1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 INITIALIZE_PASS(ScalarEvolution, "scalar-evolution", 107 "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 181 UniqueSCEVs.InsertNode(S, IP); 182 return S; 183 } 184 185 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(getContext(), Val)); 187 } 188 189 const SCEV * 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 192 return getConstant(ConstantInt::get(ITy, V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 202 unsigned SCEVTy, const SCEV *op, const Type *ty) 203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 204 205 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 206 return Op->dominates(BB, DT); 207 } 208 209 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->properlyDominates(BB, DT); 211 } 212 213 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 214 const SCEV *op, const Type *ty) 215 : SCEVCastExpr(ID, scTruncate, op, ty) { 216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 217 (Ty->isIntegerTy() || Ty->isPointerTy()) && 218 "Cannot truncate non-integer value!"); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 226 const SCEV *op, const Type *ty) 227 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 229 (Ty->isIntegerTy() || Ty->isPointerTy()) && 230 "Cannot zero extend non-integer value!"); 231 } 232 233 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 235 } 236 237 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 238 const SCEV *op, const Type *ty) 239 : SCEVCastExpr(ID, scSignExtend, op, ty) { 240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 241 (Ty->isIntegerTy() || Ty->isPointerTy()) && 242 "Cannot sign extend non-integer value!"); 243 } 244 245 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 247 } 248 249 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 250 const char *OpStr = getOperationStr(); 251 OS << "("; 252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 253 OS << **I; 254 if (llvm::next(I) != E) 255 OS << OpStr; 256 } 257 OS << ")"; 258 } 259 260 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 261 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) 262 if (!(*I)->dominates(BB, DT)) 263 return false; 264 return true; 265 } 266 267 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 268 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) 269 if (!(*I)->properlyDominates(BB, DT)) 270 return false; 271 return true; 272 } 273 274 bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const { 275 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) 276 if (!(*I)->isLoopInvariant(L)) 277 return false; 278 return true; 279 } 280 281 // hasComputableLoopEvolution - N-ary expressions have computable loop 282 // evolutions iff they have at least one operand that varies with the loop, 283 // but that all varying operands are computable. 284 bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const { 285 bool HasVarying = false; 286 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 287 const SCEV *S = *I; 288 if (!S->isLoopInvariant(L)) { 289 if (S->hasComputableLoopEvolution(L)) 290 HasVarying = true; 291 else 292 return false; 293 } 294 } 295 return HasVarying; 296 } 297 298 bool SCEVNAryExpr::hasOperand(const SCEV *O) const { 299 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 300 const SCEV *S = *I; 301 if (O == S || S->hasOperand(O)) 302 return true; 303 } 304 return false; 305 } 306 307 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 308 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 309 } 310 311 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 312 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 313 } 314 315 void SCEVUDivExpr::print(raw_ostream &OS) const { 316 OS << "(" << *LHS << " /u " << *RHS << ")"; 317 } 318 319 const Type *SCEVUDivExpr::getType() const { 320 // In most cases the types of LHS and RHS will be the same, but in some 321 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 322 // depend on the type for correctness, but handling types carefully can 323 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 324 // a pointer type than the RHS, so use the RHS' type here. 325 return RHS->getType(); 326 } 327 328 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 329 // Add recurrences are never invariant in the function-body (null loop). 330 if (!QueryLoop) 331 return false; 332 333 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 334 if (QueryLoop->contains(L)) 335 return false; 336 337 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop. 338 if (L->contains(QueryLoop)) 339 return true; 340 341 // This recurrence is variant w.r.t. QueryLoop if any of its operands 342 // are variant. 343 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 344 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 345 return false; 346 347 // Otherwise it's loop-invariant. 348 return true; 349 } 350 351 bool 352 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 353 return DT->dominates(L->getHeader(), BB) && 354 SCEVNAryExpr::dominates(BB, DT); 355 } 356 357 bool 358 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 359 // This uses a "dominates" query instead of "properly dominates" query because 360 // the instruction which produces the addrec's value is a PHI, and a PHI 361 // effectively properly dominates its entire containing block. 362 return DT->dominates(L->getHeader(), BB) && 363 SCEVNAryExpr::properlyDominates(BB, DT); 364 } 365 366 void SCEVAddRecExpr::print(raw_ostream &OS) const { 367 OS << "{" << *Operands[0]; 368 for (unsigned i = 1, e = NumOperands; i != e; ++i) 369 OS << ",+," << *Operands[i]; 370 OS << "}<"; 371 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 372 OS << ">"; 373 } 374 375 void SCEVUnknown::deleted() { 376 // Clear this SCEVUnknown from ValuesAtScopes. 377 SE->ValuesAtScopes.erase(this); 378 379 // Remove this SCEVUnknown from the uniquing map. 380 SE->UniqueSCEVs.RemoveNode(this); 381 382 // Release the value. 383 setValPtr(0); 384 } 385 386 void SCEVUnknown::allUsesReplacedWith(Value *New) { 387 // Clear this SCEVUnknown from ValuesAtScopes. 388 SE->ValuesAtScopes.erase(this); 389 390 // Remove this SCEVUnknown from the uniquing map. 391 SE->UniqueSCEVs.RemoveNode(this); 392 393 // Update this SCEVUnknown to point to the new value. This is needed 394 // because there may still be outstanding SCEVs which still point to 395 // this SCEVUnknown. 396 setValPtr(New); 397 } 398 399 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 400 // All non-instruction values are loop invariant. All instructions are loop 401 // invariant if they are not contained in the specified loop. 402 // Instructions are never considered invariant in the function body 403 // (null loop) because they are defined within the "loop". 404 if (Instruction *I = dyn_cast<Instruction>(getValue())) 405 return L && !L->contains(I); 406 return true; 407 } 408 409 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 410 if (Instruction *I = dyn_cast<Instruction>(getValue())) 411 return DT->dominates(I->getParent(), BB); 412 return true; 413 } 414 415 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 416 if (Instruction *I = dyn_cast<Instruction>(getValue())) 417 return DT->properlyDominates(I->getParent(), BB); 418 return true; 419 } 420 421 const Type *SCEVUnknown::getType() const { 422 return getValue()->getType(); 423 } 424 425 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 426 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 427 if (VCE->getOpcode() == Instruction::PtrToInt) 428 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 429 if (CE->getOpcode() == Instruction::GetElementPtr && 430 CE->getOperand(0)->isNullValue() && 431 CE->getNumOperands() == 2) 432 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 433 if (CI->isOne()) { 434 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 435 ->getElementType(); 436 return true; 437 } 438 439 return false; 440 } 441 442 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 443 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 444 if (VCE->getOpcode() == Instruction::PtrToInt) 445 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 446 if (CE->getOpcode() == Instruction::GetElementPtr && 447 CE->getOperand(0)->isNullValue()) { 448 const Type *Ty = 449 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 450 if (const StructType *STy = dyn_cast<StructType>(Ty)) 451 if (!STy->isPacked() && 452 CE->getNumOperands() == 3 && 453 CE->getOperand(1)->isNullValue()) { 454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 455 if (CI->isOne() && 456 STy->getNumElements() == 2 && 457 STy->getElementType(0)->isIntegerTy(1)) { 458 AllocTy = STy->getElementType(1); 459 return true; 460 } 461 } 462 } 463 464 return false; 465 } 466 467 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 468 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 469 if (VCE->getOpcode() == Instruction::PtrToInt) 470 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 471 if (CE->getOpcode() == Instruction::GetElementPtr && 472 CE->getNumOperands() == 3 && 473 CE->getOperand(0)->isNullValue() && 474 CE->getOperand(1)->isNullValue()) { 475 const Type *Ty = 476 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 477 // Ignore vector types here so that ScalarEvolutionExpander doesn't 478 // emit getelementptrs that index into vectors. 479 if (Ty->isStructTy() || Ty->isArrayTy()) { 480 CTy = Ty; 481 FieldNo = CE->getOperand(2); 482 return true; 483 } 484 } 485 486 return false; 487 } 488 489 void SCEVUnknown::print(raw_ostream &OS) const { 490 const Type *AllocTy; 491 if (isSizeOf(AllocTy)) { 492 OS << "sizeof(" << *AllocTy << ")"; 493 return; 494 } 495 if (isAlignOf(AllocTy)) { 496 OS << "alignof(" << *AllocTy << ")"; 497 return; 498 } 499 500 const Type *CTy; 501 Constant *FieldNo; 502 if (isOffsetOf(CTy, FieldNo)) { 503 OS << "offsetof(" << *CTy << ", "; 504 WriteAsOperand(OS, FieldNo, false); 505 OS << ")"; 506 return; 507 } 508 509 // Otherwise just print it normally. 510 WriteAsOperand(OS, getValue(), false); 511 } 512 513 //===----------------------------------------------------------------------===// 514 // SCEV Utilities 515 //===----------------------------------------------------------------------===// 516 517 namespace { 518 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 519 /// than the complexity of the RHS. This comparator is used to canonicalize 520 /// expressions. 521 class SCEVComplexityCompare { 522 const LoopInfo *const LI; 523 public: 524 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 525 526 // Return true or false if LHS is less than, or at least RHS, respectively. 527 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 528 return compare(LHS, RHS) < 0; 529 } 530 531 // Return negative, zero, or positive, if LHS is less than, equal to, or 532 // greater than RHS, respectively. A three-way result allows recursive 533 // comparisons to be more efficient. 534 int compare(const SCEV *LHS, const SCEV *RHS) const { 535 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 536 if (LHS == RHS) 537 return 0; 538 539 // Primarily, sort the SCEVs by their getSCEVType(). 540 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 541 if (LType != RType) 542 return (int)LType - (int)RType; 543 544 // Aside from the getSCEVType() ordering, the particular ordering 545 // isn't very important except that it's beneficial to be consistent, 546 // so that (a + b) and (b + a) don't end up as different expressions. 547 switch (LType) { 548 case scUnknown: { 549 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 550 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 551 552 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 553 // not as complete as it could be. 554 const Value *LV = LU->getValue(), *RV = RU->getValue(); 555 556 // Order pointer values after integer values. This helps SCEVExpander 557 // form GEPs. 558 bool LIsPointer = LV->getType()->isPointerTy(), 559 RIsPointer = RV->getType()->isPointerTy(); 560 if (LIsPointer != RIsPointer) 561 return (int)LIsPointer - (int)RIsPointer; 562 563 // Compare getValueID values. 564 unsigned LID = LV->getValueID(), 565 RID = RV->getValueID(); 566 if (LID != RID) 567 return (int)LID - (int)RID; 568 569 // Sort arguments by their position. 570 if (const Argument *LA = dyn_cast<Argument>(LV)) { 571 const Argument *RA = cast<Argument>(RV); 572 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 573 return (int)LArgNo - (int)RArgNo; 574 } 575 576 // For instructions, compare their loop depth, and their operand 577 // count. This is pretty loose. 578 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 579 const Instruction *RInst = cast<Instruction>(RV); 580 581 // Compare loop depths. 582 const BasicBlock *LParent = LInst->getParent(), 583 *RParent = RInst->getParent(); 584 if (LParent != RParent) { 585 unsigned LDepth = LI->getLoopDepth(LParent), 586 RDepth = LI->getLoopDepth(RParent); 587 if (LDepth != RDepth) 588 return (int)LDepth - (int)RDepth; 589 } 590 591 // Compare the number of operands. 592 unsigned LNumOps = LInst->getNumOperands(), 593 RNumOps = RInst->getNumOperands(); 594 return (int)LNumOps - (int)RNumOps; 595 } 596 597 return 0; 598 } 599 600 case scConstant: { 601 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 602 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 603 604 // Compare constant values. 605 const APInt &LA = LC->getValue()->getValue(); 606 const APInt &RA = RC->getValue()->getValue(); 607 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 608 if (LBitWidth != RBitWidth) 609 return (int)LBitWidth - (int)RBitWidth; 610 return LA.ult(RA) ? -1 : 1; 611 } 612 613 case scAddRecExpr: { 614 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 615 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 616 617 // Compare addrec loop depths. 618 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 619 if (LLoop != RLoop) { 620 unsigned LDepth = LLoop->getLoopDepth(), 621 RDepth = RLoop->getLoopDepth(); 622 if (LDepth != RDepth) 623 return (int)LDepth - (int)RDepth; 624 } 625 626 // Addrec complexity grows with operand count. 627 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 628 if (LNumOps != RNumOps) 629 return (int)LNumOps - (int)RNumOps; 630 631 // Lexicographically compare. 632 for (unsigned i = 0; i != LNumOps; ++i) { 633 long X = compare(LA->getOperand(i), RA->getOperand(i)); 634 if (X != 0) 635 return X; 636 } 637 638 return 0; 639 } 640 641 case scAddExpr: 642 case scMulExpr: 643 case scSMaxExpr: 644 case scUMaxExpr: { 645 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 646 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 647 648 // Lexicographically compare n-ary expressions. 649 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 650 for (unsigned i = 0; i != LNumOps; ++i) { 651 if (i >= RNumOps) 652 return 1; 653 long X = compare(LC->getOperand(i), RC->getOperand(i)); 654 if (X != 0) 655 return X; 656 } 657 return (int)LNumOps - (int)RNumOps; 658 } 659 660 case scUDivExpr: { 661 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 662 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 663 664 // Lexicographically compare udiv expressions. 665 long X = compare(LC->getLHS(), RC->getLHS()); 666 if (X != 0) 667 return X; 668 return compare(LC->getRHS(), RC->getRHS()); 669 } 670 671 case scTruncate: 672 case scZeroExtend: 673 case scSignExtend: { 674 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 675 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 676 677 // Compare cast expressions by operand. 678 return compare(LC->getOperand(), RC->getOperand()); 679 } 680 681 default: 682 break; 683 } 684 685 llvm_unreachable("Unknown SCEV kind!"); 686 return 0; 687 } 688 }; 689 } 690 691 /// GroupByComplexity - Given a list of SCEV objects, order them by their 692 /// complexity, and group objects of the same complexity together by value. 693 /// When this routine is finished, we know that any duplicates in the vector are 694 /// consecutive and that complexity is monotonically increasing. 695 /// 696 /// Note that we go take special precautions to ensure that we get deterministic 697 /// results from this routine. In other words, we don't want the results of 698 /// this to depend on where the addresses of various SCEV objects happened to 699 /// land in memory. 700 /// 701 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 702 LoopInfo *LI) { 703 if (Ops.size() < 2) return; // Noop 704 if (Ops.size() == 2) { 705 // This is the common case, which also happens to be trivially simple. 706 // Special case it. 707 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 708 std::swap(Ops[0], Ops[1]); 709 return; 710 } 711 712 // Do the rough sort by complexity. 713 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 714 715 // Now that we are sorted by complexity, group elements of the same 716 // complexity. Note that this is, at worst, N^2, but the vector is likely to 717 // be extremely short in practice. Note that we take this approach because we 718 // do not want to depend on the addresses of the objects we are grouping. 719 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 720 const SCEV *S = Ops[i]; 721 unsigned Complexity = S->getSCEVType(); 722 723 // If there are any objects of the same complexity and same value as this 724 // one, group them. 725 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 726 if (Ops[j] == S) { // Found a duplicate. 727 // Move it to immediately after i'th element. 728 std::swap(Ops[i+1], Ops[j]); 729 ++i; // no need to rescan it. 730 if (i == e-2) return; // Done! 731 } 732 } 733 } 734 } 735 736 737 738 //===----------------------------------------------------------------------===// 739 // Simple SCEV method implementations 740 //===----------------------------------------------------------------------===// 741 742 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 743 /// Assume, K > 0. 744 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 745 ScalarEvolution &SE, 746 const Type* ResultTy) { 747 // Handle the simplest case efficiently. 748 if (K == 1) 749 return SE.getTruncateOrZeroExtend(It, ResultTy); 750 751 // We are using the following formula for BC(It, K): 752 // 753 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 754 // 755 // Suppose, W is the bitwidth of the return value. We must be prepared for 756 // overflow. Hence, we must assure that the result of our computation is 757 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 758 // safe in modular arithmetic. 759 // 760 // However, this code doesn't use exactly that formula; the formula it uses 761 // is something like the following, where T is the number of factors of 2 in 762 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 763 // exponentiation: 764 // 765 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 766 // 767 // This formula is trivially equivalent to the previous formula. However, 768 // this formula can be implemented much more efficiently. The trick is that 769 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 770 // arithmetic. To do exact division in modular arithmetic, all we have 771 // to do is multiply by the inverse. Therefore, this step can be done at 772 // width W. 773 // 774 // The next issue is how to safely do the division by 2^T. The way this 775 // is done is by doing the multiplication step at a width of at least W + T 776 // bits. This way, the bottom W+T bits of the product are accurate. Then, 777 // when we perform the division by 2^T (which is equivalent to a right shift 778 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 779 // truncated out after the division by 2^T. 780 // 781 // In comparison to just directly using the first formula, this technique 782 // is much more efficient; using the first formula requires W * K bits, 783 // but this formula less than W + K bits. Also, the first formula requires 784 // a division step, whereas this formula only requires multiplies and shifts. 785 // 786 // It doesn't matter whether the subtraction step is done in the calculation 787 // width or the input iteration count's width; if the subtraction overflows, 788 // the result must be zero anyway. We prefer here to do it in the width of 789 // the induction variable because it helps a lot for certain cases; CodeGen 790 // isn't smart enough to ignore the overflow, which leads to much less 791 // efficient code if the width of the subtraction is wider than the native 792 // register width. 793 // 794 // (It's possible to not widen at all by pulling out factors of 2 before 795 // the multiplication; for example, K=2 can be calculated as 796 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 797 // extra arithmetic, so it's not an obvious win, and it gets 798 // much more complicated for K > 3.) 799 800 // Protection from insane SCEVs; this bound is conservative, 801 // but it probably doesn't matter. 802 if (K > 1000) 803 return SE.getCouldNotCompute(); 804 805 unsigned W = SE.getTypeSizeInBits(ResultTy); 806 807 // Calculate K! / 2^T and T; we divide out the factors of two before 808 // multiplying for calculating K! / 2^T to avoid overflow. 809 // Other overflow doesn't matter because we only care about the bottom 810 // W bits of the result. 811 APInt OddFactorial(W, 1); 812 unsigned T = 1; 813 for (unsigned i = 3; i <= K; ++i) { 814 APInt Mult(W, i); 815 unsigned TwoFactors = Mult.countTrailingZeros(); 816 T += TwoFactors; 817 Mult = Mult.lshr(TwoFactors); 818 OddFactorial *= Mult; 819 } 820 821 // We need at least W + T bits for the multiplication step 822 unsigned CalculationBits = W + T; 823 824 // Calculate 2^T, at width T+W. 825 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 826 827 // Calculate the multiplicative inverse of K! / 2^T; 828 // this multiplication factor will perform the exact division by 829 // K! / 2^T. 830 APInt Mod = APInt::getSignedMinValue(W+1); 831 APInt MultiplyFactor = OddFactorial.zext(W+1); 832 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 833 MultiplyFactor = MultiplyFactor.trunc(W); 834 835 // Calculate the product, at width T+W 836 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 837 CalculationBits); 838 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 839 for (unsigned i = 1; i != K; ++i) { 840 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 841 Dividend = SE.getMulExpr(Dividend, 842 SE.getTruncateOrZeroExtend(S, CalculationTy)); 843 } 844 845 // Divide by 2^T 846 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 847 848 // Truncate the result, and divide by K! / 2^T. 849 850 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 851 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 852 } 853 854 /// evaluateAtIteration - Return the value of this chain of recurrences at 855 /// the specified iteration number. We can evaluate this recurrence by 856 /// multiplying each element in the chain by the binomial coefficient 857 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 858 /// 859 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 860 /// 861 /// where BC(It, k) stands for binomial coefficient. 862 /// 863 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 864 ScalarEvolution &SE) const { 865 const SCEV *Result = getStart(); 866 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 867 // The computation is correct in the face of overflow provided that the 868 // multiplication is performed _after_ the evaluation of the binomial 869 // coefficient. 870 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 871 if (isa<SCEVCouldNotCompute>(Coeff)) 872 return Coeff; 873 874 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 875 } 876 return Result; 877 } 878 879 //===----------------------------------------------------------------------===// 880 // SCEV Expression folder implementations 881 //===----------------------------------------------------------------------===// 882 883 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 884 const Type *Ty) { 885 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 886 "This is not a truncating conversion!"); 887 assert(isSCEVable(Ty) && 888 "This is not a conversion to a SCEVable type!"); 889 Ty = getEffectiveSCEVType(Ty); 890 891 FoldingSetNodeID ID; 892 ID.AddInteger(scTruncate); 893 ID.AddPointer(Op); 894 ID.AddPointer(Ty); 895 void *IP = 0; 896 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 897 898 // Fold if the operand is constant. 899 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 900 return getConstant( 901 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 902 getEffectiveSCEVType(Ty)))); 903 904 // trunc(trunc(x)) --> trunc(x) 905 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 906 return getTruncateExpr(ST->getOperand(), Ty); 907 908 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 909 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 910 return getTruncateOrSignExtend(SS->getOperand(), Ty); 911 912 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 914 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 915 916 // If the input value is a chrec scev, truncate the chrec's operands. 917 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 918 SmallVector<const SCEV *, 4> Operands; 919 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 920 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 921 return getAddRecExpr(Operands, AddRec->getLoop()); 922 } 923 924 // As a special case, fold trunc(undef) to undef. We don't want to 925 // know too much about SCEVUnknowns, but this special case is handy 926 // and harmless. 927 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 928 if (isa<UndefValue>(U->getValue())) 929 return getSCEV(UndefValue::get(Ty)); 930 931 // The cast wasn't folded; create an explicit cast node. We can reuse 932 // the existing insert position since if we get here, we won't have 933 // made any changes which would invalidate it. 934 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 935 Op, Ty); 936 UniqueSCEVs.InsertNode(S, IP); 937 return S; 938 } 939 940 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 941 const Type *Ty) { 942 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 943 "This is not an extending conversion!"); 944 assert(isSCEVable(Ty) && 945 "This is not a conversion to a SCEVable type!"); 946 Ty = getEffectiveSCEVType(Ty); 947 948 // Fold if the operand is constant. 949 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 950 return getConstant( 951 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 952 getEffectiveSCEVType(Ty)))); 953 954 // zext(zext(x)) --> zext(x) 955 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 956 return getZeroExtendExpr(SZ->getOperand(), Ty); 957 958 // Before doing any expensive analysis, check to see if we've already 959 // computed a SCEV for this Op and Ty. 960 FoldingSetNodeID ID; 961 ID.AddInteger(scZeroExtend); 962 ID.AddPointer(Op); 963 ID.AddPointer(Ty); 964 void *IP = 0; 965 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 966 967 // If the input value is a chrec scev, and we can prove that the value 968 // did not overflow the old, smaller, value, we can zero extend all of the 969 // operands (often constants). This allows analysis of something like 970 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 971 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 972 if (AR->isAffine()) { 973 const SCEV *Start = AR->getStart(); 974 const SCEV *Step = AR->getStepRecurrence(*this); 975 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 976 const Loop *L = AR->getLoop(); 977 978 // If we have special knowledge that this addrec won't overflow, 979 // we don't need to do any further analysis. 980 if (AR->hasNoUnsignedWrap()) 981 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 982 getZeroExtendExpr(Step, Ty), 983 L); 984 985 // Check whether the backedge-taken count is SCEVCouldNotCompute. 986 // Note that this serves two purposes: It filters out loops that are 987 // simply not analyzable, and it covers the case where this code is 988 // being called from within backedge-taken count analysis, such that 989 // attempting to ask for the backedge-taken count would likely result 990 // in infinite recursion. In the later case, the analysis code will 991 // cope with a conservative value, and it will take care to purge 992 // that value once it has finished. 993 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 994 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 995 // Manually compute the final value for AR, checking for 996 // overflow. 997 998 // Check whether the backedge-taken count can be losslessly casted to 999 // the addrec's type. The count is always unsigned. 1000 const SCEV *CastedMaxBECount = 1001 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1002 const SCEV *RecastedMaxBECount = 1003 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1004 if (MaxBECount == RecastedMaxBECount) { 1005 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1006 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1007 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1008 const SCEV *Add = getAddExpr(Start, ZMul); 1009 const SCEV *OperandExtendedAdd = 1010 getAddExpr(getZeroExtendExpr(Start, WideTy), 1011 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1012 getZeroExtendExpr(Step, WideTy))); 1013 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 1014 // Return the expression with the addrec on the outside. 1015 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1016 getZeroExtendExpr(Step, Ty), 1017 L); 1018 1019 // Similar to above, only this time treat the step value as signed. 1020 // This covers loops that count down. 1021 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1022 Add = getAddExpr(Start, SMul); 1023 OperandExtendedAdd = 1024 getAddExpr(getZeroExtendExpr(Start, WideTy), 1025 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1026 getSignExtendExpr(Step, WideTy))); 1027 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 1028 // Return the expression with the addrec on the outside. 1029 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1030 getSignExtendExpr(Step, Ty), 1031 L); 1032 } 1033 1034 // If the backedge is guarded by a comparison with the pre-inc value 1035 // the addrec is safe. Also, if the entry is guarded by a comparison 1036 // with the start value and the backedge is guarded by a comparison 1037 // with the post-inc value, the addrec is safe. 1038 if (isKnownPositive(Step)) { 1039 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1040 getUnsignedRange(Step).getUnsignedMax()); 1041 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1042 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1043 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1044 AR->getPostIncExpr(*this), N))) 1045 // Return the expression with the addrec on the outside. 1046 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1047 getZeroExtendExpr(Step, Ty), 1048 L); 1049 } else if (isKnownNegative(Step)) { 1050 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1051 getSignedRange(Step).getSignedMin()); 1052 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1053 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1054 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1055 AR->getPostIncExpr(*this), N))) 1056 // Return the expression with the addrec on the outside. 1057 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1058 getSignExtendExpr(Step, Ty), 1059 L); 1060 } 1061 } 1062 } 1063 1064 // The cast wasn't folded; create an explicit cast node. 1065 // Recompute the insert position, as it may have been invalidated. 1066 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1067 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1068 Op, Ty); 1069 UniqueSCEVs.InsertNode(S, IP); 1070 return S; 1071 } 1072 1073 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1074 const Type *Ty) { 1075 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1076 "This is not an extending conversion!"); 1077 assert(isSCEVable(Ty) && 1078 "This is not a conversion to a SCEVable type!"); 1079 Ty = getEffectiveSCEVType(Ty); 1080 1081 // Fold if the operand is constant. 1082 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1083 return getConstant( 1084 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1085 getEffectiveSCEVType(Ty)))); 1086 1087 // sext(sext(x)) --> sext(x) 1088 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1089 return getSignExtendExpr(SS->getOperand(), Ty); 1090 1091 // Before doing any expensive analysis, check to see if we've already 1092 // computed a SCEV for this Op and Ty. 1093 FoldingSetNodeID ID; 1094 ID.AddInteger(scSignExtend); 1095 ID.AddPointer(Op); 1096 ID.AddPointer(Ty); 1097 void *IP = 0; 1098 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1099 1100 // If the input value is a chrec scev, and we can prove that the value 1101 // did not overflow the old, smaller, value, we can sign extend all of the 1102 // operands (often constants). This allows analysis of something like 1103 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1104 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1105 if (AR->isAffine()) { 1106 const SCEV *Start = AR->getStart(); 1107 const SCEV *Step = AR->getStepRecurrence(*this); 1108 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1109 const Loop *L = AR->getLoop(); 1110 1111 // If we have special knowledge that this addrec won't overflow, 1112 // we don't need to do any further analysis. 1113 if (AR->hasNoSignedWrap()) 1114 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1115 getSignExtendExpr(Step, Ty), 1116 L); 1117 1118 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1119 // Note that this serves two purposes: It filters out loops that are 1120 // simply not analyzable, and it covers the case where this code is 1121 // being called from within backedge-taken count analysis, such that 1122 // attempting to ask for the backedge-taken count would likely result 1123 // in infinite recursion. In the later case, the analysis code will 1124 // cope with a conservative value, and it will take care to purge 1125 // that value once it has finished. 1126 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1127 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1128 // Manually compute the final value for AR, checking for 1129 // overflow. 1130 1131 // Check whether the backedge-taken count can be losslessly casted to 1132 // the addrec's type. The count is always unsigned. 1133 const SCEV *CastedMaxBECount = 1134 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1135 const SCEV *RecastedMaxBECount = 1136 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1137 if (MaxBECount == RecastedMaxBECount) { 1138 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1139 // Check whether Start+Step*MaxBECount has no signed overflow. 1140 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1141 const SCEV *Add = getAddExpr(Start, SMul); 1142 const SCEV *OperandExtendedAdd = 1143 getAddExpr(getSignExtendExpr(Start, WideTy), 1144 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1145 getSignExtendExpr(Step, WideTy))); 1146 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1147 // Return the expression with the addrec on the outside. 1148 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1149 getSignExtendExpr(Step, Ty), 1150 L); 1151 1152 // Similar to above, only this time treat the step value as unsigned. 1153 // This covers loops that count up with an unsigned step. 1154 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1155 Add = getAddExpr(Start, UMul); 1156 OperandExtendedAdd = 1157 getAddExpr(getSignExtendExpr(Start, WideTy), 1158 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1159 getZeroExtendExpr(Step, WideTy))); 1160 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1161 // Return the expression with the addrec on the outside. 1162 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1163 getZeroExtendExpr(Step, Ty), 1164 L); 1165 } 1166 1167 // If the backedge is guarded by a comparison with the pre-inc value 1168 // the addrec is safe. Also, if the entry is guarded by a comparison 1169 // with the start value and the backedge is guarded by a comparison 1170 // with the post-inc value, the addrec is safe. 1171 if (isKnownPositive(Step)) { 1172 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1173 getSignedRange(Step).getSignedMax()); 1174 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1175 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1176 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1177 AR->getPostIncExpr(*this), N))) 1178 // Return the expression with the addrec on the outside. 1179 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1180 getSignExtendExpr(Step, Ty), 1181 L); 1182 } else if (isKnownNegative(Step)) { 1183 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1184 getSignedRange(Step).getSignedMin()); 1185 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1186 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1187 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1188 AR->getPostIncExpr(*this), N))) 1189 // Return the expression with the addrec on the outside. 1190 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1191 getSignExtendExpr(Step, Ty), 1192 L); 1193 } 1194 } 1195 } 1196 1197 // The cast wasn't folded; create an explicit cast node. 1198 // Recompute the insert position, as it may have been invalidated. 1199 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1200 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1201 Op, Ty); 1202 UniqueSCEVs.InsertNode(S, IP); 1203 return S; 1204 } 1205 1206 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1207 /// unspecified bits out to the given type. 1208 /// 1209 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1210 const Type *Ty) { 1211 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1212 "This is not an extending conversion!"); 1213 assert(isSCEVable(Ty) && 1214 "This is not a conversion to a SCEVable type!"); 1215 Ty = getEffectiveSCEVType(Ty); 1216 1217 // Sign-extend negative constants. 1218 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1219 if (SC->getValue()->getValue().isNegative()) 1220 return getSignExtendExpr(Op, Ty); 1221 1222 // Peel off a truncate cast. 1223 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1224 const SCEV *NewOp = T->getOperand(); 1225 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1226 return getAnyExtendExpr(NewOp, Ty); 1227 return getTruncateOrNoop(NewOp, Ty); 1228 } 1229 1230 // Next try a zext cast. If the cast is folded, use it. 1231 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1232 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1233 return ZExt; 1234 1235 // Next try a sext cast. If the cast is folded, use it. 1236 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1237 if (!isa<SCEVSignExtendExpr>(SExt)) 1238 return SExt; 1239 1240 // Force the cast to be folded into the operands of an addrec. 1241 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1242 SmallVector<const SCEV *, 4> Ops; 1243 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1244 I != E; ++I) 1245 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1246 return getAddRecExpr(Ops, AR->getLoop()); 1247 } 1248 1249 // As a special case, fold anyext(undef) to undef. We don't want to 1250 // know too much about SCEVUnknowns, but this special case is handy 1251 // and harmless. 1252 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1253 if (isa<UndefValue>(U->getValue())) 1254 return getSCEV(UndefValue::get(Ty)); 1255 1256 // If the expression is obviously signed, use the sext cast value. 1257 if (isa<SCEVSMaxExpr>(Op)) 1258 return SExt; 1259 1260 // Absent any other information, use the zext cast value. 1261 return ZExt; 1262 } 1263 1264 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1265 /// a list of operands to be added under the given scale, update the given 1266 /// map. This is a helper function for getAddRecExpr. As an example of 1267 /// what it does, given a sequence of operands that would form an add 1268 /// expression like this: 1269 /// 1270 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1271 /// 1272 /// where A and B are constants, update the map with these values: 1273 /// 1274 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1275 /// 1276 /// and add 13 + A*B*29 to AccumulatedConstant. 1277 /// This will allow getAddRecExpr to produce this: 1278 /// 1279 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1280 /// 1281 /// This form often exposes folding opportunities that are hidden in 1282 /// the original operand list. 1283 /// 1284 /// Return true iff it appears that any interesting folding opportunities 1285 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1286 /// the common case where no interesting opportunities are present, and 1287 /// is also used as a check to avoid infinite recursion. 1288 /// 1289 static bool 1290 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1291 SmallVector<const SCEV *, 8> &NewOps, 1292 APInt &AccumulatedConstant, 1293 const SCEV *const *Ops, size_t NumOperands, 1294 const APInt &Scale, 1295 ScalarEvolution &SE) { 1296 bool Interesting = false; 1297 1298 // Iterate over the add operands. They are sorted, with constants first. 1299 unsigned i = 0; 1300 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1301 ++i; 1302 // Pull a buried constant out to the outside. 1303 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1304 Interesting = true; 1305 AccumulatedConstant += Scale * C->getValue()->getValue(); 1306 } 1307 1308 // Next comes everything else. We're especially interested in multiplies 1309 // here, but they're in the middle, so just visit the rest with one loop. 1310 for (; i != NumOperands; ++i) { 1311 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1312 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1313 APInt NewScale = 1314 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1315 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1316 // A multiplication of a constant with another add; recurse. 1317 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1318 Interesting |= 1319 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1320 Add->op_begin(), Add->getNumOperands(), 1321 NewScale, SE); 1322 } else { 1323 // A multiplication of a constant with some other value. Update 1324 // the map. 1325 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1326 const SCEV *Key = SE.getMulExpr(MulOps); 1327 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1328 M.insert(std::make_pair(Key, NewScale)); 1329 if (Pair.second) { 1330 NewOps.push_back(Pair.first->first); 1331 } else { 1332 Pair.first->second += NewScale; 1333 // The map already had an entry for this value, which may indicate 1334 // a folding opportunity. 1335 Interesting = true; 1336 } 1337 } 1338 } else { 1339 // An ordinary operand. Update the map. 1340 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1341 M.insert(std::make_pair(Ops[i], Scale)); 1342 if (Pair.second) { 1343 NewOps.push_back(Pair.first->first); 1344 } else { 1345 Pair.first->second += Scale; 1346 // The map already had an entry for this value, which may indicate 1347 // a folding opportunity. 1348 Interesting = true; 1349 } 1350 } 1351 } 1352 1353 return Interesting; 1354 } 1355 1356 namespace { 1357 struct APIntCompare { 1358 bool operator()(const APInt &LHS, const APInt &RHS) const { 1359 return LHS.ult(RHS); 1360 } 1361 }; 1362 } 1363 1364 /// getAddExpr - Get a canonical add expression, or something simpler if 1365 /// possible. 1366 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1367 bool HasNUW, bool HasNSW) { 1368 assert(!Ops.empty() && "Cannot get empty add!"); 1369 if (Ops.size() == 1) return Ops[0]; 1370 #ifndef NDEBUG 1371 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1372 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1373 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1374 "SCEVAddExpr operand types don't match!"); 1375 #endif 1376 1377 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1378 if (!HasNUW && HasNSW) { 1379 bool All = true; 1380 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1381 E = Ops.end(); I != E; ++I) 1382 if (!isKnownNonNegative(*I)) { 1383 All = false; 1384 break; 1385 } 1386 if (All) HasNUW = true; 1387 } 1388 1389 // Sort by complexity, this groups all similar expression types together. 1390 GroupByComplexity(Ops, LI); 1391 1392 // If there are any constants, fold them together. 1393 unsigned Idx = 0; 1394 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1395 ++Idx; 1396 assert(Idx < Ops.size()); 1397 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1398 // We found two constants, fold them together! 1399 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1400 RHSC->getValue()->getValue()); 1401 if (Ops.size() == 2) return Ops[0]; 1402 Ops.erase(Ops.begin()+1); // Erase the folded element 1403 LHSC = cast<SCEVConstant>(Ops[0]); 1404 } 1405 1406 // If we are left with a constant zero being added, strip it off. 1407 if (LHSC->getValue()->isZero()) { 1408 Ops.erase(Ops.begin()); 1409 --Idx; 1410 } 1411 1412 if (Ops.size() == 1) return Ops[0]; 1413 } 1414 1415 // Okay, check to see if the same value occurs in the operand list twice. If 1416 // so, merge them together into an multiply expression. Since we sorted the 1417 // list, these values are required to be adjacent. 1418 const Type *Ty = Ops[0]->getType(); 1419 bool FoundMatch = false; 1420 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1421 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1422 // Found a match, merge the two values into a multiply, and add any 1423 // remaining values to the result. 1424 const SCEV *Two = getConstant(Ty, 2); 1425 const SCEV *Mul = getMulExpr(Two, Ops[i]); 1426 if (Ops.size() == 2) 1427 return Mul; 1428 Ops[i] = Mul; 1429 Ops.erase(Ops.begin()+i+1); 1430 --i; --e; 1431 FoundMatch = true; 1432 } 1433 if (FoundMatch) 1434 return getAddExpr(Ops, HasNUW, HasNSW); 1435 1436 // Check for truncates. If all the operands are truncated from the same 1437 // type, see if factoring out the truncate would permit the result to be 1438 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1439 // if the contents of the resulting outer trunc fold to something simple. 1440 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1441 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1442 const Type *DstType = Trunc->getType(); 1443 const Type *SrcType = Trunc->getOperand()->getType(); 1444 SmallVector<const SCEV *, 8> LargeOps; 1445 bool Ok = true; 1446 // Check all the operands to see if they can be represented in the 1447 // source type of the truncate. 1448 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1449 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1450 if (T->getOperand()->getType() != SrcType) { 1451 Ok = false; 1452 break; 1453 } 1454 LargeOps.push_back(T->getOperand()); 1455 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1456 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1457 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1458 SmallVector<const SCEV *, 8> LargeMulOps; 1459 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1460 if (const SCEVTruncateExpr *T = 1461 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1462 if (T->getOperand()->getType() != SrcType) { 1463 Ok = false; 1464 break; 1465 } 1466 LargeMulOps.push_back(T->getOperand()); 1467 } else if (const SCEVConstant *C = 1468 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1469 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1470 } else { 1471 Ok = false; 1472 break; 1473 } 1474 } 1475 if (Ok) 1476 LargeOps.push_back(getMulExpr(LargeMulOps)); 1477 } else { 1478 Ok = false; 1479 break; 1480 } 1481 } 1482 if (Ok) { 1483 // Evaluate the expression in the larger type. 1484 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1485 // If it folds to something simple, use it. Otherwise, don't. 1486 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1487 return getTruncateExpr(Fold, DstType); 1488 } 1489 } 1490 1491 // Skip past any other cast SCEVs. 1492 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1493 ++Idx; 1494 1495 // If there are add operands they would be next. 1496 if (Idx < Ops.size()) { 1497 bool DeletedAdd = false; 1498 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1499 // If we have an add, expand the add operands onto the end of the operands 1500 // list. 1501 Ops.erase(Ops.begin()+Idx); 1502 Ops.append(Add->op_begin(), Add->op_end()); 1503 DeletedAdd = true; 1504 } 1505 1506 // If we deleted at least one add, we added operands to the end of the list, 1507 // and they are not necessarily sorted. Recurse to resort and resimplify 1508 // any operands we just acquired. 1509 if (DeletedAdd) 1510 return getAddExpr(Ops); 1511 } 1512 1513 // Skip over the add expression until we get to a multiply. 1514 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1515 ++Idx; 1516 1517 // Check to see if there are any folding opportunities present with 1518 // operands multiplied by constant values. 1519 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1520 uint64_t BitWidth = getTypeSizeInBits(Ty); 1521 DenseMap<const SCEV *, APInt> M; 1522 SmallVector<const SCEV *, 8> NewOps; 1523 APInt AccumulatedConstant(BitWidth, 0); 1524 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1525 Ops.data(), Ops.size(), 1526 APInt(BitWidth, 1), *this)) { 1527 // Some interesting folding opportunity is present, so its worthwhile to 1528 // re-generate the operands list. Group the operands by constant scale, 1529 // to avoid multiplying by the same constant scale multiple times. 1530 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1531 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1532 E = NewOps.end(); I != E; ++I) 1533 MulOpLists[M.find(*I)->second].push_back(*I); 1534 // Re-generate the operands list. 1535 Ops.clear(); 1536 if (AccumulatedConstant != 0) 1537 Ops.push_back(getConstant(AccumulatedConstant)); 1538 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1539 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1540 if (I->first != 0) 1541 Ops.push_back(getMulExpr(getConstant(I->first), 1542 getAddExpr(I->second))); 1543 if (Ops.empty()) 1544 return getConstant(Ty, 0); 1545 if (Ops.size() == 1) 1546 return Ops[0]; 1547 return getAddExpr(Ops); 1548 } 1549 } 1550 1551 // If we are adding something to a multiply expression, make sure the 1552 // something is not already an operand of the multiply. If so, merge it into 1553 // the multiply. 1554 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1555 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1556 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1557 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1558 if (isa<SCEVConstant>(MulOpSCEV)) 1559 continue; 1560 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1561 if (MulOpSCEV == Ops[AddOp]) { 1562 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1563 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1564 if (Mul->getNumOperands() != 2) { 1565 // If the multiply has more than two operands, we must get the 1566 // Y*Z term. 1567 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1568 Mul->op_begin()+MulOp); 1569 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1570 InnerMul = getMulExpr(MulOps); 1571 } 1572 const SCEV *One = getConstant(Ty, 1); 1573 const SCEV *AddOne = getAddExpr(One, InnerMul); 1574 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1575 if (Ops.size() == 2) return OuterMul; 1576 if (AddOp < Idx) { 1577 Ops.erase(Ops.begin()+AddOp); 1578 Ops.erase(Ops.begin()+Idx-1); 1579 } else { 1580 Ops.erase(Ops.begin()+Idx); 1581 Ops.erase(Ops.begin()+AddOp-1); 1582 } 1583 Ops.push_back(OuterMul); 1584 return getAddExpr(Ops); 1585 } 1586 1587 // Check this multiply against other multiplies being added together. 1588 bool AnyFold = false; 1589 for (unsigned OtherMulIdx = Idx+1; 1590 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1591 ++OtherMulIdx) { 1592 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1593 // If MulOp occurs in OtherMul, we can fold the two multiplies 1594 // together. 1595 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1596 OMulOp != e; ++OMulOp) 1597 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1598 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1599 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1600 if (Mul->getNumOperands() != 2) { 1601 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1602 Mul->op_begin()+MulOp); 1603 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1604 InnerMul1 = getMulExpr(MulOps); 1605 } 1606 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1607 if (OtherMul->getNumOperands() != 2) { 1608 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1609 OtherMul->op_begin()+OMulOp); 1610 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1611 InnerMul2 = getMulExpr(MulOps); 1612 } 1613 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1614 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1615 if (Ops.size() == 2) return OuterMul; 1616 Ops[Idx] = OuterMul; 1617 Ops.erase(Ops.begin()+OtherMulIdx); 1618 OtherMulIdx = Idx; 1619 AnyFold = true; 1620 } 1621 } 1622 if (AnyFold) 1623 return getAddExpr(Ops); 1624 } 1625 } 1626 1627 // If there are any add recurrences in the operands list, see if any other 1628 // added values are loop invariant. If so, we can fold them into the 1629 // recurrence. 1630 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1631 ++Idx; 1632 1633 // Scan over all recurrences, trying to fold loop invariants into them. 1634 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1635 // Scan all of the other operands to this add and add them to the vector if 1636 // they are loop invariant w.r.t. the recurrence. 1637 SmallVector<const SCEV *, 8> LIOps; 1638 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1639 const Loop *AddRecLoop = AddRec->getLoop(); 1640 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1641 if (Ops[i]->isLoopInvariant(AddRecLoop)) { 1642 LIOps.push_back(Ops[i]); 1643 Ops.erase(Ops.begin()+i); 1644 --i; --e; 1645 } 1646 1647 // If we found some loop invariants, fold them into the recurrence. 1648 if (!LIOps.empty()) { 1649 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1650 LIOps.push_back(AddRec->getStart()); 1651 1652 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1653 AddRec->op_end()); 1654 AddRecOps[0] = getAddExpr(LIOps); 1655 1656 // Build the new addrec. Propagate the NUW and NSW flags if both the 1657 // outer add and the inner addrec are guaranteed to have no overflow. 1658 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1659 HasNUW && AddRec->hasNoUnsignedWrap(), 1660 HasNSW && AddRec->hasNoSignedWrap()); 1661 1662 // If all of the other operands were loop invariant, we are done. 1663 if (Ops.size() == 1) return NewRec; 1664 1665 // Otherwise, add the folded AddRec by the non-liv parts. 1666 for (unsigned i = 0;; ++i) 1667 if (Ops[i] == AddRec) { 1668 Ops[i] = NewRec; 1669 break; 1670 } 1671 return getAddExpr(Ops); 1672 } 1673 1674 // Okay, if there weren't any loop invariants to be folded, check to see if 1675 // there are multiple AddRec's with the same loop induction variable being 1676 // added together. If so, we can fold them. 1677 for (unsigned OtherIdx = Idx+1; 1678 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1679 ++OtherIdx) 1680 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1681 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1682 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1683 AddRec->op_end()); 1684 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1685 ++OtherIdx) 1686 if (const SCEVAddRecExpr *AR = 1687 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1688 if (AR->getLoop() == AddRecLoop) { 1689 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) { 1690 if (i >= AddRecOps.size()) { 1691 AddRecOps.append(AR->op_begin()+i, AR->op_end()); 1692 break; 1693 } 1694 AddRecOps[i] = getAddExpr(AddRecOps[i], AR->getOperand(i)); 1695 } 1696 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1697 } 1698 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop); 1699 return getAddExpr(Ops); 1700 } 1701 1702 // Otherwise couldn't fold anything into this recurrence. Move onto the 1703 // next one. 1704 } 1705 1706 // Okay, it looks like we really DO need an add expr. Check to see if we 1707 // already have one, otherwise create a new one. 1708 FoldingSetNodeID ID; 1709 ID.AddInteger(scAddExpr); 1710 ID.AddInteger(Ops.size()); 1711 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1712 ID.AddPointer(Ops[i]); 1713 void *IP = 0; 1714 SCEVAddExpr *S = 1715 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1716 if (!S) { 1717 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1718 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1719 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1720 O, Ops.size()); 1721 UniqueSCEVs.InsertNode(S, IP); 1722 } 1723 if (HasNUW) S->setHasNoUnsignedWrap(true); 1724 if (HasNSW) S->setHasNoSignedWrap(true); 1725 return S; 1726 } 1727 1728 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1729 /// possible. 1730 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1731 bool HasNUW, bool HasNSW) { 1732 assert(!Ops.empty() && "Cannot get empty mul!"); 1733 if (Ops.size() == 1) return Ops[0]; 1734 #ifndef NDEBUG 1735 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1736 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1737 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1738 "SCEVMulExpr operand types don't match!"); 1739 #endif 1740 1741 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1742 if (!HasNUW && HasNSW) { 1743 bool All = true; 1744 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1745 E = Ops.end(); I != E; ++I) 1746 if (!isKnownNonNegative(*I)) { 1747 All = false; 1748 break; 1749 } 1750 if (All) HasNUW = true; 1751 } 1752 1753 // Sort by complexity, this groups all similar expression types together. 1754 GroupByComplexity(Ops, LI); 1755 1756 // If there are any constants, fold them together. 1757 unsigned Idx = 0; 1758 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1759 1760 // C1*(C2+V) -> C1*C2 + C1*V 1761 if (Ops.size() == 2) 1762 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1763 if (Add->getNumOperands() == 2 && 1764 isa<SCEVConstant>(Add->getOperand(0))) 1765 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1766 getMulExpr(LHSC, Add->getOperand(1))); 1767 1768 ++Idx; 1769 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1770 // We found two constants, fold them together! 1771 ConstantInt *Fold = ConstantInt::get(getContext(), 1772 LHSC->getValue()->getValue() * 1773 RHSC->getValue()->getValue()); 1774 Ops[0] = getConstant(Fold); 1775 Ops.erase(Ops.begin()+1); // Erase the folded element 1776 if (Ops.size() == 1) return Ops[0]; 1777 LHSC = cast<SCEVConstant>(Ops[0]); 1778 } 1779 1780 // If we are left with a constant one being multiplied, strip it off. 1781 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1782 Ops.erase(Ops.begin()); 1783 --Idx; 1784 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1785 // If we have a multiply of zero, it will always be zero. 1786 return Ops[0]; 1787 } else if (Ops[0]->isAllOnesValue()) { 1788 // If we have a mul by -1 of an add, try distributing the -1 among the 1789 // add operands. 1790 if (Ops.size() == 2) 1791 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1792 SmallVector<const SCEV *, 4> NewOps; 1793 bool AnyFolded = false; 1794 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1795 I != E; ++I) { 1796 const SCEV *Mul = getMulExpr(Ops[0], *I); 1797 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1798 NewOps.push_back(Mul); 1799 } 1800 if (AnyFolded) 1801 return getAddExpr(NewOps); 1802 } 1803 } 1804 1805 if (Ops.size() == 1) 1806 return Ops[0]; 1807 } 1808 1809 // Skip over the add expression until we get to a multiply. 1810 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1811 ++Idx; 1812 1813 // If there are mul operands inline them all into this expression. 1814 if (Idx < Ops.size()) { 1815 bool DeletedMul = false; 1816 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1817 // If we have an mul, expand the mul operands onto the end of the operands 1818 // list. 1819 Ops.erase(Ops.begin()+Idx); 1820 Ops.append(Mul->op_begin(), Mul->op_end()); 1821 DeletedMul = true; 1822 } 1823 1824 // If we deleted at least one mul, we added operands to the end of the list, 1825 // and they are not necessarily sorted. Recurse to resort and resimplify 1826 // any operands we just acquired. 1827 if (DeletedMul) 1828 return getMulExpr(Ops); 1829 } 1830 1831 // If there are any add recurrences in the operands list, see if any other 1832 // added values are loop invariant. If so, we can fold them into the 1833 // recurrence. 1834 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1835 ++Idx; 1836 1837 // Scan over all recurrences, trying to fold loop invariants into them. 1838 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1839 // Scan all of the other operands to this mul and add them to the vector if 1840 // they are loop invariant w.r.t. the recurrence. 1841 SmallVector<const SCEV *, 8> LIOps; 1842 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1843 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1844 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1845 LIOps.push_back(Ops[i]); 1846 Ops.erase(Ops.begin()+i); 1847 --i; --e; 1848 } 1849 1850 // If we found some loop invariants, fold them into the recurrence. 1851 if (!LIOps.empty()) { 1852 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1853 SmallVector<const SCEV *, 4> NewOps; 1854 NewOps.reserve(AddRec->getNumOperands()); 1855 const SCEV *Scale = getMulExpr(LIOps); 1856 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1857 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1858 1859 // Build the new addrec. Propagate the NUW and NSW flags if both the 1860 // outer mul and the inner addrec are guaranteed to have no overflow. 1861 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1862 HasNUW && AddRec->hasNoUnsignedWrap(), 1863 HasNSW && AddRec->hasNoSignedWrap()); 1864 1865 // If all of the other operands were loop invariant, we are done. 1866 if (Ops.size() == 1) return NewRec; 1867 1868 // Otherwise, multiply the folded AddRec by the non-liv parts. 1869 for (unsigned i = 0;; ++i) 1870 if (Ops[i] == AddRec) { 1871 Ops[i] = NewRec; 1872 break; 1873 } 1874 return getMulExpr(Ops); 1875 } 1876 1877 // Okay, if there weren't any loop invariants to be folded, check to see if 1878 // there are multiple AddRec's with the same loop induction variable being 1879 // multiplied together. If so, we can fold them. 1880 for (unsigned OtherIdx = Idx+1; 1881 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1882 if (OtherIdx != Idx) { 1883 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1884 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1885 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1886 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1887 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart()); 1888 const SCEV *B = F->getStepRecurrence(*this); 1889 const SCEV *D = G->getStepRecurrence(*this); 1890 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1891 getMulExpr(G, B), 1892 getMulExpr(B, D)); 1893 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1894 F->getLoop()); 1895 if (Ops.size() == 2) return NewAddRec; 1896 1897 Ops.erase(Ops.begin()+Idx); 1898 Ops.erase(Ops.begin()+OtherIdx-1); 1899 Ops.push_back(NewAddRec); 1900 return getMulExpr(Ops); 1901 } 1902 } 1903 1904 // Otherwise couldn't fold anything into this recurrence. Move onto the 1905 // next one. 1906 } 1907 1908 // Okay, it looks like we really DO need an mul expr. Check to see if we 1909 // already have one, otherwise create a new one. 1910 FoldingSetNodeID ID; 1911 ID.AddInteger(scMulExpr); 1912 ID.AddInteger(Ops.size()); 1913 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1914 ID.AddPointer(Ops[i]); 1915 void *IP = 0; 1916 SCEVMulExpr *S = 1917 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1918 if (!S) { 1919 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1920 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1921 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1922 O, Ops.size()); 1923 UniqueSCEVs.InsertNode(S, IP); 1924 } 1925 if (HasNUW) S->setHasNoUnsignedWrap(true); 1926 if (HasNSW) S->setHasNoSignedWrap(true); 1927 return S; 1928 } 1929 1930 /// getUDivExpr - Get a canonical unsigned division expression, or something 1931 /// simpler if possible. 1932 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1933 const SCEV *RHS) { 1934 assert(getEffectiveSCEVType(LHS->getType()) == 1935 getEffectiveSCEVType(RHS->getType()) && 1936 "SCEVUDivExpr operand types don't match!"); 1937 1938 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1939 if (RHSC->getValue()->equalsInt(1)) 1940 return LHS; // X udiv 1 --> x 1941 // If the denominator is zero, the result of the udiv is undefined. Don't 1942 // try to analyze it, because the resolution chosen here may differ from 1943 // the resolution chosen in other parts of the compiler. 1944 if (!RHSC->getValue()->isZero()) { 1945 // Determine if the division can be folded into the operands of 1946 // its operands. 1947 // TODO: Generalize this to non-constants by using known-bits information. 1948 const Type *Ty = LHS->getType(); 1949 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1950 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 1951 // For non-power-of-two values, effectively round the value up to the 1952 // nearest power of two. 1953 if (!RHSC->getValue()->getValue().isPowerOf2()) 1954 ++MaxShiftAmt; 1955 const IntegerType *ExtTy = 1956 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1957 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1958 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1959 if (const SCEVConstant *Step = 1960 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1961 if (!Step->getValue()->getValue() 1962 .urem(RHSC->getValue()->getValue()) && 1963 getZeroExtendExpr(AR, ExtTy) == 1964 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1965 getZeroExtendExpr(Step, ExtTy), 1966 AR->getLoop())) { 1967 SmallVector<const SCEV *, 4> Operands; 1968 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1969 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1970 return getAddRecExpr(Operands, AR->getLoop()); 1971 } 1972 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1973 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1974 SmallVector<const SCEV *, 4> Operands; 1975 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1976 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1977 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1978 // Find an operand that's safely divisible. 1979 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1980 const SCEV *Op = M->getOperand(i); 1981 const SCEV *Div = getUDivExpr(Op, RHSC); 1982 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1983 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1984 M->op_end()); 1985 Operands[i] = Div; 1986 return getMulExpr(Operands); 1987 } 1988 } 1989 } 1990 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1991 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1992 SmallVector<const SCEV *, 4> Operands; 1993 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1994 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1995 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1996 Operands.clear(); 1997 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1998 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1999 if (isa<SCEVUDivExpr>(Op) || 2000 getMulExpr(Op, RHS) != A->getOperand(i)) 2001 break; 2002 Operands.push_back(Op); 2003 } 2004 if (Operands.size() == A->getNumOperands()) 2005 return getAddExpr(Operands); 2006 } 2007 } 2008 2009 // Fold if both operands are constant. 2010 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2011 Constant *LHSCV = LHSC->getValue(); 2012 Constant *RHSCV = RHSC->getValue(); 2013 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2014 RHSCV))); 2015 } 2016 } 2017 } 2018 2019 FoldingSetNodeID ID; 2020 ID.AddInteger(scUDivExpr); 2021 ID.AddPointer(LHS); 2022 ID.AddPointer(RHS); 2023 void *IP = 0; 2024 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2025 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2026 LHS, RHS); 2027 UniqueSCEVs.InsertNode(S, IP); 2028 return S; 2029 } 2030 2031 2032 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2033 /// Simplify the expression as much as possible. 2034 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 2035 const SCEV *Step, const Loop *L, 2036 bool HasNUW, bool HasNSW) { 2037 SmallVector<const SCEV *, 4> Operands; 2038 Operands.push_back(Start); 2039 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2040 if (StepChrec->getLoop() == L) { 2041 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2042 return getAddRecExpr(Operands, L); 2043 } 2044 2045 Operands.push_back(Step); 2046 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 2047 } 2048 2049 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2050 /// Simplify the expression as much as possible. 2051 const SCEV * 2052 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2053 const Loop *L, 2054 bool HasNUW, bool HasNSW) { 2055 if (Operands.size() == 1) return Operands[0]; 2056 #ifndef NDEBUG 2057 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2058 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2059 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2060 "SCEVAddRecExpr operand types don't match!"); 2061 #endif 2062 2063 if (Operands.back()->isZero()) { 2064 Operands.pop_back(); 2065 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 2066 } 2067 2068 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2069 // use that information to infer NUW and NSW flags. However, computing a 2070 // BE count requires calling getAddRecExpr, so we may not yet have a 2071 // meaningful BE count at this point (and if we don't, we'd be stuck 2072 // with a SCEVCouldNotCompute as the cached BE count). 2073 2074 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 2075 if (!HasNUW && HasNSW) { 2076 bool All = true; 2077 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2078 E = Operands.end(); I != E; ++I) 2079 if (!isKnownNonNegative(*I)) { 2080 All = false; 2081 break; 2082 } 2083 if (All) HasNUW = true; 2084 } 2085 2086 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2087 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2088 const Loop *NestedLoop = NestedAR->getLoop(); 2089 if (L->contains(NestedLoop) ? 2090 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2091 (!NestedLoop->contains(L) && 2092 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2093 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2094 NestedAR->op_end()); 2095 Operands[0] = NestedAR->getStart(); 2096 // AddRecs require their operands be loop-invariant with respect to their 2097 // loops. Don't perform this transformation if it would break this 2098 // requirement. 2099 bool AllInvariant = true; 2100 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2101 if (!Operands[i]->isLoopInvariant(L)) { 2102 AllInvariant = false; 2103 break; 2104 } 2105 if (AllInvariant) { 2106 NestedOperands[0] = getAddRecExpr(Operands, L); 2107 AllInvariant = true; 2108 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2109 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 2110 AllInvariant = false; 2111 break; 2112 } 2113 if (AllInvariant) 2114 // Ok, both add recurrences are valid after the transformation. 2115 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2116 } 2117 // Reset Operands to its original state. 2118 Operands[0] = NestedAR; 2119 } 2120 } 2121 2122 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2123 // already have one, otherwise create a new one. 2124 FoldingSetNodeID ID; 2125 ID.AddInteger(scAddRecExpr); 2126 ID.AddInteger(Operands.size()); 2127 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2128 ID.AddPointer(Operands[i]); 2129 ID.AddPointer(L); 2130 void *IP = 0; 2131 SCEVAddRecExpr *S = 2132 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2133 if (!S) { 2134 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2135 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2136 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2137 O, Operands.size(), L); 2138 UniqueSCEVs.InsertNode(S, IP); 2139 } 2140 if (HasNUW) S->setHasNoUnsignedWrap(true); 2141 if (HasNSW) S->setHasNoSignedWrap(true); 2142 return S; 2143 } 2144 2145 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2146 const SCEV *RHS) { 2147 SmallVector<const SCEV *, 2> Ops; 2148 Ops.push_back(LHS); 2149 Ops.push_back(RHS); 2150 return getSMaxExpr(Ops); 2151 } 2152 2153 const SCEV * 2154 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2155 assert(!Ops.empty() && "Cannot get empty smax!"); 2156 if (Ops.size() == 1) return Ops[0]; 2157 #ifndef NDEBUG 2158 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2159 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2160 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2161 "SCEVSMaxExpr operand types don't match!"); 2162 #endif 2163 2164 // Sort by complexity, this groups all similar expression types together. 2165 GroupByComplexity(Ops, LI); 2166 2167 // If there are any constants, fold them together. 2168 unsigned Idx = 0; 2169 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2170 ++Idx; 2171 assert(Idx < Ops.size()); 2172 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2173 // We found two constants, fold them together! 2174 ConstantInt *Fold = ConstantInt::get(getContext(), 2175 APIntOps::smax(LHSC->getValue()->getValue(), 2176 RHSC->getValue()->getValue())); 2177 Ops[0] = getConstant(Fold); 2178 Ops.erase(Ops.begin()+1); // Erase the folded element 2179 if (Ops.size() == 1) return Ops[0]; 2180 LHSC = cast<SCEVConstant>(Ops[0]); 2181 } 2182 2183 // If we are left with a constant minimum-int, strip it off. 2184 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2185 Ops.erase(Ops.begin()); 2186 --Idx; 2187 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2188 // If we have an smax with a constant maximum-int, it will always be 2189 // maximum-int. 2190 return Ops[0]; 2191 } 2192 2193 if (Ops.size() == 1) return Ops[0]; 2194 } 2195 2196 // Find the first SMax 2197 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2198 ++Idx; 2199 2200 // Check to see if one of the operands is an SMax. If so, expand its operands 2201 // onto our operand list, and recurse to simplify. 2202 if (Idx < Ops.size()) { 2203 bool DeletedSMax = false; 2204 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2205 Ops.erase(Ops.begin()+Idx); 2206 Ops.append(SMax->op_begin(), SMax->op_end()); 2207 DeletedSMax = true; 2208 } 2209 2210 if (DeletedSMax) 2211 return getSMaxExpr(Ops); 2212 } 2213 2214 // Okay, check to see if the same value occurs in the operand list twice. If 2215 // so, delete one. Since we sorted the list, these values are required to 2216 // be adjacent. 2217 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2218 // X smax Y smax Y --> X smax Y 2219 // X smax Y --> X, if X is always greater than Y 2220 if (Ops[i] == Ops[i+1] || 2221 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2222 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2223 --i; --e; 2224 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2225 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2226 --i; --e; 2227 } 2228 2229 if (Ops.size() == 1) return Ops[0]; 2230 2231 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2232 2233 // Okay, it looks like we really DO need an smax expr. Check to see if we 2234 // already have one, otherwise create a new one. 2235 FoldingSetNodeID ID; 2236 ID.AddInteger(scSMaxExpr); 2237 ID.AddInteger(Ops.size()); 2238 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2239 ID.AddPointer(Ops[i]); 2240 void *IP = 0; 2241 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2242 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2243 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2244 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2245 O, Ops.size()); 2246 UniqueSCEVs.InsertNode(S, IP); 2247 return S; 2248 } 2249 2250 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2251 const SCEV *RHS) { 2252 SmallVector<const SCEV *, 2> Ops; 2253 Ops.push_back(LHS); 2254 Ops.push_back(RHS); 2255 return getUMaxExpr(Ops); 2256 } 2257 2258 const SCEV * 2259 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2260 assert(!Ops.empty() && "Cannot get empty umax!"); 2261 if (Ops.size() == 1) return Ops[0]; 2262 #ifndef NDEBUG 2263 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2264 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2265 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2266 "SCEVUMaxExpr operand types don't match!"); 2267 #endif 2268 2269 // Sort by complexity, this groups all similar expression types together. 2270 GroupByComplexity(Ops, LI); 2271 2272 // If there are any constants, fold them together. 2273 unsigned Idx = 0; 2274 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2275 ++Idx; 2276 assert(Idx < Ops.size()); 2277 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2278 // We found two constants, fold them together! 2279 ConstantInt *Fold = ConstantInt::get(getContext(), 2280 APIntOps::umax(LHSC->getValue()->getValue(), 2281 RHSC->getValue()->getValue())); 2282 Ops[0] = getConstant(Fold); 2283 Ops.erase(Ops.begin()+1); // Erase the folded element 2284 if (Ops.size() == 1) return Ops[0]; 2285 LHSC = cast<SCEVConstant>(Ops[0]); 2286 } 2287 2288 // If we are left with a constant minimum-int, strip it off. 2289 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2290 Ops.erase(Ops.begin()); 2291 --Idx; 2292 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2293 // If we have an umax with a constant maximum-int, it will always be 2294 // maximum-int. 2295 return Ops[0]; 2296 } 2297 2298 if (Ops.size() == 1) return Ops[0]; 2299 } 2300 2301 // Find the first UMax 2302 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2303 ++Idx; 2304 2305 // Check to see if one of the operands is a UMax. If so, expand its operands 2306 // onto our operand list, and recurse to simplify. 2307 if (Idx < Ops.size()) { 2308 bool DeletedUMax = false; 2309 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2310 Ops.erase(Ops.begin()+Idx); 2311 Ops.append(UMax->op_begin(), UMax->op_end()); 2312 DeletedUMax = true; 2313 } 2314 2315 if (DeletedUMax) 2316 return getUMaxExpr(Ops); 2317 } 2318 2319 // Okay, check to see if the same value occurs in the operand list twice. If 2320 // so, delete one. Since we sorted the list, these values are required to 2321 // be adjacent. 2322 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2323 // X umax Y umax Y --> X umax Y 2324 // X umax Y --> X, if X is always greater than Y 2325 if (Ops[i] == Ops[i+1] || 2326 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2327 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2328 --i; --e; 2329 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2330 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2331 --i; --e; 2332 } 2333 2334 if (Ops.size() == 1) return Ops[0]; 2335 2336 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2337 2338 // Okay, it looks like we really DO need a umax expr. Check to see if we 2339 // already have one, otherwise create a new one. 2340 FoldingSetNodeID ID; 2341 ID.AddInteger(scUMaxExpr); 2342 ID.AddInteger(Ops.size()); 2343 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2344 ID.AddPointer(Ops[i]); 2345 void *IP = 0; 2346 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2347 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2348 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2349 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2350 O, Ops.size()); 2351 UniqueSCEVs.InsertNode(S, IP); 2352 return S; 2353 } 2354 2355 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2356 const SCEV *RHS) { 2357 // ~smax(~x, ~y) == smin(x, y). 2358 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2359 } 2360 2361 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2362 const SCEV *RHS) { 2363 // ~umax(~x, ~y) == umin(x, y) 2364 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2365 } 2366 2367 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2368 // If we have TargetData, we can bypass creating a target-independent 2369 // constant expression and then folding it back into a ConstantInt. 2370 // This is just a compile-time optimization. 2371 if (TD) 2372 return getConstant(TD->getIntPtrType(getContext()), 2373 TD->getTypeAllocSize(AllocTy)); 2374 2375 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2376 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2377 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2378 C = Folded; 2379 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2380 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2381 } 2382 2383 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2384 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2385 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2386 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2387 C = Folded; 2388 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2389 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2390 } 2391 2392 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2393 unsigned FieldNo) { 2394 // If we have TargetData, we can bypass creating a target-independent 2395 // constant expression and then folding it back into a ConstantInt. 2396 // This is just a compile-time optimization. 2397 if (TD) 2398 return getConstant(TD->getIntPtrType(getContext()), 2399 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2400 2401 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2403 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2404 C = Folded; 2405 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2406 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2407 } 2408 2409 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2410 Constant *FieldNo) { 2411 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2412 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2413 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2414 C = Folded; 2415 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2416 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2417 } 2418 2419 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2420 // Don't attempt to do anything other than create a SCEVUnknown object 2421 // here. createSCEV only calls getUnknown after checking for all other 2422 // interesting possibilities, and any other code that calls getUnknown 2423 // is doing so in order to hide a value from SCEV canonicalization. 2424 2425 FoldingSetNodeID ID; 2426 ID.AddInteger(scUnknown); 2427 ID.AddPointer(V); 2428 void *IP = 0; 2429 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2430 assert(cast<SCEVUnknown>(S)->getValue() == V && 2431 "Stale SCEVUnknown in uniquing map!"); 2432 return S; 2433 } 2434 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2435 FirstUnknown); 2436 FirstUnknown = cast<SCEVUnknown>(S); 2437 UniqueSCEVs.InsertNode(S, IP); 2438 return S; 2439 } 2440 2441 //===----------------------------------------------------------------------===// 2442 // Basic SCEV Analysis and PHI Idiom Recognition Code 2443 // 2444 2445 /// isSCEVable - Test if values of the given type are analyzable within 2446 /// the SCEV framework. This primarily includes integer types, and it 2447 /// can optionally include pointer types if the ScalarEvolution class 2448 /// has access to target-specific information. 2449 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2450 // Integers and pointers are always SCEVable. 2451 return Ty->isIntegerTy() || Ty->isPointerTy(); 2452 } 2453 2454 /// getTypeSizeInBits - Return the size in bits of the specified type, 2455 /// for which isSCEVable must return true. 2456 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2457 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2458 2459 // If we have a TargetData, use it! 2460 if (TD) 2461 return TD->getTypeSizeInBits(Ty); 2462 2463 // Integer types have fixed sizes. 2464 if (Ty->isIntegerTy()) 2465 return Ty->getPrimitiveSizeInBits(); 2466 2467 // The only other support type is pointer. Without TargetData, conservatively 2468 // assume pointers are 64-bit. 2469 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2470 return 64; 2471 } 2472 2473 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2474 /// the given type and which represents how SCEV will treat the given 2475 /// type, for which isSCEVable must return true. For pointer types, 2476 /// this is the pointer-sized integer type. 2477 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2478 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2479 2480 if (Ty->isIntegerTy()) 2481 return Ty; 2482 2483 // The only other support type is pointer. 2484 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2485 if (TD) return TD->getIntPtrType(getContext()); 2486 2487 // Without TargetData, conservatively assume pointers are 64-bit. 2488 return Type::getInt64Ty(getContext()); 2489 } 2490 2491 const SCEV *ScalarEvolution::getCouldNotCompute() { 2492 return &CouldNotCompute; 2493 } 2494 2495 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2496 /// expression and create a new one. 2497 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2498 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2499 2500 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2501 if (I != ValueExprMap.end()) return I->second; 2502 const SCEV *S = createSCEV(V); 2503 2504 // The process of creating a SCEV for V may have caused other SCEVs 2505 // to have been created, so it's necessary to insert the new entry 2506 // from scratch, rather than trying to remember the insert position 2507 // above. 2508 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2509 return S; 2510 } 2511 2512 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2513 /// 2514 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2515 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2516 return getConstant( 2517 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2518 2519 const Type *Ty = V->getType(); 2520 Ty = getEffectiveSCEVType(Ty); 2521 return getMulExpr(V, 2522 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2523 } 2524 2525 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2526 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2527 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2528 return getConstant( 2529 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2530 2531 const Type *Ty = V->getType(); 2532 Ty = getEffectiveSCEVType(Ty); 2533 const SCEV *AllOnes = 2534 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2535 return getMinusSCEV(AllOnes, V); 2536 } 2537 2538 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2539 /// 2540 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2541 const SCEV *RHS) { 2542 // Fast path: X - X --> 0. 2543 if (LHS == RHS) 2544 return getConstant(LHS->getType(), 0); 2545 2546 // X - Y --> X + -Y 2547 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2548 } 2549 2550 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2551 /// input value to the specified type. If the type must be extended, it is zero 2552 /// extended. 2553 const SCEV * 2554 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2555 const Type *Ty) { 2556 const Type *SrcTy = V->getType(); 2557 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2558 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2559 "Cannot truncate or zero extend with non-integer arguments!"); 2560 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2561 return V; // No conversion 2562 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2563 return getTruncateExpr(V, Ty); 2564 return getZeroExtendExpr(V, Ty); 2565 } 2566 2567 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2568 /// input value to the specified type. If the type must be extended, it is sign 2569 /// extended. 2570 const SCEV * 2571 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2572 const Type *Ty) { 2573 const Type *SrcTy = V->getType(); 2574 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2575 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2576 "Cannot truncate or zero extend with non-integer arguments!"); 2577 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2578 return V; // No conversion 2579 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2580 return getTruncateExpr(V, Ty); 2581 return getSignExtendExpr(V, Ty); 2582 } 2583 2584 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2585 /// input value to the specified type. If the type must be extended, it is zero 2586 /// extended. The conversion must not be narrowing. 2587 const SCEV * 2588 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2589 const Type *SrcTy = V->getType(); 2590 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2591 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2592 "Cannot noop or zero extend with non-integer arguments!"); 2593 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2594 "getNoopOrZeroExtend cannot truncate!"); 2595 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2596 return V; // No conversion 2597 return getZeroExtendExpr(V, Ty); 2598 } 2599 2600 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2601 /// input value to the specified type. If the type must be extended, it is sign 2602 /// extended. The conversion must not be narrowing. 2603 const SCEV * 2604 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2605 const Type *SrcTy = V->getType(); 2606 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2607 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2608 "Cannot noop or sign extend with non-integer arguments!"); 2609 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2610 "getNoopOrSignExtend cannot truncate!"); 2611 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2612 return V; // No conversion 2613 return getSignExtendExpr(V, Ty); 2614 } 2615 2616 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2617 /// the input value to the specified type. If the type must be extended, 2618 /// it is extended with unspecified bits. The conversion must not be 2619 /// narrowing. 2620 const SCEV * 2621 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2622 const Type *SrcTy = V->getType(); 2623 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2624 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2625 "Cannot noop or any extend with non-integer arguments!"); 2626 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2627 "getNoopOrAnyExtend cannot truncate!"); 2628 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2629 return V; // No conversion 2630 return getAnyExtendExpr(V, Ty); 2631 } 2632 2633 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2634 /// input value to the specified type. The conversion must not be widening. 2635 const SCEV * 2636 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2637 const Type *SrcTy = V->getType(); 2638 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2639 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2640 "Cannot truncate or noop with non-integer arguments!"); 2641 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2642 "getTruncateOrNoop cannot extend!"); 2643 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2644 return V; // No conversion 2645 return getTruncateExpr(V, Ty); 2646 } 2647 2648 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2649 /// the types using zero-extension, and then perform a umax operation 2650 /// with them. 2651 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2652 const SCEV *RHS) { 2653 const SCEV *PromotedLHS = LHS; 2654 const SCEV *PromotedRHS = RHS; 2655 2656 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2657 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2658 else 2659 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2660 2661 return getUMaxExpr(PromotedLHS, PromotedRHS); 2662 } 2663 2664 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2665 /// the types using zero-extension, and then perform a umin operation 2666 /// with them. 2667 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2668 const SCEV *RHS) { 2669 const SCEV *PromotedLHS = LHS; 2670 const SCEV *PromotedRHS = RHS; 2671 2672 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2673 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2674 else 2675 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2676 2677 return getUMinExpr(PromotedLHS, PromotedRHS); 2678 } 2679 2680 /// PushDefUseChildren - Push users of the given Instruction 2681 /// onto the given Worklist. 2682 static void 2683 PushDefUseChildren(Instruction *I, 2684 SmallVectorImpl<Instruction *> &Worklist) { 2685 // Push the def-use children onto the Worklist stack. 2686 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2687 UI != UE; ++UI) 2688 Worklist.push_back(cast<Instruction>(*UI)); 2689 } 2690 2691 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2692 /// instructions that depend on the given instruction and removes them from 2693 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2694 /// resolution. 2695 void 2696 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2697 SmallVector<Instruction *, 16> Worklist; 2698 PushDefUseChildren(PN, Worklist); 2699 2700 SmallPtrSet<Instruction *, 8> Visited; 2701 Visited.insert(PN); 2702 while (!Worklist.empty()) { 2703 Instruction *I = Worklist.pop_back_val(); 2704 if (!Visited.insert(I)) continue; 2705 2706 ValueExprMapType::iterator It = 2707 ValueExprMap.find(static_cast<Value *>(I)); 2708 if (It != ValueExprMap.end()) { 2709 // Short-circuit the def-use traversal if the symbolic name 2710 // ceases to appear in expressions. 2711 if (It->second != SymName && !It->second->hasOperand(SymName)) 2712 continue; 2713 2714 // SCEVUnknown for a PHI either means that it has an unrecognized 2715 // structure, it's a PHI that's in the progress of being computed 2716 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2717 // additional loop trip count information isn't going to change anything. 2718 // In the second case, createNodeForPHI will perform the necessary 2719 // updates on its own when it gets to that point. In the third, we do 2720 // want to forget the SCEVUnknown. 2721 if (!isa<PHINode>(I) || 2722 !isa<SCEVUnknown>(It->second) || 2723 (I != PN && It->second == SymName)) { 2724 ValuesAtScopes.erase(It->second); 2725 ValueExprMap.erase(It); 2726 } 2727 } 2728 2729 PushDefUseChildren(I, Worklist); 2730 } 2731 } 2732 2733 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2734 /// a loop header, making it a potential recurrence, or it doesn't. 2735 /// 2736 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2737 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2738 if (L->getHeader() == PN->getParent()) { 2739 // The loop may have multiple entrances or multiple exits; we can analyze 2740 // this phi as an addrec if it has a unique entry value and a unique 2741 // backedge value. 2742 Value *BEValueV = 0, *StartValueV = 0; 2743 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2744 Value *V = PN->getIncomingValue(i); 2745 if (L->contains(PN->getIncomingBlock(i))) { 2746 if (!BEValueV) { 2747 BEValueV = V; 2748 } else if (BEValueV != V) { 2749 BEValueV = 0; 2750 break; 2751 } 2752 } else if (!StartValueV) { 2753 StartValueV = V; 2754 } else if (StartValueV != V) { 2755 StartValueV = 0; 2756 break; 2757 } 2758 } 2759 if (BEValueV && StartValueV) { 2760 // While we are analyzing this PHI node, handle its value symbolically. 2761 const SCEV *SymbolicName = getUnknown(PN); 2762 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 2763 "PHI node already processed?"); 2764 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2765 2766 // Using this symbolic name for the PHI, analyze the value coming around 2767 // the back-edge. 2768 const SCEV *BEValue = getSCEV(BEValueV); 2769 2770 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2771 // has a special value for the first iteration of the loop. 2772 2773 // If the value coming around the backedge is an add with the symbolic 2774 // value we just inserted, then we found a simple induction variable! 2775 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2776 // If there is a single occurrence of the symbolic value, replace it 2777 // with a recurrence. 2778 unsigned FoundIndex = Add->getNumOperands(); 2779 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2780 if (Add->getOperand(i) == SymbolicName) 2781 if (FoundIndex == e) { 2782 FoundIndex = i; 2783 break; 2784 } 2785 2786 if (FoundIndex != Add->getNumOperands()) { 2787 // Create an add with everything but the specified operand. 2788 SmallVector<const SCEV *, 8> Ops; 2789 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2790 if (i != FoundIndex) 2791 Ops.push_back(Add->getOperand(i)); 2792 const SCEV *Accum = getAddExpr(Ops); 2793 2794 // This is not a valid addrec if the step amount is varying each 2795 // loop iteration, but is not itself an addrec in this loop. 2796 if (Accum->isLoopInvariant(L) || 2797 (isa<SCEVAddRecExpr>(Accum) && 2798 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2799 bool HasNUW = false; 2800 bool HasNSW = false; 2801 2802 // If the increment doesn't overflow, then neither the addrec nor 2803 // the post-increment will overflow. 2804 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2805 if (OBO->hasNoUnsignedWrap()) 2806 HasNUW = true; 2807 if (OBO->hasNoSignedWrap()) 2808 HasNSW = true; 2809 } 2810 2811 const SCEV *StartVal = getSCEV(StartValueV); 2812 const SCEV *PHISCEV = 2813 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2814 2815 // Since the no-wrap flags are on the increment, they apply to the 2816 // post-incremented value as well. 2817 if (Accum->isLoopInvariant(L)) 2818 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2819 Accum, L, HasNUW, HasNSW); 2820 2821 // Okay, for the entire analysis of this edge we assumed the PHI 2822 // to be symbolic. We now need to go back and purge all of the 2823 // entries for the scalars that use the symbolic expression. 2824 ForgetSymbolicName(PN, SymbolicName); 2825 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2826 return PHISCEV; 2827 } 2828 } 2829 } else if (const SCEVAddRecExpr *AddRec = 2830 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2831 // Otherwise, this could be a loop like this: 2832 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2833 // In this case, j = {1,+,1} and BEValue is j. 2834 // Because the other in-value of i (0) fits the evolution of BEValue 2835 // i really is an addrec evolution. 2836 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2837 const SCEV *StartVal = getSCEV(StartValueV); 2838 2839 // If StartVal = j.start - j.stride, we can use StartVal as the 2840 // initial step of the addrec evolution. 2841 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2842 AddRec->getOperand(1))) { 2843 const SCEV *PHISCEV = 2844 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2845 2846 // Okay, for the entire analysis of this edge we assumed the PHI 2847 // to be symbolic. We now need to go back and purge all of the 2848 // entries for the scalars that use the symbolic expression. 2849 ForgetSymbolicName(PN, SymbolicName); 2850 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2851 return PHISCEV; 2852 } 2853 } 2854 } 2855 } 2856 } 2857 2858 // If the PHI has a single incoming value, follow that value, unless the 2859 // PHI's incoming blocks are in a different loop, in which case doing so 2860 // risks breaking LCSSA form. Instcombine would normally zap these, but 2861 // it doesn't have DominatorTree information, so it may miss cases. 2862 if (Value *V = PN->hasConstantValue(DT)) { 2863 bool AllSameLoop = true; 2864 Loop *PNLoop = LI->getLoopFor(PN->getParent()); 2865 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2866 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) { 2867 AllSameLoop = false; 2868 break; 2869 } 2870 if (AllSameLoop) 2871 return getSCEV(V); 2872 } 2873 2874 // If it's not a loop phi, we can't handle it yet. 2875 return getUnknown(PN); 2876 } 2877 2878 /// createNodeForGEP - Expand GEP instructions into add and multiply 2879 /// operations. This allows them to be analyzed by regular SCEV code. 2880 /// 2881 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2882 2883 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2884 // Add expression, because the Instruction may be guarded by control flow 2885 // and the no-overflow bits may not be valid for the expression in any 2886 // context. 2887 2888 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2889 Value *Base = GEP->getOperand(0); 2890 // Don't attempt to analyze GEPs over unsized objects. 2891 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2892 return getUnknown(GEP); 2893 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2894 gep_type_iterator GTI = gep_type_begin(GEP); 2895 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 2896 E = GEP->op_end(); 2897 I != E; ++I) { 2898 Value *Index = *I; 2899 // Compute the (potentially symbolic) offset in bytes for this index. 2900 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2901 // For a struct, add the member offset. 2902 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2903 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2904 2905 // Add the field offset to the running total offset. 2906 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2907 } else { 2908 // For an array, add the element offset, explicitly scaled. 2909 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2910 const SCEV *IndexS = getSCEV(Index); 2911 // Getelementptr indices are signed. 2912 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2913 2914 // Multiply the index by the element size to compute the element offset. 2915 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2916 2917 // Add the element offset to the running total offset. 2918 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2919 } 2920 } 2921 2922 // Get the SCEV for the GEP base. 2923 const SCEV *BaseS = getSCEV(Base); 2924 2925 // Add the total offset from all the GEP indices to the base. 2926 return getAddExpr(BaseS, TotalOffset); 2927 } 2928 2929 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2930 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2931 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2932 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2933 uint32_t 2934 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2935 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2936 return C->getValue()->getValue().countTrailingZeros(); 2937 2938 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2939 return std::min(GetMinTrailingZeros(T->getOperand()), 2940 (uint32_t)getTypeSizeInBits(T->getType())); 2941 2942 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2943 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2944 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2945 getTypeSizeInBits(E->getType()) : OpRes; 2946 } 2947 2948 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2949 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2950 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2951 getTypeSizeInBits(E->getType()) : OpRes; 2952 } 2953 2954 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2955 // The result is the min of all operands results. 2956 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2957 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2958 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2959 return MinOpRes; 2960 } 2961 2962 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2963 // The result is the sum of all operands results. 2964 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2965 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2966 for (unsigned i = 1, e = M->getNumOperands(); 2967 SumOpRes != BitWidth && i != e; ++i) 2968 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2969 BitWidth); 2970 return SumOpRes; 2971 } 2972 2973 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2974 // The result is the min of all operands results. 2975 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2976 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2977 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2978 return MinOpRes; 2979 } 2980 2981 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2982 // The result is the min of all operands results. 2983 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2984 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2985 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2986 return MinOpRes; 2987 } 2988 2989 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2990 // The result is the min of all operands results. 2991 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2992 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2993 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2994 return MinOpRes; 2995 } 2996 2997 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2998 // For a SCEVUnknown, ask ValueTracking. 2999 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3000 APInt Mask = APInt::getAllOnesValue(BitWidth); 3001 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3002 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 3003 return Zeros.countTrailingOnes(); 3004 } 3005 3006 // SCEVUDivExpr 3007 return 0; 3008 } 3009 3010 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3011 /// 3012 ConstantRange 3013 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3014 3015 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3016 return ConstantRange(C->getValue()->getValue()); 3017 3018 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3019 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3020 3021 // If the value has known zeros, the maximum unsigned value will have those 3022 // known zeros as well. 3023 uint32_t TZ = GetMinTrailingZeros(S); 3024 if (TZ != 0) 3025 ConservativeResult = 3026 ConstantRange(APInt::getMinValue(BitWidth), 3027 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3028 3029 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3030 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3031 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3032 X = X.add(getUnsignedRange(Add->getOperand(i))); 3033 return ConservativeResult.intersectWith(X); 3034 } 3035 3036 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3037 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3038 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3039 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3040 return ConservativeResult.intersectWith(X); 3041 } 3042 3043 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3044 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3045 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3046 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3047 return ConservativeResult.intersectWith(X); 3048 } 3049 3050 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3051 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3052 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3053 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3054 return ConservativeResult.intersectWith(X); 3055 } 3056 3057 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3058 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3059 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3060 return ConservativeResult.intersectWith(X.udiv(Y)); 3061 } 3062 3063 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3064 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3065 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3066 } 3067 3068 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3069 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3070 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3071 } 3072 3073 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3074 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3075 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3076 } 3077 3078 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3079 // If there's no unsigned wrap, the value will never be less than its 3080 // initial value. 3081 if (AddRec->hasNoUnsignedWrap()) 3082 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3083 if (!C->getValue()->isZero()) 3084 ConservativeResult = 3085 ConservativeResult.intersectWith( 3086 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3087 3088 // TODO: non-affine addrec 3089 if (AddRec->isAffine()) { 3090 const Type *Ty = AddRec->getType(); 3091 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3092 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3093 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3094 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3095 3096 const SCEV *Start = AddRec->getStart(); 3097 const SCEV *Step = AddRec->getStepRecurrence(*this); 3098 3099 ConstantRange StartRange = getUnsignedRange(Start); 3100 ConstantRange StepRange = getSignedRange(Step); 3101 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3102 ConstantRange EndRange = 3103 StartRange.add(MaxBECountRange.multiply(StepRange)); 3104 3105 // Check for overflow. This must be done with ConstantRange arithmetic 3106 // because we could be called from within the ScalarEvolution overflow 3107 // checking code. 3108 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3109 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3110 ConstantRange ExtMaxBECountRange = 3111 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3112 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3113 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3114 ExtEndRange) 3115 return ConservativeResult; 3116 3117 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3118 EndRange.getUnsignedMin()); 3119 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3120 EndRange.getUnsignedMax()); 3121 if (Min.isMinValue() && Max.isMaxValue()) 3122 return ConservativeResult; 3123 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3124 } 3125 } 3126 3127 return ConservativeResult; 3128 } 3129 3130 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3131 // For a SCEVUnknown, ask ValueTracking. 3132 APInt Mask = APInt::getAllOnesValue(BitWidth); 3133 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3134 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3135 if (Ones == ~Zeros + 1) 3136 return ConservativeResult; 3137 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 3138 } 3139 3140 return ConservativeResult; 3141 } 3142 3143 /// getSignedRange - Determine the signed range for a particular SCEV. 3144 /// 3145 ConstantRange 3146 ScalarEvolution::getSignedRange(const SCEV *S) { 3147 3148 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3149 return ConstantRange(C->getValue()->getValue()); 3150 3151 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3152 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3153 3154 // If the value has known zeros, the maximum signed value will have those 3155 // known zeros as well. 3156 uint32_t TZ = GetMinTrailingZeros(S); 3157 if (TZ != 0) 3158 ConservativeResult = 3159 ConstantRange(APInt::getSignedMinValue(BitWidth), 3160 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3161 3162 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3163 ConstantRange X = getSignedRange(Add->getOperand(0)); 3164 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3165 X = X.add(getSignedRange(Add->getOperand(i))); 3166 return ConservativeResult.intersectWith(X); 3167 } 3168 3169 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3170 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3171 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3172 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3173 return ConservativeResult.intersectWith(X); 3174 } 3175 3176 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3177 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3178 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3179 X = X.smax(getSignedRange(SMax->getOperand(i))); 3180 return ConservativeResult.intersectWith(X); 3181 } 3182 3183 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3184 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3185 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3186 X = X.umax(getSignedRange(UMax->getOperand(i))); 3187 return ConservativeResult.intersectWith(X); 3188 } 3189 3190 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3191 ConstantRange X = getSignedRange(UDiv->getLHS()); 3192 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3193 return ConservativeResult.intersectWith(X.udiv(Y)); 3194 } 3195 3196 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3197 ConstantRange X = getSignedRange(ZExt->getOperand()); 3198 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3199 } 3200 3201 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3202 ConstantRange X = getSignedRange(SExt->getOperand()); 3203 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3204 } 3205 3206 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3207 ConstantRange X = getSignedRange(Trunc->getOperand()); 3208 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3209 } 3210 3211 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3212 // If there's no signed wrap, and all the operands have the same sign or 3213 // zero, the value won't ever change sign. 3214 if (AddRec->hasNoSignedWrap()) { 3215 bool AllNonNeg = true; 3216 bool AllNonPos = true; 3217 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3218 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3219 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3220 } 3221 if (AllNonNeg) 3222 ConservativeResult = ConservativeResult.intersectWith( 3223 ConstantRange(APInt(BitWidth, 0), 3224 APInt::getSignedMinValue(BitWidth))); 3225 else if (AllNonPos) 3226 ConservativeResult = ConservativeResult.intersectWith( 3227 ConstantRange(APInt::getSignedMinValue(BitWidth), 3228 APInt(BitWidth, 1))); 3229 } 3230 3231 // TODO: non-affine addrec 3232 if (AddRec->isAffine()) { 3233 const Type *Ty = AddRec->getType(); 3234 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3235 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3236 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3237 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3238 3239 const SCEV *Start = AddRec->getStart(); 3240 const SCEV *Step = AddRec->getStepRecurrence(*this); 3241 3242 ConstantRange StartRange = getSignedRange(Start); 3243 ConstantRange StepRange = getSignedRange(Step); 3244 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3245 ConstantRange EndRange = 3246 StartRange.add(MaxBECountRange.multiply(StepRange)); 3247 3248 // Check for overflow. This must be done with ConstantRange arithmetic 3249 // because we could be called from within the ScalarEvolution overflow 3250 // checking code. 3251 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3252 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3253 ConstantRange ExtMaxBECountRange = 3254 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3255 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3256 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3257 ExtEndRange) 3258 return ConservativeResult; 3259 3260 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3261 EndRange.getSignedMin()); 3262 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3263 EndRange.getSignedMax()); 3264 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3265 return ConservativeResult; 3266 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3267 } 3268 } 3269 3270 return ConservativeResult; 3271 } 3272 3273 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3274 // For a SCEVUnknown, ask ValueTracking. 3275 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3276 return ConservativeResult; 3277 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3278 if (NS == 1) 3279 return ConservativeResult; 3280 return ConservativeResult.intersectWith( 3281 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3282 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3283 } 3284 3285 return ConservativeResult; 3286 } 3287 3288 /// createSCEV - We know that there is no SCEV for the specified value. 3289 /// Analyze the expression. 3290 /// 3291 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3292 if (!isSCEVable(V->getType())) 3293 return getUnknown(V); 3294 3295 unsigned Opcode = Instruction::UserOp1; 3296 if (Instruction *I = dyn_cast<Instruction>(V)) { 3297 Opcode = I->getOpcode(); 3298 3299 // Don't attempt to analyze instructions in blocks that aren't 3300 // reachable. Such instructions don't matter, and they aren't required 3301 // to obey basic rules for definitions dominating uses which this 3302 // analysis depends on. 3303 if (!DT->isReachableFromEntry(I->getParent())) 3304 return getUnknown(V); 3305 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3306 Opcode = CE->getOpcode(); 3307 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3308 return getConstant(CI); 3309 else if (isa<ConstantPointerNull>(V)) 3310 return getConstant(V->getType(), 0); 3311 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3312 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3313 else 3314 return getUnknown(V); 3315 3316 Operator *U = cast<Operator>(V); 3317 switch (Opcode) { 3318 case Instruction::Add: { 3319 // The simple thing to do would be to just call getSCEV on both operands 3320 // and call getAddExpr with the result. However if we're looking at a 3321 // bunch of things all added together, this can be quite inefficient, 3322 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3323 // Instead, gather up all the operands and make a single getAddExpr call. 3324 // LLVM IR canonical form means we need only traverse the left operands. 3325 SmallVector<const SCEV *, 4> AddOps; 3326 AddOps.push_back(getSCEV(U->getOperand(1))); 3327 for (Value *Op = U->getOperand(0); 3328 Op->getValueID() == Instruction::Add + Value::InstructionVal; 3329 Op = U->getOperand(0)) { 3330 U = cast<Operator>(Op); 3331 AddOps.push_back(getSCEV(U->getOperand(1))); 3332 } 3333 AddOps.push_back(getSCEV(U->getOperand(0))); 3334 return getAddExpr(AddOps); 3335 } 3336 case Instruction::Mul: { 3337 // See the Add code above. 3338 SmallVector<const SCEV *, 4> MulOps; 3339 MulOps.push_back(getSCEV(U->getOperand(1))); 3340 for (Value *Op = U->getOperand(0); 3341 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3342 Op = U->getOperand(0)) { 3343 U = cast<Operator>(Op); 3344 MulOps.push_back(getSCEV(U->getOperand(1))); 3345 } 3346 MulOps.push_back(getSCEV(U->getOperand(0))); 3347 return getMulExpr(MulOps); 3348 } 3349 case Instruction::UDiv: 3350 return getUDivExpr(getSCEV(U->getOperand(0)), 3351 getSCEV(U->getOperand(1))); 3352 case Instruction::Sub: 3353 return getMinusSCEV(getSCEV(U->getOperand(0)), 3354 getSCEV(U->getOperand(1))); 3355 case Instruction::And: 3356 // For an expression like x&255 that merely masks off the high bits, 3357 // use zext(trunc(x)) as the SCEV expression. 3358 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3359 if (CI->isNullValue()) 3360 return getSCEV(U->getOperand(1)); 3361 if (CI->isAllOnesValue()) 3362 return getSCEV(U->getOperand(0)); 3363 const APInt &A = CI->getValue(); 3364 3365 // Instcombine's ShrinkDemandedConstant may strip bits out of 3366 // constants, obscuring what would otherwise be a low-bits mask. 3367 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3368 // knew about to reconstruct a low-bits mask value. 3369 unsigned LZ = A.countLeadingZeros(); 3370 unsigned BitWidth = A.getBitWidth(); 3371 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3372 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3373 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3374 3375 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3376 3377 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3378 return 3379 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3380 IntegerType::get(getContext(), BitWidth - LZ)), 3381 U->getType()); 3382 } 3383 break; 3384 3385 case Instruction::Or: 3386 // If the RHS of the Or is a constant, we may have something like: 3387 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3388 // optimizations will transparently handle this case. 3389 // 3390 // In order for this transformation to be safe, the LHS must be of the 3391 // form X*(2^n) and the Or constant must be less than 2^n. 3392 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3393 const SCEV *LHS = getSCEV(U->getOperand(0)); 3394 const APInt &CIVal = CI->getValue(); 3395 if (GetMinTrailingZeros(LHS) >= 3396 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3397 // Build a plain add SCEV. 3398 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3399 // If the LHS of the add was an addrec and it has no-wrap flags, 3400 // transfer the no-wrap flags, since an or won't introduce a wrap. 3401 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3402 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3403 if (OldAR->hasNoUnsignedWrap()) 3404 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3405 if (OldAR->hasNoSignedWrap()) 3406 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3407 } 3408 return S; 3409 } 3410 } 3411 break; 3412 case Instruction::Xor: 3413 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3414 // If the RHS of the xor is a signbit, then this is just an add. 3415 // Instcombine turns add of signbit into xor as a strength reduction step. 3416 if (CI->getValue().isSignBit()) 3417 return getAddExpr(getSCEV(U->getOperand(0)), 3418 getSCEV(U->getOperand(1))); 3419 3420 // If the RHS of xor is -1, then this is a not operation. 3421 if (CI->isAllOnesValue()) 3422 return getNotSCEV(getSCEV(U->getOperand(0))); 3423 3424 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3425 // This is a variant of the check for xor with -1, and it handles 3426 // the case where instcombine has trimmed non-demanded bits out 3427 // of an xor with -1. 3428 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3429 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3430 if (BO->getOpcode() == Instruction::And && 3431 LCI->getValue() == CI->getValue()) 3432 if (const SCEVZeroExtendExpr *Z = 3433 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3434 const Type *UTy = U->getType(); 3435 const SCEV *Z0 = Z->getOperand(); 3436 const Type *Z0Ty = Z0->getType(); 3437 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3438 3439 // If C is a low-bits mask, the zero extend is serving to 3440 // mask off the high bits. Complement the operand and 3441 // re-apply the zext. 3442 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3443 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3444 3445 // If C is a single bit, it may be in the sign-bit position 3446 // before the zero-extend. In this case, represent the xor 3447 // using an add, which is equivalent, and re-apply the zext. 3448 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3449 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3450 Trunc.isSignBit()) 3451 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3452 UTy); 3453 } 3454 } 3455 break; 3456 3457 case Instruction::Shl: 3458 // Turn shift left of a constant amount into a multiply. 3459 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3460 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3461 3462 // If the shift count is not less than the bitwidth, the result of 3463 // the shift is undefined. Don't try to analyze it, because the 3464 // resolution chosen here may differ from the resolution chosen in 3465 // other parts of the compiler. 3466 if (SA->getValue().uge(BitWidth)) 3467 break; 3468 3469 Constant *X = ConstantInt::get(getContext(), 3470 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3471 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3472 } 3473 break; 3474 3475 case Instruction::LShr: 3476 // Turn logical shift right of a constant into a unsigned divide. 3477 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3478 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3479 3480 // If the shift count is not less than the bitwidth, the result of 3481 // the shift is undefined. Don't try to analyze it, because the 3482 // resolution chosen here may differ from the resolution chosen in 3483 // other parts of the compiler. 3484 if (SA->getValue().uge(BitWidth)) 3485 break; 3486 3487 Constant *X = ConstantInt::get(getContext(), 3488 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3489 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3490 } 3491 break; 3492 3493 case Instruction::AShr: 3494 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3495 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3496 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3497 if (L->getOpcode() == Instruction::Shl && 3498 L->getOperand(1) == U->getOperand(1)) { 3499 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3500 3501 // If the shift count is not less than the bitwidth, the result of 3502 // the shift is undefined. Don't try to analyze it, because the 3503 // resolution chosen here may differ from the resolution chosen in 3504 // other parts of the compiler. 3505 if (CI->getValue().uge(BitWidth)) 3506 break; 3507 3508 uint64_t Amt = BitWidth - CI->getZExtValue(); 3509 if (Amt == BitWidth) 3510 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3511 return 3512 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3513 IntegerType::get(getContext(), 3514 Amt)), 3515 U->getType()); 3516 } 3517 break; 3518 3519 case Instruction::Trunc: 3520 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3521 3522 case Instruction::ZExt: 3523 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3524 3525 case Instruction::SExt: 3526 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3527 3528 case Instruction::BitCast: 3529 // BitCasts are no-op casts so we just eliminate the cast. 3530 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3531 return getSCEV(U->getOperand(0)); 3532 break; 3533 3534 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3535 // lead to pointer expressions which cannot safely be expanded to GEPs, 3536 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3537 // simplifying integer expressions. 3538 3539 case Instruction::GetElementPtr: 3540 return createNodeForGEP(cast<GEPOperator>(U)); 3541 3542 case Instruction::PHI: 3543 return createNodeForPHI(cast<PHINode>(U)); 3544 3545 case Instruction::Select: 3546 // This could be a smax or umax that was lowered earlier. 3547 // Try to recover it. 3548 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3549 Value *LHS = ICI->getOperand(0); 3550 Value *RHS = ICI->getOperand(1); 3551 switch (ICI->getPredicate()) { 3552 case ICmpInst::ICMP_SLT: 3553 case ICmpInst::ICMP_SLE: 3554 std::swap(LHS, RHS); 3555 // fall through 3556 case ICmpInst::ICMP_SGT: 3557 case ICmpInst::ICMP_SGE: 3558 // a >s b ? a+x : b+x -> smax(a, b)+x 3559 // a >s b ? b+x : a+x -> smin(a, b)+x 3560 if (LHS->getType() == U->getType()) { 3561 const SCEV *LS = getSCEV(LHS); 3562 const SCEV *RS = getSCEV(RHS); 3563 const SCEV *LA = getSCEV(U->getOperand(1)); 3564 const SCEV *RA = getSCEV(U->getOperand(2)); 3565 const SCEV *LDiff = getMinusSCEV(LA, LS); 3566 const SCEV *RDiff = getMinusSCEV(RA, RS); 3567 if (LDiff == RDiff) 3568 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3569 LDiff = getMinusSCEV(LA, RS); 3570 RDiff = getMinusSCEV(RA, LS); 3571 if (LDiff == RDiff) 3572 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3573 } 3574 break; 3575 case ICmpInst::ICMP_ULT: 3576 case ICmpInst::ICMP_ULE: 3577 std::swap(LHS, RHS); 3578 // fall through 3579 case ICmpInst::ICMP_UGT: 3580 case ICmpInst::ICMP_UGE: 3581 // a >u b ? a+x : b+x -> umax(a, b)+x 3582 // a >u b ? b+x : a+x -> umin(a, b)+x 3583 if (LHS->getType() == U->getType()) { 3584 const SCEV *LS = getSCEV(LHS); 3585 const SCEV *RS = getSCEV(RHS); 3586 const SCEV *LA = getSCEV(U->getOperand(1)); 3587 const SCEV *RA = getSCEV(U->getOperand(2)); 3588 const SCEV *LDiff = getMinusSCEV(LA, LS); 3589 const SCEV *RDiff = getMinusSCEV(RA, RS); 3590 if (LDiff == RDiff) 3591 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3592 LDiff = getMinusSCEV(LA, RS); 3593 RDiff = getMinusSCEV(RA, LS); 3594 if (LDiff == RDiff) 3595 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3596 } 3597 break; 3598 case ICmpInst::ICMP_NE: 3599 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3600 if (LHS->getType() == U->getType() && 3601 isa<ConstantInt>(RHS) && 3602 cast<ConstantInt>(RHS)->isZero()) { 3603 const SCEV *One = getConstant(LHS->getType(), 1); 3604 const SCEV *LS = getSCEV(LHS); 3605 const SCEV *LA = getSCEV(U->getOperand(1)); 3606 const SCEV *RA = getSCEV(U->getOperand(2)); 3607 const SCEV *LDiff = getMinusSCEV(LA, LS); 3608 const SCEV *RDiff = getMinusSCEV(RA, One); 3609 if (LDiff == RDiff) 3610 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3611 } 3612 break; 3613 case ICmpInst::ICMP_EQ: 3614 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3615 if (LHS->getType() == U->getType() && 3616 isa<ConstantInt>(RHS) && 3617 cast<ConstantInt>(RHS)->isZero()) { 3618 const SCEV *One = getConstant(LHS->getType(), 1); 3619 const SCEV *LS = getSCEV(LHS); 3620 const SCEV *LA = getSCEV(U->getOperand(1)); 3621 const SCEV *RA = getSCEV(U->getOperand(2)); 3622 const SCEV *LDiff = getMinusSCEV(LA, One); 3623 const SCEV *RDiff = getMinusSCEV(RA, LS); 3624 if (LDiff == RDiff) 3625 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3626 } 3627 break; 3628 default: 3629 break; 3630 } 3631 } 3632 3633 default: // We cannot analyze this expression. 3634 break; 3635 } 3636 3637 return getUnknown(V); 3638 } 3639 3640 3641 3642 //===----------------------------------------------------------------------===// 3643 // Iteration Count Computation Code 3644 // 3645 3646 /// getBackedgeTakenCount - If the specified loop has a predictable 3647 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3648 /// object. The backedge-taken count is the number of times the loop header 3649 /// will be branched to from within the loop. This is one less than the 3650 /// trip count of the loop, since it doesn't count the first iteration, 3651 /// when the header is branched to from outside the loop. 3652 /// 3653 /// Note that it is not valid to call this method on a loop without a 3654 /// loop-invariant backedge-taken count (see 3655 /// hasLoopInvariantBackedgeTakenCount). 3656 /// 3657 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3658 return getBackedgeTakenInfo(L).Exact; 3659 } 3660 3661 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3662 /// return the least SCEV value that is known never to be less than the 3663 /// actual backedge taken count. 3664 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3665 return getBackedgeTakenInfo(L).Max; 3666 } 3667 3668 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3669 /// onto the given Worklist. 3670 static void 3671 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3672 BasicBlock *Header = L->getHeader(); 3673 3674 // Push all Loop-header PHIs onto the Worklist stack. 3675 for (BasicBlock::iterator I = Header->begin(); 3676 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3677 Worklist.push_back(PN); 3678 } 3679 3680 const ScalarEvolution::BackedgeTakenInfo & 3681 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3682 // Initially insert a CouldNotCompute for this loop. If the insertion 3683 // succeeds, proceed to actually compute a backedge-taken count and 3684 // update the value. The temporary CouldNotCompute value tells SCEV 3685 // code elsewhere that it shouldn't attempt to request a new 3686 // backedge-taken count, which could result in infinite recursion. 3687 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3688 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3689 if (Pair.second) { 3690 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3691 if (BECount.Exact != getCouldNotCompute()) { 3692 assert(BECount.Exact->isLoopInvariant(L) && 3693 BECount.Max->isLoopInvariant(L) && 3694 "Computed backedge-taken count isn't loop invariant for loop!"); 3695 ++NumTripCountsComputed; 3696 3697 // Update the value in the map. 3698 Pair.first->second = BECount; 3699 } else { 3700 if (BECount.Max != getCouldNotCompute()) 3701 // Update the value in the map. 3702 Pair.first->second = BECount; 3703 if (isa<PHINode>(L->getHeader()->begin())) 3704 // Only count loops that have phi nodes as not being computable. 3705 ++NumTripCountsNotComputed; 3706 } 3707 3708 // Now that we know more about the trip count for this loop, forget any 3709 // existing SCEV values for PHI nodes in this loop since they are only 3710 // conservative estimates made without the benefit of trip count 3711 // information. This is similar to the code in forgetLoop, except that 3712 // it handles SCEVUnknown PHI nodes specially. 3713 if (BECount.hasAnyInfo()) { 3714 SmallVector<Instruction *, 16> Worklist; 3715 PushLoopPHIs(L, Worklist); 3716 3717 SmallPtrSet<Instruction *, 8> Visited; 3718 while (!Worklist.empty()) { 3719 Instruction *I = Worklist.pop_back_val(); 3720 if (!Visited.insert(I)) continue; 3721 3722 ValueExprMapType::iterator It = 3723 ValueExprMap.find(static_cast<Value *>(I)); 3724 if (It != ValueExprMap.end()) { 3725 // SCEVUnknown for a PHI either means that it has an unrecognized 3726 // structure, or it's a PHI that's in the progress of being computed 3727 // by createNodeForPHI. In the former case, additional loop trip 3728 // count information isn't going to change anything. In the later 3729 // case, createNodeForPHI will perform the necessary updates on its 3730 // own when it gets to that point. 3731 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3732 ValuesAtScopes.erase(It->second); 3733 ValueExprMap.erase(It); 3734 } 3735 if (PHINode *PN = dyn_cast<PHINode>(I)) 3736 ConstantEvolutionLoopExitValue.erase(PN); 3737 } 3738 3739 PushDefUseChildren(I, Worklist); 3740 } 3741 } 3742 } 3743 return Pair.first->second; 3744 } 3745 3746 /// forgetLoop - This method should be called by the client when it has 3747 /// changed a loop in a way that may effect ScalarEvolution's ability to 3748 /// compute a trip count, or if the loop is deleted. 3749 void ScalarEvolution::forgetLoop(const Loop *L) { 3750 // Drop any stored trip count value. 3751 BackedgeTakenCounts.erase(L); 3752 3753 // Drop information about expressions based on loop-header PHIs. 3754 SmallVector<Instruction *, 16> Worklist; 3755 PushLoopPHIs(L, Worklist); 3756 3757 SmallPtrSet<Instruction *, 8> Visited; 3758 while (!Worklist.empty()) { 3759 Instruction *I = Worklist.pop_back_val(); 3760 if (!Visited.insert(I)) continue; 3761 3762 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3763 if (It != ValueExprMap.end()) { 3764 ValuesAtScopes.erase(It->second); 3765 ValueExprMap.erase(It); 3766 if (PHINode *PN = dyn_cast<PHINode>(I)) 3767 ConstantEvolutionLoopExitValue.erase(PN); 3768 } 3769 3770 PushDefUseChildren(I, Worklist); 3771 } 3772 } 3773 3774 /// forgetValue - This method should be called by the client when it has 3775 /// changed a value in a way that may effect its value, or which may 3776 /// disconnect it from a def-use chain linking it to a loop. 3777 void ScalarEvolution::forgetValue(Value *V) { 3778 Instruction *I = dyn_cast<Instruction>(V); 3779 if (!I) return; 3780 3781 // Drop information about expressions based on loop-header PHIs. 3782 SmallVector<Instruction *, 16> Worklist; 3783 Worklist.push_back(I); 3784 3785 SmallPtrSet<Instruction *, 8> Visited; 3786 while (!Worklist.empty()) { 3787 I = Worklist.pop_back_val(); 3788 if (!Visited.insert(I)) continue; 3789 3790 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3791 if (It != ValueExprMap.end()) { 3792 ValuesAtScopes.erase(It->second); 3793 ValueExprMap.erase(It); 3794 if (PHINode *PN = dyn_cast<PHINode>(I)) 3795 ConstantEvolutionLoopExitValue.erase(PN); 3796 } 3797 3798 PushDefUseChildren(I, Worklist); 3799 } 3800 } 3801 3802 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3803 /// of the specified loop will execute. 3804 ScalarEvolution::BackedgeTakenInfo 3805 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3806 SmallVector<BasicBlock *, 8> ExitingBlocks; 3807 L->getExitingBlocks(ExitingBlocks); 3808 3809 // Examine all exits and pick the most conservative values. 3810 const SCEV *BECount = getCouldNotCompute(); 3811 const SCEV *MaxBECount = getCouldNotCompute(); 3812 bool CouldNotComputeBECount = false; 3813 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3814 BackedgeTakenInfo NewBTI = 3815 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3816 3817 if (NewBTI.Exact == getCouldNotCompute()) { 3818 // We couldn't compute an exact value for this exit, so 3819 // we won't be able to compute an exact value for the loop. 3820 CouldNotComputeBECount = true; 3821 BECount = getCouldNotCompute(); 3822 } else if (!CouldNotComputeBECount) { 3823 if (BECount == getCouldNotCompute()) 3824 BECount = NewBTI.Exact; 3825 else 3826 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3827 } 3828 if (MaxBECount == getCouldNotCompute()) 3829 MaxBECount = NewBTI.Max; 3830 else if (NewBTI.Max != getCouldNotCompute()) 3831 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3832 } 3833 3834 return BackedgeTakenInfo(BECount, MaxBECount); 3835 } 3836 3837 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3838 /// of the specified loop will execute if it exits via the specified block. 3839 ScalarEvolution::BackedgeTakenInfo 3840 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3841 BasicBlock *ExitingBlock) { 3842 3843 // Okay, we've chosen an exiting block. See what condition causes us to 3844 // exit at this block. 3845 // 3846 // FIXME: we should be able to handle switch instructions (with a single exit) 3847 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3848 if (ExitBr == 0) return getCouldNotCompute(); 3849 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3850 3851 // At this point, we know we have a conditional branch that determines whether 3852 // the loop is exited. However, we don't know if the branch is executed each 3853 // time through the loop. If not, then the execution count of the branch will 3854 // not be equal to the trip count of the loop. 3855 // 3856 // Currently we check for this by checking to see if the Exit branch goes to 3857 // the loop header. If so, we know it will always execute the same number of 3858 // times as the loop. We also handle the case where the exit block *is* the 3859 // loop header. This is common for un-rotated loops. 3860 // 3861 // If both of those tests fail, walk up the unique predecessor chain to the 3862 // header, stopping if there is an edge that doesn't exit the loop. If the 3863 // header is reached, the execution count of the branch will be equal to the 3864 // trip count of the loop. 3865 // 3866 // More extensive analysis could be done to handle more cases here. 3867 // 3868 if (ExitBr->getSuccessor(0) != L->getHeader() && 3869 ExitBr->getSuccessor(1) != L->getHeader() && 3870 ExitBr->getParent() != L->getHeader()) { 3871 // The simple checks failed, try climbing the unique predecessor chain 3872 // up to the header. 3873 bool Ok = false; 3874 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3875 BasicBlock *Pred = BB->getUniquePredecessor(); 3876 if (!Pred) 3877 return getCouldNotCompute(); 3878 TerminatorInst *PredTerm = Pred->getTerminator(); 3879 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3880 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3881 if (PredSucc == BB) 3882 continue; 3883 // If the predecessor has a successor that isn't BB and isn't 3884 // outside the loop, assume the worst. 3885 if (L->contains(PredSucc)) 3886 return getCouldNotCompute(); 3887 } 3888 if (Pred == L->getHeader()) { 3889 Ok = true; 3890 break; 3891 } 3892 BB = Pred; 3893 } 3894 if (!Ok) 3895 return getCouldNotCompute(); 3896 } 3897 3898 // Proceed to the next level to examine the exit condition expression. 3899 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3900 ExitBr->getSuccessor(0), 3901 ExitBr->getSuccessor(1)); 3902 } 3903 3904 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3905 /// backedge of the specified loop will execute if its exit condition 3906 /// were a conditional branch of ExitCond, TBB, and FBB. 3907 ScalarEvolution::BackedgeTakenInfo 3908 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3909 Value *ExitCond, 3910 BasicBlock *TBB, 3911 BasicBlock *FBB) { 3912 // Check if the controlling expression for this loop is an And or Or. 3913 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3914 if (BO->getOpcode() == Instruction::And) { 3915 // Recurse on the operands of the and. 3916 BackedgeTakenInfo BTI0 = 3917 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3918 BackedgeTakenInfo BTI1 = 3919 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3920 const SCEV *BECount = getCouldNotCompute(); 3921 const SCEV *MaxBECount = getCouldNotCompute(); 3922 if (L->contains(TBB)) { 3923 // Both conditions must be true for the loop to continue executing. 3924 // Choose the less conservative count. 3925 if (BTI0.Exact == getCouldNotCompute() || 3926 BTI1.Exact == getCouldNotCompute()) 3927 BECount = getCouldNotCompute(); 3928 else 3929 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3930 if (BTI0.Max == getCouldNotCompute()) 3931 MaxBECount = BTI1.Max; 3932 else if (BTI1.Max == getCouldNotCompute()) 3933 MaxBECount = BTI0.Max; 3934 else 3935 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3936 } else { 3937 // Both conditions must be true at the same time for the loop to exit. 3938 // For now, be conservative. 3939 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3940 if (BTI0.Max == BTI1.Max) 3941 MaxBECount = BTI0.Max; 3942 if (BTI0.Exact == BTI1.Exact) 3943 BECount = BTI0.Exact; 3944 } 3945 3946 return BackedgeTakenInfo(BECount, MaxBECount); 3947 } 3948 if (BO->getOpcode() == Instruction::Or) { 3949 // Recurse on the operands of the or. 3950 BackedgeTakenInfo BTI0 = 3951 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3952 BackedgeTakenInfo BTI1 = 3953 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3954 const SCEV *BECount = getCouldNotCompute(); 3955 const SCEV *MaxBECount = getCouldNotCompute(); 3956 if (L->contains(FBB)) { 3957 // Both conditions must be false for the loop to continue executing. 3958 // Choose the less conservative count. 3959 if (BTI0.Exact == getCouldNotCompute() || 3960 BTI1.Exact == getCouldNotCompute()) 3961 BECount = getCouldNotCompute(); 3962 else 3963 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3964 if (BTI0.Max == getCouldNotCompute()) 3965 MaxBECount = BTI1.Max; 3966 else if (BTI1.Max == getCouldNotCompute()) 3967 MaxBECount = BTI0.Max; 3968 else 3969 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3970 } else { 3971 // Both conditions must be false at the same time for the loop to exit. 3972 // For now, be conservative. 3973 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3974 if (BTI0.Max == BTI1.Max) 3975 MaxBECount = BTI0.Max; 3976 if (BTI0.Exact == BTI1.Exact) 3977 BECount = BTI0.Exact; 3978 } 3979 3980 return BackedgeTakenInfo(BECount, MaxBECount); 3981 } 3982 } 3983 3984 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3985 // Proceed to the next level to examine the icmp. 3986 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3987 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3988 3989 // Check for a constant condition. These are normally stripped out by 3990 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3991 // preserve the CFG and is temporarily leaving constant conditions 3992 // in place. 3993 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3994 if (L->contains(FBB) == !CI->getZExtValue()) 3995 // The backedge is always taken. 3996 return getCouldNotCompute(); 3997 else 3998 // The backedge is never taken. 3999 return getConstant(CI->getType(), 0); 4000 } 4001 4002 // If it's not an integer or pointer comparison then compute it the hard way. 4003 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4004 } 4005 4006 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 4007 /// backedge of the specified loop will execute if its exit condition 4008 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4009 ScalarEvolution::BackedgeTakenInfo 4010 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 4011 ICmpInst *ExitCond, 4012 BasicBlock *TBB, 4013 BasicBlock *FBB) { 4014 4015 // If the condition was exit on true, convert the condition to exit on false 4016 ICmpInst::Predicate Cond; 4017 if (!L->contains(FBB)) 4018 Cond = ExitCond->getPredicate(); 4019 else 4020 Cond = ExitCond->getInversePredicate(); 4021 4022 // Handle common loops like: for (X = "string"; *X; ++X) 4023 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4024 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4025 BackedgeTakenInfo ItCnt = 4026 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 4027 if (ItCnt.hasAnyInfo()) 4028 return ItCnt; 4029 } 4030 4031 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4032 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4033 4034 // Try to evaluate any dependencies out of the loop. 4035 LHS = getSCEVAtScope(LHS, L); 4036 RHS = getSCEVAtScope(RHS, L); 4037 4038 // At this point, we would like to compute how many iterations of the 4039 // loop the predicate will return true for these inputs. 4040 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 4041 // If there is a loop-invariant, force it into the RHS. 4042 std::swap(LHS, RHS); 4043 Cond = ICmpInst::getSwappedPredicate(Cond); 4044 } 4045 4046 // Simplify the operands before analyzing them. 4047 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4048 4049 // If we have a comparison of a chrec against a constant, try to use value 4050 // ranges to answer this query. 4051 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4052 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4053 if (AddRec->getLoop() == L) { 4054 // Form the constant range. 4055 ConstantRange CompRange( 4056 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4057 4058 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4059 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4060 } 4061 4062 switch (Cond) { 4063 case ICmpInst::ICMP_NE: { // while (X != Y) 4064 // Convert to: while (X-Y != 0) 4065 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4066 if (BTI.hasAnyInfo()) return BTI; 4067 break; 4068 } 4069 case ICmpInst::ICMP_EQ: { // while (X == Y) 4070 // Convert to: while (X-Y == 0) 4071 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4072 if (BTI.hasAnyInfo()) return BTI; 4073 break; 4074 } 4075 case ICmpInst::ICMP_SLT: { 4076 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 4077 if (BTI.hasAnyInfo()) return BTI; 4078 break; 4079 } 4080 case ICmpInst::ICMP_SGT: { 4081 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4082 getNotSCEV(RHS), L, true); 4083 if (BTI.hasAnyInfo()) return BTI; 4084 break; 4085 } 4086 case ICmpInst::ICMP_ULT: { 4087 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 4088 if (BTI.hasAnyInfo()) return BTI; 4089 break; 4090 } 4091 case ICmpInst::ICMP_UGT: { 4092 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4093 getNotSCEV(RHS), L, false); 4094 if (BTI.hasAnyInfo()) return BTI; 4095 break; 4096 } 4097 default: 4098 #if 0 4099 dbgs() << "ComputeBackedgeTakenCount "; 4100 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4101 dbgs() << "[unsigned] "; 4102 dbgs() << *LHS << " " 4103 << Instruction::getOpcodeName(Instruction::ICmp) 4104 << " " << *RHS << "\n"; 4105 #endif 4106 break; 4107 } 4108 return 4109 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4110 } 4111 4112 static ConstantInt * 4113 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4114 ScalarEvolution &SE) { 4115 const SCEV *InVal = SE.getConstant(C); 4116 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4117 assert(isa<SCEVConstant>(Val) && 4118 "Evaluation of SCEV at constant didn't fold correctly?"); 4119 return cast<SCEVConstant>(Val)->getValue(); 4120 } 4121 4122 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4123 /// and a GEP expression (missing the pointer index) indexing into it, return 4124 /// the addressed element of the initializer or null if the index expression is 4125 /// invalid. 4126 static Constant * 4127 GetAddressedElementFromGlobal(GlobalVariable *GV, 4128 const std::vector<ConstantInt*> &Indices) { 4129 Constant *Init = GV->getInitializer(); 4130 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4131 uint64_t Idx = Indices[i]->getZExtValue(); 4132 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4133 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4134 Init = cast<Constant>(CS->getOperand(Idx)); 4135 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4136 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4137 Init = cast<Constant>(CA->getOperand(Idx)); 4138 } else if (isa<ConstantAggregateZero>(Init)) { 4139 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4140 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4141 Init = Constant::getNullValue(STy->getElementType(Idx)); 4142 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4143 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4144 Init = Constant::getNullValue(ATy->getElementType()); 4145 } else { 4146 llvm_unreachable("Unknown constant aggregate type!"); 4147 } 4148 return 0; 4149 } else { 4150 return 0; // Unknown initializer type 4151 } 4152 } 4153 return Init; 4154 } 4155 4156 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4157 /// 'icmp op load X, cst', try to see if we can compute the backedge 4158 /// execution count. 4159 ScalarEvolution::BackedgeTakenInfo 4160 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4161 LoadInst *LI, 4162 Constant *RHS, 4163 const Loop *L, 4164 ICmpInst::Predicate predicate) { 4165 if (LI->isVolatile()) return getCouldNotCompute(); 4166 4167 // Check to see if the loaded pointer is a getelementptr of a global. 4168 // TODO: Use SCEV instead of manually grubbing with GEPs. 4169 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4170 if (!GEP) return getCouldNotCompute(); 4171 4172 // Make sure that it is really a constant global we are gepping, with an 4173 // initializer, and make sure the first IDX is really 0. 4174 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4175 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4176 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4177 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4178 return getCouldNotCompute(); 4179 4180 // Okay, we allow one non-constant index into the GEP instruction. 4181 Value *VarIdx = 0; 4182 std::vector<ConstantInt*> Indexes; 4183 unsigned VarIdxNum = 0; 4184 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4185 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4186 Indexes.push_back(CI); 4187 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4188 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4189 VarIdx = GEP->getOperand(i); 4190 VarIdxNum = i-2; 4191 Indexes.push_back(0); 4192 } 4193 4194 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4195 // Check to see if X is a loop variant variable value now. 4196 const SCEV *Idx = getSCEV(VarIdx); 4197 Idx = getSCEVAtScope(Idx, L); 4198 4199 // We can only recognize very limited forms of loop index expressions, in 4200 // particular, only affine AddRec's like {C1,+,C2}. 4201 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4202 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 4203 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4204 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4205 return getCouldNotCompute(); 4206 4207 unsigned MaxSteps = MaxBruteForceIterations; 4208 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4209 ConstantInt *ItCst = ConstantInt::get( 4210 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4211 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4212 4213 // Form the GEP offset. 4214 Indexes[VarIdxNum] = Val; 4215 4216 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4217 if (Result == 0) break; // Cannot compute! 4218 4219 // Evaluate the condition for this iteration. 4220 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4221 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4222 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4223 #if 0 4224 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4225 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4226 << "***\n"; 4227 #endif 4228 ++NumArrayLenItCounts; 4229 return getConstant(ItCst); // Found terminating iteration! 4230 } 4231 } 4232 return getCouldNotCompute(); 4233 } 4234 4235 4236 /// CanConstantFold - Return true if we can constant fold an instruction of the 4237 /// specified type, assuming that all operands were constants. 4238 static bool CanConstantFold(const Instruction *I) { 4239 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4240 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4241 return true; 4242 4243 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4244 if (const Function *F = CI->getCalledFunction()) 4245 return canConstantFoldCallTo(F); 4246 return false; 4247 } 4248 4249 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4250 /// in the loop that V is derived from. We allow arbitrary operations along the 4251 /// way, but the operands of an operation must either be constants or a value 4252 /// derived from a constant PHI. If this expression does not fit with these 4253 /// constraints, return null. 4254 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4255 // If this is not an instruction, or if this is an instruction outside of the 4256 // loop, it can't be derived from a loop PHI. 4257 Instruction *I = dyn_cast<Instruction>(V); 4258 if (I == 0 || !L->contains(I)) return 0; 4259 4260 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4261 if (L->getHeader() == I->getParent()) 4262 return PN; 4263 else 4264 // We don't currently keep track of the control flow needed to evaluate 4265 // PHIs, so we cannot handle PHIs inside of loops. 4266 return 0; 4267 } 4268 4269 // If we won't be able to constant fold this expression even if the operands 4270 // are constants, return early. 4271 if (!CanConstantFold(I)) return 0; 4272 4273 // Otherwise, we can evaluate this instruction if all of its operands are 4274 // constant or derived from a PHI node themselves. 4275 PHINode *PHI = 0; 4276 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4277 if (!isa<Constant>(I->getOperand(Op))) { 4278 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4279 if (P == 0) return 0; // Not evolving from PHI 4280 if (PHI == 0) 4281 PHI = P; 4282 else if (PHI != P) 4283 return 0; // Evolving from multiple different PHIs. 4284 } 4285 4286 // This is a expression evolving from a constant PHI! 4287 return PHI; 4288 } 4289 4290 /// EvaluateExpression - Given an expression that passes the 4291 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4292 /// in the loop has the value PHIVal. If we can't fold this expression for some 4293 /// reason, return null. 4294 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4295 const TargetData *TD) { 4296 if (isa<PHINode>(V)) return PHIVal; 4297 if (Constant *C = dyn_cast<Constant>(V)) return C; 4298 Instruction *I = cast<Instruction>(V); 4299 4300 std::vector<Constant*> Operands(I->getNumOperands()); 4301 4302 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4303 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4304 if (Operands[i] == 0) return 0; 4305 } 4306 4307 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4308 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4309 Operands[1], TD); 4310 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4311 &Operands[0], Operands.size(), TD); 4312 } 4313 4314 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4315 /// in the header of its containing loop, we know the loop executes a 4316 /// constant number of times, and the PHI node is just a recurrence 4317 /// involving constants, fold it. 4318 Constant * 4319 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4320 const APInt &BEs, 4321 const Loop *L) { 4322 std::map<PHINode*, Constant*>::const_iterator I = 4323 ConstantEvolutionLoopExitValue.find(PN); 4324 if (I != ConstantEvolutionLoopExitValue.end()) 4325 return I->second; 4326 4327 if (BEs.ugt(MaxBruteForceIterations)) 4328 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4329 4330 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4331 4332 // Since the loop is canonicalized, the PHI node must have two entries. One 4333 // entry must be a constant (coming in from outside of the loop), and the 4334 // second must be derived from the same PHI. 4335 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4336 Constant *StartCST = 4337 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4338 if (StartCST == 0) 4339 return RetVal = 0; // Must be a constant. 4340 4341 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4342 if (getConstantEvolvingPHI(BEValue, L) != PN && 4343 !isa<Constant>(BEValue)) 4344 return RetVal = 0; // Not derived from same PHI. 4345 4346 // Execute the loop symbolically to determine the exit value. 4347 if (BEs.getActiveBits() >= 32) 4348 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4349 4350 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4351 unsigned IterationNum = 0; 4352 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4353 if (IterationNum == NumIterations) 4354 return RetVal = PHIVal; // Got exit value! 4355 4356 // Compute the value of the PHI node for the next iteration. 4357 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4358 if (NextPHI == PHIVal) 4359 return RetVal = NextPHI; // Stopped evolving! 4360 if (NextPHI == 0) 4361 return 0; // Couldn't evaluate! 4362 PHIVal = NextPHI; 4363 } 4364 } 4365 4366 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4367 /// constant number of times (the condition evolves only from constants), 4368 /// try to evaluate a few iterations of the loop until we get the exit 4369 /// condition gets a value of ExitWhen (true or false). If we cannot 4370 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4371 const SCEV * 4372 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4373 Value *Cond, 4374 bool ExitWhen) { 4375 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4376 if (PN == 0) return getCouldNotCompute(); 4377 4378 // If the loop is canonicalized, the PHI will have exactly two entries. 4379 // That's the only form we support here. 4380 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4381 4382 // One entry must be a constant (coming in from outside of the loop), and the 4383 // second must be derived from the same PHI. 4384 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4385 Constant *StartCST = 4386 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4387 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4388 4389 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4390 if (getConstantEvolvingPHI(BEValue, L) != PN && 4391 !isa<Constant>(BEValue)) 4392 return getCouldNotCompute(); // Not derived from same PHI. 4393 4394 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4395 // the loop symbolically to determine when the condition gets a value of 4396 // "ExitWhen". 4397 unsigned IterationNum = 0; 4398 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4399 for (Constant *PHIVal = StartCST; 4400 IterationNum != MaxIterations; ++IterationNum) { 4401 ConstantInt *CondVal = 4402 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4403 4404 // Couldn't symbolically evaluate. 4405 if (!CondVal) return getCouldNotCompute(); 4406 4407 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4408 ++NumBruteForceTripCountsComputed; 4409 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4410 } 4411 4412 // Compute the value of the PHI node for the next iteration. 4413 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4414 if (NextPHI == 0 || NextPHI == PHIVal) 4415 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4416 PHIVal = NextPHI; 4417 } 4418 4419 // Too many iterations were needed to evaluate. 4420 return getCouldNotCompute(); 4421 } 4422 4423 /// getSCEVAtScope - Return a SCEV expression for the specified value 4424 /// at the specified scope in the program. The L value specifies a loop 4425 /// nest to evaluate the expression at, where null is the top-level or a 4426 /// specified loop is immediately inside of the loop. 4427 /// 4428 /// This method can be used to compute the exit value for a variable defined 4429 /// in a loop by querying what the value will hold in the parent loop. 4430 /// 4431 /// In the case that a relevant loop exit value cannot be computed, the 4432 /// original value V is returned. 4433 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4434 // Check to see if we've folded this expression at this loop before. 4435 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4436 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4437 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4438 if (!Pair.second) 4439 return Pair.first->second ? Pair.first->second : V; 4440 4441 // Otherwise compute it. 4442 const SCEV *C = computeSCEVAtScope(V, L); 4443 ValuesAtScopes[V][L] = C; 4444 return C; 4445 } 4446 4447 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4448 if (isa<SCEVConstant>(V)) return V; 4449 4450 // If this instruction is evolved from a constant-evolving PHI, compute the 4451 // exit value from the loop without using SCEVs. 4452 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4453 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4454 const Loop *LI = (*this->LI)[I->getParent()]; 4455 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4456 if (PHINode *PN = dyn_cast<PHINode>(I)) 4457 if (PN->getParent() == LI->getHeader()) { 4458 // Okay, there is no closed form solution for the PHI node. Check 4459 // to see if the loop that contains it has a known backedge-taken 4460 // count. If so, we may be able to force computation of the exit 4461 // value. 4462 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4463 if (const SCEVConstant *BTCC = 4464 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4465 // Okay, we know how many times the containing loop executes. If 4466 // this is a constant evolving PHI node, get the final value at 4467 // the specified iteration number. 4468 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4469 BTCC->getValue()->getValue(), 4470 LI); 4471 if (RV) return getSCEV(RV); 4472 } 4473 } 4474 4475 // Okay, this is an expression that we cannot symbolically evaluate 4476 // into a SCEV. Check to see if it's possible to symbolically evaluate 4477 // the arguments into constants, and if so, try to constant propagate the 4478 // result. This is particularly useful for computing loop exit values. 4479 if (CanConstantFold(I)) { 4480 SmallVector<Constant *, 4> Operands; 4481 bool MadeImprovement = false; 4482 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4483 Value *Op = I->getOperand(i); 4484 if (Constant *C = dyn_cast<Constant>(Op)) { 4485 Operands.push_back(C); 4486 continue; 4487 } 4488 4489 // If any of the operands is non-constant and if they are 4490 // non-integer and non-pointer, don't even try to analyze them 4491 // with scev techniques. 4492 if (!isSCEVable(Op->getType())) 4493 return V; 4494 4495 const SCEV *OrigV = getSCEV(Op); 4496 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4497 MadeImprovement |= OrigV != OpV; 4498 4499 Constant *C = 0; 4500 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4501 C = SC->getValue(); 4502 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4503 C = dyn_cast<Constant>(SU->getValue()); 4504 if (!C) return V; 4505 if (C->getType() != Op->getType()) 4506 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4507 Op->getType(), 4508 false), 4509 C, Op->getType()); 4510 Operands.push_back(C); 4511 } 4512 4513 // Check to see if getSCEVAtScope actually made an improvement. 4514 if (MadeImprovement) { 4515 Constant *C = 0; 4516 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4517 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4518 Operands[0], Operands[1], TD); 4519 else 4520 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4521 &Operands[0], Operands.size(), TD); 4522 if (!C) return V; 4523 return getSCEV(C); 4524 } 4525 } 4526 } 4527 4528 // This is some other type of SCEVUnknown, just return it. 4529 return V; 4530 } 4531 4532 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4533 // Avoid performing the look-up in the common case where the specified 4534 // expression has no loop-variant portions. 4535 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4536 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4537 if (OpAtScope != Comm->getOperand(i)) { 4538 // Okay, at least one of these operands is loop variant but might be 4539 // foldable. Build a new instance of the folded commutative expression. 4540 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4541 Comm->op_begin()+i); 4542 NewOps.push_back(OpAtScope); 4543 4544 for (++i; i != e; ++i) { 4545 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4546 NewOps.push_back(OpAtScope); 4547 } 4548 if (isa<SCEVAddExpr>(Comm)) 4549 return getAddExpr(NewOps); 4550 if (isa<SCEVMulExpr>(Comm)) 4551 return getMulExpr(NewOps); 4552 if (isa<SCEVSMaxExpr>(Comm)) 4553 return getSMaxExpr(NewOps); 4554 if (isa<SCEVUMaxExpr>(Comm)) 4555 return getUMaxExpr(NewOps); 4556 llvm_unreachable("Unknown commutative SCEV type!"); 4557 } 4558 } 4559 // If we got here, all operands are loop invariant. 4560 return Comm; 4561 } 4562 4563 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4564 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4565 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4566 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4567 return Div; // must be loop invariant 4568 return getUDivExpr(LHS, RHS); 4569 } 4570 4571 // If this is a loop recurrence for a loop that does not contain L, then we 4572 // are dealing with the final value computed by the loop. 4573 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4574 // First, attempt to evaluate each operand. 4575 // Avoid performing the look-up in the common case where the specified 4576 // expression has no loop-variant portions. 4577 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4578 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4579 if (OpAtScope == AddRec->getOperand(i)) 4580 continue; 4581 4582 // Okay, at least one of these operands is loop variant but might be 4583 // foldable. Build a new instance of the folded commutative expression. 4584 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4585 AddRec->op_begin()+i); 4586 NewOps.push_back(OpAtScope); 4587 for (++i; i != e; ++i) 4588 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4589 4590 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4591 break; 4592 } 4593 4594 // If the scope is outside the addrec's loop, evaluate it by using the 4595 // loop exit value of the addrec. 4596 if (!AddRec->getLoop()->contains(L)) { 4597 // To evaluate this recurrence, we need to know how many times the AddRec 4598 // loop iterates. Compute this now. 4599 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4600 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4601 4602 // Then, evaluate the AddRec. 4603 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4604 } 4605 4606 return AddRec; 4607 } 4608 4609 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4610 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4611 if (Op == Cast->getOperand()) 4612 return Cast; // must be loop invariant 4613 return getZeroExtendExpr(Op, Cast->getType()); 4614 } 4615 4616 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4617 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4618 if (Op == Cast->getOperand()) 4619 return Cast; // must be loop invariant 4620 return getSignExtendExpr(Op, Cast->getType()); 4621 } 4622 4623 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4624 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4625 if (Op == Cast->getOperand()) 4626 return Cast; // must be loop invariant 4627 return getTruncateExpr(Op, Cast->getType()); 4628 } 4629 4630 llvm_unreachable("Unknown SCEV type!"); 4631 return 0; 4632 } 4633 4634 /// getSCEVAtScope - This is a convenience function which does 4635 /// getSCEVAtScope(getSCEV(V), L). 4636 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4637 return getSCEVAtScope(getSCEV(V), L); 4638 } 4639 4640 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4641 /// following equation: 4642 /// 4643 /// A * X = B (mod N) 4644 /// 4645 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4646 /// A and B isn't important. 4647 /// 4648 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4649 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4650 ScalarEvolution &SE) { 4651 uint32_t BW = A.getBitWidth(); 4652 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4653 assert(A != 0 && "A must be non-zero."); 4654 4655 // 1. D = gcd(A, N) 4656 // 4657 // The gcd of A and N may have only one prime factor: 2. The number of 4658 // trailing zeros in A is its multiplicity 4659 uint32_t Mult2 = A.countTrailingZeros(); 4660 // D = 2^Mult2 4661 4662 // 2. Check if B is divisible by D. 4663 // 4664 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4665 // is not less than multiplicity of this prime factor for D. 4666 if (B.countTrailingZeros() < Mult2) 4667 return SE.getCouldNotCompute(); 4668 4669 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4670 // modulo (N / D). 4671 // 4672 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4673 // bit width during computations. 4674 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4675 APInt Mod(BW + 1, 0); 4676 Mod.set(BW - Mult2); // Mod = N / D 4677 APInt I = AD.multiplicativeInverse(Mod); 4678 4679 // 4. Compute the minimum unsigned root of the equation: 4680 // I * (B / D) mod (N / D) 4681 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4682 4683 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4684 // bits. 4685 return SE.getConstant(Result.trunc(BW)); 4686 } 4687 4688 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4689 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4690 /// might be the same) or two SCEVCouldNotCompute objects. 4691 /// 4692 static std::pair<const SCEV *,const SCEV *> 4693 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4694 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4695 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4696 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4697 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4698 4699 // We currently can only solve this if the coefficients are constants. 4700 if (!LC || !MC || !NC) { 4701 const SCEV *CNC = SE.getCouldNotCompute(); 4702 return std::make_pair(CNC, CNC); 4703 } 4704 4705 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4706 const APInt &L = LC->getValue()->getValue(); 4707 const APInt &M = MC->getValue()->getValue(); 4708 const APInt &N = NC->getValue()->getValue(); 4709 APInt Two(BitWidth, 2); 4710 APInt Four(BitWidth, 4); 4711 4712 { 4713 using namespace APIntOps; 4714 const APInt& C = L; 4715 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4716 // The B coefficient is M-N/2 4717 APInt B(M); 4718 B -= sdiv(N,Two); 4719 4720 // The A coefficient is N/2 4721 APInt A(N.sdiv(Two)); 4722 4723 // Compute the B^2-4ac term. 4724 APInt SqrtTerm(B); 4725 SqrtTerm *= B; 4726 SqrtTerm -= Four * (A * C); 4727 4728 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4729 // integer value or else APInt::sqrt() will assert. 4730 APInt SqrtVal(SqrtTerm.sqrt()); 4731 4732 // Compute the two solutions for the quadratic formula. 4733 // The divisions must be performed as signed divisions. 4734 APInt NegB(-B); 4735 APInt TwoA( A << 1 ); 4736 if (TwoA.isMinValue()) { 4737 const SCEV *CNC = SE.getCouldNotCompute(); 4738 return std::make_pair(CNC, CNC); 4739 } 4740 4741 LLVMContext &Context = SE.getContext(); 4742 4743 ConstantInt *Solution1 = 4744 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4745 ConstantInt *Solution2 = 4746 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4747 4748 return std::make_pair(SE.getConstant(Solution1), 4749 SE.getConstant(Solution2)); 4750 } // end APIntOps namespace 4751 } 4752 4753 /// HowFarToZero - Return the number of times a backedge comparing the specified 4754 /// value to zero will execute. If not computable, return CouldNotCompute. 4755 ScalarEvolution::BackedgeTakenInfo 4756 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4757 // If the value is a constant 4758 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4759 // If the value is already zero, the branch will execute zero times. 4760 if (C->getValue()->isZero()) return C; 4761 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4762 } 4763 4764 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4765 if (!AddRec || AddRec->getLoop() != L) 4766 return getCouldNotCompute(); 4767 4768 if (AddRec->isAffine()) { 4769 // If this is an affine expression, the execution count of this branch is 4770 // the minimum unsigned root of the following equation: 4771 // 4772 // Start + Step*N = 0 (mod 2^BW) 4773 // 4774 // equivalent to: 4775 // 4776 // Step*N = -Start (mod 2^BW) 4777 // 4778 // where BW is the common bit width of Start and Step. 4779 4780 // Get the initial value for the loop. 4781 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4782 L->getParentLoop()); 4783 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4784 L->getParentLoop()); 4785 4786 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4787 // For now we handle only constant steps. 4788 4789 // First, handle unitary steps. 4790 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4791 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4792 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4793 return Start; // N = Start (as unsigned) 4794 4795 // Then, try to solve the above equation provided that Start is constant. 4796 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4797 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4798 -StartC->getValue()->getValue(), 4799 *this); 4800 } 4801 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4802 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4803 // the quadratic equation to solve it. 4804 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4805 *this); 4806 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4807 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4808 if (R1) { 4809 #if 0 4810 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4811 << " sol#2: " << *R2 << "\n"; 4812 #endif 4813 // Pick the smallest positive root value. 4814 if (ConstantInt *CB = 4815 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4816 R1->getValue(), R2->getValue()))) { 4817 if (CB->getZExtValue() == false) 4818 std::swap(R1, R2); // R1 is the minimum root now. 4819 4820 // We can only use this value if the chrec ends up with an exact zero 4821 // value at this index. When solving for "X*X != 5", for example, we 4822 // should not accept a root of 2. 4823 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4824 if (Val->isZero()) 4825 return R1; // We found a quadratic root! 4826 } 4827 } 4828 } 4829 4830 return getCouldNotCompute(); 4831 } 4832 4833 /// HowFarToNonZero - Return the number of times a backedge checking the 4834 /// specified value for nonzero will execute. If not computable, return 4835 /// CouldNotCompute 4836 ScalarEvolution::BackedgeTakenInfo 4837 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4838 // Loops that look like: while (X == 0) are very strange indeed. We don't 4839 // handle them yet except for the trivial case. This could be expanded in the 4840 // future as needed. 4841 4842 // If the value is a constant, check to see if it is known to be non-zero 4843 // already. If so, the backedge will execute zero times. 4844 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4845 if (!C->getValue()->isNullValue()) 4846 return getConstant(C->getType(), 0); 4847 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4848 } 4849 4850 // We could implement others, but I really doubt anyone writes loops like 4851 // this, and if they did, they would already be constant folded. 4852 return getCouldNotCompute(); 4853 } 4854 4855 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4856 /// (which may not be an immediate predecessor) which has exactly one 4857 /// successor from which BB is reachable, or null if no such block is 4858 /// found. 4859 /// 4860 std::pair<BasicBlock *, BasicBlock *> 4861 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4862 // If the block has a unique predecessor, then there is no path from the 4863 // predecessor to the block that does not go through the direct edge 4864 // from the predecessor to the block. 4865 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4866 return std::make_pair(Pred, BB); 4867 4868 // A loop's header is defined to be a block that dominates the loop. 4869 // If the header has a unique predecessor outside the loop, it must be 4870 // a block that has exactly one successor that can reach the loop. 4871 if (Loop *L = LI->getLoopFor(BB)) 4872 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4873 4874 return std::pair<BasicBlock *, BasicBlock *>(); 4875 } 4876 4877 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4878 /// testing whether two expressions are equal, however for the purposes of 4879 /// looking for a condition guarding a loop, it can be useful to be a little 4880 /// more general, since a front-end may have replicated the controlling 4881 /// expression. 4882 /// 4883 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4884 // Quick check to see if they are the same SCEV. 4885 if (A == B) return true; 4886 4887 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4888 // two different instructions with the same value. Check for this case. 4889 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4890 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4891 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4892 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4893 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4894 return true; 4895 4896 // Otherwise assume they may have a different value. 4897 return false; 4898 } 4899 4900 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4901 /// predicate Pred. Return true iff any changes were made. 4902 /// 4903 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4904 const SCEV *&LHS, const SCEV *&RHS) { 4905 bool Changed = false; 4906 4907 // Canonicalize a constant to the right side. 4908 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4909 // Check for both operands constant. 4910 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 4911 if (ConstantExpr::getICmp(Pred, 4912 LHSC->getValue(), 4913 RHSC->getValue())->isNullValue()) 4914 goto trivially_false; 4915 else 4916 goto trivially_true; 4917 } 4918 // Otherwise swap the operands to put the constant on the right. 4919 std::swap(LHS, RHS); 4920 Pred = ICmpInst::getSwappedPredicate(Pred); 4921 Changed = true; 4922 } 4923 4924 // If we're comparing an addrec with a value which is loop-invariant in the 4925 // addrec's loop, put the addrec on the left. Also make a dominance check, 4926 // as both operands could be addrecs loop-invariant in each other's loop. 4927 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 4928 const Loop *L = AR->getLoop(); 4929 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) { 4930 std::swap(LHS, RHS); 4931 Pred = ICmpInst::getSwappedPredicate(Pred); 4932 Changed = true; 4933 } 4934 } 4935 4936 // If there's a constant operand, canonicalize comparisons with boundary 4937 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 4938 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4939 const APInt &RA = RC->getValue()->getValue(); 4940 switch (Pred) { 4941 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4942 case ICmpInst::ICMP_EQ: 4943 case ICmpInst::ICMP_NE: 4944 break; 4945 case ICmpInst::ICMP_UGE: 4946 if ((RA - 1).isMinValue()) { 4947 Pred = ICmpInst::ICMP_NE; 4948 RHS = getConstant(RA - 1); 4949 Changed = true; 4950 break; 4951 } 4952 if (RA.isMaxValue()) { 4953 Pred = ICmpInst::ICMP_EQ; 4954 Changed = true; 4955 break; 4956 } 4957 if (RA.isMinValue()) goto trivially_true; 4958 4959 Pred = ICmpInst::ICMP_UGT; 4960 RHS = getConstant(RA - 1); 4961 Changed = true; 4962 break; 4963 case ICmpInst::ICMP_ULE: 4964 if ((RA + 1).isMaxValue()) { 4965 Pred = ICmpInst::ICMP_NE; 4966 RHS = getConstant(RA + 1); 4967 Changed = true; 4968 break; 4969 } 4970 if (RA.isMinValue()) { 4971 Pred = ICmpInst::ICMP_EQ; 4972 Changed = true; 4973 break; 4974 } 4975 if (RA.isMaxValue()) goto trivially_true; 4976 4977 Pred = ICmpInst::ICMP_ULT; 4978 RHS = getConstant(RA + 1); 4979 Changed = true; 4980 break; 4981 case ICmpInst::ICMP_SGE: 4982 if ((RA - 1).isMinSignedValue()) { 4983 Pred = ICmpInst::ICMP_NE; 4984 RHS = getConstant(RA - 1); 4985 Changed = true; 4986 break; 4987 } 4988 if (RA.isMaxSignedValue()) { 4989 Pred = ICmpInst::ICMP_EQ; 4990 Changed = true; 4991 break; 4992 } 4993 if (RA.isMinSignedValue()) goto trivially_true; 4994 4995 Pred = ICmpInst::ICMP_SGT; 4996 RHS = getConstant(RA - 1); 4997 Changed = true; 4998 break; 4999 case ICmpInst::ICMP_SLE: 5000 if ((RA + 1).isMaxSignedValue()) { 5001 Pred = ICmpInst::ICMP_NE; 5002 RHS = getConstant(RA + 1); 5003 Changed = true; 5004 break; 5005 } 5006 if (RA.isMinSignedValue()) { 5007 Pred = ICmpInst::ICMP_EQ; 5008 Changed = true; 5009 break; 5010 } 5011 if (RA.isMaxSignedValue()) goto trivially_true; 5012 5013 Pred = ICmpInst::ICMP_SLT; 5014 RHS = getConstant(RA + 1); 5015 Changed = true; 5016 break; 5017 case ICmpInst::ICMP_UGT: 5018 if (RA.isMinValue()) { 5019 Pred = ICmpInst::ICMP_NE; 5020 Changed = true; 5021 break; 5022 } 5023 if ((RA + 1).isMaxValue()) { 5024 Pred = ICmpInst::ICMP_EQ; 5025 RHS = getConstant(RA + 1); 5026 Changed = true; 5027 break; 5028 } 5029 if (RA.isMaxValue()) goto trivially_false; 5030 break; 5031 case ICmpInst::ICMP_ULT: 5032 if (RA.isMaxValue()) { 5033 Pred = ICmpInst::ICMP_NE; 5034 Changed = true; 5035 break; 5036 } 5037 if ((RA - 1).isMinValue()) { 5038 Pred = ICmpInst::ICMP_EQ; 5039 RHS = getConstant(RA - 1); 5040 Changed = true; 5041 break; 5042 } 5043 if (RA.isMinValue()) goto trivially_false; 5044 break; 5045 case ICmpInst::ICMP_SGT: 5046 if (RA.isMinSignedValue()) { 5047 Pred = ICmpInst::ICMP_NE; 5048 Changed = true; 5049 break; 5050 } 5051 if ((RA + 1).isMaxSignedValue()) { 5052 Pred = ICmpInst::ICMP_EQ; 5053 RHS = getConstant(RA + 1); 5054 Changed = true; 5055 break; 5056 } 5057 if (RA.isMaxSignedValue()) goto trivially_false; 5058 break; 5059 case ICmpInst::ICMP_SLT: 5060 if (RA.isMaxSignedValue()) { 5061 Pred = ICmpInst::ICMP_NE; 5062 Changed = true; 5063 break; 5064 } 5065 if ((RA - 1).isMinSignedValue()) { 5066 Pred = ICmpInst::ICMP_EQ; 5067 RHS = getConstant(RA - 1); 5068 Changed = true; 5069 break; 5070 } 5071 if (RA.isMinSignedValue()) goto trivially_false; 5072 break; 5073 } 5074 } 5075 5076 // Check for obvious equality. 5077 if (HasSameValue(LHS, RHS)) { 5078 if (ICmpInst::isTrueWhenEqual(Pred)) 5079 goto trivially_true; 5080 if (ICmpInst::isFalseWhenEqual(Pred)) 5081 goto trivially_false; 5082 } 5083 5084 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5085 // adding or subtracting 1 from one of the operands. 5086 switch (Pred) { 5087 case ICmpInst::ICMP_SLE: 5088 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5089 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5090 /*HasNUW=*/false, /*HasNSW=*/true); 5091 Pred = ICmpInst::ICMP_SLT; 5092 Changed = true; 5093 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5094 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5095 /*HasNUW=*/false, /*HasNSW=*/true); 5096 Pred = ICmpInst::ICMP_SLT; 5097 Changed = true; 5098 } 5099 break; 5100 case ICmpInst::ICMP_SGE: 5101 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5102 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5103 /*HasNUW=*/false, /*HasNSW=*/true); 5104 Pred = ICmpInst::ICMP_SGT; 5105 Changed = true; 5106 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5107 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5108 /*HasNUW=*/false, /*HasNSW=*/true); 5109 Pred = ICmpInst::ICMP_SGT; 5110 Changed = true; 5111 } 5112 break; 5113 case ICmpInst::ICMP_ULE: 5114 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5115 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5116 /*HasNUW=*/true, /*HasNSW=*/false); 5117 Pred = ICmpInst::ICMP_ULT; 5118 Changed = true; 5119 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5120 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5121 /*HasNUW=*/true, /*HasNSW=*/false); 5122 Pred = ICmpInst::ICMP_ULT; 5123 Changed = true; 5124 } 5125 break; 5126 case ICmpInst::ICMP_UGE: 5127 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5128 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5129 /*HasNUW=*/true, /*HasNSW=*/false); 5130 Pred = ICmpInst::ICMP_UGT; 5131 Changed = true; 5132 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5133 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5134 /*HasNUW=*/true, /*HasNSW=*/false); 5135 Pred = ICmpInst::ICMP_UGT; 5136 Changed = true; 5137 } 5138 break; 5139 default: 5140 break; 5141 } 5142 5143 // TODO: More simplifications are possible here. 5144 5145 return Changed; 5146 5147 trivially_true: 5148 // Return 0 == 0. 5149 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5150 Pred = ICmpInst::ICMP_EQ; 5151 return true; 5152 5153 trivially_false: 5154 // Return 0 != 0. 5155 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5156 Pred = ICmpInst::ICMP_NE; 5157 return true; 5158 } 5159 5160 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5161 return getSignedRange(S).getSignedMax().isNegative(); 5162 } 5163 5164 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5165 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5166 } 5167 5168 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5169 return !getSignedRange(S).getSignedMin().isNegative(); 5170 } 5171 5172 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5173 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5174 } 5175 5176 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5177 return isKnownNegative(S) || isKnownPositive(S); 5178 } 5179 5180 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5181 const SCEV *LHS, const SCEV *RHS) { 5182 // Canonicalize the inputs first. 5183 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5184 5185 // If LHS or RHS is an addrec, check to see if the condition is true in 5186 // every iteration of the loop. 5187 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5188 if (isLoopEntryGuardedByCond( 5189 AR->getLoop(), Pred, AR->getStart(), RHS) && 5190 isLoopBackedgeGuardedByCond( 5191 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5192 return true; 5193 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5194 if (isLoopEntryGuardedByCond( 5195 AR->getLoop(), Pred, LHS, AR->getStart()) && 5196 isLoopBackedgeGuardedByCond( 5197 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5198 return true; 5199 5200 // Otherwise see what can be done with known constant ranges. 5201 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5202 } 5203 5204 bool 5205 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5206 const SCEV *LHS, const SCEV *RHS) { 5207 if (HasSameValue(LHS, RHS)) 5208 return ICmpInst::isTrueWhenEqual(Pred); 5209 5210 // This code is split out from isKnownPredicate because it is called from 5211 // within isLoopEntryGuardedByCond. 5212 switch (Pred) { 5213 default: 5214 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5215 break; 5216 case ICmpInst::ICMP_SGT: 5217 Pred = ICmpInst::ICMP_SLT; 5218 std::swap(LHS, RHS); 5219 case ICmpInst::ICMP_SLT: { 5220 ConstantRange LHSRange = getSignedRange(LHS); 5221 ConstantRange RHSRange = getSignedRange(RHS); 5222 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5223 return true; 5224 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5225 return false; 5226 break; 5227 } 5228 case ICmpInst::ICMP_SGE: 5229 Pred = ICmpInst::ICMP_SLE; 5230 std::swap(LHS, RHS); 5231 case ICmpInst::ICMP_SLE: { 5232 ConstantRange LHSRange = getSignedRange(LHS); 5233 ConstantRange RHSRange = getSignedRange(RHS); 5234 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5235 return true; 5236 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5237 return false; 5238 break; 5239 } 5240 case ICmpInst::ICMP_UGT: 5241 Pred = ICmpInst::ICMP_ULT; 5242 std::swap(LHS, RHS); 5243 case ICmpInst::ICMP_ULT: { 5244 ConstantRange LHSRange = getUnsignedRange(LHS); 5245 ConstantRange RHSRange = getUnsignedRange(RHS); 5246 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5247 return true; 5248 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5249 return false; 5250 break; 5251 } 5252 case ICmpInst::ICMP_UGE: 5253 Pred = ICmpInst::ICMP_ULE; 5254 std::swap(LHS, RHS); 5255 case ICmpInst::ICMP_ULE: { 5256 ConstantRange LHSRange = getUnsignedRange(LHS); 5257 ConstantRange RHSRange = getUnsignedRange(RHS); 5258 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5259 return true; 5260 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5261 return false; 5262 break; 5263 } 5264 case ICmpInst::ICMP_NE: { 5265 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5266 return true; 5267 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5268 return true; 5269 5270 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5271 if (isKnownNonZero(Diff)) 5272 return true; 5273 break; 5274 } 5275 case ICmpInst::ICMP_EQ: 5276 // The check at the top of the function catches the case where 5277 // the values are known to be equal. 5278 break; 5279 } 5280 return false; 5281 } 5282 5283 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5284 /// protected by a conditional between LHS and RHS. This is used to 5285 /// to eliminate casts. 5286 bool 5287 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5288 ICmpInst::Predicate Pred, 5289 const SCEV *LHS, const SCEV *RHS) { 5290 // Interpret a null as meaning no loop, where there is obviously no guard 5291 // (interprocedural conditions notwithstanding). 5292 if (!L) return true; 5293 5294 BasicBlock *Latch = L->getLoopLatch(); 5295 if (!Latch) 5296 return false; 5297 5298 BranchInst *LoopContinuePredicate = 5299 dyn_cast<BranchInst>(Latch->getTerminator()); 5300 if (!LoopContinuePredicate || 5301 LoopContinuePredicate->isUnconditional()) 5302 return false; 5303 5304 return isImpliedCond(Pred, LHS, RHS, 5305 LoopContinuePredicate->getCondition(), 5306 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5307 } 5308 5309 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5310 /// by a conditional between LHS and RHS. This is used to help avoid max 5311 /// expressions in loop trip counts, and to eliminate casts. 5312 bool 5313 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5314 ICmpInst::Predicate Pred, 5315 const SCEV *LHS, const SCEV *RHS) { 5316 // Interpret a null as meaning no loop, where there is obviously no guard 5317 // (interprocedural conditions notwithstanding). 5318 if (!L) return false; 5319 5320 // Starting at the loop predecessor, climb up the predecessor chain, as long 5321 // as there are predecessors that can be found that have unique successors 5322 // leading to the original header. 5323 for (std::pair<BasicBlock *, BasicBlock *> 5324 Pair(L->getLoopPredecessor(), L->getHeader()); 5325 Pair.first; 5326 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5327 5328 BranchInst *LoopEntryPredicate = 5329 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5330 if (!LoopEntryPredicate || 5331 LoopEntryPredicate->isUnconditional()) 5332 continue; 5333 5334 if (isImpliedCond(Pred, LHS, RHS, 5335 LoopEntryPredicate->getCondition(), 5336 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5337 return true; 5338 } 5339 5340 return false; 5341 } 5342 5343 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5344 /// and RHS is true whenever the given Cond value evaluates to true. 5345 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5346 const SCEV *LHS, const SCEV *RHS, 5347 Value *FoundCondValue, 5348 bool Inverse) { 5349 // Recursively handle And and Or conditions. 5350 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5351 if (BO->getOpcode() == Instruction::And) { 5352 if (!Inverse) 5353 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5354 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5355 } else if (BO->getOpcode() == Instruction::Or) { 5356 if (Inverse) 5357 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5358 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5359 } 5360 } 5361 5362 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5363 if (!ICI) return false; 5364 5365 // Bail if the ICmp's operands' types are wider than the needed type 5366 // before attempting to call getSCEV on them. This avoids infinite 5367 // recursion, since the analysis of widening casts can require loop 5368 // exit condition information for overflow checking, which would 5369 // lead back here. 5370 if (getTypeSizeInBits(LHS->getType()) < 5371 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5372 return false; 5373 5374 // Now that we found a conditional branch that dominates the loop, check to 5375 // see if it is the comparison we are looking for. 5376 ICmpInst::Predicate FoundPred; 5377 if (Inverse) 5378 FoundPred = ICI->getInversePredicate(); 5379 else 5380 FoundPred = ICI->getPredicate(); 5381 5382 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5383 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5384 5385 // Balance the types. The case where FoundLHS' type is wider than 5386 // LHS' type is checked for above. 5387 if (getTypeSizeInBits(LHS->getType()) > 5388 getTypeSizeInBits(FoundLHS->getType())) { 5389 if (CmpInst::isSigned(Pred)) { 5390 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5391 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5392 } else { 5393 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5394 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5395 } 5396 } 5397 5398 // Canonicalize the query to match the way instcombine will have 5399 // canonicalized the comparison. 5400 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5401 if (LHS == RHS) 5402 return CmpInst::isTrueWhenEqual(Pred); 5403 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5404 if (FoundLHS == FoundRHS) 5405 return CmpInst::isFalseWhenEqual(Pred); 5406 5407 // Check to see if we can make the LHS or RHS match. 5408 if (LHS == FoundRHS || RHS == FoundLHS) { 5409 if (isa<SCEVConstant>(RHS)) { 5410 std::swap(FoundLHS, FoundRHS); 5411 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5412 } else { 5413 std::swap(LHS, RHS); 5414 Pred = ICmpInst::getSwappedPredicate(Pred); 5415 } 5416 } 5417 5418 // Check whether the found predicate is the same as the desired predicate. 5419 if (FoundPred == Pred) 5420 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5421 5422 // Check whether swapping the found predicate makes it the same as the 5423 // desired predicate. 5424 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5425 if (isa<SCEVConstant>(RHS)) 5426 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5427 else 5428 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5429 RHS, LHS, FoundLHS, FoundRHS); 5430 } 5431 5432 // Check whether the actual condition is beyond sufficient. 5433 if (FoundPred == ICmpInst::ICMP_EQ) 5434 if (ICmpInst::isTrueWhenEqual(Pred)) 5435 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5436 return true; 5437 if (Pred == ICmpInst::ICMP_NE) 5438 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5439 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5440 return true; 5441 5442 // Otherwise assume the worst. 5443 return false; 5444 } 5445 5446 /// isImpliedCondOperands - Test whether the condition described by Pred, 5447 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5448 /// and FoundRHS is true. 5449 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5450 const SCEV *LHS, const SCEV *RHS, 5451 const SCEV *FoundLHS, 5452 const SCEV *FoundRHS) { 5453 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5454 FoundLHS, FoundRHS) || 5455 // ~x < ~y --> x > y 5456 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5457 getNotSCEV(FoundRHS), 5458 getNotSCEV(FoundLHS)); 5459 } 5460 5461 /// isImpliedCondOperandsHelper - Test whether the condition described by 5462 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5463 /// FoundLHS, and FoundRHS is true. 5464 bool 5465 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5466 const SCEV *LHS, const SCEV *RHS, 5467 const SCEV *FoundLHS, 5468 const SCEV *FoundRHS) { 5469 switch (Pred) { 5470 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5471 case ICmpInst::ICMP_EQ: 5472 case ICmpInst::ICMP_NE: 5473 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5474 return true; 5475 break; 5476 case ICmpInst::ICMP_SLT: 5477 case ICmpInst::ICMP_SLE: 5478 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5479 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5480 return true; 5481 break; 5482 case ICmpInst::ICMP_SGT: 5483 case ICmpInst::ICMP_SGE: 5484 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5485 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5486 return true; 5487 break; 5488 case ICmpInst::ICMP_ULT: 5489 case ICmpInst::ICMP_ULE: 5490 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5491 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5492 return true; 5493 break; 5494 case ICmpInst::ICMP_UGT: 5495 case ICmpInst::ICMP_UGE: 5496 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5497 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5498 return true; 5499 break; 5500 } 5501 5502 return false; 5503 } 5504 5505 /// getBECount - Subtract the end and start values and divide by the step, 5506 /// rounding up, to get the number of times the backedge is executed. Return 5507 /// CouldNotCompute if an intermediate computation overflows. 5508 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5509 const SCEV *End, 5510 const SCEV *Step, 5511 bool NoWrap) { 5512 assert(!isKnownNegative(Step) && 5513 "This code doesn't handle negative strides yet!"); 5514 5515 const Type *Ty = Start->getType(); 5516 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5517 const SCEV *Diff = getMinusSCEV(End, Start); 5518 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5519 5520 // Add an adjustment to the difference between End and Start so that 5521 // the division will effectively round up. 5522 const SCEV *Add = getAddExpr(Diff, RoundUp); 5523 5524 if (!NoWrap) { 5525 // Check Add for unsigned overflow. 5526 // TODO: More sophisticated things could be done here. 5527 const Type *WideTy = IntegerType::get(getContext(), 5528 getTypeSizeInBits(Ty) + 1); 5529 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5530 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5531 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5532 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5533 return getCouldNotCompute(); 5534 } 5535 5536 return getUDivExpr(Add, Step); 5537 } 5538 5539 /// HowManyLessThans - Return the number of times a backedge containing the 5540 /// specified less-than comparison will execute. If not computable, return 5541 /// CouldNotCompute. 5542 ScalarEvolution::BackedgeTakenInfo 5543 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5544 const Loop *L, bool isSigned) { 5545 // Only handle: "ADDREC < LoopInvariant". 5546 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5547 5548 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5549 if (!AddRec || AddRec->getLoop() != L) 5550 return getCouldNotCompute(); 5551 5552 // Check to see if we have a flag which makes analysis easy. 5553 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5554 AddRec->hasNoUnsignedWrap(); 5555 5556 if (AddRec->isAffine()) { 5557 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5558 const SCEV *Step = AddRec->getStepRecurrence(*this); 5559 5560 if (Step->isZero()) 5561 return getCouldNotCompute(); 5562 if (Step->isOne()) { 5563 // With unit stride, the iteration never steps past the limit value. 5564 } else if (isKnownPositive(Step)) { 5565 // Test whether a positive iteration can step past the limit 5566 // value and past the maximum value for its type in a single step. 5567 // Note that it's not sufficient to check NoWrap here, because even 5568 // though the value after a wrap is undefined, it's not undefined 5569 // behavior, so if wrap does occur, the loop could either terminate or 5570 // loop infinitely, but in either case, the loop is guaranteed to 5571 // iterate at least until the iteration where the wrapping occurs. 5572 const SCEV *One = getConstant(Step->getType(), 1); 5573 if (isSigned) { 5574 APInt Max = APInt::getSignedMaxValue(BitWidth); 5575 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5576 .slt(getSignedRange(RHS).getSignedMax())) 5577 return getCouldNotCompute(); 5578 } else { 5579 APInt Max = APInt::getMaxValue(BitWidth); 5580 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5581 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5582 return getCouldNotCompute(); 5583 } 5584 } else 5585 // TODO: Handle negative strides here and below. 5586 return getCouldNotCompute(); 5587 5588 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5589 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5590 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5591 // treat m-n as signed nor unsigned due to overflow possibility. 5592 5593 // First, we get the value of the LHS in the first iteration: n 5594 const SCEV *Start = AddRec->getOperand(0); 5595 5596 // Determine the minimum constant start value. 5597 const SCEV *MinStart = getConstant(isSigned ? 5598 getSignedRange(Start).getSignedMin() : 5599 getUnsignedRange(Start).getUnsignedMin()); 5600 5601 // If we know that the condition is true in order to enter the loop, 5602 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5603 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5604 // the division must round up. 5605 const SCEV *End = RHS; 5606 if (!isLoopEntryGuardedByCond(L, 5607 isSigned ? ICmpInst::ICMP_SLT : 5608 ICmpInst::ICMP_ULT, 5609 getMinusSCEV(Start, Step), RHS)) 5610 End = isSigned ? getSMaxExpr(RHS, Start) 5611 : getUMaxExpr(RHS, Start); 5612 5613 // Determine the maximum constant end value. 5614 const SCEV *MaxEnd = getConstant(isSigned ? 5615 getSignedRange(End).getSignedMax() : 5616 getUnsignedRange(End).getUnsignedMax()); 5617 5618 // If MaxEnd is within a step of the maximum integer value in its type, 5619 // adjust it down to the minimum value which would produce the same effect. 5620 // This allows the subsequent ceiling division of (N+(step-1))/step to 5621 // compute the correct value. 5622 const SCEV *StepMinusOne = getMinusSCEV(Step, 5623 getConstant(Step->getType(), 1)); 5624 MaxEnd = isSigned ? 5625 getSMinExpr(MaxEnd, 5626 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5627 StepMinusOne)) : 5628 getUMinExpr(MaxEnd, 5629 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5630 StepMinusOne)); 5631 5632 // Finally, we subtract these two values and divide, rounding up, to get 5633 // the number of times the backedge is executed. 5634 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5635 5636 // The maximum backedge count is similar, except using the minimum start 5637 // value and the maximum end value. 5638 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5639 5640 return BackedgeTakenInfo(BECount, MaxBECount); 5641 } 5642 5643 return getCouldNotCompute(); 5644 } 5645 5646 /// getNumIterationsInRange - Return the number of iterations of this loop that 5647 /// produce values in the specified constant range. Another way of looking at 5648 /// this is that it returns the first iteration number where the value is not in 5649 /// the condition, thus computing the exit count. If the iteration count can't 5650 /// be computed, an instance of SCEVCouldNotCompute is returned. 5651 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5652 ScalarEvolution &SE) const { 5653 if (Range.isFullSet()) // Infinite loop. 5654 return SE.getCouldNotCompute(); 5655 5656 // If the start is a non-zero constant, shift the range to simplify things. 5657 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5658 if (!SC->getValue()->isZero()) { 5659 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5660 Operands[0] = SE.getConstant(SC->getType(), 0); 5661 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5662 if (const SCEVAddRecExpr *ShiftedAddRec = 5663 dyn_cast<SCEVAddRecExpr>(Shifted)) 5664 return ShiftedAddRec->getNumIterationsInRange( 5665 Range.subtract(SC->getValue()->getValue()), SE); 5666 // This is strange and shouldn't happen. 5667 return SE.getCouldNotCompute(); 5668 } 5669 5670 // The only time we can solve this is when we have all constant indices. 5671 // Otherwise, we cannot determine the overflow conditions. 5672 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5673 if (!isa<SCEVConstant>(getOperand(i))) 5674 return SE.getCouldNotCompute(); 5675 5676 5677 // Okay at this point we know that all elements of the chrec are constants and 5678 // that the start element is zero. 5679 5680 // First check to see if the range contains zero. If not, the first 5681 // iteration exits. 5682 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5683 if (!Range.contains(APInt(BitWidth, 0))) 5684 return SE.getConstant(getType(), 0); 5685 5686 if (isAffine()) { 5687 // If this is an affine expression then we have this situation: 5688 // Solve {0,+,A} in Range === Ax in Range 5689 5690 // We know that zero is in the range. If A is positive then we know that 5691 // the upper value of the range must be the first possible exit value. 5692 // If A is negative then the lower of the range is the last possible loop 5693 // value. Also note that we already checked for a full range. 5694 APInt One(BitWidth,1); 5695 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5696 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5697 5698 // The exit value should be (End+A)/A. 5699 APInt ExitVal = (End + A).udiv(A); 5700 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5701 5702 // Evaluate at the exit value. If we really did fall out of the valid 5703 // range, then we computed our trip count, otherwise wrap around or other 5704 // things must have happened. 5705 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5706 if (Range.contains(Val->getValue())) 5707 return SE.getCouldNotCompute(); // Something strange happened 5708 5709 // Ensure that the previous value is in the range. This is a sanity check. 5710 assert(Range.contains( 5711 EvaluateConstantChrecAtConstant(this, 5712 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5713 "Linear scev computation is off in a bad way!"); 5714 return SE.getConstant(ExitValue); 5715 } else if (isQuadratic()) { 5716 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5717 // quadratic equation to solve it. To do this, we must frame our problem in 5718 // terms of figuring out when zero is crossed, instead of when 5719 // Range.getUpper() is crossed. 5720 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5721 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5722 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5723 5724 // Next, solve the constructed addrec 5725 std::pair<const SCEV *,const SCEV *> Roots = 5726 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5727 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5728 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5729 if (R1) { 5730 // Pick the smallest positive root value. 5731 if (ConstantInt *CB = 5732 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5733 R1->getValue(), R2->getValue()))) { 5734 if (CB->getZExtValue() == false) 5735 std::swap(R1, R2); // R1 is the minimum root now. 5736 5737 // Make sure the root is not off by one. The returned iteration should 5738 // not be in the range, but the previous one should be. When solving 5739 // for "X*X < 5", for example, we should not return a root of 2. 5740 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5741 R1->getValue(), 5742 SE); 5743 if (Range.contains(R1Val->getValue())) { 5744 // The next iteration must be out of the range... 5745 ConstantInt *NextVal = 5746 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5747 5748 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5749 if (!Range.contains(R1Val->getValue())) 5750 return SE.getConstant(NextVal); 5751 return SE.getCouldNotCompute(); // Something strange happened 5752 } 5753 5754 // If R1 was not in the range, then it is a good return value. Make 5755 // sure that R1-1 WAS in the range though, just in case. 5756 ConstantInt *NextVal = 5757 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5758 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5759 if (Range.contains(R1Val->getValue())) 5760 return R1; 5761 return SE.getCouldNotCompute(); // Something strange happened 5762 } 5763 } 5764 } 5765 5766 return SE.getCouldNotCompute(); 5767 } 5768 5769 5770 5771 //===----------------------------------------------------------------------===// 5772 // SCEVCallbackVH Class Implementation 5773 //===----------------------------------------------------------------------===// 5774 5775 void ScalarEvolution::SCEVCallbackVH::deleted() { 5776 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5777 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5778 SE->ConstantEvolutionLoopExitValue.erase(PN); 5779 SE->ValueExprMap.erase(getValPtr()); 5780 // this now dangles! 5781 } 5782 5783 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 5784 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5785 5786 // Forget all the expressions associated with users of the old value, 5787 // so that future queries will recompute the expressions using the new 5788 // value. 5789 Value *Old = getValPtr(); 5790 SmallVector<User *, 16> Worklist; 5791 SmallPtrSet<User *, 8> Visited; 5792 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5793 UI != UE; ++UI) 5794 Worklist.push_back(*UI); 5795 while (!Worklist.empty()) { 5796 User *U = Worklist.pop_back_val(); 5797 // Deleting the Old value will cause this to dangle. Postpone 5798 // that until everything else is done. 5799 if (U == Old) 5800 continue; 5801 if (!Visited.insert(U)) 5802 continue; 5803 if (PHINode *PN = dyn_cast<PHINode>(U)) 5804 SE->ConstantEvolutionLoopExitValue.erase(PN); 5805 SE->ValueExprMap.erase(U); 5806 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5807 UI != UE; ++UI) 5808 Worklist.push_back(*UI); 5809 } 5810 // Delete the Old value. 5811 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5812 SE->ConstantEvolutionLoopExitValue.erase(PN); 5813 SE->ValueExprMap.erase(Old); 5814 // this now dangles! 5815 } 5816 5817 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5818 : CallbackVH(V), SE(se) {} 5819 5820 //===----------------------------------------------------------------------===// 5821 // ScalarEvolution Class Implementation 5822 //===----------------------------------------------------------------------===// 5823 5824 ScalarEvolution::ScalarEvolution() 5825 : FunctionPass(ID), FirstUnknown(0) { 5826 } 5827 5828 bool ScalarEvolution::runOnFunction(Function &F) { 5829 this->F = &F; 5830 LI = &getAnalysis<LoopInfo>(); 5831 TD = getAnalysisIfAvailable<TargetData>(); 5832 DT = &getAnalysis<DominatorTree>(); 5833 return false; 5834 } 5835 5836 void ScalarEvolution::releaseMemory() { 5837 // Iterate through all the SCEVUnknown instances and call their 5838 // destructors, so that they release their references to their values. 5839 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 5840 U->~SCEVUnknown(); 5841 FirstUnknown = 0; 5842 5843 ValueExprMap.clear(); 5844 BackedgeTakenCounts.clear(); 5845 ConstantEvolutionLoopExitValue.clear(); 5846 ValuesAtScopes.clear(); 5847 UniqueSCEVs.clear(); 5848 SCEVAllocator.Reset(); 5849 } 5850 5851 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5852 AU.setPreservesAll(); 5853 AU.addRequiredTransitive<LoopInfo>(); 5854 AU.addRequiredTransitive<DominatorTree>(); 5855 } 5856 5857 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5858 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5859 } 5860 5861 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5862 const Loop *L) { 5863 // Print all inner loops first 5864 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5865 PrintLoopInfo(OS, SE, *I); 5866 5867 OS << "Loop "; 5868 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5869 OS << ": "; 5870 5871 SmallVector<BasicBlock *, 8> ExitBlocks; 5872 L->getExitBlocks(ExitBlocks); 5873 if (ExitBlocks.size() != 1) 5874 OS << "<multiple exits> "; 5875 5876 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5877 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5878 } else { 5879 OS << "Unpredictable backedge-taken count. "; 5880 } 5881 5882 OS << "\n" 5883 "Loop "; 5884 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5885 OS << ": "; 5886 5887 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5888 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5889 } else { 5890 OS << "Unpredictable max backedge-taken count. "; 5891 } 5892 5893 OS << "\n"; 5894 } 5895 5896 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5897 // ScalarEvolution's implementation of the print method is to print 5898 // out SCEV values of all instructions that are interesting. Doing 5899 // this potentially causes it to create new SCEV objects though, 5900 // which technically conflicts with the const qualifier. This isn't 5901 // observable from outside the class though, so casting away the 5902 // const isn't dangerous. 5903 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5904 5905 OS << "Classifying expressions for: "; 5906 WriteAsOperand(OS, F, /*PrintType=*/false); 5907 OS << "\n"; 5908 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5909 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 5910 OS << *I << '\n'; 5911 OS << " --> "; 5912 const SCEV *SV = SE.getSCEV(&*I); 5913 SV->print(OS); 5914 5915 const Loop *L = LI->getLoopFor((*I).getParent()); 5916 5917 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5918 if (AtUse != SV) { 5919 OS << " --> "; 5920 AtUse->print(OS); 5921 } 5922 5923 if (L) { 5924 OS << "\t\t" "Exits: "; 5925 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5926 if (!ExitValue->isLoopInvariant(L)) { 5927 OS << "<<Unknown>>"; 5928 } else { 5929 OS << *ExitValue; 5930 } 5931 } 5932 5933 OS << "\n"; 5934 } 5935 5936 OS << "Determining loop execution counts for: "; 5937 WriteAsOperand(OS, F, /*PrintType=*/false); 5938 OS << "\n"; 5939 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5940 PrintLoopInfo(OS, &SE, *I); 5941 } 5942 5943