExtend: { 6241 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6242 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6243 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6244 break; 6245 } 6246 case scTruncate: { 6247 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6248 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6249 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6250 break; 6251 } 6252 case scAddExpr: { 6253 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6254 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6255 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6256 unsigned AS = PTy->getAddressSpace(); 6257 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6258 C = ConstantExpr::getBitCast(C, DestPtrTy); 6259 } 6260 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6261 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6262 if (!C2) return nullptr; 6263 6264 // First pointer! 6265 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6266 unsigned AS = C2->getType()->getPointerAddressSpace(); 6267 std::swap(C, C2); 6268 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6269 // The offsets have been converted to bytes. We can add bytes to an 6270 // i8* by GEP with the byte count in the first index. 6271 C = ConstantExpr::getBitCast(C, DestPtrTy); 6272 } 6273 6274 // Don't bother trying to sum two pointers. We probably can't 6275 // statically compute a load that results from it anyway. 6276 if (C2->getType()->isPointerTy()) 6277 return nullptr; 6278 6279 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6280 if (PTy->getElementType()->isStructTy()) 6281 C2 = ConstantExpr::getIntegerCast( 6282 C2, Type::getInt32Ty(C->getContext()), true); 6283 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6284 } else 6285 C = ConstantExpr::getAdd(C, C2); 6286 } 6287 return C; 6288 } 6289 break; 6290 } 6291 case scMulExpr: { 6292 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6293 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6294 // Don't bother with pointers at all. 6295 if (C->getType()->isPointerTy()) return nullptr; 6296 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6297 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6298 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6299 C = ConstantExpr::getMul(C, C2); 6300 } 6301 return C; 6302 } 6303 break; 6304 } 6305 case scUDivExpr: { 6306 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6307 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6308 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6309 if (LHS->getType() == RHS->getType()) 6310 return ConstantExpr::getUDiv(LHS, RHS); 6311 break; 6312 } 6313 case scSMaxExpr: 6314 case scUMaxExpr: 6315 break; // TODO: smax, umax. 6316 } 6317 return nullptr; 6318 } 6319 6320 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6321 if (isa<SCEVConstant>(V)) return V; 6322 6323 // If this instruction is evolved from a constant-evolving PHI, compute the 6324 // exit value from the loop without using SCEVs. 6325 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6326 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6327 const Loop *LI = this->LI[I->getParent()]; 6328 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6329 if (PHINode *PN = dyn_cast<PHINode>(I)) 6330 if (PN->getParent() == LI->getHeader()) { 6331 // Okay, there is no closed form solution for the PHI node. Check 6332 // to see if the loop that contains it has a known backedge-taken 6333 // count. If so, we may be able to force computation of the exit 6334 // value. 6335 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6336 if (const SCEVConstant *BTCC = 6337 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6338 // Okay, we know how many times the containing loop executes. If 6339 // this is a constant evolving PHI node, get the final value at 6340 // the specified iteration number. 6341 Constant *RV = 6342 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6343 if (RV) return getSCEV(RV); 6344 } 6345 } 6346 6347 // Okay, this is an expression that we cannot symbolically evaluate 6348 // into a SCEV. Check to see if it's possible to symbolically evaluate 6349 // the arguments into constants, and if so, try to constant propagate the 6350 // result. This is particularly useful for computing loop exit values. 6351 if (CanConstantFold(I)) { 6352 SmallVector<Constant *, 4> Operands; 6353 bool MadeImprovement = false; 6354 for (Value *Op : I->operands()) { 6355 if (Constant *C = dyn_cast<Constant>(Op)) { 6356 Operands.push_back(C); 6357 continue; 6358 } 6359 6360 // If any of the operands is non-constant and if they are 6361 // non-integer and non-pointer, don't even try to analyze them 6362 // with scev techniques. 6363 if (!isSCEVable(Op->getType())) 6364 return V; 6365 6366 const SCEV *OrigV = getSCEV(Op); 6367 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6368 MadeImprovement |= OrigV != OpV; 6369 6370 Constant *C = BuildConstantFromSCEV(OpV); 6371 if (!C) return V; 6372 if (C->getType() != Op->getType()) 6373 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6374 Op->getType(), 6375 false), 6376 C, Op->getType()); 6377 Operands.push_back(C); 6378 } 6379 6380 // Check to see if getSCEVAtScope actually made an improvement. 6381 if (MadeImprovement) { 6382 Constant *C = nullptr; 6383 const DataLayout &DL = getDataLayout(); 6384 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6385 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6386 Operands[1], DL, &TLI); 6387 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6388 if (!LI->isVolatile()) 6389 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6390 } else 6391 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6392 if (!C) return V; 6393 return getSCEV(C); 6394 } 6395 } 6396 } 6397 6398 // This is some other type of SCEVUnknown, just return it. 6399 return V; 6400 } 6401 6402 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6403 // Avoid performing the look-up in the common case where the specified 6404 // expression has no loop-variant portions. 6405 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6406 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6407 if (OpAtScope != Comm->getOperand(i)) { 6408 // Okay, at least one of these operands is loop variant but might be 6409 // foldable. Build a new instance of the folded commutative expression. 6410 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6411 Comm->op_begin()+i); 6412 NewOps.push_back(OpAtScope); 6413 6414 for (++i; i != e; ++i) { 6415 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6416 NewOps.push_back(OpAtScope); 6417 } 6418 if (isa<SCEVAddExpr>(Comm)) 6419 return getAddExpr(NewOps); 6420 if (isa<SCEVMulExpr>(Comm)) 6421 return getMulExpr(NewOps); 6422 if (isa<SCEVSMaxExpr>(Comm)) 6423 return getSMaxExpr(NewOps); 6424 if (isa<SCEVUMaxExpr>(Comm)) 6425 return getUMaxExpr(NewOps); 6426 llvm_unreachable("Unknown commutative SCEV type!"); 6427 } 6428 } 6429 // If we got here, all operands are loop invariant. 6430 return Comm; 6431 } 6432 6433 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6434 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6435 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6436 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6437 return Div; // must be loop invariant 6438 return getUDivExpr(LHS, RHS); 6439 } 6440 6441 // If this is a loop recurrence for a loop that does not contain L, then we 6442 // are dealing with the final value computed by the loop. 6443 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6444 // First, attempt to evaluate each operand. 6445 // Avoid performing the look-up in the common case where the specified 6446 // expression has no loop-variant portions. 6447 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6448 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6449 if (OpAtScope == AddRec->getOperand(i)) 6450 continue; 6451 6452 // Okay, at least one of these operands is loop variant but might be 6453 // foldable. Build a new instance of the folded commutative expression. 6454 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6455 AddRec->op_begin()+i); 6456 NewOps.push_back(OpAtScope); 6457 for (++i; i != e; ++i) 6458 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6459 6460 const SCEV *FoldedRec = 6461 getAddRecExpr(NewOps, AddRec->getLoop(), 6462 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6463 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6464 // The addrec may be folded to a nonrecurrence, for example, if the 6465 // induction variable is multiplied by zero after constant folding. Go 6466 // ahead and return the folded value. 6467 if (!AddRec) 6468 return FoldedRec; 6469 break; 6470 } 6471 6472 // If the scope is outside the addrec's loop, evaluate it by using the 6473 // loop exit value of the addrec. 6474 if (!AddRec->getLoop()->contains(L)) { 6475 // To evaluate this recurrence, we need to know how many times the AddRec 6476 // loop iterates. Compute this now. 6477 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6478 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6479 6480 // Then, evaluate the AddRec. 6481 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6482 } 6483 6484 return AddRec; 6485 } 6486 6487 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6488 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6489 if (Op == Cast->getOperand()) 6490 return Cast; // must be loop invariant 6491 return getZeroExtendExpr(Op, Cast->getType()); 6492 } 6493 6494 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6495 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6496 if (Op == Cast->getOperand()) 6497 return Cast; // must be loop invariant 6498 return getSignExtendExpr(Op, Cast->getType()); 6499 } 6500 6501 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6502 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6503 if (Op == Cast->getOperand()) 6504 return Cast; // must be loop invariant 6505 return getTruncateExpr(Op, Cast->getType()); 6506 } 6507 6508 llvm_unreachable("Unknown SCEV type!"); 6509 } 6510 6511 /// getSCEVAtScope - This is a convenience function which does 6512 /// getSCEVAtScope(getSCEV(V), L). 6513 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6514 return getSCEVAtScope(getSCEV(V), L); 6515 } 6516 6517 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6518 /// following equation: 6519 /// 6520 /// A * X = B (mod N) 6521 /// 6522 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6523 /// A and B isn't important. 6524 /// 6525 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6526 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6527 ScalarEvolution &SE) { 6528 uint32_t BW = A.getBitWidth(); 6529 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6530 assert(A != 0 && "A must be non-zero."); 6531 6532 // 1. D = gcd(A, N) 6533 // 6534 // The gcd of A and N may have only one prime factor: 2. The number of 6535 // trailing zeros in A is its multiplicity 6536 uint32_t Mult2 = A.countTrailingZeros(); 6537 // D = 2^Mult2 6538 6539 // 2. Check if B is divisible by D. 6540 // 6541 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6542 // is not less than multiplicity of this prime factor for D. 6543 if (B.countTrailingZeros() < Mult2) 6544 return SE.getCouldNotCompute(); 6545 6546 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6547 // modulo (N / D). 6548 // 6549 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6550 // bit width during computations. 6551 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6552 APInt Mod(BW + 1, 0); 6553 Mod.setBit(BW - Mult2); // Mod = N / D 6554 APInt I = AD.multiplicativeInverse(Mod); 6555 6556 // 4. Compute the minimum unsigned root of the equation: 6557 // I * (B / D) mod (N / D) 6558 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6559 6560 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6561 // bits. 6562 return SE.getConstant(Result.trunc(BW)); 6563 } 6564 6565 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6566 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6567 /// might be the same) or two SCEVCouldNotCompute objects. 6568 /// 6569 static std::pair<const SCEV *,const SCEV *> 6570 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6571 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6572 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6573 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6574 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6575 6576 // We currently can only solve this if the coefficients are constants. 6577 if (!LC || !MC || !NC) { 6578 const SCEV *CNC = SE.getCouldNotCompute(); 6579 return {CNC, CNC}; 6580 } 6581 6582 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 6583 const APInt &L = LC->getAPInt(); 6584 const APInt &M = MC->getAPInt(); 6585 const APInt &N = NC->getAPInt(); 6586 APInt Two(BitWidth, 2); 6587 APInt Four(BitWidth, 4); 6588 6589 { 6590 using namespace APIntOps; 6591 const APInt& C = L; 6592 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6593 // The B coefficient is M-N/2 6594 APInt B(M); 6595 B -= sdiv(N,Two); 6596 6597 // The A coefficient is N/2 6598 APInt A(N.sdiv(Two)); 6599 6600 // Compute the B^2-4ac term. 6601 APInt SqrtTerm(B); 6602 SqrtTerm *= B; 6603 SqrtTerm -= Four * (A * C); 6604 6605 if (SqrtTerm.isNegative()) { 6606 // The loop is provably infinite. 6607 const SCEV *CNC = SE.getCouldNotCompute(); 6608 return {CNC, CNC}; 6609 } 6610 6611 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6612 // integer value or else APInt::sqrt() will assert. 6613 APInt SqrtVal(SqrtTerm.sqrt()); 6614 6615 // Compute the two solutions for the quadratic formula. 6616 // The divisions must be performed as signed divisions. 6617 APInt NegB(-B); 6618 APInt TwoA(A << 1); 6619 if (TwoA.isMinValue()) { 6620 const SCEV *CNC = SE.getCouldNotCompute(); 6621 return {CNC, CNC}; 6622 } 6623 6624 LLVMContext &Context = SE.getContext(); 6625 6626 ConstantInt *Solution1 = 6627 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6628 ConstantInt *Solution2 = 6629 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6630 6631 return {SE.getConstant(Solution1), SE.getConstant(Solution2)}; 6632 } // end APIntOps namespace 6633 } 6634 6635 /// HowFarToZero - Return the number of times a backedge comparing the specified 6636 /// value to zero will execute. If not computable, return CouldNotCompute. 6637 /// 6638 /// This is only used for loops with a "x != y" exit test. The exit condition is 6639 /// now expressed as a single expression, V = x-y. So the exit test is 6640 /// effectively V != 0. We know and take advantage of the fact that this 6641 /// expression only being used in a comparison by zero context. 6642 ScalarEvolution::ExitLimit 6643 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6644 // If the value is a constant 6645 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6646 // If the value is already zero, the branch will execute zero times. 6647 if (C->getValue()->isZero()) return C; 6648 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6649 } 6650 6651 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6652 if (!AddRec || AddRec->getLoop() != L) 6653 return getCouldNotCompute(); 6654 6655 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6656 // the quadratic equation to solve it. 6657 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6658 std::pair<const SCEV *,const SCEV *> Roots = 6659 SolveQuadraticEquation(AddRec, *this); 6660 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6661 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6662 if (R1 && R2) { 6663 // Pick the smallest positive root value. 6664 if (ConstantInt *CB = 6665 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6666 R1->getValue(), 6667 R2->getValue()))) { 6668 if (!CB->getZExtValue()) 6669 std::swap(R1, R2); // R1 is the minimum root now. 6670 6671 // We can only use this value if the chrec ends up with an exact zero 6672 // value at this index. When solving for "X*X != 5", for example, we 6673 // should not accept a root of 2. 6674 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6675 if (Val->isZero()) 6676 return R1; // We found a quadratic root! 6677 } 6678 } 6679 return getCouldNotCompute(); 6680 } 6681 6682 // Otherwise we can only handle this if it is affine. 6683 if (!AddRec->isAffine()) 6684 return getCouldNotCompute(); 6685 6686 // If this is an affine expression, the execution count of this branch is 6687 // the minimum unsigned root of the following equation: 6688 // 6689 // Start + Step*N = 0 (mod 2^BW) 6690 // 6691 // equivalent to: 6692 // 6693 // Step*N = -Start (mod 2^BW) 6694 // 6695 // where BW is the common bit width of Start and Step. 6696 6697 // Get the initial value for the loop. 6698 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6699 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6700 6701 // For now we handle only constant steps. 6702 // 6703 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6704 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6705 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6706 // We have not yet seen any such cases. 6707 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6708 if (!StepC || StepC->getValue()->equalsInt(0)) 6709 return getCouldNotCompute(); 6710 6711 // For positive steps (counting up until unsigned overflow): 6712 // N = -Start/Step (as unsigned) 6713 // For negative steps (counting down to zero): 6714 // N = Start/-Step 6715 // First compute the unsigned distance from zero in the direction of Step. 6716 bool CountDown = StepC->getAPInt().isNegative(); 6717 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6718 6719 // Handle unitary steps, which cannot wraparound. 6720 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6721 // N = Distance (as unsigned) 6722 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6723 ConstantRange CR = getUnsignedRange(Start); 6724 const SCEV *MaxBECount; 6725 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6726 // When counting up, the worst starting value is 1, not 0. 6727 MaxBECount = CR.getUnsignedMax().isMinValue() 6728 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6729 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6730 else 6731 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6732 : -CR.getUnsignedMin()); 6733 return ExitLimit(Distance, MaxBECount); 6734 } 6735 6736 // As a special case, handle the instance where Step is a positive power of 6737 // two. In this case, determining whether Step divides Distance evenly can be 6738 // done by counting and comparing the number of trailing zeros of Step and 6739 // Distance. 6740 if (!CountDown) { 6741 const APInt &StepV = StepC->getAPInt(); 6742 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6743 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6744 // case is not handled as this code is guarded by !CountDown. 6745 if (StepV.isPowerOf2() && 6746 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6747 // Here we've constrained the equation to be of the form 6748 // 6749 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6750 // 6751 // where we're operating on a W bit wide integer domain and k is 6752 // non-negative. The smallest unsigned solution for X is the trip count. 6753 // 6754 // (0) is equivalent to: 6755 // 6756 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6757 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6758 // <=> 2^k * Distance' - X = L * 2^(W - N) 6759 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6760 // 6761 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6762 // by 2^(W - N). 6763 // 6764 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6765 // 6766 // E.g. say we're solving 6767 // 6768 // 2 * Val = 2 * X (in i8) ... (3) 6769 // 6770 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6771 // 6772 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6773 // necessarily the smallest unsigned value of X that satisfies (3). 6774 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6775 // is i8 1, not i8 -127 6776 6777 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6778 6779 // Since SCEV does not have a URem node, we construct one using a truncate 6780 // and a zero extend. 6781 6782 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6783 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6784 auto *WideTy = Distance->getType(); 6785 6786 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6787 } 6788 } 6789 6790 // If the condition controls loop exit (the loop exits only if the expression 6791 // is true) and the addition is no-wrap we can use unsigned divide to 6792 // compute the backedge count. In this case, the step may not divide the 6793 // distance, but we don't care because if the condition is "missed" the loop 6794 // will have undefined behavior due to wrapping. 6795 if (ControlsExit && AddRec->hasNoSelfWrap()) { 6796 const SCEV *Exact = 6797 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6798 return ExitLimit(Exact, Exact); 6799 } 6800 6801 // Then, try to solve the above equation provided that Start is constant. 6802 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6803 return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(), 6804 *this); 6805 return getCouldNotCompute(); 6806 } 6807 6808 /// HowFarToNonZero - Return the number of times a backedge checking the 6809 /// specified value for nonzero will execute. If not computable, return 6810 /// CouldNotCompute 6811 ScalarEvolution::ExitLimit 6812 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6813 // Loops that look like: while (X == 0) are very strange indeed. We don't 6814 // handle them yet except for the trivial case. This could be expanded in the 6815 // future as needed. 6816 6817 // If the value is a constant, check to see if it is known to be non-zero 6818 // already. If so, the backedge will execute zero times. 6819 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6820 if (!C->getValue()->isNullValue()) 6821 return getZero(C->getType()); 6822 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6823 } 6824 6825 // We could implement others, but I really doubt anyone writes loops like 6826 // this, and if they did, they would already be constant folded. 6827 return getCouldNotCompute(); 6828 } 6829 6830 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6831 /// (which may not be an immediate predecessor) which has exactly one 6832 /// successor from which BB is reachable, or null if no such block is 6833 /// found. 6834 /// 6835 std::pair<BasicBlock *, BasicBlock *> 6836 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6837 // If the block has a unique predecessor, then there is no path from the 6838 // predecessor to the block that does not go through the direct edge 6839 // from the predecessor to the block. 6840 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6841 return {Pred, BB}; 6842 6843 // A loop's header is defined to be a block that dominates the loop. 6844 // If the header has a unique predecessor outside the loop, it must be 6845 // a block that has exactly one successor that can reach the loop. 6846 if (Loop *L = LI.getLoopFor(BB)) 6847 return {L->getLoopPredecessor(), L->getHeader()}; 6848 6849 return {nullptr, nullptr}; 6850 } 6851 6852 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6853 /// testing whether two expressions are equal, however for the purposes of 6854 /// looking for a condition guarding a loop, it can be useful to be a little 6855 /// more general, since a front-end may have replicated the controlling 6856 /// expression. 6857 /// 6858 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6859 // Quick check to see if they are the same SCEV. 6860 if (A == B) return true; 6861 6862 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6863 // Not all instructions that are "identical" compute the same value. For 6864 // instance, two distinct alloca instructions allocating the same type are 6865 // identical and do not read memory; but compute distinct values. 6866 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6867 }; 6868 6869 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6870 // two different instructions with the same value. Check for this case. 6871 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6872 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6873 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6874 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6875 if (ComputesEqualValues(AI, BI)) 6876 return true; 6877 6878 // Otherwise assume they may have a different value. 6879 return false; 6880 } 6881 6882 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6883 /// predicate Pred. Return true iff any changes were made. 6884 /// 6885 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6886 const SCEV *&LHS, const SCEV *&RHS, 6887 unsigned Depth) { 6888 bool Changed = false; 6889 6890 // If we hit the max recursion limit bail out. 6891 if (Depth >= 3) 6892 return false; 6893 6894 // Canonicalize a constant to the right side. 6895 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6896 // Check for both operands constant. 6897 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6898 if (ConstantExpr::getICmp(Pred, 6899 LHSC->getValue(), 6900 RHSC->getValue())->isNullValue()) 6901 goto trivially_false; 6902 else 6903 goto trivially_true; 6904 } 6905 // Otherwise swap the operands to put the constant on the right. 6906 std::swap(LHS, RHS); 6907 Pred = ICmpInst::getSwappedPredicate(Pred); 6908 Changed = true; 6909 } 6910 6911 // If we're comparing an addrec with a value which is loop-invariant in the 6912 // addrec's loop, put the addrec on the left. Also make a dominance check, 6913 // as both operands could be addrecs loop-invariant in each other's loop. 6914 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6915 const Loop *L = AR->getLoop(); 6916 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6917 std::swap(LHS, RHS); 6918 Pred = ICmpInst::getSwappedPredicate(Pred); 6919 Changed = true; 6920 } 6921 } 6922 6923 // If there's a constant operand, canonicalize comparisons with boundary 6924 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6925 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6926 const APInt &RA = RC->getAPInt(); 6927 switch (Pred) { 6928 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6929 case ICmpInst::ICMP_EQ: 6930 case ICmpInst::ICMP_NE: 6931 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6932 if (!RA) 6933 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6934 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6935 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6936 ME->getOperand(0)->isAllOnesValue()) { 6937 RHS = AE->getOperand(1); 6938 LHS = ME->getOperand(1); 6939 Changed = true; 6940 } 6941 break; 6942 case ICmpInst::ICMP_UGE: 6943 if ((RA - 1).isMinValue()) { 6944 Pred = ICmpInst::ICMP_NE; 6945 RHS = getConstant(RA - 1); 6946 Changed = true; 6947 break; 6948 } 6949 if (RA.isMaxValue()) { 6950 Pred = ICmpInst::ICMP_EQ; 6951 Changed = true; 6952 break; 6953 } 6954 if (RA.isMinValue()) goto trivially_true; 6955 6956 Pred = ICmpInst::ICMP_UGT; 6957 RHS = getConstant(RA - 1); 6958 Changed = true; 6959 break; 6960 case ICmpInst::ICMP_ULE: 6961 if ((RA + 1).isMaxValue()) { 6962 Pred = ICmpInst::ICMP_NE; 6963 RHS = getConstant(RA + 1); 6964 Changed = true; 6965 break; 6966 } 6967 if (RA.isMinValue()) { 6968 Pred = ICmpInst::ICMP_EQ; 6969 Changed = true; 6970 break; 6971 } 6972 if (RA.isMaxValue()) goto trivially_true; 6973 6974 Pred = ICmpInst::ICMP_ULT; 6975 RHS = getConstant(RA + 1); 6976 Changed = true; 6977 break; 6978 case ICmpInst::ICMP_SGE: 6979 if ((RA - 1).isMinSignedValue()) { 6980 Pred = ICmpInst::ICMP_NE; 6981 RHS = getConstant(RA - 1); 6982 Changed = true; 6983 break; 6984 } 6985 if (RA.isMaxSignedValue()) { 6986 Pred = ICmpInst::ICMP_EQ; 6987 Changed = true; 6988 break; 6989 } 6990 if (RA.isMinSignedValue()) goto trivially_true; 6991 6992 Pred = ICmpInst::ICMP_SGT; 6993 RHS = getConstant(RA - 1); 6994 Changed = true; 6995 break; 6996 case ICmpInst::ICMP_SLE: 6997 if ((RA + 1).isMaxSignedValue()) { 6998 Pred = ICmpInst::ICMP_NE; 6999 RHS = getConstant(RA + 1); 7000 Changed = true; 7001 break; 7002 } 7003 if (RA.isMinSignedValue()) { 7004 Pred = ICmpInst::ICMP_EQ; 7005 Changed = true; 7006 break; 7007 } 7008 if (RA.isMaxSignedValue()) goto trivially_true; 7009 7010 Pred = ICmpInst::ICMP_SLT; 7011 RHS = getConstant(RA + 1); 7012 Changed = true; 7013 break; 7014 case ICmpInst::ICMP_UGT: 7015 if (RA.isMinValue()) { 7016 Pred = ICmpInst::ICMP_NE; 7017 Changed = true; 7018 break; 7019 } 7020 if ((RA + 1).isMaxValue()) { 7021 Pred = ICmpInst::ICMP_EQ; 7022 RHS = getConstant(RA + 1); 7023 Changed = true; 7024 break; 7025 } 7026 if (RA.isMaxValue()) goto trivially_false; 7027 break; 7028 case ICmpInst::ICMP_ULT: 7029 if (RA.isMaxValue()) { 7030 Pred = ICmpInst::ICMP_NE; 7031 Changed = true; 7032 break; 7033 } 7034 if ((RA - 1).isMinValue()) { 7035 Pred = ICmpInst::ICMP_EQ; 7036 RHS = getConstant(RA - 1); 7037 Changed = true; 7038 break; 7039 } 7040 if (RA.isMinValue()) goto trivially_false; 7041 break; 7042 case ICmpInst::ICMP_SGT: 7043 if (RA.isMinSignedValue()) { 7044 Pred = ICmpInst::ICMP_NE; 7045 Changed = true; 7046 break; 7047 } 7048 if ((RA + 1).isMaxSignedValue()) { 7049 Pred = ICmpInst::ICMP_EQ; 7050 RHS = getConstant(RA + 1); 7051 Changed = true; 7052 break; 7053 } 7054 if (RA.isMaxSignedValue()) goto trivially_false; 7055 break; 7056 case ICmpInst::ICMP_SLT: 7057 if (RA.isMaxSignedValue()) { 7058 Pred = ICmpInst::ICMP_NE; 7059 Changed = true; 7060 break; 7061 } 7062 if ((RA - 1).isMinSignedValue()) { 7063 Pred = ICmpInst::ICMP_EQ; 7064 RHS = getConstant(RA - 1); 7065 Changed = true; 7066 break; 7067 } 7068 if (RA.isMinSignedValue()) goto trivially_false; 7069 break; 7070 } 7071 } 7072 7073 // Check for obvious equality. 7074 if (HasSameValue(LHS, RHS)) { 7075 if (ICmpInst::isTrueWhenEqual(Pred)) 7076 goto trivially_true; 7077 if (ICmpInst::isFalseWhenEqual(Pred)) 7078 goto trivially_false; 7079 } 7080 7081 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7082 // adding or subtracting 1 from one of the operands. 7083 switch (Pred) { 7084 case ICmpInst::ICMP_SLE: 7085 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7086 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7087 SCEV::FlagNSW); 7088 Pred = ICmpInst::ICMP_SLT; 7089 Changed = true; 7090 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7091 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7092 SCEV::FlagNSW); 7093 Pred = ICmpInst::ICMP_SLT; 7094 Changed = true; 7095 } 7096 break; 7097 case ICmpInst::ICMP_SGE: 7098 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7099 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7100 SCEV::FlagNSW); 7101 Pred = ICmpInst::ICMP_SGT; 7102 Changed = true; 7103 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7104 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7105 SCEV::FlagNSW); 7106 Pred = ICmpInst::ICMP_SGT; 7107 Changed = true; 7108 } 7109 break; 7110 case ICmpInst::ICMP_ULE: 7111 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7112 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7113 SCEV::FlagNUW); 7114 Pred = ICmpInst::ICMP_ULT; 7115 Changed = true; 7116 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7117 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7118 Pred = ICmpInst::ICMP_ULT; 7119 Changed = true; 7120 } 7121 break; 7122 case ICmpInst::ICMP_UGE: 7123 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7124 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7125 Pred = ICmpInst::ICMP_UGT; 7126 Changed = true; 7127 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7128 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7129 SCEV::FlagNUW); 7130 Pred = ICmpInst::ICMP_UGT; 7131 Changed = true; 7132 } 7133 break; 7134 default: 7135 break; 7136 } 7137 7138 // TODO: More simplifications are possible here. 7139 7140 // Recursively simplify until we either hit a recursion limit or nothing 7141 // changes. 7142 if (Changed) 7143 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7144 7145 return Changed; 7146 7147 trivially_true: 7148 // Return 0 == 0. 7149 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7150 Pred = ICmpInst::ICMP_EQ; 7151 return true; 7152 7153 trivially_false: 7154 // Return 0 != 0. 7155 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7156 Pred = ICmpInst::ICMP_NE; 7157 return true; 7158 } 7159 7160 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7161 return getSignedRange(S).getSignedMax().isNegative(); 7162 } 7163 7164 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7165 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7166 } 7167 7168 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7169 return !getSignedRange(S).getSignedMin().isNegative(); 7170 } 7171 7172 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7173 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7174 } 7175 7176 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7177 return isKnownNegative(S) || isKnownPositive(S); 7178 } 7179 7180 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7181 const SCEV *LHS, const SCEV *RHS) { 7182 // Canonicalize the inputs first. 7183 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7184 7185 // If LHS or RHS is an addrec, check to see if the condition is true in 7186 // every iteration of the loop. 7187 // If LHS and RHS are both addrec, both conditions must be true in 7188 // every iteration of the loop. 7189 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7190 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7191 bool LeftGuarded = false; 7192 bool RightGuarded = false; 7193 if (LAR) { 7194 const Loop *L = LAR->getLoop(); 7195 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7196 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7197 if (!RAR) return true; 7198 LeftGuarded = true; 7199 } 7200 } 7201 if (RAR) { 7202 const Loop *L = RAR->getLoop(); 7203 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7204 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7205 if (!LAR) return true; 7206 RightGuarded = true; 7207 } 7208 } 7209 if (LeftGuarded && RightGuarded) 7210 return true; 7211 7212 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7213 return true; 7214 7215 // Otherwise see what can be done with known constant ranges. 7216 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7217 } 7218 7219 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7220 ICmpInst::Predicate Pred, 7221 bool &Increasing) { 7222 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7223 7224 #ifndef NDEBUG 7225 // Verify an invariant: inverting the predicate should turn a monotonically 7226 // increasing change to a monotonically decreasing one, and vice versa. 7227 bool IncreasingSwapped; 7228 bool ResultSwapped = isMonotonicPredicateImpl( 7229 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7230 7231 assert(Result == ResultSwapped && "should be able to analyze both!"); 7232 if (ResultSwapped) 7233 assert(Increasing == !IncreasingSwapped && 7234 "monotonicity should flip as we flip the predicate"); 7235 #endif 7236 7237 return Result; 7238 } 7239 7240 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7241 ICmpInst::Predicate Pred, 7242 bool &Increasing) { 7243 7244 // A zero step value for LHS means the induction variable is essentially a 7245 // loop invariant value. We don't really depend on the predicate actually 7246 // flipping from false to true (for increasing predicates, and the other way 7247 // around for decreasing predicates), all we care about is that *if* the 7248 // predicate changes then it only changes from false to true. 7249 // 7250 // A zero step value in itself is not very useful, but there may be places 7251 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7252 // as general as possible. 7253 7254 switch (Pred) { 7255 default: 7256 return false; // Conservative answer 7257 7258 case ICmpInst::ICMP_UGT: 7259 case ICmpInst::ICMP_UGE: 7260 case ICmpInst::ICMP_ULT: 7261 case ICmpInst::ICMP_ULE: 7262 if (!LHS->hasNoUnsignedWrap()) 7263 return false; 7264 7265 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7266 return true; 7267 7268 case ICmpInst::ICMP_SGT: 7269 case ICmpInst::ICMP_SGE: 7270 case ICmpInst::ICMP_SLT: 7271 case ICmpInst::ICMP_SLE: { 7272 if (!LHS->hasNoSignedWrap()) 7273 return false; 7274 7275 const SCEV *Step = LHS->getStepRecurrence(*this); 7276 7277 if (isKnownNonNegative(Step)) { 7278 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7279 return true; 7280 } 7281 7282 if (isKnownNonPositive(Step)) { 7283 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7284 return true; 7285 } 7286 7287 return false; 7288 } 7289 7290 } 7291 7292 llvm_unreachable("switch has default clause!"); 7293 } 7294 7295 bool ScalarEvolution::isLoopInvariantPredicate( 7296 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7297 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7298 const SCEV *&InvariantRHS) { 7299 7300 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7301 if (!isLoopInvariant(RHS, L)) { 7302 if (!isLoopInvariant(LHS, L)) 7303 return false; 7304 7305 std::swap(LHS, RHS); 7306 Pred = ICmpInst::getSwappedPredicate(Pred); 7307 } 7308 7309 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7310 if (!ArLHS || ArLHS->getLoop() != L) 7311 return false; 7312 7313 bool Increasing; 7314 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7315 return false; 7316 7317 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7318 // true as the loop iterates, and the backedge is control dependent on 7319 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7320 // 7321 // * if the predicate was false in the first iteration then the predicate 7322 // is never evaluated again, since the loop exits without taking the 7323 // backedge. 7324 // * if the predicate was true in the first iteration then it will 7325 // continue to be true for all future iterations since it is 7326 // monotonically increasing. 7327 // 7328 // For both the above possibilities, we can replace the loop varying 7329 // predicate with its value on the first iteration of the loop (which is 7330 // loop invariant). 7331 // 7332 // A similar reasoning applies for a monotonically decreasing predicate, by 7333 // replacing true with false and false with true in the above two bullets. 7334 7335 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7336 7337 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7338 return false; 7339 7340 InvariantPred = Pred; 7341 InvariantLHS = ArLHS->getStart(); 7342 InvariantRHS = RHS; 7343 return true; 7344 } 7345 7346 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7347 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7348 if (HasSameValue(LHS, RHS)) 7349 return ICmpInst::isTrueWhenEqual(Pred); 7350 7351 // This code is split out from isKnownPredicate because it is called from 7352 // within isLoopEntryGuardedByCond. 7353 7354 auto CheckRanges = 7355 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7356 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7357 .contains(RangeLHS); 7358 }; 7359 7360 // The check at the top of the function catches the case where the values are 7361 // known to be equal. 7362 if (Pred == CmpInst::ICMP_EQ) 7363 return false; 7364 7365 if (Pred == CmpInst::ICMP_NE) 7366 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7367 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7368 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7369 7370 if (CmpInst::isSigned(Pred)) 7371 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7372 7373 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7374 } 7375 7376 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7377 const SCEV *LHS, 7378 const SCEV *RHS) { 7379 7380 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7381 // Return Y via OutY. 7382 auto MatchBinaryAddToConst = 7383 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7384 SCEV::NoWrapFlags ExpectedFlags) { 7385 const SCEV *NonConstOp, *ConstOp; 7386 SCEV::NoWrapFlags FlagsPresent; 7387 7388 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7389 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7390 return false; 7391 7392 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7393 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7394 }; 7395 7396 APInt C; 7397 7398 switch (Pred) { 7399 default: 7400 break; 7401 7402 case ICmpInst::ICMP_SGE: 7403 std::swap(LHS, RHS); 7404 case ICmpInst::ICMP_SLE: 7405 // X s<= (X + C)<nsw> if C >= 0 7406 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7407 return true; 7408 7409 // (X + C)<nsw> s<= X if C <= 0 7410 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7411 !C.isStrictlyPositive()) 7412 return true; 7413 break; 7414 7415 case ICmpInst::ICMP_SGT: 7416 std::swap(LHS, RHS); 7417 case ICmpInst::ICMP_SLT: 7418 // X s< (X + C)<nsw> if C > 0 7419 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7420 C.isStrictlyPositive()) 7421 return true; 7422 7423 // (X + C)<nsw> s< X if C < 0 7424 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7425 return true; 7426 break; 7427 } 7428 7429 return false; 7430 } 7431 7432 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7433 const SCEV *LHS, 7434 const SCEV *RHS) { 7435 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7436 return false; 7437 7438 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7439 // the stack can result in exponential time complexity. 7440 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7441 7442 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7443 // 7444 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7445 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7446 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7447 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7448 // use isKnownPredicate later if needed. 7449 return isKnownNonNegative(RHS) && 7450 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7451 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7452 } 7453 7454 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7455 /// protected by a conditional between LHS and RHS. This is used to 7456 /// to eliminate casts. 7457 bool 7458 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7459 ICmpInst::Predicate Pred, 7460 const SCEV *LHS, const SCEV *RHS) { 7461 // Interpret a null as meaning no loop, where there is obviously no guard 7462 // (interprocedural conditions notwithstanding). 7463 if (!L) return true; 7464 7465 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7466 return true; 7467 7468 BasicBlock *Latch = L->getLoopLatch(); 7469 if (!Latch) 7470 return false; 7471 7472 BranchInst *LoopContinuePredicate = 7473 dyn_cast<BranchInst>(Latch->getTerminator()); 7474 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7475 isImpliedCond(Pred, LHS, RHS, 7476 LoopContinuePredicate->getCondition(), 7477 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7478 return true; 7479 7480 // We don't want more than one activation of the following loops on the stack 7481 // -- that can lead to O(n!) time complexity. 7482 if (WalkingBEDominatingConds) 7483 return false; 7484 7485 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7486 7487 // See if we can exploit a trip count to prove the predicate. 7488 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7489 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7490 if (LatchBECount != getCouldNotCompute()) { 7491 // We know that Latch branches back to the loop header exactly 7492 // LatchBECount times. This means the backdege condition at Latch is 7493 // equivalent to "{0,+,1} u< LatchBECount". 7494 Type *Ty = LatchBECount->getType(); 7495 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7496 const SCEV *LoopCounter = 7497 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7498 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7499 LatchBECount)) 7500 return true; 7501 } 7502 7503 // Check conditions due to any @llvm.assume intrinsics. 7504 for (auto &AssumeVH : AC.assumptions()) { 7505 if (!AssumeVH) 7506 continue; 7507 auto *CI = cast<CallInst>(AssumeVH); 7508 if (!DT.dominates(CI, Latch->getTerminator())) 7509 continue; 7510 7511 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7512 return true; 7513 } 7514 7515 // If the loop is not reachable from the entry block, we risk running into an 7516 // infinite loop as we walk up into the dom tree. These loops do not matter 7517 // anyway, so we just return a conservative answer when we see them. 7518 if (!DT.isReachableFromEntry(L->getHeader())) 7519 return false; 7520 7521 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7522 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7523 7524 assert(DTN && "should reach the loop header before reaching the root!"); 7525 7526 BasicBlock *BB = DTN->getBlock(); 7527 BasicBlock *PBB = BB->getSinglePredecessor(); 7528 if (!PBB) 7529 continue; 7530 7531 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7532 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7533 continue; 7534 7535 Value *Condition = ContinuePredicate->getCondition(); 7536 7537 // If we have an edge `E` within the loop body that dominates the only 7538 // latch, the condition guarding `E` also guards the backedge. This 7539 // reasoning works only for loops with a single latch. 7540 7541 BasicBlockEdge DominatingEdge(PBB, BB); 7542 if (DominatingEdge.isSingleEdge()) { 7543 // We're constructively (and conservatively) enumerating edges within the 7544 // loop body that dominate the latch. The dominator tree better agree 7545 // with us on this: 7546 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7547 7548 if (isImpliedCond(Pred, LHS, RHS, Condition, 7549 BB != ContinuePredicate->getSuccessor(0))) 7550 return true; 7551 } 7552 } 7553 7554 return false; 7555 } 7556 7557 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7558 /// by a conditional between LHS and RHS. This is used to help avoid max 7559 /// expressions in loop trip counts, and to eliminate casts. 7560 bool 7561 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7562 ICmpInst::Predicate Pred, 7563 const SCEV *LHS, const SCEV *RHS) { 7564 // Interpret a null as meaning no loop, where there is obviously no guard 7565 // (interprocedural conditions notwithstanding). 7566 if (!L) return false; 7567 7568 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7569 return true; 7570 7571 // Starting at the loop predecessor, climb up the predecessor chain, as long 7572 // as there are predecessors that can be found that have unique successors 7573 // leading to the original header. 7574 for (std::pair<BasicBlock *, BasicBlock *> 7575 Pair(L->getLoopPredecessor(), L->getHeader()); 7576 Pair.first; 7577 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7578 7579 BranchInst *LoopEntryPredicate = 7580 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7581 if (!LoopEntryPredicate || 7582 LoopEntryPredicate->isUnconditional()) 7583 continue; 7584 7585 if (isImpliedCond(Pred, LHS, RHS, 7586 LoopEntryPredicate->getCondition(), 7587 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7588 return true; 7589 } 7590 7591 // Check conditions due to any @llvm.assume intrinsics. 7592 for (auto &AssumeVH : AC.assumptions()) { 7593 if (!AssumeVH) 7594 continue; 7595 auto *CI = cast<CallInst>(AssumeVH); 7596 if (!DT.dominates(CI, L->getHeader())) 7597 continue; 7598 7599 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7600 return true; 7601 } 7602 7603 return false; 7604 } 7605 7606 namespace { 7607 /// RAII wrapper to prevent recursive application of isImpliedCond. 7608 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7609 /// currently evaluating isImpliedCond. 7610 struct MarkPendingLoopPredicate { 7611 Value *Cond; 7612 DenseSet<Value*> &LoopPreds; 7613 bool Pending; 7614 7615 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7616 : Cond(C), LoopPreds(LP) { 7617 Pending = !LoopPreds.insert(Cond).second; 7618 } 7619 ~MarkPendingLoopPredicate() { 7620 if (!Pending) 7621 LoopPreds.erase(Cond); 7622 } 7623 }; 7624 } // end anonymous namespace 7625 7626 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7627 /// and RHS is true whenever the given Cond value evaluates to true. 7628 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7629 const SCEV *LHS, const SCEV *RHS, 7630 Value *FoundCondValue, 7631 bool Inverse) { 7632 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7633 if (Mark.Pending) 7634 return false; 7635 7636 // Recursively handle And and Or conditions. 7637 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7638 if (BO->getOpcode() == Instruction::And) { 7639 if (!Inverse) 7640 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7641 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7642 } else if (BO->getOpcode() == Instruction::Or) { 7643 if (Inverse) 7644 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7645 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7646 } 7647 } 7648 7649 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7650 if (!ICI) return false; 7651 7652 // Now that we found a conditional branch that dominates the loop or controls 7653 // the loop latch. Check to see if it is the comparison we are looking for. 7654 ICmpInst::Predicate FoundPred; 7655 if (Inverse) 7656 FoundPred = ICI->getInversePredicate(); 7657 else 7658 FoundPred = ICI->getPredicate(); 7659 7660 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7661 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7662 7663 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7664 } 7665 7666 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7667 const SCEV *RHS, 7668 ICmpInst::Predicate FoundPred, 7669 const SCEV *FoundLHS, 7670 const SCEV *FoundRHS) { 7671 // Balance the types. 7672 if (getTypeSizeInBits(LHS->getType()) < 7673 getTypeSizeInBits(FoundLHS->getType())) { 7674 if (CmpInst::isSigned(Pred)) { 7675 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7676 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7677 } else { 7678 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7679 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7680 } 7681 } else if (getTypeSizeInBits(LHS->getType()) > 7682 getTypeSizeInBits(FoundLHS->getType())) { 7683 if (CmpInst::isSigned(FoundPred)) { 7684 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7685 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7686 } else { 7687 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7688 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7689 } 7690 } 7691 7692 // Canonicalize the query to match the way instcombine will have 7693 // canonicalized the comparison. 7694 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7695 if (LHS == RHS) 7696 return CmpInst::isTrueWhenEqual(Pred); 7697 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7698 if (FoundLHS == FoundRHS) 7699 return CmpInst::isFalseWhenEqual(FoundPred); 7700 7701 // Check to see if we can make the LHS or RHS match. 7702 if (LHS == FoundRHS || RHS == FoundLHS) { 7703 if (isa<SCEVConstant>(RHS)) { 7704 std::swap(FoundLHS, FoundRHS); 7705 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7706 } else { 7707 std::swap(LHS, RHS); 7708 Pred = ICmpInst::getSwappedPredicate(Pred); 7709 } 7710 } 7711 7712 // Check whether the found predicate is the same as the desired predicate. 7713 if (FoundPred == Pred) 7714 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7715 7716 // Check whether swapping the found predicate makes it the same as the 7717 // desired predicate. 7718 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7719 if (isa<SCEVConstant>(RHS)) 7720 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7721 else 7722 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7723 RHS, LHS, FoundLHS, FoundRHS); 7724 } 7725 7726 // Unsigned comparison is the same as signed comparison when both the operands 7727 // are non-negative. 7728 if (CmpInst::isUnsigned(FoundPred) && 7729 CmpInst::getSignedPredicate(FoundPred) == Pred && 7730 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7731 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7732 7733 // Check if we can make progress by sharpening ranges. 7734 if (FoundPred == ICmpInst::ICMP_NE && 7735 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7736 7737 const SCEVConstant *C = nullptr; 7738 const SCEV *V = nullptr; 7739 7740 if (isa<SCEVConstant>(FoundLHS)) { 7741 C = cast<SCEVConstant>(FoundLHS); 7742 V = FoundRHS; 7743 } else { 7744 C = cast<SCEVConstant>(FoundRHS); 7745 V = FoundLHS; 7746 } 7747 7748 // The guarding predicate tells us that C != V. If the known range 7749 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7750 // range we consider has to correspond to same signedness as the 7751 // predicate we're interested in folding. 7752 7753 APInt Min = ICmpInst::isSigned(Pred) ? 7754 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7755 7756 if (Min == C->getAPInt()) { 7757 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7758 // This is true even if (Min + 1) wraps around -- in case of 7759 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7760 7761 APInt SharperMin = Min + 1; 7762 7763 switch (Pred) { 7764 case ICmpInst::ICMP_SGE: 7765 case ICmpInst::ICMP_UGE: 7766 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7767 // RHS, we're done. 7768 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7769 getConstant(SharperMin))) 7770 return true; 7771 7772 case ICmpInst::ICMP_SGT: 7773 case ICmpInst::ICMP_UGT: 7774 // We know from the range information that (V `Pred` Min || 7775 // V == Min). We know from the guarding condition that !(V 7776 // == Min). This gives us 7777 // 7778 // V `Pred` Min || V == Min && !(V == Min) 7779 // => V `Pred` Min 7780 // 7781 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7782 7783 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7784 return true; 7785 7786 default: 7787 // No change 7788 break; 7789 } 7790 } 7791 } 7792 7793 // Check whether the actual condition is beyond sufficient. 7794 if (FoundPred == ICmpInst::ICMP_EQ) 7795 if (ICmpInst::isTrueWhenEqual(Pred)) 7796 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7797 return true; 7798 if (Pred == ICmpInst::ICMP_NE) 7799 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7800 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7801 return true; 7802 7803 // Otherwise assume the worst. 7804 return false; 7805 } 7806 7807 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7808 const SCEV *&L, const SCEV *&R, 7809 SCEV::NoWrapFlags &Flags) { 7810 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7811 if (!AE || AE->getNumOperands() != 2) 7812 return false; 7813 7814 L = AE->getOperand(0); 7815 R = AE->getOperand(1); 7816 Flags = AE->getNoWrapFlags(); 7817 return true; 7818 } 7819 7820 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7821 const SCEV *More, 7822 APInt &C) { 7823 // We avoid subtracting expressions here because this function is usually 7824 // fairly deep in the call stack (i.e. is called many times). 7825 7826 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7827 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7828 const auto *MAR = cast<SCEVAddRecExpr>(More); 7829 7830 if (LAR->getLoop() != MAR->getLoop()) 7831 return false; 7832 7833 // We look at affine expressions only; not for correctness but to keep 7834 // getStepRecurrence cheap. 7835 if (!LAR->isAffine() || !MAR->isAffine()) 7836 return false; 7837 7838 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7839 return false; 7840 7841 Less = LAR->getStart(); 7842 More = MAR->getStart(); 7843 7844 // fall through 7845 } 7846 7847 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7848 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 7849 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 7850 C = M - L; 7851 return true; 7852 } 7853 7854 const SCEV *L, *R; 7855 SCEV::NoWrapFlags Flags; 7856 if (splitBinaryAdd(Less, L, R, Flags)) 7857 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7858 if (R == More) { 7859 C = -(LC->getAPInt()); 7860 return true; 7861 } 7862 7863 if (splitBinaryAdd(More, L, R, Flags)) 7864 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7865 if (R == Less) { 7866 C = LC->getAPInt(); 7867 return true; 7868 } 7869 7870 return false; 7871 } 7872 7873 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7874 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7875 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7876 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7877 return false; 7878 7879 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7880 if (!AddRecLHS) 7881 return false; 7882 7883 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7884 if (!AddRecFoundLHS) 7885 return false; 7886 7887 // We'd like to let SCEV reason about control dependencies, so we constrain 7888 // both the inequalities to be about add recurrences on the same loop. This 7889 // way we can use isLoopEntryGuardedByCond later. 7890 7891 const Loop *L = AddRecFoundLHS->getLoop(); 7892 if (L != AddRecLHS->getLoop()) 7893 return false; 7894 7895 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7896 // 7897 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7898 // ... (2) 7899 // 7900 // Informal proof for (2), assuming (1) [*]: 7901 // 7902 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7903 // 7904 // Then 7905 // 7906 // FoundLHS s< FoundRHS s< INT_MIN - C 7907 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7908 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7909 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7910 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7911 // <=> FoundLHS + C s< FoundRHS + C 7912 // 7913 // [*]: (1) can be proved by ruling out overflow. 7914 // 7915 // [**]: This can be proved by analyzing all the four possibilities: 7916 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7917 // (A s>= 0, B s>= 0). 7918 // 7919 // Note: 7920 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7921 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7922 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7923 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7924 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7925 // C)". 7926 7927 APInt LDiff, RDiff; 7928 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7929 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7930 LDiff != RDiff) 7931 return false; 7932 7933 if (LDiff == 0) 7934 return true; 7935 7936 APInt FoundRHSLimit; 7937 7938 if (Pred == CmpInst::ICMP_ULT) { 7939 FoundRHSLimit = -RDiff; 7940 } else { 7941 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7942 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7943 } 7944 7945 // Try to prove (1) or (2), as needed. 7946 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7947 getConstant(FoundRHSLimit)); 7948 } 7949 7950 /// isImpliedCondOperands - Test whether the condition described by Pred, 7951 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7952 /// and FoundRHS is true. 7953 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7954 const SCEV *LHS, const SCEV *RHS, 7955 const SCEV *FoundLHS, 7956 const SCEV *FoundRHS) { 7957 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7958 return true; 7959 7960 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7961 return true; 7962 7963 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7964 FoundLHS, FoundRHS) || 7965 // ~x < ~y --> x > y 7966 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7967 getNotSCEV(FoundRHS), 7968 getNotSCEV(FoundLHS)); 7969 } 7970 7971 7972 /// If Expr computes ~A, return A else return nullptr 7973 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7974 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7975 if (!Add || Add->getNumOperands() != 2 || 7976 !Add->getOperand(0)->isAllOnesValue()) 7977 return nullptr; 7978 7979 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7980 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7981 !AddRHS->getOperand(0)->isAllOnesValue()) 7982 return nullptr; 7983 7984 return AddRHS->getOperand(1); 7985 } 7986 7987 7988 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7989 template<typename MaxExprType> 7990 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7991 const SCEV *Candidate) { 7992 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7993 if (!MaxExpr) return false; 7994 7995 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 7996 } 7997 7998 7999 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8000 template<typename MaxExprType> 8001 static bool IsMinConsistingOf(ScalarEvolution &SE, 8002 const SCEV *MaybeMinExpr, 8003 const SCEV *Candidate) { 8004 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8005 if (!MaybeMaxExpr) 8006 return false; 8007 8008 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8009 } 8010 8011 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8012 ICmpInst::Predicate Pred, 8013 const SCEV *LHS, const SCEV *RHS) { 8014 8015 // If both sides are affine addrecs for the same loop, with equal 8016 // steps, and we know the recurrences don't wrap, then we only 8017 // need to check the predicate on the starting values. 8018 8019 if (!ICmpInst::isRelational(Pred)) 8020 return false; 8021 8022 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8023 if (!LAR) 8024 return false; 8025 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8026 if (!RAR) 8027 return false; 8028 if (LAR->getLoop() != RAR->getLoop()) 8029 return false; 8030 if (!LAR->isAffine() || !RAR->isAffine()) 8031 return false; 8032 8033 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8034 return false; 8035 8036 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8037 SCEV::FlagNSW : SCEV::FlagNUW; 8038 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8039 return false; 8040 8041 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8042 } 8043 8044 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8045 /// expression? 8046 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8047 ICmpInst::Predicate Pred, 8048 const SCEV *LHS, const SCEV *RHS) { 8049 switch (Pred) { 8050 default: 8051 return false; 8052 8053 case ICmpInst::ICMP_SGE: 8054 std::swap(LHS, RHS); 8055 // fall through 8056 case ICmpInst::ICMP_SLE: 8057 return 8058 // min(A, ...) <= A 8059 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8060 // A <= max(A, ...) 8061 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8062 8063 case ICmpInst::ICMP_UGE: 8064 std::swap(LHS, RHS); 8065 // fall through 8066 case ICmpInst::ICMP_ULE: 8067 return 8068 // min(A, ...) <= A 8069 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8070 // A <= max(A, ...) 8071 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8072 } 8073 8074 llvm_unreachable("covered switch fell through?!"); 8075 } 8076 8077 /// isImpliedCondOperandsHelper - Test whether the condition described by 8078 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8079 /// FoundLHS, and FoundRHS is true. 8080 bool 8081 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8082 const SCEV *LHS, const SCEV *RHS, 8083 const SCEV *FoundLHS, 8084 const SCEV *FoundRHS) { 8085 auto IsKnownPredicateFull = 8086 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8087 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8088 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8089 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8090 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8091 }; 8092 8093 switch (Pred) { 8094 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8095 case ICmpInst::ICMP_EQ: 8096 case ICmpInst::ICMP_NE: 8097 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8098 return true; 8099 break; 8100 case ICmpInst::ICMP_SLT: 8101 case ICmpInst::ICMP_SLE: 8102 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8103 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8104 return true; 8105 break; 8106 case ICmpInst::ICMP_SGT: 8107 case ICmpInst::ICMP_SGE: 8108 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8109 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8110 return true; 8111 break; 8112 case ICmpInst::ICMP_ULT: 8113 case ICmpInst::ICMP_ULE: 8114 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8115 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8116 return true; 8117 break; 8118 case ICmpInst::ICMP_UGT: 8119 case ICmpInst::ICMP_UGE: 8120 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8121 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8122 return true; 8123 break; 8124 } 8125 8126 return false; 8127 } 8128 8129 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8130 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8131 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8132 const SCEV *LHS, 8133 const SCEV *RHS, 8134 const SCEV *FoundLHS, 8135 const SCEV *FoundRHS) { 8136 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8137 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8138 // reduce the compile time impact of this optimization. 8139 return false; 8140 8141 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8142 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8143 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8144 return false; 8145 8146 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8147 8148 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8149 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8150 ConstantRange FoundLHSRange = 8151 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8152 8153 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8154 // for `LHS`: 8155 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt(); 8156 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8157 8158 // We can also compute the range of values for `LHS` that satisfy the 8159 // consequent, "`LHS` `Pred` `RHS`": 8160 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8161 ConstantRange SatisfyingLHSRange = 8162 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8163 8164 // The antecedent implies the consequent if every value of `LHS` that 8165 // satisfies the antecedent also satisfies the consequent. 8166 return SatisfyingLHSRange.contains(LHSRange); 8167 } 8168 8169 // Verify if an linear IV with positive stride can overflow when in a 8170 // less-than comparison, knowing the invariant term of the comparison, the 8171 // stride and the knowledge of NSW/NUW flags on the recurrence. 8172 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8173 bool IsSigned, bool NoWrap) { 8174 if (NoWrap) return false; 8175 8176 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8177 const SCEV *One = getOne(Stride->getType()); 8178 8179 if (IsSigned) { 8180 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8181 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8182 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8183 .getSignedMax(); 8184 8185 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8186 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8187 } 8188 8189 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8190 APInt MaxValue = APInt::getMaxValue(BitWidth); 8191 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8192 .getUnsignedMax(); 8193 8194 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8195 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8196 } 8197 8198 // Verify if an linear IV with negative stride can overflow when in a 8199 // greater-than comparison, knowing the invariant term of the comparison, 8200 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8201 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8202 bool IsSigned, bool NoWrap) { 8203 if (NoWrap) return false; 8204 8205 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8206 const SCEV *One = getOne(Stride->getType()); 8207 8208 if (IsSigned) { 8209 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8210 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8211 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8212 .getSignedMax(); 8213 8214 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8215 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8216 } 8217 8218 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8219 APInt MinValue = APInt::getMinValue(BitWidth); 8220 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8221 .getUnsignedMax(); 8222 8223 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8224 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8225 } 8226 8227 // Compute the backedge taken count knowing the interval difference, the 8228 // stride and presence of the equality in the comparison. 8229 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8230 bool Equality) { 8231 const SCEV *One = getOne(Step->getType()); 8232 Delta = Equality ? getAddExpr(Delta, Step) 8233 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8234 return getUDivExpr(Delta, Step); 8235 } 8236 8237 /// HowManyLessThans - Return the number of times a backedge containing the 8238 /// specified less-than comparison will execute. If not computable, return 8239 /// CouldNotCompute. 8240 /// 8241 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8242 /// the branch (loops exits only if condition is true). In this case, we can use 8243 /// NoWrapFlags to skip overflow checks. 8244 ScalarEvolution::ExitLimit 8245 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8246 const Loop *L, bool IsSigned, 8247 bool ControlsExit) { 8248 // We handle only IV < Invariant 8249 if (!isLoopInvariant(RHS, L)) 8250 return getCouldNotCompute(); 8251 8252 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8253 8254 // Avoid weird loops 8255 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8256 return getCouldNotCompute(); 8257 8258 bool NoWrap = ControlsExit && 8259 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8260 8261 const SCEV *Stride = IV->getStepRecurrence(*this); 8262 8263 // Avoid negative or zero stride values 8264 if (!isKnownPositive(Stride)) 8265 return getCouldNotCompute(); 8266 8267 // Avoid proven overflow cases: this will ensure that the backedge taken count 8268 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8269 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8270 // behaviors like the case of C language. 8271 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8272 return getCouldNotCompute(); 8273 8274 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8275 : ICmpInst::ICMP_ULT; 8276 const SCEV *Start = IV->getStart(); 8277 const SCEV *End = RHS; 8278 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8279 const SCEV *Diff = getMinusSCEV(RHS, Start); 8280 // If we have NoWrap set, then we can assume that the increment won't 8281 // overflow, in which case if RHS - Start is a constant, we don't need to 8282 // do a max operation since we can just figure it out statically 8283 if (NoWrap && isa<SCEVConstant>(Diff)) { 8284 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8285 if (D.isNegative()) 8286 End = Start; 8287 } else 8288 End = IsSigned ? getSMaxExpr(RHS, Start) 8289 : getUMaxExpr(RHS, Start); 8290 } 8291 8292 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8293 8294 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8295 : getUnsignedRange(Start).getUnsignedMin(); 8296 8297 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8298 : getUnsignedRange(Stride).getUnsignedMin(); 8299 8300 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8301 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8302 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8303 8304 // Although End can be a MAX expression we estimate MaxEnd considering only 8305 // the case End = RHS. This is safe because in the other case (End - Start) 8306 // is zero, leading to a zero maximum backedge taken count. 8307 APInt MaxEnd = 8308 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8309 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8310 8311 const SCEV *MaxBECount; 8312 if (isa<SCEVConstant>(BECount)) 8313 MaxBECount = BECount; 8314 else 8315 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8316 getConstant(MinStride), false); 8317 8318 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8319 MaxBECount = BECount; 8320 8321 return ExitLimit(BECount, MaxBECount); 8322 } 8323 8324 ScalarEvolution::ExitLimit 8325 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8326 const Loop *L, bool IsSigned, 8327 bool ControlsExit) { 8328 // We handle only IV > Invariant 8329 if (!isLoopInvariant(RHS, L)) 8330 return getCouldNotCompute(); 8331 8332 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8333 8334 // Avoid weird loops 8335 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8336 return getCouldNotCompute(); 8337 8338 bool NoWrap = ControlsExit && 8339 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8340 8341 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8342 8343 // Avoid negative or zero stride values 8344 if (!isKnownPositive(Stride)) 8345 return getCouldNotCompute(); 8346 8347 // Avoid proven overflow cases: this will ensure that the backedge taken count 8348 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8349 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8350 // behaviors like the case of C language. 8351 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8352 return getCouldNotCompute(); 8353 8354 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8355 : ICmpInst::ICMP_UGT; 8356 8357 const SCEV *Start = IV->getStart(); 8358 const SCEV *End = RHS; 8359 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8360 const SCEV *Diff = getMinusSCEV(RHS, Start); 8361 // If we have NoWrap set, then we can assume that the increment won't 8362 // overflow, in which case if RHS - Start is a constant, we don't need to 8363 // do a max operation since we can just figure it out statically 8364 if (NoWrap && isa<SCEVConstant>(Diff)) { 8365 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8366 if (!D.isNegative()) 8367 End = Start; 8368 } else 8369 End = IsSigned ? getSMinExpr(RHS, Start) 8370 : getUMinExpr(RHS, Start); 8371 } 8372 8373 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8374 8375 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8376 : getUnsignedRange(Start).getUnsignedMax(); 8377 8378 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8379 : getUnsignedRange(Stride).getUnsignedMin(); 8380 8381 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8382 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8383 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8384 8385 // Although End can be a MIN expression we estimate MinEnd considering only 8386 // the case End = RHS. This is safe because in the other case (Start - End) 8387 // is zero, leading to a zero maximum backedge taken count. 8388 APInt MinEnd = 8389 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8390 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8391 8392 8393 const SCEV *MaxBECount = getCouldNotCompute(); 8394 if (isa<SCEVConstant>(BECount)) 8395 MaxBECount = BECount; 8396 else 8397 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8398 getConstant(MinStride), false); 8399 8400 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8401 MaxBECount = BECount; 8402 8403 return ExitLimit(BECount, MaxBECount); 8404 } 8405 8406 /// getNumIterationsInRange - Return the number of iterations of this loop that 8407 /// produce values in the specified constant range. Another way of looking at 8408 /// this is that it returns the first iteration number where the value is not in 8409 /// the condition, thus computing the exit count. If the iteration count can't 8410 /// be computed, an instance of SCEVCouldNotCompute is returned. 8411 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8412 ScalarEvolution &SE) const { 8413 if (Range.isFullSet()) // Infinite loop. 8414 return SE.getCouldNotCompute(); 8415 8416 // If the start is a non-zero constant, shift the range to simplify things. 8417 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8418 if (!SC->getValue()->isZero()) { 8419 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8420 Operands[0] = SE.getZero(SC->getType()); 8421 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8422 getNoWrapFlags(FlagNW)); 8423 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8424 return ShiftedAddRec->getNumIterationsInRange( 8425 Range.subtract(SC->getAPInt()), SE); 8426 // This is strange and shouldn't happen. 8427 return SE.getCouldNotCompute(); 8428 } 8429 8430 // The only time we can solve this is when we have all constant indices. 8431 // Otherwise, we cannot determine the overflow conditions. 8432 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8433 return SE.getCouldNotCompute(); 8434 8435 // Okay at this point we know that all elements of the chrec are constants and 8436 // that the start element is zero. 8437 8438 // First check to see if the range contains zero. If not, the first 8439 // iteration exits. 8440 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8441 if (!Range.contains(APInt(BitWidth, 0))) 8442 return SE.getZero(getType()); 8443 8444 if (isAffine()) { 8445 // If this is an affine expression then we have this situation: 8446 // Solve {0,+,A} in Range === Ax in Range 8447 8448 // We know that zero is in the range. If A is positive then we know that 8449 // the upper value of the range must be the first possible exit value. 8450 // If A is negative then the lower of the range is the last possible loop 8451 // value. Also note that we already checked for a full range. 8452 APInt One(BitWidth,1); 8453 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8454 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8455 8456 // The exit value should be (End+A)/A. 8457 APInt ExitVal = (End + A).udiv(A); 8458 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8459 8460 // Evaluate at the exit value. If we really did fall out of the valid 8461 // range, then we computed our trip count, otherwise wrap around or other 8462 // things must have happened. 8463 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8464 if (Range.contains(Val->getValue())) 8465 return SE.getCouldNotCompute(); // Something strange happened 8466 8467 // Ensure that the previous value is in the range. This is a sanity check. 8468 assert(Range.contains( 8469 EvaluateConstantChrecAtConstant(this, 8470 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8471 "Linear scev computation is off in a bad way!"); 8472 return SE.getConstant(ExitValue); 8473 } else if (isQuadratic()) { 8474 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8475 // quadratic equation to solve it. To do this, we must frame our problem in 8476 // terms of figuring out when zero is crossed, instead of when 8477 // Range.getUpper() is crossed. 8478 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8479 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8480 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8481 // getNoWrapFlags(FlagNW) 8482 FlagAnyWrap); 8483 8484 // Next, solve the constructed addrec 8485 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8486 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8487 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8488 if (R1) { 8489 // Pick the smallest positive root value. 8490 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8491 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8492 if (!CB->getZExtValue()) 8493 std::swap(R1, R2); // R1 is the minimum root now. 8494 8495 // Make sure the root is not off by one. The returned iteration should 8496 // not be in the range, but the previous one should be. When solving 8497 // for "X*X < 5", for example, we should not return a root of 2. 8498 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8499 R1->getValue(), 8500 SE); 8501 if (Range.contains(R1Val->getValue())) { 8502 // The next iteration must be out of the range... 8503 ConstantInt *NextVal = 8504 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8505 8506 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8507 if (!Range.contains(R1Val->getValue())) 8508 return SE.getConstant(NextVal); 8509 return SE.getCouldNotCompute(); // Something strange happened 8510 } 8511 8512 // If R1 was not in the range, then it is a good return value. Make 8513 // sure that R1-1 WAS in the range though, just in case. 8514 ConstantInt *NextVal = 8515 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8516 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8517 if (Range.contains(R1Val->getValue())) 8518 return R1; 8519 return SE.getCouldNotCompute(); // Something strange happened 8520 } 8521 } 8522 } 8523 8524 return SE.getCouldNotCompute(); 8525 } 8526 8527 namespace { 8528 struct FindUndefs { 8529 bool Found; 8530 FindUndefs() : Found(false) {} 8531 8532 bool follow(const SCEV *S) { 8533 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8534 if (isa<UndefValue>(C->getValue())) 8535 Found = true; 8536 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8537 if (isa<UndefValue>(C->getValue())) 8538 Found = true; 8539 } 8540 8541 // Keep looking if we haven't found it yet. 8542 return !Found; 8543 } 8544 bool isDone() const { 8545 // Stop recursion if we have found an undef. 8546 return Found; 8547 } 8548 }; 8549 } 8550 8551 // Return true when S contains at least an undef value. 8552 static inline bool 8553 containsUndefs(const SCEV *S) { 8554 FindUndefs F; 8555 SCEVTraversal<FindUndefs> ST(F); 8556 ST.visitAll(S); 8557 8558 return F.Found; 8559 } 8560 8561 namespace { 8562 // Collect all steps of SCEV expressions. 8563 struct SCEVCollectStrides { 8564 ScalarEvolution &SE; 8565 SmallVectorImpl<const SCEV *> &Strides; 8566 8567 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8568 : SE(SE), Strides(S) {} 8569 8570 bool follow(const SCEV *S) { 8571 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8572 Strides.push_back(AR->getStepRecurrence(SE)); 8573 return true; 8574 } 8575 bool isDone() const { return false; } 8576 }; 8577 8578 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8579 struct SCEVCollectTerms { 8580 SmallVectorImpl<const SCEV *> &Terms; 8581 8582 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8583 : Terms(T) {} 8584 8585 bool follow(const SCEV *S) { 8586 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8587 if (!containsUndefs(S)) 8588 Terms.push_back(S); 8589 8590 // Stop recursion: once we collected a term, do not walk its operands. 8591 return false; 8592 } 8593 8594 // Keep looking. 8595 return true; 8596 } 8597 bool isDone() const { return false; } 8598 }; 8599 8600 // Check if a SCEV contains an AddRecExpr. 8601 struct SCEVHasAddRec { 8602 bool &ContainsAddRec; 8603 8604 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8605 ContainsAddRec = false; 8606 } 8607 8608 bool follow(const SCEV *S) { 8609 if (isa<SCEVAddRecExpr>(S)) { 8610 ContainsAddRec = true; 8611 8612 // Stop recursion: once we collected a term, do not walk its operands. 8613 return false; 8614 } 8615 8616 // Keep looking. 8617 return true; 8618 } 8619 bool isDone() const { return false; } 8620 }; 8621 8622 // Find factors that are multiplied with an expression that (possibly as a 8623 // subexpression) contains an AddRecExpr. In the expression: 8624 // 8625 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8626 // 8627 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8628 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8629 // parameters as they form a product with an induction variable. 8630 // 8631 // This collector expects all array size parameters to be in the same MulExpr. 8632 // It might be necessary to later add support for collecting parameters that are 8633 // spread over different nested MulExpr. 8634 struct SCEVCollectAddRecMultiplies { 8635 SmallVectorImpl<const SCEV *> &Terms; 8636 ScalarEvolution &SE; 8637 8638 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8639 : Terms(T), SE(SE) {} 8640 8641 bool follow(const SCEV *S) { 8642 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8643 bool HasAddRec = false; 8644 SmallVector<const SCEV *, 0> Operands; 8645 for (auto Op : Mul->operands()) { 8646 if (isa<SCEVUnknown>(Op)) { 8647 Operands.push_back(Op); 8648 } else { 8649 bool ContainsAddRec; 8650 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8651 visitAll(Op, ContiansAddRec); 8652 HasAddRec |= ContainsAddRec; 8653 } 8654 } 8655 if (Operands.size() == 0) 8656 return true; 8657 8658 if (!HasAddRec) 8659 return false; 8660 8661 Terms.push_back(SE.getMulExpr(Operands)); 8662 // Stop recursion: once we collected a term, do not walk its operands. 8663 return false; 8664 } 8665 8666 // Keep looking. 8667 return true; 8668 } 8669 bool isDone() const { return false; } 8670 }; 8671 } 8672 8673 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8674 /// two places: 8675 /// 1) The strides of AddRec expressions. 8676 /// 2) Unknowns that are multiplied with AddRec expressions. 8677 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8678 SmallVectorImpl<const SCEV *> &Terms) { 8679 SmallVector<const SCEV *, 4> Strides; 8680 SCEVCollectStrides StrideCollector(*this, Strides); 8681 visitAll(Expr, StrideCollector); 8682 8683 DEBUG({ 8684 dbgs() << "Strides:\n"; 8685 for (const SCEV *S : Strides) 8686 dbgs() << *S << "\n"; 8687 }); 8688 8689 for (const SCEV *S : Strides) { 8690 SCEVCollectTerms TermCollector(Terms); 8691 visitAll(S, TermCollector); 8692 } 8693 8694 DEBUG({ 8695 dbgs() << "Terms:\n"; 8696 for (const SCEV *T : Terms) 8697 dbgs() << *T << "\n"; 8698 }); 8699 8700 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8701 visitAll(Expr, MulCollector); 8702 } 8703 8704 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8705 SmallVectorImpl<const SCEV *> &Terms, 8706 SmallVectorImpl<const SCEV *> &Sizes) { 8707 int Last = Terms.size() - 1; 8708 const SCEV *Step = Terms[Last]; 8709 8710 // End of recursion. 8711 if (Last == 0) { 8712 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8713 SmallVector<const SCEV *, 2> Qs; 8714 for (const SCEV *Op : M->operands()) 8715 if (!isa<SCEVConstant>(Op)) 8716 Qs.push_back(Op); 8717 8718 Step = SE.getMulExpr(Qs); 8719 } 8720 8721 Sizes.push_back(Step); 8722 return true; 8723 } 8724 8725 for (const SCEV *&Term : Terms) { 8726 // Normalize the terms before the next call to findArrayDimensionsRec. 8727 const SCEV *Q, *R; 8728 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8729 8730 // Bail out when GCD does not evenly divide one of the terms. 8731 if (!R->isZero()) 8732 return false; 8733 8734 Term = Q; 8735 } 8736 8737 // Remove all SCEVConstants. 8738 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8739 return isa<SCEVConstant>(E); 8740 }), 8741 Terms.end()); 8742 8743 if (Terms.size() > 0) 8744 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8745 return false; 8746 8747 Sizes.push_back(Step); 8748 return true; 8749 } 8750 8751 // Returns true when S contains at least a SCEVUnknown parameter. 8752 static inline bool 8753 containsParameters(const SCEV *S) { 8754 struct FindParameter { 8755 bool FoundParameter; 8756 FindParameter() : FoundParameter(false) {} 8757 8758 bool follow(const SCEV *S) { 8759 if (isa<SCEVUnknown>(S)) { 8760 FoundParameter = true; 8761 // Stop recursion: we found a parameter. 8762 return false; 8763 } 8764 // Keep looking. 8765 return true; 8766 } 8767 bool isDone() const { 8768 // Stop recursion if we have found a parameter. 8769 return FoundParameter; 8770 } 8771 }; 8772 8773 FindParameter F; 8774 SCEVTraversal<FindParameter> ST(F); 8775 ST.visitAll(S); 8776 8777 return F.FoundParameter; 8778 } 8779 8780 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8781 static inline bool 8782 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8783 for (const SCEV *T : Terms) 8784 if (containsParameters(T)) 8785 return true; 8786 return false; 8787 } 8788 8789 // Return the number of product terms in S. 8790 static inline int numberOfTerms(const SCEV *S) { 8791 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8792 return Expr->getNumOperands(); 8793 return 1; 8794 } 8795 8796 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8797 if (isa<SCEVConstant>(T)) 8798 return nullptr; 8799 8800 if (isa<SCEVUnknown>(T)) 8801 return T; 8802 8803 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8804 SmallVector<const SCEV *, 2> Factors; 8805 for (const SCEV *Op : M->operands()) 8806 if (!isa<SCEVConstant>(Op)) 8807 Factors.push_back(Op); 8808 8809 return SE.getMulExpr(Factors); 8810 } 8811 8812 return T; 8813 } 8814 8815 /// Return the size of an element read or written by Inst. 8816 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8817 Type *Ty; 8818 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8819 Ty = Store->getValueOperand()->getType(); 8820 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8821 Ty = Load->getType(); 8822 else 8823 return nullptr; 8824 8825 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8826 return getSizeOfExpr(ETy, Ty); 8827 } 8828 8829 /// Second step of delinearization: compute the array dimensions Sizes from the 8830 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8831 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8832 SmallVectorImpl<const SCEV *> &Sizes, 8833 const SCEV *ElementSize) const { 8834 8835 if (Terms.size() < 1 || !ElementSize) 8836 return; 8837 8838 // Early return when Terms do not contain parameters: we do not delinearize 8839 // non parametric SCEVs. 8840 if (!containsParameters(Terms)) 8841 return; 8842 8843 DEBUG({ 8844 dbgs() << "Terms:\n"; 8845 for (const SCEV *T : Terms) 8846 dbgs() << *T << "\n"; 8847 }); 8848 8849 // Remove duplicates. 8850 std::sort(Terms.begin(), Terms.end()); 8851 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8852 8853 // Put larger terms first. 8854 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8855 return numberOfTerms(LHS) > numberOfTerms(RHS); 8856 }); 8857 8858 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8859 8860 // Try to divide all terms by the element size. If term is not divisible by 8861 // element size, proceed with the original term. 8862 for (const SCEV *&Term : Terms) { 8863 const SCEV *Q, *R; 8864 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8865 if (!Q->isZero()) 8866 Term = Q; 8867 } 8868 8869 SmallVector<const SCEV *, 4> NewTerms; 8870 8871 // Remove constant factors. 8872 for (const SCEV *T : Terms) 8873 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8874 NewTerms.push_back(NewT); 8875 8876 DEBUG({ 8877 dbgs() << "Terms after sorting:\n"; 8878 for (const SCEV *T : NewTerms) 8879 dbgs() << *T << "\n"; 8880 }); 8881 8882 if (NewTerms.empty() || 8883 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8884 Sizes.clear(); 8885 return; 8886 } 8887 8888 // The last element to be pushed into Sizes is the size of an element. 8889 Sizes.push_back(ElementSize); 8890 8891 DEBUG({ 8892 dbgs() << "Sizes:\n"; 8893 for (const SCEV *S : Sizes) 8894 dbgs() << *S << "\n"; 8895 }); 8896 } 8897 8898 /// Third step of delinearization: compute the access functions for the 8899 /// Subscripts based on the dimensions in Sizes. 8900 void ScalarEvolution::computeAccessFunctions( 8901 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8902 SmallVectorImpl<const SCEV *> &Sizes) { 8903 8904 // Early exit in case this SCEV is not an affine multivariate function. 8905 if (Sizes.empty()) 8906 return; 8907 8908 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8909 if (!AR->isAffine()) 8910 return; 8911 8912 const SCEV *Res = Expr; 8913 int Last = Sizes.size() - 1; 8914 for (int i = Last; i >= 0; i--) { 8915 const SCEV *Q, *R; 8916 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8917 8918 DEBUG({ 8919 dbgs() << "Res: " << *Res << "\n"; 8920 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8921 dbgs() << "Res divided by Sizes[i]:\n"; 8922 dbgs() << "Quotient: " << *Q << "\n"; 8923 dbgs() << "Remainder: " << *R << "\n"; 8924 }); 8925 8926 Res = Q; 8927 8928 // Do not record the last subscript corresponding to the size of elements in 8929 // the array. 8930 if (i == Last) { 8931 8932 // Bail out if the remainder is too complex. 8933 if (isa<SCEVAddRecExpr>(R)) { 8934 Subscripts.clear(); 8935 Sizes.clear(); 8936 return; 8937 } 8938 8939 continue; 8940 } 8941 8942 // Record the access function for the current subscript. 8943 Subscripts.push_back(R); 8944 } 8945 8946 // Also push in last position the remainder of the last division: it will be 8947 // the access function of the innermost dimension. 8948 Subscripts.push_back(Res); 8949 8950 std::reverse(Subscripts.begin(), Subscripts.end()); 8951 8952 DEBUG({ 8953 dbgs() << "Subscripts:\n"; 8954 for (const SCEV *S : Subscripts) 8955 dbgs() << *S << "\n"; 8956 }); 8957 } 8958 8959 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8960 /// sizes of an array access. Returns the remainder of the delinearization that 8961 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8962 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8963 /// expressions in the stride and base of a SCEV corresponding to the 8964 /// computation of a GCD (greatest common divisor) of base and stride. When 8965 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8966 /// 8967 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8968 /// 8969 /// void foo(long n, long m, long o, double A[n][m][o]) { 8970 /// 8971 /// for (long i = 0; i < n; i++) 8972 /// for (long j = 0; j < m; j++) 8973 /// for (long k = 0; k < o; k++) 8974 /// A[i][j][k] = 1.0; 8975 /// } 8976 /// 8977 /// the delinearization input is the following AddRec SCEV: 8978 /// 8979 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8980 /// 8981 /// From this SCEV, we are able to say that the base offset of the access is %A 8982 /// because it appears as an offset that does not divide any of the strides in 8983 /// the loops: 8984 /// 8985 /// CHECK: Base offset: %A 8986 /// 8987 /// and then SCEV->delinearize determines the size of some of the dimensions of 8988 /// the array as these are the multiples by which the strides are happening: 8989 /// 8990 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8991 /// 8992 /// Note that the outermost dimension remains of UnknownSize because there are 8993 /// no strides that would help identifying the size of the last dimension: when 8994 /// the array has been statically allocated, one could compute the size of that 8995 /// dimension by dividing the overall size of the array by the size of the known 8996 /// dimensions: %m * %o * 8. 8997 /// 8998 /// Finally delinearize provides the access functions for the array reference 8999 /// that does correspond to A[i][j][k] of the above C testcase: 9000 /// 9001 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9002 /// 9003 /// The testcases are checking the output of a function pass: 9004 /// DelinearizationPass that walks through all loads and stores of a function 9005 /// asking for the SCEV of the memory access with respect to all enclosing 9006 /// loops, calling SCEV->delinearize on that and printing the results. 9007 9008 void ScalarEvolution::delinearize(const SCEV *Expr, 9009 SmallVectorImpl<const SCEV *> &Subscripts, 9010 SmallVectorImpl<const SCEV *> &Sizes, 9011 const SCEV *ElementSize) { 9012 // First step: collect parametric terms. 9013 SmallVector<const SCEV *, 4> Terms; 9014 collectParametricTerms(Expr, Terms); 9015 9016 if (Terms.empty()) 9017 return; 9018 9019 // Second step: find subscript sizes. 9020 findArrayDimensions(Terms, Sizes, ElementSize); 9021 9022 if (Sizes.empty()) 9023 return; 9024 9025 // Third step: compute the access functions for each subscript. 9026 computeAccessFunctions(Expr, Subscripts, Sizes); 9027 9028 if (Subscripts.empty()) 9029 return; 9030 9031 DEBUG({ 9032 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9033 dbgs() << "ArrayDecl[UnknownSize]"; 9034 for (const SCEV *S : Sizes) 9035 dbgs() << "[" << *S << "]"; 9036 9037 dbgs() << "\nArrayRef"; 9038 for (const SCEV *S : Subscripts) 9039 dbgs() << "[" << *S << "]"; 9040 dbgs() << "\n"; 9041 }); 9042 } 9043 9044 //===----------------------------------------------------------------------===// 9045 // SCEVCallbackVH Class Implementation 9046 //===----------------------------------------------------------------------===// 9047 9048 void ScalarEvolution::SCEVCallbackVH::deleted() { 9049 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9050 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9051 SE->ConstantEvolutionLoopExitValue.erase(PN); 9052 SE->eraseValueFromMap(getValPtr()); 9053 // this now dangles! 9054 } 9055 9056 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9057 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9058 9059 // Forget all the expressions associated with users of the old value, 9060 // so that future queries will recompute the expressions using the new 9061 // value. 9062 Value *Old = getValPtr(); 9063 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9064 SmallPtrSet<User *, 8> Visited; 9065 while (!Worklist.empty()) { 9066 User *U = Worklist.pop_back_val(); 9067 // Deleting the Old value will cause this to dangle. Postpone 9068 // that until everything else is done. 9069 if (U == Old) 9070 continue; 9071 if (!Visited.insert(U).second) 9072 continue; 9073 if (PHINode *PN = dyn_cast<PHINode>(U)) 9074 SE->ConstantEvolutionLoopExitValue.erase(PN); 9075 SE->eraseValueFromMap(U); 9076 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9077 } 9078 // Delete the Old value. 9079 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9080 SE->ConstantEvolutionLoopExitValue.erase(PN); 9081 SE->eraseValueFromMap(Old); 9082 // this now dangles! 9083 } 9084 9085 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9086 : CallbackVH(V), SE(se) {} 9087 9088 //===----------------------------------------------------------------------===// 9089 // ScalarEvolution Class Implementation 9090 //===----------------------------------------------------------------------===// 9091 9092 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9093 AssumptionCache &AC, DominatorTree &DT, 9094 LoopInfo &LI) 9095 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9096 CouldNotCompute(new SCEVCouldNotCompute()), 9097 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9098 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9099 FirstUnknown(nullptr) {} 9100 9101 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9102 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 9103 CouldNotCompute(std::move(Arg.CouldNotCompute)), 9104 ValueExprMap(std::move(Arg.ValueExprMap)), 9105 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9106 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9107 ConstantEvolutionLoopExitValue( 9108 std::move(Arg.ConstantEvolutionLoopExitValue)), 9109 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9110 LoopDispositions(std::move(Arg.LoopDispositions)), 9111 BlockDispositions(std::move(Arg.BlockDispositions)), 9112 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9113 SignedRanges(std::move(Arg.SignedRanges)), 9114 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9115 UniquePreds(std::move(Arg.UniquePreds)), 9116 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9117 FirstUnknown(Arg.FirstUnknown) { 9118 Arg.FirstUnknown = nullptr; 9119 } 9120 9121 ScalarEvolution::~ScalarEvolution() { 9122 // Iterate through all the SCEVUnknown instances and call their 9123 // destructors, so that they release their references to their values. 9124 for (SCEVUnknown *U = FirstUnknown; U;) { 9125 SCEVUnknown *Tmp = U; 9126 U = U->Next; 9127 Tmp->~SCEVUnknown(); 9128 } 9129 FirstUnknown = nullptr; 9130 9131 ExprValueMap.clear(); 9132 ValueExprMap.clear(); 9133 HasRecMap.clear(); 9134 9135 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9136 // that a loop had multiple computable exits. 9137 for (auto &BTCI : BackedgeTakenCounts) 9138 BTCI.second.clear(); 9139 9140 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9141 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9142 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9143 } 9144 9145 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9146 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9147 } 9148 9149 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9150 const Loop *L) { 9151 // Print all inner loops first 9152 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9153 PrintLoopInfo(OS, SE, *I); 9154 9155 OS << "Loop "; 9156 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9157 OS << ": "; 9158 9159 SmallVector<BasicBlock *, 8> ExitBlocks; 9160 L->getExitBlocks(ExitBlocks); 9161 if (ExitBlocks.size() != 1) 9162 OS << "<multiple exits> "; 9163 9164 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9165 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9166 } else { 9167 OS << "Unpredictable backedge-taken count. "; 9168 } 9169 9170 OS << "\n" 9171 "Loop "; 9172 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9173 OS << ": "; 9174 9175 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9176 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9177 } else { 9178 OS << "Unpredictable max backedge-taken count. "; 9179 } 9180 9181 OS << "\n"; 9182 } 9183 9184 void ScalarEvolution::print(raw_ostream &OS) const { 9185 // ScalarEvolution's implementation of the print method is to print 9186 // out SCEV values of all instructions that are interesting. Doing 9187 // this potentially causes it to create new SCEV objects though, 9188 // which technically conflicts with the const qualifier. This isn't 9189 // observable from outside the class though, so casting away the 9190 // const isn't dangerous. 9191 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9192 9193 OS << "Classifying expressions for: "; 9194 F.printAsOperand(OS, /*PrintType=*/false); 9195 OS << "\n"; 9196 for (Instruction &I : instructions(F)) 9197 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9198 OS << I << '\n'; 9199 OS << " --> "; 9200 const SCEV *SV = SE.getSCEV(&I); 9201 SV->print(OS); 9202 if (!isa<SCEVCouldNotCompute>(SV)) { 9203 OS << " U: "; 9204 SE.getUnsignedRange(SV).print(OS); 9205 OS << " S: "; 9206 SE.getSignedRange(SV).print(OS); 9207 } 9208 9209 const Loop *L = LI.getLoopFor(I.getParent()); 9210 9211 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9212 if (AtUse != SV) { 9213 OS << " --> "; 9214 AtUse->print(OS); 9215 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9216 OS << " U: "; 9217 SE.getUnsignedRange(AtUse).print(OS); 9218 OS << " S: "; 9219 SE.getSignedRange(AtUse).print(OS); 9220 } 9221 } 9222 9223 if (L) { 9224 OS << "\t\t" "Exits: "; 9225 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9226 if (!SE.isLoopInvariant(ExitValue, L)) { 9227 OS << "<<Unknown>>"; 9228 } else { 9229 OS << *ExitValue; 9230 } 9231 } 9232 9233 OS << "\n"; 9234 } 9235 9236 OS << "Determining loop execution counts for: "; 9237 F.printAsOperand(OS, /*PrintType=*/false); 9238 OS << "\n"; 9239 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9240 PrintLoopInfo(OS, &SE, *I); 9241 } 9242 9243 ScalarEvolution::LoopDisposition 9244 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9245 auto &Values = LoopDispositions[S]; 9246 for (auto &V : Values) { 9247 if (V.getPointer() == L) 9248 return V.getInt(); 9249 } 9250 Values.emplace_back(L, LoopVariant); 9251 LoopDisposition D = computeLoopDisposition(S, L); 9252 auto &Values2 = LoopDispositions[S]; 9253 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9254 if (V.getPointer() == L) { 9255 V.setInt(D); 9256 break; 9257 } 9258 } 9259 return D; 9260 } 9261 9262 ScalarEvolution::LoopDisposition 9263 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9264 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9265 case scConstant: 9266 return LoopInvariant; 9267 case scTruncate: 9268 case scZeroExtend: 9269 case scSignExtend: 9270 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9271 case scAddRecExpr: { 9272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9273 9274 // If L is the addrec's loop, it's computable. 9275 if (AR->getLoop() == L) 9276 return LoopComputable; 9277 9278 // Add recurrences are never invariant in the function-body (null loop). 9279 if (!L) 9280 return LoopVariant; 9281 9282 // This recurrence is variant w.r.t. L if L contains AR's loop. 9283 if (L->contains(AR->getLoop())) 9284 return LoopVariant; 9285 9286 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9287 if (AR->getLoop()->contains(L)) 9288 return LoopInvariant; 9289 9290 // This recurrence is variant w.r.t. L if any of its operands 9291 // are variant. 9292 for (auto *Op : AR->operands()) 9293 if (!isLoopInvariant(Op, L)) 9294 return LoopVariant; 9295 9296 // Otherwise it's loop-invariant. 9297 return LoopInvariant; 9298 } 9299 case scAddExpr: 9300 case scMulExpr: 9301 case scUMaxExpr: 9302 case scSMaxExpr: { 9303 bool HasVarying = false; 9304 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9305 LoopDisposition D = getLoopDisposition(Op, L); 9306 if (D == LoopVariant) 9307 return LoopVariant; 9308 if (D == LoopComputable) 9309 HasVarying = true; 9310 } 9311 return HasVarying ? LoopComputable : LoopInvariant; 9312 } 9313 case scUDivExpr: { 9314 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9315 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9316 if (LD == LoopVariant) 9317 return LoopVariant; 9318 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9319 if (RD == LoopVariant) 9320 return LoopVariant; 9321 return (LD == LoopInvariant && RD == LoopInvariant) ? 9322 LoopInvariant : LoopComputable; 9323 } 9324 case scUnknown: 9325 // All non-instruction values are loop invariant. All instructions are loop 9326 // invariant if they are not contained in the specified loop. 9327 // Instructions are never considered invariant in the function body 9328 // (null loop) because they are defined within the "loop". 9329 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9330 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9331 return LoopInvariant; 9332 case scCouldNotCompute: 9333 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9334 } 9335 llvm_unreachable("Unknown SCEV kind!"); 9336 } 9337 9338 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9339 return getLoopDisposition(S, L) == LoopInvariant; 9340 } 9341 9342 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9343 return getLoopDisposition(S, L) == LoopComputable; 9344 } 9345 9346 ScalarEvolution::BlockDisposition 9347 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9348 auto &Values = BlockDispositions[S]; 9349 for (auto &V : Values) { 9350 if (V.getPointer() == BB) 9351 return V.getInt(); 9352 } 9353 Values.emplace_back(BB, DoesNotDominateBlock); 9354 BlockDisposition D = computeBlockDisposition(S, BB); 9355 auto &Values2 = BlockDispositions[S]; 9356 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9357 if (V.getPointer() == BB) { 9358 V.setInt(D); 9359 break; 9360 } 9361 } 9362 return D; 9363 } 9364 9365 ScalarEvolution::BlockDisposition 9366 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9367 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9368 case scConstant: 9369 return ProperlyDominatesBlock; 9370 case scTruncate: 9371 case scZeroExtend: 9372 case scSignExtend: 9373 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9374 case scAddRecExpr: { 9375 // This uses a "dominates" query instead of "properly dominates" query 9376 // to test for proper dominance too, because the instruction which 9377 // produces the addrec's value is a PHI, and a PHI effectively properly 9378 // dominates its entire containing block. 9379 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9380 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9381 return DoesNotDominateBlock; 9382 } 9383 // FALL THROUGH into SCEVNAryExpr handling. 9384 case scAddExpr: 9385 case scMulExpr: 9386 case scUMaxExpr: 9387 case scSMaxExpr: { 9388 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9389 bool Proper = true; 9390 for (const SCEV *NAryOp : NAry->operands()) { 9391 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9392 if (D == DoesNotDominateBlock) 9393 return DoesNotDominateBlock; 9394 if (D == DominatesBlock) 9395 Proper = false; 9396 } 9397 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9398 } 9399 case scUDivExpr: { 9400 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9401 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9402 BlockDisposition LD = getBlockDisposition(LHS, BB); 9403 if (LD == DoesNotDominateBlock) 9404 return DoesNotDominateBlock; 9405 BlockDisposition RD = getBlockDisposition(RHS, BB); 9406 if (RD == DoesNotDominateBlock) 9407 return DoesNotDominateBlock; 9408 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9409 ProperlyDominatesBlock : DominatesBlock; 9410 } 9411 case scUnknown: 9412 if (Instruction *I = 9413 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9414 if (I->getParent() == BB) 9415 return DominatesBlock; 9416 if (DT.properlyDominates(I->getParent(), BB)) 9417 return ProperlyDominatesBlock; 9418 return DoesNotDominateBlock; 9419 } 9420 return ProperlyDominatesBlock; 9421 case scCouldNotCompute: 9422 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9423 } 9424 llvm_unreachable("Unknown SCEV kind!"); 9425 } 9426 9427 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9428 return getBlockDisposition(S, BB) >= DominatesBlock; 9429 } 9430 9431 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9432 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9433 } 9434 9435 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9436 // Search for a SCEV expression node within an expression tree. 9437 // Implements SCEVTraversal::Visitor. 9438 struct SCEVSearch { 9439 const SCEV *Node; 9440 bool IsFound; 9441 9442 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9443 9444 bool follow(const SCEV *S) { 9445 IsFound |= (S == Node); 9446 return !IsFound; 9447 } 9448 bool isDone() const { return IsFound; } 9449 }; 9450 9451 SCEVSearch Search(Op); 9452 visitAll(S, Search); 9453 return Search.IsFound; 9454 } 9455 9456 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9457 ValuesAtScopes.erase(S); 9458 LoopDispositions.erase(S); 9459 BlockDispositions.erase(S); 9460 UnsignedRanges.erase(S); 9461 SignedRanges.erase(S); 9462 ExprValueMap.erase(S); 9463 HasRecMap.erase(S); 9464 9465 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9466 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9467 BackedgeTakenInfo &BEInfo = I->second; 9468 if (BEInfo.hasOperand(S, this)) { 9469 BEInfo.clear(); 9470 BackedgeTakenCounts.erase(I++); 9471 } 9472 else 9473 ++I; 9474 } 9475 } 9476 9477 typedef DenseMap<const Loop *, std::string> VerifyMap; 9478 9479 /// replaceSubString - Replaces all occurrences of From in Str with To. 9480 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9481 size_t Pos = 0; 9482 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9483 Str.replace(Pos, From.size(), To.data(), To.size()); 9484 Pos += To.size(); 9485 } 9486 } 9487 9488 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9489 static void 9490 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9491 std::string &S = Map[L]; 9492 if (S.empty()) { 9493 raw_string_ostream OS(S); 9494 SE.getBackedgeTakenCount(L)->print(OS); 9495 9496 // false and 0 are semantically equivalent. This can happen in dead loops. 9497 replaceSubString(OS.str(), "false", "0"); 9498 // Remove wrap flags, their use in SCEV is highly fragile. 9499 // FIXME: Remove this when SCEV gets smarter about them. 9500 replaceSubString(OS.str(), "<nw>", ""); 9501 replaceSubString(OS.str(), "<nsw>", ""); 9502 replaceSubString(OS.str(), "<nuw>", ""); 9503 } 9504 9505 for (auto *R : reverse(*L)) 9506 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 9507 } 9508 9509 void ScalarEvolution::verify() const { 9510 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9511 9512 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9513 // FIXME: It would be much better to store actual values instead of strings, 9514 // but SCEV pointers will change if we drop the caches. 9515 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9516 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9517 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9518 9519 // Gather stringified backedge taken counts for all loops using a fresh 9520 // ScalarEvolution object. 9521 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9522 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9523 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9524 9525 // Now compare whether they're the same with and without caches. This allows 9526 // verifying that no pass changed the cache. 9527 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9528 "New loops suddenly appeared!"); 9529 9530 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9531 OldE = BackedgeDumpsOld.end(), 9532 NewI = BackedgeDumpsNew.begin(); 9533 OldI != OldE; ++OldI, ++NewI) { 9534 assert(OldI->first == NewI->first && "Loop order changed!"); 9535 9536 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9537 // changes. 9538 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9539 // means that a pass is buggy or SCEV has to learn a new pattern but is 9540 // usually not harmful. 9541 if (OldI->second != NewI->second && 9542 OldI->second.find("undef") == std::string::npos && 9543 NewI->second.find("undef") == std::string::npos && 9544 OldI->second != "***COULDNOTCOMPUTE***" && 9545 NewI->second != "***COULDNOTCOMPUTE***") { 9546 dbgs() << "SCEVValidator: SCEV for loop '" 9547 << OldI->first->getHeader()->getName() 9548 << "' changed from '" << OldI->second 9549 << "' to '" << NewI->second << "'!\n"; 9550 std::abort(); 9551 } 9552 } 9553 9554 // TODO: Verify more things. 9555 } 9556 9557 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9558 AnalysisManager<Function> *AM) { 9559 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9560 AM->getResult<AssumptionAnalysis>(F), 9561 AM->getResult<DominatorTreeAnalysis>(F), 9562 AM->getResult<LoopAnalysis>(F)); 9563 } 9564 9565 PreservedAnalyses 9566 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9567 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9568 return PreservedAnalyses::all(); 9569 } 9570 9571 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9572 "Scalar Evolution Analysis", false, true) 9573 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9574 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9575 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9576 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9577 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9578 "Scalar Evolution Analysis", false, true) 9579 char ScalarEvolutionWrapperPass::ID = 0; 9580 9581 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9582 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9583 } 9584 9585 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9586 SE.reset(new ScalarEvolution( 9587 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9588 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9589 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9590 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9591 return false; 9592 } 9593 9594 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9595 9596 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9597 SE->print(OS); 9598 } 9599 9600 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9601 if (!VerifySCEV) 9602 return; 9603 9604 SE->verify(); 9605 } 9606 9607 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9608 AU.setPreservesAll(); 9609 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9610 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9611 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9612 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9613 } 9614 9615 const SCEVPredicate * 9616 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 9617 const SCEVConstant *RHS) { 9618 FoldingSetNodeID ID; 9619 // Unique this node based on the arguments 9620 ID.AddInteger(SCEVPredicate::P_Equal); 9621 ID.AddPointer(LHS); 9622 ID.AddPointer(RHS); 9623 void *IP = nullptr; 9624 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9625 return S; 9626 SCEVEqualPredicate *Eq = new (SCEVAllocator) 9627 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 9628 UniquePreds.InsertNode(Eq, IP); 9629 return Eq; 9630 } 9631 9632 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 9633 const SCEVAddRecExpr *AR, 9634 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 9635 FoldingSetNodeID ID; 9636 // Unique this node based on the arguments 9637 ID.AddInteger(SCEVPredicate::P_Wrap); 9638 ID.AddPointer(AR); 9639 ID.AddInteger(AddedFlags); 9640 void *IP = nullptr; 9641 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9642 return S; 9643 auto *OF = new (SCEVAllocator) 9644 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 9645 UniquePreds.InsertNode(OF, IP); 9646 return OF; 9647 } 9648 9649 namespace { 9650 9651 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 9652 public: 9653 // Rewrites \p S in the context of a loop L and the predicate A. 9654 // If Assume is true, rewrite is free to add further predicates to A 9655 // such that the result will be an AddRecExpr. 9656 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 9657 SCEVUnionPredicate &A, bool Assume) { 9658 SCEVPredicateRewriter Rewriter(L, SE, A, Assume); 9659 return Rewriter.visit(S); 9660 } 9661 9662 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 9663 SCEVUnionPredicate &P, bool Assume) 9664 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {} 9665 9666 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 9667 auto ExprPreds = P.getPredicatesForExpr(Expr); 9668 for (auto *Pred : ExprPreds) 9669 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred)) 9670 if (IPred->getLHS() == Expr) 9671 return IPred->getRHS(); 9672 9673 return Expr; 9674 } 9675 9676 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 9677 const SCEV *Operand = visit(Expr->getOperand()); 9678 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 9679 if (AR && AR->getLoop() == L && AR->isAffine()) { 9680 // This couldn't be folded because the operand didn't have the nuw 9681 // flag. Add the nusw flag as an assumption that we could make. 9682 const SCEV *Step = AR->getStepRecurrence(SE); 9683 Type *Ty = Expr->getType(); 9684 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 9685 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 9686 SE.getSignExtendExpr(Step, Ty), L, 9687 AR->getNoWrapFlags()); 9688 } 9689 return SE.getZeroExtendExpr(Operand, Expr->getType()); 9690 } 9691 9692 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 9693 const SCEV *Operand = visit(Expr->getOperand()); 9694 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 9695 if (AR && AR->getLoop() == L && AR->isAffine()) { 9696 // This couldn't be folded because the operand didn't have the nsw 9697 // flag. Add the nssw flag as an assumption that we could make. 9698 const SCEV *Step = AR->getStepRecurrence(SE); 9699 Type *Ty = Expr->getType(); 9700 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 9701 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 9702 SE.getSignExtendExpr(Step, Ty), L, 9703 AR->getNoWrapFlags()); 9704 } 9705 return SE.getSignExtendExpr(Operand, Expr->getType()); 9706 } 9707 9708 private: 9709 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 9710 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 9711 auto *A = SE.getWrapPredicate(AR, AddedFlags); 9712 if (!Assume) { 9713 // Check if we've already made this assumption. 9714 if (P.implies(A)) 9715 return true; 9716 return false; 9717 } 9718 P.add(A); 9719 return true; 9720 } 9721 9722 SCEVUnionPredicate &P; 9723 const Loop *L; 9724 bool Assume; 9725 }; 9726 } // end anonymous namespace 9727 9728 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 9729 SCEVUnionPredicate &Preds) { 9730 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false); 9731 } 9732 9733 const SCEV * 9734 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, 9735 SCEVUnionPredicate &Preds) { 9736 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, true); 9737 } 9738 9739 /// SCEV predicates 9740 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 9741 SCEVPredicateKind Kind) 9742 : FastID(ID), Kind(Kind) {} 9743 9744 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 9745 const SCEVUnknown *LHS, 9746 const SCEVConstant *RHS) 9747 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 9748 9749 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 9750 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N); 9751 9752 if (!Op) 9753 return false; 9754 9755 return Op->LHS == LHS && Op->RHS == RHS; 9756 } 9757 9758 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 9759 9760 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 9761 9762 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 9763 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 9764 } 9765 9766 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 9767 const SCEVAddRecExpr *AR, 9768 IncrementWrapFlags Flags) 9769 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 9770 9771 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 9772 9773 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 9774 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 9775 9776 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 9777 } 9778 9779 bool SCEVWrapPredicate::isAlwaysTrue() const { 9780 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 9781 IncrementWrapFlags IFlags = Flags; 9782 9783 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 9784 IFlags = clearFlags(IFlags, IncrementNSSW); 9785 9786 return IFlags == IncrementAnyWrap; 9787 } 9788 9789 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 9790 OS.indent(Depth) << *getExpr() << " Added Flags: "; 9791 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 9792 OS << "<nusw>"; 9793 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 9794 OS << "<nssw>"; 9795 OS << "\n"; 9796 } 9797 9798 SCEVWrapPredicate::IncrementWrapFlags 9799 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 9800 ScalarEvolution &SE) { 9801 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 9802 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 9803 9804 // We can safely transfer the NSW flag as NSSW. 9805 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 9806 ImpliedFlags = IncrementNSSW; 9807 9808 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 9809 // If the increment is positive, the SCEV NUW flag will also imply the 9810 // WrapPredicate NUSW flag. 9811 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 9812 if (Step->getValue()->getValue().isNonNegative()) 9813 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 9814 } 9815 9816 return ImpliedFlags; 9817 } 9818 9819 /// Union predicates don't get cached so create a dummy set ID for it. 9820 SCEVUnionPredicate::SCEVUnionPredicate() 9821 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 9822 9823 bool SCEVUnionPredicate::isAlwaysTrue() const { 9824 return all_of(Preds, 9825 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 9826 } 9827 9828 ArrayRef<const SCEVPredicate *> 9829 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 9830 auto I = SCEVToPreds.find(Expr); 9831 if (I == SCEVToPreds.end()) 9832 return ArrayRef<const SCEVPredicate *>(); 9833 return I->second; 9834 } 9835 9836 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 9837 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) 9838 return all_of(Set->Preds, 9839 [this](const SCEVPredicate *I) { return this->implies(I); }); 9840 9841 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 9842 if (ScevPredsIt == SCEVToPreds.end()) 9843 return false; 9844 auto &SCEVPreds = ScevPredsIt->second; 9845 9846 return any_of(SCEVPreds, 9847 [N](const SCEVPredicate *I) { return I->implies(N); }); 9848 } 9849 9850 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 9851 9852 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 9853 for (auto Pred : Preds) 9854 Pred->print(OS, Depth); 9855 } 9856 9857 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 9858 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) { 9859 for (auto Pred : Set->Preds) 9860 add(Pred); 9861 return; 9862 } 9863 9864 if (implies(N)) 9865 return; 9866 9867 const SCEV *Key = N->getExpr(); 9868 assert(Key && "Only SCEVUnionPredicate doesn't have an " 9869 " associated expression!"); 9870 9871 SCEVToPreds[Key].push_back(N); 9872 Preds.push_back(N); 9873 } 9874 9875 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 9876 Loop &L) 9877 : SE(SE), L(L), Generation(0) {} 9878 9879 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 9880 const SCEV *Expr = SE.getSCEV(V); 9881 RewriteEntry &Entry = RewriteMap[Expr]; 9882 9883 // If we already have an entry and the version matches, return it. 9884 if (Entry.second && Generation == Entry.first) 9885 return Entry.second; 9886 9887 // We found an entry but it's stale. Rewrite the stale entry 9888 // acording to the current predicate. 9889 if (Entry.second) 9890 Expr = Entry.second; 9891 9892 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 9893 Entry = {Generation, NewSCEV}; 9894 9895 return NewSCEV; 9896 } 9897 9898 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 9899 if (Preds.implies(&Pred)) 9900 return; 9901 Preds.add(&Pred); 9902 updateGeneration(); 9903 } 9904 9905 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 9906 return Preds; 9907 } 9908 9909 void PredicatedScalarEvolution::updateGeneration() { 9910 // If the generation number wrapped recompute everything. 9911 if (++Generation == 0) { 9912 for (auto &II : RewriteMap) { 9913 const SCEV *Rewritten = II.second.second; 9914 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 9915 } 9916 } 9917 } 9918 9919 void PredicatedScalarEvolution::setNoOverflow( 9920 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 9921 const SCEV *Expr = getSCEV(V); 9922 const auto *AR = cast<SCEVAddRecExpr>(Expr); 9923 9924 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 9925 9926 // Clear the statically implied flags. 9927 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 9928 addPredicate(*SE.getWrapPredicate(AR, Flags)); 9929 9930 auto II = FlagsMap.insert({V, Flags}); 9931 if (!II.second) 9932 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 9933 } 9934 9935 bool PredicatedScalarEvolution::hasNoOverflow( 9936 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 9937 const SCEV *Expr = getSCEV(V); 9938 const auto *AR = cast<SCEVAddRecExpr>(Expr); 9939 9940 Flags = SCEVWrapPredicate::clearFlags( 9941 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 9942 9943 auto II = FlagsMap.find(V); 9944 9945 if (II != FlagsMap.end()) 9946 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 9947 9948 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 9949 } 9950 9951 const SCEV *PredicatedScalarEvolution::getAsAddRec(Value *V) { 9952 const SCEV *Expr = this->getSCEV(V); 9953 const SCEV *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds); 9954 updateGeneration(); 9955 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 9956 return New; 9957 } 9958 9959 PredicatedScalarEvolution:: 9960 PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) : 9961 RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 9962 Generation(Init.Generation) { 9963 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I) 9964 FlagsMap.insert(*I); 9965 } 9966