1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/ValueTracking.h" 72 #include "llvm/Assembly/Writer.h" 73 #include "llvm/Target/TargetData.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/ConstantRange.h" 77 #include "llvm/Support/GetElementPtrTypeIterator.h" 78 #include "llvm/Support/InstIterator.h" 79 #include "llvm/Support/ManagedStatic.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/ADT/Statistic.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include <algorithm> 85 using namespace llvm; 86 87 STATISTIC(NumArrayLenItCounts, 88 "Number of trip counts computed with array length"); 89 STATISTIC(NumTripCountsComputed, 90 "Number of loops with predictable loop counts"); 91 STATISTIC(NumTripCountsNotComputed, 92 "Number of loops without predictable loop counts"); 93 STATISTIC(NumBruteForceTripCountsComputed, 94 "Number of loops with trip counts computed by force"); 95 96 static cl::opt<unsigned> 97 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 98 cl::desc("Maximum number of iterations SCEV will " 99 "symbolically execute a constant derived loop"), 100 cl::init(100)); 101 102 static RegisterPass<ScalarEvolution> 103 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 104 char ScalarEvolution::ID = 0; 105 106 //===----------------------------------------------------------------------===// 107 // SCEV class definitions 108 //===----------------------------------------------------------------------===// 109 110 //===----------------------------------------------------------------------===// 111 // Implementation of the SCEV class. 112 // 113 SCEV::~SCEV() {} 114 void SCEV::dump() const { 115 print(errs()); 116 errs() << '\n'; 117 } 118 119 void SCEV::print(std::ostream &o) const { 120 raw_os_ostream OS(o); 121 print(OS); 122 } 123 124 bool SCEV::isZero() const { 125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 126 return SC->getValue()->isZero(); 127 return false; 128 } 129 130 bool SCEV::isOne() const { 131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 132 return SC->getValue()->isOne(); 133 return false; 134 } 135 136 SCEVCouldNotCompute::SCEVCouldNotCompute(const ScalarEvolution* p) : 137 SCEV(scCouldNotCompute, p) {} 138 SCEVCouldNotCompute::~SCEVCouldNotCompute() {} 139 140 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 141 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 142 return false; 143 } 144 145 const Type *SCEVCouldNotCompute::getType() const { 146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 147 return 0; 148 } 149 150 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 151 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 152 return false; 153 } 154 155 SCEVHandle SCEVCouldNotCompute:: 156 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 157 const SCEVHandle &Conc, 158 ScalarEvolution &SE) const { 159 return this; 160 } 161 162 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 163 OS << "***COULDNOTCOMPUTE***"; 164 } 165 166 bool SCEVCouldNotCompute::classof(const SCEV *S) { 167 return S->getSCEVType() == scCouldNotCompute; 168 } 169 170 171 // SCEVConstants - Only allow the creation of one SCEVConstant for any 172 // particular value. Don't use a SCEVHandle here, or else the object will 173 // never be deleted! 174 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 175 176 177 SCEVConstant::~SCEVConstant() { 178 SCEVConstants->erase(V); 179 } 180 181 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 182 SCEVConstant *&R = (*SCEVConstants)[V]; 183 if (R == 0) R = new SCEVConstant(V, this); 184 return R; 185 } 186 187 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 188 return getConstant(ConstantInt::get(Val)); 189 } 190 191 SCEVHandle 192 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 193 return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 194 } 195 196 const Type *SCEVConstant::getType() const { return V->getType(); } 197 198 void SCEVConstant::print(raw_ostream &OS) const { 199 WriteAsOperand(OS, V, false); 200 } 201 202 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 203 const SCEVHandle &op, const Type *ty, 204 const ScalarEvolution* p) 205 : SCEV(SCEVTy, p), Op(op), Ty(ty) {} 206 207 SCEVCastExpr::~SCEVCastExpr() {} 208 209 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->dominates(BB, DT); 211 } 212 213 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 214 // particular input. Don't use a SCEVHandle here, or else the object will 215 // never be deleted! 216 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 217 SCEVTruncateExpr*> > SCEVTruncates; 218 219 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty, 220 const ScalarEvolution* p) 221 : SCEVCastExpr(scTruncate, op, ty, p) { 222 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 223 (Ty->isInteger() || isa<PointerType>(Ty)) && 224 "Cannot truncate non-integer value!"); 225 } 226 227 SCEVTruncateExpr::~SCEVTruncateExpr() { 228 SCEVTruncates->erase(std::make_pair(Op, Ty)); 229 } 230 231 void SCEVTruncateExpr::print(raw_ostream &OS) const { 232 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 233 } 234 235 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 236 // particular input. Don't use a SCEVHandle here, or else the object will never 237 // be deleted! 238 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 239 SCEVZeroExtendExpr*> > SCEVZeroExtends; 240 241 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty, 242 const ScalarEvolution* p) 243 : SCEVCastExpr(scZeroExtend, op, ty, p) { 244 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 245 (Ty->isInteger() || isa<PointerType>(Ty)) && 246 "Cannot zero extend non-integer value!"); 247 } 248 249 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 250 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 251 } 252 253 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 254 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 255 } 256 257 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 258 // particular input. Don't use a SCEVHandle here, or else the object will never 259 // be deleted! 260 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 261 SCEVSignExtendExpr*> > SCEVSignExtends; 262 263 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty, 264 const ScalarEvolution* p) 265 : SCEVCastExpr(scSignExtend, op, ty, p) { 266 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 267 (Ty->isInteger() || isa<PointerType>(Ty)) && 268 "Cannot sign extend non-integer value!"); 269 } 270 271 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 272 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 273 } 274 275 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 276 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 277 } 278 279 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 280 // particular input. Don't use a SCEVHandle here, or else the object will never 281 // be deleted! 282 static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >, 283 SCEVCommutativeExpr*> > SCEVCommExprs; 284 285 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 286 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 287 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps)); 288 } 289 290 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 291 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 292 const char *OpStr = getOperationStr(); 293 OS << "(" << *Operands[0]; 294 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 295 OS << OpStr << *Operands[i]; 296 OS << ")"; 297 } 298 299 SCEVHandle SCEVCommutativeExpr:: 300 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 301 const SCEVHandle &Conc, 302 ScalarEvolution &SE) const { 303 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 304 SCEVHandle H = 305 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 306 if (H != getOperand(i)) { 307 SmallVector<SCEVHandle, 8> NewOps; 308 NewOps.reserve(getNumOperands()); 309 for (unsigned j = 0; j != i; ++j) 310 NewOps.push_back(getOperand(j)); 311 NewOps.push_back(H); 312 for (++i; i != e; ++i) 313 NewOps.push_back(getOperand(i)-> 314 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 315 316 if (isa<SCEVAddExpr>(this)) 317 return SE.getAddExpr(NewOps); 318 else if (isa<SCEVMulExpr>(this)) 319 return SE.getMulExpr(NewOps); 320 else if (isa<SCEVSMaxExpr>(this)) 321 return SE.getSMaxExpr(NewOps); 322 else if (isa<SCEVUMaxExpr>(this)) 323 return SE.getUMaxExpr(NewOps); 324 else 325 assert(0 && "Unknown commutative expr!"); 326 } 327 } 328 return this; 329 } 330 331 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 332 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 333 if (!getOperand(i)->dominates(BB, DT)) 334 return false; 335 } 336 return true; 337 } 338 339 340 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 341 // input. Don't use a SCEVHandle here, or else the object will never be 342 // deleted! 343 static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>, 344 SCEVUDivExpr*> > SCEVUDivs; 345 346 SCEVUDivExpr::~SCEVUDivExpr() { 347 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 348 } 349 350 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 351 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 352 } 353 354 void SCEVUDivExpr::print(raw_ostream &OS) const { 355 OS << "(" << *LHS << " /u " << *RHS << ")"; 356 } 357 358 const Type *SCEVUDivExpr::getType() const { 359 // In most cases the types of LHS and RHS will be the same, but in some 360 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 361 // depend on the type for correctness, but handling types carefully can 362 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 363 // a pointer type than the RHS, so use the RHS' type here. 364 return RHS->getType(); 365 } 366 367 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 368 // particular input. Don't use a SCEVHandle here, or else the object will never 369 // be deleted! 370 static ManagedStatic<std::map<std::pair<const Loop *, 371 std::vector<const SCEV*> >, 372 SCEVAddRecExpr*> > SCEVAddRecExprs; 373 374 SCEVAddRecExpr::~SCEVAddRecExpr() { 375 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 376 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps)); 377 } 378 379 SCEVHandle SCEVAddRecExpr:: 380 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 381 const SCEVHandle &Conc, 382 ScalarEvolution &SE) const { 383 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 384 SCEVHandle H = 385 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 386 if (H != getOperand(i)) { 387 SmallVector<SCEVHandle, 8> NewOps; 388 NewOps.reserve(getNumOperands()); 389 for (unsigned j = 0; j != i; ++j) 390 NewOps.push_back(getOperand(j)); 391 NewOps.push_back(H); 392 for (++i; i != e; ++i) 393 NewOps.push_back(getOperand(i)-> 394 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 395 396 return SE.getAddRecExpr(NewOps, L); 397 } 398 } 399 return this; 400 } 401 402 403 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 404 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 405 // contain L and if the start is invariant. 406 // Add recurrences are never invariant in the function-body (null loop). 407 return QueryLoop && 408 !QueryLoop->contains(L->getHeader()) && 409 getOperand(0)->isLoopInvariant(QueryLoop); 410 } 411 412 413 void SCEVAddRecExpr::print(raw_ostream &OS) const { 414 OS << "{" << *Operands[0]; 415 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 416 OS << ",+," << *Operands[i]; 417 OS << "}<" << L->getHeader()->getName() + ">"; 418 } 419 420 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 421 // value. Don't use a SCEVHandle here, or else the object will never be 422 // deleted! 423 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 424 425 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 426 427 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 428 // All non-instruction values are loop invariant. All instructions are loop 429 // invariant if they are not contained in the specified loop. 430 // Instructions are never considered invariant in the function body 431 // (null loop) because they are defined within the "loop". 432 if (Instruction *I = dyn_cast<Instruction>(V)) 433 return L && !L->contains(I->getParent()); 434 return true; 435 } 436 437 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 438 if (Instruction *I = dyn_cast<Instruction>(getValue())) 439 return DT->dominates(I->getParent(), BB); 440 return true; 441 } 442 443 const Type *SCEVUnknown::getType() const { 444 return V->getType(); 445 } 446 447 void SCEVUnknown::print(raw_ostream &OS) const { 448 WriteAsOperand(OS, V, false); 449 } 450 451 //===----------------------------------------------------------------------===// 452 // SCEV Utilities 453 //===----------------------------------------------------------------------===// 454 455 namespace { 456 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 457 /// than the complexity of the RHS. This comparator is used to canonicalize 458 /// expressions. 459 class VISIBILITY_HIDDEN SCEVComplexityCompare { 460 LoopInfo *LI; 461 public: 462 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 463 464 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 465 // Primarily, sort the SCEVs by their getSCEVType(). 466 if (LHS->getSCEVType() != RHS->getSCEVType()) 467 return LHS->getSCEVType() < RHS->getSCEVType(); 468 469 // Aside from the getSCEVType() ordering, the particular ordering 470 // isn't very important except that it's beneficial to be consistent, 471 // so that (a + b) and (b + a) don't end up as different expressions. 472 473 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 474 // not as complete as it could be. 475 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 476 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 477 478 // Order pointer values after integer values. This helps SCEVExpander 479 // form GEPs. 480 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 481 return false; 482 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 483 return true; 484 485 // Compare getValueID values. 486 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 487 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 488 489 // Sort arguments by their position. 490 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 491 const Argument *RA = cast<Argument>(RU->getValue()); 492 return LA->getArgNo() < RA->getArgNo(); 493 } 494 495 // For instructions, compare their loop depth, and their opcode. 496 // This is pretty loose. 497 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 498 Instruction *RV = cast<Instruction>(RU->getValue()); 499 500 // Compare loop depths. 501 if (LI->getLoopDepth(LV->getParent()) != 502 LI->getLoopDepth(RV->getParent())) 503 return LI->getLoopDepth(LV->getParent()) < 504 LI->getLoopDepth(RV->getParent()); 505 506 // Compare opcodes. 507 if (LV->getOpcode() != RV->getOpcode()) 508 return LV->getOpcode() < RV->getOpcode(); 509 510 // Compare the number of operands. 511 if (LV->getNumOperands() != RV->getNumOperands()) 512 return LV->getNumOperands() < RV->getNumOperands(); 513 } 514 515 return false; 516 } 517 518 // Compare constant values. 519 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 520 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 521 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 522 } 523 524 // Compare addrec loop depths. 525 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 526 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 527 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 528 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 529 } 530 531 // Lexicographically compare n-ary expressions. 532 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 533 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 534 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 535 if (i >= RC->getNumOperands()) 536 return false; 537 if (operator()(LC->getOperand(i), RC->getOperand(i))) 538 return true; 539 if (operator()(RC->getOperand(i), LC->getOperand(i))) 540 return false; 541 } 542 return LC->getNumOperands() < RC->getNumOperands(); 543 } 544 545 // Lexicographically compare udiv expressions. 546 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 547 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 548 if (operator()(LC->getLHS(), RC->getLHS())) 549 return true; 550 if (operator()(RC->getLHS(), LC->getLHS())) 551 return false; 552 if (operator()(LC->getRHS(), RC->getRHS())) 553 return true; 554 if (operator()(RC->getRHS(), LC->getRHS())) 555 return false; 556 return false; 557 } 558 559 // Compare cast expressions by operand. 560 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 561 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 562 return operator()(LC->getOperand(), RC->getOperand()); 563 } 564 565 assert(0 && "Unknown SCEV kind!"); 566 return false; 567 } 568 }; 569 } 570 571 /// GroupByComplexity - Given a list of SCEV objects, order them by their 572 /// complexity, and group objects of the same complexity together by value. 573 /// When this routine is finished, we know that any duplicates in the vector are 574 /// consecutive and that complexity is monotonically increasing. 575 /// 576 /// Note that we go take special precautions to ensure that we get determinstic 577 /// results from this routine. In other words, we don't want the results of 578 /// this to depend on where the addresses of various SCEV objects happened to 579 /// land in memory. 580 /// 581 static void GroupByComplexity(SmallVectorImpl<SCEVHandle> &Ops, 582 LoopInfo *LI) { 583 if (Ops.size() < 2) return; // Noop 584 if (Ops.size() == 2) { 585 // This is the common case, which also happens to be trivially simple. 586 // Special case it. 587 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 588 std::swap(Ops[0], Ops[1]); 589 return; 590 } 591 592 // Do the rough sort by complexity. 593 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 594 595 // Now that we are sorted by complexity, group elements of the same 596 // complexity. Note that this is, at worst, N^2, but the vector is likely to 597 // be extremely short in practice. Note that we take this approach because we 598 // do not want to depend on the addresses of the objects we are grouping. 599 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 600 const SCEV *S = Ops[i]; 601 unsigned Complexity = S->getSCEVType(); 602 603 // If there are any objects of the same complexity and same value as this 604 // one, group them. 605 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 606 if (Ops[j] == S) { // Found a duplicate. 607 // Move it to immediately after i'th element. 608 std::swap(Ops[i+1], Ops[j]); 609 ++i; // no need to rescan it. 610 if (i == e-2) return; // Done! 611 } 612 } 613 } 614 } 615 616 617 618 //===----------------------------------------------------------------------===// 619 // Simple SCEV method implementations 620 //===----------------------------------------------------------------------===// 621 622 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 623 /// Assume, K > 0. 624 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 625 ScalarEvolution &SE, 626 const Type* ResultTy) { 627 // Handle the simplest case efficiently. 628 if (K == 1) 629 return SE.getTruncateOrZeroExtend(It, ResultTy); 630 631 // We are using the following formula for BC(It, K): 632 // 633 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 634 // 635 // Suppose, W is the bitwidth of the return value. We must be prepared for 636 // overflow. Hence, we must assure that the result of our computation is 637 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 638 // safe in modular arithmetic. 639 // 640 // However, this code doesn't use exactly that formula; the formula it uses 641 // is something like the following, where T is the number of factors of 2 in 642 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 643 // exponentiation: 644 // 645 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 646 // 647 // This formula is trivially equivalent to the previous formula. However, 648 // this formula can be implemented much more efficiently. The trick is that 649 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 650 // arithmetic. To do exact division in modular arithmetic, all we have 651 // to do is multiply by the inverse. Therefore, this step can be done at 652 // width W. 653 // 654 // The next issue is how to safely do the division by 2^T. The way this 655 // is done is by doing the multiplication step at a width of at least W + T 656 // bits. This way, the bottom W+T bits of the product are accurate. Then, 657 // when we perform the division by 2^T (which is equivalent to a right shift 658 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 659 // truncated out after the division by 2^T. 660 // 661 // In comparison to just directly using the first formula, this technique 662 // is much more efficient; using the first formula requires W * K bits, 663 // but this formula less than W + K bits. Also, the first formula requires 664 // a division step, whereas this formula only requires multiplies and shifts. 665 // 666 // It doesn't matter whether the subtraction step is done in the calculation 667 // width or the input iteration count's width; if the subtraction overflows, 668 // the result must be zero anyway. We prefer here to do it in the width of 669 // the induction variable because it helps a lot for certain cases; CodeGen 670 // isn't smart enough to ignore the overflow, which leads to much less 671 // efficient code if the width of the subtraction is wider than the native 672 // register width. 673 // 674 // (It's possible to not widen at all by pulling out factors of 2 before 675 // the multiplication; for example, K=2 can be calculated as 676 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 677 // extra arithmetic, so it's not an obvious win, and it gets 678 // much more complicated for K > 3.) 679 680 // Protection from insane SCEVs; this bound is conservative, 681 // but it probably doesn't matter. 682 if (K > 1000) 683 return SE.getCouldNotCompute(); 684 685 unsigned W = SE.getTypeSizeInBits(ResultTy); 686 687 // Calculate K! / 2^T and T; we divide out the factors of two before 688 // multiplying for calculating K! / 2^T to avoid overflow. 689 // Other overflow doesn't matter because we only care about the bottom 690 // W bits of the result. 691 APInt OddFactorial(W, 1); 692 unsigned T = 1; 693 for (unsigned i = 3; i <= K; ++i) { 694 APInt Mult(W, i); 695 unsigned TwoFactors = Mult.countTrailingZeros(); 696 T += TwoFactors; 697 Mult = Mult.lshr(TwoFactors); 698 OddFactorial *= Mult; 699 } 700 701 // We need at least W + T bits for the multiplication step 702 unsigned CalculationBits = W + T; 703 704 // Calcuate 2^T, at width T+W. 705 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 706 707 // Calculate the multiplicative inverse of K! / 2^T; 708 // this multiplication factor will perform the exact division by 709 // K! / 2^T. 710 APInt Mod = APInt::getSignedMinValue(W+1); 711 APInt MultiplyFactor = OddFactorial.zext(W+1); 712 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 713 MultiplyFactor = MultiplyFactor.trunc(W); 714 715 // Calculate the product, at width T+W 716 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 717 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 718 for (unsigned i = 1; i != K; ++i) { 719 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 720 Dividend = SE.getMulExpr(Dividend, 721 SE.getTruncateOrZeroExtend(S, CalculationTy)); 722 } 723 724 // Divide by 2^T 725 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 726 727 // Truncate the result, and divide by K! / 2^T. 728 729 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 730 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 731 } 732 733 /// evaluateAtIteration - Return the value of this chain of recurrences at 734 /// the specified iteration number. We can evaluate this recurrence by 735 /// multiplying each element in the chain by the binomial coefficient 736 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 737 /// 738 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 739 /// 740 /// where BC(It, k) stands for binomial coefficient. 741 /// 742 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 743 ScalarEvolution &SE) const { 744 SCEVHandle Result = getStart(); 745 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 746 // The computation is correct in the face of overflow provided that the 747 // multiplication is performed _after_ the evaluation of the binomial 748 // coefficient. 749 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 750 if (isa<SCEVCouldNotCompute>(Coeff)) 751 return Coeff; 752 753 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 754 } 755 return Result; 756 } 757 758 //===----------------------------------------------------------------------===// 759 // SCEV Expression folder implementations 760 //===----------------------------------------------------------------------===// 761 762 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, 763 const Type *Ty) { 764 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 765 "This is not a truncating conversion!"); 766 assert(isSCEVable(Ty) && 767 "This is not a conversion to a SCEVable type!"); 768 Ty = getEffectiveSCEVType(Ty); 769 770 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 771 return getUnknown( 772 ConstantExpr::getTrunc(SC->getValue(), Ty)); 773 774 // trunc(trunc(x)) --> trunc(x) 775 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 776 return getTruncateExpr(ST->getOperand(), Ty); 777 778 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 779 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 780 return getTruncateOrSignExtend(SS->getOperand(), Ty); 781 782 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 783 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 784 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 785 786 // If the input value is a chrec scev, truncate the chrec's operands. 787 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 788 SmallVector<SCEVHandle, 4> Operands; 789 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 790 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 791 return getAddRecExpr(Operands, AddRec->getLoop()); 792 } 793 794 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 795 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty, this); 796 return Result; 797 } 798 799 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 800 const Type *Ty) { 801 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 802 "This is not an extending conversion!"); 803 assert(isSCEVable(Ty) && 804 "This is not a conversion to a SCEVable type!"); 805 Ty = getEffectiveSCEVType(Ty); 806 807 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 808 const Type *IntTy = getEffectiveSCEVType(Ty); 809 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 810 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 811 return getUnknown(C); 812 } 813 814 // zext(zext(x)) --> zext(x) 815 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 816 return getZeroExtendExpr(SZ->getOperand(), Ty); 817 818 // If the input value is a chrec scev, and we can prove that the value 819 // did not overflow the old, smaller, value, we can zero extend all of the 820 // operands (often constants). This allows analysis of something like 821 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 822 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 823 if (AR->isAffine()) { 824 // Check whether the backedge-taken count is SCEVCouldNotCompute. 825 // Note that this serves two purposes: It filters out loops that are 826 // simply not analyzable, and it covers the case where this code is 827 // being called from within backedge-taken count analysis, such that 828 // attempting to ask for the backedge-taken count would likely result 829 // in infinite recursion. In the later case, the analysis code will 830 // cope with a conservative value, and it will take care to purge 831 // that value once it has finished. 832 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 833 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 834 // Manually compute the final value for AR, checking for 835 // overflow. 836 SCEVHandle Start = AR->getStart(); 837 SCEVHandle Step = AR->getStepRecurrence(*this); 838 839 // Check whether the backedge-taken count can be losslessly casted to 840 // the addrec's type. The count is always unsigned. 841 SCEVHandle CastedMaxBECount = 842 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 843 SCEVHandle RecastedMaxBECount = 844 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 845 if (MaxBECount == RecastedMaxBECount) { 846 const Type *WideTy = 847 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 848 // Check whether Start+Step*MaxBECount has no unsigned overflow. 849 SCEVHandle ZMul = 850 getMulExpr(CastedMaxBECount, 851 getTruncateOrZeroExtend(Step, Start->getType())); 852 SCEVHandle Add = getAddExpr(Start, ZMul); 853 SCEVHandle OperandExtendedAdd = 854 getAddExpr(getZeroExtendExpr(Start, WideTy), 855 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 856 getZeroExtendExpr(Step, WideTy))); 857 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 858 // Return the expression with the addrec on the outside. 859 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 860 getZeroExtendExpr(Step, Ty), 861 AR->getLoop()); 862 863 // Similar to above, only this time treat the step value as signed. 864 // This covers loops that count down. 865 SCEVHandle SMul = 866 getMulExpr(CastedMaxBECount, 867 getTruncateOrSignExtend(Step, Start->getType())); 868 Add = getAddExpr(Start, SMul); 869 OperandExtendedAdd = 870 getAddExpr(getZeroExtendExpr(Start, WideTy), 871 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 872 getSignExtendExpr(Step, WideTy))); 873 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 874 // Return the expression with the addrec on the outside. 875 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 876 getSignExtendExpr(Step, Ty), 877 AR->getLoop()); 878 } 879 } 880 } 881 882 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 883 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty, this); 884 return Result; 885 } 886 887 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, 888 const Type *Ty) { 889 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 890 "This is not an extending conversion!"); 891 assert(isSCEVable(Ty) && 892 "This is not a conversion to a SCEVable type!"); 893 Ty = getEffectiveSCEVType(Ty); 894 895 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 896 const Type *IntTy = getEffectiveSCEVType(Ty); 897 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 898 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 899 return getUnknown(C); 900 } 901 902 // sext(sext(x)) --> sext(x) 903 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 904 return getSignExtendExpr(SS->getOperand(), Ty); 905 906 // If the input value is a chrec scev, and we can prove that the value 907 // did not overflow the old, smaller, value, we can sign extend all of the 908 // operands (often constants). This allows analysis of something like 909 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 910 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 911 if (AR->isAffine()) { 912 // Check whether the backedge-taken count is SCEVCouldNotCompute. 913 // Note that this serves two purposes: It filters out loops that are 914 // simply not analyzable, and it covers the case where this code is 915 // being called from within backedge-taken count analysis, such that 916 // attempting to ask for the backedge-taken count would likely result 917 // in infinite recursion. In the later case, the analysis code will 918 // cope with a conservative value, and it will take care to purge 919 // that value once it has finished. 920 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 921 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 922 // Manually compute the final value for AR, checking for 923 // overflow. 924 SCEVHandle Start = AR->getStart(); 925 SCEVHandle Step = AR->getStepRecurrence(*this); 926 927 // Check whether the backedge-taken count can be losslessly casted to 928 // the addrec's type. The count is always unsigned. 929 SCEVHandle CastedMaxBECount = 930 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 931 SCEVHandle RecastedMaxBECount = 932 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 933 if (MaxBECount == RecastedMaxBECount) { 934 const Type *WideTy = 935 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 936 // Check whether Start+Step*MaxBECount has no signed overflow. 937 SCEVHandle SMul = 938 getMulExpr(CastedMaxBECount, 939 getTruncateOrSignExtend(Step, Start->getType())); 940 SCEVHandle Add = getAddExpr(Start, SMul); 941 SCEVHandle OperandExtendedAdd = 942 getAddExpr(getSignExtendExpr(Start, WideTy), 943 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 944 getSignExtendExpr(Step, WideTy))); 945 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 946 // Return the expression with the addrec on the outside. 947 return getAddRecExpr(getSignExtendExpr(Start, Ty), 948 getSignExtendExpr(Step, Ty), 949 AR->getLoop()); 950 } 951 } 952 } 953 954 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 955 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty, this); 956 return Result; 957 } 958 959 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 960 /// unspecified bits out to the given type. 961 /// 962 SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op, 963 const Type *Ty) { 964 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 965 "This is not an extending conversion!"); 966 assert(isSCEVable(Ty) && 967 "This is not a conversion to a SCEVable type!"); 968 Ty = getEffectiveSCEVType(Ty); 969 970 // Sign-extend negative constants. 971 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 972 if (SC->getValue()->getValue().isNegative()) 973 return getSignExtendExpr(Op, Ty); 974 975 // Peel off a truncate cast. 976 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 977 SCEVHandle NewOp = T->getOperand(); 978 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 979 return getAnyExtendExpr(NewOp, Ty); 980 return getTruncateOrNoop(NewOp, Ty); 981 } 982 983 // Next try a zext cast. If the cast is folded, use it. 984 SCEVHandle ZExt = getZeroExtendExpr(Op, Ty); 985 if (!isa<SCEVZeroExtendExpr>(ZExt)) 986 return ZExt; 987 988 // Next try a sext cast. If the cast is folded, use it. 989 SCEVHandle SExt = getSignExtendExpr(Op, Ty); 990 if (!isa<SCEVSignExtendExpr>(SExt)) 991 return SExt; 992 993 // If the expression is obviously signed, use the sext cast value. 994 if (isa<SCEVSMaxExpr>(Op)) 995 return SExt; 996 997 // Absent any other information, use the zext cast value. 998 return ZExt; 999 } 1000 1001 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1002 /// a list of operands to be added under the given scale, update the given 1003 /// map. This is a helper function for getAddRecExpr. As an example of 1004 /// what it does, given a sequence of operands that would form an add 1005 /// expression like this: 1006 /// 1007 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1008 /// 1009 /// where A and B are constants, update the map with these values: 1010 /// 1011 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1012 /// 1013 /// and add 13 + A*B*29 to AccumulatedConstant. 1014 /// This will allow getAddRecExpr to produce this: 1015 /// 1016 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1017 /// 1018 /// This form often exposes folding opportunities that are hidden in 1019 /// the original operand list. 1020 /// 1021 /// Return true iff it appears that any interesting folding opportunities 1022 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1023 /// the common case where no interesting opportunities are present, and 1024 /// is also used as a check to avoid infinite recursion. 1025 /// 1026 static bool 1027 CollectAddOperandsWithScales(DenseMap<SCEVHandle, APInt> &M, 1028 SmallVector<SCEVHandle, 8> &NewOps, 1029 APInt &AccumulatedConstant, 1030 const SmallVectorImpl<SCEVHandle> &Ops, 1031 const APInt &Scale, 1032 ScalarEvolution &SE) { 1033 bool Interesting = false; 1034 1035 // Iterate over the add operands. 1036 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1037 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1038 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1039 APInt NewScale = 1040 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1041 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1042 // A multiplication of a constant with another add; recurse. 1043 Interesting |= 1044 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1045 cast<SCEVAddExpr>(Mul->getOperand(1)) 1046 ->getOperands(), 1047 NewScale, SE); 1048 } else { 1049 // A multiplication of a constant with some other value. Update 1050 // the map. 1051 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1052 SCEVHandle Key = SE.getMulExpr(MulOps); 1053 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1054 M.insert(std::make_pair(Key, APInt())); 1055 if (Pair.second) { 1056 Pair.first->second = NewScale; 1057 NewOps.push_back(Pair.first->first); 1058 } else { 1059 Pair.first->second += NewScale; 1060 // The map already had an entry for this value, which may indicate 1061 // a folding opportunity. 1062 Interesting = true; 1063 } 1064 } 1065 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1066 // Pull a buried constant out to the outside. 1067 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1068 Interesting = true; 1069 AccumulatedConstant += Scale * C->getValue()->getValue(); 1070 } else { 1071 // An ordinary operand. Update the map. 1072 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1073 M.insert(std::make_pair(Ops[i], APInt())); 1074 if (Pair.second) { 1075 Pair.first->second = Scale; 1076 NewOps.push_back(Pair.first->first); 1077 } else { 1078 Pair.first->second += Scale; 1079 // The map already had an entry for this value, which may indicate 1080 // a folding opportunity. 1081 Interesting = true; 1082 } 1083 } 1084 } 1085 1086 return Interesting; 1087 } 1088 1089 namespace { 1090 struct APIntCompare { 1091 bool operator()(const APInt &LHS, const APInt &RHS) const { 1092 return LHS.ult(RHS); 1093 } 1094 }; 1095 } 1096 1097 /// getAddExpr - Get a canonical add expression, or something simpler if 1098 /// possible. 1099 SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1100 assert(!Ops.empty() && "Cannot get empty add!"); 1101 if (Ops.size() == 1) return Ops[0]; 1102 #ifndef NDEBUG 1103 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1104 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1105 getEffectiveSCEVType(Ops[0]->getType()) && 1106 "SCEVAddExpr operand types don't match!"); 1107 #endif 1108 1109 // Sort by complexity, this groups all similar expression types together. 1110 GroupByComplexity(Ops, LI); 1111 1112 // If there are any constants, fold them together. 1113 unsigned Idx = 0; 1114 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1115 ++Idx; 1116 assert(Idx < Ops.size()); 1117 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1118 // We found two constants, fold them together! 1119 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1120 RHSC->getValue()->getValue()); 1121 if (Ops.size() == 2) return Ops[0]; 1122 Ops.erase(Ops.begin()+1); // Erase the folded element 1123 LHSC = cast<SCEVConstant>(Ops[0]); 1124 } 1125 1126 // If we are left with a constant zero being added, strip it off. 1127 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1128 Ops.erase(Ops.begin()); 1129 --Idx; 1130 } 1131 } 1132 1133 if (Ops.size() == 1) return Ops[0]; 1134 1135 // Okay, check to see if the same value occurs in the operand list twice. If 1136 // so, merge them together into an multiply expression. Since we sorted the 1137 // list, these values are required to be adjacent. 1138 const Type *Ty = Ops[0]->getType(); 1139 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1140 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1141 // Found a match, merge the two values into a multiply, and add any 1142 // remaining values to the result. 1143 SCEVHandle Two = getIntegerSCEV(2, Ty); 1144 SCEVHandle Mul = getMulExpr(Ops[i], Two); 1145 if (Ops.size() == 2) 1146 return Mul; 1147 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1148 Ops.push_back(Mul); 1149 return getAddExpr(Ops); 1150 } 1151 1152 // Check for truncates. If all the operands are truncated from the same 1153 // type, see if factoring out the truncate would permit the result to be 1154 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1155 // if the contents of the resulting outer trunc fold to something simple. 1156 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1157 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1158 const Type *DstType = Trunc->getType(); 1159 const Type *SrcType = Trunc->getOperand()->getType(); 1160 SmallVector<SCEVHandle, 8> LargeOps; 1161 bool Ok = true; 1162 // Check all the operands to see if they can be represented in the 1163 // source type of the truncate. 1164 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1166 if (T->getOperand()->getType() != SrcType) { 1167 Ok = false; 1168 break; 1169 } 1170 LargeOps.push_back(T->getOperand()); 1171 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1172 // This could be either sign or zero extension, but sign extension 1173 // is much more likely to be foldable here. 1174 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1175 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1176 SmallVector<SCEVHandle, 8> LargeMulOps; 1177 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1178 if (const SCEVTruncateExpr *T = 1179 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1180 if (T->getOperand()->getType() != SrcType) { 1181 Ok = false; 1182 break; 1183 } 1184 LargeMulOps.push_back(T->getOperand()); 1185 } else if (const SCEVConstant *C = 1186 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1187 // This could be either sign or zero extension, but sign extension 1188 // is much more likely to be foldable here. 1189 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1190 } else { 1191 Ok = false; 1192 break; 1193 } 1194 } 1195 if (Ok) 1196 LargeOps.push_back(getMulExpr(LargeMulOps)); 1197 } else { 1198 Ok = false; 1199 break; 1200 } 1201 } 1202 if (Ok) { 1203 // Evaluate the expression in the larger type. 1204 SCEVHandle Fold = getAddExpr(LargeOps); 1205 // If it folds to something simple, use it. Otherwise, don't. 1206 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1207 return getTruncateExpr(Fold, DstType); 1208 } 1209 } 1210 1211 // Skip past any other cast SCEVs. 1212 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1213 ++Idx; 1214 1215 // If there are add operands they would be next. 1216 if (Idx < Ops.size()) { 1217 bool DeletedAdd = false; 1218 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1219 // If we have an add, expand the add operands onto the end of the operands 1220 // list. 1221 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1222 Ops.erase(Ops.begin()+Idx); 1223 DeletedAdd = true; 1224 } 1225 1226 // If we deleted at least one add, we added operands to the end of the list, 1227 // and they are not necessarily sorted. Recurse to resort and resimplify 1228 // any operands we just aquired. 1229 if (DeletedAdd) 1230 return getAddExpr(Ops); 1231 } 1232 1233 // Skip over the add expression until we get to a multiply. 1234 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1235 ++Idx; 1236 1237 // Check to see if there are any folding opportunities present with 1238 // operands multiplied by constant values. 1239 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1240 uint64_t BitWidth = getTypeSizeInBits(Ty); 1241 DenseMap<SCEVHandle, APInt> M; 1242 SmallVector<SCEVHandle, 8> NewOps; 1243 APInt AccumulatedConstant(BitWidth, 0); 1244 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1245 Ops, APInt(BitWidth, 1), *this)) { 1246 // Some interesting folding opportunity is present, so its worthwhile to 1247 // re-generate the operands list. Group the operands by constant scale, 1248 // to avoid multiplying by the same constant scale multiple times. 1249 std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare> MulOpLists; 1250 for (SmallVector<SCEVHandle, 8>::iterator I = NewOps.begin(), 1251 E = NewOps.end(); I != E; ++I) 1252 MulOpLists[M.find(*I)->second].push_back(*I); 1253 // Re-generate the operands list. 1254 Ops.clear(); 1255 if (AccumulatedConstant != 0) 1256 Ops.push_back(getConstant(AccumulatedConstant)); 1257 for (std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare>::iterator I = 1258 MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1259 if (I->first != 0) 1260 Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second))); 1261 if (Ops.empty()) 1262 return getIntegerSCEV(0, Ty); 1263 if (Ops.size() == 1) 1264 return Ops[0]; 1265 return getAddExpr(Ops); 1266 } 1267 } 1268 1269 // If we are adding something to a multiply expression, make sure the 1270 // something is not already an operand of the multiply. If so, merge it into 1271 // the multiply. 1272 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1273 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1274 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1275 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1276 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1277 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1278 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1279 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 1280 if (Mul->getNumOperands() != 2) { 1281 // If the multiply has more than two operands, we must get the 1282 // Y*Z term. 1283 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1284 MulOps.erase(MulOps.begin()+MulOp); 1285 InnerMul = getMulExpr(MulOps); 1286 } 1287 SCEVHandle One = getIntegerSCEV(1, Ty); 1288 SCEVHandle AddOne = getAddExpr(InnerMul, One); 1289 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1290 if (Ops.size() == 2) return OuterMul; 1291 if (AddOp < Idx) { 1292 Ops.erase(Ops.begin()+AddOp); 1293 Ops.erase(Ops.begin()+Idx-1); 1294 } else { 1295 Ops.erase(Ops.begin()+Idx); 1296 Ops.erase(Ops.begin()+AddOp-1); 1297 } 1298 Ops.push_back(OuterMul); 1299 return getAddExpr(Ops); 1300 } 1301 1302 // Check this multiply against other multiplies being added together. 1303 for (unsigned OtherMulIdx = Idx+1; 1304 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1305 ++OtherMulIdx) { 1306 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1307 // If MulOp occurs in OtherMul, we can fold the two multiplies 1308 // together. 1309 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1310 OMulOp != e; ++OMulOp) 1311 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1312 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1313 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 1314 if (Mul->getNumOperands() != 2) { 1315 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1316 MulOps.erase(MulOps.begin()+MulOp); 1317 InnerMul1 = getMulExpr(MulOps); 1318 } 1319 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1320 if (OtherMul->getNumOperands() != 2) { 1321 SmallVector<SCEVHandle, 4> MulOps(OtherMul->op_begin(), 1322 OtherMul->op_end()); 1323 MulOps.erase(MulOps.begin()+OMulOp); 1324 InnerMul2 = getMulExpr(MulOps); 1325 } 1326 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1327 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1328 if (Ops.size() == 2) return OuterMul; 1329 Ops.erase(Ops.begin()+Idx); 1330 Ops.erase(Ops.begin()+OtherMulIdx-1); 1331 Ops.push_back(OuterMul); 1332 return getAddExpr(Ops); 1333 } 1334 } 1335 } 1336 } 1337 1338 // If there are any add recurrences in the operands list, see if any other 1339 // added values are loop invariant. If so, we can fold them into the 1340 // recurrence. 1341 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1342 ++Idx; 1343 1344 // Scan over all recurrences, trying to fold loop invariants into them. 1345 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1346 // Scan all of the other operands to this add and add them to the vector if 1347 // they are loop invariant w.r.t. the recurrence. 1348 SmallVector<SCEVHandle, 8> LIOps; 1349 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1350 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1351 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1352 LIOps.push_back(Ops[i]); 1353 Ops.erase(Ops.begin()+i); 1354 --i; --e; 1355 } 1356 1357 // If we found some loop invariants, fold them into the recurrence. 1358 if (!LIOps.empty()) { 1359 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1360 LIOps.push_back(AddRec->getStart()); 1361 1362 SmallVector<SCEVHandle, 4> AddRecOps(AddRec->op_begin(), 1363 AddRec->op_end()); 1364 AddRecOps[0] = getAddExpr(LIOps); 1365 1366 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1367 // If all of the other operands were loop invariant, we are done. 1368 if (Ops.size() == 1) return NewRec; 1369 1370 // Otherwise, add the folded AddRec by the non-liv parts. 1371 for (unsigned i = 0;; ++i) 1372 if (Ops[i] == AddRec) { 1373 Ops[i] = NewRec; 1374 break; 1375 } 1376 return getAddExpr(Ops); 1377 } 1378 1379 // Okay, if there weren't any loop invariants to be folded, check to see if 1380 // there are multiple AddRec's with the same loop induction variable being 1381 // added together. If so, we can fold them. 1382 for (unsigned OtherIdx = Idx+1; 1383 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1384 if (OtherIdx != Idx) { 1385 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1386 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1387 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1388 SmallVector<SCEVHandle, 4> NewOps(AddRec->op_begin(), AddRec->op_end()); 1389 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1390 if (i >= NewOps.size()) { 1391 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1392 OtherAddRec->op_end()); 1393 break; 1394 } 1395 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1396 } 1397 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1398 1399 if (Ops.size() == 2) return NewAddRec; 1400 1401 Ops.erase(Ops.begin()+Idx); 1402 Ops.erase(Ops.begin()+OtherIdx-1); 1403 Ops.push_back(NewAddRec); 1404 return getAddExpr(Ops); 1405 } 1406 } 1407 1408 // Otherwise couldn't fold anything into this recurrence. Move onto the 1409 // next one. 1410 } 1411 1412 // Okay, it looks like we really DO need an add expr. Check to see if we 1413 // already have one, otherwise create a new one. 1414 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1415 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 1416 SCEVOps)]; 1417 if (Result == 0) Result = new SCEVAddExpr(Ops, this); 1418 return Result; 1419 } 1420 1421 1422 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1423 /// possible. 1424 SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1425 assert(!Ops.empty() && "Cannot get empty mul!"); 1426 #ifndef NDEBUG 1427 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1428 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1429 getEffectiveSCEVType(Ops[0]->getType()) && 1430 "SCEVMulExpr operand types don't match!"); 1431 #endif 1432 1433 // Sort by complexity, this groups all similar expression types together. 1434 GroupByComplexity(Ops, LI); 1435 1436 // If there are any constants, fold them together. 1437 unsigned Idx = 0; 1438 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1439 1440 // C1*(C2+V) -> C1*C2 + C1*V 1441 if (Ops.size() == 2) 1442 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1443 if (Add->getNumOperands() == 2 && 1444 isa<SCEVConstant>(Add->getOperand(0))) 1445 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1446 getMulExpr(LHSC, Add->getOperand(1))); 1447 1448 1449 ++Idx; 1450 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1451 // We found two constants, fold them together! 1452 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1453 RHSC->getValue()->getValue()); 1454 Ops[0] = getConstant(Fold); 1455 Ops.erase(Ops.begin()+1); // Erase the folded element 1456 if (Ops.size() == 1) return Ops[0]; 1457 LHSC = cast<SCEVConstant>(Ops[0]); 1458 } 1459 1460 // If we are left with a constant one being multiplied, strip it off. 1461 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1462 Ops.erase(Ops.begin()); 1463 --Idx; 1464 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1465 // If we have a multiply of zero, it will always be zero. 1466 return Ops[0]; 1467 } 1468 } 1469 1470 // Skip over the add expression until we get to a multiply. 1471 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1472 ++Idx; 1473 1474 if (Ops.size() == 1) 1475 return Ops[0]; 1476 1477 // If there are mul operands inline them all into this expression. 1478 if (Idx < Ops.size()) { 1479 bool DeletedMul = false; 1480 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1481 // If we have an mul, expand the mul operands onto the end of the operands 1482 // list. 1483 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1484 Ops.erase(Ops.begin()+Idx); 1485 DeletedMul = true; 1486 } 1487 1488 // If we deleted at least one mul, we added operands to the end of the list, 1489 // and they are not necessarily sorted. Recurse to resort and resimplify 1490 // any operands we just aquired. 1491 if (DeletedMul) 1492 return getMulExpr(Ops); 1493 } 1494 1495 // If there are any add recurrences in the operands list, see if any other 1496 // added values are loop invariant. If so, we can fold them into the 1497 // recurrence. 1498 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1499 ++Idx; 1500 1501 // Scan over all recurrences, trying to fold loop invariants into them. 1502 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1503 // Scan all of the other operands to this mul and add them to the vector if 1504 // they are loop invariant w.r.t. the recurrence. 1505 SmallVector<SCEVHandle, 8> LIOps; 1506 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1507 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1508 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1509 LIOps.push_back(Ops[i]); 1510 Ops.erase(Ops.begin()+i); 1511 --i; --e; 1512 } 1513 1514 // If we found some loop invariants, fold them into the recurrence. 1515 if (!LIOps.empty()) { 1516 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1517 SmallVector<SCEVHandle, 4> NewOps; 1518 NewOps.reserve(AddRec->getNumOperands()); 1519 if (LIOps.size() == 1) { 1520 const SCEV *Scale = LIOps[0]; 1521 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1522 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1523 } else { 1524 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1525 SmallVector<SCEVHandle, 4> MulOps(LIOps.begin(), LIOps.end()); 1526 MulOps.push_back(AddRec->getOperand(i)); 1527 NewOps.push_back(getMulExpr(MulOps)); 1528 } 1529 } 1530 1531 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1532 1533 // If all of the other operands were loop invariant, we are done. 1534 if (Ops.size() == 1) return NewRec; 1535 1536 // Otherwise, multiply the folded AddRec by the non-liv parts. 1537 for (unsigned i = 0;; ++i) 1538 if (Ops[i] == AddRec) { 1539 Ops[i] = NewRec; 1540 break; 1541 } 1542 return getMulExpr(Ops); 1543 } 1544 1545 // Okay, if there weren't any loop invariants to be folded, check to see if 1546 // there are multiple AddRec's with the same loop induction variable being 1547 // multiplied together. If so, we can fold them. 1548 for (unsigned OtherIdx = Idx+1; 1549 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1550 if (OtherIdx != Idx) { 1551 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1552 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1553 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1554 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1555 SCEVHandle NewStart = getMulExpr(F->getStart(), 1556 G->getStart()); 1557 SCEVHandle B = F->getStepRecurrence(*this); 1558 SCEVHandle D = G->getStepRecurrence(*this); 1559 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1560 getMulExpr(G, B), 1561 getMulExpr(B, D)); 1562 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1563 F->getLoop()); 1564 if (Ops.size() == 2) return NewAddRec; 1565 1566 Ops.erase(Ops.begin()+Idx); 1567 Ops.erase(Ops.begin()+OtherIdx-1); 1568 Ops.push_back(NewAddRec); 1569 return getMulExpr(Ops); 1570 } 1571 } 1572 1573 // Otherwise couldn't fold anything into this recurrence. Move onto the 1574 // next one. 1575 } 1576 1577 // Okay, it looks like we really DO need an mul expr. Check to see if we 1578 // already have one, otherwise create a new one. 1579 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1580 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1581 SCEVOps)]; 1582 if (Result == 0) 1583 Result = new SCEVMulExpr(Ops, this); 1584 return Result; 1585 } 1586 1587 /// getUDivExpr - Get a canonical multiply expression, or something simpler if 1588 /// possible. 1589 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, 1590 const SCEVHandle &RHS) { 1591 assert(getEffectiveSCEVType(LHS->getType()) == 1592 getEffectiveSCEVType(RHS->getType()) && 1593 "SCEVUDivExpr operand types don't match!"); 1594 1595 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1596 if (RHSC->getValue()->equalsInt(1)) 1597 return LHS; // X udiv 1 --> x 1598 if (RHSC->isZero()) 1599 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1600 1601 // Determine if the division can be folded into the operands of 1602 // its operands. 1603 // TODO: Generalize this to non-constants by using known-bits information. 1604 const Type *Ty = LHS->getType(); 1605 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1606 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1607 // For non-power-of-two values, effectively round the value up to the 1608 // nearest power of two. 1609 if (!RHSC->getValue()->getValue().isPowerOf2()) 1610 ++MaxShiftAmt; 1611 const IntegerType *ExtTy = 1612 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); 1613 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1615 if (const SCEVConstant *Step = 1616 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1617 if (!Step->getValue()->getValue() 1618 .urem(RHSC->getValue()->getValue()) && 1619 getZeroExtendExpr(AR, ExtTy) == 1620 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1621 getZeroExtendExpr(Step, ExtTy), 1622 AR->getLoop())) { 1623 SmallVector<SCEVHandle, 4> Operands; 1624 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1625 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1626 return getAddRecExpr(Operands, AR->getLoop()); 1627 } 1628 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1629 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1630 SmallVector<SCEVHandle, 4> Operands; 1631 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1632 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1633 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1634 // Find an operand that's safely divisible. 1635 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1636 SCEVHandle Op = M->getOperand(i); 1637 SCEVHandle Div = getUDivExpr(Op, RHSC); 1638 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1639 const SmallVectorImpl<SCEVHandle> &MOperands = M->getOperands(); 1640 Operands = SmallVector<SCEVHandle, 4>(MOperands.begin(), 1641 MOperands.end()); 1642 Operands[i] = Div; 1643 return getMulExpr(Operands); 1644 } 1645 } 1646 } 1647 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1648 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1649 SmallVector<SCEVHandle, 4> Operands; 1650 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1651 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1652 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1653 Operands.clear(); 1654 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1655 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS); 1656 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1657 break; 1658 Operands.push_back(Op); 1659 } 1660 if (Operands.size() == A->getNumOperands()) 1661 return getAddExpr(Operands); 1662 } 1663 } 1664 1665 // Fold if both operands are constant. 1666 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1667 Constant *LHSCV = LHSC->getValue(); 1668 Constant *RHSCV = RHSC->getValue(); 1669 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1670 } 1671 } 1672 1673 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1674 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS, this); 1675 return Result; 1676 } 1677 1678 1679 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1680 /// Simplify the expression as much as possible. 1681 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1682 const SCEVHandle &Step, const Loop *L) { 1683 SmallVector<SCEVHandle, 4> Operands; 1684 Operands.push_back(Start); 1685 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1686 if (StepChrec->getLoop() == L) { 1687 Operands.insert(Operands.end(), StepChrec->op_begin(), 1688 StepChrec->op_end()); 1689 return getAddRecExpr(Operands, L); 1690 } 1691 1692 Operands.push_back(Step); 1693 return getAddRecExpr(Operands, L); 1694 } 1695 1696 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1697 /// Simplify the expression as much as possible. 1698 SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands, 1699 const Loop *L) { 1700 if (Operands.size() == 1) return Operands[0]; 1701 #ifndef NDEBUG 1702 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1703 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1704 getEffectiveSCEVType(Operands[0]->getType()) && 1705 "SCEVAddRecExpr operand types don't match!"); 1706 #endif 1707 1708 if (Operands.back()->isZero()) { 1709 Operands.pop_back(); 1710 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1711 } 1712 1713 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1714 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1715 const Loop* NestedLoop = NestedAR->getLoop(); 1716 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1717 SmallVector<SCEVHandle, 4> NestedOperands(NestedAR->op_begin(), 1718 NestedAR->op_end()); 1719 SCEVHandle NestedARHandle(NestedAR); 1720 Operands[0] = NestedAR->getStart(); 1721 NestedOperands[0] = getAddRecExpr(Operands, L); 1722 return getAddRecExpr(NestedOperands, NestedLoop); 1723 } 1724 } 1725 1726 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 1727 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)]; 1728 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L, this); 1729 return Result; 1730 } 1731 1732 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1733 const SCEVHandle &RHS) { 1734 SmallVector<SCEVHandle, 2> Ops; 1735 Ops.push_back(LHS); 1736 Ops.push_back(RHS); 1737 return getSMaxExpr(Ops); 1738 } 1739 1740 SCEVHandle 1741 ScalarEvolution::getSMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1742 assert(!Ops.empty() && "Cannot get empty smax!"); 1743 if (Ops.size() == 1) return Ops[0]; 1744 #ifndef NDEBUG 1745 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1746 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1747 getEffectiveSCEVType(Ops[0]->getType()) && 1748 "SCEVSMaxExpr operand types don't match!"); 1749 #endif 1750 1751 // Sort by complexity, this groups all similar expression types together. 1752 GroupByComplexity(Ops, LI); 1753 1754 // If there are any constants, fold them together. 1755 unsigned Idx = 0; 1756 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1757 ++Idx; 1758 assert(Idx < Ops.size()); 1759 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1760 // We found two constants, fold them together! 1761 ConstantInt *Fold = ConstantInt::get( 1762 APIntOps::smax(LHSC->getValue()->getValue(), 1763 RHSC->getValue()->getValue())); 1764 Ops[0] = getConstant(Fold); 1765 Ops.erase(Ops.begin()+1); // Erase the folded element 1766 if (Ops.size() == 1) return Ops[0]; 1767 LHSC = cast<SCEVConstant>(Ops[0]); 1768 } 1769 1770 // If we are left with a constant -inf, strip it off. 1771 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1772 Ops.erase(Ops.begin()); 1773 --Idx; 1774 } 1775 } 1776 1777 if (Ops.size() == 1) return Ops[0]; 1778 1779 // Find the first SMax 1780 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1781 ++Idx; 1782 1783 // Check to see if one of the operands is an SMax. If so, expand its operands 1784 // onto our operand list, and recurse to simplify. 1785 if (Idx < Ops.size()) { 1786 bool DeletedSMax = false; 1787 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1788 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1789 Ops.erase(Ops.begin()+Idx); 1790 DeletedSMax = true; 1791 } 1792 1793 if (DeletedSMax) 1794 return getSMaxExpr(Ops); 1795 } 1796 1797 // Okay, check to see if the same value occurs in the operand list twice. If 1798 // so, delete one. Since we sorted the list, these values are required to 1799 // be adjacent. 1800 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1801 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1802 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1803 --i; --e; 1804 } 1805 1806 if (Ops.size() == 1) return Ops[0]; 1807 1808 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1809 1810 // Okay, it looks like we really DO need an smax expr. Check to see if we 1811 // already have one, otherwise create a new one. 1812 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1813 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1814 SCEVOps)]; 1815 if (Result == 0) Result = new SCEVSMaxExpr(Ops, this); 1816 return Result; 1817 } 1818 1819 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1820 const SCEVHandle &RHS) { 1821 SmallVector<SCEVHandle, 2> Ops; 1822 Ops.push_back(LHS); 1823 Ops.push_back(RHS); 1824 return getUMaxExpr(Ops); 1825 } 1826 1827 SCEVHandle 1828 ScalarEvolution::getUMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1829 assert(!Ops.empty() && "Cannot get empty umax!"); 1830 if (Ops.size() == 1) return Ops[0]; 1831 #ifndef NDEBUG 1832 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1833 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1834 getEffectiveSCEVType(Ops[0]->getType()) && 1835 "SCEVUMaxExpr operand types don't match!"); 1836 #endif 1837 1838 // Sort by complexity, this groups all similar expression types together. 1839 GroupByComplexity(Ops, LI); 1840 1841 // If there are any constants, fold them together. 1842 unsigned Idx = 0; 1843 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1844 ++Idx; 1845 assert(Idx < Ops.size()); 1846 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1847 // We found two constants, fold them together! 1848 ConstantInt *Fold = ConstantInt::get( 1849 APIntOps::umax(LHSC->getValue()->getValue(), 1850 RHSC->getValue()->getValue())); 1851 Ops[0] = getConstant(Fold); 1852 Ops.erase(Ops.begin()+1); // Erase the folded element 1853 if (Ops.size() == 1) return Ops[0]; 1854 LHSC = cast<SCEVConstant>(Ops[0]); 1855 } 1856 1857 // If we are left with a constant zero, strip it off. 1858 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1859 Ops.erase(Ops.begin()); 1860 --Idx; 1861 } 1862 } 1863 1864 if (Ops.size() == 1) return Ops[0]; 1865 1866 // Find the first UMax 1867 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1868 ++Idx; 1869 1870 // Check to see if one of the operands is a UMax. If so, expand its operands 1871 // onto our operand list, and recurse to simplify. 1872 if (Idx < Ops.size()) { 1873 bool DeletedUMax = false; 1874 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1875 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1876 Ops.erase(Ops.begin()+Idx); 1877 DeletedUMax = true; 1878 } 1879 1880 if (DeletedUMax) 1881 return getUMaxExpr(Ops); 1882 } 1883 1884 // Okay, check to see if the same value occurs in the operand list twice. If 1885 // so, delete one. Since we sorted the list, these values are required to 1886 // be adjacent. 1887 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1888 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1889 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1890 --i; --e; 1891 } 1892 1893 if (Ops.size() == 1) return Ops[0]; 1894 1895 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1896 1897 // Okay, it looks like we really DO need a umax expr. Check to see if we 1898 // already have one, otherwise create a new one. 1899 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1900 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1901 SCEVOps)]; 1902 if (Result == 0) Result = new SCEVUMaxExpr(Ops, this); 1903 return Result; 1904 } 1905 1906 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1907 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1908 return getConstant(CI); 1909 if (isa<ConstantPointerNull>(V)) 1910 return getIntegerSCEV(0, V->getType()); 1911 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1912 if (Result == 0) Result = new SCEVUnknown(V, this); 1913 return Result; 1914 } 1915 1916 //===----------------------------------------------------------------------===// 1917 // Basic SCEV Analysis and PHI Idiom Recognition Code 1918 // 1919 1920 /// isSCEVable - Test if values of the given type are analyzable within 1921 /// the SCEV framework. This primarily includes integer types, and it 1922 /// can optionally include pointer types if the ScalarEvolution class 1923 /// has access to target-specific information. 1924 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 1925 // Integers are always SCEVable. 1926 if (Ty->isInteger()) 1927 return true; 1928 1929 // Pointers are SCEVable if TargetData information is available 1930 // to provide pointer size information. 1931 if (isa<PointerType>(Ty)) 1932 return TD != NULL; 1933 1934 // Otherwise it's not SCEVable. 1935 return false; 1936 } 1937 1938 /// getTypeSizeInBits - Return the size in bits of the specified type, 1939 /// for which isSCEVable must return true. 1940 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 1941 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1942 1943 // If we have a TargetData, use it! 1944 if (TD) 1945 return TD->getTypeSizeInBits(Ty); 1946 1947 // Otherwise, we support only integer types. 1948 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 1949 return Ty->getPrimitiveSizeInBits(); 1950 } 1951 1952 /// getEffectiveSCEVType - Return a type with the same bitwidth as 1953 /// the given type and which represents how SCEV will treat the given 1954 /// type, for which isSCEVable must return true. For pointer types, 1955 /// this is the pointer-sized integer type. 1956 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 1957 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1958 1959 if (Ty->isInteger()) 1960 return Ty; 1961 1962 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 1963 return TD->getIntPtrType(); 1964 } 1965 1966 SCEVHandle ScalarEvolution::getCouldNotCompute() { 1967 return CouldNotCompute; 1968 } 1969 1970 /// hasSCEV - Return true if the SCEV for this value has already been 1971 /// computed. 1972 bool ScalarEvolution::hasSCEV(Value *V) const { 1973 return Scalars.count(V); 1974 } 1975 1976 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1977 /// expression and create a new one. 1978 SCEVHandle ScalarEvolution::getSCEV(Value *V) { 1979 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 1980 1981 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V); 1982 if (I != Scalars.end()) return I->second; 1983 SCEVHandle S = createSCEV(V); 1984 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 1985 return S; 1986 } 1987 1988 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1989 /// specified signed integer value and return a SCEV for the constant. 1990 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 1991 Ty = getEffectiveSCEVType(Ty); 1992 Constant *C; 1993 if (Val == 0) 1994 C = Constant::getNullValue(Ty); 1995 else if (Ty->isFloatingPoint()) 1996 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1997 APFloat::IEEEdouble, Val)); 1998 else 1999 C = ConstantInt::get(Ty, Val); 2000 return getUnknown(C); 2001 } 2002 2003 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2004 /// 2005 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 2006 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2007 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 2008 2009 const Type *Ty = V->getType(); 2010 Ty = getEffectiveSCEVType(Ty); 2011 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 2012 } 2013 2014 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2015 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 2016 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2017 return getUnknown(ConstantExpr::getNot(VC->getValue())); 2018 2019 const Type *Ty = V->getType(); 2020 Ty = getEffectiveSCEVType(Ty); 2021 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 2022 return getMinusSCEV(AllOnes, V); 2023 } 2024 2025 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2026 /// 2027 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 2028 const SCEVHandle &RHS) { 2029 // X - Y --> X + -Y 2030 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2031 } 2032 2033 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2034 /// input value to the specified type. If the type must be extended, it is zero 2035 /// extended. 2036 SCEVHandle 2037 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 2038 const Type *Ty) { 2039 const Type *SrcTy = V->getType(); 2040 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2041 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2042 "Cannot truncate or zero extend with non-integer arguments!"); 2043 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2044 return V; // No conversion 2045 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2046 return getTruncateExpr(V, Ty); 2047 return getZeroExtendExpr(V, Ty); 2048 } 2049 2050 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2051 /// input value to the specified type. If the type must be extended, it is sign 2052 /// extended. 2053 SCEVHandle 2054 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 2055 const Type *Ty) { 2056 const Type *SrcTy = V->getType(); 2057 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2058 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2059 "Cannot truncate or zero extend with non-integer arguments!"); 2060 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2061 return V; // No conversion 2062 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2063 return getTruncateExpr(V, Ty); 2064 return getSignExtendExpr(V, Ty); 2065 } 2066 2067 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2068 /// input value to the specified type. If the type must be extended, it is zero 2069 /// extended. The conversion must not be narrowing. 2070 SCEVHandle 2071 ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) { 2072 const Type *SrcTy = V->getType(); 2073 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2074 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2075 "Cannot noop or zero extend with non-integer arguments!"); 2076 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2077 "getNoopOrZeroExtend cannot truncate!"); 2078 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2079 return V; // No conversion 2080 return getZeroExtendExpr(V, Ty); 2081 } 2082 2083 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2084 /// input value to the specified type. If the type must be extended, it is sign 2085 /// extended. The conversion must not be narrowing. 2086 SCEVHandle 2087 ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) { 2088 const Type *SrcTy = V->getType(); 2089 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2090 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2091 "Cannot noop or sign extend with non-integer arguments!"); 2092 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2093 "getNoopOrSignExtend cannot truncate!"); 2094 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2095 return V; // No conversion 2096 return getSignExtendExpr(V, Ty); 2097 } 2098 2099 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2100 /// the input value to the specified type. If the type must be extended, 2101 /// it is extended with unspecified bits. The conversion must not be 2102 /// narrowing. 2103 SCEVHandle 2104 ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) { 2105 const Type *SrcTy = V->getType(); 2106 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2107 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2108 "Cannot noop or any extend with non-integer arguments!"); 2109 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2110 "getNoopOrAnyExtend cannot truncate!"); 2111 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2112 return V; // No conversion 2113 return getAnyExtendExpr(V, Ty); 2114 } 2115 2116 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2117 /// input value to the specified type. The conversion must not be widening. 2118 SCEVHandle 2119 ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) { 2120 const Type *SrcTy = V->getType(); 2121 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2122 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2123 "Cannot truncate or noop with non-integer arguments!"); 2124 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2125 "getTruncateOrNoop cannot extend!"); 2126 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2127 return V; // No conversion 2128 return getTruncateExpr(V, Ty); 2129 } 2130 2131 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 2132 /// the specified instruction and replaces any references to the symbolic value 2133 /// SymName with the specified value. This is used during PHI resolution. 2134 void ScalarEvolution:: 2135 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 2136 const SCEVHandle &NewVal) { 2137 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI = 2138 Scalars.find(SCEVCallbackVH(I, this)); 2139 if (SI == Scalars.end()) return; 2140 2141 SCEVHandle NV = 2142 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 2143 if (NV == SI->second) return; // No change. 2144 2145 SI->second = NV; // Update the scalars map! 2146 2147 // Any instruction values that use this instruction might also need to be 2148 // updated! 2149 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 2150 UI != E; ++UI) 2151 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 2152 } 2153 2154 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2155 /// a loop header, making it a potential recurrence, or it doesn't. 2156 /// 2157 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { 2158 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2159 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2160 if (L->getHeader() == PN->getParent()) { 2161 // If it lives in the loop header, it has two incoming values, one 2162 // from outside the loop, and one from inside. 2163 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2164 unsigned BackEdge = IncomingEdge^1; 2165 2166 // While we are analyzing this PHI node, handle its value symbolically. 2167 SCEVHandle SymbolicName = getUnknown(PN); 2168 assert(Scalars.find(PN) == Scalars.end() && 2169 "PHI node already processed?"); 2170 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2171 2172 // Using this symbolic name for the PHI, analyze the value coming around 2173 // the back-edge. 2174 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 2175 2176 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2177 // has a special value for the first iteration of the loop. 2178 2179 // If the value coming around the backedge is an add with the symbolic 2180 // value we just inserted, then we found a simple induction variable! 2181 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2182 // If there is a single occurrence of the symbolic value, replace it 2183 // with a recurrence. 2184 unsigned FoundIndex = Add->getNumOperands(); 2185 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2186 if (Add->getOperand(i) == SymbolicName) 2187 if (FoundIndex == e) { 2188 FoundIndex = i; 2189 break; 2190 } 2191 2192 if (FoundIndex != Add->getNumOperands()) { 2193 // Create an add with everything but the specified operand. 2194 SmallVector<SCEVHandle, 8> Ops; 2195 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2196 if (i != FoundIndex) 2197 Ops.push_back(Add->getOperand(i)); 2198 SCEVHandle Accum = getAddExpr(Ops); 2199 2200 // This is not a valid addrec if the step amount is varying each 2201 // loop iteration, but is not itself an addrec in this loop. 2202 if (Accum->isLoopInvariant(L) || 2203 (isa<SCEVAddRecExpr>(Accum) && 2204 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2205 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2206 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); 2207 2208 // Okay, for the entire analysis of this edge we assumed the PHI 2209 // to be symbolic. We now need to go back and update all of the 2210 // entries for the scalars that use the PHI (except for the PHI 2211 // itself) to use the new analyzed value instead of the "symbolic" 2212 // value. 2213 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2214 return PHISCEV; 2215 } 2216 } 2217 } else if (const SCEVAddRecExpr *AddRec = 2218 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2219 // Otherwise, this could be a loop like this: 2220 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2221 // In this case, j = {1,+,1} and BEValue is j. 2222 // Because the other in-value of i (0) fits the evolution of BEValue 2223 // i really is an addrec evolution. 2224 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2225 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2226 2227 // If StartVal = j.start - j.stride, we can use StartVal as the 2228 // initial step of the addrec evolution. 2229 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2230 AddRec->getOperand(1))) { 2231 SCEVHandle PHISCEV = 2232 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2233 2234 // Okay, for the entire analysis of this edge we assumed the PHI 2235 // to be symbolic. We now need to go back and update all of the 2236 // entries for the scalars that use the PHI (except for the PHI 2237 // itself) to use the new analyzed value instead of the "symbolic" 2238 // value. 2239 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2240 return PHISCEV; 2241 } 2242 } 2243 } 2244 2245 return SymbolicName; 2246 } 2247 2248 // If it's not a loop phi, we can't handle it yet. 2249 return getUnknown(PN); 2250 } 2251 2252 /// createNodeForGEP - Expand GEP instructions into add and multiply 2253 /// operations. This allows them to be analyzed by regular SCEV code. 2254 /// 2255 SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { 2256 2257 const Type *IntPtrTy = TD->getIntPtrType(); 2258 Value *Base = GEP->getOperand(0); 2259 // Don't attempt to analyze GEPs over unsized objects. 2260 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2261 return getUnknown(GEP); 2262 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); 2263 gep_type_iterator GTI = gep_type_begin(GEP); 2264 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2265 E = GEP->op_end(); 2266 I != E; ++I) { 2267 Value *Index = *I; 2268 // Compute the (potentially symbolic) offset in bytes for this index. 2269 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2270 // For a struct, add the member offset. 2271 const StructLayout &SL = *TD->getStructLayout(STy); 2272 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2273 uint64_t Offset = SL.getElementOffset(FieldNo); 2274 TotalOffset = getAddExpr(TotalOffset, 2275 getIntegerSCEV(Offset, IntPtrTy)); 2276 } else { 2277 // For an array, add the element offset, explicitly scaled. 2278 SCEVHandle LocalOffset = getSCEV(Index); 2279 if (!isa<PointerType>(LocalOffset->getType())) 2280 // Getelementptr indicies are signed. 2281 LocalOffset = getTruncateOrSignExtend(LocalOffset, 2282 IntPtrTy); 2283 LocalOffset = 2284 getMulExpr(LocalOffset, 2285 getIntegerSCEV(TD->getTypeAllocSize(*GTI), 2286 IntPtrTy)); 2287 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2288 } 2289 } 2290 return getAddExpr(getSCEV(Base), TotalOffset); 2291 } 2292 2293 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2294 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2295 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2296 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2297 uint32_t 2298 ScalarEvolution::GetMinTrailingZeros(const SCEVHandle &S) { 2299 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2300 return C->getValue()->getValue().countTrailingZeros(); 2301 2302 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2303 return std::min(GetMinTrailingZeros(T->getOperand()), 2304 (uint32_t)getTypeSizeInBits(T->getType())); 2305 2306 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2307 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2308 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2309 getTypeSizeInBits(E->getType()) : OpRes; 2310 } 2311 2312 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2313 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2314 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2315 getTypeSizeInBits(E->getType()) : OpRes; 2316 } 2317 2318 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2319 // The result is the min of all operands results. 2320 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2321 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2322 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2323 return MinOpRes; 2324 } 2325 2326 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2327 // The result is the sum of all operands results. 2328 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2329 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2330 for (unsigned i = 1, e = M->getNumOperands(); 2331 SumOpRes != BitWidth && i != e; ++i) 2332 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2333 BitWidth); 2334 return SumOpRes; 2335 } 2336 2337 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2338 // The result is the min of all operands results. 2339 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2340 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2341 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2342 return MinOpRes; 2343 } 2344 2345 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2346 // The result is the min of all operands results. 2347 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2348 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2349 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2350 return MinOpRes; 2351 } 2352 2353 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2354 // The result is the min of all operands results. 2355 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2356 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2357 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2358 return MinOpRes; 2359 } 2360 2361 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2362 // For a SCEVUnknown, ask ValueTracking. 2363 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2364 APInt Mask = APInt::getAllOnesValue(BitWidth); 2365 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2366 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2367 return Zeros.countTrailingOnes(); 2368 } 2369 2370 // SCEVUDivExpr 2371 return 0; 2372 } 2373 2374 uint32_t 2375 ScalarEvolution::GetMinLeadingZeros(const SCEVHandle &S) { 2376 // TODO: Handle other SCEV expression types here. 2377 2378 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2379 return C->getValue()->getValue().countLeadingZeros(); 2380 2381 if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) { 2382 // A zero-extension cast adds zero bits. 2383 return GetMinLeadingZeros(C->getOperand()) + 2384 (getTypeSizeInBits(C->getType()) - 2385 getTypeSizeInBits(C->getOperand()->getType())); 2386 } 2387 2388 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2389 // For a SCEVUnknown, ask ValueTracking. 2390 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2391 APInt Mask = APInt::getAllOnesValue(BitWidth); 2392 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2393 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 2394 return Zeros.countLeadingOnes(); 2395 } 2396 2397 return 1; 2398 } 2399 2400 uint32_t 2401 ScalarEvolution::GetMinSignBits(const SCEVHandle &S) { 2402 // TODO: Handle other SCEV expression types here. 2403 2404 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 2405 const APInt &A = C->getValue()->getValue(); 2406 return A.isNegative() ? A.countLeadingOnes() : 2407 A.countLeadingZeros(); 2408 } 2409 2410 if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) { 2411 // A sign-extension cast adds sign bits. 2412 return GetMinSignBits(C->getOperand()) + 2413 (getTypeSizeInBits(C->getType()) - 2414 getTypeSizeInBits(C->getOperand()->getType())); 2415 } 2416 2417 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2418 // For a SCEVUnknown, ask ValueTracking. 2419 return ComputeNumSignBits(U->getValue(), TD); 2420 } 2421 2422 return 1; 2423 } 2424 2425 /// createSCEV - We know that there is no SCEV for the specified value. 2426 /// Analyze the expression. 2427 /// 2428 SCEVHandle ScalarEvolution::createSCEV(Value *V) { 2429 if (!isSCEVable(V->getType())) 2430 return getUnknown(V); 2431 2432 unsigned Opcode = Instruction::UserOp1; 2433 if (Instruction *I = dyn_cast<Instruction>(V)) 2434 Opcode = I->getOpcode(); 2435 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2436 Opcode = CE->getOpcode(); 2437 else 2438 return getUnknown(V); 2439 2440 User *U = cast<User>(V); 2441 switch (Opcode) { 2442 case Instruction::Add: 2443 return getAddExpr(getSCEV(U->getOperand(0)), 2444 getSCEV(U->getOperand(1))); 2445 case Instruction::Mul: 2446 return getMulExpr(getSCEV(U->getOperand(0)), 2447 getSCEV(U->getOperand(1))); 2448 case Instruction::UDiv: 2449 return getUDivExpr(getSCEV(U->getOperand(0)), 2450 getSCEV(U->getOperand(1))); 2451 case Instruction::Sub: 2452 return getMinusSCEV(getSCEV(U->getOperand(0)), 2453 getSCEV(U->getOperand(1))); 2454 case Instruction::And: 2455 // For an expression like x&255 that merely masks off the high bits, 2456 // use zext(trunc(x)) as the SCEV expression. 2457 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2458 if (CI->isNullValue()) 2459 return getSCEV(U->getOperand(1)); 2460 if (CI->isAllOnesValue()) 2461 return getSCEV(U->getOperand(0)); 2462 const APInt &A = CI->getValue(); 2463 2464 // Instcombine's ShrinkDemandedConstant may strip bits out of 2465 // constants, obscuring what would otherwise be a low-bits mask. 2466 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 2467 // knew about to reconstruct a low-bits mask value. 2468 unsigned LZ = A.countLeadingZeros(); 2469 unsigned BitWidth = A.getBitWidth(); 2470 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 2471 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2472 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 2473 2474 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 2475 2476 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 2477 return 2478 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2479 IntegerType::get(BitWidth - LZ)), 2480 U->getType()); 2481 } 2482 break; 2483 2484 case Instruction::Or: 2485 // If the RHS of the Or is a constant, we may have something like: 2486 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2487 // optimizations will transparently handle this case. 2488 // 2489 // In order for this transformation to be safe, the LHS must be of the 2490 // form X*(2^n) and the Or constant must be less than 2^n. 2491 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2492 SCEVHandle LHS = getSCEV(U->getOperand(0)); 2493 const APInt &CIVal = CI->getValue(); 2494 if (GetMinTrailingZeros(LHS) >= 2495 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2496 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2497 } 2498 break; 2499 case Instruction::Xor: 2500 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2501 // If the RHS of the xor is a signbit, then this is just an add. 2502 // Instcombine turns add of signbit into xor as a strength reduction step. 2503 if (CI->getValue().isSignBit()) 2504 return getAddExpr(getSCEV(U->getOperand(0)), 2505 getSCEV(U->getOperand(1))); 2506 2507 // If the RHS of xor is -1, then this is a not operation. 2508 if (CI->isAllOnesValue()) 2509 return getNotSCEV(getSCEV(U->getOperand(0))); 2510 2511 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2512 // This is a variant of the check for xor with -1, and it handles 2513 // the case where instcombine has trimmed non-demanded bits out 2514 // of an xor with -1. 2515 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2516 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2517 if (BO->getOpcode() == Instruction::And && 2518 LCI->getValue() == CI->getValue()) 2519 if (const SCEVZeroExtendExpr *Z = 2520 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 2521 const Type *UTy = U->getType(); 2522 SCEVHandle Z0 = Z->getOperand(); 2523 const Type *Z0Ty = Z0->getType(); 2524 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 2525 2526 // If C is a low-bits mask, the zero extend is zerving to 2527 // mask off the high bits. Complement the operand and 2528 // re-apply the zext. 2529 if (APIntOps::isMask(Z0TySize, CI->getValue())) 2530 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 2531 2532 // If C is a single bit, it may be in the sign-bit position 2533 // before the zero-extend. In this case, represent the xor 2534 // using an add, which is equivalent, and re-apply the zext. 2535 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 2536 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 2537 Trunc.isSignBit()) 2538 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 2539 UTy); 2540 } 2541 } 2542 break; 2543 2544 case Instruction::Shl: 2545 // Turn shift left of a constant amount into a multiply. 2546 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2547 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2548 Constant *X = ConstantInt::get( 2549 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2550 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2551 } 2552 break; 2553 2554 case Instruction::LShr: 2555 // Turn logical shift right of a constant into a unsigned divide. 2556 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2557 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2558 Constant *X = ConstantInt::get( 2559 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2560 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2561 } 2562 break; 2563 2564 case Instruction::AShr: 2565 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 2566 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 2567 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 2568 if (L->getOpcode() == Instruction::Shl && 2569 L->getOperand(1) == U->getOperand(1)) { 2570 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2571 uint64_t Amt = BitWidth - CI->getZExtValue(); 2572 if (Amt == BitWidth) 2573 return getSCEV(L->getOperand(0)); // shift by zero --> noop 2574 if (Amt > BitWidth) 2575 return getIntegerSCEV(0, U->getType()); // value is undefined 2576 return 2577 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 2578 IntegerType::get(Amt)), 2579 U->getType()); 2580 } 2581 break; 2582 2583 case Instruction::Trunc: 2584 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 2585 2586 case Instruction::ZExt: 2587 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2588 2589 case Instruction::SExt: 2590 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2591 2592 case Instruction::BitCast: 2593 // BitCasts are no-op casts so we just eliminate the cast. 2594 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 2595 return getSCEV(U->getOperand(0)); 2596 break; 2597 2598 case Instruction::IntToPtr: 2599 if (!TD) break; // Without TD we can't analyze pointers. 2600 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2601 TD->getIntPtrType()); 2602 2603 case Instruction::PtrToInt: 2604 if (!TD) break; // Without TD we can't analyze pointers. 2605 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2606 U->getType()); 2607 2608 case Instruction::GetElementPtr: 2609 if (!TD) break; // Without TD we can't analyze pointers. 2610 return createNodeForGEP(U); 2611 2612 case Instruction::PHI: 2613 return createNodeForPHI(cast<PHINode>(U)); 2614 2615 case Instruction::Select: 2616 // This could be a smax or umax that was lowered earlier. 2617 // Try to recover it. 2618 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2619 Value *LHS = ICI->getOperand(0); 2620 Value *RHS = ICI->getOperand(1); 2621 switch (ICI->getPredicate()) { 2622 case ICmpInst::ICMP_SLT: 2623 case ICmpInst::ICMP_SLE: 2624 std::swap(LHS, RHS); 2625 // fall through 2626 case ICmpInst::ICMP_SGT: 2627 case ICmpInst::ICMP_SGE: 2628 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2629 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2630 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2631 // ~smax(~x, ~y) == smin(x, y). 2632 return getNotSCEV(getSMaxExpr( 2633 getNotSCEV(getSCEV(LHS)), 2634 getNotSCEV(getSCEV(RHS)))); 2635 break; 2636 case ICmpInst::ICMP_ULT: 2637 case ICmpInst::ICMP_ULE: 2638 std::swap(LHS, RHS); 2639 // fall through 2640 case ICmpInst::ICMP_UGT: 2641 case ICmpInst::ICMP_UGE: 2642 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2643 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2644 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2645 // ~umax(~x, ~y) == umin(x, y) 2646 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)), 2647 getNotSCEV(getSCEV(RHS)))); 2648 break; 2649 case ICmpInst::ICMP_NE: 2650 // n != 0 ? n : 1 -> umax(n, 1) 2651 if (LHS == U->getOperand(1) && 2652 isa<ConstantInt>(U->getOperand(2)) && 2653 cast<ConstantInt>(U->getOperand(2))->isOne() && 2654 isa<ConstantInt>(RHS) && 2655 cast<ConstantInt>(RHS)->isZero()) 2656 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); 2657 break; 2658 case ICmpInst::ICMP_EQ: 2659 // n == 0 ? 1 : n -> umax(n, 1) 2660 if (LHS == U->getOperand(2) && 2661 isa<ConstantInt>(U->getOperand(1)) && 2662 cast<ConstantInt>(U->getOperand(1))->isOne() && 2663 isa<ConstantInt>(RHS) && 2664 cast<ConstantInt>(RHS)->isZero()) 2665 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); 2666 break; 2667 default: 2668 break; 2669 } 2670 } 2671 2672 default: // We cannot analyze this expression. 2673 break; 2674 } 2675 2676 return getUnknown(V); 2677 } 2678 2679 2680 2681 //===----------------------------------------------------------------------===// 2682 // Iteration Count Computation Code 2683 // 2684 2685 /// getBackedgeTakenCount - If the specified loop has a predictable 2686 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2687 /// object. The backedge-taken count is the number of times the loop header 2688 /// will be branched to from within the loop. This is one less than the 2689 /// trip count of the loop, since it doesn't count the first iteration, 2690 /// when the header is branched to from outside the loop. 2691 /// 2692 /// Note that it is not valid to call this method on a loop without a 2693 /// loop-invariant backedge-taken count (see 2694 /// hasLoopInvariantBackedgeTakenCount). 2695 /// 2696 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2697 return getBackedgeTakenInfo(L).Exact; 2698 } 2699 2700 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 2701 /// return the least SCEV value that is known never to be less than the 2702 /// actual backedge taken count. 2703 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 2704 return getBackedgeTakenInfo(L).Max; 2705 } 2706 2707 const ScalarEvolution::BackedgeTakenInfo & 2708 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 2709 // Initially insert a CouldNotCompute for this loop. If the insertion 2710 // succeeds, procede to actually compute a backedge-taken count and 2711 // update the value. The temporary CouldNotCompute value tells SCEV 2712 // code elsewhere that it shouldn't attempt to request a new 2713 // backedge-taken count, which could result in infinite recursion. 2714 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 2715 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2716 if (Pair.second) { 2717 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 2718 if (ItCount.Exact != CouldNotCompute) { 2719 assert(ItCount.Exact->isLoopInvariant(L) && 2720 ItCount.Max->isLoopInvariant(L) && 2721 "Computed trip count isn't loop invariant for loop!"); 2722 ++NumTripCountsComputed; 2723 2724 // Update the value in the map. 2725 Pair.first->second = ItCount; 2726 } else if (isa<PHINode>(L->getHeader()->begin())) { 2727 // Only count loops that have phi nodes as not being computable. 2728 ++NumTripCountsNotComputed; 2729 } 2730 2731 // Now that we know more about the trip count for this loop, forget any 2732 // existing SCEV values for PHI nodes in this loop since they are only 2733 // conservative estimates made without the benefit 2734 // of trip count information. 2735 if (ItCount.hasAnyInfo()) 2736 forgetLoopPHIs(L); 2737 } 2738 return Pair.first->second; 2739 } 2740 2741 /// forgetLoopBackedgeTakenCount - This method should be called by the 2742 /// client when it has changed a loop in a way that may effect 2743 /// ScalarEvolution's ability to compute a trip count, or if the loop 2744 /// is deleted. 2745 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2746 BackedgeTakenCounts.erase(L); 2747 forgetLoopPHIs(L); 2748 } 2749 2750 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the 2751 /// PHI nodes in the given loop. This is used when the trip count of 2752 /// the loop may have changed. 2753 void ScalarEvolution::forgetLoopPHIs(const Loop *L) { 2754 BasicBlock *Header = L->getHeader(); 2755 2756 // Push all Loop-header PHIs onto the Worklist stack, except those 2757 // that are presently represented via a SCEVUnknown. SCEVUnknown for 2758 // a PHI either means that it has an unrecognized structure, or it's 2759 // a PHI that's in the progress of being computed by createNodeForPHI. 2760 // In the former case, additional loop trip count information isn't 2761 // going to change anything. In the later case, createNodeForPHI will 2762 // perform the necessary updates on its own when it gets to that point. 2763 SmallVector<Instruction *, 16> Worklist; 2764 for (BasicBlock::iterator I = Header->begin(); 2765 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2766 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I); 2767 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second)) 2768 Worklist.push_back(PN); 2769 } 2770 2771 while (!Worklist.empty()) { 2772 Instruction *I = Worklist.pop_back_val(); 2773 if (Scalars.erase(I)) 2774 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2775 UI != UE; ++UI) 2776 Worklist.push_back(cast<Instruction>(UI)); 2777 } 2778 } 2779 2780 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2781 /// of the specified loop will execute. 2782 ScalarEvolution::BackedgeTakenInfo 2783 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2784 // If the loop has a non-one exit block count, we can't analyze it. 2785 BasicBlock *ExitBlock = L->getExitBlock(); 2786 if (!ExitBlock) 2787 return CouldNotCompute; 2788 2789 // Okay, there is one exit block. Try to find the condition that causes the 2790 // loop to be exited. 2791 BasicBlock *ExitingBlock = L->getExitingBlock(); 2792 if (!ExitingBlock) 2793 return CouldNotCompute; // More than one block exiting! 2794 2795 // Okay, we've computed the exiting block. See what condition causes us to 2796 // exit. 2797 // 2798 // FIXME: we should be able to handle switch instructions (with a single exit) 2799 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2800 if (ExitBr == 0) return CouldNotCompute; 2801 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2802 2803 // At this point, we know we have a conditional branch that determines whether 2804 // the loop is exited. However, we don't know if the branch is executed each 2805 // time through the loop. If not, then the execution count of the branch will 2806 // not be equal to the trip count of the loop. 2807 // 2808 // Currently we check for this by checking to see if the Exit branch goes to 2809 // the loop header. If so, we know it will always execute the same number of 2810 // times as the loop. We also handle the case where the exit block *is* the 2811 // loop header. This is common for un-rotated loops. More extensive analysis 2812 // could be done to handle more cases here. 2813 if (ExitBr->getSuccessor(0) != L->getHeader() && 2814 ExitBr->getSuccessor(1) != L->getHeader() && 2815 ExitBr->getParent() != L->getHeader()) 2816 return CouldNotCompute; 2817 2818 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2819 2820 // If it's not an integer or pointer comparison then compute it the hard way. 2821 if (ExitCond == 0) 2822 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), 2823 ExitBr->getSuccessor(0) == ExitBlock); 2824 2825 // If the condition was exit on true, convert the condition to exit on false 2826 ICmpInst::Predicate Cond; 2827 if (ExitBr->getSuccessor(1) == ExitBlock) 2828 Cond = ExitCond->getPredicate(); 2829 else 2830 Cond = ExitCond->getInversePredicate(); 2831 2832 // Handle common loops like: for (X = "string"; *X; ++X) 2833 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2834 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2835 SCEVHandle ItCnt = 2836 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 2837 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2838 } 2839 2840 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2841 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2842 2843 // Try to evaluate any dependencies out of the loop. 2844 LHS = getSCEVAtScope(LHS, L); 2845 RHS = getSCEVAtScope(RHS, L); 2846 2847 // At this point, we would like to compute how many iterations of the 2848 // loop the predicate will return true for these inputs. 2849 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2850 // If there is a loop-invariant, force it into the RHS. 2851 std::swap(LHS, RHS); 2852 Cond = ICmpInst::getSwappedPredicate(Cond); 2853 } 2854 2855 // If we have a comparison of a chrec against a constant, try to use value 2856 // ranges to answer this query. 2857 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2858 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2859 if (AddRec->getLoop() == L) { 2860 // Form the constant range. 2861 ConstantRange CompRange( 2862 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 2863 2864 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); 2865 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2866 } 2867 2868 switch (Cond) { 2869 case ICmpInst::ICMP_NE: { // while (X != Y) 2870 // Convert to: while (X-Y != 0) 2871 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 2872 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2873 break; 2874 } 2875 case ICmpInst::ICMP_EQ: { 2876 // Convert to: while (X-Y == 0) // while (X == Y) 2877 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 2878 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2879 break; 2880 } 2881 case ICmpInst::ICMP_SLT: { 2882 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 2883 if (BTI.hasAnyInfo()) return BTI; 2884 break; 2885 } 2886 case ICmpInst::ICMP_SGT: { 2887 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2888 getNotSCEV(RHS), L, true); 2889 if (BTI.hasAnyInfo()) return BTI; 2890 break; 2891 } 2892 case ICmpInst::ICMP_ULT: { 2893 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 2894 if (BTI.hasAnyInfo()) return BTI; 2895 break; 2896 } 2897 case ICmpInst::ICMP_UGT: { 2898 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2899 getNotSCEV(RHS), L, false); 2900 if (BTI.hasAnyInfo()) return BTI; 2901 break; 2902 } 2903 default: 2904 #if 0 2905 errs() << "ComputeBackedgeTakenCount "; 2906 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2907 errs() << "[unsigned] "; 2908 errs() << *LHS << " " 2909 << Instruction::getOpcodeName(Instruction::ICmp) 2910 << " " << *RHS << "\n"; 2911 #endif 2912 break; 2913 } 2914 return 2915 ComputeBackedgeTakenCountExhaustively(L, ExitCond, 2916 ExitBr->getSuccessor(0) == ExitBlock); 2917 } 2918 2919 static ConstantInt * 2920 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2921 ScalarEvolution &SE) { 2922 SCEVHandle InVal = SE.getConstant(C); 2923 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2924 assert(isa<SCEVConstant>(Val) && 2925 "Evaluation of SCEV at constant didn't fold correctly?"); 2926 return cast<SCEVConstant>(Val)->getValue(); 2927 } 2928 2929 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2930 /// and a GEP expression (missing the pointer index) indexing into it, return 2931 /// the addressed element of the initializer or null if the index expression is 2932 /// invalid. 2933 static Constant * 2934 GetAddressedElementFromGlobal(GlobalVariable *GV, 2935 const std::vector<ConstantInt*> &Indices) { 2936 Constant *Init = GV->getInitializer(); 2937 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2938 uint64_t Idx = Indices[i]->getZExtValue(); 2939 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2940 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2941 Init = cast<Constant>(CS->getOperand(Idx)); 2942 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2943 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2944 Init = cast<Constant>(CA->getOperand(Idx)); 2945 } else if (isa<ConstantAggregateZero>(Init)) { 2946 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2947 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2948 Init = Constant::getNullValue(STy->getElementType(Idx)); 2949 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2950 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2951 Init = Constant::getNullValue(ATy->getElementType()); 2952 } else { 2953 assert(0 && "Unknown constant aggregate type!"); 2954 } 2955 return 0; 2956 } else { 2957 return 0; // Unknown initializer type 2958 } 2959 } 2960 return Init; 2961 } 2962 2963 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 2964 /// 'icmp op load X, cst', try to see if we can compute the backedge 2965 /// execution count. 2966 SCEVHandle ScalarEvolution:: 2967 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 2968 const Loop *L, 2969 ICmpInst::Predicate predicate) { 2970 if (LI->isVolatile()) return CouldNotCompute; 2971 2972 // Check to see if the loaded pointer is a getelementptr of a global. 2973 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2974 if (!GEP) return CouldNotCompute; 2975 2976 // Make sure that it is really a constant global we are gepping, with an 2977 // initializer, and make sure the first IDX is really 0. 2978 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2979 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2980 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2981 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2982 return CouldNotCompute; 2983 2984 // Okay, we allow one non-constant index into the GEP instruction. 2985 Value *VarIdx = 0; 2986 std::vector<ConstantInt*> Indexes; 2987 unsigned VarIdxNum = 0; 2988 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2989 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2990 Indexes.push_back(CI); 2991 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2992 if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's. 2993 VarIdx = GEP->getOperand(i); 2994 VarIdxNum = i-2; 2995 Indexes.push_back(0); 2996 } 2997 2998 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2999 // Check to see if X is a loop variant variable value now. 3000 SCEVHandle Idx = getSCEV(VarIdx); 3001 Idx = getSCEVAtScope(Idx, L); 3002 3003 // We can only recognize very limited forms of loop index expressions, in 3004 // particular, only affine AddRec's like {C1,+,C2}. 3005 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 3006 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 3007 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 3008 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 3009 return CouldNotCompute; 3010 3011 unsigned MaxSteps = MaxBruteForceIterations; 3012 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 3013 ConstantInt *ItCst = 3014 ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum); 3015 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 3016 3017 // Form the GEP offset. 3018 Indexes[VarIdxNum] = Val; 3019 3020 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 3021 if (Result == 0) break; // Cannot compute! 3022 3023 // Evaluate the condition for this iteration. 3024 Result = ConstantExpr::getICmp(predicate, Result, RHS); 3025 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 3026 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 3027 #if 0 3028 errs() << "\n***\n*** Computed loop count " << *ItCst 3029 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 3030 << "***\n"; 3031 #endif 3032 ++NumArrayLenItCounts; 3033 return getConstant(ItCst); // Found terminating iteration! 3034 } 3035 } 3036 return CouldNotCompute; 3037 } 3038 3039 3040 /// CanConstantFold - Return true if we can constant fold an instruction of the 3041 /// specified type, assuming that all operands were constants. 3042 static bool CanConstantFold(const Instruction *I) { 3043 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 3044 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 3045 return true; 3046 3047 if (const CallInst *CI = dyn_cast<CallInst>(I)) 3048 if (const Function *F = CI->getCalledFunction()) 3049 return canConstantFoldCallTo(F); 3050 return false; 3051 } 3052 3053 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 3054 /// in the loop that V is derived from. We allow arbitrary operations along the 3055 /// way, but the operands of an operation must either be constants or a value 3056 /// derived from a constant PHI. If this expression does not fit with these 3057 /// constraints, return null. 3058 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 3059 // If this is not an instruction, or if this is an instruction outside of the 3060 // loop, it can't be derived from a loop PHI. 3061 Instruction *I = dyn_cast<Instruction>(V); 3062 if (I == 0 || !L->contains(I->getParent())) return 0; 3063 3064 if (PHINode *PN = dyn_cast<PHINode>(I)) { 3065 if (L->getHeader() == I->getParent()) 3066 return PN; 3067 else 3068 // We don't currently keep track of the control flow needed to evaluate 3069 // PHIs, so we cannot handle PHIs inside of loops. 3070 return 0; 3071 } 3072 3073 // If we won't be able to constant fold this expression even if the operands 3074 // are constants, return early. 3075 if (!CanConstantFold(I)) return 0; 3076 3077 // Otherwise, we can evaluate this instruction if all of its operands are 3078 // constant or derived from a PHI node themselves. 3079 PHINode *PHI = 0; 3080 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 3081 if (!(isa<Constant>(I->getOperand(Op)) || 3082 isa<GlobalValue>(I->getOperand(Op)))) { 3083 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3084 if (P == 0) return 0; // Not evolving from PHI 3085 if (PHI == 0) 3086 PHI = P; 3087 else if (PHI != P) 3088 return 0; // Evolving from multiple different PHIs. 3089 } 3090 3091 // This is a expression evolving from a constant PHI! 3092 return PHI; 3093 } 3094 3095 /// EvaluateExpression - Given an expression that passes the 3096 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 3097 /// in the loop has the value PHIVal. If we can't fold this expression for some 3098 /// reason, return null. 3099 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 3100 if (isa<PHINode>(V)) return PHIVal; 3101 if (Constant *C = dyn_cast<Constant>(V)) return C; 3102 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 3103 Instruction *I = cast<Instruction>(V); 3104 3105 std::vector<Constant*> Operands; 3106 Operands.resize(I->getNumOperands()); 3107 3108 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3109 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 3110 if (Operands[i] == 0) return 0; 3111 } 3112 3113 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3114 return ConstantFoldCompareInstOperands(CI->getPredicate(), 3115 &Operands[0], Operands.size()); 3116 else 3117 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3118 &Operands[0], Operands.size()); 3119 } 3120 3121 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3122 /// in the header of its containing loop, we know the loop executes a 3123 /// constant number of times, and the PHI node is just a recurrence 3124 /// involving constants, fold it. 3125 Constant *ScalarEvolution:: 3126 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 3127 std::map<PHINode*, Constant*>::iterator I = 3128 ConstantEvolutionLoopExitValue.find(PN); 3129 if (I != ConstantEvolutionLoopExitValue.end()) 3130 return I->second; 3131 3132 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3133 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3134 3135 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3136 3137 // Since the loop is canonicalized, the PHI node must have two entries. One 3138 // entry must be a constant (coming in from outside of the loop), and the 3139 // second must be derived from the same PHI. 3140 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3141 Constant *StartCST = 3142 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3143 if (StartCST == 0) 3144 return RetVal = 0; // Must be a constant. 3145 3146 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3147 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3148 if (PN2 != PN) 3149 return RetVal = 0; // Not derived from same PHI. 3150 3151 // Execute the loop symbolically to determine the exit value. 3152 if (BEs.getActiveBits() >= 32) 3153 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3154 3155 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3156 unsigned IterationNum = 0; 3157 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3158 if (IterationNum == NumIterations) 3159 return RetVal = PHIVal; // Got exit value! 3160 3161 // Compute the value of the PHI node for the next iteration. 3162 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3163 if (NextPHI == PHIVal) 3164 return RetVal = NextPHI; // Stopped evolving! 3165 if (NextPHI == 0) 3166 return 0; // Couldn't evaluate! 3167 PHIVal = NextPHI; 3168 } 3169 } 3170 3171 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 3172 /// constant number of times (the condition evolves only from constants), 3173 /// try to evaluate a few iterations of the loop until we get the exit 3174 /// condition gets a value of ExitWhen (true or false). If we cannot 3175 /// evaluate the trip count of the loop, return CouldNotCompute. 3176 SCEVHandle ScalarEvolution:: 3177 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 3178 PHINode *PN = getConstantEvolvingPHI(Cond, L); 3179 if (PN == 0) return CouldNotCompute; 3180 3181 // Since the loop is canonicalized, the PHI node must have two entries. One 3182 // entry must be a constant (coming in from outside of the loop), and the 3183 // second must be derived from the same PHI. 3184 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3185 Constant *StartCST = 3186 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3187 if (StartCST == 0) return CouldNotCompute; // Must be a constant. 3188 3189 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3190 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3191 if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI. 3192 3193 // Okay, we find a PHI node that defines the trip count of this loop. Execute 3194 // the loop symbolically to determine when the condition gets a value of 3195 // "ExitWhen". 3196 unsigned IterationNum = 0; 3197 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 3198 for (Constant *PHIVal = StartCST; 3199 IterationNum != MaxIterations; ++IterationNum) { 3200 ConstantInt *CondVal = 3201 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 3202 3203 // Couldn't symbolically evaluate. 3204 if (!CondVal) return CouldNotCompute; 3205 3206 if (CondVal->getValue() == uint64_t(ExitWhen)) { 3207 ConstantEvolutionLoopExitValue[PN] = PHIVal; 3208 ++NumBruteForceTripCountsComputed; 3209 return getConstant(Type::Int32Ty, IterationNum); 3210 } 3211 3212 // Compute the value of the PHI node for the next iteration. 3213 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3214 if (NextPHI == 0 || NextPHI == PHIVal) 3215 return CouldNotCompute; // Couldn't evaluate or not making progress... 3216 PHIVal = NextPHI; 3217 } 3218 3219 // Too many iterations were needed to evaluate. 3220 return CouldNotCompute; 3221 } 3222 3223 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 3224 /// at the specified scope in the program. The L value specifies a loop 3225 /// nest to evaluate the expression at, where null is the top-level or a 3226 /// specified loop is immediately inside of the loop. 3227 /// 3228 /// This method can be used to compute the exit value for a variable defined 3229 /// in a loop by querying what the value will hold in the parent loop. 3230 /// 3231 /// In the case that a relevant loop exit value cannot be computed, the 3232 /// original value V is returned. 3233 SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 3234 // FIXME: this should be turned into a virtual method on SCEV! 3235 3236 if (isa<SCEVConstant>(V)) return V; 3237 3238 // If this instruction is evolved from a constant-evolving PHI, compute the 3239 // exit value from the loop without using SCEVs. 3240 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 3241 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 3242 const Loop *LI = (*this->LI)[I->getParent()]; 3243 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 3244 if (PHINode *PN = dyn_cast<PHINode>(I)) 3245 if (PN->getParent() == LI->getHeader()) { 3246 // Okay, there is no closed form solution for the PHI node. Check 3247 // to see if the loop that contains it has a known backedge-taken 3248 // count. If so, we may be able to force computation of the exit 3249 // value. 3250 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 3251 if (const SCEVConstant *BTCC = 3252 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 3253 // Okay, we know how many times the containing loop executes. If 3254 // this is a constant evolving PHI node, get the final value at 3255 // the specified iteration number. 3256 Constant *RV = getConstantEvolutionLoopExitValue(PN, 3257 BTCC->getValue()->getValue(), 3258 LI); 3259 if (RV) return getUnknown(RV); 3260 } 3261 } 3262 3263 // Okay, this is an expression that we cannot symbolically evaluate 3264 // into a SCEV. Check to see if it's possible to symbolically evaluate 3265 // the arguments into constants, and if so, try to constant propagate the 3266 // result. This is particularly useful for computing loop exit values. 3267 if (CanConstantFold(I)) { 3268 // Check to see if we've folded this instruction at this loop before. 3269 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 3270 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 3271 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 3272 if (!Pair.second) 3273 return Pair.first->second ? &*getUnknown(Pair.first->second) : V; 3274 3275 std::vector<Constant*> Operands; 3276 Operands.reserve(I->getNumOperands()); 3277 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3278 Value *Op = I->getOperand(i); 3279 if (Constant *C = dyn_cast<Constant>(Op)) { 3280 Operands.push_back(C); 3281 } else { 3282 // If any of the operands is non-constant and if they are 3283 // non-integer and non-pointer, don't even try to analyze them 3284 // with scev techniques. 3285 if (!isSCEVable(Op->getType())) 3286 return V; 3287 3288 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 3289 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 3290 Constant *C = SC->getValue(); 3291 if (C->getType() != Op->getType()) 3292 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3293 Op->getType(), 3294 false), 3295 C, Op->getType()); 3296 Operands.push_back(C); 3297 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 3298 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 3299 if (C->getType() != Op->getType()) 3300 C = 3301 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3302 Op->getType(), 3303 false), 3304 C, Op->getType()); 3305 Operands.push_back(C); 3306 } else 3307 return V; 3308 } else { 3309 return V; 3310 } 3311 } 3312 } 3313 3314 Constant *C; 3315 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3316 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3317 &Operands[0], Operands.size()); 3318 else 3319 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3320 &Operands[0], Operands.size()); 3321 Pair.first->second = C; 3322 return getUnknown(C); 3323 } 3324 } 3325 3326 // This is some other type of SCEVUnknown, just return it. 3327 return V; 3328 } 3329 3330 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 3331 // Avoid performing the look-up in the common case where the specified 3332 // expression has no loop-variant portions. 3333 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 3334 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3335 if (OpAtScope != Comm->getOperand(i)) { 3336 // Okay, at least one of these operands is loop variant but might be 3337 // foldable. Build a new instance of the folded commutative expression. 3338 SmallVector<SCEVHandle, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i); 3339 NewOps.push_back(OpAtScope); 3340 3341 for (++i; i != e; ++i) { 3342 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3343 NewOps.push_back(OpAtScope); 3344 } 3345 if (isa<SCEVAddExpr>(Comm)) 3346 return getAddExpr(NewOps); 3347 if (isa<SCEVMulExpr>(Comm)) 3348 return getMulExpr(NewOps); 3349 if (isa<SCEVSMaxExpr>(Comm)) 3350 return getSMaxExpr(NewOps); 3351 if (isa<SCEVUMaxExpr>(Comm)) 3352 return getUMaxExpr(NewOps); 3353 assert(0 && "Unknown commutative SCEV type!"); 3354 } 3355 } 3356 // If we got here, all operands are loop invariant. 3357 return Comm; 3358 } 3359 3360 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 3361 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 3362 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 3363 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 3364 return Div; // must be loop invariant 3365 return getUDivExpr(LHS, RHS); 3366 } 3367 3368 // If this is a loop recurrence for a loop that does not contain L, then we 3369 // are dealing with the final value computed by the loop. 3370 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 3371 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 3372 // To evaluate this recurrence, we need to know how many times the AddRec 3373 // loop iterates. Compute this now. 3374 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 3375 if (BackedgeTakenCount == CouldNotCompute) return AddRec; 3376 3377 // Then, evaluate the AddRec. 3378 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 3379 } 3380 return AddRec; 3381 } 3382 3383 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 3384 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3385 if (Op == Cast->getOperand()) 3386 return Cast; // must be loop invariant 3387 return getZeroExtendExpr(Op, Cast->getType()); 3388 } 3389 3390 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 3391 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3392 if (Op == Cast->getOperand()) 3393 return Cast; // must be loop invariant 3394 return getSignExtendExpr(Op, Cast->getType()); 3395 } 3396 3397 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 3398 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3399 if (Op == Cast->getOperand()) 3400 return Cast; // must be loop invariant 3401 return getTruncateExpr(Op, Cast->getType()); 3402 } 3403 3404 assert(0 && "Unknown SCEV type!"); 3405 return 0; 3406 } 3407 3408 /// getSCEVAtScope - This is a convenience function which does 3409 /// getSCEVAtScope(getSCEV(V), L). 3410 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 3411 return getSCEVAtScope(getSCEV(V), L); 3412 } 3413 3414 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 3415 /// following equation: 3416 /// 3417 /// A * X = B (mod N) 3418 /// 3419 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 3420 /// A and B isn't important. 3421 /// 3422 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 3423 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 3424 ScalarEvolution &SE) { 3425 uint32_t BW = A.getBitWidth(); 3426 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 3427 assert(A != 0 && "A must be non-zero."); 3428 3429 // 1. D = gcd(A, N) 3430 // 3431 // The gcd of A and N may have only one prime factor: 2. The number of 3432 // trailing zeros in A is its multiplicity 3433 uint32_t Mult2 = A.countTrailingZeros(); 3434 // D = 2^Mult2 3435 3436 // 2. Check if B is divisible by D. 3437 // 3438 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 3439 // is not less than multiplicity of this prime factor for D. 3440 if (B.countTrailingZeros() < Mult2) 3441 return SE.getCouldNotCompute(); 3442 3443 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 3444 // modulo (N / D). 3445 // 3446 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 3447 // bit width during computations. 3448 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 3449 APInt Mod(BW + 1, 0); 3450 Mod.set(BW - Mult2); // Mod = N / D 3451 APInt I = AD.multiplicativeInverse(Mod); 3452 3453 // 4. Compute the minimum unsigned root of the equation: 3454 // I * (B / D) mod (N / D) 3455 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 3456 3457 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 3458 // bits. 3459 return SE.getConstant(Result.trunc(BW)); 3460 } 3461 3462 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 3463 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 3464 /// might be the same) or two SCEVCouldNotCompute objects. 3465 /// 3466 static std::pair<SCEVHandle,SCEVHandle> 3467 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 3468 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 3469 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 3470 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 3471 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 3472 3473 // We currently can only solve this if the coefficients are constants. 3474 if (!LC || !MC || !NC) { 3475 const SCEV *CNC = SE.getCouldNotCompute(); 3476 return std::make_pair(CNC, CNC); 3477 } 3478 3479 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 3480 const APInt &L = LC->getValue()->getValue(); 3481 const APInt &M = MC->getValue()->getValue(); 3482 const APInt &N = NC->getValue()->getValue(); 3483 APInt Two(BitWidth, 2); 3484 APInt Four(BitWidth, 4); 3485 3486 { 3487 using namespace APIntOps; 3488 const APInt& C = L; 3489 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 3490 // The B coefficient is M-N/2 3491 APInt B(M); 3492 B -= sdiv(N,Two); 3493 3494 // The A coefficient is N/2 3495 APInt A(N.sdiv(Two)); 3496 3497 // Compute the B^2-4ac term. 3498 APInt SqrtTerm(B); 3499 SqrtTerm *= B; 3500 SqrtTerm -= Four * (A * C); 3501 3502 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 3503 // integer value or else APInt::sqrt() will assert. 3504 APInt SqrtVal(SqrtTerm.sqrt()); 3505 3506 // Compute the two solutions for the quadratic formula. 3507 // The divisions must be performed as signed divisions. 3508 APInt NegB(-B); 3509 APInt TwoA( A << 1 ); 3510 if (TwoA.isMinValue()) { 3511 const SCEV *CNC = SE.getCouldNotCompute(); 3512 return std::make_pair(CNC, CNC); 3513 } 3514 3515 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 3516 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 3517 3518 return std::make_pair(SE.getConstant(Solution1), 3519 SE.getConstant(Solution2)); 3520 } // end APIntOps namespace 3521 } 3522 3523 /// HowFarToZero - Return the number of times a backedge comparing the specified 3524 /// value to zero will execute. If not computable, return CouldNotCompute. 3525 SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 3526 // If the value is a constant 3527 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3528 // If the value is already zero, the branch will execute zero times. 3529 if (C->getValue()->isZero()) return C; 3530 return CouldNotCompute; // Otherwise it will loop infinitely. 3531 } 3532 3533 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 3534 if (!AddRec || AddRec->getLoop() != L) 3535 return CouldNotCompute; 3536 3537 if (AddRec->isAffine()) { 3538 // If this is an affine expression, the execution count of this branch is 3539 // the minimum unsigned root of the following equation: 3540 // 3541 // Start + Step*N = 0 (mod 2^BW) 3542 // 3543 // equivalent to: 3544 // 3545 // Step*N = -Start (mod 2^BW) 3546 // 3547 // where BW is the common bit width of Start and Step. 3548 3549 // Get the initial value for the loop. 3550 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 3551 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 3552 3553 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 3554 // For now we handle only constant steps. 3555 3556 // First, handle unitary steps. 3557 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 3558 return getNegativeSCEV(Start); // N = -Start (as unsigned) 3559 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 3560 return Start; // N = Start (as unsigned) 3561 3562 // Then, try to solve the above equation provided that Start is constant. 3563 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 3564 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 3565 -StartC->getValue()->getValue(), 3566 *this); 3567 } 3568 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 3569 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 3570 // the quadratic equation to solve it. 3571 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, 3572 *this); 3573 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3574 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3575 if (R1) { 3576 #if 0 3577 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 3578 << " sol#2: " << *R2 << "\n"; 3579 #endif 3580 // Pick the smallest positive root value. 3581 if (ConstantInt *CB = 3582 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3583 R1->getValue(), R2->getValue()))) { 3584 if (CB->getZExtValue() == false) 3585 std::swap(R1, R2); // R1 is the minimum root now. 3586 3587 // We can only use this value if the chrec ends up with an exact zero 3588 // value at this index. When solving for "X*X != 5", for example, we 3589 // should not accept a root of 2. 3590 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); 3591 if (Val->isZero()) 3592 return R1; // We found a quadratic root! 3593 } 3594 } 3595 } 3596 3597 return CouldNotCompute; 3598 } 3599 3600 /// HowFarToNonZero - Return the number of times a backedge checking the 3601 /// specified value for nonzero will execute. If not computable, return 3602 /// CouldNotCompute 3603 SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 3604 // Loops that look like: while (X == 0) are very strange indeed. We don't 3605 // handle them yet except for the trivial case. This could be expanded in the 3606 // future as needed. 3607 3608 // If the value is a constant, check to see if it is known to be non-zero 3609 // already. If so, the backedge will execute zero times. 3610 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3611 if (!C->getValue()->isNullValue()) 3612 return getIntegerSCEV(0, C->getType()); 3613 return CouldNotCompute; // Otherwise it will loop infinitely. 3614 } 3615 3616 // We could implement others, but I really doubt anyone writes loops like 3617 // this, and if they did, they would already be constant folded. 3618 return CouldNotCompute; 3619 } 3620 3621 /// getLoopPredecessor - If the given loop's header has exactly one unique 3622 /// predecessor outside the loop, return it. Otherwise return null. 3623 /// 3624 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 3625 BasicBlock *Header = L->getHeader(); 3626 BasicBlock *Pred = 0; 3627 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 3628 PI != E; ++PI) 3629 if (!L->contains(*PI)) { 3630 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 3631 Pred = *PI; 3632 } 3633 return Pred; 3634 } 3635 3636 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 3637 /// (which may not be an immediate predecessor) which has exactly one 3638 /// successor from which BB is reachable, or null if no such block is 3639 /// found. 3640 /// 3641 BasicBlock * 3642 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 3643 // If the block has a unique predecessor, then there is no path from the 3644 // predecessor to the block that does not go through the direct edge 3645 // from the predecessor to the block. 3646 if (BasicBlock *Pred = BB->getSinglePredecessor()) 3647 return Pred; 3648 3649 // A loop's header is defined to be a block that dominates the loop. 3650 // If the header has a unique predecessor outside the loop, it must be 3651 // a block that has exactly one successor that can reach the loop. 3652 if (Loop *L = LI->getLoopFor(BB)) 3653 return getLoopPredecessor(L); 3654 3655 return 0; 3656 } 3657 3658 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 3659 /// a conditional between LHS and RHS. This is used to help avoid max 3660 /// expressions in loop trip counts. 3661 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3662 ICmpInst::Predicate Pred, 3663 const SCEV *LHS, const SCEV *RHS) { 3664 // Interpret a null as meaning no loop, where there is obviously no guard 3665 // (interprocedural conditions notwithstanding). 3666 if (!L) return false; 3667 3668 BasicBlock *Predecessor = getLoopPredecessor(L); 3669 BasicBlock *PredecessorDest = L->getHeader(); 3670 3671 // Starting at the loop predecessor, climb up the predecessor chain, as long 3672 // as there are predecessors that can be found that have unique successors 3673 // leading to the original header. 3674 for (; Predecessor; 3675 PredecessorDest = Predecessor, 3676 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 3677 3678 BranchInst *LoopEntryPredicate = 3679 dyn_cast<BranchInst>(Predecessor->getTerminator()); 3680 if (!LoopEntryPredicate || 3681 LoopEntryPredicate->isUnconditional()) 3682 continue; 3683 3684 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 3685 if (!ICI) continue; 3686 3687 // Now that we found a conditional branch that dominates the loop, check to 3688 // see if it is the comparison we are looking for. 3689 Value *PreCondLHS = ICI->getOperand(0); 3690 Value *PreCondRHS = ICI->getOperand(1); 3691 ICmpInst::Predicate Cond; 3692 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest) 3693 Cond = ICI->getPredicate(); 3694 else 3695 Cond = ICI->getInversePredicate(); 3696 3697 if (Cond == Pred) 3698 ; // An exact match. 3699 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 3700 ; // The actual condition is beyond sufficient. 3701 else 3702 // Check a few special cases. 3703 switch (Cond) { 3704 case ICmpInst::ICMP_UGT: 3705 if (Pred == ICmpInst::ICMP_ULT) { 3706 std::swap(PreCondLHS, PreCondRHS); 3707 Cond = ICmpInst::ICMP_ULT; 3708 break; 3709 } 3710 continue; 3711 case ICmpInst::ICMP_SGT: 3712 if (Pred == ICmpInst::ICMP_SLT) { 3713 std::swap(PreCondLHS, PreCondRHS); 3714 Cond = ICmpInst::ICMP_SLT; 3715 break; 3716 } 3717 continue; 3718 case ICmpInst::ICMP_NE: 3719 // Expressions like (x >u 0) are often canonicalized to (x != 0), 3720 // so check for this case by checking if the NE is comparing against 3721 // a minimum or maximum constant. 3722 if (!ICmpInst::isTrueWhenEqual(Pred)) 3723 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 3724 const APInt &A = CI->getValue(); 3725 switch (Pred) { 3726 case ICmpInst::ICMP_SLT: 3727 if (A.isMaxSignedValue()) break; 3728 continue; 3729 case ICmpInst::ICMP_SGT: 3730 if (A.isMinSignedValue()) break; 3731 continue; 3732 case ICmpInst::ICMP_ULT: 3733 if (A.isMaxValue()) break; 3734 continue; 3735 case ICmpInst::ICMP_UGT: 3736 if (A.isMinValue()) break; 3737 continue; 3738 default: 3739 continue; 3740 } 3741 Cond = ICmpInst::ICMP_NE; 3742 // NE is symmetric but the original comparison may not be. Swap 3743 // the operands if necessary so that they match below. 3744 if (isa<SCEVConstant>(LHS)) 3745 std::swap(PreCondLHS, PreCondRHS); 3746 break; 3747 } 3748 continue; 3749 default: 3750 // We weren't able to reconcile the condition. 3751 continue; 3752 } 3753 3754 if (!PreCondLHS->getType()->isInteger()) continue; 3755 3756 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3757 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3758 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 3759 (LHS == getNotSCEV(PreCondRHSSCEV) && 3760 RHS == getNotSCEV(PreCondLHSSCEV))) 3761 return true; 3762 } 3763 3764 return false; 3765 } 3766 3767 /// HowManyLessThans - Return the number of times a backedge containing the 3768 /// specified less-than comparison will execute. If not computable, return 3769 /// CouldNotCompute. 3770 ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: 3771 HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 3772 const Loop *L, bool isSigned) { 3773 // Only handle: "ADDREC < LoopInvariant". 3774 if (!RHS->isLoopInvariant(L)) return CouldNotCompute; 3775 3776 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3777 if (!AddRec || AddRec->getLoop() != L) 3778 return CouldNotCompute; 3779 3780 if (AddRec->isAffine()) { 3781 // FORNOW: We only support unit strides. 3782 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 3783 SCEVHandle Step = AddRec->getStepRecurrence(*this); 3784 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType()); 3785 3786 // TODO: handle non-constant strides. 3787 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 3788 if (!CStep || CStep->isZero()) 3789 return CouldNotCompute; 3790 if (CStep->isOne()) { 3791 // With unit stride, the iteration never steps past the limit value. 3792 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 3793 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 3794 // Test whether a positive iteration iteration can step past the limit 3795 // value and past the maximum value for its type in a single step. 3796 if (isSigned) { 3797 APInt Max = APInt::getSignedMaxValue(BitWidth); 3798 if ((Max - CStep->getValue()->getValue()) 3799 .slt(CLimit->getValue()->getValue())) 3800 return CouldNotCompute; 3801 } else { 3802 APInt Max = APInt::getMaxValue(BitWidth); 3803 if ((Max - CStep->getValue()->getValue()) 3804 .ult(CLimit->getValue()->getValue())) 3805 return CouldNotCompute; 3806 } 3807 } else 3808 // TODO: handle non-constant limit values below. 3809 return CouldNotCompute; 3810 } else 3811 // TODO: handle negative strides below. 3812 return CouldNotCompute; 3813 3814 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 3815 // m. So, we count the number of iterations in which {n,+,s} < m is true. 3816 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 3817 // treat m-n as signed nor unsigned due to overflow possibility. 3818 3819 // First, we get the value of the LHS in the first iteration: n 3820 SCEVHandle Start = AddRec->getOperand(0); 3821 3822 // Determine the minimum constant start value. 3823 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : 3824 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : 3825 APInt::getMinValue(BitWidth)); 3826 3827 // If we know that the condition is true in order to enter the loop, 3828 // then we know that it will run exactly (m-n)/s times. Otherwise, we 3829 // only know that it will execute (max(m,n)-n)/s times. In both cases, 3830 // the division must round up. 3831 SCEVHandle End = RHS; 3832 if (!isLoopGuardedByCond(L, 3833 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 3834 getMinusSCEV(Start, Step), RHS)) 3835 End = isSigned ? getSMaxExpr(RHS, Start) 3836 : getUMaxExpr(RHS, Start); 3837 3838 // Determine the maximum constant end value. 3839 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End : 3840 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) : 3841 APInt::getMaxValue(BitWidth)); 3842 3843 // Finally, we subtract these two values and divide, rounding up, to get 3844 // the number of times the backedge is executed. 3845 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start), 3846 getAddExpr(Step, NegOne)), 3847 Step); 3848 3849 // The maximum backedge count is similar, except using the minimum start 3850 // value and the maximum end value. 3851 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd, 3852 MinStart), 3853 getAddExpr(Step, NegOne)), 3854 Step); 3855 3856 return BackedgeTakenInfo(BECount, MaxBECount); 3857 } 3858 3859 return CouldNotCompute; 3860 } 3861 3862 /// getNumIterationsInRange - Return the number of iterations of this loop that 3863 /// produce values in the specified constant range. Another way of looking at 3864 /// this is that it returns the first iteration number where the value is not in 3865 /// the condition, thus computing the exit count. If the iteration count can't 3866 /// be computed, an instance of SCEVCouldNotCompute is returned. 3867 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3868 ScalarEvolution &SE) const { 3869 if (Range.isFullSet()) // Infinite loop. 3870 return SE.getCouldNotCompute(); 3871 3872 // If the start is a non-zero constant, shift the range to simplify things. 3873 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3874 if (!SC->getValue()->isZero()) { 3875 SmallVector<SCEVHandle, 4> Operands(op_begin(), op_end()); 3876 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3877 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3878 if (const SCEVAddRecExpr *ShiftedAddRec = 3879 dyn_cast<SCEVAddRecExpr>(Shifted)) 3880 return ShiftedAddRec->getNumIterationsInRange( 3881 Range.subtract(SC->getValue()->getValue()), SE); 3882 // This is strange and shouldn't happen. 3883 return SE.getCouldNotCompute(); 3884 } 3885 3886 // The only time we can solve this is when we have all constant indices. 3887 // Otherwise, we cannot determine the overflow conditions. 3888 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3889 if (!isa<SCEVConstant>(getOperand(i))) 3890 return SE.getCouldNotCompute(); 3891 3892 3893 // Okay at this point we know that all elements of the chrec are constants and 3894 // that the start element is zero. 3895 3896 // First check to see if the range contains zero. If not, the first 3897 // iteration exits. 3898 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 3899 if (!Range.contains(APInt(BitWidth, 0))) 3900 return SE.getIntegerSCEV(0, getType()); 3901 3902 if (isAffine()) { 3903 // If this is an affine expression then we have this situation: 3904 // Solve {0,+,A} in Range === Ax in Range 3905 3906 // We know that zero is in the range. If A is positive then we know that 3907 // the upper value of the range must be the first possible exit value. 3908 // If A is negative then the lower of the range is the last possible loop 3909 // value. Also note that we already checked for a full range. 3910 APInt One(BitWidth,1); 3911 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3912 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3913 3914 // The exit value should be (End+A)/A. 3915 APInt ExitVal = (End + A).udiv(A); 3916 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3917 3918 // Evaluate at the exit value. If we really did fall out of the valid 3919 // range, then we computed our trip count, otherwise wrap around or other 3920 // things must have happened. 3921 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3922 if (Range.contains(Val->getValue())) 3923 return SE.getCouldNotCompute(); // Something strange happened 3924 3925 // Ensure that the previous value is in the range. This is a sanity check. 3926 assert(Range.contains( 3927 EvaluateConstantChrecAtConstant(this, 3928 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3929 "Linear scev computation is off in a bad way!"); 3930 return SE.getConstant(ExitValue); 3931 } else if (isQuadratic()) { 3932 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3933 // quadratic equation to solve it. To do this, we must frame our problem in 3934 // terms of figuring out when zero is crossed, instead of when 3935 // Range.getUpper() is crossed. 3936 SmallVector<SCEVHandle, 4> NewOps(op_begin(), op_end()); 3937 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3938 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3939 3940 // Next, solve the constructed addrec 3941 std::pair<SCEVHandle,SCEVHandle> Roots = 3942 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3943 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3944 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3945 if (R1) { 3946 // Pick the smallest positive root value. 3947 if (ConstantInt *CB = 3948 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3949 R1->getValue(), R2->getValue()))) { 3950 if (CB->getZExtValue() == false) 3951 std::swap(R1, R2); // R1 is the minimum root now. 3952 3953 // Make sure the root is not off by one. The returned iteration should 3954 // not be in the range, but the previous one should be. When solving 3955 // for "X*X < 5", for example, we should not return a root of 2. 3956 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3957 R1->getValue(), 3958 SE); 3959 if (Range.contains(R1Val->getValue())) { 3960 // The next iteration must be out of the range... 3961 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3962 3963 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3964 if (!Range.contains(R1Val->getValue())) 3965 return SE.getConstant(NextVal); 3966 return SE.getCouldNotCompute(); // Something strange happened 3967 } 3968 3969 // If R1 was not in the range, then it is a good return value. Make 3970 // sure that R1-1 WAS in the range though, just in case. 3971 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3972 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3973 if (Range.contains(R1Val->getValue())) 3974 return R1; 3975 return SE.getCouldNotCompute(); // Something strange happened 3976 } 3977 } 3978 } 3979 3980 return SE.getCouldNotCompute(); 3981 } 3982 3983 3984 3985 //===----------------------------------------------------------------------===// 3986 // SCEVCallbackVH Class Implementation 3987 //===----------------------------------------------------------------------===// 3988 3989 void ScalarEvolution::SCEVCallbackVH::deleted() { 3990 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 3991 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 3992 SE->ConstantEvolutionLoopExitValue.erase(PN); 3993 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 3994 SE->ValuesAtScopes.erase(I); 3995 SE->Scalars.erase(getValPtr()); 3996 // this now dangles! 3997 } 3998 3999 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 4000 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 4001 4002 // Forget all the expressions associated with users of the old value, 4003 // so that future queries will recompute the expressions using the new 4004 // value. 4005 SmallVector<User *, 16> Worklist; 4006 Value *Old = getValPtr(); 4007 bool DeleteOld = false; 4008 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 4009 UI != UE; ++UI) 4010 Worklist.push_back(*UI); 4011 while (!Worklist.empty()) { 4012 User *U = Worklist.pop_back_val(); 4013 // Deleting the Old value will cause this to dangle. Postpone 4014 // that until everything else is done. 4015 if (U == Old) { 4016 DeleteOld = true; 4017 continue; 4018 } 4019 if (PHINode *PN = dyn_cast<PHINode>(U)) 4020 SE->ConstantEvolutionLoopExitValue.erase(PN); 4021 if (Instruction *I = dyn_cast<Instruction>(U)) 4022 SE->ValuesAtScopes.erase(I); 4023 if (SE->Scalars.erase(U)) 4024 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 4025 UI != UE; ++UI) 4026 Worklist.push_back(*UI); 4027 } 4028 if (DeleteOld) { 4029 if (PHINode *PN = dyn_cast<PHINode>(Old)) 4030 SE->ConstantEvolutionLoopExitValue.erase(PN); 4031 if (Instruction *I = dyn_cast<Instruction>(Old)) 4032 SE->ValuesAtScopes.erase(I); 4033 SE->Scalars.erase(Old); 4034 // this now dangles! 4035 } 4036 // this may dangle! 4037 } 4038 4039 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 4040 : CallbackVH(V), SE(se) {} 4041 4042 //===----------------------------------------------------------------------===// 4043 // ScalarEvolution Class Implementation 4044 //===----------------------------------------------------------------------===// 4045 4046 ScalarEvolution::ScalarEvolution() 4047 : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute(0)) { 4048 } 4049 4050 bool ScalarEvolution::runOnFunction(Function &F) { 4051 this->F = &F; 4052 LI = &getAnalysis<LoopInfo>(); 4053 TD = getAnalysisIfAvailable<TargetData>(); 4054 return false; 4055 } 4056 4057 void ScalarEvolution::releaseMemory() { 4058 Scalars.clear(); 4059 BackedgeTakenCounts.clear(); 4060 ConstantEvolutionLoopExitValue.clear(); 4061 ValuesAtScopes.clear(); 4062 } 4063 4064 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 4065 AU.setPreservesAll(); 4066 AU.addRequiredTransitive<LoopInfo>(); 4067 } 4068 4069 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 4070 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 4071 } 4072 4073 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 4074 const Loop *L) { 4075 // Print all inner loops first 4076 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4077 PrintLoopInfo(OS, SE, *I); 4078 4079 OS << "Loop " << L->getHeader()->getName() << ": "; 4080 4081 SmallVector<BasicBlock*, 8> ExitBlocks; 4082 L->getExitBlocks(ExitBlocks); 4083 if (ExitBlocks.size() != 1) 4084 OS << "<multiple exits> "; 4085 4086 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 4087 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 4088 } else { 4089 OS << "Unpredictable backedge-taken count. "; 4090 } 4091 4092 OS << "\n"; 4093 } 4094 4095 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 4096 // ScalarEvolution's implementaiton of the print method is to print 4097 // out SCEV values of all instructions that are interesting. Doing 4098 // this potentially causes it to create new SCEV objects though, 4099 // which technically conflicts with the const qualifier. This isn't 4100 // observable from outside the class though (the hasSCEV function 4101 // notwithstanding), so casting away the const isn't dangerous. 4102 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 4103 4104 OS << "Classifying expressions for: " << F->getName() << "\n"; 4105 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 4106 if (isSCEVable(I->getType())) { 4107 OS << *I; 4108 OS << " --> "; 4109 SCEVHandle SV = SE.getSCEV(&*I); 4110 SV->print(OS); 4111 4112 const Loop *L = LI->getLoopFor((*I).getParent()); 4113 4114 SCEVHandle AtUse = SE.getSCEVAtScope(SV, L); 4115 if (AtUse != SV) { 4116 OS << " --> "; 4117 AtUse->print(OS); 4118 } 4119 4120 if (L) { 4121 OS << "\t\t" "Exits: "; 4122 SCEVHandle ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 4123 if (!ExitValue->isLoopInvariant(L)) { 4124 OS << "<<Unknown>>"; 4125 } else { 4126 OS << *ExitValue; 4127 } 4128 } 4129 4130 OS << "\n"; 4131 } 4132 4133 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 4134 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 4135 PrintLoopInfo(OS, &SE, *I); 4136 } 4137 4138 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 4139 raw_os_ostream OS(o); 4140 print(OS, M); 4141 } 4142