1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/ConstantRange.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GetElementPtrTypeIterator.h" 82 #include "llvm/Support/InstIterator.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/ADT/STLExtras.h" 87 #include "llvm/ADT/SmallPtrSet.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 STATISTIC(NumArrayLenItCounts, 92 "Number of trip counts computed with array length"); 93 STATISTIC(NumTripCountsComputed, 94 "Number of loops with predictable loop counts"); 95 STATISTIC(NumTripCountsNotComputed, 96 "Number of loops without predictable loop counts"); 97 STATISTIC(NumBruteForceTripCountsComputed, 98 "Number of loops with trip counts computed by force"); 99 100 static cl::opt<unsigned> 101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 102 cl::desc("Maximum number of iterations SCEV will " 103 "symbolically execute a constant " 104 "derived loop"), 105 cl::init(100)); 106 107 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 108 "Scalar Evolution Analysis", false, true) 109 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 110 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 111 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 112 "Scalar Evolution Analysis", false, true) 113 char ScalarEvolution::ID = 0; 114 115 //===----------------------------------------------------------------------===// 116 // SCEV class definitions 117 //===----------------------------------------------------------------------===// 118 119 //===----------------------------------------------------------------------===// 120 // Implementation of the SCEV class. 121 // 122 123 void SCEV::dump() const { 124 print(dbgs()); 125 dbgs() << '\n'; 126 } 127 128 void SCEV::print(raw_ostream &OS) const { 129 switch (getSCEVType()) { 130 case scConstant: 131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 132 return; 133 case scTruncate: { 134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 135 const SCEV *Op = Trunc->getOperand(); 136 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 137 << *Trunc->getType() << ")"; 138 return; 139 } 140 case scZeroExtend: { 141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 142 const SCEV *Op = ZExt->getOperand(); 143 OS << "(zext " << *Op->getType() << " " << *Op << " to " 144 << *ZExt->getType() << ")"; 145 return; 146 } 147 case scSignExtend: { 148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 149 const SCEV *Op = SExt->getOperand(); 150 OS << "(sext " << *Op->getType() << " " << *Op << " to " 151 << *SExt->getType() << ")"; 152 return; 153 } 154 case scAddRecExpr: { 155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 156 OS << "{" << *AR->getOperand(0); 157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 158 OS << ",+," << *AR->getOperand(i); 159 OS << "}<"; 160 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 161 OS << ">"; 162 return; 163 } 164 case scAddExpr: 165 case scMulExpr: 166 case scUMaxExpr: 167 case scSMaxExpr: { 168 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 169 const char *OpStr = 0; 170 switch (NAry->getSCEVType()) { 171 case scAddExpr: OpStr = " + "; break; 172 case scMulExpr: OpStr = " * "; break; 173 case scUMaxExpr: OpStr = " umax "; break; 174 case scSMaxExpr: OpStr = " smax "; break; 175 } 176 OS << "("; 177 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 178 I != E; ++I) { 179 OS << **I; 180 if (llvm::next(I) != E) 181 OS << OpStr; 182 } 183 OS << ")"; 184 return; 185 } 186 case scUDivExpr: { 187 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 188 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 189 return; 190 } 191 case scUnknown: { 192 const SCEVUnknown *U = cast<SCEVUnknown>(this); 193 const Type *AllocTy; 194 if (U->isSizeOf(AllocTy)) { 195 OS << "sizeof(" << *AllocTy << ")"; 196 return; 197 } 198 if (U->isAlignOf(AllocTy)) { 199 OS << "alignof(" << *AllocTy << ")"; 200 return; 201 } 202 203 const Type *CTy; 204 Constant *FieldNo; 205 if (U->isOffsetOf(CTy, FieldNo)) { 206 OS << "offsetof(" << *CTy << ", "; 207 WriteAsOperand(OS, FieldNo, false); 208 OS << ")"; 209 return; 210 } 211 212 // Otherwise just print it normally. 213 WriteAsOperand(OS, U->getValue(), false); 214 return; 215 } 216 case scCouldNotCompute: 217 OS << "***COULDNOTCOMPUTE***"; 218 return; 219 default: break; 220 } 221 llvm_unreachable("Unknown SCEV kind!"); 222 } 223 224 const Type *SCEV::getType() const { 225 switch (getSCEVType()) { 226 case scConstant: 227 return cast<SCEVConstant>(this)->getType(); 228 case scTruncate: 229 case scZeroExtend: 230 case scSignExtend: 231 return cast<SCEVCastExpr>(this)->getType(); 232 case scAddRecExpr: 233 case scMulExpr: 234 case scUMaxExpr: 235 case scSMaxExpr: 236 return cast<SCEVNAryExpr>(this)->getType(); 237 case scAddExpr: 238 return cast<SCEVAddExpr>(this)->getType(); 239 case scUDivExpr: 240 return cast<SCEVUDivExpr>(this)->getType(); 241 case scUnknown: 242 return cast<SCEVUnknown>(this)->getType(); 243 case scCouldNotCompute: 244 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 245 return 0; 246 default: break; 247 } 248 llvm_unreachable("Unknown SCEV kind!"); 249 return 0; 250 } 251 252 bool SCEV::isZero() const { 253 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 254 return SC->getValue()->isZero(); 255 return false; 256 } 257 258 bool SCEV::isOne() const { 259 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 260 return SC->getValue()->isOne(); 261 return false; 262 } 263 264 bool SCEV::isAllOnesValue() const { 265 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 266 return SC->getValue()->isAllOnesValue(); 267 return false; 268 } 269 270 SCEVCouldNotCompute::SCEVCouldNotCompute() : 271 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 272 273 bool SCEVCouldNotCompute::classof(const SCEV *S) { 274 return S->getSCEVType() == scCouldNotCompute; 275 } 276 277 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 278 FoldingSetNodeID ID; 279 ID.AddInteger(scConstant); 280 ID.AddPointer(V); 281 void *IP = 0; 282 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 283 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 284 UniqueSCEVs.InsertNode(S, IP); 285 return S; 286 } 287 288 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 289 return getConstant(ConstantInt::get(getContext(), Val)); 290 } 291 292 const SCEV * 293 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 294 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 295 return getConstant(ConstantInt::get(ITy, V, isSigned)); 296 } 297 298 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 299 unsigned SCEVTy, const SCEV *op, const Type *ty) 300 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 301 302 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 303 const SCEV *op, const Type *ty) 304 : SCEVCastExpr(ID, scTruncate, op, ty) { 305 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 306 (Ty->isIntegerTy() || Ty->isPointerTy()) && 307 "Cannot truncate non-integer value!"); 308 } 309 310 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 311 const SCEV *op, const Type *ty) 312 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 313 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 314 (Ty->isIntegerTy() || Ty->isPointerTy()) && 315 "Cannot zero extend non-integer value!"); 316 } 317 318 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 319 const SCEV *op, const Type *ty) 320 : SCEVCastExpr(ID, scSignExtend, op, ty) { 321 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 322 (Ty->isIntegerTy() || Ty->isPointerTy()) && 323 "Cannot sign extend non-integer value!"); 324 } 325 326 void SCEVUnknown::deleted() { 327 // Clear this SCEVUnknown from various maps. 328 SE->forgetMemoizedResults(this); 329 330 // Remove this SCEVUnknown from the uniquing map. 331 SE->UniqueSCEVs.RemoveNode(this); 332 333 // Release the value. 334 setValPtr(0); 335 } 336 337 void SCEVUnknown::allUsesReplacedWith(Value *New) { 338 // Clear this SCEVUnknown from various maps. 339 SE->forgetMemoizedResults(this); 340 341 // Remove this SCEVUnknown from the uniquing map. 342 SE->UniqueSCEVs.RemoveNode(this); 343 344 // Update this SCEVUnknown to point to the new value. This is needed 345 // because there may still be outstanding SCEVs which still point to 346 // this SCEVUnknown. 347 setValPtr(New); 348 } 349 350 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 351 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 352 if (VCE->getOpcode() == Instruction::PtrToInt) 353 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 354 if (CE->getOpcode() == Instruction::GetElementPtr && 355 CE->getOperand(0)->isNullValue() && 356 CE->getNumOperands() == 2) 357 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 358 if (CI->isOne()) { 359 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 360 ->getElementType(); 361 return true; 362 } 363 364 return false; 365 } 366 367 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 368 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 369 if (VCE->getOpcode() == Instruction::PtrToInt) 370 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 371 if (CE->getOpcode() == Instruction::GetElementPtr && 372 CE->getOperand(0)->isNullValue()) { 373 const Type *Ty = 374 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 375 if (const StructType *STy = dyn_cast<StructType>(Ty)) 376 if (!STy->isPacked() && 377 CE->getNumOperands() == 3 && 378 CE->getOperand(1)->isNullValue()) { 379 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 380 if (CI->isOne() && 381 STy->getNumElements() == 2 && 382 STy->getElementType(0)->isIntegerTy(1)) { 383 AllocTy = STy->getElementType(1); 384 return true; 385 } 386 } 387 } 388 389 return false; 390 } 391 392 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 393 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 394 if (VCE->getOpcode() == Instruction::PtrToInt) 395 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 396 if (CE->getOpcode() == Instruction::GetElementPtr && 397 CE->getNumOperands() == 3 && 398 CE->getOperand(0)->isNullValue() && 399 CE->getOperand(1)->isNullValue()) { 400 const Type *Ty = 401 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 402 // Ignore vector types here so that ScalarEvolutionExpander doesn't 403 // emit getelementptrs that index into vectors. 404 if (Ty->isStructTy() || Ty->isArrayTy()) { 405 CTy = Ty; 406 FieldNo = CE->getOperand(2); 407 return true; 408 } 409 } 410 411 return false; 412 } 413 414 //===----------------------------------------------------------------------===// 415 // SCEV Utilities 416 //===----------------------------------------------------------------------===// 417 418 namespace { 419 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 420 /// than the complexity of the RHS. This comparator is used to canonicalize 421 /// expressions. 422 class SCEVComplexityCompare { 423 const LoopInfo *const LI; 424 public: 425 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 426 427 // Return true or false if LHS is less than, or at least RHS, respectively. 428 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 429 return compare(LHS, RHS) < 0; 430 } 431 432 // Return negative, zero, or positive, if LHS is less than, equal to, or 433 // greater than RHS, respectively. A three-way result allows recursive 434 // comparisons to be more efficient. 435 int compare(const SCEV *LHS, const SCEV *RHS) const { 436 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 437 if (LHS == RHS) 438 return 0; 439 440 // Primarily, sort the SCEVs by their getSCEVType(). 441 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 442 if (LType != RType) 443 return (int)LType - (int)RType; 444 445 // Aside from the getSCEVType() ordering, the particular ordering 446 // isn't very important except that it's beneficial to be consistent, 447 // so that (a + b) and (b + a) don't end up as different expressions. 448 switch (LType) { 449 case scUnknown: { 450 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 451 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 452 453 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 454 // not as complete as it could be. 455 const Value *LV = LU->getValue(), *RV = RU->getValue(); 456 457 // Order pointer values after integer values. This helps SCEVExpander 458 // form GEPs. 459 bool LIsPointer = LV->getType()->isPointerTy(), 460 RIsPointer = RV->getType()->isPointerTy(); 461 if (LIsPointer != RIsPointer) 462 return (int)LIsPointer - (int)RIsPointer; 463 464 // Compare getValueID values. 465 unsigned LID = LV->getValueID(), 466 RID = RV->getValueID(); 467 if (LID != RID) 468 return (int)LID - (int)RID; 469 470 // Sort arguments by their position. 471 if (const Argument *LA = dyn_cast<Argument>(LV)) { 472 const Argument *RA = cast<Argument>(RV); 473 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 474 return (int)LArgNo - (int)RArgNo; 475 } 476 477 // For instructions, compare their loop depth, and their operand 478 // count. This is pretty loose. 479 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 480 const Instruction *RInst = cast<Instruction>(RV); 481 482 // Compare loop depths. 483 const BasicBlock *LParent = LInst->getParent(), 484 *RParent = RInst->getParent(); 485 if (LParent != RParent) { 486 unsigned LDepth = LI->getLoopDepth(LParent), 487 RDepth = LI->getLoopDepth(RParent); 488 if (LDepth != RDepth) 489 return (int)LDepth - (int)RDepth; 490 } 491 492 // Compare the number of operands. 493 unsigned LNumOps = LInst->getNumOperands(), 494 RNumOps = RInst->getNumOperands(); 495 return (int)LNumOps - (int)RNumOps; 496 } 497 498 return 0; 499 } 500 501 case scConstant: { 502 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 503 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 504 505 // Compare constant values. 506 const APInt &LA = LC->getValue()->getValue(); 507 const APInt &RA = RC->getValue()->getValue(); 508 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 509 if (LBitWidth != RBitWidth) 510 return (int)LBitWidth - (int)RBitWidth; 511 return LA.ult(RA) ? -1 : 1; 512 } 513 514 case scAddRecExpr: { 515 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 516 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 517 518 // Compare addrec loop depths. 519 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 520 if (LLoop != RLoop) { 521 unsigned LDepth = LLoop->getLoopDepth(), 522 RDepth = RLoop->getLoopDepth(); 523 if (LDepth != RDepth) 524 return (int)LDepth - (int)RDepth; 525 } 526 527 // Addrec complexity grows with operand count. 528 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 529 if (LNumOps != RNumOps) 530 return (int)LNumOps - (int)RNumOps; 531 532 // Lexicographically compare. 533 for (unsigned i = 0; i != LNumOps; ++i) { 534 long X = compare(LA->getOperand(i), RA->getOperand(i)); 535 if (X != 0) 536 return X; 537 } 538 539 return 0; 540 } 541 542 case scAddExpr: 543 case scMulExpr: 544 case scSMaxExpr: 545 case scUMaxExpr: { 546 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 547 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 548 549 // Lexicographically compare n-ary expressions. 550 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 551 for (unsigned i = 0; i != LNumOps; ++i) { 552 if (i >= RNumOps) 553 return 1; 554 long X = compare(LC->getOperand(i), RC->getOperand(i)); 555 if (X != 0) 556 return X; 557 } 558 return (int)LNumOps - (int)RNumOps; 559 } 560 561 case scUDivExpr: { 562 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 563 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 564 565 // Lexicographically compare udiv expressions. 566 long X = compare(LC->getLHS(), RC->getLHS()); 567 if (X != 0) 568 return X; 569 return compare(LC->getRHS(), RC->getRHS()); 570 } 571 572 case scTruncate: 573 case scZeroExtend: 574 case scSignExtend: { 575 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 576 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 577 578 // Compare cast expressions by operand. 579 return compare(LC->getOperand(), RC->getOperand()); 580 } 581 582 default: 583 break; 584 } 585 586 llvm_unreachable("Unknown SCEV kind!"); 587 return 0; 588 } 589 }; 590 } 591 592 /// GroupByComplexity - Given a list of SCEV objects, order them by their 593 /// complexity, and group objects of the same complexity together by value. 594 /// When this routine is finished, we know that any duplicates in the vector are 595 /// consecutive and that complexity is monotonically increasing. 596 /// 597 /// Note that we go take special precautions to ensure that we get deterministic 598 /// results from this routine. In other words, we don't want the results of 599 /// this to depend on where the addresses of various SCEV objects happened to 600 /// land in memory. 601 /// 602 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 603 LoopInfo *LI) { 604 if (Ops.size() < 2) return; // Noop 605 if (Ops.size() == 2) { 606 // This is the common case, which also happens to be trivially simple. 607 // Special case it. 608 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 609 if (SCEVComplexityCompare(LI)(RHS, LHS)) 610 std::swap(LHS, RHS); 611 return; 612 } 613 614 // Do the rough sort by complexity. 615 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 616 617 // Now that we are sorted by complexity, group elements of the same 618 // complexity. Note that this is, at worst, N^2, but the vector is likely to 619 // be extremely short in practice. Note that we take this approach because we 620 // do not want to depend on the addresses of the objects we are grouping. 621 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 622 const SCEV *S = Ops[i]; 623 unsigned Complexity = S->getSCEVType(); 624 625 // If there are any objects of the same complexity and same value as this 626 // one, group them. 627 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 628 if (Ops[j] == S) { // Found a duplicate. 629 // Move it to immediately after i'th element. 630 std::swap(Ops[i+1], Ops[j]); 631 ++i; // no need to rescan it. 632 if (i == e-2) return; // Done! 633 } 634 } 635 } 636 } 637 638 639 640 //===----------------------------------------------------------------------===// 641 // Simple SCEV method implementations 642 //===----------------------------------------------------------------------===// 643 644 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 645 /// Assume, K > 0. 646 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 647 ScalarEvolution &SE, 648 const Type* ResultTy) { 649 // Handle the simplest case efficiently. 650 if (K == 1) 651 return SE.getTruncateOrZeroExtend(It, ResultTy); 652 653 // We are using the following formula for BC(It, K): 654 // 655 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 656 // 657 // Suppose, W is the bitwidth of the return value. We must be prepared for 658 // overflow. Hence, we must assure that the result of our computation is 659 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 660 // safe in modular arithmetic. 661 // 662 // However, this code doesn't use exactly that formula; the formula it uses 663 // is something like the following, where T is the number of factors of 2 in 664 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 665 // exponentiation: 666 // 667 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 668 // 669 // This formula is trivially equivalent to the previous formula. However, 670 // this formula can be implemented much more efficiently. The trick is that 671 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 672 // arithmetic. To do exact division in modular arithmetic, all we have 673 // to do is multiply by the inverse. Therefore, this step can be done at 674 // width W. 675 // 676 // The next issue is how to safely do the division by 2^T. The way this 677 // is done is by doing the multiplication step at a width of at least W + T 678 // bits. This way, the bottom W+T bits of the product are accurate. Then, 679 // when we perform the division by 2^T (which is equivalent to a right shift 680 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 681 // truncated out after the division by 2^T. 682 // 683 // In comparison to just directly using the first formula, this technique 684 // is much more efficient; using the first formula requires W * K bits, 685 // but this formula less than W + K bits. Also, the first formula requires 686 // a division step, whereas this formula only requires multiplies and shifts. 687 // 688 // It doesn't matter whether the subtraction step is done in the calculation 689 // width or the input iteration count's width; if the subtraction overflows, 690 // the result must be zero anyway. We prefer here to do it in the width of 691 // the induction variable because it helps a lot for certain cases; CodeGen 692 // isn't smart enough to ignore the overflow, which leads to much less 693 // efficient code if the width of the subtraction is wider than the native 694 // register width. 695 // 696 // (It's possible to not widen at all by pulling out factors of 2 before 697 // the multiplication; for example, K=2 can be calculated as 698 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 699 // extra arithmetic, so it's not an obvious win, and it gets 700 // much more complicated for K > 3.) 701 702 // Protection from insane SCEVs; this bound is conservative, 703 // but it probably doesn't matter. 704 if (K > 1000) 705 return SE.getCouldNotCompute(); 706 707 unsigned W = SE.getTypeSizeInBits(ResultTy); 708 709 // Calculate K! / 2^T and T; we divide out the factors of two before 710 // multiplying for calculating K! / 2^T to avoid overflow. 711 // Other overflow doesn't matter because we only care about the bottom 712 // W bits of the result. 713 APInt OddFactorial(W, 1); 714 unsigned T = 1; 715 for (unsigned i = 3; i <= K; ++i) { 716 APInt Mult(W, i); 717 unsigned TwoFactors = Mult.countTrailingZeros(); 718 T += TwoFactors; 719 Mult = Mult.lshr(TwoFactors); 720 OddFactorial *= Mult; 721 } 722 723 // We need at least W + T bits for the multiplication step 724 unsigned CalculationBits = W + T; 725 726 // Calculate 2^T, at width T+W. 727 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 728 729 // Calculate the multiplicative inverse of K! / 2^T; 730 // this multiplication factor will perform the exact division by 731 // K! / 2^T. 732 APInt Mod = APInt::getSignedMinValue(W+1); 733 APInt MultiplyFactor = OddFactorial.zext(W+1); 734 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 735 MultiplyFactor = MultiplyFactor.trunc(W); 736 737 // Calculate the product, at width T+W 738 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 739 CalculationBits); 740 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 741 for (unsigned i = 1; i != K; ++i) { 742 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 743 Dividend = SE.getMulExpr(Dividend, 744 SE.getTruncateOrZeroExtend(S, CalculationTy)); 745 } 746 747 // Divide by 2^T 748 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 749 750 // Truncate the result, and divide by K! / 2^T. 751 752 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 753 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 754 } 755 756 /// evaluateAtIteration - Return the value of this chain of recurrences at 757 /// the specified iteration number. We can evaluate this recurrence by 758 /// multiplying each element in the chain by the binomial coefficient 759 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 760 /// 761 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 762 /// 763 /// where BC(It, k) stands for binomial coefficient. 764 /// 765 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 766 ScalarEvolution &SE) const { 767 const SCEV *Result = getStart(); 768 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 769 // The computation is correct in the face of overflow provided that the 770 // multiplication is performed _after_ the evaluation of the binomial 771 // coefficient. 772 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 773 if (isa<SCEVCouldNotCompute>(Coeff)) 774 return Coeff; 775 776 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 777 } 778 return Result; 779 } 780 781 //===----------------------------------------------------------------------===// 782 // SCEV Expression folder implementations 783 //===----------------------------------------------------------------------===// 784 785 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 786 const Type *Ty) { 787 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 788 "This is not a truncating conversion!"); 789 assert(isSCEVable(Ty) && 790 "This is not a conversion to a SCEVable type!"); 791 Ty = getEffectiveSCEVType(Ty); 792 793 FoldingSetNodeID ID; 794 ID.AddInteger(scTruncate); 795 ID.AddPointer(Op); 796 ID.AddPointer(Ty); 797 void *IP = 0; 798 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 799 800 // Fold if the operand is constant. 801 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 802 return getConstant( 803 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 804 getEffectiveSCEVType(Ty)))); 805 806 // trunc(trunc(x)) --> trunc(x) 807 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 808 return getTruncateExpr(ST->getOperand(), Ty); 809 810 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 811 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 812 return getTruncateOrSignExtend(SS->getOperand(), Ty); 813 814 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 815 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 816 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 817 818 // If the input value is a chrec scev, truncate the chrec's operands. 819 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 820 SmallVector<const SCEV *, 4> Operands; 821 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 822 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 823 return getAddRecExpr(Operands, AddRec->getLoop()); 824 } 825 826 // As a special case, fold trunc(undef) to undef. We don't want to 827 // know too much about SCEVUnknowns, but this special case is handy 828 // and harmless. 829 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 830 if (isa<UndefValue>(U->getValue())) 831 return getSCEV(UndefValue::get(Ty)); 832 833 // The cast wasn't folded; create an explicit cast node. We can reuse 834 // the existing insert position since if we get here, we won't have 835 // made any changes which would invalidate it. 836 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 837 Op, Ty); 838 UniqueSCEVs.InsertNode(S, IP); 839 return S; 840 } 841 842 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 843 const Type *Ty) { 844 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 845 "This is not an extending conversion!"); 846 assert(isSCEVable(Ty) && 847 "This is not a conversion to a SCEVable type!"); 848 Ty = getEffectiveSCEVType(Ty); 849 850 // Fold if the operand is constant. 851 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 852 return getConstant( 853 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 854 getEffectiveSCEVType(Ty)))); 855 856 // zext(zext(x)) --> zext(x) 857 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 858 return getZeroExtendExpr(SZ->getOperand(), Ty); 859 860 // Before doing any expensive analysis, check to see if we've already 861 // computed a SCEV for this Op and Ty. 862 FoldingSetNodeID ID; 863 ID.AddInteger(scZeroExtend); 864 ID.AddPointer(Op); 865 ID.AddPointer(Ty); 866 void *IP = 0; 867 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 868 869 // If the input value is a chrec scev, and we can prove that the value 870 // did not overflow the old, smaller, value, we can zero extend all of the 871 // operands (often constants). This allows analysis of something like 872 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 874 if (AR->isAffine()) { 875 const SCEV *Start = AR->getStart(); 876 const SCEV *Step = AR->getStepRecurrence(*this); 877 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 878 const Loop *L = AR->getLoop(); 879 880 // If we have special knowledge that this addrec won't overflow, 881 // we don't need to do any further analysis. 882 if (AR->hasNoUnsignedWrap()) 883 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 884 getZeroExtendExpr(Step, Ty), 885 L); 886 887 // Check whether the backedge-taken count is SCEVCouldNotCompute. 888 // Note that this serves two purposes: It filters out loops that are 889 // simply not analyzable, and it covers the case where this code is 890 // being called from within backedge-taken count analysis, such that 891 // attempting to ask for the backedge-taken count would likely result 892 // in infinite recursion. In the later case, the analysis code will 893 // cope with a conservative value, and it will take care to purge 894 // that value once it has finished. 895 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 896 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 897 // Manually compute the final value for AR, checking for 898 // overflow. 899 900 // Check whether the backedge-taken count can be losslessly casted to 901 // the addrec's type. The count is always unsigned. 902 const SCEV *CastedMaxBECount = 903 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 904 const SCEV *RecastedMaxBECount = 905 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 906 if (MaxBECount == RecastedMaxBECount) { 907 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 908 // Check whether Start+Step*MaxBECount has no unsigned overflow. 909 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 910 const SCEV *Add = getAddExpr(Start, ZMul); 911 const SCEV *OperandExtendedAdd = 912 getAddExpr(getZeroExtendExpr(Start, WideTy), 913 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 914 getZeroExtendExpr(Step, WideTy))); 915 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 916 // Return the expression with the addrec on the outside. 917 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 918 getZeroExtendExpr(Step, Ty), 919 L); 920 921 // Similar to above, only this time treat the step value as signed. 922 // This covers loops that count down. 923 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 924 Add = getAddExpr(Start, SMul); 925 OperandExtendedAdd = 926 getAddExpr(getZeroExtendExpr(Start, WideTy), 927 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 928 getSignExtendExpr(Step, WideTy))); 929 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 930 // Return the expression with the addrec on the outside. 931 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 932 getSignExtendExpr(Step, Ty), 933 L); 934 } 935 936 // If the backedge is guarded by a comparison with the pre-inc value 937 // the addrec is safe. Also, if the entry is guarded by a comparison 938 // with the start value and the backedge is guarded by a comparison 939 // with the post-inc value, the addrec is safe. 940 if (isKnownPositive(Step)) { 941 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 942 getUnsignedRange(Step).getUnsignedMax()); 943 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 944 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 945 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 946 AR->getPostIncExpr(*this), N))) 947 // Return the expression with the addrec on the outside. 948 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 949 getZeroExtendExpr(Step, Ty), 950 L); 951 } else if (isKnownNegative(Step)) { 952 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 953 getSignedRange(Step).getSignedMin()); 954 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 955 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 956 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 957 AR->getPostIncExpr(*this), N))) 958 // Return the expression with the addrec on the outside. 959 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 960 getSignExtendExpr(Step, Ty), 961 L); 962 } 963 } 964 } 965 966 // The cast wasn't folded; create an explicit cast node. 967 // Recompute the insert position, as it may have been invalidated. 968 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 969 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 970 Op, Ty); 971 UniqueSCEVs.InsertNode(S, IP); 972 return S; 973 } 974 975 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 976 const Type *Ty) { 977 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 978 "This is not an extending conversion!"); 979 assert(isSCEVable(Ty) && 980 "This is not a conversion to a SCEVable type!"); 981 Ty = getEffectiveSCEVType(Ty); 982 983 // Fold if the operand is constant. 984 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 985 return getConstant( 986 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 987 getEffectiveSCEVType(Ty)))); 988 989 // sext(sext(x)) --> sext(x) 990 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 991 return getSignExtendExpr(SS->getOperand(), Ty); 992 993 // Before doing any expensive analysis, check to see if we've already 994 // computed a SCEV for this Op and Ty. 995 FoldingSetNodeID ID; 996 ID.AddInteger(scSignExtend); 997 ID.AddPointer(Op); 998 ID.AddPointer(Ty); 999 void *IP = 0; 1000 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1001 1002 // If the input value is a chrec scev, and we can prove that the value 1003 // did not overflow the old, smaller, value, we can sign extend all of the 1004 // operands (often constants). This allows analysis of something like 1005 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1006 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1007 if (AR->isAffine()) { 1008 const SCEV *Start = AR->getStart(); 1009 const SCEV *Step = AR->getStepRecurrence(*this); 1010 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1011 const Loop *L = AR->getLoop(); 1012 1013 // If we have special knowledge that this addrec won't overflow, 1014 // we don't need to do any further analysis. 1015 if (AR->hasNoSignedWrap()) 1016 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1017 getSignExtendExpr(Step, Ty), 1018 L); 1019 1020 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1021 // Note that this serves two purposes: It filters out loops that are 1022 // simply not analyzable, and it covers the case where this code is 1023 // being called from within backedge-taken count analysis, such that 1024 // attempting to ask for the backedge-taken count would likely result 1025 // in infinite recursion. In the later case, the analysis code will 1026 // cope with a conservative value, and it will take care to purge 1027 // that value once it has finished. 1028 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1029 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1030 // Manually compute the final value for AR, checking for 1031 // overflow. 1032 1033 // Check whether the backedge-taken count can be losslessly casted to 1034 // the addrec's type. The count is always unsigned. 1035 const SCEV *CastedMaxBECount = 1036 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1037 const SCEV *RecastedMaxBECount = 1038 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1039 if (MaxBECount == RecastedMaxBECount) { 1040 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1041 // Check whether Start+Step*MaxBECount has no signed overflow. 1042 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1043 const SCEV *Add = getAddExpr(Start, SMul); 1044 const SCEV *OperandExtendedAdd = 1045 getAddExpr(getSignExtendExpr(Start, WideTy), 1046 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1047 getSignExtendExpr(Step, WideTy))); 1048 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1049 // Return the expression with the addrec on the outside. 1050 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1051 getSignExtendExpr(Step, Ty), 1052 L); 1053 1054 // Similar to above, only this time treat the step value as unsigned. 1055 // This covers loops that count up with an unsigned step. 1056 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1057 Add = getAddExpr(Start, UMul); 1058 OperandExtendedAdd = 1059 getAddExpr(getSignExtendExpr(Start, WideTy), 1060 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1061 getZeroExtendExpr(Step, WideTy))); 1062 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1063 // Return the expression with the addrec on the outside. 1064 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1065 getZeroExtendExpr(Step, Ty), 1066 L); 1067 } 1068 1069 // If the backedge is guarded by a comparison with the pre-inc value 1070 // the addrec is safe. Also, if the entry is guarded by a comparison 1071 // with the start value and the backedge is guarded by a comparison 1072 // with the post-inc value, the addrec is safe. 1073 if (isKnownPositive(Step)) { 1074 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1075 getSignedRange(Step).getSignedMax()); 1076 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1077 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1078 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1079 AR->getPostIncExpr(*this), N))) 1080 // Return the expression with the addrec on the outside. 1081 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1082 getSignExtendExpr(Step, Ty), 1083 L); 1084 } else if (isKnownNegative(Step)) { 1085 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1086 getSignedRange(Step).getSignedMin()); 1087 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1088 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1089 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1090 AR->getPostIncExpr(*this), N))) 1091 // Return the expression with the addrec on the outside. 1092 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1093 getSignExtendExpr(Step, Ty), 1094 L); 1095 } 1096 } 1097 } 1098 1099 // The cast wasn't folded; create an explicit cast node. 1100 // Recompute the insert position, as it may have been invalidated. 1101 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1102 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1103 Op, Ty); 1104 UniqueSCEVs.InsertNode(S, IP); 1105 return S; 1106 } 1107 1108 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1109 /// unspecified bits out to the given type. 1110 /// 1111 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1112 const Type *Ty) { 1113 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1114 "This is not an extending conversion!"); 1115 assert(isSCEVable(Ty) && 1116 "This is not a conversion to a SCEVable type!"); 1117 Ty = getEffectiveSCEVType(Ty); 1118 1119 // Sign-extend negative constants. 1120 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1121 if (SC->getValue()->getValue().isNegative()) 1122 return getSignExtendExpr(Op, Ty); 1123 1124 // Peel off a truncate cast. 1125 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1126 const SCEV *NewOp = T->getOperand(); 1127 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1128 return getAnyExtendExpr(NewOp, Ty); 1129 return getTruncateOrNoop(NewOp, Ty); 1130 } 1131 1132 // Next try a zext cast. If the cast is folded, use it. 1133 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1134 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1135 return ZExt; 1136 1137 // Next try a sext cast. If the cast is folded, use it. 1138 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1139 if (!isa<SCEVSignExtendExpr>(SExt)) 1140 return SExt; 1141 1142 // Force the cast to be folded into the operands of an addrec. 1143 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1144 SmallVector<const SCEV *, 4> Ops; 1145 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1146 I != E; ++I) 1147 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1148 return getAddRecExpr(Ops, AR->getLoop()); 1149 } 1150 1151 // As a special case, fold anyext(undef) to undef. We don't want to 1152 // know too much about SCEVUnknowns, but this special case is handy 1153 // and harmless. 1154 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1155 if (isa<UndefValue>(U->getValue())) 1156 return getSCEV(UndefValue::get(Ty)); 1157 1158 // If the expression is obviously signed, use the sext cast value. 1159 if (isa<SCEVSMaxExpr>(Op)) 1160 return SExt; 1161 1162 // Absent any other information, use the zext cast value. 1163 return ZExt; 1164 } 1165 1166 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1167 /// a list of operands to be added under the given scale, update the given 1168 /// map. This is a helper function for getAddRecExpr. As an example of 1169 /// what it does, given a sequence of operands that would form an add 1170 /// expression like this: 1171 /// 1172 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1173 /// 1174 /// where A and B are constants, update the map with these values: 1175 /// 1176 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1177 /// 1178 /// and add 13 + A*B*29 to AccumulatedConstant. 1179 /// This will allow getAddRecExpr to produce this: 1180 /// 1181 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1182 /// 1183 /// This form often exposes folding opportunities that are hidden in 1184 /// the original operand list. 1185 /// 1186 /// Return true iff it appears that any interesting folding opportunities 1187 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1188 /// the common case where no interesting opportunities are present, and 1189 /// is also used as a check to avoid infinite recursion. 1190 /// 1191 static bool 1192 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1193 SmallVector<const SCEV *, 8> &NewOps, 1194 APInt &AccumulatedConstant, 1195 const SCEV *const *Ops, size_t NumOperands, 1196 const APInt &Scale, 1197 ScalarEvolution &SE) { 1198 bool Interesting = false; 1199 1200 // Iterate over the add operands. They are sorted, with constants first. 1201 unsigned i = 0; 1202 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1203 ++i; 1204 // Pull a buried constant out to the outside. 1205 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1206 Interesting = true; 1207 AccumulatedConstant += Scale * C->getValue()->getValue(); 1208 } 1209 1210 // Next comes everything else. We're especially interested in multiplies 1211 // here, but they're in the middle, so just visit the rest with one loop. 1212 for (; i != NumOperands; ++i) { 1213 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1214 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1215 APInt NewScale = 1216 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1217 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1218 // A multiplication of a constant with another add; recurse. 1219 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1220 Interesting |= 1221 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1222 Add->op_begin(), Add->getNumOperands(), 1223 NewScale, SE); 1224 } else { 1225 // A multiplication of a constant with some other value. Update 1226 // the map. 1227 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1228 const SCEV *Key = SE.getMulExpr(MulOps); 1229 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1230 M.insert(std::make_pair(Key, NewScale)); 1231 if (Pair.second) { 1232 NewOps.push_back(Pair.first->first); 1233 } else { 1234 Pair.first->second += NewScale; 1235 // The map already had an entry for this value, which may indicate 1236 // a folding opportunity. 1237 Interesting = true; 1238 } 1239 } 1240 } else { 1241 // An ordinary operand. Update the map. 1242 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1243 M.insert(std::make_pair(Ops[i], Scale)); 1244 if (Pair.second) { 1245 NewOps.push_back(Pair.first->first); 1246 } else { 1247 Pair.first->second += Scale; 1248 // The map already had an entry for this value, which may indicate 1249 // a folding opportunity. 1250 Interesting = true; 1251 } 1252 } 1253 } 1254 1255 return Interesting; 1256 } 1257 1258 namespace { 1259 struct APIntCompare { 1260 bool operator()(const APInt &LHS, const APInt &RHS) const { 1261 return LHS.ult(RHS); 1262 } 1263 }; 1264 } 1265 1266 /// getAddExpr - Get a canonical add expression, or something simpler if 1267 /// possible. 1268 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1269 bool HasNUW, bool HasNSW) { 1270 assert(!Ops.empty() && "Cannot get empty add!"); 1271 if (Ops.size() == 1) return Ops[0]; 1272 #ifndef NDEBUG 1273 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1274 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1275 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1276 "SCEVAddExpr operand types don't match!"); 1277 #endif 1278 1279 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1280 if (!HasNUW && HasNSW) { 1281 bool All = true; 1282 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1283 E = Ops.end(); I != E; ++I) 1284 if (!isKnownNonNegative(*I)) { 1285 All = false; 1286 break; 1287 } 1288 if (All) HasNUW = true; 1289 } 1290 1291 // Sort by complexity, this groups all similar expression types together. 1292 GroupByComplexity(Ops, LI); 1293 1294 // If there are any constants, fold them together. 1295 unsigned Idx = 0; 1296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1297 ++Idx; 1298 assert(Idx < Ops.size()); 1299 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1300 // We found two constants, fold them together! 1301 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1302 RHSC->getValue()->getValue()); 1303 if (Ops.size() == 2) return Ops[0]; 1304 Ops.erase(Ops.begin()+1); // Erase the folded element 1305 LHSC = cast<SCEVConstant>(Ops[0]); 1306 } 1307 1308 // If we are left with a constant zero being added, strip it off. 1309 if (LHSC->getValue()->isZero()) { 1310 Ops.erase(Ops.begin()); 1311 --Idx; 1312 } 1313 1314 if (Ops.size() == 1) return Ops[0]; 1315 } 1316 1317 // Okay, check to see if the same value occurs in the operand list more than 1318 // once. If so, merge them together into an multiply expression. Since we 1319 // sorted the list, these values are required to be adjacent. 1320 const Type *Ty = Ops[0]->getType(); 1321 bool FoundMatch = false; 1322 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1323 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1324 // Scan ahead to count how many equal operands there are. 1325 unsigned Count = 2; 1326 while (i+Count != e && Ops[i+Count] == Ops[i]) 1327 ++Count; 1328 // Merge the values into a multiply. 1329 const SCEV *Scale = getConstant(Ty, Count); 1330 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1331 if (Ops.size() == Count) 1332 return Mul; 1333 Ops[i] = Mul; 1334 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1335 --i; e -= Count - 1; 1336 FoundMatch = true; 1337 } 1338 if (FoundMatch) 1339 return getAddExpr(Ops, HasNUW, HasNSW); 1340 1341 // Check for truncates. If all the operands are truncated from the same 1342 // type, see if factoring out the truncate would permit the result to be 1343 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1344 // if the contents of the resulting outer trunc fold to something simple. 1345 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1346 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1347 const Type *DstType = Trunc->getType(); 1348 const Type *SrcType = Trunc->getOperand()->getType(); 1349 SmallVector<const SCEV *, 8> LargeOps; 1350 bool Ok = true; 1351 // Check all the operands to see if they can be represented in the 1352 // source type of the truncate. 1353 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1354 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1355 if (T->getOperand()->getType() != SrcType) { 1356 Ok = false; 1357 break; 1358 } 1359 LargeOps.push_back(T->getOperand()); 1360 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1361 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1362 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1363 SmallVector<const SCEV *, 8> LargeMulOps; 1364 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1365 if (const SCEVTruncateExpr *T = 1366 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1367 if (T->getOperand()->getType() != SrcType) { 1368 Ok = false; 1369 break; 1370 } 1371 LargeMulOps.push_back(T->getOperand()); 1372 } else if (const SCEVConstant *C = 1373 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1374 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1375 } else { 1376 Ok = false; 1377 break; 1378 } 1379 } 1380 if (Ok) 1381 LargeOps.push_back(getMulExpr(LargeMulOps)); 1382 } else { 1383 Ok = false; 1384 break; 1385 } 1386 } 1387 if (Ok) { 1388 // Evaluate the expression in the larger type. 1389 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1390 // If it folds to something simple, use it. Otherwise, don't. 1391 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1392 return getTruncateExpr(Fold, DstType); 1393 } 1394 } 1395 1396 // Skip past any other cast SCEVs. 1397 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1398 ++Idx; 1399 1400 // If there are add operands they would be next. 1401 if (Idx < Ops.size()) { 1402 bool DeletedAdd = false; 1403 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1404 // If we have an add, expand the add operands onto the end of the operands 1405 // list. 1406 Ops.erase(Ops.begin()+Idx); 1407 Ops.append(Add->op_begin(), Add->op_end()); 1408 DeletedAdd = true; 1409 } 1410 1411 // If we deleted at least one add, we added operands to the end of the list, 1412 // and they are not necessarily sorted. Recurse to resort and resimplify 1413 // any operands we just acquired. 1414 if (DeletedAdd) 1415 return getAddExpr(Ops); 1416 } 1417 1418 // Skip over the add expression until we get to a multiply. 1419 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1420 ++Idx; 1421 1422 // Check to see if there are any folding opportunities present with 1423 // operands multiplied by constant values. 1424 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1425 uint64_t BitWidth = getTypeSizeInBits(Ty); 1426 DenseMap<const SCEV *, APInt> M; 1427 SmallVector<const SCEV *, 8> NewOps; 1428 APInt AccumulatedConstant(BitWidth, 0); 1429 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1430 Ops.data(), Ops.size(), 1431 APInt(BitWidth, 1), *this)) { 1432 // Some interesting folding opportunity is present, so its worthwhile to 1433 // re-generate the operands list. Group the operands by constant scale, 1434 // to avoid multiplying by the same constant scale multiple times. 1435 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1436 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1437 E = NewOps.end(); I != E; ++I) 1438 MulOpLists[M.find(*I)->second].push_back(*I); 1439 // Re-generate the operands list. 1440 Ops.clear(); 1441 if (AccumulatedConstant != 0) 1442 Ops.push_back(getConstant(AccumulatedConstant)); 1443 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1444 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1445 if (I->first != 0) 1446 Ops.push_back(getMulExpr(getConstant(I->first), 1447 getAddExpr(I->second))); 1448 if (Ops.empty()) 1449 return getConstant(Ty, 0); 1450 if (Ops.size() == 1) 1451 return Ops[0]; 1452 return getAddExpr(Ops); 1453 } 1454 } 1455 1456 // If we are adding something to a multiply expression, make sure the 1457 // something is not already an operand of the multiply. If so, merge it into 1458 // the multiply. 1459 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1460 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1461 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1462 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1463 if (isa<SCEVConstant>(MulOpSCEV)) 1464 continue; 1465 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1466 if (MulOpSCEV == Ops[AddOp]) { 1467 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1468 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1469 if (Mul->getNumOperands() != 2) { 1470 // If the multiply has more than two operands, we must get the 1471 // Y*Z term. 1472 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1473 Mul->op_begin()+MulOp); 1474 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1475 InnerMul = getMulExpr(MulOps); 1476 } 1477 const SCEV *One = getConstant(Ty, 1); 1478 const SCEV *AddOne = getAddExpr(One, InnerMul); 1479 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1480 if (Ops.size() == 2) return OuterMul; 1481 if (AddOp < Idx) { 1482 Ops.erase(Ops.begin()+AddOp); 1483 Ops.erase(Ops.begin()+Idx-1); 1484 } else { 1485 Ops.erase(Ops.begin()+Idx); 1486 Ops.erase(Ops.begin()+AddOp-1); 1487 } 1488 Ops.push_back(OuterMul); 1489 return getAddExpr(Ops); 1490 } 1491 1492 // Check this multiply against other multiplies being added together. 1493 for (unsigned OtherMulIdx = Idx+1; 1494 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1495 ++OtherMulIdx) { 1496 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1497 // If MulOp occurs in OtherMul, we can fold the two multiplies 1498 // together. 1499 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1500 OMulOp != e; ++OMulOp) 1501 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1502 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1503 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1504 if (Mul->getNumOperands() != 2) { 1505 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1506 Mul->op_begin()+MulOp); 1507 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1508 InnerMul1 = getMulExpr(MulOps); 1509 } 1510 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1511 if (OtherMul->getNumOperands() != 2) { 1512 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1513 OtherMul->op_begin()+OMulOp); 1514 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1515 InnerMul2 = getMulExpr(MulOps); 1516 } 1517 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1518 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1519 if (Ops.size() == 2) return OuterMul; 1520 Ops.erase(Ops.begin()+Idx); 1521 Ops.erase(Ops.begin()+OtherMulIdx-1); 1522 Ops.push_back(OuterMul); 1523 return getAddExpr(Ops); 1524 } 1525 } 1526 } 1527 } 1528 1529 // If there are any add recurrences in the operands list, see if any other 1530 // added values are loop invariant. If so, we can fold them into the 1531 // recurrence. 1532 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1533 ++Idx; 1534 1535 // Scan over all recurrences, trying to fold loop invariants into them. 1536 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1537 // Scan all of the other operands to this add and add them to the vector if 1538 // they are loop invariant w.r.t. the recurrence. 1539 SmallVector<const SCEV *, 8> LIOps; 1540 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1541 const Loop *AddRecLoop = AddRec->getLoop(); 1542 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1543 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1544 LIOps.push_back(Ops[i]); 1545 Ops.erase(Ops.begin()+i); 1546 --i; --e; 1547 } 1548 1549 // If we found some loop invariants, fold them into the recurrence. 1550 if (!LIOps.empty()) { 1551 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1552 LIOps.push_back(AddRec->getStart()); 1553 1554 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1555 AddRec->op_end()); 1556 AddRecOps[0] = getAddExpr(LIOps); 1557 1558 // Build the new addrec. Propagate the NUW and NSW flags if both the 1559 // outer add and the inner addrec are guaranteed to have no overflow. 1560 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1561 HasNUW && AddRec->hasNoUnsignedWrap(), 1562 HasNSW && AddRec->hasNoSignedWrap()); 1563 1564 // If all of the other operands were loop invariant, we are done. 1565 if (Ops.size() == 1) return NewRec; 1566 1567 // Otherwise, add the folded AddRec by the non-liv parts. 1568 for (unsigned i = 0;; ++i) 1569 if (Ops[i] == AddRec) { 1570 Ops[i] = NewRec; 1571 break; 1572 } 1573 return getAddExpr(Ops); 1574 } 1575 1576 // Okay, if there weren't any loop invariants to be folded, check to see if 1577 // there are multiple AddRec's with the same loop induction variable being 1578 // added together. If so, we can fold them. 1579 for (unsigned OtherIdx = Idx+1; 1580 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1581 ++OtherIdx) 1582 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1583 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1584 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1585 AddRec->op_end()); 1586 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1587 ++OtherIdx) 1588 if (const SCEVAddRecExpr *OtherAddRec = 1589 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1590 if (OtherAddRec->getLoop() == AddRecLoop) { 1591 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1592 i != e; ++i) { 1593 if (i >= AddRecOps.size()) { 1594 AddRecOps.append(OtherAddRec->op_begin()+i, 1595 OtherAddRec->op_end()); 1596 break; 1597 } 1598 AddRecOps[i] = getAddExpr(AddRecOps[i], 1599 OtherAddRec->getOperand(i)); 1600 } 1601 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1602 } 1603 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop); 1604 return getAddExpr(Ops); 1605 } 1606 1607 // Otherwise couldn't fold anything into this recurrence. Move onto the 1608 // next one. 1609 } 1610 1611 // Okay, it looks like we really DO need an add expr. Check to see if we 1612 // already have one, otherwise create a new one. 1613 FoldingSetNodeID ID; 1614 ID.AddInteger(scAddExpr); 1615 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1616 ID.AddPointer(Ops[i]); 1617 void *IP = 0; 1618 SCEVAddExpr *S = 1619 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1620 if (!S) { 1621 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1622 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1623 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1624 O, Ops.size()); 1625 UniqueSCEVs.InsertNode(S, IP); 1626 } 1627 if (HasNUW) S->setHasNoUnsignedWrap(true); 1628 if (HasNSW) S->setHasNoSignedWrap(true); 1629 return S; 1630 } 1631 1632 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1633 /// possible. 1634 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1635 bool HasNUW, bool HasNSW) { 1636 assert(!Ops.empty() && "Cannot get empty mul!"); 1637 if (Ops.size() == 1) return Ops[0]; 1638 #ifndef NDEBUG 1639 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1640 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1641 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1642 "SCEVMulExpr operand types don't match!"); 1643 #endif 1644 1645 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1646 if (!HasNUW && HasNSW) { 1647 bool All = true; 1648 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1649 E = Ops.end(); I != E; ++I) 1650 if (!isKnownNonNegative(*I)) { 1651 All = false; 1652 break; 1653 } 1654 if (All) HasNUW = true; 1655 } 1656 1657 // Sort by complexity, this groups all similar expression types together. 1658 GroupByComplexity(Ops, LI); 1659 1660 // If there are any constants, fold them together. 1661 unsigned Idx = 0; 1662 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1663 1664 // C1*(C2+V) -> C1*C2 + C1*V 1665 if (Ops.size() == 2) 1666 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1667 if (Add->getNumOperands() == 2 && 1668 isa<SCEVConstant>(Add->getOperand(0))) 1669 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1670 getMulExpr(LHSC, Add->getOperand(1))); 1671 1672 ++Idx; 1673 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1674 // We found two constants, fold them together! 1675 ConstantInt *Fold = ConstantInt::get(getContext(), 1676 LHSC->getValue()->getValue() * 1677 RHSC->getValue()->getValue()); 1678 Ops[0] = getConstant(Fold); 1679 Ops.erase(Ops.begin()+1); // Erase the folded element 1680 if (Ops.size() == 1) return Ops[0]; 1681 LHSC = cast<SCEVConstant>(Ops[0]); 1682 } 1683 1684 // If we are left with a constant one being multiplied, strip it off. 1685 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1686 Ops.erase(Ops.begin()); 1687 --Idx; 1688 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1689 // If we have a multiply of zero, it will always be zero. 1690 return Ops[0]; 1691 } else if (Ops[0]->isAllOnesValue()) { 1692 // If we have a mul by -1 of an add, try distributing the -1 among the 1693 // add operands. 1694 if (Ops.size() == 2) 1695 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1696 SmallVector<const SCEV *, 4> NewOps; 1697 bool AnyFolded = false; 1698 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1699 I != E; ++I) { 1700 const SCEV *Mul = getMulExpr(Ops[0], *I); 1701 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1702 NewOps.push_back(Mul); 1703 } 1704 if (AnyFolded) 1705 return getAddExpr(NewOps); 1706 } 1707 } 1708 1709 if (Ops.size() == 1) 1710 return Ops[0]; 1711 } 1712 1713 // Skip over the add expression until we get to a multiply. 1714 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1715 ++Idx; 1716 1717 // If there are mul operands inline them all into this expression. 1718 if (Idx < Ops.size()) { 1719 bool DeletedMul = false; 1720 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1721 // If we have an mul, expand the mul operands onto the end of the operands 1722 // list. 1723 Ops.erase(Ops.begin()+Idx); 1724 Ops.append(Mul->op_begin(), Mul->op_end()); 1725 DeletedMul = true; 1726 } 1727 1728 // If we deleted at least one mul, we added operands to the end of the list, 1729 // and they are not necessarily sorted. Recurse to resort and resimplify 1730 // any operands we just acquired. 1731 if (DeletedMul) 1732 return getMulExpr(Ops); 1733 } 1734 1735 // If there are any add recurrences in the operands list, see if any other 1736 // added values are loop invariant. If so, we can fold them into the 1737 // recurrence. 1738 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1739 ++Idx; 1740 1741 // Scan over all recurrences, trying to fold loop invariants into them. 1742 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1743 // Scan all of the other operands to this mul and add them to the vector if 1744 // they are loop invariant w.r.t. the recurrence. 1745 SmallVector<const SCEV *, 8> LIOps; 1746 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1747 const Loop *AddRecLoop = AddRec->getLoop(); 1748 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1749 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1750 LIOps.push_back(Ops[i]); 1751 Ops.erase(Ops.begin()+i); 1752 --i; --e; 1753 } 1754 1755 // If we found some loop invariants, fold them into the recurrence. 1756 if (!LIOps.empty()) { 1757 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1758 SmallVector<const SCEV *, 4> NewOps; 1759 NewOps.reserve(AddRec->getNumOperands()); 1760 const SCEV *Scale = getMulExpr(LIOps); 1761 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1762 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1763 1764 // Build the new addrec. Propagate the NUW and NSW flags if both the 1765 // outer mul and the inner addrec are guaranteed to have no overflow. 1766 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, 1767 HasNUW && AddRec->hasNoUnsignedWrap(), 1768 HasNSW && AddRec->hasNoSignedWrap()); 1769 1770 // If all of the other operands were loop invariant, we are done. 1771 if (Ops.size() == 1) return NewRec; 1772 1773 // Otherwise, multiply the folded AddRec by the non-liv parts. 1774 for (unsigned i = 0;; ++i) 1775 if (Ops[i] == AddRec) { 1776 Ops[i] = NewRec; 1777 break; 1778 } 1779 return getMulExpr(Ops); 1780 } 1781 1782 // Okay, if there weren't any loop invariants to be folded, check to see if 1783 // there are multiple AddRec's with the same loop induction variable being 1784 // multiplied together. If so, we can fold them. 1785 for (unsigned OtherIdx = Idx+1; 1786 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1787 ++OtherIdx) 1788 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1789 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> --> 1790 // {A*C,+,F*D + G*B + B*D}<L> 1791 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1792 ++OtherIdx) 1793 if (const SCEVAddRecExpr *OtherAddRec = 1794 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1795 if (OtherAddRec->getLoop() == AddRecLoop) { 1796 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1797 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart()); 1798 const SCEV *B = F->getStepRecurrence(*this); 1799 const SCEV *D = G->getStepRecurrence(*this); 1800 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1801 getMulExpr(G, B), 1802 getMulExpr(B, D)); 1803 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1804 F->getLoop()); 1805 if (Ops.size() == 2) return NewAddRec; 1806 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); 1807 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1808 } 1809 return getMulExpr(Ops); 1810 } 1811 1812 // Otherwise couldn't fold anything into this recurrence. Move onto the 1813 // next one. 1814 } 1815 1816 // Okay, it looks like we really DO need an mul expr. Check to see if we 1817 // already have one, otherwise create a new one. 1818 FoldingSetNodeID ID; 1819 ID.AddInteger(scMulExpr); 1820 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1821 ID.AddPointer(Ops[i]); 1822 void *IP = 0; 1823 SCEVMulExpr *S = 1824 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1825 if (!S) { 1826 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1827 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1828 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1829 O, Ops.size()); 1830 UniqueSCEVs.InsertNode(S, IP); 1831 } 1832 if (HasNUW) S->setHasNoUnsignedWrap(true); 1833 if (HasNSW) S->setHasNoSignedWrap(true); 1834 return S; 1835 } 1836 1837 /// getUDivExpr - Get a canonical unsigned division expression, or something 1838 /// simpler if possible. 1839 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1840 const SCEV *RHS) { 1841 assert(getEffectiveSCEVType(LHS->getType()) == 1842 getEffectiveSCEVType(RHS->getType()) && 1843 "SCEVUDivExpr operand types don't match!"); 1844 1845 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1846 if (RHSC->getValue()->equalsInt(1)) 1847 return LHS; // X udiv 1 --> x 1848 // If the denominator is zero, the result of the udiv is undefined. Don't 1849 // try to analyze it, because the resolution chosen here may differ from 1850 // the resolution chosen in other parts of the compiler. 1851 if (!RHSC->getValue()->isZero()) { 1852 // Determine if the division can be folded into the operands of 1853 // its operands. 1854 // TODO: Generalize this to non-constants by using known-bits information. 1855 const Type *Ty = LHS->getType(); 1856 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1857 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 1858 // For non-power-of-two values, effectively round the value up to the 1859 // nearest power of two. 1860 if (!RHSC->getValue()->getValue().isPowerOf2()) 1861 ++MaxShiftAmt; 1862 const IntegerType *ExtTy = 1863 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1864 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1865 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1866 if (const SCEVConstant *Step = 1867 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1868 if (!Step->getValue()->getValue() 1869 .urem(RHSC->getValue()->getValue()) && 1870 getZeroExtendExpr(AR, ExtTy) == 1871 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1872 getZeroExtendExpr(Step, ExtTy), 1873 AR->getLoop())) { 1874 SmallVector<const SCEV *, 4> Operands; 1875 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1876 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1877 return getAddRecExpr(Operands, AR->getLoop()); 1878 } 1879 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1880 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1881 SmallVector<const SCEV *, 4> Operands; 1882 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1883 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1884 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1885 // Find an operand that's safely divisible. 1886 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1887 const SCEV *Op = M->getOperand(i); 1888 const SCEV *Div = getUDivExpr(Op, RHSC); 1889 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1890 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1891 M->op_end()); 1892 Operands[i] = Div; 1893 return getMulExpr(Operands); 1894 } 1895 } 1896 } 1897 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1898 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1899 SmallVector<const SCEV *, 4> Operands; 1900 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1901 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1902 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1903 Operands.clear(); 1904 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1905 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1906 if (isa<SCEVUDivExpr>(Op) || 1907 getMulExpr(Op, RHS) != A->getOperand(i)) 1908 break; 1909 Operands.push_back(Op); 1910 } 1911 if (Operands.size() == A->getNumOperands()) 1912 return getAddExpr(Operands); 1913 } 1914 } 1915 1916 // Fold if both operands are constant. 1917 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1918 Constant *LHSCV = LHSC->getValue(); 1919 Constant *RHSCV = RHSC->getValue(); 1920 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1921 RHSCV))); 1922 } 1923 } 1924 } 1925 1926 FoldingSetNodeID ID; 1927 ID.AddInteger(scUDivExpr); 1928 ID.AddPointer(LHS); 1929 ID.AddPointer(RHS); 1930 void *IP = 0; 1931 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1932 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 1933 LHS, RHS); 1934 UniqueSCEVs.InsertNode(S, IP); 1935 return S; 1936 } 1937 1938 1939 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1940 /// Simplify the expression as much as possible. 1941 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1942 const SCEV *Step, const Loop *L, 1943 bool HasNUW, bool HasNSW) { 1944 SmallVector<const SCEV *, 4> Operands; 1945 Operands.push_back(Start); 1946 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1947 if (StepChrec->getLoop() == L) { 1948 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 1949 return getAddRecExpr(Operands, L); 1950 } 1951 1952 Operands.push_back(Step); 1953 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1954 } 1955 1956 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1957 /// Simplify the expression as much as possible. 1958 const SCEV * 1959 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1960 const Loop *L, 1961 bool HasNUW, bool HasNSW) { 1962 if (Operands.size() == 1) return Operands[0]; 1963 #ifndef NDEBUG 1964 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 1965 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1966 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 1967 "SCEVAddRecExpr operand types don't match!"); 1968 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1969 assert(isLoopInvariant(Operands[i], L) && 1970 "SCEVAddRecExpr operand is not loop-invariant!"); 1971 #endif 1972 1973 if (Operands.back()->isZero()) { 1974 Operands.pop_back(); 1975 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 1976 } 1977 1978 // It's tempting to want to call getMaxBackedgeTakenCount count here and 1979 // use that information to infer NUW and NSW flags. However, computing a 1980 // BE count requires calling getAddRecExpr, so we may not yet have a 1981 // meaningful BE count at this point (and if we don't, we'd be stuck 1982 // with a SCEVCouldNotCompute as the cached BE count). 1983 1984 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1985 if (!HasNUW && HasNSW) { 1986 bool All = true; 1987 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 1988 E = Operands.end(); I != E; ++I) 1989 if (!isKnownNonNegative(*I)) { 1990 All = false; 1991 break; 1992 } 1993 if (All) HasNUW = true; 1994 } 1995 1996 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1997 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1998 const Loop *NestedLoop = NestedAR->getLoop(); 1999 if (L->contains(NestedLoop) ? 2000 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2001 (!NestedLoop->contains(L) && 2002 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2003 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2004 NestedAR->op_end()); 2005 Operands[0] = NestedAR->getStart(); 2006 // AddRecs require their operands be loop-invariant with respect to their 2007 // loops. Don't perform this transformation if it would break this 2008 // requirement. 2009 bool AllInvariant = true; 2010 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2011 if (!isLoopInvariant(Operands[i], L)) { 2012 AllInvariant = false; 2013 break; 2014 } 2015 if (AllInvariant) { 2016 NestedOperands[0] = getAddRecExpr(Operands, L); 2017 AllInvariant = true; 2018 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2019 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2020 AllInvariant = false; 2021 break; 2022 } 2023 if (AllInvariant) 2024 // Ok, both add recurrences are valid after the transformation. 2025 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2026 } 2027 // Reset Operands to its original state. 2028 Operands[0] = NestedAR; 2029 } 2030 } 2031 2032 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2033 // already have one, otherwise create a new one. 2034 FoldingSetNodeID ID; 2035 ID.AddInteger(scAddRecExpr); 2036 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2037 ID.AddPointer(Operands[i]); 2038 ID.AddPointer(L); 2039 void *IP = 0; 2040 SCEVAddRecExpr *S = 2041 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2042 if (!S) { 2043 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2044 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2045 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2046 O, Operands.size(), L); 2047 UniqueSCEVs.InsertNode(S, IP); 2048 } 2049 if (HasNUW) S->setHasNoUnsignedWrap(true); 2050 if (HasNSW) S->setHasNoSignedWrap(true); 2051 return S; 2052 } 2053 2054 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2055 const SCEV *RHS) { 2056 SmallVector<const SCEV *, 2> Ops; 2057 Ops.push_back(LHS); 2058 Ops.push_back(RHS); 2059 return getSMaxExpr(Ops); 2060 } 2061 2062 const SCEV * 2063 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2064 assert(!Ops.empty() && "Cannot get empty smax!"); 2065 if (Ops.size() == 1) return Ops[0]; 2066 #ifndef NDEBUG 2067 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2068 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2069 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2070 "SCEVSMaxExpr operand types don't match!"); 2071 #endif 2072 2073 // Sort by complexity, this groups all similar expression types together. 2074 GroupByComplexity(Ops, LI); 2075 2076 // If there are any constants, fold them together. 2077 unsigned Idx = 0; 2078 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2079 ++Idx; 2080 assert(Idx < Ops.size()); 2081 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2082 // We found two constants, fold them together! 2083 ConstantInt *Fold = ConstantInt::get(getContext(), 2084 APIntOps::smax(LHSC->getValue()->getValue(), 2085 RHSC->getValue()->getValue())); 2086 Ops[0] = getConstant(Fold); 2087 Ops.erase(Ops.begin()+1); // Erase the folded element 2088 if (Ops.size() == 1) return Ops[0]; 2089 LHSC = cast<SCEVConstant>(Ops[0]); 2090 } 2091 2092 // If we are left with a constant minimum-int, strip it off. 2093 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2094 Ops.erase(Ops.begin()); 2095 --Idx; 2096 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2097 // If we have an smax with a constant maximum-int, it will always be 2098 // maximum-int. 2099 return Ops[0]; 2100 } 2101 2102 if (Ops.size() == 1) return Ops[0]; 2103 } 2104 2105 // Find the first SMax 2106 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2107 ++Idx; 2108 2109 // Check to see if one of the operands is an SMax. If so, expand its operands 2110 // onto our operand list, and recurse to simplify. 2111 if (Idx < Ops.size()) { 2112 bool DeletedSMax = false; 2113 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2114 Ops.erase(Ops.begin()+Idx); 2115 Ops.append(SMax->op_begin(), SMax->op_end()); 2116 DeletedSMax = true; 2117 } 2118 2119 if (DeletedSMax) 2120 return getSMaxExpr(Ops); 2121 } 2122 2123 // Okay, check to see if the same value occurs in the operand list twice. If 2124 // so, delete one. Since we sorted the list, these values are required to 2125 // be adjacent. 2126 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2127 // X smax Y smax Y --> X smax Y 2128 // X smax Y --> X, if X is always greater than Y 2129 if (Ops[i] == Ops[i+1] || 2130 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2131 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2132 --i; --e; 2133 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2134 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2135 --i; --e; 2136 } 2137 2138 if (Ops.size() == 1) return Ops[0]; 2139 2140 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2141 2142 // Okay, it looks like we really DO need an smax expr. Check to see if we 2143 // already have one, otherwise create a new one. 2144 FoldingSetNodeID ID; 2145 ID.AddInteger(scSMaxExpr); 2146 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2147 ID.AddPointer(Ops[i]); 2148 void *IP = 0; 2149 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2150 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2151 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2152 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2153 O, Ops.size()); 2154 UniqueSCEVs.InsertNode(S, IP); 2155 return S; 2156 } 2157 2158 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2159 const SCEV *RHS) { 2160 SmallVector<const SCEV *, 2> Ops; 2161 Ops.push_back(LHS); 2162 Ops.push_back(RHS); 2163 return getUMaxExpr(Ops); 2164 } 2165 2166 const SCEV * 2167 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2168 assert(!Ops.empty() && "Cannot get empty umax!"); 2169 if (Ops.size() == 1) return Ops[0]; 2170 #ifndef NDEBUG 2171 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2172 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2173 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2174 "SCEVUMaxExpr operand types don't match!"); 2175 #endif 2176 2177 // Sort by complexity, this groups all similar expression types together. 2178 GroupByComplexity(Ops, LI); 2179 2180 // If there are any constants, fold them together. 2181 unsigned Idx = 0; 2182 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2183 ++Idx; 2184 assert(Idx < Ops.size()); 2185 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2186 // We found two constants, fold them together! 2187 ConstantInt *Fold = ConstantInt::get(getContext(), 2188 APIntOps::umax(LHSC->getValue()->getValue(), 2189 RHSC->getValue()->getValue())); 2190 Ops[0] = getConstant(Fold); 2191 Ops.erase(Ops.begin()+1); // Erase the folded element 2192 if (Ops.size() == 1) return Ops[0]; 2193 LHSC = cast<SCEVConstant>(Ops[0]); 2194 } 2195 2196 // If we are left with a constant minimum-int, strip it off. 2197 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2198 Ops.erase(Ops.begin()); 2199 --Idx; 2200 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2201 // If we have an umax with a constant maximum-int, it will always be 2202 // maximum-int. 2203 return Ops[0]; 2204 } 2205 2206 if (Ops.size() == 1) return Ops[0]; 2207 } 2208 2209 // Find the first UMax 2210 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2211 ++Idx; 2212 2213 // Check to see if one of the operands is a UMax. If so, expand its operands 2214 // onto our operand list, and recurse to simplify. 2215 if (Idx < Ops.size()) { 2216 bool DeletedUMax = false; 2217 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2218 Ops.erase(Ops.begin()+Idx); 2219 Ops.append(UMax->op_begin(), UMax->op_end()); 2220 DeletedUMax = true; 2221 } 2222 2223 if (DeletedUMax) 2224 return getUMaxExpr(Ops); 2225 } 2226 2227 // Okay, check to see if the same value occurs in the operand list twice. If 2228 // so, delete one. Since we sorted the list, these values are required to 2229 // be adjacent. 2230 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2231 // X umax Y umax Y --> X umax Y 2232 // X umax Y --> X, if X is always greater than Y 2233 if (Ops[i] == Ops[i+1] || 2234 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2235 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2236 --i; --e; 2237 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2238 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2239 --i; --e; 2240 } 2241 2242 if (Ops.size() == 1) return Ops[0]; 2243 2244 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2245 2246 // Okay, it looks like we really DO need a umax expr. Check to see if we 2247 // already have one, otherwise create a new one. 2248 FoldingSetNodeID ID; 2249 ID.AddInteger(scUMaxExpr); 2250 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2251 ID.AddPointer(Ops[i]); 2252 void *IP = 0; 2253 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2254 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2255 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2256 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2257 O, Ops.size()); 2258 UniqueSCEVs.InsertNode(S, IP); 2259 return S; 2260 } 2261 2262 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2263 const SCEV *RHS) { 2264 // ~smax(~x, ~y) == smin(x, y). 2265 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2266 } 2267 2268 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2269 const SCEV *RHS) { 2270 // ~umax(~x, ~y) == umin(x, y) 2271 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2272 } 2273 2274 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2275 // If we have TargetData, we can bypass creating a target-independent 2276 // constant expression and then folding it back into a ConstantInt. 2277 // This is just a compile-time optimization. 2278 if (TD) 2279 return getConstant(TD->getIntPtrType(getContext()), 2280 TD->getTypeAllocSize(AllocTy)); 2281 2282 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2283 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2284 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2285 C = Folded; 2286 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2287 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2288 } 2289 2290 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2291 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2292 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2293 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2294 C = Folded; 2295 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2296 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2297 } 2298 2299 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2300 unsigned FieldNo) { 2301 // If we have TargetData, we can bypass creating a target-independent 2302 // constant expression and then folding it back into a ConstantInt. 2303 // This is just a compile-time optimization. 2304 if (TD) 2305 return getConstant(TD->getIntPtrType(getContext()), 2306 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2307 2308 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2309 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2310 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2311 C = Folded; 2312 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2313 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2314 } 2315 2316 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2317 Constant *FieldNo) { 2318 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2320 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2321 C = Folded; 2322 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2323 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2324 } 2325 2326 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2327 // Don't attempt to do anything other than create a SCEVUnknown object 2328 // here. createSCEV only calls getUnknown after checking for all other 2329 // interesting possibilities, and any other code that calls getUnknown 2330 // is doing so in order to hide a value from SCEV canonicalization. 2331 2332 FoldingSetNodeID ID; 2333 ID.AddInteger(scUnknown); 2334 ID.AddPointer(V); 2335 void *IP = 0; 2336 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2337 assert(cast<SCEVUnknown>(S)->getValue() == V && 2338 "Stale SCEVUnknown in uniquing map!"); 2339 return S; 2340 } 2341 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2342 FirstUnknown); 2343 FirstUnknown = cast<SCEVUnknown>(S); 2344 UniqueSCEVs.InsertNode(S, IP); 2345 return S; 2346 } 2347 2348 //===----------------------------------------------------------------------===// 2349 // Basic SCEV Analysis and PHI Idiom Recognition Code 2350 // 2351 2352 /// isSCEVable - Test if values of the given type are analyzable within 2353 /// the SCEV framework. This primarily includes integer types, and it 2354 /// can optionally include pointer types if the ScalarEvolution class 2355 /// has access to target-specific information. 2356 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2357 // Integers and pointers are always SCEVable. 2358 return Ty->isIntegerTy() || Ty->isPointerTy(); 2359 } 2360 2361 /// getTypeSizeInBits - Return the size in bits of the specified type, 2362 /// for which isSCEVable must return true. 2363 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2364 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2365 2366 // If we have a TargetData, use it! 2367 if (TD) 2368 return TD->getTypeSizeInBits(Ty); 2369 2370 // Integer types have fixed sizes. 2371 if (Ty->isIntegerTy()) 2372 return Ty->getPrimitiveSizeInBits(); 2373 2374 // The only other support type is pointer. Without TargetData, conservatively 2375 // assume pointers are 64-bit. 2376 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2377 return 64; 2378 } 2379 2380 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2381 /// the given type and which represents how SCEV will treat the given 2382 /// type, for which isSCEVable must return true. For pointer types, 2383 /// this is the pointer-sized integer type. 2384 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2385 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2386 2387 if (Ty->isIntegerTy()) 2388 return Ty; 2389 2390 // The only other support type is pointer. 2391 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2392 if (TD) return TD->getIntPtrType(getContext()); 2393 2394 // Without TargetData, conservatively assume pointers are 64-bit. 2395 return Type::getInt64Ty(getContext()); 2396 } 2397 2398 const SCEV *ScalarEvolution::getCouldNotCompute() { 2399 return &CouldNotCompute; 2400 } 2401 2402 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2403 /// expression and create a new one. 2404 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2405 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2406 2407 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2408 if (I != ValueExprMap.end()) return I->second; 2409 const SCEV *S = createSCEV(V); 2410 2411 // The process of creating a SCEV for V may have caused other SCEVs 2412 // to have been created, so it's necessary to insert the new entry 2413 // from scratch, rather than trying to remember the insert position 2414 // above. 2415 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2416 return S; 2417 } 2418 2419 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2420 /// 2421 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2422 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2423 return getConstant( 2424 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2425 2426 const Type *Ty = V->getType(); 2427 Ty = getEffectiveSCEVType(Ty); 2428 return getMulExpr(V, 2429 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2430 } 2431 2432 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2433 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2434 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2435 return getConstant( 2436 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2437 2438 const Type *Ty = V->getType(); 2439 Ty = getEffectiveSCEVType(Ty); 2440 const SCEV *AllOnes = 2441 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2442 return getMinusSCEV(AllOnes, V); 2443 } 2444 2445 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2446 /// 2447 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2448 const SCEV *RHS) { 2449 // Fast path: X - X --> 0. 2450 if (LHS == RHS) 2451 return getConstant(LHS->getType(), 0); 2452 2453 // X - Y --> X + -Y 2454 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2455 } 2456 2457 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2458 /// input value to the specified type. If the type must be extended, it is zero 2459 /// extended. 2460 const SCEV * 2461 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2462 const Type *Ty) { 2463 const Type *SrcTy = V->getType(); 2464 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2465 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2466 "Cannot truncate or zero extend with non-integer arguments!"); 2467 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2468 return V; // No conversion 2469 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2470 return getTruncateExpr(V, Ty); 2471 return getZeroExtendExpr(V, Ty); 2472 } 2473 2474 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2475 /// input value to the specified type. If the type must be extended, it is sign 2476 /// extended. 2477 const SCEV * 2478 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2479 const Type *Ty) { 2480 const Type *SrcTy = V->getType(); 2481 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2482 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2483 "Cannot truncate or zero extend with non-integer arguments!"); 2484 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2485 return V; // No conversion 2486 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2487 return getTruncateExpr(V, Ty); 2488 return getSignExtendExpr(V, Ty); 2489 } 2490 2491 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2492 /// input value to the specified type. If the type must be extended, it is zero 2493 /// extended. The conversion must not be narrowing. 2494 const SCEV * 2495 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2496 const Type *SrcTy = V->getType(); 2497 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2498 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2499 "Cannot noop or zero extend with non-integer arguments!"); 2500 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2501 "getNoopOrZeroExtend cannot truncate!"); 2502 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2503 return V; // No conversion 2504 return getZeroExtendExpr(V, Ty); 2505 } 2506 2507 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2508 /// input value to the specified type. If the type must be extended, it is sign 2509 /// extended. The conversion must not be narrowing. 2510 const SCEV * 2511 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2512 const Type *SrcTy = V->getType(); 2513 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2514 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2515 "Cannot noop or sign extend with non-integer arguments!"); 2516 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2517 "getNoopOrSignExtend cannot truncate!"); 2518 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2519 return V; // No conversion 2520 return getSignExtendExpr(V, Ty); 2521 } 2522 2523 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2524 /// the input value to the specified type. If the type must be extended, 2525 /// it is extended with unspecified bits. The conversion must not be 2526 /// narrowing. 2527 const SCEV * 2528 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2529 const Type *SrcTy = V->getType(); 2530 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2531 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2532 "Cannot noop or any extend with non-integer arguments!"); 2533 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2534 "getNoopOrAnyExtend cannot truncate!"); 2535 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2536 return V; // No conversion 2537 return getAnyExtendExpr(V, Ty); 2538 } 2539 2540 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2541 /// input value to the specified type. The conversion must not be widening. 2542 const SCEV * 2543 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2544 const Type *SrcTy = V->getType(); 2545 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2546 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2547 "Cannot truncate or noop with non-integer arguments!"); 2548 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2549 "getTruncateOrNoop cannot extend!"); 2550 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2551 return V; // No conversion 2552 return getTruncateExpr(V, Ty); 2553 } 2554 2555 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2556 /// the types using zero-extension, and then perform a umax operation 2557 /// with them. 2558 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2559 const SCEV *RHS) { 2560 const SCEV *PromotedLHS = LHS; 2561 const SCEV *PromotedRHS = RHS; 2562 2563 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2564 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2565 else 2566 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2567 2568 return getUMaxExpr(PromotedLHS, PromotedRHS); 2569 } 2570 2571 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2572 /// the types using zero-extension, and then perform a umin operation 2573 /// with them. 2574 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2575 const SCEV *RHS) { 2576 const SCEV *PromotedLHS = LHS; 2577 const SCEV *PromotedRHS = RHS; 2578 2579 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2580 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2581 else 2582 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2583 2584 return getUMinExpr(PromotedLHS, PromotedRHS); 2585 } 2586 2587 /// PushDefUseChildren - Push users of the given Instruction 2588 /// onto the given Worklist. 2589 static void 2590 PushDefUseChildren(Instruction *I, 2591 SmallVectorImpl<Instruction *> &Worklist) { 2592 // Push the def-use children onto the Worklist stack. 2593 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2594 UI != UE; ++UI) 2595 Worklist.push_back(cast<Instruction>(*UI)); 2596 } 2597 2598 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2599 /// instructions that depend on the given instruction and removes them from 2600 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2601 /// resolution. 2602 void 2603 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2604 SmallVector<Instruction *, 16> Worklist; 2605 PushDefUseChildren(PN, Worklist); 2606 2607 SmallPtrSet<Instruction *, 8> Visited; 2608 Visited.insert(PN); 2609 while (!Worklist.empty()) { 2610 Instruction *I = Worklist.pop_back_val(); 2611 if (!Visited.insert(I)) continue; 2612 2613 ValueExprMapType::iterator It = 2614 ValueExprMap.find(static_cast<Value *>(I)); 2615 if (It != ValueExprMap.end()) { 2616 const SCEV *Old = It->second; 2617 2618 // Short-circuit the def-use traversal if the symbolic name 2619 // ceases to appear in expressions. 2620 if (Old != SymName && !hasOperand(Old, SymName)) 2621 continue; 2622 2623 // SCEVUnknown for a PHI either means that it has an unrecognized 2624 // structure, it's a PHI that's in the progress of being computed 2625 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2626 // additional loop trip count information isn't going to change anything. 2627 // In the second case, createNodeForPHI will perform the necessary 2628 // updates on its own when it gets to that point. In the third, we do 2629 // want to forget the SCEVUnknown. 2630 if (!isa<PHINode>(I) || 2631 !isa<SCEVUnknown>(Old) || 2632 (I != PN && Old == SymName)) { 2633 forgetMemoizedResults(Old); 2634 ValueExprMap.erase(It); 2635 } 2636 } 2637 2638 PushDefUseChildren(I, Worklist); 2639 } 2640 } 2641 2642 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2643 /// a loop header, making it a potential recurrence, or it doesn't. 2644 /// 2645 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2646 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2647 if (L->getHeader() == PN->getParent()) { 2648 // The loop may have multiple entrances or multiple exits; we can analyze 2649 // this phi as an addrec if it has a unique entry value and a unique 2650 // backedge value. 2651 Value *BEValueV = 0, *StartValueV = 0; 2652 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2653 Value *V = PN->getIncomingValue(i); 2654 if (L->contains(PN->getIncomingBlock(i))) { 2655 if (!BEValueV) { 2656 BEValueV = V; 2657 } else if (BEValueV != V) { 2658 BEValueV = 0; 2659 break; 2660 } 2661 } else if (!StartValueV) { 2662 StartValueV = V; 2663 } else if (StartValueV != V) { 2664 StartValueV = 0; 2665 break; 2666 } 2667 } 2668 if (BEValueV && StartValueV) { 2669 // While we are analyzing this PHI node, handle its value symbolically. 2670 const SCEV *SymbolicName = getUnknown(PN); 2671 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 2672 "PHI node already processed?"); 2673 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2674 2675 // Using this symbolic name for the PHI, analyze the value coming around 2676 // the back-edge. 2677 const SCEV *BEValue = getSCEV(BEValueV); 2678 2679 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2680 // has a special value for the first iteration of the loop. 2681 2682 // If the value coming around the backedge is an add with the symbolic 2683 // value we just inserted, then we found a simple induction variable! 2684 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2685 // If there is a single occurrence of the symbolic value, replace it 2686 // with a recurrence. 2687 unsigned FoundIndex = Add->getNumOperands(); 2688 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2689 if (Add->getOperand(i) == SymbolicName) 2690 if (FoundIndex == e) { 2691 FoundIndex = i; 2692 break; 2693 } 2694 2695 if (FoundIndex != Add->getNumOperands()) { 2696 // Create an add with everything but the specified operand. 2697 SmallVector<const SCEV *, 8> Ops; 2698 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2699 if (i != FoundIndex) 2700 Ops.push_back(Add->getOperand(i)); 2701 const SCEV *Accum = getAddExpr(Ops); 2702 2703 // This is not a valid addrec if the step amount is varying each 2704 // loop iteration, but is not itself an addrec in this loop. 2705 if (isLoopInvariant(Accum, L) || 2706 (isa<SCEVAddRecExpr>(Accum) && 2707 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2708 bool HasNUW = false; 2709 bool HasNSW = false; 2710 2711 // If the increment doesn't overflow, then neither the addrec nor 2712 // the post-increment will overflow. 2713 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2714 if (OBO->hasNoUnsignedWrap()) 2715 HasNUW = true; 2716 if (OBO->hasNoSignedWrap()) 2717 HasNSW = true; 2718 } 2719 2720 const SCEV *StartVal = getSCEV(StartValueV); 2721 const SCEV *PHISCEV = 2722 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2723 2724 // Since the no-wrap flags are on the increment, they apply to the 2725 // post-incremented value as well. 2726 if (isLoopInvariant(Accum, L)) 2727 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2728 Accum, L, HasNUW, HasNSW); 2729 2730 // Okay, for the entire analysis of this edge we assumed the PHI 2731 // to be symbolic. We now need to go back and purge all of the 2732 // entries for the scalars that use the symbolic expression. 2733 ForgetSymbolicName(PN, SymbolicName); 2734 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2735 return PHISCEV; 2736 } 2737 } 2738 } else if (const SCEVAddRecExpr *AddRec = 2739 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2740 // Otherwise, this could be a loop like this: 2741 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2742 // In this case, j = {1,+,1} and BEValue is j. 2743 // Because the other in-value of i (0) fits the evolution of BEValue 2744 // i really is an addrec evolution. 2745 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2746 const SCEV *StartVal = getSCEV(StartValueV); 2747 2748 // If StartVal = j.start - j.stride, we can use StartVal as the 2749 // initial step of the addrec evolution. 2750 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2751 AddRec->getOperand(1))) { 2752 const SCEV *PHISCEV = 2753 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2754 2755 // Okay, for the entire analysis of this edge we assumed the PHI 2756 // to be symbolic. We now need to go back and purge all of the 2757 // entries for the scalars that use the symbolic expression. 2758 ForgetSymbolicName(PN, SymbolicName); 2759 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2760 return PHISCEV; 2761 } 2762 } 2763 } 2764 } 2765 } 2766 2767 // If the PHI has a single incoming value, follow that value, unless the 2768 // PHI's incoming blocks are in a different loop, in which case doing so 2769 // risks breaking LCSSA form. Instcombine would normally zap these, but 2770 // it doesn't have DominatorTree information, so it may miss cases. 2771 if (Value *V = SimplifyInstruction(PN, TD, DT)) 2772 if (LI->replacementPreservesLCSSAForm(PN, V)) 2773 return getSCEV(V); 2774 2775 // If it's not a loop phi, we can't handle it yet. 2776 return getUnknown(PN); 2777 } 2778 2779 /// createNodeForGEP - Expand GEP instructions into add and multiply 2780 /// operations. This allows them to be analyzed by regular SCEV code. 2781 /// 2782 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2783 2784 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2785 // Add expression, because the Instruction may be guarded by control flow 2786 // and the no-overflow bits may not be valid for the expression in any 2787 // context. 2788 2789 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2790 Value *Base = GEP->getOperand(0); 2791 // Don't attempt to analyze GEPs over unsized objects. 2792 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2793 return getUnknown(GEP); 2794 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2795 gep_type_iterator GTI = gep_type_begin(GEP); 2796 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 2797 E = GEP->op_end(); 2798 I != E; ++I) { 2799 Value *Index = *I; 2800 // Compute the (potentially symbolic) offset in bytes for this index. 2801 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2802 // For a struct, add the member offset. 2803 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2804 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2805 2806 // Add the field offset to the running total offset. 2807 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2808 } else { 2809 // For an array, add the element offset, explicitly scaled. 2810 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2811 const SCEV *IndexS = getSCEV(Index); 2812 // Getelementptr indices are signed. 2813 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2814 2815 // Multiply the index by the element size to compute the element offset. 2816 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2817 2818 // Add the element offset to the running total offset. 2819 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2820 } 2821 } 2822 2823 // Get the SCEV for the GEP base. 2824 const SCEV *BaseS = getSCEV(Base); 2825 2826 // Add the total offset from all the GEP indices to the base. 2827 return getAddExpr(BaseS, TotalOffset); 2828 } 2829 2830 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2831 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2832 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2833 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2834 uint32_t 2835 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2836 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2837 return C->getValue()->getValue().countTrailingZeros(); 2838 2839 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2840 return std::min(GetMinTrailingZeros(T->getOperand()), 2841 (uint32_t)getTypeSizeInBits(T->getType())); 2842 2843 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2844 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2845 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2846 getTypeSizeInBits(E->getType()) : OpRes; 2847 } 2848 2849 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2850 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2851 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2852 getTypeSizeInBits(E->getType()) : OpRes; 2853 } 2854 2855 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2856 // The result is the min of all operands results. 2857 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2858 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2859 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2860 return MinOpRes; 2861 } 2862 2863 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2864 // The result is the sum of all operands results. 2865 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2866 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2867 for (unsigned i = 1, e = M->getNumOperands(); 2868 SumOpRes != BitWidth && i != e; ++i) 2869 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2870 BitWidth); 2871 return SumOpRes; 2872 } 2873 2874 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2875 // The result is the min of all operands results. 2876 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2877 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2878 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2879 return MinOpRes; 2880 } 2881 2882 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2883 // The result is the min of all operands results. 2884 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2885 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2886 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2887 return MinOpRes; 2888 } 2889 2890 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2891 // The result is the min of all operands results. 2892 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2893 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2894 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2895 return MinOpRes; 2896 } 2897 2898 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2899 // For a SCEVUnknown, ask ValueTracking. 2900 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2901 APInt Mask = APInt::getAllOnesValue(BitWidth); 2902 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2903 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2904 return Zeros.countTrailingOnes(); 2905 } 2906 2907 // SCEVUDivExpr 2908 return 0; 2909 } 2910 2911 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2912 /// 2913 ConstantRange 2914 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2915 // See if we've computed this range already. 2916 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 2917 if (I != UnsignedRanges.end()) 2918 return I->second; 2919 2920 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2921 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 2922 2923 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2924 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2925 2926 // If the value has known zeros, the maximum unsigned value will have those 2927 // known zeros as well. 2928 uint32_t TZ = GetMinTrailingZeros(S); 2929 if (TZ != 0) 2930 ConservativeResult = 2931 ConstantRange(APInt::getMinValue(BitWidth), 2932 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2933 2934 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2935 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2936 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2937 X = X.add(getUnsignedRange(Add->getOperand(i))); 2938 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 2939 } 2940 2941 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2942 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2943 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2944 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2945 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 2946 } 2947 2948 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2949 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2950 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2951 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2952 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 2953 } 2954 2955 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2956 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2957 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2958 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2959 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 2960 } 2961 2962 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2963 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2964 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2965 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 2966 } 2967 2968 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2969 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2970 return setUnsignedRange(ZExt, 2971 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 2972 } 2973 2974 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2975 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2976 return setUnsignedRange(SExt, 2977 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 2978 } 2979 2980 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2981 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2982 return setUnsignedRange(Trunc, 2983 ConservativeResult.intersectWith(X.truncate(BitWidth))); 2984 } 2985 2986 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2987 // If there's no unsigned wrap, the value will never be less than its 2988 // initial value. 2989 if (AddRec->hasNoUnsignedWrap()) 2990 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 2991 if (!C->getValue()->isZero()) 2992 ConservativeResult = 2993 ConservativeResult.intersectWith( 2994 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 2995 2996 // TODO: non-affine addrec 2997 if (AddRec->isAffine()) { 2998 const Type *Ty = AddRec->getType(); 2999 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3000 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3001 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3002 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3003 3004 const SCEV *Start = AddRec->getStart(); 3005 const SCEV *Step = AddRec->getStepRecurrence(*this); 3006 3007 ConstantRange StartRange = getUnsignedRange(Start); 3008 ConstantRange StepRange = getSignedRange(Step); 3009 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3010 ConstantRange EndRange = 3011 StartRange.add(MaxBECountRange.multiply(StepRange)); 3012 3013 // Check for overflow. This must be done with ConstantRange arithmetic 3014 // because we could be called from within the ScalarEvolution overflow 3015 // checking code. 3016 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3017 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3018 ConstantRange ExtMaxBECountRange = 3019 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3020 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3021 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3022 ExtEndRange) 3023 return setUnsignedRange(AddRec, ConservativeResult); 3024 3025 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3026 EndRange.getUnsignedMin()); 3027 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3028 EndRange.getUnsignedMax()); 3029 if (Min.isMinValue() && Max.isMaxValue()) 3030 return setUnsignedRange(AddRec, ConservativeResult); 3031 return setUnsignedRange(AddRec, 3032 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3033 } 3034 } 3035 3036 return setUnsignedRange(AddRec, ConservativeResult); 3037 } 3038 3039 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3040 // For a SCEVUnknown, ask ValueTracking. 3041 APInt Mask = APInt::getAllOnesValue(BitWidth); 3042 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3043 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3044 if (Ones == ~Zeros + 1) 3045 return setUnsignedRange(U, ConservativeResult); 3046 return setUnsignedRange(U, 3047 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3048 } 3049 3050 return setUnsignedRange(S, ConservativeResult); 3051 } 3052 3053 /// getSignedRange - Determine the signed range for a particular SCEV. 3054 /// 3055 ConstantRange 3056 ScalarEvolution::getSignedRange(const SCEV *S) { 3057 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3058 if (I != SignedRanges.end()) 3059 return I->second; 3060 3061 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3062 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3063 3064 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3065 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3066 3067 // If the value has known zeros, the maximum signed value will have those 3068 // known zeros as well. 3069 uint32_t TZ = GetMinTrailingZeros(S); 3070 if (TZ != 0) 3071 ConservativeResult = 3072 ConstantRange(APInt::getSignedMinValue(BitWidth), 3073 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3074 3075 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3076 ConstantRange X = getSignedRange(Add->getOperand(0)); 3077 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3078 X = X.add(getSignedRange(Add->getOperand(i))); 3079 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3080 } 3081 3082 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3083 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3084 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3085 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3086 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3087 } 3088 3089 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3090 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3091 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3092 X = X.smax(getSignedRange(SMax->getOperand(i))); 3093 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3094 } 3095 3096 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3097 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3098 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3099 X = X.umax(getSignedRange(UMax->getOperand(i))); 3100 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3101 } 3102 3103 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3104 ConstantRange X = getSignedRange(UDiv->getLHS()); 3105 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3106 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3107 } 3108 3109 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3110 ConstantRange X = getSignedRange(ZExt->getOperand()); 3111 return setSignedRange(ZExt, 3112 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3113 } 3114 3115 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3116 ConstantRange X = getSignedRange(SExt->getOperand()); 3117 return setSignedRange(SExt, 3118 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3119 } 3120 3121 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3122 ConstantRange X = getSignedRange(Trunc->getOperand()); 3123 return setSignedRange(Trunc, 3124 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3125 } 3126 3127 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3128 // If there's no signed wrap, and all the operands have the same sign or 3129 // zero, the value won't ever change sign. 3130 if (AddRec->hasNoSignedWrap()) { 3131 bool AllNonNeg = true; 3132 bool AllNonPos = true; 3133 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3134 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3135 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3136 } 3137 if (AllNonNeg) 3138 ConservativeResult = ConservativeResult.intersectWith( 3139 ConstantRange(APInt(BitWidth, 0), 3140 APInt::getSignedMinValue(BitWidth))); 3141 else if (AllNonPos) 3142 ConservativeResult = ConservativeResult.intersectWith( 3143 ConstantRange(APInt::getSignedMinValue(BitWidth), 3144 APInt(BitWidth, 1))); 3145 } 3146 3147 // TODO: non-affine addrec 3148 if (AddRec->isAffine()) { 3149 const Type *Ty = AddRec->getType(); 3150 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3151 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3152 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3153 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3154 3155 const SCEV *Start = AddRec->getStart(); 3156 const SCEV *Step = AddRec->getStepRecurrence(*this); 3157 3158 ConstantRange StartRange = getSignedRange(Start); 3159 ConstantRange StepRange = getSignedRange(Step); 3160 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3161 ConstantRange EndRange = 3162 StartRange.add(MaxBECountRange.multiply(StepRange)); 3163 3164 // Check for overflow. This must be done with ConstantRange arithmetic 3165 // because we could be called from within the ScalarEvolution overflow 3166 // checking code. 3167 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3168 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3169 ConstantRange ExtMaxBECountRange = 3170 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3171 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3172 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3173 ExtEndRange) 3174 return setSignedRange(AddRec, ConservativeResult); 3175 3176 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3177 EndRange.getSignedMin()); 3178 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3179 EndRange.getSignedMax()); 3180 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3181 return setSignedRange(AddRec, ConservativeResult); 3182 return setSignedRange(AddRec, 3183 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3184 } 3185 } 3186 3187 return setSignedRange(AddRec, ConservativeResult); 3188 } 3189 3190 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3191 // For a SCEVUnknown, ask ValueTracking. 3192 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3193 return setSignedRange(U, ConservativeResult); 3194 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3195 if (NS == 1) 3196 return setSignedRange(U, ConservativeResult); 3197 return setSignedRange(U, ConservativeResult.intersectWith( 3198 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3199 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3200 } 3201 3202 return setSignedRange(S, ConservativeResult); 3203 } 3204 3205 /// createSCEV - We know that there is no SCEV for the specified value. 3206 /// Analyze the expression. 3207 /// 3208 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3209 if (!isSCEVable(V->getType())) 3210 return getUnknown(V); 3211 3212 unsigned Opcode = Instruction::UserOp1; 3213 if (Instruction *I = dyn_cast<Instruction>(V)) { 3214 Opcode = I->getOpcode(); 3215 3216 // Don't attempt to analyze instructions in blocks that aren't 3217 // reachable. Such instructions don't matter, and they aren't required 3218 // to obey basic rules for definitions dominating uses which this 3219 // analysis depends on. 3220 if (!DT->isReachableFromEntry(I->getParent())) 3221 return getUnknown(V); 3222 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3223 Opcode = CE->getOpcode(); 3224 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3225 return getConstant(CI); 3226 else if (isa<ConstantPointerNull>(V)) 3227 return getConstant(V->getType(), 0); 3228 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3229 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3230 else 3231 return getUnknown(V); 3232 3233 Operator *U = cast<Operator>(V); 3234 switch (Opcode) { 3235 case Instruction::Add: { 3236 // The simple thing to do would be to just call getSCEV on both operands 3237 // and call getAddExpr with the result. However if we're looking at a 3238 // bunch of things all added together, this can be quite inefficient, 3239 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3240 // Instead, gather up all the operands and make a single getAddExpr call. 3241 // LLVM IR canonical form means we need only traverse the left operands. 3242 SmallVector<const SCEV *, 4> AddOps; 3243 AddOps.push_back(getSCEV(U->getOperand(1))); 3244 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3245 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3246 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3247 break; 3248 U = cast<Operator>(Op); 3249 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3250 if (Opcode == Instruction::Sub) 3251 AddOps.push_back(getNegativeSCEV(Op1)); 3252 else 3253 AddOps.push_back(Op1); 3254 } 3255 AddOps.push_back(getSCEV(U->getOperand(0))); 3256 return getAddExpr(AddOps); 3257 } 3258 case Instruction::Mul: { 3259 // See the Add code above. 3260 SmallVector<const SCEV *, 4> MulOps; 3261 MulOps.push_back(getSCEV(U->getOperand(1))); 3262 for (Value *Op = U->getOperand(0); 3263 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3264 Op = U->getOperand(0)) { 3265 U = cast<Operator>(Op); 3266 MulOps.push_back(getSCEV(U->getOperand(1))); 3267 } 3268 MulOps.push_back(getSCEV(U->getOperand(0))); 3269 return getMulExpr(MulOps); 3270 } 3271 case Instruction::UDiv: 3272 return getUDivExpr(getSCEV(U->getOperand(0)), 3273 getSCEV(U->getOperand(1))); 3274 case Instruction::Sub: 3275 return getMinusSCEV(getSCEV(U->getOperand(0)), 3276 getSCEV(U->getOperand(1))); 3277 case Instruction::And: 3278 // For an expression like x&255 that merely masks off the high bits, 3279 // use zext(trunc(x)) as the SCEV expression. 3280 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3281 if (CI->isNullValue()) 3282 return getSCEV(U->getOperand(1)); 3283 if (CI->isAllOnesValue()) 3284 return getSCEV(U->getOperand(0)); 3285 const APInt &A = CI->getValue(); 3286 3287 // Instcombine's ShrinkDemandedConstant may strip bits out of 3288 // constants, obscuring what would otherwise be a low-bits mask. 3289 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3290 // knew about to reconstruct a low-bits mask value. 3291 unsigned LZ = A.countLeadingZeros(); 3292 unsigned BitWidth = A.getBitWidth(); 3293 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3294 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3295 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3296 3297 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3298 3299 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3300 return 3301 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3302 IntegerType::get(getContext(), BitWidth - LZ)), 3303 U->getType()); 3304 } 3305 break; 3306 3307 case Instruction::Or: 3308 // If the RHS of the Or is a constant, we may have something like: 3309 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3310 // optimizations will transparently handle this case. 3311 // 3312 // In order for this transformation to be safe, the LHS must be of the 3313 // form X*(2^n) and the Or constant must be less than 2^n. 3314 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3315 const SCEV *LHS = getSCEV(U->getOperand(0)); 3316 const APInt &CIVal = CI->getValue(); 3317 if (GetMinTrailingZeros(LHS) >= 3318 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3319 // Build a plain add SCEV. 3320 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3321 // If the LHS of the add was an addrec and it has no-wrap flags, 3322 // transfer the no-wrap flags, since an or won't introduce a wrap. 3323 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3324 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3325 if (OldAR->hasNoUnsignedWrap()) 3326 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3327 if (OldAR->hasNoSignedWrap()) 3328 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3329 } 3330 return S; 3331 } 3332 } 3333 break; 3334 case Instruction::Xor: 3335 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3336 // If the RHS of the xor is a signbit, then this is just an add. 3337 // Instcombine turns add of signbit into xor as a strength reduction step. 3338 if (CI->getValue().isSignBit()) 3339 return getAddExpr(getSCEV(U->getOperand(0)), 3340 getSCEV(U->getOperand(1))); 3341 3342 // If the RHS of xor is -1, then this is a not operation. 3343 if (CI->isAllOnesValue()) 3344 return getNotSCEV(getSCEV(U->getOperand(0))); 3345 3346 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3347 // This is a variant of the check for xor with -1, and it handles 3348 // the case where instcombine has trimmed non-demanded bits out 3349 // of an xor with -1. 3350 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3351 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3352 if (BO->getOpcode() == Instruction::And && 3353 LCI->getValue() == CI->getValue()) 3354 if (const SCEVZeroExtendExpr *Z = 3355 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3356 const Type *UTy = U->getType(); 3357 const SCEV *Z0 = Z->getOperand(); 3358 const Type *Z0Ty = Z0->getType(); 3359 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3360 3361 // If C is a low-bits mask, the zero extend is serving to 3362 // mask off the high bits. Complement the operand and 3363 // re-apply the zext. 3364 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3365 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3366 3367 // If C is a single bit, it may be in the sign-bit position 3368 // before the zero-extend. In this case, represent the xor 3369 // using an add, which is equivalent, and re-apply the zext. 3370 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3371 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3372 Trunc.isSignBit()) 3373 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3374 UTy); 3375 } 3376 } 3377 break; 3378 3379 case Instruction::Shl: 3380 // Turn shift left of a constant amount into a multiply. 3381 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3382 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3383 3384 // If the shift count is not less than the bitwidth, the result of 3385 // the shift is undefined. Don't try to analyze it, because the 3386 // resolution chosen here may differ from the resolution chosen in 3387 // other parts of the compiler. 3388 if (SA->getValue().uge(BitWidth)) 3389 break; 3390 3391 Constant *X = ConstantInt::get(getContext(), 3392 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3393 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3394 } 3395 break; 3396 3397 case Instruction::LShr: 3398 // Turn logical shift right of a constant into a unsigned divide. 3399 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3400 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3401 3402 // If the shift count is not less than the bitwidth, the result of 3403 // the shift is undefined. Don't try to analyze it, because the 3404 // resolution chosen here may differ from the resolution chosen in 3405 // other parts of the compiler. 3406 if (SA->getValue().uge(BitWidth)) 3407 break; 3408 3409 Constant *X = ConstantInt::get(getContext(), 3410 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3411 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3412 } 3413 break; 3414 3415 case Instruction::AShr: 3416 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3417 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3418 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3419 if (L->getOpcode() == Instruction::Shl && 3420 L->getOperand(1) == U->getOperand(1)) { 3421 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3422 3423 // If the shift count is not less than the bitwidth, the result of 3424 // the shift is undefined. Don't try to analyze it, because the 3425 // resolution chosen here may differ from the resolution chosen in 3426 // other parts of the compiler. 3427 if (CI->getValue().uge(BitWidth)) 3428 break; 3429 3430 uint64_t Amt = BitWidth - CI->getZExtValue(); 3431 if (Amt == BitWidth) 3432 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3433 return 3434 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3435 IntegerType::get(getContext(), 3436 Amt)), 3437 U->getType()); 3438 } 3439 break; 3440 3441 case Instruction::Trunc: 3442 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3443 3444 case Instruction::ZExt: 3445 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3446 3447 case Instruction::SExt: 3448 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3449 3450 case Instruction::BitCast: 3451 // BitCasts are no-op casts so we just eliminate the cast. 3452 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3453 return getSCEV(U->getOperand(0)); 3454 break; 3455 3456 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3457 // lead to pointer expressions which cannot safely be expanded to GEPs, 3458 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3459 // simplifying integer expressions. 3460 3461 case Instruction::GetElementPtr: 3462 return createNodeForGEP(cast<GEPOperator>(U)); 3463 3464 case Instruction::PHI: 3465 return createNodeForPHI(cast<PHINode>(U)); 3466 3467 case Instruction::Select: 3468 // This could be a smax or umax that was lowered earlier. 3469 // Try to recover it. 3470 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3471 Value *LHS = ICI->getOperand(0); 3472 Value *RHS = ICI->getOperand(1); 3473 switch (ICI->getPredicate()) { 3474 case ICmpInst::ICMP_SLT: 3475 case ICmpInst::ICMP_SLE: 3476 std::swap(LHS, RHS); 3477 // fall through 3478 case ICmpInst::ICMP_SGT: 3479 case ICmpInst::ICMP_SGE: 3480 // a >s b ? a+x : b+x -> smax(a, b)+x 3481 // a >s b ? b+x : a+x -> smin(a, b)+x 3482 if (LHS->getType() == U->getType()) { 3483 const SCEV *LS = getSCEV(LHS); 3484 const SCEV *RS = getSCEV(RHS); 3485 const SCEV *LA = getSCEV(U->getOperand(1)); 3486 const SCEV *RA = getSCEV(U->getOperand(2)); 3487 const SCEV *LDiff = getMinusSCEV(LA, LS); 3488 const SCEV *RDiff = getMinusSCEV(RA, RS); 3489 if (LDiff == RDiff) 3490 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3491 LDiff = getMinusSCEV(LA, RS); 3492 RDiff = getMinusSCEV(RA, LS); 3493 if (LDiff == RDiff) 3494 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3495 } 3496 break; 3497 case ICmpInst::ICMP_ULT: 3498 case ICmpInst::ICMP_ULE: 3499 std::swap(LHS, RHS); 3500 // fall through 3501 case ICmpInst::ICMP_UGT: 3502 case ICmpInst::ICMP_UGE: 3503 // a >u b ? a+x : b+x -> umax(a, b)+x 3504 // a >u b ? b+x : a+x -> umin(a, b)+x 3505 if (LHS->getType() == U->getType()) { 3506 const SCEV *LS = getSCEV(LHS); 3507 const SCEV *RS = getSCEV(RHS); 3508 const SCEV *LA = getSCEV(U->getOperand(1)); 3509 const SCEV *RA = getSCEV(U->getOperand(2)); 3510 const SCEV *LDiff = getMinusSCEV(LA, LS); 3511 const SCEV *RDiff = getMinusSCEV(RA, RS); 3512 if (LDiff == RDiff) 3513 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3514 LDiff = getMinusSCEV(LA, RS); 3515 RDiff = getMinusSCEV(RA, LS); 3516 if (LDiff == RDiff) 3517 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3518 } 3519 break; 3520 case ICmpInst::ICMP_NE: 3521 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3522 if (LHS->getType() == U->getType() && 3523 isa<ConstantInt>(RHS) && 3524 cast<ConstantInt>(RHS)->isZero()) { 3525 const SCEV *One = getConstant(LHS->getType(), 1); 3526 const SCEV *LS = getSCEV(LHS); 3527 const SCEV *LA = getSCEV(U->getOperand(1)); 3528 const SCEV *RA = getSCEV(U->getOperand(2)); 3529 const SCEV *LDiff = getMinusSCEV(LA, LS); 3530 const SCEV *RDiff = getMinusSCEV(RA, One); 3531 if (LDiff == RDiff) 3532 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3533 } 3534 break; 3535 case ICmpInst::ICMP_EQ: 3536 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3537 if (LHS->getType() == U->getType() && 3538 isa<ConstantInt>(RHS) && 3539 cast<ConstantInt>(RHS)->isZero()) { 3540 const SCEV *One = getConstant(LHS->getType(), 1); 3541 const SCEV *LS = getSCEV(LHS); 3542 const SCEV *LA = getSCEV(U->getOperand(1)); 3543 const SCEV *RA = getSCEV(U->getOperand(2)); 3544 const SCEV *LDiff = getMinusSCEV(LA, One); 3545 const SCEV *RDiff = getMinusSCEV(RA, LS); 3546 if (LDiff == RDiff) 3547 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3548 } 3549 break; 3550 default: 3551 break; 3552 } 3553 } 3554 3555 default: // We cannot analyze this expression. 3556 break; 3557 } 3558 3559 return getUnknown(V); 3560 } 3561 3562 3563 3564 //===----------------------------------------------------------------------===// 3565 // Iteration Count Computation Code 3566 // 3567 3568 /// getBackedgeTakenCount - If the specified loop has a predictable 3569 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3570 /// object. The backedge-taken count is the number of times the loop header 3571 /// will be branched to from within the loop. This is one less than the 3572 /// trip count of the loop, since it doesn't count the first iteration, 3573 /// when the header is branched to from outside the loop. 3574 /// 3575 /// Note that it is not valid to call this method on a loop without a 3576 /// loop-invariant backedge-taken count (see 3577 /// hasLoopInvariantBackedgeTakenCount). 3578 /// 3579 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3580 return getBackedgeTakenInfo(L).Exact; 3581 } 3582 3583 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3584 /// return the least SCEV value that is known never to be less than the 3585 /// actual backedge taken count. 3586 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3587 return getBackedgeTakenInfo(L).Max; 3588 } 3589 3590 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3591 /// onto the given Worklist. 3592 static void 3593 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3594 BasicBlock *Header = L->getHeader(); 3595 3596 // Push all Loop-header PHIs onto the Worklist stack. 3597 for (BasicBlock::iterator I = Header->begin(); 3598 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3599 Worklist.push_back(PN); 3600 } 3601 3602 const ScalarEvolution::BackedgeTakenInfo & 3603 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3604 // Initially insert a CouldNotCompute for this loop. If the insertion 3605 // succeeds, proceed to actually compute a backedge-taken count and 3606 // update the value. The temporary CouldNotCompute value tells SCEV 3607 // code elsewhere that it shouldn't attempt to request a new 3608 // backedge-taken count, which could result in infinite recursion. 3609 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3610 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3611 if (Pair.second) { 3612 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3613 if (BECount.Exact != getCouldNotCompute()) { 3614 assert(isLoopInvariant(BECount.Exact, L) && 3615 isLoopInvariant(BECount.Max, L) && 3616 "Computed backedge-taken count isn't loop invariant for loop!"); 3617 ++NumTripCountsComputed; 3618 3619 // Update the value in the map. 3620 Pair.first->second = BECount; 3621 } else { 3622 if (BECount.Max != getCouldNotCompute()) 3623 // Update the value in the map. 3624 Pair.first->second = BECount; 3625 if (isa<PHINode>(L->getHeader()->begin())) 3626 // Only count loops that have phi nodes as not being computable. 3627 ++NumTripCountsNotComputed; 3628 } 3629 3630 // Now that we know more about the trip count for this loop, forget any 3631 // existing SCEV values for PHI nodes in this loop since they are only 3632 // conservative estimates made without the benefit of trip count 3633 // information. This is similar to the code in forgetLoop, except that 3634 // it handles SCEVUnknown PHI nodes specially. 3635 if (BECount.hasAnyInfo()) { 3636 SmallVector<Instruction *, 16> Worklist; 3637 PushLoopPHIs(L, Worklist); 3638 3639 SmallPtrSet<Instruction *, 8> Visited; 3640 while (!Worklist.empty()) { 3641 Instruction *I = Worklist.pop_back_val(); 3642 if (!Visited.insert(I)) continue; 3643 3644 ValueExprMapType::iterator It = 3645 ValueExprMap.find(static_cast<Value *>(I)); 3646 if (It != ValueExprMap.end()) { 3647 const SCEV *Old = It->second; 3648 3649 // SCEVUnknown for a PHI either means that it has an unrecognized 3650 // structure, or it's a PHI that's in the progress of being computed 3651 // by createNodeForPHI. In the former case, additional loop trip 3652 // count information isn't going to change anything. In the later 3653 // case, createNodeForPHI will perform the necessary updates on its 3654 // own when it gets to that point. 3655 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 3656 forgetMemoizedResults(Old); 3657 ValueExprMap.erase(It); 3658 } 3659 if (PHINode *PN = dyn_cast<PHINode>(I)) 3660 ConstantEvolutionLoopExitValue.erase(PN); 3661 } 3662 3663 PushDefUseChildren(I, Worklist); 3664 } 3665 } 3666 } 3667 return Pair.first->second; 3668 } 3669 3670 /// forgetLoop - This method should be called by the client when it has 3671 /// changed a loop in a way that may effect ScalarEvolution's ability to 3672 /// compute a trip count, or if the loop is deleted. 3673 void ScalarEvolution::forgetLoop(const Loop *L) { 3674 // Drop any stored trip count value. 3675 BackedgeTakenCounts.erase(L); 3676 3677 // Drop information about expressions based on loop-header PHIs. 3678 SmallVector<Instruction *, 16> Worklist; 3679 PushLoopPHIs(L, Worklist); 3680 3681 SmallPtrSet<Instruction *, 8> Visited; 3682 while (!Worklist.empty()) { 3683 Instruction *I = Worklist.pop_back_val(); 3684 if (!Visited.insert(I)) continue; 3685 3686 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3687 if (It != ValueExprMap.end()) { 3688 forgetMemoizedResults(It->second); 3689 ValueExprMap.erase(It); 3690 if (PHINode *PN = dyn_cast<PHINode>(I)) 3691 ConstantEvolutionLoopExitValue.erase(PN); 3692 } 3693 3694 PushDefUseChildren(I, Worklist); 3695 } 3696 3697 // Forget all contained loops too, to avoid dangling entries in the 3698 // ValuesAtScopes map. 3699 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3700 forgetLoop(*I); 3701 } 3702 3703 /// forgetValue - This method should be called by the client when it has 3704 /// changed a value in a way that may effect its value, or which may 3705 /// disconnect it from a def-use chain linking it to a loop. 3706 void ScalarEvolution::forgetValue(Value *V) { 3707 Instruction *I = dyn_cast<Instruction>(V); 3708 if (!I) return; 3709 3710 // Drop information about expressions based on loop-header PHIs. 3711 SmallVector<Instruction *, 16> Worklist; 3712 Worklist.push_back(I); 3713 3714 SmallPtrSet<Instruction *, 8> Visited; 3715 while (!Worklist.empty()) { 3716 I = Worklist.pop_back_val(); 3717 if (!Visited.insert(I)) continue; 3718 3719 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3720 if (It != ValueExprMap.end()) { 3721 forgetMemoizedResults(It->second); 3722 ValueExprMap.erase(It); 3723 if (PHINode *PN = dyn_cast<PHINode>(I)) 3724 ConstantEvolutionLoopExitValue.erase(PN); 3725 } 3726 3727 PushDefUseChildren(I, Worklist); 3728 } 3729 } 3730 3731 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3732 /// of the specified loop will execute. 3733 ScalarEvolution::BackedgeTakenInfo 3734 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3735 SmallVector<BasicBlock *, 8> ExitingBlocks; 3736 L->getExitingBlocks(ExitingBlocks); 3737 3738 // Examine all exits and pick the most conservative values. 3739 const SCEV *BECount = getCouldNotCompute(); 3740 const SCEV *MaxBECount = getCouldNotCompute(); 3741 bool CouldNotComputeBECount = false; 3742 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3743 BackedgeTakenInfo NewBTI = 3744 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3745 3746 if (NewBTI.Exact == getCouldNotCompute()) { 3747 // We couldn't compute an exact value for this exit, so 3748 // we won't be able to compute an exact value for the loop. 3749 CouldNotComputeBECount = true; 3750 BECount = getCouldNotCompute(); 3751 } else if (!CouldNotComputeBECount) { 3752 if (BECount == getCouldNotCompute()) 3753 BECount = NewBTI.Exact; 3754 else 3755 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3756 } 3757 if (MaxBECount == getCouldNotCompute()) 3758 MaxBECount = NewBTI.Max; 3759 else if (NewBTI.Max != getCouldNotCompute()) 3760 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3761 } 3762 3763 return BackedgeTakenInfo(BECount, MaxBECount); 3764 } 3765 3766 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3767 /// of the specified loop will execute if it exits via the specified block. 3768 ScalarEvolution::BackedgeTakenInfo 3769 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3770 BasicBlock *ExitingBlock) { 3771 3772 // Okay, we've chosen an exiting block. See what condition causes us to 3773 // exit at this block. 3774 // 3775 // FIXME: we should be able to handle switch instructions (with a single exit) 3776 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3777 if (ExitBr == 0) return getCouldNotCompute(); 3778 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3779 3780 // At this point, we know we have a conditional branch that determines whether 3781 // the loop is exited. However, we don't know if the branch is executed each 3782 // time through the loop. If not, then the execution count of the branch will 3783 // not be equal to the trip count of the loop. 3784 // 3785 // Currently we check for this by checking to see if the Exit branch goes to 3786 // the loop header. If so, we know it will always execute the same number of 3787 // times as the loop. We also handle the case where the exit block *is* the 3788 // loop header. This is common for un-rotated loops. 3789 // 3790 // If both of those tests fail, walk up the unique predecessor chain to the 3791 // header, stopping if there is an edge that doesn't exit the loop. If the 3792 // header is reached, the execution count of the branch will be equal to the 3793 // trip count of the loop. 3794 // 3795 // More extensive analysis could be done to handle more cases here. 3796 // 3797 if (ExitBr->getSuccessor(0) != L->getHeader() && 3798 ExitBr->getSuccessor(1) != L->getHeader() && 3799 ExitBr->getParent() != L->getHeader()) { 3800 // The simple checks failed, try climbing the unique predecessor chain 3801 // up to the header. 3802 bool Ok = false; 3803 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3804 BasicBlock *Pred = BB->getUniquePredecessor(); 3805 if (!Pred) 3806 return getCouldNotCompute(); 3807 TerminatorInst *PredTerm = Pred->getTerminator(); 3808 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3809 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3810 if (PredSucc == BB) 3811 continue; 3812 // If the predecessor has a successor that isn't BB and isn't 3813 // outside the loop, assume the worst. 3814 if (L->contains(PredSucc)) 3815 return getCouldNotCompute(); 3816 } 3817 if (Pred == L->getHeader()) { 3818 Ok = true; 3819 break; 3820 } 3821 BB = Pred; 3822 } 3823 if (!Ok) 3824 return getCouldNotCompute(); 3825 } 3826 3827 // Proceed to the next level to examine the exit condition expression. 3828 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3829 ExitBr->getSuccessor(0), 3830 ExitBr->getSuccessor(1)); 3831 } 3832 3833 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3834 /// backedge of the specified loop will execute if its exit condition 3835 /// were a conditional branch of ExitCond, TBB, and FBB. 3836 ScalarEvolution::BackedgeTakenInfo 3837 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3838 Value *ExitCond, 3839 BasicBlock *TBB, 3840 BasicBlock *FBB) { 3841 // Check if the controlling expression for this loop is an And or Or. 3842 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3843 if (BO->getOpcode() == Instruction::And) { 3844 // Recurse on the operands of the and. 3845 BackedgeTakenInfo BTI0 = 3846 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3847 BackedgeTakenInfo BTI1 = 3848 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3849 const SCEV *BECount = getCouldNotCompute(); 3850 const SCEV *MaxBECount = getCouldNotCompute(); 3851 if (L->contains(TBB)) { 3852 // Both conditions must be true for the loop to continue executing. 3853 // Choose the less conservative count. 3854 if (BTI0.Exact == getCouldNotCompute() || 3855 BTI1.Exact == getCouldNotCompute()) 3856 BECount = getCouldNotCompute(); 3857 else 3858 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3859 if (BTI0.Max == getCouldNotCompute()) 3860 MaxBECount = BTI1.Max; 3861 else if (BTI1.Max == getCouldNotCompute()) 3862 MaxBECount = BTI0.Max; 3863 else 3864 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3865 } else { 3866 // Both conditions must be true at the same time for the loop to exit. 3867 // For now, be conservative. 3868 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3869 if (BTI0.Max == BTI1.Max) 3870 MaxBECount = BTI0.Max; 3871 if (BTI0.Exact == BTI1.Exact) 3872 BECount = BTI0.Exact; 3873 } 3874 3875 return BackedgeTakenInfo(BECount, MaxBECount); 3876 } 3877 if (BO->getOpcode() == Instruction::Or) { 3878 // Recurse on the operands of the or. 3879 BackedgeTakenInfo BTI0 = 3880 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3881 BackedgeTakenInfo BTI1 = 3882 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3883 const SCEV *BECount = getCouldNotCompute(); 3884 const SCEV *MaxBECount = getCouldNotCompute(); 3885 if (L->contains(FBB)) { 3886 // Both conditions must be false for the loop to continue executing. 3887 // Choose the less conservative count. 3888 if (BTI0.Exact == getCouldNotCompute() || 3889 BTI1.Exact == getCouldNotCompute()) 3890 BECount = getCouldNotCompute(); 3891 else 3892 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3893 if (BTI0.Max == getCouldNotCompute()) 3894 MaxBECount = BTI1.Max; 3895 else if (BTI1.Max == getCouldNotCompute()) 3896 MaxBECount = BTI0.Max; 3897 else 3898 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3899 } else { 3900 // Both conditions must be false at the same time for the loop to exit. 3901 // For now, be conservative. 3902 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3903 if (BTI0.Max == BTI1.Max) 3904 MaxBECount = BTI0.Max; 3905 if (BTI0.Exact == BTI1.Exact) 3906 BECount = BTI0.Exact; 3907 } 3908 3909 return BackedgeTakenInfo(BECount, MaxBECount); 3910 } 3911 } 3912 3913 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3914 // Proceed to the next level to examine the icmp. 3915 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3916 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3917 3918 // Check for a constant condition. These are normally stripped out by 3919 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3920 // preserve the CFG and is temporarily leaving constant conditions 3921 // in place. 3922 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3923 if (L->contains(FBB) == !CI->getZExtValue()) 3924 // The backedge is always taken. 3925 return getCouldNotCompute(); 3926 else 3927 // The backedge is never taken. 3928 return getConstant(CI->getType(), 0); 3929 } 3930 3931 // If it's not an integer or pointer comparison then compute it the hard way. 3932 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3933 } 3934 3935 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3936 /// backedge of the specified loop will execute if its exit condition 3937 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3938 ScalarEvolution::BackedgeTakenInfo 3939 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3940 ICmpInst *ExitCond, 3941 BasicBlock *TBB, 3942 BasicBlock *FBB) { 3943 3944 // If the condition was exit on true, convert the condition to exit on false 3945 ICmpInst::Predicate Cond; 3946 if (!L->contains(FBB)) 3947 Cond = ExitCond->getPredicate(); 3948 else 3949 Cond = ExitCond->getInversePredicate(); 3950 3951 // Handle common loops like: for (X = "string"; *X; ++X) 3952 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3953 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3954 BackedgeTakenInfo ItCnt = 3955 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3956 if (ItCnt.hasAnyInfo()) 3957 return ItCnt; 3958 } 3959 3960 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3961 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3962 3963 // Try to evaluate any dependencies out of the loop. 3964 LHS = getSCEVAtScope(LHS, L); 3965 RHS = getSCEVAtScope(RHS, L); 3966 3967 // At this point, we would like to compute how many iterations of the 3968 // loop the predicate will return true for these inputs. 3969 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 3970 // If there is a loop-invariant, force it into the RHS. 3971 std::swap(LHS, RHS); 3972 Cond = ICmpInst::getSwappedPredicate(Cond); 3973 } 3974 3975 // Simplify the operands before analyzing them. 3976 (void)SimplifyICmpOperands(Cond, LHS, RHS); 3977 3978 // If we have a comparison of a chrec against a constant, try to use value 3979 // ranges to answer this query. 3980 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3981 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3982 if (AddRec->getLoop() == L) { 3983 // Form the constant range. 3984 ConstantRange CompRange( 3985 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3986 3987 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3988 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3989 } 3990 3991 switch (Cond) { 3992 case ICmpInst::ICMP_NE: { // while (X != Y) 3993 // Convert to: while (X-Y != 0) 3994 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3995 if (BTI.hasAnyInfo()) return BTI; 3996 break; 3997 } 3998 case ICmpInst::ICMP_EQ: { // while (X == Y) 3999 // Convert to: while (X-Y == 0) 4000 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4001 if (BTI.hasAnyInfo()) return BTI; 4002 break; 4003 } 4004 case ICmpInst::ICMP_SLT: { 4005 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 4006 if (BTI.hasAnyInfo()) return BTI; 4007 break; 4008 } 4009 case ICmpInst::ICMP_SGT: { 4010 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4011 getNotSCEV(RHS), L, true); 4012 if (BTI.hasAnyInfo()) return BTI; 4013 break; 4014 } 4015 case ICmpInst::ICMP_ULT: { 4016 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 4017 if (BTI.hasAnyInfo()) return BTI; 4018 break; 4019 } 4020 case ICmpInst::ICMP_UGT: { 4021 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4022 getNotSCEV(RHS), L, false); 4023 if (BTI.hasAnyInfo()) return BTI; 4024 break; 4025 } 4026 default: 4027 #if 0 4028 dbgs() << "ComputeBackedgeTakenCount "; 4029 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4030 dbgs() << "[unsigned] "; 4031 dbgs() << *LHS << " " 4032 << Instruction::getOpcodeName(Instruction::ICmp) 4033 << " " << *RHS << "\n"; 4034 #endif 4035 break; 4036 } 4037 return 4038 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4039 } 4040 4041 static ConstantInt * 4042 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4043 ScalarEvolution &SE) { 4044 const SCEV *InVal = SE.getConstant(C); 4045 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4046 assert(isa<SCEVConstant>(Val) && 4047 "Evaluation of SCEV at constant didn't fold correctly?"); 4048 return cast<SCEVConstant>(Val)->getValue(); 4049 } 4050 4051 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4052 /// and a GEP expression (missing the pointer index) indexing into it, return 4053 /// the addressed element of the initializer or null if the index expression is 4054 /// invalid. 4055 static Constant * 4056 GetAddressedElementFromGlobal(GlobalVariable *GV, 4057 const std::vector<ConstantInt*> &Indices) { 4058 Constant *Init = GV->getInitializer(); 4059 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4060 uint64_t Idx = Indices[i]->getZExtValue(); 4061 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4062 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4063 Init = cast<Constant>(CS->getOperand(Idx)); 4064 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4065 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4066 Init = cast<Constant>(CA->getOperand(Idx)); 4067 } else if (isa<ConstantAggregateZero>(Init)) { 4068 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4069 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4070 Init = Constant::getNullValue(STy->getElementType(Idx)); 4071 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4072 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4073 Init = Constant::getNullValue(ATy->getElementType()); 4074 } else { 4075 llvm_unreachable("Unknown constant aggregate type!"); 4076 } 4077 return 0; 4078 } else { 4079 return 0; // Unknown initializer type 4080 } 4081 } 4082 return Init; 4083 } 4084 4085 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4086 /// 'icmp op load X, cst', try to see if we can compute the backedge 4087 /// execution count. 4088 ScalarEvolution::BackedgeTakenInfo 4089 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4090 LoadInst *LI, 4091 Constant *RHS, 4092 const Loop *L, 4093 ICmpInst::Predicate predicate) { 4094 if (LI->isVolatile()) return getCouldNotCompute(); 4095 4096 // Check to see if the loaded pointer is a getelementptr of a global. 4097 // TODO: Use SCEV instead of manually grubbing with GEPs. 4098 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4099 if (!GEP) return getCouldNotCompute(); 4100 4101 // Make sure that it is really a constant global we are gepping, with an 4102 // initializer, and make sure the first IDX is really 0. 4103 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4104 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4105 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4106 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4107 return getCouldNotCompute(); 4108 4109 // Okay, we allow one non-constant index into the GEP instruction. 4110 Value *VarIdx = 0; 4111 std::vector<ConstantInt*> Indexes; 4112 unsigned VarIdxNum = 0; 4113 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4114 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4115 Indexes.push_back(CI); 4116 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4117 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4118 VarIdx = GEP->getOperand(i); 4119 VarIdxNum = i-2; 4120 Indexes.push_back(0); 4121 } 4122 4123 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4124 // Check to see if X is a loop variant variable value now. 4125 const SCEV *Idx = getSCEV(VarIdx); 4126 Idx = getSCEVAtScope(Idx, L); 4127 4128 // We can only recognize very limited forms of loop index expressions, in 4129 // particular, only affine AddRec's like {C1,+,C2}. 4130 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4131 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4132 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4133 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4134 return getCouldNotCompute(); 4135 4136 unsigned MaxSteps = MaxBruteForceIterations; 4137 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4138 ConstantInt *ItCst = ConstantInt::get( 4139 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4140 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4141 4142 // Form the GEP offset. 4143 Indexes[VarIdxNum] = Val; 4144 4145 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4146 if (Result == 0) break; // Cannot compute! 4147 4148 // Evaluate the condition for this iteration. 4149 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4150 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4151 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4152 #if 0 4153 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4154 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4155 << "***\n"; 4156 #endif 4157 ++NumArrayLenItCounts; 4158 return getConstant(ItCst); // Found terminating iteration! 4159 } 4160 } 4161 return getCouldNotCompute(); 4162 } 4163 4164 4165 /// CanConstantFold - Return true if we can constant fold an instruction of the 4166 /// specified type, assuming that all operands were constants. 4167 static bool CanConstantFold(const Instruction *I) { 4168 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4169 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4170 return true; 4171 4172 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4173 if (const Function *F = CI->getCalledFunction()) 4174 return canConstantFoldCallTo(F); 4175 return false; 4176 } 4177 4178 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4179 /// in the loop that V is derived from. We allow arbitrary operations along the 4180 /// way, but the operands of an operation must either be constants or a value 4181 /// derived from a constant PHI. If this expression does not fit with these 4182 /// constraints, return null. 4183 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4184 // If this is not an instruction, or if this is an instruction outside of the 4185 // loop, it can't be derived from a loop PHI. 4186 Instruction *I = dyn_cast<Instruction>(V); 4187 if (I == 0 || !L->contains(I)) return 0; 4188 4189 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4190 if (L->getHeader() == I->getParent()) 4191 return PN; 4192 else 4193 // We don't currently keep track of the control flow needed to evaluate 4194 // PHIs, so we cannot handle PHIs inside of loops. 4195 return 0; 4196 } 4197 4198 // If we won't be able to constant fold this expression even if the operands 4199 // are constants, return early. 4200 if (!CanConstantFold(I)) return 0; 4201 4202 // Otherwise, we can evaluate this instruction if all of its operands are 4203 // constant or derived from a PHI node themselves. 4204 PHINode *PHI = 0; 4205 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4206 if (!isa<Constant>(I->getOperand(Op))) { 4207 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4208 if (P == 0) return 0; // Not evolving from PHI 4209 if (PHI == 0) 4210 PHI = P; 4211 else if (PHI != P) 4212 return 0; // Evolving from multiple different PHIs. 4213 } 4214 4215 // This is a expression evolving from a constant PHI! 4216 return PHI; 4217 } 4218 4219 /// EvaluateExpression - Given an expression that passes the 4220 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4221 /// in the loop has the value PHIVal. If we can't fold this expression for some 4222 /// reason, return null. 4223 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4224 const TargetData *TD) { 4225 if (isa<PHINode>(V)) return PHIVal; 4226 if (Constant *C = dyn_cast<Constant>(V)) return C; 4227 Instruction *I = cast<Instruction>(V); 4228 4229 std::vector<Constant*> Operands(I->getNumOperands()); 4230 4231 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4232 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4233 if (Operands[i] == 0) return 0; 4234 } 4235 4236 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4237 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4238 Operands[1], TD); 4239 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4240 &Operands[0], Operands.size(), TD); 4241 } 4242 4243 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4244 /// in the header of its containing loop, we know the loop executes a 4245 /// constant number of times, and the PHI node is just a recurrence 4246 /// involving constants, fold it. 4247 Constant * 4248 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4249 const APInt &BEs, 4250 const Loop *L) { 4251 std::map<PHINode*, Constant*>::const_iterator I = 4252 ConstantEvolutionLoopExitValue.find(PN); 4253 if (I != ConstantEvolutionLoopExitValue.end()) 4254 return I->second; 4255 4256 if (BEs.ugt(MaxBruteForceIterations)) 4257 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4258 4259 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4260 4261 // Since the loop is canonicalized, the PHI node must have two entries. One 4262 // entry must be a constant (coming in from outside of the loop), and the 4263 // second must be derived from the same PHI. 4264 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4265 Constant *StartCST = 4266 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4267 if (StartCST == 0) 4268 return RetVal = 0; // Must be a constant. 4269 4270 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4271 if (getConstantEvolvingPHI(BEValue, L) != PN && 4272 !isa<Constant>(BEValue)) 4273 return RetVal = 0; // Not derived from same PHI. 4274 4275 // Execute the loop symbolically to determine the exit value. 4276 if (BEs.getActiveBits() >= 32) 4277 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4278 4279 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4280 unsigned IterationNum = 0; 4281 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4282 if (IterationNum == NumIterations) 4283 return RetVal = PHIVal; // Got exit value! 4284 4285 // Compute the value of the PHI node for the next iteration. 4286 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4287 if (NextPHI == PHIVal) 4288 return RetVal = NextPHI; // Stopped evolving! 4289 if (NextPHI == 0) 4290 return 0; // Couldn't evaluate! 4291 PHIVal = NextPHI; 4292 } 4293 } 4294 4295 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4296 /// constant number of times (the condition evolves only from constants), 4297 /// try to evaluate a few iterations of the loop until we get the exit 4298 /// condition gets a value of ExitWhen (true or false). If we cannot 4299 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4300 const SCEV * 4301 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4302 Value *Cond, 4303 bool ExitWhen) { 4304 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4305 if (PN == 0) return getCouldNotCompute(); 4306 4307 // If the loop is canonicalized, the PHI will have exactly two entries. 4308 // That's the only form we support here. 4309 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4310 4311 // One entry must be a constant (coming in from outside of the loop), and the 4312 // second must be derived from the same PHI. 4313 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4314 Constant *StartCST = 4315 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4316 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4317 4318 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4319 if (getConstantEvolvingPHI(BEValue, L) != PN && 4320 !isa<Constant>(BEValue)) 4321 return getCouldNotCompute(); // Not derived from same PHI. 4322 4323 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4324 // the loop symbolically to determine when the condition gets a value of 4325 // "ExitWhen". 4326 unsigned IterationNum = 0; 4327 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4328 for (Constant *PHIVal = StartCST; 4329 IterationNum != MaxIterations; ++IterationNum) { 4330 ConstantInt *CondVal = 4331 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4332 4333 // Couldn't symbolically evaluate. 4334 if (!CondVal) return getCouldNotCompute(); 4335 4336 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4337 ++NumBruteForceTripCountsComputed; 4338 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4339 } 4340 4341 // Compute the value of the PHI node for the next iteration. 4342 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4343 if (NextPHI == 0 || NextPHI == PHIVal) 4344 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4345 PHIVal = NextPHI; 4346 } 4347 4348 // Too many iterations were needed to evaluate. 4349 return getCouldNotCompute(); 4350 } 4351 4352 /// getSCEVAtScope - Return a SCEV expression for the specified value 4353 /// at the specified scope in the program. The L value specifies a loop 4354 /// nest to evaluate the expression at, where null is the top-level or a 4355 /// specified loop is immediately inside of the loop. 4356 /// 4357 /// This method can be used to compute the exit value for a variable defined 4358 /// in a loop by querying what the value will hold in the parent loop. 4359 /// 4360 /// In the case that a relevant loop exit value cannot be computed, the 4361 /// original value V is returned. 4362 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4363 // Check to see if we've folded this expression at this loop before. 4364 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4365 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4366 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4367 if (!Pair.second) 4368 return Pair.first->second ? Pair.first->second : V; 4369 4370 // Otherwise compute it. 4371 const SCEV *C = computeSCEVAtScope(V, L); 4372 ValuesAtScopes[V][L] = C; 4373 return C; 4374 } 4375 4376 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4377 if (isa<SCEVConstant>(V)) return V; 4378 4379 // If this instruction is evolved from a constant-evolving PHI, compute the 4380 // exit value from the loop without using SCEVs. 4381 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4382 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4383 const Loop *LI = (*this->LI)[I->getParent()]; 4384 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4385 if (PHINode *PN = dyn_cast<PHINode>(I)) 4386 if (PN->getParent() == LI->getHeader()) { 4387 // Okay, there is no closed form solution for the PHI node. Check 4388 // to see if the loop that contains it has a known backedge-taken 4389 // count. If so, we may be able to force computation of the exit 4390 // value. 4391 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4392 if (const SCEVConstant *BTCC = 4393 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4394 // Okay, we know how many times the containing loop executes. If 4395 // this is a constant evolving PHI node, get the final value at 4396 // the specified iteration number. 4397 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4398 BTCC->getValue()->getValue(), 4399 LI); 4400 if (RV) return getSCEV(RV); 4401 } 4402 } 4403 4404 // Okay, this is an expression that we cannot symbolically evaluate 4405 // into a SCEV. Check to see if it's possible to symbolically evaluate 4406 // the arguments into constants, and if so, try to constant propagate the 4407 // result. This is particularly useful for computing loop exit values. 4408 if (CanConstantFold(I)) { 4409 SmallVector<Constant *, 4> Operands; 4410 bool MadeImprovement = false; 4411 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4412 Value *Op = I->getOperand(i); 4413 if (Constant *C = dyn_cast<Constant>(Op)) { 4414 Operands.push_back(C); 4415 continue; 4416 } 4417 4418 // If any of the operands is non-constant and if they are 4419 // non-integer and non-pointer, don't even try to analyze them 4420 // with scev techniques. 4421 if (!isSCEVable(Op->getType())) 4422 return V; 4423 4424 const SCEV *OrigV = getSCEV(Op); 4425 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4426 MadeImprovement |= OrigV != OpV; 4427 4428 Constant *C = 0; 4429 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4430 C = SC->getValue(); 4431 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4432 C = dyn_cast<Constant>(SU->getValue()); 4433 if (!C) return V; 4434 if (C->getType() != Op->getType()) 4435 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4436 Op->getType(), 4437 false), 4438 C, Op->getType()); 4439 Operands.push_back(C); 4440 } 4441 4442 // Check to see if getSCEVAtScope actually made an improvement. 4443 if (MadeImprovement) { 4444 Constant *C = 0; 4445 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4446 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4447 Operands[0], Operands[1], TD); 4448 else 4449 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4450 &Operands[0], Operands.size(), TD); 4451 if (!C) return V; 4452 return getSCEV(C); 4453 } 4454 } 4455 } 4456 4457 // This is some other type of SCEVUnknown, just return it. 4458 return V; 4459 } 4460 4461 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4462 // Avoid performing the look-up in the common case where the specified 4463 // expression has no loop-variant portions. 4464 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4465 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4466 if (OpAtScope != Comm->getOperand(i)) { 4467 // Okay, at least one of these operands is loop variant but might be 4468 // foldable. Build a new instance of the folded commutative expression. 4469 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4470 Comm->op_begin()+i); 4471 NewOps.push_back(OpAtScope); 4472 4473 for (++i; i != e; ++i) { 4474 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4475 NewOps.push_back(OpAtScope); 4476 } 4477 if (isa<SCEVAddExpr>(Comm)) 4478 return getAddExpr(NewOps); 4479 if (isa<SCEVMulExpr>(Comm)) 4480 return getMulExpr(NewOps); 4481 if (isa<SCEVSMaxExpr>(Comm)) 4482 return getSMaxExpr(NewOps); 4483 if (isa<SCEVUMaxExpr>(Comm)) 4484 return getUMaxExpr(NewOps); 4485 llvm_unreachable("Unknown commutative SCEV type!"); 4486 } 4487 } 4488 // If we got here, all operands are loop invariant. 4489 return Comm; 4490 } 4491 4492 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4493 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4494 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4495 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4496 return Div; // must be loop invariant 4497 return getUDivExpr(LHS, RHS); 4498 } 4499 4500 // If this is a loop recurrence for a loop that does not contain L, then we 4501 // are dealing with the final value computed by the loop. 4502 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4503 // First, attempt to evaluate each operand. 4504 // Avoid performing the look-up in the common case where the specified 4505 // expression has no loop-variant portions. 4506 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4507 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4508 if (OpAtScope == AddRec->getOperand(i)) 4509 continue; 4510 4511 // Okay, at least one of these operands is loop variant but might be 4512 // foldable. Build a new instance of the folded commutative expression. 4513 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4514 AddRec->op_begin()+i); 4515 NewOps.push_back(OpAtScope); 4516 for (++i; i != e; ++i) 4517 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4518 4519 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4520 break; 4521 } 4522 4523 // If the scope is outside the addrec's loop, evaluate it by using the 4524 // loop exit value of the addrec. 4525 if (!AddRec->getLoop()->contains(L)) { 4526 // To evaluate this recurrence, we need to know how many times the AddRec 4527 // loop iterates. Compute this now. 4528 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4529 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4530 4531 // Then, evaluate the AddRec. 4532 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4533 } 4534 4535 return AddRec; 4536 } 4537 4538 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4539 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4540 if (Op == Cast->getOperand()) 4541 return Cast; // must be loop invariant 4542 return getZeroExtendExpr(Op, Cast->getType()); 4543 } 4544 4545 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4546 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4547 if (Op == Cast->getOperand()) 4548 return Cast; // must be loop invariant 4549 return getSignExtendExpr(Op, Cast->getType()); 4550 } 4551 4552 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4553 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4554 if (Op == Cast->getOperand()) 4555 return Cast; // must be loop invariant 4556 return getTruncateExpr(Op, Cast->getType()); 4557 } 4558 4559 llvm_unreachable("Unknown SCEV type!"); 4560 return 0; 4561 } 4562 4563 /// getSCEVAtScope - This is a convenience function which does 4564 /// getSCEVAtScope(getSCEV(V), L). 4565 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4566 return getSCEVAtScope(getSCEV(V), L); 4567 } 4568 4569 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4570 /// following equation: 4571 /// 4572 /// A * X = B (mod N) 4573 /// 4574 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4575 /// A and B isn't important. 4576 /// 4577 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4578 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4579 ScalarEvolution &SE) { 4580 uint32_t BW = A.getBitWidth(); 4581 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4582 assert(A != 0 && "A must be non-zero."); 4583 4584 // 1. D = gcd(A, N) 4585 // 4586 // The gcd of A and N may have only one prime factor: 2. The number of 4587 // trailing zeros in A is its multiplicity 4588 uint32_t Mult2 = A.countTrailingZeros(); 4589 // D = 2^Mult2 4590 4591 // 2. Check if B is divisible by D. 4592 // 4593 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4594 // is not less than multiplicity of this prime factor for D. 4595 if (B.countTrailingZeros() < Mult2) 4596 return SE.getCouldNotCompute(); 4597 4598 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4599 // modulo (N / D). 4600 // 4601 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4602 // bit width during computations. 4603 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4604 APInt Mod(BW + 1, 0); 4605 Mod.set(BW - Mult2); // Mod = N / D 4606 APInt I = AD.multiplicativeInverse(Mod); 4607 4608 // 4. Compute the minimum unsigned root of the equation: 4609 // I * (B / D) mod (N / D) 4610 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4611 4612 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4613 // bits. 4614 return SE.getConstant(Result.trunc(BW)); 4615 } 4616 4617 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4618 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4619 /// might be the same) or two SCEVCouldNotCompute objects. 4620 /// 4621 static std::pair<const SCEV *,const SCEV *> 4622 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4623 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4624 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4625 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4626 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4627 4628 // We currently can only solve this if the coefficients are constants. 4629 if (!LC || !MC || !NC) { 4630 const SCEV *CNC = SE.getCouldNotCompute(); 4631 return std::make_pair(CNC, CNC); 4632 } 4633 4634 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4635 const APInt &L = LC->getValue()->getValue(); 4636 const APInt &M = MC->getValue()->getValue(); 4637 const APInt &N = NC->getValue()->getValue(); 4638 APInt Two(BitWidth, 2); 4639 APInt Four(BitWidth, 4); 4640 4641 { 4642 using namespace APIntOps; 4643 const APInt& C = L; 4644 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4645 // The B coefficient is M-N/2 4646 APInt B(M); 4647 B -= sdiv(N,Two); 4648 4649 // The A coefficient is N/2 4650 APInt A(N.sdiv(Two)); 4651 4652 // Compute the B^2-4ac term. 4653 APInt SqrtTerm(B); 4654 SqrtTerm *= B; 4655 SqrtTerm -= Four * (A * C); 4656 4657 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4658 // integer value or else APInt::sqrt() will assert. 4659 APInt SqrtVal(SqrtTerm.sqrt()); 4660 4661 // Compute the two solutions for the quadratic formula. 4662 // The divisions must be performed as signed divisions. 4663 APInt NegB(-B); 4664 APInt TwoA( A << 1 ); 4665 if (TwoA.isMinValue()) { 4666 const SCEV *CNC = SE.getCouldNotCompute(); 4667 return std::make_pair(CNC, CNC); 4668 } 4669 4670 LLVMContext &Context = SE.getContext(); 4671 4672 ConstantInt *Solution1 = 4673 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4674 ConstantInt *Solution2 = 4675 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4676 4677 return std::make_pair(SE.getConstant(Solution1), 4678 SE.getConstant(Solution2)); 4679 } // end APIntOps namespace 4680 } 4681 4682 /// HowFarToZero - Return the number of times a backedge comparing the specified 4683 /// value to zero will execute. If not computable, return CouldNotCompute. 4684 ScalarEvolution::BackedgeTakenInfo 4685 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4686 // If the value is a constant 4687 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4688 // If the value is already zero, the branch will execute zero times. 4689 if (C->getValue()->isZero()) return C; 4690 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4691 } 4692 4693 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4694 if (!AddRec || AddRec->getLoop() != L) 4695 return getCouldNotCompute(); 4696 4697 if (AddRec->isAffine()) { 4698 // If this is an affine expression, the execution count of this branch is 4699 // the minimum unsigned root of the following equation: 4700 // 4701 // Start + Step*N = 0 (mod 2^BW) 4702 // 4703 // equivalent to: 4704 // 4705 // Step*N = -Start (mod 2^BW) 4706 // 4707 // where BW is the common bit width of Start and Step. 4708 4709 // Get the initial value for the loop. 4710 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4711 L->getParentLoop()); 4712 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4713 L->getParentLoop()); 4714 4715 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4716 // For now we handle only constant steps. 4717 4718 // First, handle unitary steps. 4719 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4720 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4721 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4722 return Start; // N = Start (as unsigned) 4723 4724 // Then, try to solve the above equation provided that Start is constant. 4725 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4726 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4727 -StartC->getValue()->getValue(), 4728 *this); 4729 } 4730 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4731 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4732 // the quadratic equation to solve it. 4733 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4734 *this); 4735 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4736 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4737 if (R1) { 4738 #if 0 4739 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4740 << " sol#2: " << *R2 << "\n"; 4741 #endif 4742 // Pick the smallest positive root value. 4743 if (ConstantInt *CB = 4744 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4745 R1->getValue(), R2->getValue()))) { 4746 if (CB->getZExtValue() == false) 4747 std::swap(R1, R2); // R1 is the minimum root now. 4748 4749 // We can only use this value if the chrec ends up with an exact zero 4750 // value at this index. When solving for "X*X != 5", for example, we 4751 // should not accept a root of 2. 4752 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4753 if (Val->isZero()) 4754 return R1; // We found a quadratic root! 4755 } 4756 } 4757 } 4758 4759 return getCouldNotCompute(); 4760 } 4761 4762 /// HowFarToNonZero - Return the number of times a backedge checking the 4763 /// specified value for nonzero will execute. If not computable, return 4764 /// CouldNotCompute 4765 ScalarEvolution::BackedgeTakenInfo 4766 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4767 // Loops that look like: while (X == 0) are very strange indeed. We don't 4768 // handle them yet except for the trivial case. This could be expanded in the 4769 // future as needed. 4770 4771 // If the value is a constant, check to see if it is known to be non-zero 4772 // already. If so, the backedge will execute zero times. 4773 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4774 if (!C->getValue()->isNullValue()) 4775 return getConstant(C->getType(), 0); 4776 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4777 } 4778 4779 // We could implement others, but I really doubt anyone writes loops like 4780 // this, and if they did, they would already be constant folded. 4781 return getCouldNotCompute(); 4782 } 4783 4784 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4785 /// (which may not be an immediate predecessor) which has exactly one 4786 /// successor from which BB is reachable, or null if no such block is 4787 /// found. 4788 /// 4789 std::pair<BasicBlock *, BasicBlock *> 4790 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4791 // If the block has a unique predecessor, then there is no path from the 4792 // predecessor to the block that does not go through the direct edge 4793 // from the predecessor to the block. 4794 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4795 return std::make_pair(Pred, BB); 4796 4797 // A loop's header is defined to be a block that dominates the loop. 4798 // If the header has a unique predecessor outside the loop, it must be 4799 // a block that has exactly one successor that can reach the loop. 4800 if (Loop *L = LI->getLoopFor(BB)) 4801 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4802 4803 return std::pair<BasicBlock *, BasicBlock *>(); 4804 } 4805 4806 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4807 /// testing whether two expressions are equal, however for the purposes of 4808 /// looking for a condition guarding a loop, it can be useful to be a little 4809 /// more general, since a front-end may have replicated the controlling 4810 /// expression. 4811 /// 4812 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4813 // Quick check to see if they are the same SCEV. 4814 if (A == B) return true; 4815 4816 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4817 // two different instructions with the same value. Check for this case. 4818 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4819 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4820 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4821 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4822 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4823 return true; 4824 4825 // Otherwise assume they may have a different value. 4826 return false; 4827 } 4828 4829 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4830 /// predicate Pred. Return true iff any changes were made. 4831 /// 4832 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4833 const SCEV *&LHS, const SCEV *&RHS) { 4834 bool Changed = false; 4835 4836 // Canonicalize a constant to the right side. 4837 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4838 // Check for both operands constant. 4839 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 4840 if (ConstantExpr::getICmp(Pred, 4841 LHSC->getValue(), 4842 RHSC->getValue())->isNullValue()) 4843 goto trivially_false; 4844 else 4845 goto trivially_true; 4846 } 4847 // Otherwise swap the operands to put the constant on the right. 4848 std::swap(LHS, RHS); 4849 Pred = ICmpInst::getSwappedPredicate(Pred); 4850 Changed = true; 4851 } 4852 4853 // If we're comparing an addrec with a value which is loop-invariant in the 4854 // addrec's loop, put the addrec on the left. Also make a dominance check, 4855 // as both operands could be addrecs loop-invariant in each other's loop. 4856 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 4857 const Loop *L = AR->getLoop(); 4858 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 4859 std::swap(LHS, RHS); 4860 Pred = ICmpInst::getSwappedPredicate(Pred); 4861 Changed = true; 4862 } 4863 } 4864 4865 // If there's a constant operand, canonicalize comparisons with boundary 4866 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 4867 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4868 const APInt &RA = RC->getValue()->getValue(); 4869 switch (Pred) { 4870 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4871 case ICmpInst::ICMP_EQ: 4872 case ICmpInst::ICMP_NE: 4873 break; 4874 case ICmpInst::ICMP_UGE: 4875 if ((RA - 1).isMinValue()) { 4876 Pred = ICmpInst::ICMP_NE; 4877 RHS = getConstant(RA - 1); 4878 Changed = true; 4879 break; 4880 } 4881 if (RA.isMaxValue()) { 4882 Pred = ICmpInst::ICMP_EQ; 4883 Changed = true; 4884 break; 4885 } 4886 if (RA.isMinValue()) goto trivially_true; 4887 4888 Pred = ICmpInst::ICMP_UGT; 4889 RHS = getConstant(RA - 1); 4890 Changed = true; 4891 break; 4892 case ICmpInst::ICMP_ULE: 4893 if ((RA + 1).isMaxValue()) { 4894 Pred = ICmpInst::ICMP_NE; 4895 RHS = getConstant(RA + 1); 4896 Changed = true; 4897 break; 4898 } 4899 if (RA.isMinValue()) { 4900 Pred = ICmpInst::ICMP_EQ; 4901 Changed = true; 4902 break; 4903 } 4904 if (RA.isMaxValue()) goto trivially_true; 4905 4906 Pred = ICmpInst::ICMP_ULT; 4907 RHS = getConstant(RA + 1); 4908 Changed = true; 4909 break; 4910 case ICmpInst::ICMP_SGE: 4911 if ((RA - 1).isMinSignedValue()) { 4912 Pred = ICmpInst::ICMP_NE; 4913 RHS = getConstant(RA - 1); 4914 Changed = true; 4915 break; 4916 } 4917 if (RA.isMaxSignedValue()) { 4918 Pred = ICmpInst::ICMP_EQ; 4919 Changed = true; 4920 break; 4921 } 4922 if (RA.isMinSignedValue()) goto trivially_true; 4923 4924 Pred = ICmpInst::ICMP_SGT; 4925 RHS = getConstant(RA - 1); 4926 Changed = true; 4927 break; 4928 case ICmpInst::ICMP_SLE: 4929 if ((RA + 1).isMaxSignedValue()) { 4930 Pred = ICmpInst::ICMP_NE; 4931 RHS = getConstant(RA + 1); 4932 Changed = true; 4933 break; 4934 } 4935 if (RA.isMinSignedValue()) { 4936 Pred = ICmpInst::ICMP_EQ; 4937 Changed = true; 4938 break; 4939 } 4940 if (RA.isMaxSignedValue()) goto trivially_true; 4941 4942 Pred = ICmpInst::ICMP_SLT; 4943 RHS = getConstant(RA + 1); 4944 Changed = true; 4945 break; 4946 case ICmpInst::ICMP_UGT: 4947 if (RA.isMinValue()) { 4948 Pred = ICmpInst::ICMP_NE; 4949 Changed = true; 4950 break; 4951 } 4952 if ((RA + 1).isMaxValue()) { 4953 Pred = ICmpInst::ICMP_EQ; 4954 RHS = getConstant(RA + 1); 4955 Changed = true; 4956 break; 4957 } 4958 if (RA.isMaxValue()) goto trivially_false; 4959 break; 4960 case ICmpInst::ICMP_ULT: 4961 if (RA.isMaxValue()) { 4962 Pred = ICmpInst::ICMP_NE; 4963 Changed = true; 4964 break; 4965 } 4966 if ((RA - 1).isMinValue()) { 4967 Pred = ICmpInst::ICMP_EQ; 4968 RHS = getConstant(RA - 1); 4969 Changed = true; 4970 break; 4971 } 4972 if (RA.isMinValue()) goto trivially_false; 4973 break; 4974 case ICmpInst::ICMP_SGT: 4975 if (RA.isMinSignedValue()) { 4976 Pred = ICmpInst::ICMP_NE; 4977 Changed = true; 4978 break; 4979 } 4980 if ((RA + 1).isMaxSignedValue()) { 4981 Pred = ICmpInst::ICMP_EQ; 4982 RHS = getConstant(RA + 1); 4983 Changed = true; 4984 break; 4985 } 4986 if (RA.isMaxSignedValue()) goto trivially_false; 4987 break; 4988 case ICmpInst::ICMP_SLT: 4989 if (RA.isMaxSignedValue()) { 4990 Pred = ICmpInst::ICMP_NE; 4991 Changed = true; 4992 break; 4993 } 4994 if ((RA - 1).isMinSignedValue()) { 4995 Pred = ICmpInst::ICMP_EQ; 4996 RHS = getConstant(RA - 1); 4997 Changed = true; 4998 break; 4999 } 5000 if (RA.isMinSignedValue()) goto trivially_false; 5001 break; 5002 } 5003 } 5004 5005 // Check for obvious equality. 5006 if (HasSameValue(LHS, RHS)) { 5007 if (ICmpInst::isTrueWhenEqual(Pred)) 5008 goto trivially_true; 5009 if (ICmpInst::isFalseWhenEqual(Pred)) 5010 goto trivially_false; 5011 } 5012 5013 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5014 // adding or subtracting 1 from one of the operands. 5015 switch (Pred) { 5016 case ICmpInst::ICMP_SLE: 5017 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5018 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5019 /*HasNUW=*/false, /*HasNSW=*/true); 5020 Pred = ICmpInst::ICMP_SLT; 5021 Changed = true; 5022 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5023 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5024 /*HasNUW=*/false, /*HasNSW=*/true); 5025 Pred = ICmpInst::ICMP_SLT; 5026 Changed = true; 5027 } 5028 break; 5029 case ICmpInst::ICMP_SGE: 5030 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5031 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5032 /*HasNUW=*/false, /*HasNSW=*/true); 5033 Pred = ICmpInst::ICMP_SGT; 5034 Changed = true; 5035 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5036 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5037 /*HasNUW=*/false, /*HasNSW=*/true); 5038 Pred = ICmpInst::ICMP_SGT; 5039 Changed = true; 5040 } 5041 break; 5042 case ICmpInst::ICMP_ULE: 5043 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5044 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5045 /*HasNUW=*/true, /*HasNSW=*/false); 5046 Pred = ICmpInst::ICMP_ULT; 5047 Changed = true; 5048 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5049 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5050 /*HasNUW=*/true, /*HasNSW=*/false); 5051 Pred = ICmpInst::ICMP_ULT; 5052 Changed = true; 5053 } 5054 break; 5055 case ICmpInst::ICMP_UGE: 5056 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5057 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5058 /*HasNUW=*/true, /*HasNSW=*/false); 5059 Pred = ICmpInst::ICMP_UGT; 5060 Changed = true; 5061 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5062 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5063 /*HasNUW=*/true, /*HasNSW=*/false); 5064 Pred = ICmpInst::ICMP_UGT; 5065 Changed = true; 5066 } 5067 break; 5068 default: 5069 break; 5070 } 5071 5072 // TODO: More simplifications are possible here. 5073 5074 return Changed; 5075 5076 trivially_true: 5077 // Return 0 == 0. 5078 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5079 Pred = ICmpInst::ICMP_EQ; 5080 return true; 5081 5082 trivially_false: 5083 // Return 0 != 0. 5084 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5085 Pred = ICmpInst::ICMP_NE; 5086 return true; 5087 } 5088 5089 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5090 return getSignedRange(S).getSignedMax().isNegative(); 5091 } 5092 5093 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5094 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5095 } 5096 5097 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5098 return !getSignedRange(S).getSignedMin().isNegative(); 5099 } 5100 5101 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5102 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5103 } 5104 5105 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5106 return isKnownNegative(S) || isKnownPositive(S); 5107 } 5108 5109 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5110 const SCEV *LHS, const SCEV *RHS) { 5111 // Canonicalize the inputs first. 5112 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5113 5114 // If LHS or RHS is an addrec, check to see if the condition is true in 5115 // every iteration of the loop. 5116 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5117 if (isLoopEntryGuardedByCond( 5118 AR->getLoop(), Pred, AR->getStart(), RHS) && 5119 isLoopBackedgeGuardedByCond( 5120 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5121 return true; 5122 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5123 if (isLoopEntryGuardedByCond( 5124 AR->getLoop(), Pred, LHS, AR->getStart()) && 5125 isLoopBackedgeGuardedByCond( 5126 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5127 return true; 5128 5129 // Otherwise see what can be done with known constant ranges. 5130 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5131 } 5132 5133 bool 5134 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5135 const SCEV *LHS, const SCEV *RHS) { 5136 if (HasSameValue(LHS, RHS)) 5137 return ICmpInst::isTrueWhenEqual(Pred); 5138 5139 // This code is split out from isKnownPredicate because it is called from 5140 // within isLoopEntryGuardedByCond. 5141 switch (Pred) { 5142 default: 5143 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5144 break; 5145 case ICmpInst::ICMP_SGT: 5146 Pred = ICmpInst::ICMP_SLT; 5147 std::swap(LHS, RHS); 5148 case ICmpInst::ICMP_SLT: { 5149 ConstantRange LHSRange = getSignedRange(LHS); 5150 ConstantRange RHSRange = getSignedRange(RHS); 5151 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5152 return true; 5153 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5154 return false; 5155 break; 5156 } 5157 case ICmpInst::ICMP_SGE: 5158 Pred = ICmpInst::ICMP_SLE; 5159 std::swap(LHS, RHS); 5160 case ICmpInst::ICMP_SLE: { 5161 ConstantRange LHSRange = getSignedRange(LHS); 5162 ConstantRange RHSRange = getSignedRange(RHS); 5163 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5164 return true; 5165 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5166 return false; 5167 break; 5168 } 5169 case ICmpInst::ICMP_UGT: 5170 Pred = ICmpInst::ICMP_ULT; 5171 std::swap(LHS, RHS); 5172 case ICmpInst::ICMP_ULT: { 5173 ConstantRange LHSRange = getUnsignedRange(LHS); 5174 ConstantRange RHSRange = getUnsignedRange(RHS); 5175 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5176 return true; 5177 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5178 return false; 5179 break; 5180 } 5181 case ICmpInst::ICMP_UGE: 5182 Pred = ICmpInst::ICMP_ULE; 5183 std::swap(LHS, RHS); 5184 case ICmpInst::ICMP_ULE: { 5185 ConstantRange LHSRange = getUnsignedRange(LHS); 5186 ConstantRange RHSRange = getUnsignedRange(RHS); 5187 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5188 return true; 5189 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5190 return false; 5191 break; 5192 } 5193 case ICmpInst::ICMP_NE: { 5194 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5195 return true; 5196 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5197 return true; 5198 5199 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5200 if (isKnownNonZero(Diff)) 5201 return true; 5202 break; 5203 } 5204 case ICmpInst::ICMP_EQ: 5205 // The check at the top of the function catches the case where 5206 // the values are known to be equal. 5207 break; 5208 } 5209 return false; 5210 } 5211 5212 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5213 /// protected by a conditional between LHS and RHS. This is used to 5214 /// to eliminate casts. 5215 bool 5216 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5217 ICmpInst::Predicate Pred, 5218 const SCEV *LHS, const SCEV *RHS) { 5219 // Interpret a null as meaning no loop, where there is obviously no guard 5220 // (interprocedural conditions notwithstanding). 5221 if (!L) return true; 5222 5223 BasicBlock *Latch = L->getLoopLatch(); 5224 if (!Latch) 5225 return false; 5226 5227 BranchInst *LoopContinuePredicate = 5228 dyn_cast<BranchInst>(Latch->getTerminator()); 5229 if (!LoopContinuePredicate || 5230 LoopContinuePredicate->isUnconditional()) 5231 return false; 5232 5233 return isImpliedCond(Pred, LHS, RHS, 5234 LoopContinuePredicate->getCondition(), 5235 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5236 } 5237 5238 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5239 /// by a conditional between LHS and RHS. This is used to help avoid max 5240 /// expressions in loop trip counts, and to eliminate casts. 5241 bool 5242 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5243 ICmpInst::Predicate Pred, 5244 const SCEV *LHS, const SCEV *RHS) { 5245 // Interpret a null as meaning no loop, where there is obviously no guard 5246 // (interprocedural conditions notwithstanding). 5247 if (!L) return false; 5248 5249 // Starting at the loop predecessor, climb up the predecessor chain, as long 5250 // as there are predecessors that can be found that have unique successors 5251 // leading to the original header. 5252 for (std::pair<BasicBlock *, BasicBlock *> 5253 Pair(L->getLoopPredecessor(), L->getHeader()); 5254 Pair.first; 5255 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5256 5257 BranchInst *LoopEntryPredicate = 5258 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5259 if (!LoopEntryPredicate || 5260 LoopEntryPredicate->isUnconditional()) 5261 continue; 5262 5263 if (isImpliedCond(Pred, LHS, RHS, 5264 LoopEntryPredicate->getCondition(), 5265 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5266 return true; 5267 } 5268 5269 return false; 5270 } 5271 5272 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5273 /// and RHS is true whenever the given Cond value evaluates to true. 5274 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5275 const SCEV *LHS, const SCEV *RHS, 5276 Value *FoundCondValue, 5277 bool Inverse) { 5278 // Recursively handle And and Or conditions. 5279 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5280 if (BO->getOpcode() == Instruction::And) { 5281 if (!Inverse) 5282 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5283 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5284 } else if (BO->getOpcode() == Instruction::Or) { 5285 if (Inverse) 5286 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5287 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5288 } 5289 } 5290 5291 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5292 if (!ICI) return false; 5293 5294 // Bail if the ICmp's operands' types are wider than the needed type 5295 // before attempting to call getSCEV on them. This avoids infinite 5296 // recursion, since the analysis of widening casts can require loop 5297 // exit condition information for overflow checking, which would 5298 // lead back here. 5299 if (getTypeSizeInBits(LHS->getType()) < 5300 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5301 return false; 5302 5303 // Now that we found a conditional branch that dominates the loop, check to 5304 // see if it is the comparison we are looking for. 5305 ICmpInst::Predicate FoundPred; 5306 if (Inverse) 5307 FoundPred = ICI->getInversePredicate(); 5308 else 5309 FoundPred = ICI->getPredicate(); 5310 5311 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5312 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5313 5314 // Balance the types. The case where FoundLHS' type is wider than 5315 // LHS' type is checked for above. 5316 if (getTypeSizeInBits(LHS->getType()) > 5317 getTypeSizeInBits(FoundLHS->getType())) { 5318 if (CmpInst::isSigned(Pred)) { 5319 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5320 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5321 } else { 5322 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5323 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5324 } 5325 } 5326 5327 // Canonicalize the query to match the way instcombine will have 5328 // canonicalized the comparison. 5329 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5330 if (LHS == RHS) 5331 return CmpInst::isTrueWhenEqual(Pred); 5332 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5333 if (FoundLHS == FoundRHS) 5334 return CmpInst::isFalseWhenEqual(Pred); 5335 5336 // Check to see if we can make the LHS or RHS match. 5337 if (LHS == FoundRHS || RHS == FoundLHS) { 5338 if (isa<SCEVConstant>(RHS)) { 5339 std::swap(FoundLHS, FoundRHS); 5340 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5341 } else { 5342 std::swap(LHS, RHS); 5343 Pred = ICmpInst::getSwappedPredicate(Pred); 5344 } 5345 } 5346 5347 // Check whether the found predicate is the same as the desired predicate. 5348 if (FoundPred == Pred) 5349 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5350 5351 // Check whether swapping the found predicate makes it the same as the 5352 // desired predicate. 5353 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5354 if (isa<SCEVConstant>(RHS)) 5355 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5356 else 5357 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5358 RHS, LHS, FoundLHS, FoundRHS); 5359 } 5360 5361 // Check whether the actual condition is beyond sufficient. 5362 if (FoundPred == ICmpInst::ICMP_EQ) 5363 if (ICmpInst::isTrueWhenEqual(Pred)) 5364 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5365 return true; 5366 if (Pred == ICmpInst::ICMP_NE) 5367 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5368 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5369 return true; 5370 5371 // Otherwise assume the worst. 5372 return false; 5373 } 5374 5375 /// isImpliedCondOperands - Test whether the condition described by Pred, 5376 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5377 /// and FoundRHS is true. 5378 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5379 const SCEV *LHS, const SCEV *RHS, 5380 const SCEV *FoundLHS, 5381 const SCEV *FoundRHS) { 5382 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5383 FoundLHS, FoundRHS) || 5384 // ~x < ~y --> x > y 5385 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5386 getNotSCEV(FoundRHS), 5387 getNotSCEV(FoundLHS)); 5388 } 5389 5390 /// isImpliedCondOperandsHelper - Test whether the condition described by 5391 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5392 /// FoundLHS, and FoundRHS is true. 5393 bool 5394 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5395 const SCEV *LHS, const SCEV *RHS, 5396 const SCEV *FoundLHS, 5397 const SCEV *FoundRHS) { 5398 switch (Pred) { 5399 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5400 case ICmpInst::ICMP_EQ: 5401 case ICmpInst::ICMP_NE: 5402 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5403 return true; 5404 break; 5405 case ICmpInst::ICMP_SLT: 5406 case ICmpInst::ICMP_SLE: 5407 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5408 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5409 return true; 5410 break; 5411 case ICmpInst::ICMP_SGT: 5412 case ICmpInst::ICMP_SGE: 5413 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5414 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5415 return true; 5416 break; 5417 case ICmpInst::ICMP_ULT: 5418 case ICmpInst::ICMP_ULE: 5419 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5420 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5421 return true; 5422 break; 5423 case ICmpInst::ICMP_UGT: 5424 case ICmpInst::ICMP_UGE: 5425 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5426 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5427 return true; 5428 break; 5429 } 5430 5431 return false; 5432 } 5433 5434 /// getBECount - Subtract the end and start values and divide by the step, 5435 /// rounding up, to get the number of times the backedge is executed. Return 5436 /// CouldNotCompute if an intermediate computation overflows. 5437 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5438 const SCEV *End, 5439 const SCEV *Step, 5440 bool NoWrap) { 5441 assert(!isKnownNegative(Step) && 5442 "This code doesn't handle negative strides yet!"); 5443 5444 const Type *Ty = Start->getType(); 5445 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5446 const SCEV *Diff = getMinusSCEV(End, Start); 5447 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5448 5449 // Add an adjustment to the difference between End and Start so that 5450 // the division will effectively round up. 5451 const SCEV *Add = getAddExpr(Diff, RoundUp); 5452 5453 if (!NoWrap) { 5454 // Check Add for unsigned overflow. 5455 // TODO: More sophisticated things could be done here. 5456 const Type *WideTy = IntegerType::get(getContext(), 5457 getTypeSizeInBits(Ty) + 1); 5458 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5459 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5460 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5461 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5462 return getCouldNotCompute(); 5463 } 5464 5465 return getUDivExpr(Add, Step); 5466 } 5467 5468 /// HowManyLessThans - Return the number of times a backedge containing the 5469 /// specified less-than comparison will execute. If not computable, return 5470 /// CouldNotCompute. 5471 ScalarEvolution::BackedgeTakenInfo 5472 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5473 const Loop *L, bool isSigned) { 5474 // Only handle: "ADDREC < LoopInvariant". 5475 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 5476 5477 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5478 if (!AddRec || AddRec->getLoop() != L) 5479 return getCouldNotCompute(); 5480 5481 // Check to see if we have a flag which makes analysis easy. 5482 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5483 AddRec->hasNoUnsignedWrap(); 5484 5485 if (AddRec->isAffine()) { 5486 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5487 const SCEV *Step = AddRec->getStepRecurrence(*this); 5488 5489 if (Step->isZero()) 5490 return getCouldNotCompute(); 5491 if (Step->isOne()) { 5492 // With unit stride, the iteration never steps past the limit value. 5493 } else if (isKnownPositive(Step)) { 5494 // Test whether a positive iteration can step past the limit 5495 // value and past the maximum value for its type in a single step. 5496 // Note that it's not sufficient to check NoWrap here, because even 5497 // though the value after a wrap is undefined, it's not undefined 5498 // behavior, so if wrap does occur, the loop could either terminate or 5499 // loop infinitely, but in either case, the loop is guaranteed to 5500 // iterate at least until the iteration where the wrapping occurs. 5501 const SCEV *One = getConstant(Step->getType(), 1); 5502 if (isSigned) { 5503 APInt Max = APInt::getSignedMaxValue(BitWidth); 5504 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5505 .slt(getSignedRange(RHS).getSignedMax())) 5506 return getCouldNotCompute(); 5507 } else { 5508 APInt Max = APInt::getMaxValue(BitWidth); 5509 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5510 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5511 return getCouldNotCompute(); 5512 } 5513 } else 5514 // TODO: Handle negative strides here and below. 5515 return getCouldNotCompute(); 5516 5517 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5518 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5519 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5520 // treat m-n as signed nor unsigned due to overflow possibility. 5521 5522 // First, we get the value of the LHS in the first iteration: n 5523 const SCEV *Start = AddRec->getOperand(0); 5524 5525 // Determine the minimum constant start value. 5526 const SCEV *MinStart = getConstant(isSigned ? 5527 getSignedRange(Start).getSignedMin() : 5528 getUnsignedRange(Start).getUnsignedMin()); 5529 5530 // If we know that the condition is true in order to enter the loop, 5531 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5532 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5533 // the division must round up. 5534 const SCEV *End = RHS; 5535 if (!isLoopEntryGuardedByCond(L, 5536 isSigned ? ICmpInst::ICMP_SLT : 5537 ICmpInst::ICMP_ULT, 5538 getMinusSCEV(Start, Step), RHS)) 5539 End = isSigned ? getSMaxExpr(RHS, Start) 5540 : getUMaxExpr(RHS, Start); 5541 5542 // Determine the maximum constant end value. 5543 const SCEV *MaxEnd = getConstant(isSigned ? 5544 getSignedRange(End).getSignedMax() : 5545 getUnsignedRange(End).getUnsignedMax()); 5546 5547 // If MaxEnd is within a step of the maximum integer value in its type, 5548 // adjust it down to the minimum value which would produce the same effect. 5549 // This allows the subsequent ceiling division of (N+(step-1))/step to 5550 // compute the correct value. 5551 const SCEV *StepMinusOne = getMinusSCEV(Step, 5552 getConstant(Step->getType(), 1)); 5553 MaxEnd = isSigned ? 5554 getSMinExpr(MaxEnd, 5555 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5556 StepMinusOne)) : 5557 getUMinExpr(MaxEnd, 5558 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5559 StepMinusOne)); 5560 5561 // Finally, we subtract these two values and divide, rounding up, to get 5562 // the number of times the backedge is executed. 5563 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5564 5565 // The maximum backedge count is similar, except using the minimum start 5566 // value and the maximum end value. 5567 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5568 5569 return BackedgeTakenInfo(BECount, MaxBECount); 5570 } 5571 5572 return getCouldNotCompute(); 5573 } 5574 5575 /// getNumIterationsInRange - Return the number of iterations of this loop that 5576 /// produce values in the specified constant range. Another way of looking at 5577 /// this is that it returns the first iteration number where the value is not in 5578 /// the condition, thus computing the exit count. If the iteration count can't 5579 /// be computed, an instance of SCEVCouldNotCompute is returned. 5580 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5581 ScalarEvolution &SE) const { 5582 if (Range.isFullSet()) // Infinite loop. 5583 return SE.getCouldNotCompute(); 5584 5585 // If the start is a non-zero constant, shift the range to simplify things. 5586 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5587 if (!SC->getValue()->isZero()) { 5588 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5589 Operands[0] = SE.getConstant(SC->getType(), 0); 5590 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5591 if (const SCEVAddRecExpr *ShiftedAddRec = 5592 dyn_cast<SCEVAddRecExpr>(Shifted)) 5593 return ShiftedAddRec->getNumIterationsInRange( 5594 Range.subtract(SC->getValue()->getValue()), SE); 5595 // This is strange and shouldn't happen. 5596 return SE.getCouldNotCompute(); 5597 } 5598 5599 // The only time we can solve this is when we have all constant indices. 5600 // Otherwise, we cannot determine the overflow conditions. 5601 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5602 if (!isa<SCEVConstant>(getOperand(i))) 5603 return SE.getCouldNotCompute(); 5604 5605 5606 // Okay at this point we know that all elements of the chrec are constants and 5607 // that the start element is zero. 5608 5609 // First check to see if the range contains zero. If not, the first 5610 // iteration exits. 5611 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5612 if (!Range.contains(APInt(BitWidth, 0))) 5613 return SE.getConstant(getType(), 0); 5614 5615 if (isAffine()) { 5616 // If this is an affine expression then we have this situation: 5617 // Solve {0,+,A} in Range === Ax in Range 5618 5619 // We know that zero is in the range. If A is positive then we know that 5620 // the upper value of the range must be the first possible exit value. 5621 // If A is negative then the lower of the range is the last possible loop 5622 // value. Also note that we already checked for a full range. 5623 APInt One(BitWidth,1); 5624 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5625 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5626 5627 // The exit value should be (End+A)/A. 5628 APInt ExitVal = (End + A).udiv(A); 5629 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5630 5631 // Evaluate at the exit value. If we really did fall out of the valid 5632 // range, then we computed our trip count, otherwise wrap around or other 5633 // things must have happened. 5634 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5635 if (Range.contains(Val->getValue())) 5636 return SE.getCouldNotCompute(); // Something strange happened 5637 5638 // Ensure that the previous value is in the range. This is a sanity check. 5639 assert(Range.contains( 5640 EvaluateConstantChrecAtConstant(this, 5641 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5642 "Linear scev computation is off in a bad way!"); 5643 return SE.getConstant(ExitValue); 5644 } else if (isQuadratic()) { 5645 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5646 // quadratic equation to solve it. To do this, we must frame our problem in 5647 // terms of figuring out when zero is crossed, instead of when 5648 // Range.getUpper() is crossed. 5649 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5650 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5651 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5652 5653 // Next, solve the constructed addrec 5654 std::pair<const SCEV *,const SCEV *> Roots = 5655 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5656 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5657 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5658 if (R1) { 5659 // Pick the smallest positive root value. 5660 if (ConstantInt *CB = 5661 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5662 R1->getValue(), R2->getValue()))) { 5663 if (CB->getZExtValue() == false) 5664 std::swap(R1, R2); // R1 is the minimum root now. 5665 5666 // Make sure the root is not off by one. The returned iteration should 5667 // not be in the range, but the previous one should be. When solving 5668 // for "X*X < 5", for example, we should not return a root of 2. 5669 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5670 R1->getValue(), 5671 SE); 5672 if (Range.contains(R1Val->getValue())) { 5673 // The next iteration must be out of the range... 5674 ConstantInt *NextVal = 5675 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5676 5677 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5678 if (!Range.contains(R1Val->getValue())) 5679 return SE.getConstant(NextVal); 5680 return SE.getCouldNotCompute(); // Something strange happened 5681 } 5682 5683 // If R1 was not in the range, then it is a good return value. Make 5684 // sure that R1-1 WAS in the range though, just in case. 5685 ConstantInt *NextVal = 5686 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5687 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5688 if (Range.contains(R1Val->getValue())) 5689 return R1; 5690 return SE.getCouldNotCompute(); // Something strange happened 5691 } 5692 } 5693 } 5694 5695 return SE.getCouldNotCompute(); 5696 } 5697 5698 5699 5700 //===----------------------------------------------------------------------===// 5701 // SCEVCallbackVH Class Implementation 5702 //===----------------------------------------------------------------------===// 5703 5704 void ScalarEvolution::SCEVCallbackVH::deleted() { 5705 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5706 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5707 SE->ConstantEvolutionLoopExitValue.erase(PN); 5708 SE->ValueExprMap.erase(getValPtr()); 5709 // this now dangles! 5710 } 5711 5712 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 5713 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5714 5715 // Forget all the expressions associated with users of the old value, 5716 // so that future queries will recompute the expressions using the new 5717 // value. 5718 Value *Old = getValPtr(); 5719 SmallVector<User *, 16> Worklist; 5720 SmallPtrSet<User *, 8> Visited; 5721 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5722 UI != UE; ++UI) 5723 Worklist.push_back(*UI); 5724 while (!Worklist.empty()) { 5725 User *U = Worklist.pop_back_val(); 5726 // Deleting the Old value will cause this to dangle. Postpone 5727 // that until everything else is done. 5728 if (U == Old) 5729 continue; 5730 if (!Visited.insert(U)) 5731 continue; 5732 if (PHINode *PN = dyn_cast<PHINode>(U)) 5733 SE->ConstantEvolutionLoopExitValue.erase(PN); 5734 SE->ValueExprMap.erase(U); 5735 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5736 UI != UE; ++UI) 5737 Worklist.push_back(*UI); 5738 } 5739 // Delete the Old value. 5740 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5741 SE->ConstantEvolutionLoopExitValue.erase(PN); 5742 SE->ValueExprMap.erase(Old); 5743 // this now dangles! 5744 } 5745 5746 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5747 : CallbackVH(V), SE(se) {} 5748 5749 //===----------------------------------------------------------------------===// 5750 // ScalarEvolution Class Implementation 5751 //===----------------------------------------------------------------------===// 5752 5753 ScalarEvolution::ScalarEvolution() 5754 : FunctionPass(ID), FirstUnknown(0) { 5755 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 5756 } 5757 5758 bool ScalarEvolution::runOnFunction(Function &F) { 5759 this->F = &F; 5760 LI = &getAnalysis<LoopInfo>(); 5761 TD = getAnalysisIfAvailable<TargetData>(); 5762 DT = &getAnalysis<DominatorTree>(); 5763 return false; 5764 } 5765 5766 void ScalarEvolution::releaseMemory() { 5767 // Iterate through all the SCEVUnknown instances and call their 5768 // destructors, so that they release their references to their values. 5769 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 5770 U->~SCEVUnknown(); 5771 FirstUnknown = 0; 5772 5773 ValueExprMap.clear(); 5774 BackedgeTakenCounts.clear(); 5775 ConstantEvolutionLoopExitValue.clear(); 5776 ValuesAtScopes.clear(); 5777 LoopDispositions.clear(); 5778 BlockDispositions.clear(); 5779 UnsignedRanges.clear(); 5780 SignedRanges.clear(); 5781 UniqueSCEVs.clear(); 5782 SCEVAllocator.Reset(); 5783 } 5784 5785 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5786 AU.setPreservesAll(); 5787 AU.addRequiredTransitive<LoopInfo>(); 5788 AU.addRequiredTransitive<DominatorTree>(); 5789 } 5790 5791 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5792 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5793 } 5794 5795 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5796 const Loop *L) { 5797 // Print all inner loops first 5798 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5799 PrintLoopInfo(OS, SE, *I); 5800 5801 OS << "Loop "; 5802 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5803 OS << ": "; 5804 5805 SmallVector<BasicBlock *, 8> ExitBlocks; 5806 L->getExitBlocks(ExitBlocks); 5807 if (ExitBlocks.size() != 1) 5808 OS << "<multiple exits> "; 5809 5810 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5811 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5812 } else { 5813 OS << "Unpredictable backedge-taken count. "; 5814 } 5815 5816 OS << "\n" 5817 "Loop "; 5818 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5819 OS << ": "; 5820 5821 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5822 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5823 } else { 5824 OS << "Unpredictable max backedge-taken count. "; 5825 } 5826 5827 OS << "\n"; 5828 } 5829 5830 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5831 // ScalarEvolution's implementation of the print method is to print 5832 // out SCEV values of all instructions that are interesting. Doing 5833 // this potentially causes it to create new SCEV objects though, 5834 // which technically conflicts with the const qualifier. This isn't 5835 // observable from outside the class though, so casting away the 5836 // const isn't dangerous. 5837 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5838 5839 OS << "Classifying expressions for: "; 5840 WriteAsOperand(OS, F, /*PrintType=*/false); 5841 OS << "\n"; 5842 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5843 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 5844 OS << *I << '\n'; 5845 OS << " --> "; 5846 const SCEV *SV = SE.getSCEV(&*I); 5847 SV->print(OS); 5848 5849 const Loop *L = LI->getLoopFor((*I).getParent()); 5850 5851 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5852 if (AtUse != SV) { 5853 OS << " --> "; 5854 AtUse->print(OS); 5855 } 5856 5857 if (L) { 5858 OS << "\t\t" "Exits: "; 5859 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5860 if (!SE.isLoopInvariant(ExitValue, L)) { 5861 OS << "<<Unknown>>"; 5862 } else { 5863 OS << *ExitValue; 5864 } 5865 } 5866 5867 OS << "\n"; 5868 } 5869 5870 OS << "Determining loop execution counts for: "; 5871 WriteAsOperand(OS, F, /*PrintType=*/false); 5872 OS << "\n"; 5873 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5874 PrintLoopInfo(OS, &SE, *I); 5875 } 5876 5877 ScalarEvolution::LoopDisposition 5878 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 5879 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 5880 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 5881 Values.insert(std::make_pair(L, LoopVariant)); 5882 if (!Pair.second) 5883 return Pair.first->second; 5884 5885 LoopDisposition D = computeLoopDisposition(S, L); 5886 return LoopDispositions[S][L] = D; 5887 } 5888 5889 ScalarEvolution::LoopDisposition 5890 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 5891 switch (S->getSCEVType()) { 5892 case scConstant: 5893 return LoopInvariant; 5894 case scTruncate: 5895 case scZeroExtend: 5896 case scSignExtend: 5897 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 5898 case scAddRecExpr: { 5899 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 5900 5901 // If L is the addrec's loop, it's computable. 5902 if (AR->getLoop() == L) 5903 return LoopComputable; 5904 5905 // Add recurrences are never invariant in the function-body (null loop). 5906 if (!L) 5907 return LoopVariant; 5908 5909 // This recurrence is variant w.r.t. L if L contains AR's loop. 5910 if (L->contains(AR->getLoop())) 5911 return LoopVariant; 5912 5913 // This recurrence is invariant w.r.t. L if AR's loop contains L. 5914 if (AR->getLoop()->contains(L)) 5915 return LoopInvariant; 5916 5917 // This recurrence is variant w.r.t. L if any of its operands 5918 // are variant. 5919 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 5920 I != E; ++I) 5921 if (!isLoopInvariant(*I, L)) 5922 return LoopVariant; 5923 5924 // Otherwise it's loop-invariant. 5925 return LoopInvariant; 5926 } 5927 case scAddExpr: 5928 case scMulExpr: 5929 case scUMaxExpr: 5930 case scSMaxExpr: { 5931 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 5932 bool HasVarying = false; 5933 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 5934 I != E; ++I) { 5935 LoopDisposition D = getLoopDisposition(*I, L); 5936 if (D == LoopVariant) 5937 return LoopVariant; 5938 if (D == LoopComputable) 5939 HasVarying = true; 5940 } 5941 return HasVarying ? LoopComputable : LoopInvariant; 5942 } 5943 case scUDivExpr: { 5944 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 5945 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 5946 if (LD == LoopVariant) 5947 return LoopVariant; 5948 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 5949 if (RD == LoopVariant) 5950 return LoopVariant; 5951 return (LD == LoopInvariant && RD == LoopInvariant) ? 5952 LoopInvariant : LoopComputable; 5953 } 5954 case scUnknown: 5955 // All non-instruction values are loop invariant. All instructions are loop 5956 // invariant if they are not contained in the specified loop. 5957 // Instructions are never considered invariant in the function body 5958 // (null loop) because they are defined within the "loop". 5959 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 5960 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 5961 return LoopInvariant; 5962 case scCouldNotCompute: 5963 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 5964 return LoopVariant; 5965 default: break; 5966 } 5967 llvm_unreachable("Unknown SCEV kind!"); 5968 return LoopVariant; 5969 } 5970 5971 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 5972 return getLoopDisposition(S, L) == LoopInvariant; 5973 } 5974 5975 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 5976 return getLoopDisposition(S, L) == LoopComputable; 5977 } 5978 5979 ScalarEvolution::BlockDisposition 5980 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 5981 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 5982 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 5983 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 5984 if (!Pair.second) 5985 return Pair.first->second; 5986 5987 BlockDisposition D = computeBlockDisposition(S, BB); 5988 return BlockDispositions[S][BB] = D; 5989 } 5990 5991 ScalarEvolution::BlockDisposition 5992 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 5993 switch (S->getSCEVType()) { 5994 case scConstant: 5995 return ProperlyDominatesBlock; 5996 case scTruncate: 5997 case scZeroExtend: 5998 case scSignExtend: 5999 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6000 case scAddRecExpr: { 6001 // This uses a "dominates" query instead of "properly dominates" query 6002 // to test for proper dominance too, because the instruction which 6003 // produces the addrec's value is a PHI, and a PHI effectively properly 6004 // dominates its entire containing block. 6005 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6006 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6007 return DoesNotDominateBlock; 6008 } 6009 // FALL THROUGH into SCEVNAryExpr handling. 6010 case scAddExpr: 6011 case scMulExpr: 6012 case scUMaxExpr: 6013 case scSMaxExpr: { 6014 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6015 bool Proper = true; 6016 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6017 I != E; ++I) { 6018 BlockDisposition D = getBlockDisposition(*I, BB); 6019 if (D == DoesNotDominateBlock) 6020 return DoesNotDominateBlock; 6021 if (D == DominatesBlock) 6022 Proper = false; 6023 } 6024 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6025 } 6026 case scUDivExpr: { 6027 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6028 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6029 BlockDisposition LD = getBlockDisposition(LHS, BB); 6030 if (LD == DoesNotDominateBlock) 6031 return DoesNotDominateBlock; 6032 BlockDisposition RD = getBlockDisposition(RHS, BB); 6033 if (RD == DoesNotDominateBlock) 6034 return DoesNotDominateBlock; 6035 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6036 ProperlyDominatesBlock : DominatesBlock; 6037 } 6038 case scUnknown: 6039 if (Instruction *I = 6040 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6041 if (I->getParent() == BB) 6042 return DominatesBlock; 6043 if (DT->properlyDominates(I->getParent(), BB)) 6044 return ProperlyDominatesBlock; 6045 return DoesNotDominateBlock; 6046 } 6047 return ProperlyDominatesBlock; 6048 case scCouldNotCompute: 6049 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6050 return DoesNotDominateBlock; 6051 default: break; 6052 } 6053 llvm_unreachable("Unknown SCEV kind!"); 6054 return DoesNotDominateBlock; 6055 } 6056 6057 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6058 return getBlockDisposition(S, BB) >= DominatesBlock; 6059 } 6060 6061 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6062 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6063 } 6064 6065 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6066 switch (S->getSCEVType()) { 6067 case scConstant: 6068 return false; 6069 case scTruncate: 6070 case scZeroExtend: 6071 case scSignExtend: { 6072 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6073 const SCEV *CastOp = Cast->getOperand(); 6074 return Op == CastOp || hasOperand(CastOp, Op); 6075 } 6076 case scAddRecExpr: 6077 case scAddExpr: 6078 case scMulExpr: 6079 case scUMaxExpr: 6080 case scSMaxExpr: { 6081 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6082 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6083 I != E; ++I) { 6084 const SCEV *NAryOp = *I; 6085 if (NAryOp == Op || hasOperand(NAryOp, Op)) 6086 return true; 6087 } 6088 return false; 6089 } 6090 case scUDivExpr: { 6091 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6092 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6093 return LHS == Op || hasOperand(LHS, Op) || 6094 RHS == Op || hasOperand(RHS, Op); 6095 } 6096 case scUnknown: 6097 return false; 6098 case scCouldNotCompute: 6099 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6100 return false; 6101 default: break; 6102 } 6103 llvm_unreachable("Unknown SCEV kind!"); 6104 return false; 6105 } 6106 6107 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6108 ValuesAtScopes.erase(S); 6109 LoopDispositions.erase(S); 6110 BlockDispositions.erase(S); 6111 UnsignedRanges.erase(S); 6112 SignedRanges.erase(S); 6113 } 6114