1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the const SCEV* 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/ValueTracking.h" 72 #include "llvm/Assembly/Writer.h" 73 #include "llvm/Target/TargetData.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/ConstantRange.h" 77 #include "llvm/Support/GetElementPtrTypeIterator.h" 78 #include "llvm/Support/InstIterator.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/ADT/Statistic.h" 82 #include "llvm/ADT/STLExtras.h" 83 #include <algorithm> 84 using namespace llvm; 85 86 STATISTIC(NumArrayLenItCounts, 87 "Number of trip counts computed with array length"); 88 STATISTIC(NumTripCountsComputed, 89 "Number of loops with predictable loop counts"); 90 STATISTIC(NumTripCountsNotComputed, 91 "Number of loops without predictable loop counts"); 92 STATISTIC(NumBruteForceTripCountsComputed, 93 "Number of loops with trip counts computed by force"); 94 95 static cl::opt<unsigned> 96 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 97 cl::desc("Maximum number of iterations SCEV will " 98 "symbolically execute a constant " 99 "derived loop"), 100 cl::init(100)); 101 102 static RegisterPass<ScalarEvolution> 103 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 104 char ScalarEvolution::ID = 0; 105 106 //===----------------------------------------------------------------------===// 107 // SCEV class definitions 108 //===----------------------------------------------------------------------===// 109 110 //===----------------------------------------------------------------------===// 111 // Implementation of the SCEV class. 112 // 113 SCEV::~SCEV() {} 114 void SCEV::dump() const { 115 print(errs()); 116 errs() << '\n'; 117 } 118 119 void SCEV::print(std::ostream &o) const { 120 raw_os_ostream OS(o); 121 print(OS); 122 } 123 124 bool SCEV::isZero() const { 125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 126 return SC->getValue()->isZero(); 127 return false; 128 } 129 130 bool SCEV::isOne() const { 131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 132 return SC->getValue()->isOne(); 133 return false; 134 } 135 136 bool SCEV::isAllOnesValue() const { 137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 138 return SC->getValue()->isAllOnesValue(); 139 return false; 140 } 141 142 SCEVCouldNotCompute::SCEVCouldNotCompute() : 143 SCEV(scCouldNotCompute) {} 144 145 void SCEVCouldNotCompute::Profile(FoldingSetNodeID &ID) const { 146 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 147 } 148 149 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 151 return false; 152 } 153 154 const Type *SCEVCouldNotCompute::getType() const { 155 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 156 return 0; 157 } 158 159 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 160 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 161 return false; 162 } 163 164 const SCEV * 165 SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete( 166 const SCEV *Sym, 167 const SCEV *Conc, 168 ScalarEvolution &SE) const { 169 return this; 170 } 171 172 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 173 OS << "***COULDNOTCOMPUTE***"; 174 } 175 176 bool SCEVCouldNotCompute::classof(const SCEV *S) { 177 return S->getSCEVType() == scCouldNotCompute; 178 } 179 180 const SCEV* ScalarEvolution::getConstant(ConstantInt *V) { 181 FoldingSetNodeID ID; 182 ID.AddInteger(scConstant); 183 ID.AddPointer(V); 184 void *IP = 0; 185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 186 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>(); 187 new (S) SCEVConstant(V); 188 UniqueSCEVs.InsertNode(S, IP); 189 return S; 190 } 191 192 const SCEV* ScalarEvolution::getConstant(const APInt& Val) { 193 return getConstant(ConstantInt::get(Val)); 194 } 195 196 const SCEV* 197 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 198 return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 199 } 200 201 void SCEVConstant::Profile(FoldingSetNodeID &ID) const { 202 ID.AddInteger(scConstant); 203 ID.AddPointer(V); 204 } 205 206 const Type *SCEVConstant::getType() const { return V->getType(); } 207 208 void SCEVConstant::print(raw_ostream &OS) const { 209 WriteAsOperand(OS, V, false); 210 } 211 212 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 213 const SCEV* op, const Type *ty) 214 : SCEV(SCEVTy), Op(op), Ty(ty) {} 215 216 void SCEVCastExpr::Profile(FoldingSetNodeID &ID) const { 217 ID.AddInteger(getSCEVType()); 218 ID.AddPointer(Op); 219 ID.AddPointer(Ty); 220 } 221 222 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 223 return Op->dominates(BB, DT); 224 } 225 226 SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty) 227 : SCEVCastExpr(scTruncate, op, ty) { 228 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 229 (Ty->isInteger() || isa<PointerType>(Ty)) && 230 "Cannot truncate non-integer value!"); 231 } 232 233 void SCEVTruncateExpr::print(raw_ostream &OS) const { 234 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 235 } 236 237 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty) 238 : SCEVCastExpr(scZeroExtend, op, ty) { 239 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 240 (Ty->isInteger() || isa<PointerType>(Ty)) && 241 "Cannot zero extend non-integer value!"); 242 } 243 244 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 245 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 246 } 247 248 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty) 249 : SCEVCastExpr(scSignExtend, op, ty) { 250 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 251 (Ty->isInteger() || isa<PointerType>(Ty)) && 252 "Cannot sign extend non-integer value!"); 253 } 254 255 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 256 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 257 } 258 259 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 260 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 261 const char *OpStr = getOperationStr(); 262 OS << "(" << *Operands[0]; 263 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 264 OS << OpStr << *Operands[i]; 265 OS << ")"; 266 } 267 268 const SCEV * 269 SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete( 270 const SCEV *Sym, 271 const SCEV *Conc, 272 ScalarEvolution &SE) const { 273 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 274 const SCEV* H = 275 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 276 if (H != getOperand(i)) { 277 SmallVector<const SCEV*, 8> NewOps; 278 NewOps.reserve(getNumOperands()); 279 for (unsigned j = 0; j != i; ++j) 280 NewOps.push_back(getOperand(j)); 281 NewOps.push_back(H); 282 for (++i; i != e; ++i) 283 NewOps.push_back(getOperand(i)-> 284 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 285 286 if (isa<SCEVAddExpr>(this)) 287 return SE.getAddExpr(NewOps); 288 else if (isa<SCEVMulExpr>(this)) 289 return SE.getMulExpr(NewOps); 290 else if (isa<SCEVSMaxExpr>(this)) 291 return SE.getSMaxExpr(NewOps); 292 else if (isa<SCEVUMaxExpr>(this)) 293 return SE.getUMaxExpr(NewOps); 294 else 295 assert(0 && "Unknown commutative expr!"); 296 } 297 } 298 return this; 299 } 300 301 void SCEVNAryExpr::Profile(FoldingSetNodeID &ID) const { 302 ID.AddInteger(getSCEVType()); 303 ID.AddInteger(Operands.size()); 304 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 305 ID.AddPointer(Operands[i]); 306 } 307 308 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 309 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 310 if (!getOperand(i)->dominates(BB, DT)) 311 return false; 312 } 313 return true; 314 } 315 316 void SCEVUDivExpr::Profile(FoldingSetNodeID &ID) const { 317 ID.AddInteger(scUDivExpr); 318 ID.AddPointer(LHS); 319 ID.AddPointer(RHS); 320 } 321 322 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 323 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 324 } 325 326 void SCEVUDivExpr::print(raw_ostream &OS) const { 327 OS << "(" << *LHS << " /u " << *RHS << ")"; 328 } 329 330 const Type *SCEVUDivExpr::getType() const { 331 // In most cases the types of LHS and RHS will be the same, but in some 332 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 333 // depend on the type for correctness, but handling types carefully can 334 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 335 // a pointer type than the RHS, so use the RHS' type here. 336 return RHS->getType(); 337 } 338 339 void SCEVAddRecExpr::Profile(FoldingSetNodeID &ID) const { 340 ID.AddInteger(scAddRecExpr); 341 ID.AddInteger(Operands.size()); 342 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 343 ID.AddPointer(Operands[i]); 344 ID.AddPointer(L); 345 } 346 347 const SCEV * 348 SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym, 349 const SCEV *Conc, 350 ScalarEvolution &SE) const { 351 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 352 const SCEV* H = 353 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 354 if (H != getOperand(i)) { 355 SmallVector<const SCEV*, 8> NewOps; 356 NewOps.reserve(getNumOperands()); 357 for (unsigned j = 0; j != i; ++j) 358 NewOps.push_back(getOperand(j)); 359 NewOps.push_back(H); 360 for (++i; i != e; ++i) 361 NewOps.push_back(getOperand(i)-> 362 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 363 364 return SE.getAddRecExpr(NewOps, L); 365 } 366 } 367 return this; 368 } 369 370 371 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 372 // Add recurrences are never invariant in the function-body (null loop). 373 if (!QueryLoop) 374 return false; 375 376 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 377 if (QueryLoop->contains(L->getHeader())) 378 return false; 379 380 // This recurrence is variant w.r.t. QueryLoop if any of its operands 381 // are variant. 382 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 383 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 384 return false; 385 386 // Otherwise it's loop-invariant. 387 return true; 388 } 389 390 391 void SCEVAddRecExpr::print(raw_ostream &OS) const { 392 OS << "{" << *Operands[0]; 393 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 394 OS << ",+," << *Operands[i]; 395 OS << "}<" << L->getHeader()->getName() + ">"; 396 } 397 398 void SCEVUnknown::Profile(FoldingSetNodeID &ID) const { 399 ID.AddInteger(scUnknown); 400 ID.AddPointer(V); 401 } 402 403 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 404 // All non-instruction values are loop invariant. All instructions are loop 405 // invariant if they are not contained in the specified loop. 406 // Instructions are never considered invariant in the function body 407 // (null loop) because they are defined within the "loop". 408 if (Instruction *I = dyn_cast<Instruction>(V)) 409 return L && !L->contains(I->getParent()); 410 return true; 411 } 412 413 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 414 if (Instruction *I = dyn_cast<Instruction>(getValue())) 415 return DT->dominates(I->getParent(), BB); 416 return true; 417 } 418 419 const Type *SCEVUnknown::getType() const { 420 return V->getType(); 421 } 422 423 void SCEVUnknown::print(raw_ostream &OS) const { 424 WriteAsOperand(OS, V, false); 425 } 426 427 //===----------------------------------------------------------------------===// 428 // SCEV Utilities 429 //===----------------------------------------------------------------------===// 430 431 namespace { 432 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 433 /// than the complexity of the RHS. This comparator is used to canonicalize 434 /// expressions. 435 class VISIBILITY_HIDDEN SCEVComplexityCompare { 436 LoopInfo *LI; 437 public: 438 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 439 440 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 441 // Primarily, sort the SCEVs by their getSCEVType(). 442 if (LHS->getSCEVType() != RHS->getSCEVType()) 443 return LHS->getSCEVType() < RHS->getSCEVType(); 444 445 // Aside from the getSCEVType() ordering, the particular ordering 446 // isn't very important except that it's beneficial to be consistent, 447 // so that (a + b) and (b + a) don't end up as different expressions. 448 449 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 450 // not as complete as it could be. 451 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 452 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 453 454 // Order pointer values after integer values. This helps SCEVExpander 455 // form GEPs. 456 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 457 return false; 458 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 459 return true; 460 461 // Compare getValueID values. 462 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 463 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 464 465 // Sort arguments by their position. 466 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 467 const Argument *RA = cast<Argument>(RU->getValue()); 468 return LA->getArgNo() < RA->getArgNo(); 469 } 470 471 // For instructions, compare their loop depth, and their opcode. 472 // This is pretty loose. 473 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 474 Instruction *RV = cast<Instruction>(RU->getValue()); 475 476 // Compare loop depths. 477 if (LI->getLoopDepth(LV->getParent()) != 478 LI->getLoopDepth(RV->getParent())) 479 return LI->getLoopDepth(LV->getParent()) < 480 LI->getLoopDepth(RV->getParent()); 481 482 // Compare opcodes. 483 if (LV->getOpcode() != RV->getOpcode()) 484 return LV->getOpcode() < RV->getOpcode(); 485 486 // Compare the number of operands. 487 if (LV->getNumOperands() != RV->getNumOperands()) 488 return LV->getNumOperands() < RV->getNumOperands(); 489 } 490 491 return false; 492 } 493 494 // Compare constant values. 495 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 496 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 497 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 498 } 499 500 // Compare addrec loop depths. 501 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 502 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 503 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 504 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 505 } 506 507 // Lexicographically compare n-ary expressions. 508 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 509 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 510 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 511 if (i >= RC->getNumOperands()) 512 return false; 513 if (operator()(LC->getOperand(i), RC->getOperand(i))) 514 return true; 515 if (operator()(RC->getOperand(i), LC->getOperand(i))) 516 return false; 517 } 518 return LC->getNumOperands() < RC->getNumOperands(); 519 } 520 521 // Lexicographically compare udiv expressions. 522 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 523 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 524 if (operator()(LC->getLHS(), RC->getLHS())) 525 return true; 526 if (operator()(RC->getLHS(), LC->getLHS())) 527 return false; 528 if (operator()(LC->getRHS(), RC->getRHS())) 529 return true; 530 if (operator()(RC->getRHS(), LC->getRHS())) 531 return false; 532 return false; 533 } 534 535 // Compare cast expressions by operand. 536 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 537 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 538 return operator()(LC->getOperand(), RC->getOperand()); 539 } 540 541 assert(0 && "Unknown SCEV kind!"); 542 return false; 543 } 544 }; 545 } 546 547 /// GroupByComplexity - Given a list of SCEV objects, order them by their 548 /// complexity, and group objects of the same complexity together by value. 549 /// When this routine is finished, we know that any duplicates in the vector are 550 /// consecutive and that complexity is monotonically increasing. 551 /// 552 /// Note that we go take special precautions to ensure that we get determinstic 553 /// results from this routine. In other words, we don't want the results of 554 /// this to depend on where the addresses of various SCEV objects happened to 555 /// land in memory. 556 /// 557 static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops, 558 LoopInfo *LI) { 559 if (Ops.size() < 2) return; // Noop 560 if (Ops.size() == 2) { 561 // This is the common case, which also happens to be trivially simple. 562 // Special case it. 563 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 564 std::swap(Ops[0], Ops[1]); 565 return; 566 } 567 568 // Do the rough sort by complexity. 569 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 570 571 // Now that we are sorted by complexity, group elements of the same 572 // complexity. Note that this is, at worst, N^2, but the vector is likely to 573 // be extremely short in practice. Note that we take this approach because we 574 // do not want to depend on the addresses of the objects we are grouping. 575 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 576 const SCEV *S = Ops[i]; 577 unsigned Complexity = S->getSCEVType(); 578 579 // If there are any objects of the same complexity and same value as this 580 // one, group them. 581 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 582 if (Ops[j] == S) { // Found a duplicate. 583 // Move it to immediately after i'th element. 584 std::swap(Ops[i+1], Ops[j]); 585 ++i; // no need to rescan it. 586 if (i == e-2) return; // Done! 587 } 588 } 589 } 590 } 591 592 593 594 //===----------------------------------------------------------------------===// 595 // Simple SCEV method implementations 596 //===----------------------------------------------------------------------===// 597 598 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 599 /// Assume, K > 0. 600 static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K, 601 ScalarEvolution &SE, 602 const Type* ResultTy) { 603 // Handle the simplest case efficiently. 604 if (K == 1) 605 return SE.getTruncateOrZeroExtend(It, ResultTy); 606 607 // We are using the following formula for BC(It, K): 608 // 609 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 610 // 611 // Suppose, W is the bitwidth of the return value. We must be prepared for 612 // overflow. Hence, we must assure that the result of our computation is 613 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 614 // safe in modular arithmetic. 615 // 616 // However, this code doesn't use exactly that formula; the formula it uses 617 // is something like the following, where T is the number of factors of 2 in 618 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 619 // exponentiation: 620 // 621 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 622 // 623 // This formula is trivially equivalent to the previous formula. However, 624 // this formula can be implemented much more efficiently. The trick is that 625 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 626 // arithmetic. To do exact division in modular arithmetic, all we have 627 // to do is multiply by the inverse. Therefore, this step can be done at 628 // width W. 629 // 630 // The next issue is how to safely do the division by 2^T. The way this 631 // is done is by doing the multiplication step at a width of at least W + T 632 // bits. This way, the bottom W+T bits of the product are accurate. Then, 633 // when we perform the division by 2^T (which is equivalent to a right shift 634 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 635 // truncated out after the division by 2^T. 636 // 637 // In comparison to just directly using the first formula, this technique 638 // is much more efficient; using the first formula requires W * K bits, 639 // but this formula less than W + K bits. Also, the first formula requires 640 // a division step, whereas this formula only requires multiplies and shifts. 641 // 642 // It doesn't matter whether the subtraction step is done in the calculation 643 // width or the input iteration count's width; if the subtraction overflows, 644 // the result must be zero anyway. We prefer here to do it in the width of 645 // the induction variable because it helps a lot for certain cases; CodeGen 646 // isn't smart enough to ignore the overflow, which leads to much less 647 // efficient code if the width of the subtraction is wider than the native 648 // register width. 649 // 650 // (It's possible to not widen at all by pulling out factors of 2 before 651 // the multiplication; for example, K=2 can be calculated as 652 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 653 // extra arithmetic, so it's not an obvious win, and it gets 654 // much more complicated for K > 3.) 655 656 // Protection from insane SCEVs; this bound is conservative, 657 // but it probably doesn't matter. 658 if (K > 1000) 659 return SE.getCouldNotCompute(); 660 661 unsigned W = SE.getTypeSizeInBits(ResultTy); 662 663 // Calculate K! / 2^T and T; we divide out the factors of two before 664 // multiplying for calculating K! / 2^T to avoid overflow. 665 // Other overflow doesn't matter because we only care about the bottom 666 // W bits of the result. 667 APInt OddFactorial(W, 1); 668 unsigned T = 1; 669 for (unsigned i = 3; i <= K; ++i) { 670 APInt Mult(W, i); 671 unsigned TwoFactors = Mult.countTrailingZeros(); 672 T += TwoFactors; 673 Mult = Mult.lshr(TwoFactors); 674 OddFactorial *= Mult; 675 } 676 677 // We need at least W + T bits for the multiplication step 678 unsigned CalculationBits = W + T; 679 680 // Calcuate 2^T, at width T+W. 681 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 682 683 // Calculate the multiplicative inverse of K! / 2^T; 684 // this multiplication factor will perform the exact division by 685 // K! / 2^T. 686 APInt Mod = APInt::getSignedMinValue(W+1); 687 APInt MultiplyFactor = OddFactorial.zext(W+1); 688 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 689 MultiplyFactor = MultiplyFactor.trunc(W); 690 691 // Calculate the product, at width T+W 692 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 693 const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 694 for (unsigned i = 1; i != K; ++i) { 695 const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 696 Dividend = SE.getMulExpr(Dividend, 697 SE.getTruncateOrZeroExtend(S, CalculationTy)); 698 } 699 700 // Divide by 2^T 701 const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 702 703 // Truncate the result, and divide by K! / 2^T. 704 705 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 706 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 707 } 708 709 /// evaluateAtIteration - Return the value of this chain of recurrences at 710 /// the specified iteration number. We can evaluate this recurrence by 711 /// multiplying each element in the chain by the binomial coefficient 712 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 713 /// 714 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 715 /// 716 /// where BC(It, k) stands for binomial coefficient. 717 /// 718 const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It, 719 ScalarEvolution &SE) const { 720 const SCEV* Result = getStart(); 721 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 722 // The computation is correct in the face of overflow provided that the 723 // multiplication is performed _after_ the evaluation of the binomial 724 // coefficient. 725 const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType()); 726 if (isa<SCEVCouldNotCompute>(Coeff)) 727 return Coeff; 728 729 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 730 } 731 return Result; 732 } 733 734 //===----------------------------------------------------------------------===// 735 // SCEV Expression folder implementations 736 //===----------------------------------------------------------------------===// 737 738 const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op, 739 const Type *Ty) { 740 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 741 "This is not a truncating conversion!"); 742 assert(isSCEVable(Ty) && 743 "This is not a conversion to a SCEVable type!"); 744 Ty = getEffectiveSCEVType(Ty); 745 746 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 747 return getConstant( 748 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 749 750 // trunc(trunc(x)) --> trunc(x) 751 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 752 return getTruncateExpr(ST->getOperand(), Ty); 753 754 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 755 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 756 return getTruncateOrSignExtend(SS->getOperand(), Ty); 757 758 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 759 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 760 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 761 762 // If the input value is a chrec scev, truncate the chrec's operands. 763 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 764 SmallVector<const SCEV*, 4> Operands; 765 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 766 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 767 return getAddRecExpr(Operands, AddRec->getLoop()); 768 } 769 770 FoldingSetNodeID ID; 771 ID.AddInteger(scTruncate); 772 ID.AddPointer(Op); 773 ID.AddPointer(Ty); 774 void *IP = 0; 775 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 776 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>(); 777 new (S) SCEVTruncateExpr(Op, Ty); 778 UniqueSCEVs.InsertNode(S, IP); 779 return S; 780 } 781 782 const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op, 783 const Type *Ty) { 784 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 785 "This is not an extending conversion!"); 786 assert(isSCEVable(Ty) && 787 "This is not a conversion to a SCEVable type!"); 788 Ty = getEffectiveSCEVType(Ty); 789 790 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 791 const Type *IntTy = getEffectiveSCEVType(Ty); 792 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 793 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 794 return getConstant(cast<ConstantInt>(C)); 795 } 796 797 // zext(zext(x)) --> zext(x) 798 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 799 return getZeroExtendExpr(SZ->getOperand(), Ty); 800 801 // If the input value is a chrec scev, and we can prove that the value 802 // did not overflow the old, smaller, value, we can zero extend all of the 803 // operands (often constants). This allows analysis of something like 804 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 805 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 806 if (AR->isAffine()) { 807 // Check whether the backedge-taken count is SCEVCouldNotCompute. 808 // Note that this serves two purposes: It filters out loops that are 809 // simply not analyzable, and it covers the case where this code is 810 // being called from within backedge-taken count analysis, such that 811 // attempting to ask for the backedge-taken count would likely result 812 // in infinite recursion. In the later case, the analysis code will 813 // cope with a conservative value, and it will take care to purge 814 // that value once it has finished. 815 const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 816 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 817 // Manually compute the final value for AR, checking for 818 // overflow. 819 const SCEV* Start = AR->getStart(); 820 const SCEV* Step = AR->getStepRecurrence(*this); 821 822 // Check whether the backedge-taken count can be losslessly casted to 823 // the addrec's type. The count is always unsigned. 824 const SCEV* CastedMaxBECount = 825 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 826 const SCEV* RecastedMaxBECount = 827 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 828 if (MaxBECount == RecastedMaxBECount) { 829 const Type *WideTy = 830 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 831 // Check whether Start+Step*MaxBECount has no unsigned overflow. 832 const SCEV* ZMul = 833 getMulExpr(CastedMaxBECount, 834 getTruncateOrZeroExtend(Step, Start->getType())); 835 const SCEV* Add = getAddExpr(Start, ZMul); 836 const SCEV* OperandExtendedAdd = 837 getAddExpr(getZeroExtendExpr(Start, WideTy), 838 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 839 getZeroExtendExpr(Step, WideTy))); 840 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 841 // Return the expression with the addrec on the outside. 842 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 843 getZeroExtendExpr(Step, Ty), 844 AR->getLoop()); 845 846 // Similar to above, only this time treat the step value as signed. 847 // This covers loops that count down. 848 const SCEV* SMul = 849 getMulExpr(CastedMaxBECount, 850 getTruncateOrSignExtend(Step, Start->getType())); 851 Add = getAddExpr(Start, SMul); 852 OperandExtendedAdd = 853 getAddExpr(getZeroExtendExpr(Start, WideTy), 854 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 855 getSignExtendExpr(Step, WideTy))); 856 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 857 // Return the expression with the addrec on the outside. 858 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 859 getSignExtendExpr(Step, Ty), 860 AR->getLoop()); 861 } 862 } 863 } 864 865 FoldingSetNodeID ID; 866 ID.AddInteger(scZeroExtend); 867 ID.AddPointer(Op); 868 ID.AddPointer(Ty); 869 void *IP = 0; 870 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 871 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>(); 872 new (S) SCEVZeroExtendExpr(Op, Ty); 873 UniqueSCEVs.InsertNode(S, IP); 874 return S; 875 } 876 877 const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op, 878 const Type *Ty) { 879 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 880 "This is not an extending conversion!"); 881 assert(isSCEVable(Ty) && 882 "This is not a conversion to a SCEVable type!"); 883 Ty = getEffectiveSCEVType(Ty); 884 885 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 886 const Type *IntTy = getEffectiveSCEVType(Ty); 887 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 888 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 889 return getConstant(cast<ConstantInt>(C)); 890 } 891 892 // sext(sext(x)) --> sext(x) 893 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 894 return getSignExtendExpr(SS->getOperand(), Ty); 895 896 // If the input value is a chrec scev, and we can prove that the value 897 // did not overflow the old, smaller, value, we can sign extend all of the 898 // operands (often constants). This allows analysis of something like 899 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 900 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 901 if (AR->isAffine()) { 902 // Check whether the backedge-taken count is SCEVCouldNotCompute. 903 // Note that this serves two purposes: It filters out loops that are 904 // simply not analyzable, and it covers the case where this code is 905 // being called from within backedge-taken count analysis, such that 906 // attempting to ask for the backedge-taken count would likely result 907 // in infinite recursion. In the later case, the analysis code will 908 // cope with a conservative value, and it will take care to purge 909 // that value once it has finished. 910 const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 911 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 912 // Manually compute the final value for AR, checking for 913 // overflow. 914 const SCEV* Start = AR->getStart(); 915 const SCEV* Step = AR->getStepRecurrence(*this); 916 917 // Check whether the backedge-taken count can be losslessly casted to 918 // the addrec's type. The count is always unsigned. 919 const SCEV* CastedMaxBECount = 920 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 921 const SCEV* RecastedMaxBECount = 922 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 923 if (MaxBECount == RecastedMaxBECount) { 924 const Type *WideTy = 925 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 926 // Check whether Start+Step*MaxBECount has no signed overflow. 927 const SCEV* SMul = 928 getMulExpr(CastedMaxBECount, 929 getTruncateOrSignExtend(Step, Start->getType())); 930 const SCEV* Add = getAddExpr(Start, SMul); 931 const SCEV* OperandExtendedAdd = 932 getAddExpr(getSignExtendExpr(Start, WideTy), 933 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 934 getSignExtendExpr(Step, WideTy))); 935 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 936 // Return the expression with the addrec on the outside. 937 return getAddRecExpr(getSignExtendExpr(Start, Ty), 938 getSignExtendExpr(Step, Ty), 939 AR->getLoop()); 940 } 941 } 942 } 943 944 FoldingSetNodeID ID; 945 ID.AddInteger(scSignExtend); 946 ID.AddPointer(Op); 947 ID.AddPointer(Ty); 948 void *IP = 0; 949 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 950 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>(); 951 new (S) SCEVSignExtendExpr(Op, Ty); 952 UniqueSCEVs.InsertNode(S, IP); 953 return S; 954 } 955 956 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 957 /// unspecified bits out to the given type. 958 /// 959 const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op, 960 const Type *Ty) { 961 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 962 "This is not an extending conversion!"); 963 assert(isSCEVable(Ty) && 964 "This is not a conversion to a SCEVable type!"); 965 Ty = getEffectiveSCEVType(Ty); 966 967 // Sign-extend negative constants. 968 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 969 if (SC->getValue()->getValue().isNegative()) 970 return getSignExtendExpr(Op, Ty); 971 972 // Peel off a truncate cast. 973 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 974 const SCEV* NewOp = T->getOperand(); 975 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 976 return getAnyExtendExpr(NewOp, Ty); 977 return getTruncateOrNoop(NewOp, Ty); 978 } 979 980 // Next try a zext cast. If the cast is folded, use it. 981 const SCEV* ZExt = getZeroExtendExpr(Op, Ty); 982 if (!isa<SCEVZeroExtendExpr>(ZExt)) 983 return ZExt; 984 985 // Next try a sext cast. If the cast is folded, use it. 986 const SCEV* SExt = getSignExtendExpr(Op, Ty); 987 if (!isa<SCEVSignExtendExpr>(SExt)) 988 return SExt; 989 990 // If the expression is obviously signed, use the sext cast value. 991 if (isa<SCEVSMaxExpr>(Op)) 992 return SExt; 993 994 // Absent any other information, use the zext cast value. 995 return ZExt; 996 } 997 998 /// CollectAddOperandsWithScales - Process the given Ops list, which is 999 /// a list of operands to be added under the given scale, update the given 1000 /// map. This is a helper function for getAddRecExpr. As an example of 1001 /// what it does, given a sequence of operands that would form an add 1002 /// expression like this: 1003 /// 1004 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1005 /// 1006 /// where A and B are constants, update the map with these values: 1007 /// 1008 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1009 /// 1010 /// and add 13 + A*B*29 to AccumulatedConstant. 1011 /// This will allow getAddRecExpr to produce this: 1012 /// 1013 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1014 /// 1015 /// This form often exposes folding opportunities that are hidden in 1016 /// the original operand list. 1017 /// 1018 /// Return true iff it appears that any interesting folding opportunities 1019 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1020 /// the common case where no interesting opportunities are present, and 1021 /// is also used as a check to avoid infinite recursion. 1022 /// 1023 static bool 1024 CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M, 1025 SmallVector<const SCEV*, 8> &NewOps, 1026 APInt &AccumulatedConstant, 1027 const SmallVectorImpl<const SCEV*> &Ops, 1028 const APInt &Scale, 1029 ScalarEvolution &SE) { 1030 bool Interesting = false; 1031 1032 // Iterate over the add operands. 1033 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1034 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1035 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1036 APInt NewScale = 1037 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1038 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1039 // A multiplication of a constant with another add; recurse. 1040 Interesting |= 1041 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1042 cast<SCEVAddExpr>(Mul->getOperand(1)) 1043 ->getOperands(), 1044 NewScale, SE); 1045 } else { 1046 // A multiplication of a constant with some other value. Update 1047 // the map. 1048 SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1049 const SCEV* Key = SE.getMulExpr(MulOps); 1050 std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair = 1051 M.insert(std::make_pair(Key, APInt())); 1052 if (Pair.second) { 1053 Pair.first->second = NewScale; 1054 NewOps.push_back(Pair.first->first); 1055 } else { 1056 Pair.first->second += NewScale; 1057 // The map already had an entry for this value, which may indicate 1058 // a folding opportunity. 1059 Interesting = true; 1060 } 1061 } 1062 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1063 // Pull a buried constant out to the outside. 1064 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1065 Interesting = true; 1066 AccumulatedConstant += Scale * C->getValue()->getValue(); 1067 } else { 1068 // An ordinary operand. Update the map. 1069 std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair = 1070 M.insert(std::make_pair(Ops[i], APInt())); 1071 if (Pair.second) { 1072 Pair.first->second = Scale; 1073 NewOps.push_back(Pair.first->first); 1074 } else { 1075 Pair.first->second += Scale; 1076 // The map already had an entry for this value, which may indicate 1077 // a folding opportunity. 1078 Interesting = true; 1079 } 1080 } 1081 } 1082 1083 return Interesting; 1084 } 1085 1086 namespace { 1087 struct APIntCompare { 1088 bool operator()(const APInt &LHS, const APInt &RHS) const { 1089 return LHS.ult(RHS); 1090 } 1091 }; 1092 } 1093 1094 /// getAddExpr - Get a canonical add expression, or something simpler if 1095 /// possible. 1096 const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) { 1097 assert(!Ops.empty() && "Cannot get empty add!"); 1098 if (Ops.size() == 1) return Ops[0]; 1099 #ifndef NDEBUG 1100 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1101 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1102 getEffectiveSCEVType(Ops[0]->getType()) && 1103 "SCEVAddExpr operand types don't match!"); 1104 #endif 1105 1106 // Sort by complexity, this groups all similar expression types together. 1107 GroupByComplexity(Ops, LI); 1108 1109 // If there are any constants, fold them together. 1110 unsigned Idx = 0; 1111 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1112 ++Idx; 1113 assert(Idx < Ops.size()); 1114 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1115 // We found two constants, fold them together! 1116 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1117 RHSC->getValue()->getValue()); 1118 if (Ops.size() == 2) return Ops[0]; 1119 Ops.erase(Ops.begin()+1); // Erase the folded element 1120 LHSC = cast<SCEVConstant>(Ops[0]); 1121 } 1122 1123 // If we are left with a constant zero being added, strip it off. 1124 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1125 Ops.erase(Ops.begin()); 1126 --Idx; 1127 } 1128 } 1129 1130 if (Ops.size() == 1) return Ops[0]; 1131 1132 // Okay, check to see if the same value occurs in the operand list twice. If 1133 // so, merge them together into an multiply expression. Since we sorted the 1134 // list, these values are required to be adjacent. 1135 const Type *Ty = Ops[0]->getType(); 1136 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1137 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1138 // Found a match, merge the two values into a multiply, and add any 1139 // remaining values to the result. 1140 const SCEV* Two = getIntegerSCEV(2, Ty); 1141 const SCEV* Mul = getMulExpr(Ops[i], Two); 1142 if (Ops.size() == 2) 1143 return Mul; 1144 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1145 Ops.push_back(Mul); 1146 return getAddExpr(Ops); 1147 } 1148 1149 // Check for truncates. If all the operands are truncated from the same 1150 // type, see if factoring out the truncate would permit the result to be 1151 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1152 // if the contents of the resulting outer trunc fold to something simple. 1153 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1154 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1155 const Type *DstType = Trunc->getType(); 1156 const Type *SrcType = Trunc->getOperand()->getType(); 1157 SmallVector<const SCEV*, 8> LargeOps; 1158 bool Ok = true; 1159 // Check all the operands to see if they can be represented in the 1160 // source type of the truncate. 1161 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1162 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1163 if (T->getOperand()->getType() != SrcType) { 1164 Ok = false; 1165 break; 1166 } 1167 LargeOps.push_back(T->getOperand()); 1168 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1169 // This could be either sign or zero extension, but sign extension 1170 // is much more likely to be foldable here. 1171 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1172 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1173 SmallVector<const SCEV*, 8> LargeMulOps; 1174 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1175 if (const SCEVTruncateExpr *T = 1176 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1177 if (T->getOperand()->getType() != SrcType) { 1178 Ok = false; 1179 break; 1180 } 1181 LargeMulOps.push_back(T->getOperand()); 1182 } else if (const SCEVConstant *C = 1183 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1184 // This could be either sign or zero extension, but sign extension 1185 // is much more likely to be foldable here. 1186 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1187 } else { 1188 Ok = false; 1189 break; 1190 } 1191 } 1192 if (Ok) 1193 LargeOps.push_back(getMulExpr(LargeMulOps)); 1194 } else { 1195 Ok = false; 1196 break; 1197 } 1198 } 1199 if (Ok) { 1200 // Evaluate the expression in the larger type. 1201 const SCEV* Fold = getAddExpr(LargeOps); 1202 // If it folds to something simple, use it. Otherwise, don't. 1203 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1204 return getTruncateExpr(Fold, DstType); 1205 } 1206 } 1207 1208 // Skip past any other cast SCEVs. 1209 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1210 ++Idx; 1211 1212 // If there are add operands they would be next. 1213 if (Idx < Ops.size()) { 1214 bool DeletedAdd = false; 1215 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1216 // If we have an add, expand the add operands onto the end of the operands 1217 // list. 1218 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1219 Ops.erase(Ops.begin()+Idx); 1220 DeletedAdd = true; 1221 } 1222 1223 // If we deleted at least one add, we added operands to the end of the list, 1224 // and they are not necessarily sorted. Recurse to resort and resimplify 1225 // any operands we just aquired. 1226 if (DeletedAdd) 1227 return getAddExpr(Ops); 1228 } 1229 1230 // Skip over the add expression until we get to a multiply. 1231 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1232 ++Idx; 1233 1234 // Check to see if there are any folding opportunities present with 1235 // operands multiplied by constant values. 1236 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1237 uint64_t BitWidth = getTypeSizeInBits(Ty); 1238 DenseMap<const SCEV*, APInt> M; 1239 SmallVector<const SCEV*, 8> NewOps; 1240 APInt AccumulatedConstant(BitWidth, 0); 1241 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1242 Ops, APInt(BitWidth, 1), *this)) { 1243 // Some interesting folding opportunity is present, so its worthwhile to 1244 // re-generate the operands list. Group the operands by constant scale, 1245 // to avoid multiplying by the same constant scale multiple times. 1246 std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare> MulOpLists; 1247 for (SmallVector<const SCEV*, 8>::iterator I = NewOps.begin(), 1248 E = NewOps.end(); I != E; ++I) 1249 MulOpLists[M.find(*I)->second].push_back(*I); 1250 // Re-generate the operands list. 1251 Ops.clear(); 1252 if (AccumulatedConstant != 0) 1253 Ops.push_back(getConstant(AccumulatedConstant)); 1254 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1255 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1256 if (I->first != 0) 1257 Ops.push_back(getMulExpr(getConstant(I->first), 1258 getAddExpr(I->second))); 1259 if (Ops.empty()) 1260 return getIntegerSCEV(0, Ty); 1261 if (Ops.size() == 1) 1262 return Ops[0]; 1263 return getAddExpr(Ops); 1264 } 1265 } 1266 1267 // If we are adding something to a multiply expression, make sure the 1268 // something is not already an operand of the multiply. If so, merge it into 1269 // the multiply. 1270 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1271 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1272 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1273 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1274 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1275 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1276 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1277 const SCEV* InnerMul = Mul->getOperand(MulOp == 0); 1278 if (Mul->getNumOperands() != 2) { 1279 // If the multiply has more than two operands, we must get the 1280 // Y*Z term. 1281 SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1282 MulOps.erase(MulOps.begin()+MulOp); 1283 InnerMul = getMulExpr(MulOps); 1284 } 1285 const SCEV* One = getIntegerSCEV(1, Ty); 1286 const SCEV* AddOne = getAddExpr(InnerMul, One); 1287 const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1288 if (Ops.size() == 2) return OuterMul; 1289 if (AddOp < Idx) { 1290 Ops.erase(Ops.begin()+AddOp); 1291 Ops.erase(Ops.begin()+Idx-1); 1292 } else { 1293 Ops.erase(Ops.begin()+Idx); 1294 Ops.erase(Ops.begin()+AddOp-1); 1295 } 1296 Ops.push_back(OuterMul); 1297 return getAddExpr(Ops); 1298 } 1299 1300 // Check this multiply against other multiplies being added together. 1301 for (unsigned OtherMulIdx = Idx+1; 1302 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1303 ++OtherMulIdx) { 1304 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1305 // If MulOp occurs in OtherMul, we can fold the two multiplies 1306 // together. 1307 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1308 OMulOp != e; ++OMulOp) 1309 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1310 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1311 const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0); 1312 if (Mul->getNumOperands() != 2) { 1313 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1314 Mul->op_end()); 1315 MulOps.erase(MulOps.begin()+MulOp); 1316 InnerMul1 = getMulExpr(MulOps); 1317 } 1318 const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1319 if (OtherMul->getNumOperands() != 2) { 1320 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1321 OtherMul->op_end()); 1322 MulOps.erase(MulOps.begin()+OMulOp); 1323 InnerMul2 = getMulExpr(MulOps); 1324 } 1325 const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1326 const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1327 if (Ops.size() == 2) return OuterMul; 1328 Ops.erase(Ops.begin()+Idx); 1329 Ops.erase(Ops.begin()+OtherMulIdx-1); 1330 Ops.push_back(OuterMul); 1331 return getAddExpr(Ops); 1332 } 1333 } 1334 } 1335 } 1336 1337 // If there are any add recurrences in the operands list, see if any other 1338 // added values are loop invariant. If so, we can fold them into the 1339 // recurrence. 1340 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1341 ++Idx; 1342 1343 // Scan over all recurrences, trying to fold loop invariants into them. 1344 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1345 // Scan all of the other operands to this add and add them to the vector if 1346 // they are loop invariant w.r.t. the recurrence. 1347 SmallVector<const SCEV*, 8> LIOps; 1348 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1349 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1350 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1351 LIOps.push_back(Ops[i]); 1352 Ops.erase(Ops.begin()+i); 1353 --i; --e; 1354 } 1355 1356 // If we found some loop invariants, fold them into the recurrence. 1357 if (!LIOps.empty()) { 1358 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1359 LIOps.push_back(AddRec->getStart()); 1360 1361 SmallVector<const SCEV*, 4> AddRecOps(AddRec->op_begin(), 1362 AddRec->op_end()); 1363 AddRecOps[0] = getAddExpr(LIOps); 1364 1365 const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1366 // If all of the other operands were loop invariant, we are done. 1367 if (Ops.size() == 1) return NewRec; 1368 1369 // Otherwise, add the folded AddRec by the non-liv parts. 1370 for (unsigned i = 0;; ++i) 1371 if (Ops[i] == AddRec) { 1372 Ops[i] = NewRec; 1373 break; 1374 } 1375 return getAddExpr(Ops); 1376 } 1377 1378 // Okay, if there weren't any loop invariants to be folded, check to see if 1379 // there are multiple AddRec's with the same loop induction variable being 1380 // added together. If so, we can fold them. 1381 for (unsigned OtherIdx = Idx+1; 1382 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1383 if (OtherIdx != Idx) { 1384 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1385 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1386 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1387 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1388 AddRec->op_end()); 1389 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1390 if (i >= NewOps.size()) { 1391 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1392 OtherAddRec->op_end()); 1393 break; 1394 } 1395 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1396 } 1397 const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1398 1399 if (Ops.size() == 2) return NewAddRec; 1400 1401 Ops.erase(Ops.begin()+Idx); 1402 Ops.erase(Ops.begin()+OtherIdx-1); 1403 Ops.push_back(NewAddRec); 1404 return getAddExpr(Ops); 1405 } 1406 } 1407 1408 // Otherwise couldn't fold anything into this recurrence. Move onto the 1409 // next one. 1410 } 1411 1412 // Okay, it looks like we really DO need an add expr. Check to see if we 1413 // already have one, otherwise create a new one. 1414 FoldingSetNodeID ID; 1415 ID.AddInteger(scAddExpr); 1416 ID.AddInteger(Ops.size()); 1417 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1418 ID.AddPointer(Ops[i]); 1419 void *IP = 0; 1420 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1421 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>(); 1422 new (S) SCEVAddExpr(Ops); 1423 UniqueSCEVs.InsertNode(S, IP); 1424 return S; 1425 } 1426 1427 1428 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1429 /// possible. 1430 const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) { 1431 assert(!Ops.empty() && "Cannot get empty mul!"); 1432 #ifndef NDEBUG 1433 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1434 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1435 getEffectiveSCEVType(Ops[0]->getType()) && 1436 "SCEVMulExpr operand types don't match!"); 1437 #endif 1438 1439 // Sort by complexity, this groups all similar expression types together. 1440 GroupByComplexity(Ops, LI); 1441 1442 // If there are any constants, fold them together. 1443 unsigned Idx = 0; 1444 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1445 1446 // C1*(C2+V) -> C1*C2 + C1*V 1447 if (Ops.size() == 2) 1448 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1449 if (Add->getNumOperands() == 2 && 1450 isa<SCEVConstant>(Add->getOperand(0))) 1451 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1452 getMulExpr(LHSC, Add->getOperand(1))); 1453 1454 1455 ++Idx; 1456 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1457 // We found two constants, fold them together! 1458 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1459 RHSC->getValue()->getValue()); 1460 Ops[0] = getConstant(Fold); 1461 Ops.erase(Ops.begin()+1); // Erase the folded element 1462 if (Ops.size() == 1) return Ops[0]; 1463 LHSC = cast<SCEVConstant>(Ops[0]); 1464 } 1465 1466 // If we are left with a constant one being multiplied, strip it off. 1467 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1468 Ops.erase(Ops.begin()); 1469 --Idx; 1470 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1471 // If we have a multiply of zero, it will always be zero. 1472 return Ops[0]; 1473 } 1474 } 1475 1476 // Skip over the add expression until we get to a multiply. 1477 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1478 ++Idx; 1479 1480 if (Ops.size() == 1) 1481 return Ops[0]; 1482 1483 // If there are mul operands inline them all into this expression. 1484 if (Idx < Ops.size()) { 1485 bool DeletedMul = false; 1486 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1487 // If we have an mul, expand the mul operands onto the end of the operands 1488 // list. 1489 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1490 Ops.erase(Ops.begin()+Idx); 1491 DeletedMul = true; 1492 } 1493 1494 // If we deleted at least one mul, we added operands to the end of the list, 1495 // and they are not necessarily sorted. Recurse to resort and resimplify 1496 // any operands we just aquired. 1497 if (DeletedMul) 1498 return getMulExpr(Ops); 1499 } 1500 1501 // If there are any add recurrences in the operands list, see if any other 1502 // added values are loop invariant. If so, we can fold them into the 1503 // recurrence. 1504 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1505 ++Idx; 1506 1507 // Scan over all recurrences, trying to fold loop invariants into them. 1508 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1509 // Scan all of the other operands to this mul and add them to the vector if 1510 // they are loop invariant w.r.t. the recurrence. 1511 SmallVector<const SCEV*, 8> LIOps; 1512 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1513 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1514 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1515 LIOps.push_back(Ops[i]); 1516 Ops.erase(Ops.begin()+i); 1517 --i; --e; 1518 } 1519 1520 // If we found some loop invariants, fold them into the recurrence. 1521 if (!LIOps.empty()) { 1522 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1523 SmallVector<const SCEV*, 4> NewOps; 1524 NewOps.reserve(AddRec->getNumOperands()); 1525 if (LIOps.size() == 1) { 1526 const SCEV *Scale = LIOps[0]; 1527 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1528 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1529 } else { 1530 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1531 SmallVector<const SCEV*, 4> MulOps(LIOps.begin(), LIOps.end()); 1532 MulOps.push_back(AddRec->getOperand(i)); 1533 NewOps.push_back(getMulExpr(MulOps)); 1534 } 1535 } 1536 1537 const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1538 1539 // If all of the other operands were loop invariant, we are done. 1540 if (Ops.size() == 1) return NewRec; 1541 1542 // Otherwise, multiply the folded AddRec by the non-liv parts. 1543 for (unsigned i = 0;; ++i) 1544 if (Ops[i] == AddRec) { 1545 Ops[i] = NewRec; 1546 break; 1547 } 1548 return getMulExpr(Ops); 1549 } 1550 1551 // Okay, if there weren't any loop invariants to be folded, check to see if 1552 // there are multiple AddRec's with the same loop induction variable being 1553 // multiplied together. If so, we can fold them. 1554 for (unsigned OtherIdx = Idx+1; 1555 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1556 if (OtherIdx != Idx) { 1557 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1558 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1559 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1560 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1561 const SCEV* NewStart = getMulExpr(F->getStart(), 1562 G->getStart()); 1563 const SCEV* B = F->getStepRecurrence(*this); 1564 const SCEV* D = G->getStepRecurrence(*this); 1565 const SCEV* NewStep = getAddExpr(getMulExpr(F, D), 1566 getMulExpr(G, B), 1567 getMulExpr(B, D)); 1568 const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep, 1569 F->getLoop()); 1570 if (Ops.size() == 2) return NewAddRec; 1571 1572 Ops.erase(Ops.begin()+Idx); 1573 Ops.erase(Ops.begin()+OtherIdx-1); 1574 Ops.push_back(NewAddRec); 1575 return getMulExpr(Ops); 1576 } 1577 } 1578 1579 // Otherwise couldn't fold anything into this recurrence. Move onto the 1580 // next one. 1581 } 1582 1583 // Okay, it looks like we really DO need an mul expr. Check to see if we 1584 // already have one, otherwise create a new one. 1585 FoldingSetNodeID ID; 1586 ID.AddInteger(scMulExpr); 1587 ID.AddInteger(Ops.size()); 1588 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1589 ID.AddPointer(Ops[i]); 1590 void *IP = 0; 1591 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1592 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>(); 1593 new (S) SCEVMulExpr(Ops); 1594 UniqueSCEVs.InsertNode(S, IP); 1595 return S; 1596 } 1597 1598 /// getUDivExpr - Get a canonical multiply expression, or something simpler if 1599 /// possible. 1600 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1601 const SCEV *RHS) { 1602 assert(getEffectiveSCEVType(LHS->getType()) == 1603 getEffectiveSCEVType(RHS->getType()) && 1604 "SCEVUDivExpr operand types don't match!"); 1605 1606 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1607 if (RHSC->getValue()->equalsInt(1)) 1608 return LHS; // X udiv 1 --> x 1609 if (RHSC->isZero()) 1610 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1611 1612 // Determine if the division can be folded into the operands of 1613 // its operands. 1614 // TODO: Generalize this to non-constants by using known-bits information. 1615 const Type *Ty = LHS->getType(); 1616 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1617 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1618 // For non-power-of-two values, effectively round the value up to the 1619 // nearest power of two. 1620 if (!RHSC->getValue()->getValue().isPowerOf2()) 1621 ++MaxShiftAmt; 1622 const IntegerType *ExtTy = 1623 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); 1624 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1626 if (const SCEVConstant *Step = 1627 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1628 if (!Step->getValue()->getValue() 1629 .urem(RHSC->getValue()->getValue()) && 1630 getZeroExtendExpr(AR, ExtTy) == 1631 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1632 getZeroExtendExpr(Step, ExtTy), 1633 AR->getLoop())) { 1634 SmallVector<const SCEV*, 4> Operands; 1635 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1636 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1637 return getAddRecExpr(Operands, AR->getLoop()); 1638 } 1639 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1640 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1641 SmallVector<const SCEV*, 4> Operands; 1642 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1643 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1644 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1645 // Find an operand that's safely divisible. 1646 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1647 const SCEV* Op = M->getOperand(i); 1648 const SCEV* Div = getUDivExpr(Op, RHSC); 1649 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1650 const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands(); 1651 Operands = SmallVector<const SCEV*, 4>(MOperands.begin(), 1652 MOperands.end()); 1653 Operands[i] = Div; 1654 return getMulExpr(Operands); 1655 } 1656 } 1657 } 1658 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1659 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1660 SmallVector<const SCEV*, 4> Operands; 1661 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1662 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1663 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1664 Operands.clear(); 1665 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1666 const SCEV* Op = getUDivExpr(A->getOperand(i), RHS); 1667 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1668 break; 1669 Operands.push_back(Op); 1670 } 1671 if (Operands.size() == A->getNumOperands()) 1672 return getAddExpr(Operands); 1673 } 1674 } 1675 1676 // Fold if both operands are constant. 1677 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1678 Constant *LHSCV = LHSC->getValue(); 1679 Constant *RHSCV = RHSC->getValue(); 1680 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1681 RHSCV))); 1682 } 1683 } 1684 1685 FoldingSetNodeID ID; 1686 ID.AddInteger(scUDivExpr); 1687 ID.AddPointer(LHS); 1688 ID.AddPointer(RHS); 1689 void *IP = 0; 1690 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1691 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>(); 1692 new (S) SCEVUDivExpr(LHS, RHS); 1693 UniqueSCEVs.InsertNode(S, IP); 1694 return S; 1695 } 1696 1697 1698 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1699 /// Simplify the expression as much as possible. 1700 const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start, 1701 const SCEV* Step, const Loop *L) { 1702 SmallVector<const SCEV*, 4> Operands; 1703 Operands.push_back(Start); 1704 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1705 if (StepChrec->getLoop() == L) { 1706 Operands.insert(Operands.end(), StepChrec->op_begin(), 1707 StepChrec->op_end()); 1708 return getAddRecExpr(Operands, L); 1709 } 1710 1711 Operands.push_back(Step); 1712 return getAddRecExpr(Operands, L); 1713 } 1714 1715 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1716 /// Simplify the expression as much as possible. 1717 const SCEV * 1718 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands, 1719 const Loop *L) { 1720 if (Operands.size() == 1) return Operands[0]; 1721 #ifndef NDEBUG 1722 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1723 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1724 getEffectiveSCEVType(Operands[0]->getType()) && 1725 "SCEVAddRecExpr operand types don't match!"); 1726 #endif 1727 1728 if (Operands.back()->isZero()) { 1729 Operands.pop_back(); 1730 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1731 } 1732 1733 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1734 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1735 const Loop* NestedLoop = NestedAR->getLoop(); 1736 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1737 SmallVector<const SCEV*, 4> NestedOperands(NestedAR->op_begin(), 1738 NestedAR->op_end()); 1739 Operands[0] = NestedAR->getStart(); 1740 // AddRecs require their operands be loop-invariant with respect to their 1741 // loops. Don't perform this transformation if it would break this 1742 // requirement. 1743 bool AllInvariant = true; 1744 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1745 if (!Operands[i]->isLoopInvariant(L)) { 1746 AllInvariant = false; 1747 break; 1748 } 1749 if (AllInvariant) { 1750 NestedOperands[0] = getAddRecExpr(Operands, L); 1751 AllInvariant = true; 1752 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 1753 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 1754 AllInvariant = false; 1755 break; 1756 } 1757 if (AllInvariant) 1758 // Ok, both add recurrences are valid after the transformation. 1759 return getAddRecExpr(NestedOperands, NestedLoop); 1760 } 1761 // Reset Operands to its original state. 1762 Operands[0] = NestedAR; 1763 } 1764 } 1765 1766 FoldingSetNodeID ID; 1767 ID.AddInteger(scAddRecExpr); 1768 ID.AddInteger(Operands.size()); 1769 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1770 ID.AddPointer(Operands[i]); 1771 ID.AddPointer(L); 1772 void *IP = 0; 1773 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1774 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>(); 1775 new (S) SCEVAddRecExpr(Operands, L); 1776 UniqueSCEVs.InsertNode(S, IP); 1777 return S; 1778 } 1779 1780 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 1781 const SCEV *RHS) { 1782 SmallVector<const SCEV*, 2> Ops; 1783 Ops.push_back(LHS); 1784 Ops.push_back(RHS); 1785 return getSMaxExpr(Ops); 1786 } 1787 1788 const SCEV* 1789 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) { 1790 assert(!Ops.empty() && "Cannot get empty smax!"); 1791 if (Ops.size() == 1) return Ops[0]; 1792 #ifndef NDEBUG 1793 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1794 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1795 getEffectiveSCEVType(Ops[0]->getType()) && 1796 "SCEVSMaxExpr operand types don't match!"); 1797 #endif 1798 1799 // Sort by complexity, this groups all similar expression types together. 1800 GroupByComplexity(Ops, LI); 1801 1802 // If there are any constants, fold them together. 1803 unsigned Idx = 0; 1804 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1805 ++Idx; 1806 assert(Idx < Ops.size()); 1807 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1808 // We found two constants, fold them together! 1809 ConstantInt *Fold = ConstantInt::get( 1810 APIntOps::smax(LHSC->getValue()->getValue(), 1811 RHSC->getValue()->getValue())); 1812 Ops[0] = getConstant(Fold); 1813 Ops.erase(Ops.begin()+1); // Erase the folded element 1814 if (Ops.size() == 1) return Ops[0]; 1815 LHSC = cast<SCEVConstant>(Ops[0]); 1816 } 1817 1818 // If we are left with a constant minimum-int, strip it off. 1819 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1820 Ops.erase(Ops.begin()); 1821 --Idx; 1822 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 1823 // If we have an smax with a constant maximum-int, it will always be 1824 // maximum-int. 1825 return Ops[0]; 1826 } 1827 } 1828 1829 if (Ops.size() == 1) return Ops[0]; 1830 1831 // Find the first SMax 1832 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1833 ++Idx; 1834 1835 // Check to see if one of the operands is an SMax. If so, expand its operands 1836 // onto our operand list, and recurse to simplify. 1837 if (Idx < Ops.size()) { 1838 bool DeletedSMax = false; 1839 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1840 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1841 Ops.erase(Ops.begin()+Idx); 1842 DeletedSMax = true; 1843 } 1844 1845 if (DeletedSMax) 1846 return getSMaxExpr(Ops); 1847 } 1848 1849 // Okay, check to see if the same value occurs in the operand list twice. If 1850 // so, delete one. Since we sorted the list, these values are required to 1851 // be adjacent. 1852 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1853 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1854 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1855 --i; --e; 1856 } 1857 1858 if (Ops.size() == 1) return Ops[0]; 1859 1860 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1861 1862 // Okay, it looks like we really DO need an smax expr. Check to see if we 1863 // already have one, otherwise create a new one. 1864 FoldingSetNodeID ID; 1865 ID.AddInteger(scSMaxExpr); 1866 ID.AddInteger(Ops.size()); 1867 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1868 ID.AddPointer(Ops[i]); 1869 void *IP = 0; 1870 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1871 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>(); 1872 new (S) SCEVSMaxExpr(Ops); 1873 UniqueSCEVs.InsertNode(S, IP); 1874 return S; 1875 } 1876 1877 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 1878 const SCEV *RHS) { 1879 SmallVector<const SCEV*, 2> Ops; 1880 Ops.push_back(LHS); 1881 Ops.push_back(RHS); 1882 return getUMaxExpr(Ops); 1883 } 1884 1885 const SCEV* 1886 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) { 1887 assert(!Ops.empty() && "Cannot get empty umax!"); 1888 if (Ops.size() == 1) return Ops[0]; 1889 #ifndef NDEBUG 1890 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1891 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1892 getEffectiveSCEVType(Ops[0]->getType()) && 1893 "SCEVUMaxExpr operand types don't match!"); 1894 #endif 1895 1896 // Sort by complexity, this groups all similar expression types together. 1897 GroupByComplexity(Ops, LI); 1898 1899 // If there are any constants, fold them together. 1900 unsigned Idx = 0; 1901 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1902 ++Idx; 1903 assert(Idx < Ops.size()); 1904 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1905 // We found two constants, fold them together! 1906 ConstantInt *Fold = ConstantInt::get( 1907 APIntOps::umax(LHSC->getValue()->getValue(), 1908 RHSC->getValue()->getValue())); 1909 Ops[0] = getConstant(Fold); 1910 Ops.erase(Ops.begin()+1); // Erase the folded element 1911 if (Ops.size() == 1) return Ops[0]; 1912 LHSC = cast<SCEVConstant>(Ops[0]); 1913 } 1914 1915 // If we are left with a constant minimum-int, strip it off. 1916 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1917 Ops.erase(Ops.begin()); 1918 --Idx; 1919 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 1920 // If we have an umax with a constant maximum-int, it will always be 1921 // maximum-int. 1922 return Ops[0]; 1923 } 1924 } 1925 1926 if (Ops.size() == 1) return Ops[0]; 1927 1928 // Find the first UMax 1929 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1930 ++Idx; 1931 1932 // Check to see if one of the operands is a UMax. If so, expand its operands 1933 // onto our operand list, and recurse to simplify. 1934 if (Idx < Ops.size()) { 1935 bool DeletedUMax = false; 1936 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1937 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1938 Ops.erase(Ops.begin()+Idx); 1939 DeletedUMax = true; 1940 } 1941 1942 if (DeletedUMax) 1943 return getUMaxExpr(Ops); 1944 } 1945 1946 // Okay, check to see if the same value occurs in the operand list twice. If 1947 // so, delete one. Since we sorted the list, these values are required to 1948 // be adjacent. 1949 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1950 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1951 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1952 --i; --e; 1953 } 1954 1955 if (Ops.size() == 1) return Ops[0]; 1956 1957 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1958 1959 // Okay, it looks like we really DO need a umax expr. Check to see if we 1960 // already have one, otherwise create a new one. 1961 FoldingSetNodeID ID; 1962 ID.AddInteger(scUMaxExpr); 1963 ID.AddInteger(Ops.size()); 1964 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1965 ID.AddPointer(Ops[i]); 1966 void *IP = 0; 1967 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1968 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>(); 1969 new (S) SCEVUMaxExpr(Ops); 1970 UniqueSCEVs.InsertNode(S, IP); 1971 return S; 1972 } 1973 1974 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 1975 const SCEV *RHS) { 1976 // ~smax(~x, ~y) == smin(x, y). 1977 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 1978 } 1979 1980 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 1981 const SCEV *RHS) { 1982 // ~umax(~x, ~y) == umin(x, y) 1983 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 1984 } 1985 1986 const SCEV* ScalarEvolution::getUnknown(Value *V) { 1987 // Don't attempt to do anything other than create a SCEVUnknown object 1988 // here. createSCEV only calls getUnknown after checking for all other 1989 // interesting possibilities, and any other code that calls getUnknown 1990 // is doing so in order to hide a value from SCEV canonicalization. 1991 1992 FoldingSetNodeID ID; 1993 ID.AddInteger(scUnknown); 1994 ID.AddPointer(V); 1995 void *IP = 0; 1996 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1997 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>(); 1998 new (S) SCEVUnknown(V); 1999 UniqueSCEVs.InsertNode(S, IP); 2000 return S; 2001 } 2002 2003 //===----------------------------------------------------------------------===// 2004 // Basic SCEV Analysis and PHI Idiom Recognition Code 2005 // 2006 2007 /// isSCEVable - Test if values of the given type are analyzable within 2008 /// the SCEV framework. This primarily includes integer types, and it 2009 /// can optionally include pointer types if the ScalarEvolution class 2010 /// has access to target-specific information. 2011 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2012 // Integers are always SCEVable. 2013 if (Ty->isInteger()) 2014 return true; 2015 2016 // Pointers are SCEVable if TargetData information is available 2017 // to provide pointer size information. 2018 if (isa<PointerType>(Ty)) 2019 return TD != NULL; 2020 2021 // Otherwise it's not SCEVable. 2022 return false; 2023 } 2024 2025 /// getTypeSizeInBits - Return the size in bits of the specified type, 2026 /// for which isSCEVable must return true. 2027 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2028 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2029 2030 // If we have a TargetData, use it! 2031 if (TD) 2032 return TD->getTypeSizeInBits(Ty); 2033 2034 // Otherwise, we support only integer types. 2035 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 2036 return Ty->getPrimitiveSizeInBits(); 2037 } 2038 2039 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2040 /// the given type and which represents how SCEV will treat the given 2041 /// type, for which isSCEVable must return true. For pointer types, 2042 /// this is the pointer-sized integer type. 2043 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2044 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2045 2046 if (Ty->isInteger()) 2047 return Ty; 2048 2049 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 2050 return TD->getIntPtrType(); 2051 } 2052 2053 const SCEV* ScalarEvolution::getCouldNotCompute() { 2054 return &CouldNotCompute; 2055 } 2056 2057 /// hasSCEV - Return true if the SCEV for this value has already been 2058 /// computed. 2059 bool ScalarEvolution::hasSCEV(Value *V) const { 2060 return Scalars.count(V); 2061 } 2062 2063 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2064 /// expression and create a new one. 2065 const SCEV* ScalarEvolution::getSCEV(Value *V) { 2066 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2067 2068 std::map<SCEVCallbackVH, const SCEV*>::iterator I = Scalars.find(V); 2069 if (I != Scalars.end()) return I->second; 2070 const SCEV* S = createSCEV(V); 2071 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2072 return S; 2073 } 2074 2075 /// getIntegerSCEV - Given a SCEVable type, create a constant for the 2076 /// specified signed integer value and return a SCEV for the constant. 2077 const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 2078 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 2079 return getConstant(ConstantInt::get(ITy, Val)); 2080 } 2081 2082 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2083 /// 2084 const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) { 2085 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2086 return getConstant(cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2087 2088 const Type *Ty = V->getType(); 2089 Ty = getEffectiveSCEVType(Ty); 2090 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 2091 } 2092 2093 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2094 const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) { 2095 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2096 return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2097 2098 const Type *Ty = V->getType(); 2099 Ty = getEffectiveSCEVType(Ty); 2100 const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 2101 return getMinusSCEV(AllOnes, V); 2102 } 2103 2104 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2105 /// 2106 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2107 const SCEV *RHS) { 2108 // X - Y --> X + -Y 2109 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2110 } 2111 2112 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2113 /// input value to the specified type. If the type must be extended, it is zero 2114 /// extended. 2115 const SCEV* 2116 ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V, 2117 const Type *Ty) { 2118 const Type *SrcTy = V->getType(); 2119 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2120 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2121 "Cannot truncate or zero extend with non-integer arguments!"); 2122 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2123 return V; // No conversion 2124 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2125 return getTruncateExpr(V, Ty); 2126 return getZeroExtendExpr(V, Ty); 2127 } 2128 2129 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2130 /// input value to the specified type. If the type must be extended, it is sign 2131 /// extended. 2132 const SCEV* 2133 ScalarEvolution::getTruncateOrSignExtend(const SCEV* V, 2134 const Type *Ty) { 2135 const Type *SrcTy = V->getType(); 2136 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2137 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2138 "Cannot truncate or zero extend with non-integer arguments!"); 2139 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2140 return V; // No conversion 2141 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2142 return getTruncateExpr(V, Ty); 2143 return getSignExtendExpr(V, Ty); 2144 } 2145 2146 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2147 /// input value to the specified type. If the type must be extended, it is zero 2148 /// extended. The conversion must not be narrowing. 2149 const SCEV* 2150 ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) { 2151 const Type *SrcTy = V->getType(); 2152 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2153 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2154 "Cannot noop or zero extend with non-integer arguments!"); 2155 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2156 "getNoopOrZeroExtend cannot truncate!"); 2157 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2158 return V; // No conversion 2159 return getZeroExtendExpr(V, Ty); 2160 } 2161 2162 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2163 /// input value to the specified type. If the type must be extended, it is sign 2164 /// extended. The conversion must not be narrowing. 2165 const SCEV* 2166 ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) { 2167 const Type *SrcTy = V->getType(); 2168 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2169 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2170 "Cannot noop or sign extend with non-integer arguments!"); 2171 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2172 "getNoopOrSignExtend cannot truncate!"); 2173 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2174 return V; // No conversion 2175 return getSignExtendExpr(V, Ty); 2176 } 2177 2178 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2179 /// the input value to the specified type. If the type must be extended, 2180 /// it is extended with unspecified bits. The conversion must not be 2181 /// narrowing. 2182 const SCEV* 2183 ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) { 2184 const Type *SrcTy = V->getType(); 2185 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2186 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2187 "Cannot noop or any extend with non-integer arguments!"); 2188 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2189 "getNoopOrAnyExtend cannot truncate!"); 2190 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2191 return V; // No conversion 2192 return getAnyExtendExpr(V, Ty); 2193 } 2194 2195 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2196 /// input value to the specified type. The conversion must not be widening. 2197 const SCEV* 2198 ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) { 2199 const Type *SrcTy = V->getType(); 2200 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2201 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2202 "Cannot truncate or noop with non-integer arguments!"); 2203 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2204 "getTruncateOrNoop cannot extend!"); 2205 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2206 return V; // No conversion 2207 return getTruncateExpr(V, Ty); 2208 } 2209 2210 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2211 /// the types using zero-extension, and then perform a umax operation 2212 /// with them. 2213 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2214 const SCEV *RHS) { 2215 const SCEV* PromotedLHS = LHS; 2216 const SCEV* PromotedRHS = RHS; 2217 2218 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2219 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2220 else 2221 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2222 2223 return getUMaxExpr(PromotedLHS, PromotedRHS); 2224 } 2225 2226 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2227 /// the types using zero-extension, and then perform a umin operation 2228 /// with them. 2229 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2230 const SCEV *RHS) { 2231 const SCEV* PromotedLHS = LHS; 2232 const SCEV* PromotedRHS = RHS; 2233 2234 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2235 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2236 else 2237 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2238 2239 return getUMinExpr(PromotedLHS, PromotedRHS); 2240 } 2241 2242 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 2243 /// the specified instruction and replaces any references to the symbolic value 2244 /// SymName with the specified value. This is used during PHI resolution. 2245 void 2246 ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I, 2247 const SCEV *SymName, 2248 const SCEV *NewVal) { 2249 std::map<SCEVCallbackVH, const SCEV*>::iterator SI = 2250 Scalars.find(SCEVCallbackVH(I, this)); 2251 if (SI == Scalars.end()) return; 2252 2253 const SCEV* NV = 2254 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 2255 if (NV == SI->second) return; // No change. 2256 2257 SI->second = NV; // Update the scalars map! 2258 2259 // Any instruction values that use this instruction might also need to be 2260 // updated! 2261 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 2262 UI != E; ++UI) 2263 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 2264 } 2265 2266 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2267 /// a loop header, making it a potential recurrence, or it doesn't. 2268 /// 2269 const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) { 2270 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2271 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2272 if (L->getHeader() == PN->getParent()) { 2273 // If it lives in the loop header, it has two incoming values, one 2274 // from outside the loop, and one from inside. 2275 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2276 unsigned BackEdge = IncomingEdge^1; 2277 2278 // While we are analyzing this PHI node, handle its value symbolically. 2279 const SCEV* SymbolicName = getUnknown(PN); 2280 assert(Scalars.find(PN) == Scalars.end() && 2281 "PHI node already processed?"); 2282 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2283 2284 // Using this symbolic name for the PHI, analyze the value coming around 2285 // the back-edge. 2286 const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 2287 2288 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2289 // has a special value for the first iteration of the loop. 2290 2291 // If the value coming around the backedge is an add with the symbolic 2292 // value we just inserted, then we found a simple induction variable! 2293 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2294 // If there is a single occurrence of the symbolic value, replace it 2295 // with a recurrence. 2296 unsigned FoundIndex = Add->getNumOperands(); 2297 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2298 if (Add->getOperand(i) == SymbolicName) 2299 if (FoundIndex == e) { 2300 FoundIndex = i; 2301 break; 2302 } 2303 2304 if (FoundIndex != Add->getNumOperands()) { 2305 // Create an add with everything but the specified operand. 2306 SmallVector<const SCEV*, 8> Ops; 2307 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2308 if (i != FoundIndex) 2309 Ops.push_back(Add->getOperand(i)); 2310 const SCEV* Accum = getAddExpr(Ops); 2311 2312 // This is not a valid addrec if the step amount is varying each 2313 // loop iteration, but is not itself an addrec in this loop. 2314 if (Accum->isLoopInvariant(L) || 2315 (isa<SCEVAddRecExpr>(Accum) && 2316 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2317 const SCEV *StartVal = 2318 getSCEV(PN->getIncomingValue(IncomingEdge)); 2319 const SCEV *PHISCEV = 2320 getAddRecExpr(StartVal, Accum, L); 2321 2322 // Okay, for the entire analysis of this edge we assumed the PHI 2323 // to be symbolic. We now need to go back and update all of the 2324 // entries for the scalars that use the PHI (except for the PHI 2325 // itself) to use the new analyzed value instead of the "symbolic" 2326 // value. 2327 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2328 return PHISCEV; 2329 } 2330 } 2331 } else if (const SCEVAddRecExpr *AddRec = 2332 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2333 // Otherwise, this could be a loop like this: 2334 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2335 // In this case, j = {1,+,1} and BEValue is j. 2336 // Because the other in-value of i (0) fits the evolution of BEValue 2337 // i really is an addrec evolution. 2338 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2339 const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2340 2341 // If StartVal = j.start - j.stride, we can use StartVal as the 2342 // initial step of the addrec evolution. 2343 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2344 AddRec->getOperand(1))) { 2345 const SCEV* PHISCEV = 2346 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2347 2348 // Okay, for the entire analysis of this edge we assumed the PHI 2349 // to be symbolic. We now need to go back and update all of the 2350 // entries for the scalars that use the PHI (except for the PHI 2351 // itself) to use the new analyzed value instead of the "symbolic" 2352 // value. 2353 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2354 return PHISCEV; 2355 } 2356 } 2357 } 2358 2359 return SymbolicName; 2360 } 2361 2362 // If it's not a loop phi, we can't handle it yet. 2363 return getUnknown(PN); 2364 } 2365 2366 /// createNodeForGEP - Expand GEP instructions into add and multiply 2367 /// operations. This allows them to be analyzed by regular SCEV code. 2368 /// 2369 const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) { 2370 2371 const Type *IntPtrTy = TD->getIntPtrType(); 2372 Value *Base = GEP->getOperand(0); 2373 // Don't attempt to analyze GEPs over unsized objects. 2374 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2375 return getUnknown(GEP); 2376 const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy); 2377 gep_type_iterator GTI = gep_type_begin(GEP); 2378 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2379 E = GEP->op_end(); 2380 I != E; ++I) { 2381 Value *Index = *I; 2382 // Compute the (potentially symbolic) offset in bytes for this index. 2383 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2384 // For a struct, add the member offset. 2385 const StructLayout &SL = *TD->getStructLayout(STy); 2386 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2387 uint64_t Offset = SL.getElementOffset(FieldNo); 2388 TotalOffset = getAddExpr(TotalOffset, 2389 getIntegerSCEV(Offset, IntPtrTy)); 2390 } else { 2391 // For an array, add the element offset, explicitly scaled. 2392 const SCEV* LocalOffset = getSCEV(Index); 2393 if (!isa<PointerType>(LocalOffset->getType())) 2394 // Getelementptr indicies are signed. 2395 LocalOffset = getTruncateOrSignExtend(LocalOffset, 2396 IntPtrTy); 2397 LocalOffset = 2398 getMulExpr(LocalOffset, 2399 getIntegerSCEV(TD->getTypeAllocSize(*GTI), 2400 IntPtrTy)); 2401 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2402 } 2403 } 2404 return getAddExpr(getSCEV(Base), TotalOffset); 2405 } 2406 2407 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2408 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2409 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2410 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2411 uint32_t 2412 ScalarEvolution::GetMinTrailingZeros(const SCEV* S) { 2413 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2414 return C->getValue()->getValue().countTrailingZeros(); 2415 2416 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2417 return std::min(GetMinTrailingZeros(T->getOperand()), 2418 (uint32_t)getTypeSizeInBits(T->getType())); 2419 2420 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2421 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2422 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2423 getTypeSizeInBits(E->getType()) : OpRes; 2424 } 2425 2426 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2427 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2428 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2429 getTypeSizeInBits(E->getType()) : OpRes; 2430 } 2431 2432 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2433 // The result is the min of all operands results. 2434 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2435 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2436 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2437 return MinOpRes; 2438 } 2439 2440 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2441 // The result is the sum of all operands results. 2442 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2443 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2444 for (unsigned i = 1, e = M->getNumOperands(); 2445 SumOpRes != BitWidth && i != e; ++i) 2446 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2447 BitWidth); 2448 return SumOpRes; 2449 } 2450 2451 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2452 // The result is the min of all operands results. 2453 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2454 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2455 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2456 return MinOpRes; 2457 } 2458 2459 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2460 // The result is the min of all operands results. 2461 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2462 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2463 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2464 return MinOpRes; 2465 } 2466 2467 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2468 // The result is the min of all operands results. 2469 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2470 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2471 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2472 return MinOpRes; 2473 } 2474 2475 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2476 // For a SCEVUnknown, ask ValueTracking. 2477 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2478 APInt Mask = APInt::getAllOnesValue(BitWidth); 2479 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2480 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2481 return Zeros.countTrailingOnes(); 2482 } 2483 2484 // SCEVUDivExpr 2485 return 0; 2486 } 2487 2488 uint32_t 2489 ScalarEvolution::GetMinLeadingZeros(const SCEV* S) { 2490 // TODO: Handle other SCEV expression types here. 2491 2492 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2493 return C->getValue()->getValue().countLeadingZeros(); 2494 2495 if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) { 2496 // A zero-extension cast adds zero bits. 2497 return GetMinLeadingZeros(C->getOperand()) + 2498 (getTypeSizeInBits(C->getType()) - 2499 getTypeSizeInBits(C->getOperand()->getType())); 2500 } 2501 2502 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2503 // For a SCEVUnknown, ask ValueTracking. 2504 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2505 APInt Mask = APInt::getAllOnesValue(BitWidth); 2506 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2507 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 2508 return Zeros.countLeadingOnes(); 2509 } 2510 2511 return 1; 2512 } 2513 2514 uint32_t 2515 ScalarEvolution::GetMinSignBits(const SCEV* S) { 2516 // TODO: Handle other SCEV expression types here. 2517 2518 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 2519 const APInt &A = C->getValue()->getValue(); 2520 return A.isNegative() ? A.countLeadingOnes() : 2521 A.countLeadingZeros(); 2522 } 2523 2524 if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) { 2525 // A sign-extension cast adds sign bits. 2526 return GetMinSignBits(C->getOperand()) + 2527 (getTypeSizeInBits(C->getType()) - 2528 getTypeSizeInBits(C->getOperand()->getType())); 2529 } 2530 2531 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2532 unsigned BitWidth = getTypeSizeInBits(A->getType()); 2533 2534 // Special case decrementing a value (ADD X, -1): 2535 if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0))) 2536 if (CRHS->isAllOnesValue()) { 2537 SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end()); 2538 const SCEV *OtherOpsAdd = getAddExpr(OtherOps); 2539 unsigned LZ = GetMinLeadingZeros(OtherOpsAdd); 2540 2541 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2542 // sign bits set. 2543 if (LZ == BitWidth - 1) 2544 return BitWidth; 2545 2546 // If we are subtracting one from a positive number, there is no carry 2547 // out of the result. 2548 if (LZ > 0) 2549 return GetMinSignBits(OtherOpsAdd); 2550 } 2551 2552 // Add can have at most one carry bit. Thus we know that the output 2553 // is, at worst, one more bit than the inputs. 2554 unsigned Min = BitWidth; 2555 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2556 unsigned N = GetMinSignBits(A->getOperand(i)); 2557 Min = std::min(Min, N) - 1; 2558 if (Min == 0) return 1; 2559 } 2560 return 1; 2561 } 2562 2563 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2564 // For a SCEVUnknown, ask ValueTracking. 2565 return ComputeNumSignBits(U->getValue(), TD); 2566 } 2567 2568 return 1; 2569 } 2570 2571 /// createSCEV - We know that there is no SCEV for the specified value. 2572 /// Analyze the expression. 2573 /// 2574 const SCEV* ScalarEvolution::createSCEV(Value *V) { 2575 if (!isSCEVable(V->getType())) 2576 return getUnknown(V); 2577 2578 unsigned Opcode = Instruction::UserOp1; 2579 if (Instruction *I = dyn_cast<Instruction>(V)) 2580 Opcode = I->getOpcode(); 2581 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2582 Opcode = CE->getOpcode(); 2583 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 2584 return getConstant(CI); 2585 else if (isa<ConstantPointerNull>(V)) 2586 return getIntegerSCEV(0, V->getType()); 2587 else if (isa<UndefValue>(V)) 2588 return getIntegerSCEV(0, V->getType()); 2589 else 2590 return getUnknown(V); 2591 2592 User *U = cast<User>(V); 2593 switch (Opcode) { 2594 case Instruction::Add: 2595 return getAddExpr(getSCEV(U->getOperand(0)), 2596 getSCEV(U->getOperand(1))); 2597 case Instruction::Mul: 2598 return getMulExpr(getSCEV(U->getOperand(0)), 2599 getSCEV(U->getOperand(1))); 2600 case Instruction::UDiv: 2601 return getUDivExpr(getSCEV(U->getOperand(0)), 2602 getSCEV(U->getOperand(1))); 2603 case Instruction::Sub: 2604 return getMinusSCEV(getSCEV(U->getOperand(0)), 2605 getSCEV(U->getOperand(1))); 2606 case Instruction::And: 2607 // For an expression like x&255 that merely masks off the high bits, 2608 // use zext(trunc(x)) as the SCEV expression. 2609 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2610 if (CI->isNullValue()) 2611 return getSCEV(U->getOperand(1)); 2612 if (CI->isAllOnesValue()) 2613 return getSCEV(U->getOperand(0)); 2614 const APInt &A = CI->getValue(); 2615 2616 // Instcombine's ShrinkDemandedConstant may strip bits out of 2617 // constants, obscuring what would otherwise be a low-bits mask. 2618 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 2619 // knew about to reconstruct a low-bits mask value. 2620 unsigned LZ = A.countLeadingZeros(); 2621 unsigned BitWidth = A.getBitWidth(); 2622 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 2623 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2624 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 2625 2626 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 2627 2628 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 2629 return 2630 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2631 IntegerType::get(BitWidth - LZ)), 2632 U->getType()); 2633 } 2634 break; 2635 2636 case Instruction::Or: 2637 // If the RHS of the Or is a constant, we may have something like: 2638 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2639 // optimizations will transparently handle this case. 2640 // 2641 // In order for this transformation to be safe, the LHS must be of the 2642 // form X*(2^n) and the Or constant must be less than 2^n. 2643 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2644 const SCEV* LHS = getSCEV(U->getOperand(0)); 2645 const APInt &CIVal = CI->getValue(); 2646 if (GetMinTrailingZeros(LHS) >= 2647 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2648 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2649 } 2650 break; 2651 case Instruction::Xor: 2652 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2653 // If the RHS of the xor is a signbit, then this is just an add. 2654 // Instcombine turns add of signbit into xor as a strength reduction step. 2655 if (CI->getValue().isSignBit()) 2656 return getAddExpr(getSCEV(U->getOperand(0)), 2657 getSCEV(U->getOperand(1))); 2658 2659 // If the RHS of xor is -1, then this is a not operation. 2660 if (CI->isAllOnesValue()) 2661 return getNotSCEV(getSCEV(U->getOperand(0))); 2662 2663 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2664 // This is a variant of the check for xor with -1, and it handles 2665 // the case where instcombine has trimmed non-demanded bits out 2666 // of an xor with -1. 2667 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2668 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2669 if (BO->getOpcode() == Instruction::And && 2670 LCI->getValue() == CI->getValue()) 2671 if (const SCEVZeroExtendExpr *Z = 2672 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 2673 const Type *UTy = U->getType(); 2674 const SCEV* Z0 = Z->getOperand(); 2675 const Type *Z0Ty = Z0->getType(); 2676 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 2677 2678 // If C is a low-bits mask, the zero extend is zerving to 2679 // mask off the high bits. Complement the operand and 2680 // re-apply the zext. 2681 if (APIntOps::isMask(Z0TySize, CI->getValue())) 2682 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 2683 2684 // If C is a single bit, it may be in the sign-bit position 2685 // before the zero-extend. In this case, represent the xor 2686 // using an add, which is equivalent, and re-apply the zext. 2687 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 2688 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 2689 Trunc.isSignBit()) 2690 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 2691 UTy); 2692 } 2693 } 2694 break; 2695 2696 case Instruction::Shl: 2697 // Turn shift left of a constant amount into a multiply. 2698 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2699 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2700 Constant *X = ConstantInt::get( 2701 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2702 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2703 } 2704 break; 2705 2706 case Instruction::LShr: 2707 // Turn logical shift right of a constant into a unsigned divide. 2708 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2709 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2710 Constant *X = ConstantInt::get( 2711 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2712 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2713 } 2714 break; 2715 2716 case Instruction::AShr: 2717 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 2718 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 2719 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 2720 if (L->getOpcode() == Instruction::Shl && 2721 L->getOperand(1) == U->getOperand(1)) { 2722 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2723 uint64_t Amt = BitWidth - CI->getZExtValue(); 2724 if (Amt == BitWidth) 2725 return getSCEV(L->getOperand(0)); // shift by zero --> noop 2726 if (Amt > BitWidth) 2727 return getIntegerSCEV(0, U->getType()); // value is undefined 2728 return 2729 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 2730 IntegerType::get(Amt)), 2731 U->getType()); 2732 } 2733 break; 2734 2735 case Instruction::Trunc: 2736 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 2737 2738 case Instruction::ZExt: 2739 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2740 2741 case Instruction::SExt: 2742 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2743 2744 case Instruction::BitCast: 2745 // BitCasts are no-op casts so we just eliminate the cast. 2746 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 2747 return getSCEV(U->getOperand(0)); 2748 break; 2749 2750 case Instruction::IntToPtr: 2751 if (!TD) break; // Without TD we can't analyze pointers. 2752 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2753 TD->getIntPtrType()); 2754 2755 case Instruction::PtrToInt: 2756 if (!TD) break; // Without TD we can't analyze pointers. 2757 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2758 U->getType()); 2759 2760 case Instruction::GetElementPtr: 2761 if (!TD) break; // Without TD we can't analyze pointers. 2762 return createNodeForGEP(U); 2763 2764 case Instruction::PHI: 2765 return createNodeForPHI(cast<PHINode>(U)); 2766 2767 case Instruction::Select: 2768 // This could be a smax or umax that was lowered earlier. 2769 // Try to recover it. 2770 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2771 Value *LHS = ICI->getOperand(0); 2772 Value *RHS = ICI->getOperand(1); 2773 switch (ICI->getPredicate()) { 2774 case ICmpInst::ICMP_SLT: 2775 case ICmpInst::ICMP_SLE: 2776 std::swap(LHS, RHS); 2777 // fall through 2778 case ICmpInst::ICMP_SGT: 2779 case ICmpInst::ICMP_SGE: 2780 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2781 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2782 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2783 return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); 2784 break; 2785 case ICmpInst::ICMP_ULT: 2786 case ICmpInst::ICMP_ULE: 2787 std::swap(LHS, RHS); 2788 // fall through 2789 case ICmpInst::ICMP_UGT: 2790 case ICmpInst::ICMP_UGE: 2791 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2792 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2793 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2794 return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); 2795 break; 2796 case ICmpInst::ICMP_NE: 2797 // n != 0 ? n : 1 -> umax(n, 1) 2798 if (LHS == U->getOperand(1) && 2799 isa<ConstantInt>(U->getOperand(2)) && 2800 cast<ConstantInt>(U->getOperand(2))->isOne() && 2801 isa<ConstantInt>(RHS) && 2802 cast<ConstantInt>(RHS)->isZero()) 2803 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); 2804 break; 2805 case ICmpInst::ICMP_EQ: 2806 // n == 0 ? 1 : n -> umax(n, 1) 2807 if (LHS == U->getOperand(2) && 2808 isa<ConstantInt>(U->getOperand(1)) && 2809 cast<ConstantInt>(U->getOperand(1))->isOne() && 2810 isa<ConstantInt>(RHS) && 2811 cast<ConstantInt>(RHS)->isZero()) 2812 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); 2813 break; 2814 default: 2815 break; 2816 } 2817 } 2818 2819 default: // We cannot analyze this expression. 2820 break; 2821 } 2822 2823 return getUnknown(V); 2824 } 2825 2826 2827 2828 //===----------------------------------------------------------------------===// 2829 // Iteration Count Computation Code 2830 // 2831 2832 /// getBackedgeTakenCount - If the specified loop has a predictable 2833 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2834 /// object. The backedge-taken count is the number of times the loop header 2835 /// will be branched to from within the loop. This is one less than the 2836 /// trip count of the loop, since it doesn't count the first iteration, 2837 /// when the header is branched to from outside the loop. 2838 /// 2839 /// Note that it is not valid to call this method on a loop without a 2840 /// loop-invariant backedge-taken count (see 2841 /// hasLoopInvariantBackedgeTakenCount). 2842 /// 2843 const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2844 return getBackedgeTakenInfo(L).Exact; 2845 } 2846 2847 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 2848 /// return the least SCEV value that is known never to be less than the 2849 /// actual backedge taken count. 2850 const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 2851 return getBackedgeTakenInfo(L).Max; 2852 } 2853 2854 const ScalarEvolution::BackedgeTakenInfo & 2855 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 2856 // Initially insert a CouldNotCompute for this loop. If the insertion 2857 // succeeds, procede to actually compute a backedge-taken count and 2858 // update the value. The temporary CouldNotCompute value tells SCEV 2859 // code elsewhere that it shouldn't attempt to request a new 2860 // backedge-taken count, which could result in infinite recursion. 2861 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 2862 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2863 if (Pair.second) { 2864 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 2865 if (ItCount.Exact != getCouldNotCompute()) { 2866 assert(ItCount.Exact->isLoopInvariant(L) && 2867 ItCount.Max->isLoopInvariant(L) && 2868 "Computed trip count isn't loop invariant for loop!"); 2869 ++NumTripCountsComputed; 2870 2871 // Update the value in the map. 2872 Pair.first->second = ItCount; 2873 } else { 2874 if (ItCount.Max != getCouldNotCompute()) 2875 // Update the value in the map. 2876 Pair.first->second = ItCount; 2877 if (isa<PHINode>(L->getHeader()->begin())) 2878 // Only count loops that have phi nodes as not being computable. 2879 ++NumTripCountsNotComputed; 2880 } 2881 2882 // Now that we know more about the trip count for this loop, forget any 2883 // existing SCEV values for PHI nodes in this loop since they are only 2884 // conservative estimates made without the benefit 2885 // of trip count information. 2886 if (ItCount.hasAnyInfo()) 2887 forgetLoopPHIs(L); 2888 } 2889 return Pair.first->second; 2890 } 2891 2892 /// forgetLoopBackedgeTakenCount - This method should be called by the 2893 /// client when it has changed a loop in a way that may effect 2894 /// ScalarEvolution's ability to compute a trip count, or if the loop 2895 /// is deleted. 2896 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2897 BackedgeTakenCounts.erase(L); 2898 forgetLoopPHIs(L); 2899 } 2900 2901 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the 2902 /// PHI nodes in the given loop. This is used when the trip count of 2903 /// the loop may have changed. 2904 void ScalarEvolution::forgetLoopPHIs(const Loop *L) { 2905 BasicBlock *Header = L->getHeader(); 2906 2907 // Push all Loop-header PHIs onto the Worklist stack, except those 2908 // that are presently represented via a SCEVUnknown. SCEVUnknown for 2909 // a PHI either means that it has an unrecognized structure, or it's 2910 // a PHI that's in the progress of being computed by createNodeForPHI. 2911 // In the former case, additional loop trip count information isn't 2912 // going to change anything. In the later case, createNodeForPHI will 2913 // perform the necessary updates on its own when it gets to that point. 2914 SmallVector<Instruction *, 16> Worklist; 2915 for (BasicBlock::iterator I = Header->begin(); 2916 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2917 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 2918 Scalars.find((Value*)I); 2919 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second)) 2920 Worklist.push_back(PN); 2921 } 2922 2923 while (!Worklist.empty()) { 2924 Instruction *I = Worklist.pop_back_val(); 2925 if (Scalars.erase(I)) 2926 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2927 UI != UE; ++UI) 2928 Worklist.push_back(cast<Instruction>(UI)); 2929 } 2930 } 2931 2932 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2933 /// of the specified loop will execute. 2934 ScalarEvolution::BackedgeTakenInfo 2935 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2936 SmallVector<BasicBlock*, 8> ExitingBlocks; 2937 L->getExitingBlocks(ExitingBlocks); 2938 2939 // Examine all exits and pick the most conservative values. 2940 const SCEV* BECount = getCouldNotCompute(); 2941 const SCEV* MaxBECount = getCouldNotCompute(); 2942 bool CouldNotComputeBECount = false; 2943 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2944 BackedgeTakenInfo NewBTI = 2945 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 2946 2947 if (NewBTI.Exact == getCouldNotCompute()) { 2948 // We couldn't compute an exact value for this exit, so 2949 // we won't be able to compute an exact value for the loop. 2950 CouldNotComputeBECount = true; 2951 BECount = getCouldNotCompute(); 2952 } else if (!CouldNotComputeBECount) { 2953 if (BECount == getCouldNotCompute()) 2954 BECount = NewBTI.Exact; 2955 else 2956 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 2957 } 2958 if (MaxBECount == getCouldNotCompute()) 2959 MaxBECount = NewBTI.Max; 2960 else if (NewBTI.Max != getCouldNotCompute()) 2961 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 2962 } 2963 2964 return BackedgeTakenInfo(BECount, MaxBECount); 2965 } 2966 2967 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 2968 /// of the specified loop will execute if it exits via the specified block. 2969 ScalarEvolution::BackedgeTakenInfo 2970 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 2971 BasicBlock *ExitingBlock) { 2972 2973 // Okay, we've chosen an exiting block. See what condition causes us to 2974 // exit at this block. 2975 // 2976 // FIXME: we should be able to handle switch instructions (with a single exit) 2977 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2978 if (ExitBr == 0) return getCouldNotCompute(); 2979 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2980 2981 // At this point, we know we have a conditional branch that determines whether 2982 // the loop is exited. However, we don't know if the branch is executed each 2983 // time through the loop. If not, then the execution count of the branch will 2984 // not be equal to the trip count of the loop. 2985 // 2986 // Currently we check for this by checking to see if the Exit branch goes to 2987 // the loop header. If so, we know it will always execute the same number of 2988 // times as the loop. We also handle the case where the exit block *is* the 2989 // loop header. This is common for un-rotated loops. 2990 // 2991 // If both of those tests fail, walk up the unique predecessor chain to the 2992 // header, stopping if there is an edge that doesn't exit the loop. If the 2993 // header is reached, the execution count of the branch will be equal to the 2994 // trip count of the loop. 2995 // 2996 // More extensive analysis could be done to handle more cases here. 2997 // 2998 if (ExitBr->getSuccessor(0) != L->getHeader() && 2999 ExitBr->getSuccessor(1) != L->getHeader() && 3000 ExitBr->getParent() != L->getHeader()) { 3001 // The simple checks failed, try climbing the unique predecessor chain 3002 // up to the header. 3003 bool Ok = false; 3004 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3005 BasicBlock *Pred = BB->getUniquePredecessor(); 3006 if (!Pred) 3007 return getCouldNotCompute(); 3008 TerminatorInst *PredTerm = Pred->getTerminator(); 3009 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3010 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3011 if (PredSucc == BB) 3012 continue; 3013 // If the predecessor has a successor that isn't BB and isn't 3014 // outside the loop, assume the worst. 3015 if (L->contains(PredSucc)) 3016 return getCouldNotCompute(); 3017 } 3018 if (Pred == L->getHeader()) { 3019 Ok = true; 3020 break; 3021 } 3022 BB = Pred; 3023 } 3024 if (!Ok) 3025 return getCouldNotCompute(); 3026 } 3027 3028 // Procede to the next level to examine the exit condition expression. 3029 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3030 ExitBr->getSuccessor(0), 3031 ExitBr->getSuccessor(1)); 3032 } 3033 3034 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3035 /// backedge of the specified loop will execute if its exit condition 3036 /// were a conditional branch of ExitCond, TBB, and FBB. 3037 ScalarEvolution::BackedgeTakenInfo 3038 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3039 Value *ExitCond, 3040 BasicBlock *TBB, 3041 BasicBlock *FBB) { 3042 // Check if the controlling expression for this loop is an And or Or. 3043 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3044 if (BO->getOpcode() == Instruction::And) { 3045 // Recurse on the operands of the and. 3046 BackedgeTakenInfo BTI0 = 3047 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3048 BackedgeTakenInfo BTI1 = 3049 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3050 const SCEV* BECount = getCouldNotCompute(); 3051 const SCEV* MaxBECount = getCouldNotCompute(); 3052 if (L->contains(TBB)) { 3053 // Both conditions must be true for the loop to continue executing. 3054 // Choose the less conservative count. 3055 if (BTI0.Exact == getCouldNotCompute() || 3056 BTI1.Exact == getCouldNotCompute()) 3057 BECount = getCouldNotCompute(); 3058 else 3059 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3060 if (BTI0.Max == getCouldNotCompute()) 3061 MaxBECount = BTI1.Max; 3062 else if (BTI1.Max == getCouldNotCompute()) 3063 MaxBECount = BTI0.Max; 3064 else 3065 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3066 } else { 3067 // Both conditions must be true for the loop to exit. 3068 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3069 if (BTI0.Exact != getCouldNotCompute() && 3070 BTI1.Exact != getCouldNotCompute()) 3071 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3072 if (BTI0.Max != getCouldNotCompute() && 3073 BTI1.Max != getCouldNotCompute()) 3074 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3075 } 3076 3077 return BackedgeTakenInfo(BECount, MaxBECount); 3078 } 3079 if (BO->getOpcode() == Instruction::Or) { 3080 // Recurse on the operands of the or. 3081 BackedgeTakenInfo BTI0 = 3082 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3083 BackedgeTakenInfo BTI1 = 3084 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3085 const SCEV* BECount = getCouldNotCompute(); 3086 const SCEV* MaxBECount = getCouldNotCompute(); 3087 if (L->contains(FBB)) { 3088 // Both conditions must be false for the loop to continue executing. 3089 // Choose the less conservative count. 3090 if (BTI0.Exact == getCouldNotCompute() || 3091 BTI1.Exact == getCouldNotCompute()) 3092 BECount = getCouldNotCompute(); 3093 else 3094 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3095 if (BTI0.Max == getCouldNotCompute()) 3096 MaxBECount = BTI1.Max; 3097 else if (BTI1.Max == getCouldNotCompute()) 3098 MaxBECount = BTI0.Max; 3099 else 3100 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3101 } else { 3102 // Both conditions must be false for the loop to exit. 3103 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3104 if (BTI0.Exact != getCouldNotCompute() && 3105 BTI1.Exact != getCouldNotCompute()) 3106 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3107 if (BTI0.Max != getCouldNotCompute() && 3108 BTI1.Max != getCouldNotCompute()) 3109 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3110 } 3111 3112 return BackedgeTakenInfo(BECount, MaxBECount); 3113 } 3114 } 3115 3116 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3117 // Procede to the next level to examine the icmp. 3118 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3119 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3120 3121 // If it's not an integer or pointer comparison then compute it the hard way. 3122 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3123 } 3124 3125 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3126 /// backedge of the specified loop will execute if its exit condition 3127 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3128 ScalarEvolution::BackedgeTakenInfo 3129 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3130 ICmpInst *ExitCond, 3131 BasicBlock *TBB, 3132 BasicBlock *FBB) { 3133 3134 // If the condition was exit on true, convert the condition to exit on false 3135 ICmpInst::Predicate Cond; 3136 if (!L->contains(FBB)) 3137 Cond = ExitCond->getPredicate(); 3138 else 3139 Cond = ExitCond->getInversePredicate(); 3140 3141 // Handle common loops like: for (X = "string"; *X; ++X) 3142 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3143 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3144 const SCEV* ItCnt = 3145 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3146 if (!isa<SCEVCouldNotCompute>(ItCnt)) { 3147 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); 3148 return BackedgeTakenInfo(ItCnt, 3149 isa<SCEVConstant>(ItCnt) ? ItCnt : 3150 getConstant(APInt::getMaxValue(BitWidth)-1)); 3151 } 3152 } 3153 3154 const SCEV* LHS = getSCEV(ExitCond->getOperand(0)); 3155 const SCEV* RHS = getSCEV(ExitCond->getOperand(1)); 3156 3157 // Try to evaluate any dependencies out of the loop. 3158 LHS = getSCEVAtScope(LHS, L); 3159 RHS = getSCEVAtScope(RHS, L); 3160 3161 // At this point, we would like to compute how many iterations of the 3162 // loop the predicate will return true for these inputs. 3163 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3164 // If there is a loop-invariant, force it into the RHS. 3165 std::swap(LHS, RHS); 3166 Cond = ICmpInst::getSwappedPredicate(Cond); 3167 } 3168 3169 // If we have a comparison of a chrec against a constant, try to use value 3170 // ranges to answer this query. 3171 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3172 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3173 if (AddRec->getLoop() == L) { 3174 // Form the constant range. 3175 ConstantRange CompRange( 3176 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3177 3178 const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3179 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3180 } 3181 3182 switch (Cond) { 3183 case ICmpInst::ICMP_NE: { // while (X != Y) 3184 // Convert to: while (X-Y != 0) 3185 const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3186 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3187 break; 3188 } 3189 case ICmpInst::ICMP_EQ: { 3190 // Convert to: while (X-Y == 0) // while (X == Y) 3191 const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3192 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3193 break; 3194 } 3195 case ICmpInst::ICMP_SLT: { 3196 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3197 if (BTI.hasAnyInfo()) return BTI; 3198 break; 3199 } 3200 case ICmpInst::ICMP_SGT: { 3201 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3202 getNotSCEV(RHS), L, true); 3203 if (BTI.hasAnyInfo()) return BTI; 3204 break; 3205 } 3206 case ICmpInst::ICMP_ULT: { 3207 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3208 if (BTI.hasAnyInfo()) return BTI; 3209 break; 3210 } 3211 case ICmpInst::ICMP_UGT: { 3212 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3213 getNotSCEV(RHS), L, false); 3214 if (BTI.hasAnyInfo()) return BTI; 3215 break; 3216 } 3217 default: 3218 #if 0 3219 errs() << "ComputeBackedgeTakenCount "; 3220 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3221 errs() << "[unsigned] "; 3222 errs() << *LHS << " " 3223 << Instruction::getOpcodeName(Instruction::ICmp) 3224 << " " << *RHS << "\n"; 3225 #endif 3226 break; 3227 } 3228 return 3229 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3230 } 3231 3232 static ConstantInt * 3233 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3234 ScalarEvolution &SE) { 3235 const SCEV* InVal = SE.getConstant(C); 3236 const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE); 3237 assert(isa<SCEVConstant>(Val) && 3238 "Evaluation of SCEV at constant didn't fold correctly?"); 3239 return cast<SCEVConstant>(Val)->getValue(); 3240 } 3241 3242 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3243 /// and a GEP expression (missing the pointer index) indexing into it, return 3244 /// the addressed element of the initializer or null if the index expression is 3245 /// invalid. 3246 static Constant * 3247 GetAddressedElementFromGlobal(GlobalVariable *GV, 3248 const std::vector<ConstantInt*> &Indices) { 3249 Constant *Init = GV->getInitializer(); 3250 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3251 uint64_t Idx = Indices[i]->getZExtValue(); 3252 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3253 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3254 Init = cast<Constant>(CS->getOperand(Idx)); 3255 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 3256 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 3257 Init = cast<Constant>(CA->getOperand(Idx)); 3258 } else if (isa<ConstantAggregateZero>(Init)) { 3259 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 3260 assert(Idx < STy->getNumElements() && "Bad struct index!"); 3261 Init = Constant::getNullValue(STy->getElementType(Idx)); 3262 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 3263 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 3264 Init = Constant::getNullValue(ATy->getElementType()); 3265 } else { 3266 assert(0 && "Unknown constant aggregate type!"); 3267 } 3268 return 0; 3269 } else { 3270 return 0; // Unknown initializer type 3271 } 3272 } 3273 return Init; 3274 } 3275 3276 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 3277 /// 'icmp op load X, cst', try to see if we can compute the backedge 3278 /// execution count. 3279 const SCEV * 3280 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 3281 LoadInst *LI, 3282 Constant *RHS, 3283 const Loop *L, 3284 ICmpInst::Predicate predicate) { 3285 if (LI->isVolatile()) return getCouldNotCompute(); 3286 3287 // Check to see if the loaded pointer is a getelementptr of a global. 3288 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 3289 if (!GEP) return getCouldNotCompute(); 3290 3291 // Make sure that it is really a constant global we are gepping, with an 3292 // initializer, and make sure the first IDX is really 0. 3293 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 3294 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 3295 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 3296 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 3297 return getCouldNotCompute(); 3298 3299 // Okay, we allow one non-constant index into the GEP instruction. 3300 Value *VarIdx = 0; 3301 std::vector<ConstantInt*> Indexes; 3302 unsigned VarIdxNum = 0; 3303 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 3304 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 3305 Indexes.push_back(CI); 3306 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 3307 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 3308 VarIdx = GEP->getOperand(i); 3309 VarIdxNum = i-2; 3310 Indexes.push_back(0); 3311 } 3312 3313 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 3314 // Check to see if X is a loop variant variable value now. 3315 const SCEV* Idx = getSCEV(VarIdx); 3316 Idx = getSCEVAtScope(Idx, L); 3317 3318 // We can only recognize very limited forms of loop index expressions, in 3319 // particular, only affine AddRec's like {C1,+,C2}. 3320 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 3321 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 3322 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 3323 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 3324 return getCouldNotCompute(); 3325 3326 unsigned MaxSteps = MaxBruteForceIterations; 3327 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 3328 ConstantInt *ItCst = 3329 ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum); 3330 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 3331 3332 // Form the GEP offset. 3333 Indexes[VarIdxNum] = Val; 3334 3335 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 3336 if (Result == 0) break; // Cannot compute! 3337 3338 // Evaluate the condition for this iteration. 3339 Result = ConstantExpr::getICmp(predicate, Result, RHS); 3340 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 3341 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 3342 #if 0 3343 errs() << "\n***\n*** Computed loop count " << *ItCst 3344 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 3345 << "***\n"; 3346 #endif 3347 ++NumArrayLenItCounts; 3348 return getConstant(ItCst); // Found terminating iteration! 3349 } 3350 } 3351 return getCouldNotCompute(); 3352 } 3353 3354 3355 /// CanConstantFold - Return true if we can constant fold an instruction of the 3356 /// specified type, assuming that all operands were constants. 3357 static bool CanConstantFold(const Instruction *I) { 3358 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 3359 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 3360 return true; 3361 3362 if (const CallInst *CI = dyn_cast<CallInst>(I)) 3363 if (const Function *F = CI->getCalledFunction()) 3364 return canConstantFoldCallTo(F); 3365 return false; 3366 } 3367 3368 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 3369 /// in the loop that V is derived from. We allow arbitrary operations along the 3370 /// way, but the operands of an operation must either be constants or a value 3371 /// derived from a constant PHI. If this expression does not fit with these 3372 /// constraints, return null. 3373 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 3374 // If this is not an instruction, or if this is an instruction outside of the 3375 // loop, it can't be derived from a loop PHI. 3376 Instruction *I = dyn_cast<Instruction>(V); 3377 if (I == 0 || !L->contains(I->getParent())) return 0; 3378 3379 if (PHINode *PN = dyn_cast<PHINode>(I)) { 3380 if (L->getHeader() == I->getParent()) 3381 return PN; 3382 else 3383 // We don't currently keep track of the control flow needed to evaluate 3384 // PHIs, so we cannot handle PHIs inside of loops. 3385 return 0; 3386 } 3387 3388 // If we won't be able to constant fold this expression even if the operands 3389 // are constants, return early. 3390 if (!CanConstantFold(I)) return 0; 3391 3392 // Otherwise, we can evaluate this instruction if all of its operands are 3393 // constant or derived from a PHI node themselves. 3394 PHINode *PHI = 0; 3395 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 3396 if (!(isa<Constant>(I->getOperand(Op)) || 3397 isa<GlobalValue>(I->getOperand(Op)))) { 3398 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3399 if (P == 0) return 0; // Not evolving from PHI 3400 if (PHI == 0) 3401 PHI = P; 3402 else if (PHI != P) 3403 return 0; // Evolving from multiple different PHIs. 3404 } 3405 3406 // This is a expression evolving from a constant PHI! 3407 return PHI; 3408 } 3409 3410 /// EvaluateExpression - Given an expression that passes the 3411 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 3412 /// in the loop has the value PHIVal. If we can't fold this expression for some 3413 /// reason, return null. 3414 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 3415 if (isa<PHINode>(V)) return PHIVal; 3416 if (Constant *C = dyn_cast<Constant>(V)) return C; 3417 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 3418 Instruction *I = cast<Instruction>(V); 3419 3420 std::vector<Constant*> Operands; 3421 Operands.resize(I->getNumOperands()); 3422 3423 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3424 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 3425 if (Operands[i] == 0) return 0; 3426 } 3427 3428 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3429 return ConstantFoldCompareInstOperands(CI->getPredicate(), 3430 &Operands[0], Operands.size()); 3431 else 3432 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3433 &Operands[0], Operands.size()); 3434 } 3435 3436 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3437 /// in the header of its containing loop, we know the loop executes a 3438 /// constant number of times, and the PHI node is just a recurrence 3439 /// involving constants, fold it. 3440 Constant * 3441 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 3442 const APInt& BEs, 3443 const Loop *L) { 3444 std::map<PHINode*, Constant*>::iterator I = 3445 ConstantEvolutionLoopExitValue.find(PN); 3446 if (I != ConstantEvolutionLoopExitValue.end()) 3447 return I->second; 3448 3449 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3450 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3451 3452 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3453 3454 // Since the loop is canonicalized, the PHI node must have two entries. One 3455 // entry must be a constant (coming in from outside of the loop), and the 3456 // second must be derived from the same PHI. 3457 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3458 Constant *StartCST = 3459 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3460 if (StartCST == 0) 3461 return RetVal = 0; // Must be a constant. 3462 3463 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3464 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3465 if (PN2 != PN) 3466 return RetVal = 0; // Not derived from same PHI. 3467 3468 // Execute the loop symbolically to determine the exit value. 3469 if (BEs.getActiveBits() >= 32) 3470 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3471 3472 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3473 unsigned IterationNum = 0; 3474 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3475 if (IterationNum == NumIterations) 3476 return RetVal = PHIVal; // Got exit value! 3477 3478 // Compute the value of the PHI node for the next iteration. 3479 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3480 if (NextPHI == PHIVal) 3481 return RetVal = NextPHI; // Stopped evolving! 3482 if (NextPHI == 0) 3483 return 0; // Couldn't evaluate! 3484 PHIVal = NextPHI; 3485 } 3486 } 3487 3488 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 3489 /// constant number of times (the condition evolves only from constants), 3490 /// try to evaluate a few iterations of the loop until we get the exit 3491 /// condition gets a value of ExitWhen (true or false). If we cannot 3492 /// evaluate the trip count of the loop, return getCouldNotCompute(). 3493 const SCEV * 3494 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 3495 Value *Cond, 3496 bool ExitWhen) { 3497 PHINode *PN = getConstantEvolvingPHI(Cond, L); 3498 if (PN == 0) return getCouldNotCompute(); 3499 3500 // Since the loop is canonicalized, the PHI node must have two entries. One 3501 // entry must be a constant (coming in from outside of the loop), and the 3502 // second must be derived from the same PHI. 3503 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3504 Constant *StartCST = 3505 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3506 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 3507 3508 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3509 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3510 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI. 3511 3512 // Okay, we find a PHI node that defines the trip count of this loop. Execute 3513 // the loop symbolically to determine when the condition gets a value of 3514 // "ExitWhen". 3515 unsigned IterationNum = 0; 3516 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 3517 for (Constant *PHIVal = StartCST; 3518 IterationNum != MaxIterations; ++IterationNum) { 3519 ConstantInt *CondVal = 3520 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 3521 3522 // Couldn't symbolically evaluate. 3523 if (!CondVal) return getCouldNotCompute(); 3524 3525 if (CondVal->getValue() == uint64_t(ExitWhen)) { 3526 ConstantEvolutionLoopExitValue[PN] = PHIVal; 3527 ++NumBruteForceTripCountsComputed; 3528 return getConstant(Type::Int32Ty, IterationNum); 3529 } 3530 3531 // Compute the value of the PHI node for the next iteration. 3532 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3533 if (NextPHI == 0 || NextPHI == PHIVal) 3534 return getCouldNotCompute();// Couldn't evaluate or not making progress... 3535 PHIVal = NextPHI; 3536 } 3537 3538 // Too many iterations were needed to evaluate. 3539 return getCouldNotCompute(); 3540 } 3541 3542 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 3543 /// at the specified scope in the program. The L value specifies a loop 3544 /// nest to evaluate the expression at, where null is the top-level or a 3545 /// specified loop is immediately inside of the loop. 3546 /// 3547 /// This method can be used to compute the exit value for a variable defined 3548 /// in a loop by querying what the value will hold in the parent loop. 3549 /// 3550 /// In the case that a relevant loop exit value cannot be computed, the 3551 /// original value V is returned. 3552 const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 3553 // FIXME: this should be turned into a virtual method on SCEV! 3554 3555 if (isa<SCEVConstant>(V)) return V; 3556 3557 // If this instruction is evolved from a constant-evolving PHI, compute the 3558 // exit value from the loop without using SCEVs. 3559 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 3560 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 3561 const Loop *LI = (*this->LI)[I->getParent()]; 3562 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 3563 if (PHINode *PN = dyn_cast<PHINode>(I)) 3564 if (PN->getParent() == LI->getHeader()) { 3565 // Okay, there is no closed form solution for the PHI node. Check 3566 // to see if the loop that contains it has a known backedge-taken 3567 // count. If so, we may be able to force computation of the exit 3568 // value. 3569 const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI); 3570 if (const SCEVConstant *BTCC = 3571 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 3572 // Okay, we know how many times the containing loop executes. If 3573 // this is a constant evolving PHI node, get the final value at 3574 // the specified iteration number. 3575 Constant *RV = getConstantEvolutionLoopExitValue(PN, 3576 BTCC->getValue()->getValue(), 3577 LI); 3578 if (RV) return getUnknown(RV); 3579 } 3580 } 3581 3582 // Okay, this is an expression that we cannot symbolically evaluate 3583 // into a SCEV. Check to see if it's possible to symbolically evaluate 3584 // the arguments into constants, and if so, try to constant propagate the 3585 // result. This is particularly useful for computing loop exit values. 3586 if (CanConstantFold(I)) { 3587 // Check to see if we've folded this instruction at this loop before. 3588 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 3589 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 3590 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 3591 if (!Pair.second) 3592 return Pair.first->second ? &*getUnknown(Pair.first->second) : V; 3593 3594 std::vector<Constant*> Operands; 3595 Operands.reserve(I->getNumOperands()); 3596 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3597 Value *Op = I->getOperand(i); 3598 if (Constant *C = dyn_cast<Constant>(Op)) { 3599 Operands.push_back(C); 3600 } else { 3601 // If any of the operands is non-constant and if they are 3602 // non-integer and non-pointer, don't even try to analyze them 3603 // with scev techniques. 3604 if (!isSCEVable(Op->getType())) 3605 return V; 3606 3607 const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L); 3608 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 3609 Constant *C = SC->getValue(); 3610 if (C->getType() != Op->getType()) 3611 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3612 Op->getType(), 3613 false), 3614 C, Op->getType()); 3615 Operands.push_back(C); 3616 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 3617 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 3618 if (C->getType() != Op->getType()) 3619 C = 3620 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3621 Op->getType(), 3622 false), 3623 C, Op->getType()); 3624 Operands.push_back(C); 3625 } else 3626 return V; 3627 } else { 3628 return V; 3629 } 3630 } 3631 } 3632 3633 Constant *C; 3634 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3635 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3636 &Operands[0], Operands.size()); 3637 else 3638 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3639 &Operands[0], Operands.size()); 3640 Pair.first->second = C; 3641 return getUnknown(C); 3642 } 3643 } 3644 3645 // This is some other type of SCEVUnknown, just return it. 3646 return V; 3647 } 3648 3649 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 3650 // Avoid performing the look-up in the common case where the specified 3651 // expression has no loop-variant portions. 3652 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 3653 const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3654 if (OpAtScope != Comm->getOperand(i)) { 3655 // Okay, at least one of these operands is loop variant but might be 3656 // foldable. Build a new instance of the folded commutative expression. 3657 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 3658 Comm->op_begin()+i); 3659 NewOps.push_back(OpAtScope); 3660 3661 for (++i; i != e; ++i) { 3662 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3663 NewOps.push_back(OpAtScope); 3664 } 3665 if (isa<SCEVAddExpr>(Comm)) 3666 return getAddExpr(NewOps); 3667 if (isa<SCEVMulExpr>(Comm)) 3668 return getMulExpr(NewOps); 3669 if (isa<SCEVSMaxExpr>(Comm)) 3670 return getSMaxExpr(NewOps); 3671 if (isa<SCEVUMaxExpr>(Comm)) 3672 return getUMaxExpr(NewOps); 3673 assert(0 && "Unknown commutative SCEV type!"); 3674 } 3675 } 3676 // If we got here, all operands are loop invariant. 3677 return Comm; 3678 } 3679 3680 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 3681 const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L); 3682 const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L); 3683 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 3684 return Div; // must be loop invariant 3685 return getUDivExpr(LHS, RHS); 3686 } 3687 3688 // If this is a loop recurrence for a loop that does not contain L, then we 3689 // are dealing with the final value computed by the loop. 3690 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 3691 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 3692 // To evaluate this recurrence, we need to know how many times the AddRec 3693 // loop iterates. Compute this now. 3694 const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 3695 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 3696 3697 // Then, evaluate the AddRec. 3698 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 3699 } 3700 return AddRec; 3701 } 3702 3703 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 3704 const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L); 3705 if (Op == Cast->getOperand()) 3706 return Cast; // must be loop invariant 3707 return getZeroExtendExpr(Op, Cast->getType()); 3708 } 3709 3710 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 3711 const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L); 3712 if (Op == Cast->getOperand()) 3713 return Cast; // must be loop invariant 3714 return getSignExtendExpr(Op, Cast->getType()); 3715 } 3716 3717 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 3718 const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L); 3719 if (Op == Cast->getOperand()) 3720 return Cast; // must be loop invariant 3721 return getTruncateExpr(Op, Cast->getType()); 3722 } 3723 3724 assert(0 && "Unknown SCEV type!"); 3725 return 0; 3726 } 3727 3728 /// getSCEVAtScope - This is a convenience function which does 3729 /// getSCEVAtScope(getSCEV(V), L). 3730 const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 3731 return getSCEVAtScope(getSCEV(V), L); 3732 } 3733 3734 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 3735 /// following equation: 3736 /// 3737 /// A * X = B (mod N) 3738 /// 3739 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 3740 /// A and B isn't important. 3741 /// 3742 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 3743 static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 3744 ScalarEvolution &SE) { 3745 uint32_t BW = A.getBitWidth(); 3746 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 3747 assert(A != 0 && "A must be non-zero."); 3748 3749 // 1. D = gcd(A, N) 3750 // 3751 // The gcd of A and N may have only one prime factor: 2. The number of 3752 // trailing zeros in A is its multiplicity 3753 uint32_t Mult2 = A.countTrailingZeros(); 3754 // D = 2^Mult2 3755 3756 // 2. Check if B is divisible by D. 3757 // 3758 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 3759 // is not less than multiplicity of this prime factor for D. 3760 if (B.countTrailingZeros() < Mult2) 3761 return SE.getCouldNotCompute(); 3762 3763 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 3764 // modulo (N / D). 3765 // 3766 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 3767 // bit width during computations. 3768 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 3769 APInt Mod(BW + 1, 0); 3770 Mod.set(BW - Mult2); // Mod = N / D 3771 APInt I = AD.multiplicativeInverse(Mod); 3772 3773 // 4. Compute the minimum unsigned root of the equation: 3774 // I * (B / D) mod (N / D) 3775 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 3776 3777 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 3778 // bits. 3779 return SE.getConstant(Result.trunc(BW)); 3780 } 3781 3782 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 3783 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 3784 /// might be the same) or two SCEVCouldNotCompute objects. 3785 /// 3786 static std::pair<const SCEV*,const SCEV*> 3787 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 3788 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 3789 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 3790 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 3791 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 3792 3793 // We currently can only solve this if the coefficients are constants. 3794 if (!LC || !MC || !NC) { 3795 const SCEV *CNC = SE.getCouldNotCompute(); 3796 return std::make_pair(CNC, CNC); 3797 } 3798 3799 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 3800 const APInt &L = LC->getValue()->getValue(); 3801 const APInt &M = MC->getValue()->getValue(); 3802 const APInt &N = NC->getValue()->getValue(); 3803 APInt Two(BitWidth, 2); 3804 APInt Four(BitWidth, 4); 3805 3806 { 3807 using namespace APIntOps; 3808 const APInt& C = L; 3809 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 3810 // The B coefficient is M-N/2 3811 APInt B(M); 3812 B -= sdiv(N,Two); 3813 3814 // The A coefficient is N/2 3815 APInt A(N.sdiv(Two)); 3816 3817 // Compute the B^2-4ac term. 3818 APInt SqrtTerm(B); 3819 SqrtTerm *= B; 3820 SqrtTerm -= Four * (A * C); 3821 3822 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 3823 // integer value or else APInt::sqrt() will assert. 3824 APInt SqrtVal(SqrtTerm.sqrt()); 3825 3826 // Compute the two solutions for the quadratic formula. 3827 // The divisions must be performed as signed divisions. 3828 APInt NegB(-B); 3829 APInt TwoA( A << 1 ); 3830 if (TwoA.isMinValue()) { 3831 const SCEV *CNC = SE.getCouldNotCompute(); 3832 return std::make_pair(CNC, CNC); 3833 } 3834 3835 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 3836 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 3837 3838 return std::make_pair(SE.getConstant(Solution1), 3839 SE.getConstant(Solution2)); 3840 } // end APIntOps namespace 3841 } 3842 3843 /// HowFarToZero - Return the number of times a backedge comparing the specified 3844 /// value to zero will execute. If not computable, return CouldNotCompute. 3845 const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 3846 // If the value is a constant 3847 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3848 // If the value is already zero, the branch will execute zero times. 3849 if (C->getValue()->isZero()) return C; 3850 return getCouldNotCompute(); // Otherwise it will loop infinitely. 3851 } 3852 3853 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 3854 if (!AddRec || AddRec->getLoop() != L) 3855 return getCouldNotCompute(); 3856 3857 if (AddRec->isAffine()) { 3858 // If this is an affine expression, the execution count of this branch is 3859 // the minimum unsigned root of the following equation: 3860 // 3861 // Start + Step*N = 0 (mod 2^BW) 3862 // 3863 // equivalent to: 3864 // 3865 // Step*N = -Start (mod 2^BW) 3866 // 3867 // where BW is the common bit width of Start and Step. 3868 3869 // Get the initial value for the loop. 3870 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 3871 L->getParentLoop()); 3872 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 3873 L->getParentLoop()); 3874 3875 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 3876 // For now we handle only constant steps. 3877 3878 // First, handle unitary steps. 3879 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 3880 return getNegativeSCEV(Start); // N = -Start (as unsigned) 3881 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 3882 return Start; // N = Start (as unsigned) 3883 3884 // Then, try to solve the above equation provided that Start is constant. 3885 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 3886 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 3887 -StartC->getValue()->getValue(), 3888 *this); 3889 } 3890 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 3891 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 3892 // the quadratic equation to solve it. 3893 std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(AddRec, 3894 *this); 3895 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3896 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3897 if (R1) { 3898 #if 0 3899 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 3900 << " sol#2: " << *R2 << "\n"; 3901 #endif 3902 // Pick the smallest positive root value. 3903 if (ConstantInt *CB = 3904 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3905 R1->getValue(), R2->getValue()))) { 3906 if (CB->getZExtValue() == false) 3907 std::swap(R1, R2); // R1 is the minimum root now. 3908 3909 // We can only use this value if the chrec ends up with an exact zero 3910 // value at this index. When solving for "X*X != 5", for example, we 3911 // should not accept a root of 2. 3912 const SCEV* Val = AddRec->evaluateAtIteration(R1, *this); 3913 if (Val->isZero()) 3914 return R1; // We found a quadratic root! 3915 } 3916 } 3917 } 3918 3919 return getCouldNotCompute(); 3920 } 3921 3922 /// HowFarToNonZero - Return the number of times a backedge checking the 3923 /// specified value for nonzero will execute. If not computable, return 3924 /// CouldNotCompute 3925 const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 3926 // Loops that look like: while (X == 0) are very strange indeed. We don't 3927 // handle them yet except for the trivial case. This could be expanded in the 3928 // future as needed. 3929 3930 // If the value is a constant, check to see if it is known to be non-zero 3931 // already. If so, the backedge will execute zero times. 3932 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3933 if (!C->getValue()->isNullValue()) 3934 return getIntegerSCEV(0, C->getType()); 3935 return getCouldNotCompute(); // Otherwise it will loop infinitely. 3936 } 3937 3938 // We could implement others, but I really doubt anyone writes loops like 3939 // this, and if they did, they would already be constant folded. 3940 return getCouldNotCompute(); 3941 } 3942 3943 /// getLoopPredecessor - If the given loop's header has exactly one unique 3944 /// predecessor outside the loop, return it. Otherwise return null. 3945 /// 3946 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 3947 BasicBlock *Header = L->getHeader(); 3948 BasicBlock *Pred = 0; 3949 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 3950 PI != E; ++PI) 3951 if (!L->contains(*PI)) { 3952 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 3953 Pred = *PI; 3954 } 3955 return Pred; 3956 } 3957 3958 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 3959 /// (which may not be an immediate predecessor) which has exactly one 3960 /// successor from which BB is reachable, or null if no such block is 3961 /// found. 3962 /// 3963 BasicBlock * 3964 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 3965 // If the block has a unique predecessor, then there is no path from the 3966 // predecessor to the block that does not go through the direct edge 3967 // from the predecessor to the block. 3968 if (BasicBlock *Pred = BB->getSinglePredecessor()) 3969 return Pred; 3970 3971 // A loop's header is defined to be a block that dominates the loop. 3972 // If the header has a unique predecessor outside the loop, it must be 3973 // a block that has exactly one successor that can reach the loop. 3974 if (Loop *L = LI->getLoopFor(BB)) 3975 return getLoopPredecessor(L); 3976 3977 return 0; 3978 } 3979 3980 /// HasSameValue - SCEV structural equivalence is usually sufficient for 3981 /// testing whether two expressions are equal, however for the purposes of 3982 /// looking for a condition guarding a loop, it can be useful to be a little 3983 /// more general, since a front-end may have replicated the controlling 3984 /// expression. 3985 /// 3986 static bool HasSameValue(const SCEV* A, const SCEV* B) { 3987 // Quick check to see if they are the same SCEV. 3988 if (A == B) return true; 3989 3990 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 3991 // two different instructions with the same value. Check for this case. 3992 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 3993 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 3994 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 3995 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 3996 if (AI->isIdenticalTo(BI)) 3997 return true; 3998 3999 // Otherwise assume they may have a different value. 4000 return false; 4001 } 4002 4003 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 4004 /// a conditional between LHS and RHS. This is used to help avoid max 4005 /// expressions in loop trip counts. 4006 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 4007 ICmpInst::Predicate Pred, 4008 const SCEV *LHS, const SCEV *RHS) { 4009 // Interpret a null as meaning no loop, where there is obviously no guard 4010 // (interprocedural conditions notwithstanding). 4011 if (!L) return false; 4012 4013 BasicBlock *Predecessor = getLoopPredecessor(L); 4014 BasicBlock *PredecessorDest = L->getHeader(); 4015 4016 // Starting at the loop predecessor, climb up the predecessor chain, as long 4017 // as there are predecessors that can be found that have unique successors 4018 // leading to the original header. 4019 for (; Predecessor; 4020 PredecessorDest = Predecessor, 4021 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 4022 4023 BranchInst *LoopEntryPredicate = 4024 dyn_cast<BranchInst>(Predecessor->getTerminator()); 4025 if (!LoopEntryPredicate || 4026 LoopEntryPredicate->isUnconditional()) 4027 continue; 4028 4029 if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 4030 LoopEntryPredicate->getSuccessor(0) != PredecessorDest)) 4031 return true; 4032 } 4033 4034 return false; 4035 } 4036 4037 /// isNecessaryCond - Test whether the given CondValue value is a condition 4038 /// which is at least as strict as the one described by Pred, LHS, and RHS. 4039 bool ScalarEvolution::isNecessaryCond(Value *CondValue, 4040 ICmpInst::Predicate Pred, 4041 const SCEV *LHS, const SCEV *RHS, 4042 bool Inverse) { 4043 // Recursivly handle And and Or conditions. 4044 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 4045 if (BO->getOpcode() == Instruction::And) { 4046 if (!Inverse) 4047 return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4048 isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4049 } else if (BO->getOpcode() == Instruction::Or) { 4050 if (Inverse) 4051 return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4052 isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4053 } 4054 } 4055 4056 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 4057 if (!ICI) return false; 4058 4059 // Now that we found a conditional branch that dominates the loop, check to 4060 // see if it is the comparison we are looking for. 4061 Value *PreCondLHS = ICI->getOperand(0); 4062 Value *PreCondRHS = ICI->getOperand(1); 4063 ICmpInst::Predicate Cond; 4064 if (Inverse) 4065 Cond = ICI->getInversePredicate(); 4066 else 4067 Cond = ICI->getPredicate(); 4068 4069 if (Cond == Pred) 4070 ; // An exact match. 4071 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 4072 ; // The actual condition is beyond sufficient. 4073 else 4074 // Check a few special cases. 4075 switch (Cond) { 4076 case ICmpInst::ICMP_UGT: 4077 if (Pred == ICmpInst::ICMP_ULT) { 4078 std::swap(PreCondLHS, PreCondRHS); 4079 Cond = ICmpInst::ICMP_ULT; 4080 break; 4081 } 4082 return false; 4083 case ICmpInst::ICMP_SGT: 4084 if (Pred == ICmpInst::ICMP_SLT) { 4085 std::swap(PreCondLHS, PreCondRHS); 4086 Cond = ICmpInst::ICMP_SLT; 4087 break; 4088 } 4089 return false; 4090 case ICmpInst::ICMP_NE: 4091 // Expressions like (x >u 0) are often canonicalized to (x != 0), 4092 // so check for this case by checking if the NE is comparing against 4093 // a minimum or maximum constant. 4094 if (!ICmpInst::isTrueWhenEqual(Pred)) 4095 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 4096 const APInt &A = CI->getValue(); 4097 switch (Pred) { 4098 case ICmpInst::ICMP_SLT: 4099 if (A.isMaxSignedValue()) break; 4100 return false; 4101 case ICmpInst::ICMP_SGT: 4102 if (A.isMinSignedValue()) break; 4103 return false; 4104 case ICmpInst::ICMP_ULT: 4105 if (A.isMaxValue()) break; 4106 return false; 4107 case ICmpInst::ICMP_UGT: 4108 if (A.isMinValue()) break; 4109 return false; 4110 default: 4111 return false; 4112 } 4113 Cond = ICmpInst::ICMP_NE; 4114 // NE is symmetric but the original comparison may not be. Swap 4115 // the operands if necessary so that they match below. 4116 if (isa<SCEVConstant>(LHS)) 4117 std::swap(PreCondLHS, PreCondRHS); 4118 break; 4119 } 4120 return false; 4121 default: 4122 // We weren't able to reconcile the condition. 4123 return false; 4124 } 4125 4126 if (!PreCondLHS->getType()->isInteger()) return false; 4127 4128 const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS); 4129 const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS); 4130 return (HasSameValue(LHS, PreCondLHSSCEV) && 4131 HasSameValue(RHS, PreCondRHSSCEV)) || 4132 (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) && 4133 HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV))); 4134 } 4135 4136 /// getBECount - Subtract the end and start values and divide by the step, 4137 /// rounding up, to get the number of times the backedge is executed. Return 4138 /// CouldNotCompute if an intermediate computation overflows. 4139 const SCEV* ScalarEvolution::getBECount(const SCEV* Start, 4140 const SCEV* End, 4141 const SCEV* Step) { 4142 const Type *Ty = Start->getType(); 4143 const SCEV* NegOne = getIntegerSCEV(-1, Ty); 4144 const SCEV* Diff = getMinusSCEV(End, Start); 4145 const SCEV* RoundUp = getAddExpr(Step, NegOne); 4146 4147 // Add an adjustment to the difference between End and Start so that 4148 // the division will effectively round up. 4149 const SCEV* Add = getAddExpr(Diff, RoundUp); 4150 4151 // Check Add for unsigned overflow. 4152 // TODO: More sophisticated things could be done here. 4153 const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1); 4154 const SCEV* OperandExtendedAdd = 4155 getAddExpr(getZeroExtendExpr(Diff, WideTy), 4156 getZeroExtendExpr(RoundUp, WideTy)); 4157 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 4158 return getCouldNotCompute(); 4159 4160 return getUDivExpr(Add, Step); 4161 } 4162 4163 /// HowManyLessThans - Return the number of times a backedge containing the 4164 /// specified less-than comparison will execute. If not computable, return 4165 /// CouldNotCompute. 4166 ScalarEvolution::BackedgeTakenInfo 4167 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 4168 const Loop *L, bool isSigned) { 4169 // Only handle: "ADDREC < LoopInvariant". 4170 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 4171 4172 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 4173 if (!AddRec || AddRec->getLoop() != L) 4174 return getCouldNotCompute(); 4175 4176 if (AddRec->isAffine()) { 4177 // FORNOW: We only support unit strides. 4178 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 4179 const SCEV* Step = AddRec->getStepRecurrence(*this); 4180 4181 // TODO: handle non-constant strides. 4182 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 4183 if (!CStep || CStep->isZero()) 4184 return getCouldNotCompute(); 4185 if (CStep->isOne()) { 4186 // With unit stride, the iteration never steps past the limit value. 4187 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 4188 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 4189 // Test whether a positive iteration iteration can step past the limit 4190 // value and past the maximum value for its type in a single step. 4191 if (isSigned) { 4192 APInt Max = APInt::getSignedMaxValue(BitWidth); 4193 if ((Max - CStep->getValue()->getValue()) 4194 .slt(CLimit->getValue()->getValue())) 4195 return getCouldNotCompute(); 4196 } else { 4197 APInt Max = APInt::getMaxValue(BitWidth); 4198 if ((Max - CStep->getValue()->getValue()) 4199 .ult(CLimit->getValue()->getValue())) 4200 return getCouldNotCompute(); 4201 } 4202 } else 4203 // TODO: handle non-constant limit values below. 4204 return getCouldNotCompute(); 4205 } else 4206 // TODO: handle negative strides below. 4207 return getCouldNotCompute(); 4208 4209 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 4210 // m. So, we count the number of iterations in which {n,+,s} < m is true. 4211 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 4212 // treat m-n as signed nor unsigned due to overflow possibility. 4213 4214 // First, we get the value of the LHS in the first iteration: n 4215 const SCEV* Start = AddRec->getOperand(0); 4216 4217 // Determine the minimum constant start value. 4218 const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start : 4219 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : 4220 APInt::getMinValue(BitWidth)); 4221 4222 // If we know that the condition is true in order to enter the loop, 4223 // then we know that it will run exactly (m-n)/s times. Otherwise, we 4224 // only know that it will execute (max(m,n)-n)/s times. In both cases, 4225 // the division must round up. 4226 const SCEV* End = RHS; 4227 if (!isLoopGuardedByCond(L, 4228 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 4229 getMinusSCEV(Start, Step), RHS)) 4230 End = isSigned ? getSMaxExpr(RHS, Start) 4231 : getUMaxExpr(RHS, Start); 4232 4233 // Determine the maximum constant end value. 4234 const SCEV* MaxEnd = 4235 isa<SCEVConstant>(End) ? End : 4236 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) 4237 .ashr(GetMinSignBits(End) - 1) : 4238 APInt::getMaxValue(BitWidth) 4239 .lshr(GetMinLeadingZeros(End))); 4240 4241 // Finally, we subtract these two values and divide, rounding up, to get 4242 // the number of times the backedge is executed. 4243 const SCEV* BECount = getBECount(Start, End, Step); 4244 4245 // The maximum backedge count is similar, except using the minimum start 4246 // value and the maximum end value. 4247 const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);; 4248 4249 return BackedgeTakenInfo(BECount, MaxBECount); 4250 } 4251 4252 return getCouldNotCompute(); 4253 } 4254 4255 /// getNumIterationsInRange - Return the number of iterations of this loop that 4256 /// produce values in the specified constant range. Another way of looking at 4257 /// this is that it returns the first iteration number where the value is not in 4258 /// the condition, thus computing the exit count. If the iteration count can't 4259 /// be computed, an instance of SCEVCouldNotCompute is returned. 4260 const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 4261 ScalarEvolution &SE) const { 4262 if (Range.isFullSet()) // Infinite loop. 4263 return SE.getCouldNotCompute(); 4264 4265 // If the start is a non-zero constant, shift the range to simplify things. 4266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 4267 if (!SC->getValue()->isZero()) { 4268 SmallVector<const SCEV*, 4> Operands(op_begin(), op_end()); 4269 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 4270 const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop()); 4271 if (const SCEVAddRecExpr *ShiftedAddRec = 4272 dyn_cast<SCEVAddRecExpr>(Shifted)) 4273 return ShiftedAddRec->getNumIterationsInRange( 4274 Range.subtract(SC->getValue()->getValue()), SE); 4275 // This is strange and shouldn't happen. 4276 return SE.getCouldNotCompute(); 4277 } 4278 4279 // The only time we can solve this is when we have all constant indices. 4280 // Otherwise, we cannot determine the overflow conditions. 4281 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 4282 if (!isa<SCEVConstant>(getOperand(i))) 4283 return SE.getCouldNotCompute(); 4284 4285 4286 // Okay at this point we know that all elements of the chrec are constants and 4287 // that the start element is zero. 4288 4289 // First check to see if the range contains zero. If not, the first 4290 // iteration exits. 4291 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 4292 if (!Range.contains(APInt(BitWidth, 0))) 4293 return SE.getIntegerSCEV(0, getType()); 4294 4295 if (isAffine()) { 4296 // If this is an affine expression then we have this situation: 4297 // Solve {0,+,A} in Range === Ax in Range 4298 4299 // We know that zero is in the range. If A is positive then we know that 4300 // the upper value of the range must be the first possible exit value. 4301 // If A is negative then the lower of the range is the last possible loop 4302 // value. Also note that we already checked for a full range. 4303 APInt One(BitWidth,1); 4304 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 4305 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 4306 4307 // The exit value should be (End+A)/A. 4308 APInt ExitVal = (End + A).udiv(A); 4309 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 4310 4311 // Evaluate at the exit value. If we really did fall out of the valid 4312 // range, then we computed our trip count, otherwise wrap around or other 4313 // things must have happened. 4314 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 4315 if (Range.contains(Val->getValue())) 4316 return SE.getCouldNotCompute(); // Something strange happened 4317 4318 // Ensure that the previous value is in the range. This is a sanity check. 4319 assert(Range.contains( 4320 EvaluateConstantChrecAtConstant(this, 4321 ConstantInt::get(ExitVal - One), SE)->getValue()) && 4322 "Linear scev computation is off in a bad way!"); 4323 return SE.getConstant(ExitValue); 4324 } else if (isQuadratic()) { 4325 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 4326 // quadratic equation to solve it. To do this, we must frame our problem in 4327 // terms of figuring out when zero is crossed, instead of when 4328 // Range.getUpper() is crossed. 4329 SmallVector<const SCEV*, 4> NewOps(op_begin(), op_end()); 4330 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 4331 const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 4332 4333 // Next, solve the constructed addrec 4334 std::pair<const SCEV*,const SCEV*> Roots = 4335 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 4336 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4337 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4338 if (R1) { 4339 // Pick the smallest positive root value. 4340 if (ConstantInt *CB = 4341 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4342 R1->getValue(), R2->getValue()))) { 4343 if (CB->getZExtValue() == false) 4344 std::swap(R1, R2); // R1 is the minimum root now. 4345 4346 // Make sure the root is not off by one. The returned iteration should 4347 // not be in the range, but the previous one should be. When solving 4348 // for "X*X < 5", for example, we should not return a root of 2. 4349 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 4350 R1->getValue(), 4351 SE); 4352 if (Range.contains(R1Val->getValue())) { 4353 // The next iteration must be out of the range... 4354 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 4355 4356 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 4357 if (!Range.contains(R1Val->getValue())) 4358 return SE.getConstant(NextVal); 4359 return SE.getCouldNotCompute(); // Something strange happened 4360 } 4361 4362 // If R1 was not in the range, then it is a good return value. Make 4363 // sure that R1-1 WAS in the range though, just in case. 4364 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 4365 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 4366 if (Range.contains(R1Val->getValue())) 4367 return R1; 4368 return SE.getCouldNotCompute(); // Something strange happened 4369 } 4370 } 4371 } 4372 4373 return SE.getCouldNotCompute(); 4374 } 4375 4376 4377 4378 //===----------------------------------------------------------------------===// 4379 // SCEVCallbackVH Class Implementation 4380 //===----------------------------------------------------------------------===// 4381 4382 void ScalarEvolution::SCEVCallbackVH::deleted() { 4383 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 4384 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 4385 SE->ConstantEvolutionLoopExitValue.erase(PN); 4386 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 4387 SE->ValuesAtScopes.erase(I); 4388 SE->Scalars.erase(getValPtr()); 4389 // this now dangles! 4390 } 4391 4392 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 4393 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 4394 4395 // Forget all the expressions associated with users of the old value, 4396 // so that future queries will recompute the expressions using the new 4397 // value. 4398 SmallVector<User *, 16> Worklist; 4399 Value *Old = getValPtr(); 4400 bool DeleteOld = false; 4401 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 4402 UI != UE; ++UI) 4403 Worklist.push_back(*UI); 4404 while (!Worklist.empty()) { 4405 User *U = Worklist.pop_back_val(); 4406 // Deleting the Old value will cause this to dangle. Postpone 4407 // that until everything else is done. 4408 if (U == Old) { 4409 DeleteOld = true; 4410 continue; 4411 } 4412 if (PHINode *PN = dyn_cast<PHINode>(U)) 4413 SE->ConstantEvolutionLoopExitValue.erase(PN); 4414 if (Instruction *I = dyn_cast<Instruction>(U)) 4415 SE->ValuesAtScopes.erase(I); 4416 if (SE->Scalars.erase(U)) 4417 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 4418 UI != UE; ++UI) 4419 Worklist.push_back(*UI); 4420 } 4421 if (DeleteOld) { 4422 if (PHINode *PN = dyn_cast<PHINode>(Old)) 4423 SE->ConstantEvolutionLoopExitValue.erase(PN); 4424 if (Instruction *I = dyn_cast<Instruction>(Old)) 4425 SE->ValuesAtScopes.erase(I); 4426 SE->Scalars.erase(Old); 4427 // this now dangles! 4428 } 4429 // this may dangle! 4430 } 4431 4432 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 4433 : CallbackVH(V), SE(se) {} 4434 4435 //===----------------------------------------------------------------------===// 4436 // ScalarEvolution Class Implementation 4437 //===----------------------------------------------------------------------===// 4438 4439 ScalarEvolution::ScalarEvolution() 4440 : FunctionPass(&ID) { 4441 } 4442 4443 bool ScalarEvolution::runOnFunction(Function &F) { 4444 this->F = &F; 4445 LI = &getAnalysis<LoopInfo>(); 4446 TD = getAnalysisIfAvailable<TargetData>(); 4447 return false; 4448 } 4449 4450 void ScalarEvolution::releaseMemory() { 4451 Scalars.clear(); 4452 BackedgeTakenCounts.clear(); 4453 ConstantEvolutionLoopExitValue.clear(); 4454 ValuesAtScopes.clear(); 4455 UniqueSCEVs.clear(); 4456 SCEVAllocator.Reset(); 4457 } 4458 4459 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 4460 AU.setPreservesAll(); 4461 AU.addRequiredTransitive<LoopInfo>(); 4462 } 4463 4464 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 4465 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 4466 } 4467 4468 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 4469 const Loop *L) { 4470 // Print all inner loops first 4471 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4472 PrintLoopInfo(OS, SE, *I); 4473 4474 OS << "Loop " << L->getHeader()->getName() << ": "; 4475 4476 SmallVector<BasicBlock*, 8> ExitBlocks; 4477 L->getExitBlocks(ExitBlocks); 4478 if (ExitBlocks.size() != 1) 4479 OS << "<multiple exits> "; 4480 4481 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 4482 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 4483 } else { 4484 OS << "Unpredictable backedge-taken count. "; 4485 } 4486 4487 OS << "\n"; 4488 OS << "Loop " << L->getHeader()->getName() << ": "; 4489 4490 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 4491 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 4492 } else { 4493 OS << "Unpredictable max backedge-taken count. "; 4494 } 4495 4496 OS << "\n"; 4497 } 4498 4499 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 4500 // ScalarEvolution's implementaiton of the print method is to print 4501 // out SCEV values of all instructions that are interesting. Doing 4502 // this potentially causes it to create new SCEV objects though, 4503 // which technically conflicts with the const qualifier. This isn't 4504 // observable from outside the class though (the hasSCEV function 4505 // notwithstanding), so casting away the const isn't dangerous. 4506 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 4507 4508 OS << "Classifying expressions for: " << F->getName() << "\n"; 4509 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 4510 if (isSCEVable(I->getType())) { 4511 OS << *I; 4512 OS << " --> "; 4513 const SCEV* SV = SE.getSCEV(&*I); 4514 SV->print(OS); 4515 4516 const Loop *L = LI->getLoopFor((*I).getParent()); 4517 4518 const SCEV* AtUse = SE.getSCEVAtScope(SV, L); 4519 if (AtUse != SV) { 4520 OS << " --> "; 4521 AtUse->print(OS); 4522 } 4523 4524 if (L) { 4525 OS << "\t\t" "Exits: "; 4526 const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 4527 if (!ExitValue->isLoopInvariant(L)) { 4528 OS << "<<Unknown>>"; 4529 } else { 4530 OS << *ExitValue; 4531 } 4532 } 4533 4534 OS << "\n"; 4535 } 4536 4537 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 4538 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 4539 PrintLoopInfo(OS, &SE, *I); 4540 } 4541 4542 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 4543 raw_os_ostream OS(o); 4544 print(OS, M); 4545 } 4546