1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Target/TargetLibraryInfo.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/ConstantRange.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GetElementPtrTypeIterator.h" 83 #include "llvm/Support/InstIterator.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/ADT/Statistic.h" 87 #include "llvm/ADT/STLExtras.h" 88 #include "llvm/ADT/SmallPtrSet.h" 89 #include <algorithm> 90 using namespace llvm; 91 92 STATISTIC(NumArrayLenItCounts, 93 "Number of trip counts computed with array length"); 94 STATISTIC(NumTripCountsComputed, 95 "Number of loops with predictable loop counts"); 96 STATISTIC(NumTripCountsNotComputed, 97 "Number of loops without predictable loop counts"); 98 STATISTIC(NumBruteForceTripCountsComputed, 99 "Number of loops with trip counts computed by force"); 100 101 static cl::opt<unsigned> 102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 103 cl::desc("Maximum number of iterations SCEV will " 104 "symbolically execute a constant " 105 "derived loop"), 106 cl::init(100)); 107 108 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 109 "Scalar Evolution Analysis", false, true) 110 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 111 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 113 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 114 "Scalar Evolution Analysis", false, true) 115 char ScalarEvolution::ID = 0; 116 117 //===----------------------------------------------------------------------===// 118 // SCEV class definitions 119 //===----------------------------------------------------------------------===// 120 121 //===----------------------------------------------------------------------===// 122 // Implementation of the SCEV class. 123 // 124 125 void SCEV::dump() const { 126 print(dbgs()); 127 dbgs() << '\n'; 128 } 129 130 void SCEV::print(raw_ostream &OS) const { 131 switch (getSCEVType()) { 132 case scConstant: 133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 134 return; 135 case scTruncate: { 136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 137 const SCEV *Op = Trunc->getOperand(); 138 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 139 << *Trunc->getType() << ")"; 140 return; 141 } 142 case scZeroExtend: { 143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 144 const SCEV *Op = ZExt->getOperand(); 145 OS << "(zext " << *Op->getType() << " " << *Op << " to " 146 << *ZExt->getType() << ")"; 147 return; 148 } 149 case scSignExtend: { 150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 151 const SCEV *Op = SExt->getOperand(); 152 OS << "(sext " << *Op->getType() << " " << *Op << " to " 153 << *SExt->getType() << ")"; 154 return; 155 } 156 case scAddRecExpr: { 157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 158 OS << "{" << *AR->getOperand(0); 159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 160 OS << ",+," << *AR->getOperand(i); 161 OS << "}<"; 162 if (AR->getNoWrapFlags(FlagNUW)) 163 OS << "nuw><"; 164 if (AR->getNoWrapFlags(FlagNSW)) 165 OS << "nsw><"; 166 if (AR->getNoWrapFlags(FlagNW) && 167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 168 OS << "nw><"; 169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 170 OS << ">"; 171 return; 172 } 173 case scAddExpr: 174 case scMulExpr: 175 case scUMaxExpr: 176 case scSMaxExpr: { 177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 178 const char *OpStr = 0; 179 switch (NAry->getSCEVType()) { 180 case scAddExpr: OpStr = " + "; break; 181 case scMulExpr: OpStr = " * "; break; 182 case scUMaxExpr: OpStr = " umax "; break; 183 case scSMaxExpr: OpStr = " smax "; break; 184 } 185 OS << "("; 186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 187 I != E; ++I) { 188 OS << **I; 189 if (llvm::next(I) != E) 190 OS << OpStr; 191 } 192 OS << ")"; 193 switch (NAry->getSCEVType()) { 194 case scAddExpr: 195 case scMulExpr: 196 if (NAry->getNoWrapFlags(FlagNUW)) 197 OS << "<nuw>"; 198 if (NAry->getNoWrapFlags(FlagNSW)) 199 OS << "<nsw>"; 200 } 201 return; 202 } 203 case scUDivExpr: { 204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 206 return; 207 } 208 case scUnknown: { 209 const SCEVUnknown *U = cast<SCEVUnknown>(this); 210 Type *AllocTy; 211 if (U->isSizeOf(AllocTy)) { 212 OS << "sizeof(" << *AllocTy << ")"; 213 return; 214 } 215 if (U->isAlignOf(AllocTy)) { 216 OS << "alignof(" << *AllocTy << ")"; 217 return; 218 } 219 220 Type *CTy; 221 Constant *FieldNo; 222 if (U->isOffsetOf(CTy, FieldNo)) { 223 OS << "offsetof(" << *CTy << ", "; 224 WriteAsOperand(OS, FieldNo, false); 225 OS << ")"; 226 return; 227 } 228 229 // Otherwise just print it normally. 230 WriteAsOperand(OS, U->getValue(), false); 231 return; 232 } 233 case scCouldNotCompute: 234 OS << "***COULDNOTCOMPUTE***"; 235 return; 236 default: break; 237 } 238 llvm_unreachable("Unknown SCEV kind!"); 239 } 240 241 Type *SCEV::getType() const { 242 switch (getSCEVType()) { 243 case scConstant: 244 return cast<SCEVConstant>(this)->getType(); 245 case scTruncate: 246 case scZeroExtend: 247 case scSignExtend: 248 return cast<SCEVCastExpr>(this)->getType(); 249 case scAddRecExpr: 250 case scMulExpr: 251 case scUMaxExpr: 252 case scSMaxExpr: 253 return cast<SCEVNAryExpr>(this)->getType(); 254 case scAddExpr: 255 return cast<SCEVAddExpr>(this)->getType(); 256 case scUDivExpr: 257 return cast<SCEVUDivExpr>(this)->getType(); 258 case scUnknown: 259 return cast<SCEVUnknown>(this)->getType(); 260 case scCouldNotCompute: 261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 262 default: 263 llvm_unreachable("Unknown SCEV kind!"); 264 } 265 } 266 267 bool SCEV::isZero() const { 268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 269 return SC->getValue()->isZero(); 270 return false; 271 } 272 273 bool SCEV::isOne() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isOne(); 276 return false; 277 } 278 279 bool SCEV::isAllOnesValue() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isAllOnesValue(); 282 return false; 283 } 284 285 /// isNonConstantNegative - Return true if the specified scev is negated, but 286 /// not a constant. 287 bool SCEV::isNonConstantNegative() const { 288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 289 if (!Mul) return false; 290 291 // If there is a constant factor, it will be first. 292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 293 if (!SC) return false; 294 295 // Return true if the value is negative, this matches things like (-42 * V). 296 return SC->getValue()->getValue().isNegative(); 297 } 298 299 SCEVCouldNotCompute::SCEVCouldNotCompute() : 300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 301 302 bool SCEVCouldNotCompute::classof(const SCEV *S) { 303 return S->getSCEVType() == scCouldNotCompute; 304 } 305 306 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 307 FoldingSetNodeID ID; 308 ID.AddInteger(scConstant); 309 ID.AddPointer(V); 310 void *IP = 0; 311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 313 UniqueSCEVs.InsertNode(S, IP); 314 return S; 315 } 316 317 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 318 return getConstant(ConstantInt::get(getContext(), Val)); 319 } 320 321 const SCEV * 322 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 324 return getConstant(ConstantInt::get(ITy, V, isSigned)); 325 } 326 327 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 328 unsigned SCEVTy, const SCEV *op, Type *ty) 329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 330 331 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 332 const SCEV *op, Type *ty) 333 : SCEVCastExpr(ID, scTruncate, op, ty) { 334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 335 (Ty->isIntegerTy() || Ty->isPointerTy()) && 336 "Cannot truncate non-integer value!"); 337 } 338 339 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 340 const SCEV *op, Type *ty) 341 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 343 (Ty->isIntegerTy() || Ty->isPointerTy()) && 344 "Cannot zero extend non-integer value!"); 345 } 346 347 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 348 const SCEV *op, Type *ty) 349 : SCEVCastExpr(ID, scSignExtend, op, ty) { 350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 351 (Ty->isIntegerTy() || Ty->isPointerTy()) && 352 "Cannot sign extend non-integer value!"); 353 } 354 355 void SCEVUnknown::deleted() { 356 // Clear this SCEVUnknown from various maps. 357 SE->forgetMemoizedResults(this); 358 359 // Remove this SCEVUnknown from the uniquing map. 360 SE->UniqueSCEVs.RemoveNode(this); 361 362 // Release the value. 363 setValPtr(0); 364 } 365 366 void SCEVUnknown::allUsesReplacedWith(Value *New) { 367 // Clear this SCEVUnknown from various maps. 368 SE->forgetMemoizedResults(this); 369 370 // Remove this SCEVUnknown from the uniquing map. 371 SE->UniqueSCEVs.RemoveNode(this); 372 373 // Update this SCEVUnknown to point to the new value. This is needed 374 // because there may still be outstanding SCEVs which still point to 375 // this SCEVUnknown. 376 setValPtr(New); 377 } 378 379 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 381 if (VCE->getOpcode() == Instruction::PtrToInt) 382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 383 if (CE->getOpcode() == Instruction::GetElementPtr && 384 CE->getOperand(0)->isNullValue() && 385 CE->getNumOperands() == 2) 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 387 if (CI->isOne()) { 388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 389 ->getElementType(); 390 return true; 391 } 392 393 return false; 394 } 395 396 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 398 if (VCE->getOpcode() == Instruction::PtrToInt) 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 400 if (CE->getOpcode() == Instruction::GetElementPtr && 401 CE->getOperand(0)->isNullValue()) { 402 Type *Ty = 403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 404 if (StructType *STy = dyn_cast<StructType>(Ty)) 405 if (!STy->isPacked() && 406 CE->getNumOperands() == 3 && 407 CE->getOperand(1)->isNullValue()) { 408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 409 if (CI->isOne() && 410 STy->getNumElements() == 2 && 411 STy->getElementType(0)->isIntegerTy(1)) { 412 AllocTy = STy->getElementType(1); 413 return true; 414 } 415 } 416 } 417 418 return false; 419 } 420 421 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 423 if (VCE->getOpcode() == Instruction::PtrToInt) 424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 425 if (CE->getOpcode() == Instruction::GetElementPtr && 426 CE->getNumOperands() == 3 && 427 CE->getOperand(0)->isNullValue() && 428 CE->getOperand(1)->isNullValue()) { 429 Type *Ty = 430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 431 // Ignore vector types here so that ScalarEvolutionExpander doesn't 432 // emit getelementptrs that index into vectors. 433 if (Ty->isStructTy() || Ty->isArrayTy()) { 434 CTy = Ty; 435 FieldNo = CE->getOperand(2); 436 return true; 437 } 438 } 439 440 return false; 441 } 442 443 //===----------------------------------------------------------------------===// 444 // SCEV Utilities 445 //===----------------------------------------------------------------------===// 446 447 namespace { 448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 449 /// than the complexity of the RHS. This comparator is used to canonicalize 450 /// expressions. 451 class SCEVComplexityCompare { 452 const LoopInfo *const LI; 453 public: 454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 455 456 // Return true or false if LHS is less than, or at least RHS, respectively. 457 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 458 return compare(LHS, RHS) < 0; 459 } 460 461 // Return negative, zero, or positive, if LHS is less than, equal to, or 462 // greater than RHS, respectively. A three-way result allows recursive 463 // comparisons to be more efficient. 464 int compare(const SCEV *LHS, const SCEV *RHS) const { 465 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 466 if (LHS == RHS) 467 return 0; 468 469 // Primarily, sort the SCEVs by their getSCEVType(). 470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 471 if (LType != RType) 472 return (int)LType - (int)RType; 473 474 // Aside from the getSCEVType() ordering, the particular ordering 475 // isn't very important except that it's beneficial to be consistent, 476 // so that (a + b) and (b + a) don't end up as different expressions. 477 switch (LType) { 478 case scUnknown: { 479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 481 482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 483 // not as complete as it could be. 484 const Value *LV = LU->getValue(), *RV = RU->getValue(); 485 486 // Order pointer values after integer values. This helps SCEVExpander 487 // form GEPs. 488 bool LIsPointer = LV->getType()->isPointerTy(), 489 RIsPointer = RV->getType()->isPointerTy(); 490 if (LIsPointer != RIsPointer) 491 return (int)LIsPointer - (int)RIsPointer; 492 493 // Compare getValueID values. 494 unsigned LID = LV->getValueID(), 495 RID = RV->getValueID(); 496 if (LID != RID) 497 return (int)LID - (int)RID; 498 499 // Sort arguments by their position. 500 if (const Argument *LA = dyn_cast<Argument>(LV)) { 501 const Argument *RA = cast<Argument>(RV); 502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 503 return (int)LArgNo - (int)RArgNo; 504 } 505 506 // For instructions, compare their loop depth, and their operand 507 // count. This is pretty loose. 508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 509 const Instruction *RInst = cast<Instruction>(RV); 510 511 // Compare loop depths. 512 const BasicBlock *LParent = LInst->getParent(), 513 *RParent = RInst->getParent(); 514 if (LParent != RParent) { 515 unsigned LDepth = LI->getLoopDepth(LParent), 516 RDepth = LI->getLoopDepth(RParent); 517 if (LDepth != RDepth) 518 return (int)LDepth - (int)RDepth; 519 } 520 521 // Compare the number of operands. 522 unsigned LNumOps = LInst->getNumOperands(), 523 RNumOps = RInst->getNumOperands(); 524 return (int)LNumOps - (int)RNumOps; 525 } 526 527 return 0; 528 } 529 530 case scConstant: { 531 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 532 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 533 534 // Compare constant values. 535 const APInt &LA = LC->getValue()->getValue(); 536 const APInt &RA = RC->getValue()->getValue(); 537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 538 if (LBitWidth != RBitWidth) 539 return (int)LBitWidth - (int)RBitWidth; 540 return LA.ult(RA) ? -1 : 1; 541 } 542 543 case scAddRecExpr: { 544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 546 547 // Compare addrec loop depths. 548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 549 if (LLoop != RLoop) { 550 unsigned LDepth = LLoop->getLoopDepth(), 551 RDepth = RLoop->getLoopDepth(); 552 if (LDepth != RDepth) 553 return (int)LDepth - (int)RDepth; 554 } 555 556 // Addrec complexity grows with operand count. 557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 558 if (LNumOps != RNumOps) 559 return (int)LNumOps - (int)RNumOps; 560 561 // Lexicographically compare. 562 for (unsigned i = 0; i != LNumOps; ++i) { 563 long X = compare(LA->getOperand(i), RA->getOperand(i)); 564 if (X != 0) 565 return X; 566 } 567 568 return 0; 569 } 570 571 case scAddExpr: 572 case scMulExpr: 573 case scSMaxExpr: 574 case scUMaxExpr: { 575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 577 578 // Lexicographically compare n-ary expressions. 579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 580 for (unsigned i = 0; i != LNumOps; ++i) { 581 if (i >= RNumOps) 582 return 1; 583 long X = compare(LC->getOperand(i), RC->getOperand(i)); 584 if (X != 0) 585 return X; 586 } 587 return (int)LNumOps - (int)RNumOps; 588 } 589 590 case scUDivExpr: { 591 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 592 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 593 594 // Lexicographically compare udiv expressions. 595 long X = compare(LC->getLHS(), RC->getLHS()); 596 if (X != 0) 597 return X; 598 return compare(LC->getRHS(), RC->getRHS()); 599 } 600 601 case scTruncate: 602 case scZeroExtend: 603 case scSignExtend: { 604 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 606 607 // Compare cast expressions by operand. 608 return compare(LC->getOperand(), RC->getOperand()); 609 } 610 611 default: 612 llvm_unreachable("Unknown SCEV kind!"); 613 } 614 } 615 }; 616 } 617 618 /// GroupByComplexity - Given a list of SCEV objects, order them by their 619 /// complexity, and group objects of the same complexity together by value. 620 /// When this routine is finished, we know that any duplicates in the vector are 621 /// consecutive and that complexity is monotonically increasing. 622 /// 623 /// Note that we go take special precautions to ensure that we get deterministic 624 /// results from this routine. In other words, we don't want the results of 625 /// this to depend on where the addresses of various SCEV objects happened to 626 /// land in memory. 627 /// 628 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 629 LoopInfo *LI) { 630 if (Ops.size() < 2) return; // Noop 631 if (Ops.size() == 2) { 632 // This is the common case, which also happens to be trivially simple. 633 // Special case it. 634 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 635 if (SCEVComplexityCompare(LI)(RHS, LHS)) 636 std::swap(LHS, RHS); 637 return; 638 } 639 640 // Do the rough sort by complexity. 641 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 642 643 // Now that we are sorted by complexity, group elements of the same 644 // complexity. Note that this is, at worst, N^2, but the vector is likely to 645 // be extremely short in practice. Note that we take this approach because we 646 // do not want to depend on the addresses of the objects we are grouping. 647 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 648 const SCEV *S = Ops[i]; 649 unsigned Complexity = S->getSCEVType(); 650 651 // If there are any objects of the same complexity and same value as this 652 // one, group them. 653 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 654 if (Ops[j] == S) { // Found a duplicate. 655 // Move it to immediately after i'th element. 656 std::swap(Ops[i+1], Ops[j]); 657 ++i; // no need to rescan it. 658 if (i == e-2) return; // Done! 659 } 660 } 661 } 662 } 663 664 665 666 //===----------------------------------------------------------------------===// 667 // Simple SCEV method implementations 668 //===----------------------------------------------------------------------===// 669 670 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 671 /// Assume, K > 0. 672 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 673 ScalarEvolution &SE, 674 Type *ResultTy) { 675 // Handle the simplest case efficiently. 676 if (K == 1) 677 return SE.getTruncateOrZeroExtend(It, ResultTy); 678 679 // We are using the following formula for BC(It, K): 680 // 681 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 682 // 683 // Suppose, W is the bitwidth of the return value. We must be prepared for 684 // overflow. Hence, we must assure that the result of our computation is 685 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 686 // safe in modular arithmetic. 687 // 688 // However, this code doesn't use exactly that formula; the formula it uses 689 // is something like the following, where T is the number of factors of 2 in 690 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 691 // exponentiation: 692 // 693 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 694 // 695 // This formula is trivially equivalent to the previous formula. However, 696 // this formula can be implemented much more efficiently. The trick is that 697 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 698 // arithmetic. To do exact division in modular arithmetic, all we have 699 // to do is multiply by the inverse. Therefore, this step can be done at 700 // width W. 701 // 702 // The next issue is how to safely do the division by 2^T. The way this 703 // is done is by doing the multiplication step at a width of at least W + T 704 // bits. This way, the bottom W+T bits of the product are accurate. Then, 705 // when we perform the division by 2^T (which is equivalent to a right shift 706 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 707 // truncated out after the division by 2^T. 708 // 709 // In comparison to just directly using the first formula, this technique 710 // is much more efficient; using the first formula requires W * K bits, 711 // but this formula less than W + K bits. Also, the first formula requires 712 // a division step, whereas this formula only requires multiplies and shifts. 713 // 714 // It doesn't matter whether the subtraction step is done in the calculation 715 // width or the input iteration count's width; if the subtraction overflows, 716 // the result must be zero anyway. We prefer here to do it in the width of 717 // the induction variable because it helps a lot for certain cases; CodeGen 718 // isn't smart enough to ignore the overflow, which leads to much less 719 // efficient code if the width of the subtraction is wider than the native 720 // register width. 721 // 722 // (It's possible to not widen at all by pulling out factors of 2 before 723 // the multiplication; for example, K=2 can be calculated as 724 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 725 // extra arithmetic, so it's not an obvious win, and it gets 726 // much more complicated for K > 3.) 727 728 // Protection from insane SCEVs; this bound is conservative, 729 // but it probably doesn't matter. 730 if (K > 1000) 731 return SE.getCouldNotCompute(); 732 733 unsigned W = SE.getTypeSizeInBits(ResultTy); 734 735 // Calculate K! / 2^T and T; we divide out the factors of two before 736 // multiplying for calculating K! / 2^T to avoid overflow. 737 // Other overflow doesn't matter because we only care about the bottom 738 // W bits of the result. 739 APInt OddFactorial(W, 1); 740 unsigned T = 1; 741 for (unsigned i = 3; i <= K; ++i) { 742 APInt Mult(W, i); 743 unsigned TwoFactors = Mult.countTrailingZeros(); 744 T += TwoFactors; 745 Mult = Mult.lshr(TwoFactors); 746 OddFactorial *= Mult; 747 } 748 749 // We need at least W + T bits for the multiplication step 750 unsigned CalculationBits = W + T; 751 752 // Calculate 2^T, at width T+W. 753 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 754 755 // Calculate the multiplicative inverse of K! / 2^T; 756 // this multiplication factor will perform the exact division by 757 // K! / 2^T. 758 APInt Mod = APInt::getSignedMinValue(W+1); 759 APInt MultiplyFactor = OddFactorial.zext(W+1); 760 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 761 MultiplyFactor = MultiplyFactor.trunc(W); 762 763 // Calculate the product, at width T+W 764 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 765 CalculationBits); 766 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 767 for (unsigned i = 1; i != K; ++i) { 768 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 769 Dividend = SE.getMulExpr(Dividend, 770 SE.getTruncateOrZeroExtend(S, CalculationTy)); 771 } 772 773 // Divide by 2^T 774 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 775 776 // Truncate the result, and divide by K! / 2^T. 777 778 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 779 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 780 } 781 782 /// evaluateAtIteration - Return the value of this chain of recurrences at 783 /// the specified iteration number. We can evaluate this recurrence by 784 /// multiplying each element in the chain by the binomial coefficient 785 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 786 /// 787 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 788 /// 789 /// where BC(It, k) stands for binomial coefficient. 790 /// 791 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 792 ScalarEvolution &SE) const { 793 const SCEV *Result = getStart(); 794 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 795 // The computation is correct in the face of overflow provided that the 796 // multiplication is performed _after_ the evaluation of the binomial 797 // coefficient. 798 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 799 if (isa<SCEVCouldNotCompute>(Coeff)) 800 return Coeff; 801 802 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 803 } 804 return Result; 805 } 806 807 //===----------------------------------------------------------------------===// 808 // SCEV Expression folder implementations 809 //===----------------------------------------------------------------------===// 810 811 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 812 Type *Ty) { 813 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 814 "This is not a truncating conversion!"); 815 assert(isSCEVable(Ty) && 816 "This is not a conversion to a SCEVable type!"); 817 Ty = getEffectiveSCEVType(Ty); 818 819 FoldingSetNodeID ID; 820 ID.AddInteger(scTruncate); 821 ID.AddPointer(Op); 822 ID.AddPointer(Ty); 823 void *IP = 0; 824 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 825 826 // Fold if the operand is constant. 827 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 828 return getConstant( 829 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 830 831 // trunc(trunc(x)) --> trunc(x) 832 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 833 return getTruncateExpr(ST->getOperand(), Ty); 834 835 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 836 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 837 return getTruncateOrSignExtend(SS->getOperand(), Ty); 838 839 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 840 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 841 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 842 843 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 844 // eliminate all the truncates. 845 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 846 SmallVector<const SCEV *, 4> Operands; 847 bool hasTrunc = false; 848 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 849 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 850 hasTrunc = isa<SCEVTruncateExpr>(S); 851 Operands.push_back(S); 852 } 853 if (!hasTrunc) 854 return getAddExpr(Operands); 855 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 856 } 857 858 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 859 // eliminate all the truncates. 860 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 861 SmallVector<const SCEV *, 4> Operands; 862 bool hasTrunc = false; 863 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 864 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 865 hasTrunc = isa<SCEVTruncateExpr>(S); 866 Operands.push_back(S); 867 } 868 if (!hasTrunc) 869 return getMulExpr(Operands); 870 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 871 } 872 873 // If the input value is a chrec scev, truncate the chrec's operands. 874 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 875 SmallVector<const SCEV *, 4> Operands; 876 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 877 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 878 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 879 } 880 881 // As a special case, fold trunc(undef) to undef. We don't want to 882 // know too much about SCEVUnknowns, but this special case is handy 883 // and harmless. 884 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 885 if (isa<UndefValue>(U->getValue())) 886 return getSCEV(UndefValue::get(Ty)); 887 888 // The cast wasn't folded; create an explicit cast node. We can reuse 889 // the existing insert position since if we get here, we won't have 890 // made any changes which would invalidate it. 891 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 892 Op, Ty); 893 UniqueSCEVs.InsertNode(S, IP); 894 return S; 895 } 896 897 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 898 Type *Ty) { 899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 900 "This is not an extending conversion!"); 901 assert(isSCEVable(Ty) && 902 "This is not a conversion to a SCEVable type!"); 903 Ty = getEffectiveSCEVType(Ty); 904 905 // Fold if the operand is constant. 906 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 907 return getConstant( 908 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 909 910 // zext(zext(x)) --> zext(x) 911 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 912 return getZeroExtendExpr(SZ->getOperand(), Ty); 913 914 // Before doing any expensive analysis, check to see if we've already 915 // computed a SCEV for this Op and Ty. 916 FoldingSetNodeID ID; 917 ID.AddInteger(scZeroExtend); 918 ID.AddPointer(Op); 919 ID.AddPointer(Ty); 920 void *IP = 0; 921 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 922 923 // zext(trunc(x)) --> zext(x) or x or trunc(x) 924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 925 // It's possible the bits taken off by the truncate were all zero bits. If 926 // so, we should be able to simplify this further. 927 const SCEV *X = ST->getOperand(); 928 ConstantRange CR = getUnsignedRange(X); 929 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 930 unsigned NewBits = getTypeSizeInBits(Ty); 931 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 932 CR.zextOrTrunc(NewBits))) 933 return getTruncateOrZeroExtend(X, Ty); 934 } 935 936 // If the input value is a chrec scev, and we can prove that the value 937 // did not overflow the old, smaller, value, we can zero extend all of the 938 // operands (often constants). This allows analysis of something like 939 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 940 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 941 if (AR->isAffine()) { 942 const SCEV *Start = AR->getStart(); 943 const SCEV *Step = AR->getStepRecurrence(*this); 944 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 945 const Loop *L = AR->getLoop(); 946 947 // If we have special knowledge that this addrec won't overflow, 948 // we don't need to do any further analysis. 949 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 950 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 951 getZeroExtendExpr(Step, Ty), 952 L, AR->getNoWrapFlags()); 953 954 // Check whether the backedge-taken count is SCEVCouldNotCompute. 955 // Note that this serves two purposes: It filters out loops that are 956 // simply not analyzable, and it covers the case where this code is 957 // being called from within backedge-taken count analysis, such that 958 // attempting to ask for the backedge-taken count would likely result 959 // in infinite recursion. In the later case, the analysis code will 960 // cope with a conservative value, and it will take care to purge 961 // that value once it has finished. 962 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 963 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 964 // Manually compute the final value for AR, checking for 965 // overflow. 966 967 // Check whether the backedge-taken count can be losslessly casted to 968 // the addrec's type. The count is always unsigned. 969 const SCEV *CastedMaxBECount = 970 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 971 const SCEV *RecastedMaxBECount = 972 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 973 if (MaxBECount == RecastedMaxBECount) { 974 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 975 // Check whether Start+Step*MaxBECount has no unsigned overflow. 976 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 977 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 978 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 979 const SCEV *WideMaxBECount = 980 getZeroExtendExpr(CastedMaxBECount, WideTy); 981 const SCEV *OperandExtendedAdd = 982 getAddExpr(WideStart, 983 getMulExpr(WideMaxBECount, 984 getZeroExtendExpr(Step, WideTy))); 985 if (ZAdd == OperandExtendedAdd) { 986 // Cache knowledge of AR NUW, which is propagated to this AddRec. 987 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 988 // Return the expression with the addrec on the outside. 989 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 990 getZeroExtendExpr(Step, Ty), 991 L, AR->getNoWrapFlags()); 992 } 993 // Similar to above, only this time treat the step value as signed. 994 // This covers loops that count down. 995 OperandExtendedAdd = 996 getAddExpr(WideStart, 997 getMulExpr(WideMaxBECount, 998 getSignExtendExpr(Step, WideTy))); 999 if (ZAdd == OperandExtendedAdd) { 1000 // Cache knowledge of AR NW, which is propagated to this AddRec. 1001 // Negative step causes unsigned wrap, but it still can't self-wrap. 1002 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1003 // Return the expression with the addrec on the outside. 1004 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1005 getSignExtendExpr(Step, Ty), 1006 L, AR->getNoWrapFlags()); 1007 } 1008 } 1009 1010 // If the backedge is guarded by a comparison with the pre-inc value 1011 // the addrec is safe. Also, if the entry is guarded by a comparison 1012 // with the start value and the backedge is guarded by a comparison 1013 // with the post-inc value, the addrec is safe. 1014 if (isKnownPositive(Step)) { 1015 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1016 getUnsignedRange(Step).getUnsignedMax()); 1017 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1018 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1019 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1020 AR->getPostIncExpr(*this), N))) { 1021 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1022 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1023 // Return the expression with the addrec on the outside. 1024 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1025 getZeroExtendExpr(Step, Ty), 1026 L, AR->getNoWrapFlags()); 1027 } 1028 } else if (isKnownNegative(Step)) { 1029 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1030 getSignedRange(Step).getSignedMin()); 1031 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1032 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1033 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1034 AR->getPostIncExpr(*this), N))) { 1035 // Cache knowledge of AR NW, which is propagated to this AddRec. 1036 // Negative step causes unsigned wrap, but it still can't self-wrap. 1037 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1038 // Return the expression with the addrec on the outside. 1039 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1040 getSignExtendExpr(Step, Ty), 1041 L, AR->getNoWrapFlags()); 1042 } 1043 } 1044 } 1045 } 1046 1047 // The cast wasn't folded; create an explicit cast node. 1048 // Recompute the insert position, as it may have been invalidated. 1049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1050 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1051 Op, Ty); 1052 UniqueSCEVs.InsertNode(S, IP); 1053 return S; 1054 } 1055 1056 // Get the limit of a recurrence such that incrementing by Step cannot cause 1057 // signed overflow as long as the value of the recurrence within the loop does 1058 // not exceed this limit before incrementing. 1059 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1060 ICmpInst::Predicate *Pred, 1061 ScalarEvolution *SE) { 1062 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1063 if (SE->isKnownPositive(Step)) { 1064 *Pred = ICmpInst::ICMP_SLT; 1065 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1066 SE->getSignedRange(Step).getSignedMax()); 1067 } 1068 if (SE->isKnownNegative(Step)) { 1069 *Pred = ICmpInst::ICMP_SGT; 1070 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1071 SE->getSignedRange(Step).getSignedMin()); 1072 } 1073 return 0; 1074 } 1075 1076 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1077 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1078 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1079 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1080 // result, the expression "Step + sext(PreIncAR)" is congruent with 1081 // "sext(PostIncAR)" 1082 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1083 Type *Ty, 1084 ScalarEvolution *SE) { 1085 const Loop *L = AR->getLoop(); 1086 const SCEV *Start = AR->getStart(); 1087 const SCEV *Step = AR->getStepRecurrence(*SE); 1088 1089 // Check for a simple looking step prior to loop entry. 1090 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1091 if (!SA) 1092 return 0; 1093 1094 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1095 // subtraction is expensive. For this purpose, perform a quick and dirty 1096 // difference, by checking for Step in the operand list. 1097 SmallVector<const SCEV *, 4> DiffOps; 1098 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1099 I != E; ++I) { 1100 if (*I != Step) 1101 DiffOps.push_back(*I); 1102 } 1103 if (DiffOps.size() == SA->getNumOperands()) 1104 return 0; 1105 1106 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1107 // same three conditions that getSignExtendedExpr checks. 1108 1109 // 1. NSW flags on the step increment. 1110 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1111 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1112 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1113 1114 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1115 return PreStart; 1116 1117 // 2. Direct overflow check on the step operation's expression. 1118 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1119 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1120 const SCEV *OperandExtendedStart = 1121 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1122 SE->getSignExtendExpr(Step, WideTy)); 1123 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1124 // Cache knowledge of PreAR NSW. 1125 if (PreAR) 1126 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1127 // FIXME: this optimization needs a unit test 1128 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1129 return PreStart; 1130 } 1131 1132 // 3. Loop precondition. 1133 ICmpInst::Predicate Pred; 1134 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1135 1136 if (OverflowLimit && 1137 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1138 return PreStart; 1139 } 1140 return 0; 1141 } 1142 1143 // Get the normalized sign-extended expression for this AddRec's Start. 1144 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1145 Type *Ty, 1146 ScalarEvolution *SE) { 1147 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1148 if (!PreStart) 1149 return SE->getSignExtendExpr(AR->getStart(), Ty); 1150 1151 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1152 SE->getSignExtendExpr(PreStart, Ty)); 1153 } 1154 1155 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1156 Type *Ty) { 1157 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1158 "This is not an extending conversion!"); 1159 assert(isSCEVable(Ty) && 1160 "This is not a conversion to a SCEVable type!"); 1161 Ty = getEffectiveSCEVType(Ty); 1162 1163 // Fold if the operand is constant. 1164 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1165 return getConstant( 1166 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1167 1168 // sext(sext(x)) --> sext(x) 1169 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1170 return getSignExtendExpr(SS->getOperand(), Ty); 1171 1172 // sext(zext(x)) --> zext(x) 1173 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1174 return getZeroExtendExpr(SZ->getOperand(), Ty); 1175 1176 // Before doing any expensive analysis, check to see if we've already 1177 // computed a SCEV for this Op and Ty. 1178 FoldingSetNodeID ID; 1179 ID.AddInteger(scSignExtend); 1180 ID.AddPointer(Op); 1181 ID.AddPointer(Ty); 1182 void *IP = 0; 1183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1184 1185 // If the input value is provably positive, build a zext instead. 1186 if (isKnownNonNegative(Op)) 1187 return getZeroExtendExpr(Op, Ty); 1188 1189 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1190 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1191 // It's possible the bits taken off by the truncate were all sign bits. If 1192 // so, we should be able to simplify this further. 1193 const SCEV *X = ST->getOperand(); 1194 ConstantRange CR = getSignedRange(X); 1195 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1196 unsigned NewBits = getTypeSizeInBits(Ty); 1197 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1198 CR.sextOrTrunc(NewBits))) 1199 return getTruncateOrSignExtend(X, Ty); 1200 } 1201 1202 // If the input value is a chrec scev, and we can prove that the value 1203 // did not overflow the old, smaller, value, we can sign extend all of the 1204 // operands (often constants). This allows analysis of something like 1205 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1206 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1207 if (AR->isAffine()) { 1208 const SCEV *Start = AR->getStart(); 1209 const SCEV *Step = AR->getStepRecurrence(*this); 1210 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1211 const Loop *L = AR->getLoop(); 1212 1213 // If we have special knowledge that this addrec won't overflow, 1214 // we don't need to do any further analysis. 1215 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1216 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1217 getSignExtendExpr(Step, Ty), 1218 L, SCEV::FlagNSW); 1219 1220 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1221 // Note that this serves two purposes: It filters out loops that are 1222 // simply not analyzable, and it covers the case where this code is 1223 // being called from within backedge-taken count analysis, such that 1224 // attempting to ask for the backedge-taken count would likely result 1225 // in infinite recursion. In the later case, the analysis code will 1226 // cope with a conservative value, and it will take care to purge 1227 // that value once it has finished. 1228 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1229 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1230 // Manually compute the final value for AR, checking for 1231 // overflow. 1232 1233 // Check whether the backedge-taken count can be losslessly casted to 1234 // the addrec's type. The count is always unsigned. 1235 const SCEV *CastedMaxBECount = 1236 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1237 const SCEV *RecastedMaxBECount = 1238 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1239 if (MaxBECount == RecastedMaxBECount) { 1240 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1241 // Check whether Start+Step*MaxBECount has no signed overflow. 1242 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1243 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1244 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1245 const SCEV *WideMaxBECount = 1246 getZeroExtendExpr(CastedMaxBECount, WideTy); 1247 const SCEV *OperandExtendedAdd = 1248 getAddExpr(WideStart, 1249 getMulExpr(WideMaxBECount, 1250 getSignExtendExpr(Step, WideTy))); 1251 if (SAdd == OperandExtendedAdd) { 1252 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1253 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1254 // Return the expression with the addrec on the outside. 1255 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1256 getSignExtendExpr(Step, Ty), 1257 L, AR->getNoWrapFlags()); 1258 } 1259 // Similar to above, only this time treat the step value as unsigned. 1260 // This covers loops that count up with an unsigned step. 1261 OperandExtendedAdd = 1262 getAddExpr(WideStart, 1263 getMulExpr(WideMaxBECount, 1264 getZeroExtendExpr(Step, WideTy))); 1265 if (SAdd == OperandExtendedAdd) { 1266 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1267 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1268 // Return the expression with the addrec on the outside. 1269 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1270 getZeroExtendExpr(Step, Ty), 1271 L, AR->getNoWrapFlags()); 1272 } 1273 } 1274 1275 // If the backedge is guarded by a comparison with the pre-inc value 1276 // the addrec is safe. Also, if the entry is guarded by a comparison 1277 // with the start value and the backedge is guarded by a comparison 1278 // with the post-inc value, the addrec is safe. 1279 ICmpInst::Predicate Pred; 1280 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1281 if (OverflowLimit && 1282 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1283 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1284 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1285 OverflowLimit)))) { 1286 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1287 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1288 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1289 getSignExtendExpr(Step, Ty), 1290 L, AR->getNoWrapFlags()); 1291 } 1292 } 1293 } 1294 1295 // The cast wasn't folded; create an explicit cast node. 1296 // Recompute the insert position, as it may have been invalidated. 1297 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1298 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1299 Op, Ty); 1300 UniqueSCEVs.InsertNode(S, IP); 1301 return S; 1302 } 1303 1304 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1305 /// unspecified bits out to the given type. 1306 /// 1307 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1308 Type *Ty) { 1309 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1310 "This is not an extending conversion!"); 1311 assert(isSCEVable(Ty) && 1312 "This is not a conversion to a SCEVable type!"); 1313 Ty = getEffectiveSCEVType(Ty); 1314 1315 // Sign-extend negative constants. 1316 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1317 if (SC->getValue()->getValue().isNegative()) 1318 return getSignExtendExpr(Op, Ty); 1319 1320 // Peel off a truncate cast. 1321 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1322 const SCEV *NewOp = T->getOperand(); 1323 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1324 return getAnyExtendExpr(NewOp, Ty); 1325 return getTruncateOrNoop(NewOp, Ty); 1326 } 1327 1328 // Next try a zext cast. If the cast is folded, use it. 1329 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1330 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1331 return ZExt; 1332 1333 // Next try a sext cast. If the cast is folded, use it. 1334 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1335 if (!isa<SCEVSignExtendExpr>(SExt)) 1336 return SExt; 1337 1338 // Force the cast to be folded into the operands of an addrec. 1339 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1340 SmallVector<const SCEV *, 4> Ops; 1341 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1342 I != E; ++I) 1343 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1344 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1345 } 1346 1347 // As a special case, fold anyext(undef) to undef. We don't want to 1348 // know too much about SCEVUnknowns, but this special case is handy 1349 // and harmless. 1350 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1351 if (isa<UndefValue>(U->getValue())) 1352 return getSCEV(UndefValue::get(Ty)); 1353 1354 // If the expression is obviously signed, use the sext cast value. 1355 if (isa<SCEVSMaxExpr>(Op)) 1356 return SExt; 1357 1358 // Absent any other information, use the zext cast value. 1359 return ZExt; 1360 } 1361 1362 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1363 /// a list of operands to be added under the given scale, update the given 1364 /// map. This is a helper function for getAddRecExpr. As an example of 1365 /// what it does, given a sequence of operands that would form an add 1366 /// expression like this: 1367 /// 1368 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1369 /// 1370 /// where A and B are constants, update the map with these values: 1371 /// 1372 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1373 /// 1374 /// and add 13 + A*B*29 to AccumulatedConstant. 1375 /// This will allow getAddRecExpr to produce this: 1376 /// 1377 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1378 /// 1379 /// This form often exposes folding opportunities that are hidden in 1380 /// the original operand list. 1381 /// 1382 /// Return true iff it appears that any interesting folding opportunities 1383 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1384 /// the common case where no interesting opportunities are present, and 1385 /// is also used as a check to avoid infinite recursion. 1386 /// 1387 static bool 1388 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1389 SmallVector<const SCEV *, 8> &NewOps, 1390 APInt &AccumulatedConstant, 1391 const SCEV *const *Ops, size_t NumOperands, 1392 const APInt &Scale, 1393 ScalarEvolution &SE) { 1394 bool Interesting = false; 1395 1396 // Iterate over the add operands. They are sorted, with constants first. 1397 unsigned i = 0; 1398 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1399 ++i; 1400 // Pull a buried constant out to the outside. 1401 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1402 Interesting = true; 1403 AccumulatedConstant += Scale * C->getValue()->getValue(); 1404 } 1405 1406 // Next comes everything else. We're especially interested in multiplies 1407 // here, but they're in the middle, so just visit the rest with one loop. 1408 for (; i != NumOperands; ++i) { 1409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1410 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1411 APInt NewScale = 1412 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1413 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1414 // A multiplication of a constant with another add; recurse. 1415 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1416 Interesting |= 1417 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1418 Add->op_begin(), Add->getNumOperands(), 1419 NewScale, SE); 1420 } else { 1421 // A multiplication of a constant with some other value. Update 1422 // the map. 1423 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1424 const SCEV *Key = SE.getMulExpr(MulOps); 1425 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1426 M.insert(std::make_pair(Key, NewScale)); 1427 if (Pair.second) { 1428 NewOps.push_back(Pair.first->first); 1429 } else { 1430 Pair.first->second += NewScale; 1431 // The map already had an entry for this value, which may indicate 1432 // a folding opportunity. 1433 Interesting = true; 1434 } 1435 } 1436 } else { 1437 // An ordinary operand. Update the map. 1438 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1439 M.insert(std::make_pair(Ops[i], Scale)); 1440 if (Pair.second) { 1441 NewOps.push_back(Pair.first->first); 1442 } else { 1443 Pair.first->second += Scale; 1444 // The map already had an entry for this value, which may indicate 1445 // a folding opportunity. 1446 Interesting = true; 1447 } 1448 } 1449 } 1450 1451 return Interesting; 1452 } 1453 1454 namespace { 1455 struct APIntCompare { 1456 bool operator()(const APInt &LHS, const APInt &RHS) const { 1457 return LHS.ult(RHS); 1458 } 1459 }; 1460 } 1461 1462 /// getAddExpr - Get a canonical add expression, or something simpler if 1463 /// possible. 1464 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1465 SCEV::NoWrapFlags Flags) { 1466 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1467 "only nuw or nsw allowed"); 1468 assert(!Ops.empty() && "Cannot get empty add!"); 1469 if (Ops.size() == 1) return Ops[0]; 1470 #ifndef NDEBUG 1471 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1472 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1473 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1474 "SCEVAddExpr operand types don't match!"); 1475 #endif 1476 1477 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1478 // And vice-versa. 1479 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1480 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1481 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1482 bool All = true; 1483 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1484 E = Ops.end(); I != E; ++I) 1485 if (!isKnownNonNegative(*I)) { 1486 All = false; 1487 break; 1488 } 1489 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1490 } 1491 1492 // Sort by complexity, this groups all similar expression types together. 1493 GroupByComplexity(Ops, LI); 1494 1495 // If there are any constants, fold them together. 1496 unsigned Idx = 0; 1497 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1498 ++Idx; 1499 assert(Idx < Ops.size()); 1500 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1501 // We found two constants, fold them together! 1502 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1503 RHSC->getValue()->getValue()); 1504 if (Ops.size() == 2) return Ops[0]; 1505 Ops.erase(Ops.begin()+1); // Erase the folded element 1506 LHSC = cast<SCEVConstant>(Ops[0]); 1507 } 1508 1509 // If we are left with a constant zero being added, strip it off. 1510 if (LHSC->getValue()->isZero()) { 1511 Ops.erase(Ops.begin()); 1512 --Idx; 1513 } 1514 1515 if (Ops.size() == 1) return Ops[0]; 1516 } 1517 1518 // Okay, check to see if the same value occurs in the operand list more than 1519 // once. If so, merge them together into an multiply expression. Since we 1520 // sorted the list, these values are required to be adjacent. 1521 Type *Ty = Ops[0]->getType(); 1522 bool FoundMatch = false; 1523 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1524 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1525 // Scan ahead to count how many equal operands there are. 1526 unsigned Count = 2; 1527 while (i+Count != e && Ops[i+Count] == Ops[i]) 1528 ++Count; 1529 // Merge the values into a multiply. 1530 const SCEV *Scale = getConstant(Ty, Count); 1531 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1532 if (Ops.size() == Count) 1533 return Mul; 1534 Ops[i] = Mul; 1535 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1536 --i; e -= Count - 1; 1537 FoundMatch = true; 1538 } 1539 if (FoundMatch) 1540 return getAddExpr(Ops, Flags); 1541 1542 // Check for truncates. If all the operands are truncated from the same 1543 // type, see if factoring out the truncate would permit the result to be 1544 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1545 // if the contents of the resulting outer trunc fold to something simple. 1546 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1547 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1548 Type *DstType = Trunc->getType(); 1549 Type *SrcType = Trunc->getOperand()->getType(); 1550 SmallVector<const SCEV *, 8> LargeOps; 1551 bool Ok = true; 1552 // Check all the operands to see if they can be represented in the 1553 // source type of the truncate. 1554 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1555 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1556 if (T->getOperand()->getType() != SrcType) { 1557 Ok = false; 1558 break; 1559 } 1560 LargeOps.push_back(T->getOperand()); 1561 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1562 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1563 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1564 SmallVector<const SCEV *, 8> LargeMulOps; 1565 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1566 if (const SCEVTruncateExpr *T = 1567 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1568 if (T->getOperand()->getType() != SrcType) { 1569 Ok = false; 1570 break; 1571 } 1572 LargeMulOps.push_back(T->getOperand()); 1573 } else if (const SCEVConstant *C = 1574 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1575 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1576 } else { 1577 Ok = false; 1578 break; 1579 } 1580 } 1581 if (Ok) 1582 LargeOps.push_back(getMulExpr(LargeMulOps)); 1583 } else { 1584 Ok = false; 1585 break; 1586 } 1587 } 1588 if (Ok) { 1589 // Evaluate the expression in the larger type. 1590 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1591 // If it folds to something simple, use it. Otherwise, don't. 1592 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1593 return getTruncateExpr(Fold, DstType); 1594 } 1595 } 1596 1597 // Skip past any other cast SCEVs. 1598 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1599 ++Idx; 1600 1601 // If there are add operands they would be next. 1602 if (Idx < Ops.size()) { 1603 bool DeletedAdd = false; 1604 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1605 // If we have an add, expand the add operands onto the end of the operands 1606 // list. 1607 Ops.erase(Ops.begin()+Idx); 1608 Ops.append(Add->op_begin(), Add->op_end()); 1609 DeletedAdd = true; 1610 } 1611 1612 // If we deleted at least one add, we added operands to the end of the list, 1613 // and they are not necessarily sorted. Recurse to resort and resimplify 1614 // any operands we just acquired. 1615 if (DeletedAdd) 1616 return getAddExpr(Ops); 1617 } 1618 1619 // Skip over the add expression until we get to a multiply. 1620 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1621 ++Idx; 1622 1623 // Check to see if there are any folding opportunities present with 1624 // operands multiplied by constant values. 1625 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1626 uint64_t BitWidth = getTypeSizeInBits(Ty); 1627 DenseMap<const SCEV *, APInt> M; 1628 SmallVector<const SCEV *, 8> NewOps; 1629 APInt AccumulatedConstant(BitWidth, 0); 1630 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1631 Ops.data(), Ops.size(), 1632 APInt(BitWidth, 1), *this)) { 1633 // Some interesting folding opportunity is present, so its worthwhile to 1634 // re-generate the operands list. Group the operands by constant scale, 1635 // to avoid multiplying by the same constant scale multiple times. 1636 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1637 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1638 E = NewOps.end(); I != E; ++I) 1639 MulOpLists[M.find(*I)->second].push_back(*I); 1640 // Re-generate the operands list. 1641 Ops.clear(); 1642 if (AccumulatedConstant != 0) 1643 Ops.push_back(getConstant(AccumulatedConstant)); 1644 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1645 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1646 if (I->first != 0) 1647 Ops.push_back(getMulExpr(getConstant(I->first), 1648 getAddExpr(I->second))); 1649 if (Ops.empty()) 1650 return getConstant(Ty, 0); 1651 if (Ops.size() == 1) 1652 return Ops[0]; 1653 return getAddExpr(Ops); 1654 } 1655 } 1656 1657 // If we are adding something to a multiply expression, make sure the 1658 // something is not already an operand of the multiply. If so, merge it into 1659 // the multiply. 1660 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1661 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1662 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1663 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1664 if (isa<SCEVConstant>(MulOpSCEV)) 1665 continue; 1666 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1667 if (MulOpSCEV == Ops[AddOp]) { 1668 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1669 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1670 if (Mul->getNumOperands() != 2) { 1671 // If the multiply has more than two operands, we must get the 1672 // Y*Z term. 1673 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1674 Mul->op_begin()+MulOp); 1675 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1676 InnerMul = getMulExpr(MulOps); 1677 } 1678 const SCEV *One = getConstant(Ty, 1); 1679 const SCEV *AddOne = getAddExpr(One, InnerMul); 1680 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1681 if (Ops.size() == 2) return OuterMul; 1682 if (AddOp < Idx) { 1683 Ops.erase(Ops.begin()+AddOp); 1684 Ops.erase(Ops.begin()+Idx-1); 1685 } else { 1686 Ops.erase(Ops.begin()+Idx); 1687 Ops.erase(Ops.begin()+AddOp-1); 1688 } 1689 Ops.push_back(OuterMul); 1690 return getAddExpr(Ops); 1691 } 1692 1693 // Check this multiply against other multiplies being added together. 1694 for (unsigned OtherMulIdx = Idx+1; 1695 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1696 ++OtherMulIdx) { 1697 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1698 // If MulOp occurs in OtherMul, we can fold the two multiplies 1699 // together. 1700 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1701 OMulOp != e; ++OMulOp) 1702 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1703 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1704 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1705 if (Mul->getNumOperands() != 2) { 1706 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1707 Mul->op_begin()+MulOp); 1708 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1709 InnerMul1 = getMulExpr(MulOps); 1710 } 1711 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1712 if (OtherMul->getNumOperands() != 2) { 1713 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1714 OtherMul->op_begin()+OMulOp); 1715 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1716 InnerMul2 = getMulExpr(MulOps); 1717 } 1718 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1719 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1720 if (Ops.size() == 2) return OuterMul; 1721 Ops.erase(Ops.begin()+Idx); 1722 Ops.erase(Ops.begin()+OtherMulIdx-1); 1723 Ops.push_back(OuterMul); 1724 return getAddExpr(Ops); 1725 } 1726 } 1727 } 1728 } 1729 1730 // If there are any add recurrences in the operands list, see if any other 1731 // added values are loop invariant. If so, we can fold them into the 1732 // recurrence. 1733 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1734 ++Idx; 1735 1736 // Scan over all recurrences, trying to fold loop invariants into them. 1737 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1738 // Scan all of the other operands to this add and add them to the vector if 1739 // they are loop invariant w.r.t. the recurrence. 1740 SmallVector<const SCEV *, 8> LIOps; 1741 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1742 const Loop *AddRecLoop = AddRec->getLoop(); 1743 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1744 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1745 LIOps.push_back(Ops[i]); 1746 Ops.erase(Ops.begin()+i); 1747 --i; --e; 1748 } 1749 1750 // If we found some loop invariants, fold them into the recurrence. 1751 if (!LIOps.empty()) { 1752 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1753 LIOps.push_back(AddRec->getStart()); 1754 1755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1756 AddRec->op_end()); 1757 AddRecOps[0] = getAddExpr(LIOps); 1758 1759 // Build the new addrec. Propagate the NUW and NSW flags if both the 1760 // outer add and the inner addrec are guaranteed to have no overflow. 1761 // Always propagate NW. 1762 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1763 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1764 1765 // If all of the other operands were loop invariant, we are done. 1766 if (Ops.size() == 1) return NewRec; 1767 1768 // Otherwise, add the folded AddRec by the non-invariant parts. 1769 for (unsigned i = 0;; ++i) 1770 if (Ops[i] == AddRec) { 1771 Ops[i] = NewRec; 1772 break; 1773 } 1774 return getAddExpr(Ops); 1775 } 1776 1777 // Okay, if there weren't any loop invariants to be folded, check to see if 1778 // there are multiple AddRec's with the same loop induction variable being 1779 // added together. If so, we can fold them. 1780 for (unsigned OtherIdx = Idx+1; 1781 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1782 ++OtherIdx) 1783 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1784 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1785 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1786 AddRec->op_end()); 1787 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1788 ++OtherIdx) 1789 if (const SCEVAddRecExpr *OtherAddRec = 1790 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1791 if (OtherAddRec->getLoop() == AddRecLoop) { 1792 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1793 i != e; ++i) { 1794 if (i >= AddRecOps.size()) { 1795 AddRecOps.append(OtherAddRec->op_begin()+i, 1796 OtherAddRec->op_end()); 1797 break; 1798 } 1799 AddRecOps[i] = getAddExpr(AddRecOps[i], 1800 OtherAddRec->getOperand(i)); 1801 } 1802 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1803 } 1804 // Step size has changed, so we cannot guarantee no self-wraparound. 1805 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1806 return getAddExpr(Ops); 1807 } 1808 1809 // Otherwise couldn't fold anything into this recurrence. Move onto the 1810 // next one. 1811 } 1812 1813 // Okay, it looks like we really DO need an add expr. Check to see if we 1814 // already have one, otherwise create a new one. 1815 FoldingSetNodeID ID; 1816 ID.AddInteger(scAddExpr); 1817 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1818 ID.AddPointer(Ops[i]); 1819 void *IP = 0; 1820 SCEVAddExpr *S = 1821 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1822 if (!S) { 1823 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1824 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1825 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1826 O, Ops.size()); 1827 UniqueSCEVs.InsertNode(S, IP); 1828 } 1829 S->setNoWrapFlags(Flags); 1830 return S; 1831 } 1832 1833 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1834 uint64_t k = i*j; 1835 if (j > 1 && k / j != i) Overflow = true; 1836 return k; 1837 } 1838 1839 /// Compute the result of "n choose k", the binomial coefficient. If an 1840 /// intermediate computation overflows, Overflow will be set and the return will 1841 /// be garbage. Overflow is not cleared on absense of overflow. 1842 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1843 // We use the multiplicative formula: 1844 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1845 // At each iteration, we take the n-th term of the numeral and divide by the 1846 // (k-n)th term of the denominator. This division will always produce an 1847 // integral result, and helps reduce the chance of overflow in the 1848 // intermediate computations. However, we can still overflow even when the 1849 // final result would fit. 1850 1851 if (n == 0 || n == k) return 1; 1852 if (k > n) return 0; 1853 1854 if (k > n/2) 1855 k = n-k; 1856 1857 uint64_t r = 1; 1858 for (uint64_t i = 1; i <= k; ++i) { 1859 r = umul_ov(r, n-(i-1), Overflow); 1860 r /= i; 1861 } 1862 return r; 1863 } 1864 1865 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1866 /// possible. 1867 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1868 SCEV::NoWrapFlags Flags) { 1869 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1870 "only nuw or nsw allowed"); 1871 assert(!Ops.empty() && "Cannot get empty mul!"); 1872 if (Ops.size() == 1) return Ops[0]; 1873 #ifndef NDEBUG 1874 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1875 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1876 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1877 "SCEVMulExpr operand types don't match!"); 1878 #endif 1879 1880 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1881 // And vice-versa. 1882 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1883 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1884 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1885 bool All = true; 1886 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1887 E = Ops.end(); I != E; ++I) 1888 if (!isKnownNonNegative(*I)) { 1889 All = false; 1890 break; 1891 } 1892 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1893 } 1894 1895 // Sort by complexity, this groups all similar expression types together. 1896 GroupByComplexity(Ops, LI); 1897 1898 // If there are any constants, fold them together. 1899 unsigned Idx = 0; 1900 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1901 1902 // C1*(C2+V) -> C1*C2 + C1*V 1903 if (Ops.size() == 2) 1904 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1905 if (Add->getNumOperands() == 2 && 1906 isa<SCEVConstant>(Add->getOperand(0))) 1907 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1908 getMulExpr(LHSC, Add->getOperand(1))); 1909 1910 ++Idx; 1911 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1912 // We found two constants, fold them together! 1913 ConstantInt *Fold = ConstantInt::get(getContext(), 1914 LHSC->getValue()->getValue() * 1915 RHSC->getValue()->getValue()); 1916 Ops[0] = getConstant(Fold); 1917 Ops.erase(Ops.begin()+1); // Erase the folded element 1918 if (Ops.size() == 1) return Ops[0]; 1919 LHSC = cast<SCEVConstant>(Ops[0]); 1920 } 1921 1922 // If we are left with a constant one being multiplied, strip it off. 1923 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1924 Ops.erase(Ops.begin()); 1925 --Idx; 1926 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1927 // If we have a multiply of zero, it will always be zero. 1928 return Ops[0]; 1929 } else if (Ops[0]->isAllOnesValue()) { 1930 // If we have a mul by -1 of an add, try distributing the -1 among the 1931 // add operands. 1932 if (Ops.size() == 2) { 1933 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1934 SmallVector<const SCEV *, 4> NewOps; 1935 bool AnyFolded = false; 1936 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1937 E = Add->op_end(); I != E; ++I) { 1938 const SCEV *Mul = getMulExpr(Ops[0], *I); 1939 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1940 NewOps.push_back(Mul); 1941 } 1942 if (AnyFolded) 1943 return getAddExpr(NewOps); 1944 } 1945 else if (const SCEVAddRecExpr * 1946 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1947 // Negation preserves a recurrence's no self-wrap property. 1948 SmallVector<const SCEV *, 4> Operands; 1949 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1950 E = AddRec->op_end(); I != E; ++I) { 1951 Operands.push_back(getMulExpr(Ops[0], *I)); 1952 } 1953 return getAddRecExpr(Operands, AddRec->getLoop(), 1954 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1955 } 1956 } 1957 } 1958 1959 if (Ops.size() == 1) 1960 return Ops[0]; 1961 } 1962 1963 // Skip over the add expression until we get to a multiply. 1964 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1965 ++Idx; 1966 1967 // If there are mul operands inline them all into this expression. 1968 if (Idx < Ops.size()) { 1969 bool DeletedMul = false; 1970 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1971 // If we have an mul, expand the mul operands onto the end of the operands 1972 // list. 1973 Ops.erase(Ops.begin()+Idx); 1974 Ops.append(Mul->op_begin(), Mul->op_end()); 1975 DeletedMul = true; 1976 } 1977 1978 // If we deleted at least one mul, we added operands to the end of the list, 1979 // and they are not necessarily sorted. Recurse to resort and resimplify 1980 // any operands we just acquired. 1981 if (DeletedMul) 1982 return getMulExpr(Ops); 1983 } 1984 1985 // If there are any add recurrences in the operands list, see if any other 1986 // added values are loop invariant. If so, we can fold them into the 1987 // recurrence. 1988 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1989 ++Idx; 1990 1991 // Scan over all recurrences, trying to fold loop invariants into them. 1992 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1993 // Scan all of the other operands to this mul and add them to the vector if 1994 // they are loop invariant w.r.t. the recurrence. 1995 SmallVector<const SCEV *, 8> LIOps; 1996 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1997 const Loop *AddRecLoop = AddRec->getLoop(); 1998 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1999 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2000 LIOps.push_back(Ops[i]); 2001 Ops.erase(Ops.begin()+i); 2002 --i; --e; 2003 } 2004 2005 // If we found some loop invariants, fold them into the recurrence. 2006 if (!LIOps.empty()) { 2007 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2008 SmallVector<const SCEV *, 4> NewOps; 2009 NewOps.reserve(AddRec->getNumOperands()); 2010 const SCEV *Scale = getMulExpr(LIOps); 2011 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2012 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2013 2014 // Build the new addrec. Propagate the NUW and NSW flags if both the 2015 // outer mul and the inner addrec are guaranteed to have no overflow. 2016 // 2017 // No self-wrap cannot be guaranteed after changing the step size, but 2018 // will be inferred if either NUW or NSW is true. 2019 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2020 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2021 2022 // If all of the other operands were loop invariant, we are done. 2023 if (Ops.size() == 1) return NewRec; 2024 2025 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2026 for (unsigned i = 0;; ++i) 2027 if (Ops[i] == AddRec) { 2028 Ops[i] = NewRec; 2029 break; 2030 } 2031 return getMulExpr(Ops); 2032 } 2033 2034 // Okay, if there weren't any loop invariants to be folded, check to see if 2035 // there are multiple AddRec's with the same loop induction variable being 2036 // multiplied together. If so, we can fold them. 2037 for (unsigned OtherIdx = Idx+1; 2038 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2039 ++OtherIdx) { 2040 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2041 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2042 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2043 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2044 // ]]],+,...up to x=2n}. 2045 // Note that the arguments to choose() are always integers with values 2046 // known at compile time, never SCEV objects. 2047 // 2048 // The implementation avoids pointless extra computations when the two 2049 // addrec's are of different length (mathematically, it's equivalent to 2050 // an infinite stream of zeros on the right). 2051 bool OpsModified = false; 2052 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2053 ++OtherIdx) 2054 if (const SCEVAddRecExpr *OtherAddRec = 2055 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2056 if (OtherAddRec->getLoop() == AddRecLoop) { 2057 bool Overflow = false; 2058 Type *Ty = AddRec->getType(); 2059 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2060 SmallVector<const SCEV*, 7> AddRecOps; 2061 for (int x = 0, xe = AddRec->getNumOperands() + 2062 OtherAddRec->getNumOperands() - 1; 2063 x != xe && !Overflow; ++x) { 2064 const SCEV *Term = getConstant(Ty, 0); 2065 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2066 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2067 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2068 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2069 z < ze && !Overflow; ++z) { 2070 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2071 uint64_t Coeff; 2072 if (LargerThan64Bits) 2073 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2074 else 2075 Coeff = Coeff1*Coeff2; 2076 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2077 const SCEV *Term1 = AddRec->getOperand(y-z); 2078 const SCEV *Term2 = OtherAddRec->getOperand(z); 2079 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2080 } 2081 } 2082 AddRecOps.push_back(Term); 2083 } 2084 if (!Overflow) { 2085 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, 2086 AddRec->getLoop(), 2087 SCEV::FlagAnyWrap); 2088 if (Ops.size() == 2) return NewAddRec; 2089 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); 2090 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2091 OpsModified = true; 2092 } 2093 } 2094 if (OpsModified) 2095 return getMulExpr(Ops); 2096 } 2097 } 2098 2099 // Otherwise couldn't fold anything into this recurrence. Move onto the 2100 // next one. 2101 } 2102 2103 // Okay, it looks like we really DO need an mul expr. Check to see if we 2104 // already have one, otherwise create a new one. 2105 FoldingSetNodeID ID; 2106 ID.AddInteger(scMulExpr); 2107 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2108 ID.AddPointer(Ops[i]); 2109 void *IP = 0; 2110 SCEVMulExpr *S = 2111 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2112 if (!S) { 2113 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2114 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2115 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2116 O, Ops.size()); 2117 UniqueSCEVs.InsertNode(S, IP); 2118 } 2119 S->setNoWrapFlags(Flags); 2120 return S; 2121 } 2122 2123 /// getUDivExpr - Get a canonical unsigned division expression, or something 2124 /// simpler if possible. 2125 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2126 const SCEV *RHS) { 2127 assert(getEffectiveSCEVType(LHS->getType()) == 2128 getEffectiveSCEVType(RHS->getType()) && 2129 "SCEVUDivExpr operand types don't match!"); 2130 2131 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2132 if (RHSC->getValue()->equalsInt(1)) 2133 return LHS; // X udiv 1 --> x 2134 // If the denominator is zero, the result of the udiv is undefined. Don't 2135 // try to analyze it, because the resolution chosen here may differ from 2136 // the resolution chosen in other parts of the compiler. 2137 if (!RHSC->getValue()->isZero()) { 2138 // Determine if the division can be folded into the operands of 2139 // its operands. 2140 // TODO: Generalize this to non-constants by using known-bits information. 2141 Type *Ty = LHS->getType(); 2142 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2143 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2144 // For non-power-of-two values, effectively round the value up to the 2145 // nearest power of two. 2146 if (!RHSC->getValue()->getValue().isPowerOf2()) 2147 ++MaxShiftAmt; 2148 IntegerType *ExtTy = 2149 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2150 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2151 if (const SCEVConstant *Step = 2152 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2153 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2154 const APInt &StepInt = Step->getValue()->getValue(); 2155 const APInt &DivInt = RHSC->getValue()->getValue(); 2156 if (!StepInt.urem(DivInt) && 2157 getZeroExtendExpr(AR, ExtTy) == 2158 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2159 getZeroExtendExpr(Step, ExtTy), 2160 AR->getLoop(), SCEV::FlagAnyWrap)) { 2161 SmallVector<const SCEV *, 4> Operands; 2162 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2163 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2164 return getAddRecExpr(Operands, AR->getLoop(), 2165 SCEV::FlagNW); 2166 } 2167 /// Get a canonical UDivExpr for a recurrence. 2168 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2169 // We can currently only fold X%N if X is constant. 2170 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2171 if (StartC && !DivInt.urem(StepInt) && 2172 getZeroExtendExpr(AR, ExtTy) == 2173 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2174 getZeroExtendExpr(Step, ExtTy), 2175 AR->getLoop(), SCEV::FlagAnyWrap)) { 2176 const APInt &StartInt = StartC->getValue()->getValue(); 2177 const APInt &StartRem = StartInt.urem(StepInt); 2178 if (StartRem != 0) 2179 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2180 AR->getLoop(), SCEV::FlagNW); 2181 } 2182 } 2183 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2184 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2185 SmallVector<const SCEV *, 4> Operands; 2186 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2187 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2188 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2189 // Find an operand that's safely divisible. 2190 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2191 const SCEV *Op = M->getOperand(i); 2192 const SCEV *Div = getUDivExpr(Op, RHSC); 2193 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2194 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2195 M->op_end()); 2196 Operands[i] = Div; 2197 return getMulExpr(Operands); 2198 } 2199 } 2200 } 2201 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2202 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2203 SmallVector<const SCEV *, 4> Operands; 2204 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2205 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2206 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2207 Operands.clear(); 2208 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2209 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2210 if (isa<SCEVUDivExpr>(Op) || 2211 getMulExpr(Op, RHS) != A->getOperand(i)) 2212 break; 2213 Operands.push_back(Op); 2214 } 2215 if (Operands.size() == A->getNumOperands()) 2216 return getAddExpr(Operands); 2217 } 2218 } 2219 2220 // Fold if both operands are constant. 2221 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2222 Constant *LHSCV = LHSC->getValue(); 2223 Constant *RHSCV = RHSC->getValue(); 2224 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2225 RHSCV))); 2226 } 2227 } 2228 } 2229 2230 FoldingSetNodeID ID; 2231 ID.AddInteger(scUDivExpr); 2232 ID.AddPointer(LHS); 2233 ID.AddPointer(RHS); 2234 void *IP = 0; 2235 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2236 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2237 LHS, RHS); 2238 UniqueSCEVs.InsertNode(S, IP); 2239 return S; 2240 } 2241 2242 2243 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2244 /// Simplify the expression as much as possible. 2245 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2246 const Loop *L, 2247 SCEV::NoWrapFlags Flags) { 2248 SmallVector<const SCEV *, 4> Operands; 2249 Operands.push_back(Start); 2250 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2251 if (StepChrec->getLoop() == L) { 2252 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2253 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2254 } 2255 2256 Operands.push_back(Step); 2257 return getAddRecExpr(Operands, L, Flags); 2258 } 2259 2260 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2261 /// Simplify the expression as much as possible. 2262 const SCEV * 2263 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2264 const Loop *L, SCEV::NoWrapFlags Flags) { 2265 if (Operands.size() == 1) return Operands[0]; 2266 #ifndef NDEBUG 2267 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2268 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2269 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2270 "SCEVAddRecExpr operand types don't match!"); 2271 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2272 assert(isLoopInvariant(Operands[i], L) && 2273 "SCEVAddRecExpr operand is not loop-invariant!"); 2274 #endif 2275 2276 if (Operands.back()->isZero()) { 2277 Operands.pop_back(); 2278 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2279 } 2280 2281 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2282 // use that information to infer NUW and NSW flags. However, computing a 2283 // BE count requires calling getAddRecExpr, so we may not yet have a 2284 // meaningful BE count at this point (and if we don't, we'd be stuck 2285 // with a SCEVCouldNotCompute as the cached BE count). 2286 2287 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2288 // And vice-versa. 2289 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2290 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2291 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2292 bool All = true; 2293 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2294 E = Operands.end(); I != E; ++I) 2295 if (!isKnownNonNegative(*I)) { 2296 All = false; 2297 break; 2298 } 2299 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2300 } 2301 2302 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2303 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2304 const Loop *NestedLoop = NestedAR->getLoop(); 2305 if (L->contains(NestedLoop) ? 2306 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2307 (!NestedLoop->contains(L) && 2308 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2309 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2310 NestedAR->op_end()); 2311 Operands[0] = NestedAR->getStart(); 2312 // AddRecs require their operands be loop-invariant with respect to their 2313 // loops. Don't perform this transformation if it would break this 2314 // requirement. 2315 bool AllInvariant = true; 2316 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2317 if (!isLoopInvariant(Operands[i], L)) { 2318 AllInvariant = false; 2319 break; 2320 } 2321 if (AllInvariant) { 2322 // Create a recurrence for the outer loop with the same step size. 2323 // 2324 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2325 // inner recurrence has the same property. 2326 SCEV::NoWrapFlags OuterFlags = 2327 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2328 2329 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2330 AllInvariant = true; 2331 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2332 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2333 AllInvariant = false; 2334 break; 2335 } 2336 if (AllInvariant) { 2337 // Ok, both add recurrences are valid after the transformation. 2338 // 2339 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2340 // the outer recurrence has the same property. 2341 SCEV::NoWrapFlags InnerFlags = 2342 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2343 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2344 } 2345 } 2346 // Reset Operands to its original state. 2347 Operands[0] = NestedAR; 2348 } 2349 } 2350 2351 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2352 // already have one, otherwise create a new one. 2353 FoldingSetNodeID ID; 2354 ID.AddInteger(scAddRecExpr); 2355 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2356 ID.AddPointer(Operands[i]); 2357 ID.AddPointer(L); 2358 void *IP = 0; 2359 SCEVAddRecExpr *S = 2360 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2361 if (!S) { 2362 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2363 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2364 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2365 O, Operands.size(), L); 2366 UniqueSCEVs.InsertNode(S, IP); 2367 } 2368 S->setNoWrapFlags(Flags); 2369 return S; 2370 } 2371 2372 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2373 const SCEV *RHS) { 2374 SmallVector<const SCEV *, 2> Ops; 2375 Ops.push_back(LHS); 2376 Ops.push_back(RHS); 2377 return getSMaxExpr(Ops); 2378 } 2379 2380 const SCEV * 2381 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2382 assert(!Ops.empty() && "Cannot get empty smax!"); 2383 if (Ops.size() == 1) return Ops[0]; 2384 #ifndef NDEBUG 2385 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2386 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2387 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2388 "SCEVSMaxExpr operand types don't match!"); 2389 #endif 2390 2391 // Sort by complexity, this groups all similar expression types together. 2392 GroupByComplexity(Ops, LI); 2393 2394 // If there are any constants, fold them together. 2395 unsigned Idx = 0; 2396 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2397 ++Idx; 2398 assert(Idx < Ops.size()); 2399 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2400 // We found two constants, fold them together! 2401 ConstantInt *Fold = ConstantInt::get(getContext(), 2402 APIntOps::smax(LHSC->getValue()->getValue(), 2403 RHSC->getValue()->getValue())); 2404 Ops[0] = getConstant(Fold); 2405 Ops.erase(Ops.begin()+1); // Erase the folded element 2406 if (Ops.size() == 1) return Ops[0]; 2407 LHSC = cast<SCEVConstant>(Ops[0]); 2408 } 2409 2410 // If we are left with a constant minimum-int, strip it off. 2411 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2412 Ops.erase(Ops.begin()); 2413 --Idx; 2414 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2415 // If we have an smax with a constant maximum-int, it will always be 2416 // maximum-int. 2417 return Ops[0]; 2418 } 2419 2420 if (Ops.size() == 1) return Ops[0]; 2421 } 2422 2423 // Find the first SMax 2424 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2425 ++Idx; 2426 2427 // Check to see if one of the operands is an SMax. If so, expand its operands 2428 // onto our operand list, and recurse to simplify. 2429 if (Idx < Ops.size()) { 2430 bool DeletedSMax = false; 2431 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2432 Ops.erase(Ops.begin()+Idx); 2433 Ops.append(SMax->op_begin(), SMax->op_end()); 2434 DeletedSMax = true; 2435 } 2436 2437 if (DeletedSMax) 2438 return getSMaxExpr(Ops); 2439 } 2440 2441 // Okay, check to see if the same value occurs in the operand list twice. If 2442 // so, delete one. Since we sorted the list, these values are required to 2443 // be adjacent. 2444 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2445 // X smax Y smax Y --> X smax Y 2446 // X smax Y --> X, if X is always greater than Y 2447 if (Ops[i] == Ops[i+1] || 2448 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2449 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2450 --i; --e; 2451 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2452 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2453 --i; --e; 2454 } 2455 2456 if (Ops.size() == 1) return Ops[0]; 2457 2458 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2459 2460 // Okay, it looks like we really DO need an smax expr. Check to see if we 2461 // already have one, otherwise create a new one. 2462 FoldingSetNodeID ID; 2463 ID.AddInteger(scSMaxExpr); 2464 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2465 ID.AddPointer(Ops[i]); 2466 void *IP = 0; 2467 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2468 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2469 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2470 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2471 O, Ops.size()); 2472 UniqueSCEVs.InsertNode(S, IP); 2473 return S; 2474 } 2475 2476 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2477 const SCEV *RHS) { 2478 SmallVector<const SCEV *, 2> Ops; 2479 Ops.push_back(LHS); 2480 Ops.push_back(RHS); 2481 return getUMaxExpr(Ops); 2482 } 2483 2484 const SCEV * 2485 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2486 assert(!Ops.empty() && "Cannot get empty umax!"); 2487 if (Ops.size() == 1) return Ops[0]; 2488 #ifndef NDEBUG 2489 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2490 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2491 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2492 "SCEVUMaxExpr operand types don't match!"); 2493 #endif 2494 2495 // Sort by complexity, this groups all similar expression types together. 2496 GroupByComplexity(Ops, LI); 2497 2498 // If there are any constants, fold them together. 2499 unsigned Idx = 0; 2500 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2501 ++Idx; 2502 assert(Idx < Ops.size()); 2503 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2504 // We found two constants, fold them together! 2505 ConstantInt *Fold = ConstantInt::get(getContext(), 2506 APIntOps::umax(LHSC->getValue()->getValue(), 2507 RHSC->getValue()->getValue())); 2508 Ops[0] = getConstant(Fold); 2509 Ops.erase(Ops.begin()+1); // Erase the folded element 2510 if (Ops.size() == 1) return Ops[0]; 2511 LHSC = cast<SCEVConstant>(Ops[0]); 2512 } 2513 2514 // If we are left with a constant minimum-int, strip it off. 2515 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2516 Ops.erase(Ops.begin()); 2517 --Idx; 2518 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2519 // If we have an umax with a constant maximum-int, it will always be 2520 // maximum-int. 2521 return Ops[0]; 2522 } 2523 2524 if (Ops.size() == 1) return Ops[0]; 2525 } 2526 2527 // Find the first UMax 2528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2529 ++Idx; 2530 2531 // Check to see if one of the operands is a UMax. If so, expand its operands 2532 // onto our operand list, and recurse to simplify. 2533 if (Idx < Ops.size()) { 2534 bool DeletedUMax = false; 2535 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2536 Ops.erase(Ops.begin()+Idx); 2537 Ops.append(UMax->op_begin(), UMax->op_end()); 2538 DeletedUMax = true; 2539 } 2540 2541 if (DeletedUMax) 2542 return getUMaxExpr(Ops); 2543 } 2544 2545 // Okay, check to see if the same value occurs in the operand list twice. If 2546 // so, delete one. Since we sorted the list, these values are required to 2547 // be adjacent. 2548 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2549 // X umax Y umax Y --> X umax Y 2550 // X umax Y --> X, if X is always greater than Y 2551 if (Ops[i] == Ops[i+1] || 2552 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2553 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2554 --i; --e; 2555 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2556 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2557 --i; --e; 2558 } 2559 2560 if (Ops.size() == 1) return Ops[0]; 2561 2562 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2563 2564 // Okay, it looks like we really DO need a umax expr. Check to see if we 2565 // already have one, otherwise create a new one. 2566 FoldingSetNodeID ID; 2567 ID.AddInteger(scUMaxExpr); 2568 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2569 ID.AddPointer(Ops[i]); 2570 void *IP = 0; 2571 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2572 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2573 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2574 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2575 O, Ops.size()); 2576 UniqueSCEVs.InsertNode(S, IP); 2577 return S; 2578 } 2579 2580 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2581 const SCEV *RHS) { 2582 // ~smax(~x, ~y) == smin(x, y). 2583 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2584 } 2585 2586 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2587 const SCEV *RHS) { 2588 // ~umax(~x, ~y) == umin(x, y) 2589 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2590 } 2591 2592 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) { 2593 // If we have TargetData, we can bypass creating a target-independent 2594 // constant expression and then folding it back into a ConstantInt. 2595 // This is just a compile-time optimization. 2596 if (TD) 2597 return getConstant(TD->getIntPtrType(getContext()), 2598 TD->getTypeAllocSize(AllocTy)); 2599 2600 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2601 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2602 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2603 C = Folded; 2604 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2605 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2606 } 2607 2608 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2609 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2610 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2611 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2612 C = Folded; 2613 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2614 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2615 } 2616 2617 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, 2618 unsigned FieldNo) { 2619 // If we have TargetData, we can bypass creating a target-independent 2620 // constant expression and then folding it back into a ConstantInt. 2621 // This is just a compile-time optimization. 2622 if (TD) 2623 return getConstant(TD->getIntPtrType(getContext()), 2624 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2625 2626 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2627 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2628 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2629 C = Folded; 2630 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2631 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2632 } 2633 2634 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy, 2635 Constant *FieldNo) { 2636 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2637 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2638 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2639 C = Folded; 2640 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2641 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2642 } 2643 2644 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2645 // Don't attempt to do anything other than create a SCEVUnknown object 2646 // here. createSCEV only calls getUnknown after checking for all other 2647 // interesting possibilities, and any other code that calls getUnknown 2648 // is doing so in order to hide a value from SCEV canonicalization. 2649 2650 FoldingSetNodeID ID; 2651 ID.AddInteger(scUnknown); 2652 ID.AddPointer(V); 2653 void *IP = 0; 2654 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2655 assert(cast<SCEVUnknown>(S)->getValue() == V && 2656 "Stale SCEVUnknown in uniquing map!"); 2657 return S; 2658 } 2659 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2660 FirstUnknown); 2661 FirstUnknown = cast<SCEVUnknown>(S); 2662 UniqueSCEVs.InsertNode(S, IP); 2663 return S; 2664 } 2665 2666 //===----------------------------------------------------------------------===// 2667 // Basic SCEV Analysis and PHI Idiom Recognition Code 2668 // 2669 2670 /// isSCEVable - Test if values of the given type are analyzable within 2671 /// the SCEV framework. This primarily includes integer types, and it 2672 /// can optionally include pointer types if the ScalarEvolution class 2673 /// has access to target-specific information. 2674 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2675 // Integers and pointers are always SCEVable. 2676 return Ty->isIntegerTy() || Ty->isPointerTy(); 2677 } 2678 2679 /// getTypeSizeInBits - Return the size in bits of the specified type, 2680 /// for which isSCEVable must return true. 2681 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2682 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2683 2684 // If we have a TargetData, use it! 2685 if (TD) 2686 return TD->getTypeSizeInBits(Ty); 2687 2688 // Integer types have fixed sizes. 2689 if (Ty->isIntegerTy()) 2690 return Ty->getPrimitiveSizeInBits(); 2691 2692 // The only other support type is pointer. Without TargetData, conservatively 2693 // assume pointers are 64-bit. 2694 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2695 return 64; 2696 } 2697 2698 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2699 /// the given type and which represents how SCEV will treat the given 2700 /// type, for which isSCEVable must return true. For pointer types, 2701 /// this is the pointer-sized integer type. 2702 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2703 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2704 2705 if (Ty->isIntegerTy()) 2706 return Ty; 2707 2708 // The only other support type is pointer. 2709 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2710 if (TD) return TD->getIntPtrType(getContext()); 2711 2712 // Without TargetData, conservatively assume pointers are 64-bit. 2713 return Type::getInt64Ty(getContext()); 2714 } 2715 2716 const SCEV *ScalarEvolution::getCouldNotCompute() { 2717 return &CouldNotCompute; 2718 } 2719 2720 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2721 /// expression and create a new one. 2722 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2723 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2724 2725 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2726 if (I != ValueExprMap.end()) return I->second; 2727 const SCEV *S = createSCEV(V); 2728 2729 // The process of creating a SCEV for V may have caused other SCEVs 2730 // to have been created, so it's necessary to insert the new entry 2731 // from scratch, rather than trying to remember the insert position 2732 // above. 2733 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2734 return S; 2735 } 2736 2737 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2738 /// 2739 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2740 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2741 return getConstant( 2742 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2743 2744 Type *Ty = V->getType(); 2745 Ty = getEffectiveSCEVType(Ty); 2746 return getMulExpr(V, 2747 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2748 } 2749 2750 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2751 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2752 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2753 return getConstant( 2754 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2755 2756 Type *Ty = V->getType(); 2757 Ty = getEffectiveSCEVType(Ty); 2758 const SCEV *AllOnes = 2759 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2760 return getMinusSCEV(AllOnes, V); 2761 } 2762 2763 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2764 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2765 SCEV::NoWrapFlags Flags) { 2766 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2767 2768 // Fast path: X - X --> 0. 2769 if (LHS == RHS) 2770 return getConstant(LHS->getType(), 0); 2771 2772 // X - Y --> X + -Y 2773 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2774 } 2775 2776 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2777 /// input value to the specified type. If the type must be extended, it is zero 2778 /// extended. 2779 const SCEV * 2780 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2781 Type *SrcTy = V->getType(); 2782 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2783 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2784 "Cannot truncate or zero extend with non-integer arguments!"); 2785 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2786 return V; // No conversion 2787 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2788 return getTruncateExpr(V, Ty); 2789 return getZeroExtendExpr(V, Ty); 2790 } 2791 2792 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2793 /// input value to the specified type. If the type must be extended, it is sign 2794 /// extended. 2795 const SCEV * 2796 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2797 Type *Ty) { 2798 Type *SrcTy = V->getType(); 2799 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2800 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2801 "Cannot truncate or zero extend with non-integer arguments!"); 2802 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2803 return V; // No conversion 2804 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2805 return getTruncateExpr(V, Ty); 2806 return getSignExtendExpr(V, Ty); 2807 } 2808 2809 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2810 /// input value to the specified type. If the type must be extended, it is zero 2811 /// extended. The conversion must not be narrowing. 2812 const SCEV * 2813 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2814 Type *SrcTy = V->getType(); 2815 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2816 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2817 "Cannot noop or zero extend with non-integer arguments!"); 2818 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2819 "getNoopOrZeroExtend cannot truncate!"); 2820 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2821 return V; // No conversion 2822 return getZeroExtendExpr(V, Ty); 2823 } 2824 2825 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2826 /// input value to the specified type. If the type must be extended, it is sign 2827 /// extended. The conversion must not be narrowing. 2828 const SCEV * 2829 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2830 Type *SrcTy = V->getType(); 2831 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2832 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2833 "Cannot noop or sign extend with non-integer arguments!"); 2834 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2835 "getNoopOrSignExtend cannot truncate!"); 2836 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2837 return V; // No conversion 2838 return getSignExtendExpr(V, Ty); 2839 } 2840 2841 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2842 /// the input value to the specified type. If the type must be extended, 2843 /// it is extended with unspecified bits. The conversion must not be 2844 /// narrowing. 2845 const SCEV * 2846 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2847 Type *SrcTy = V->getType(); 2848 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2849 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2850 "Cannot noop or any extend with non-integer arguments!"); 2851 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2852 "getNoopOrAnyExtend cannot truncate!"); 2853 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2854 return V; // No conversion 2855 return getAnyExtendExpr(V, Ty); 2856 } 2857 2858 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2859 /// input value to the specified type. The conversion must not be widening. 2860 const SCEV * 2861 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2862 Type *SrcTy = V->getType(); 2863 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2864 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2865 "Cannot truncate or noop with non-integer arguments!"); 2866 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2867 "getTruncateOrNoop cannot extend!"); 2868 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2869 return V; // No conversion 2870 return getTruncateExpr(V, Ty); 2871 } 2872 2873 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2874 /// the types using zero-extension, and then perform a umax operation 2875 /// with them. 2876 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2877 const SCEV *RHS) { 2878 const SCEV *PromotedLHS = LHS; 2879 const SCEV *PromotedRHS = RHS; 2880 2881 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2882 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2883 else 2884 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2885 2886 return getUMaxExpr(PromotedLHS, PromotedRHS); 2887 } 2888 2889 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2890 /// the types using zero-extension, and then perform a umin operation 2891 /// with them. 2892 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2893 const SCEV *RHS) { 2894 const SCEV *PromotedLHS = LHS; 2895 const SCEV *PromotedRHS = RHS; 2896 2897 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2898 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2899 else 2900 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2901 2902 return getUMinExpr(PromotedLHS, PromotedRHS); 2903 } 2904 2905 /// getPointerBase - Transitively follow the chain of pointer-type operands 2906 /// until reaching a SCEV that does not have a single pointer operand. This 2907 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2908 /// but corner cases do exist. 2909 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2910 // A pointer operand may evaluate to a nonpointer expression, such as null. 2911 if (!V->getType()->isPointerTy()) 2912 return V; 2913 2914 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2915 return getPointerBase(Cast->getOperand()); 2916 } 2917 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2918 const SCEV *PtrOp = 0; 2919 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2920 I != E; ++I) { 2921 if ((*I)->getType()->isPointerTy()) { 2922 // Cannot find the base of an expression with multiple pointer operands. 2923 if (PtrOp) 2924 return V; 2925 PtrOp = *I; 2926 } 2927 } 2928 if (!PtrOp) 2929 return V; 2930 return getPointerBase(PtrOp); 2931 } 2932 return V; 2933 } 2934 2935 /// PushDefUseChildren - Push users of the given Instruction 2936 /// onto the given Worklist. 2937 static void 2938 PushDefUseChildren(Instruction *I, 2939 SmallVectorImpl<Instruction *> &Worklist) { 2940 // Push the def-use children onto the Worklist stack. 2941 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2942 UI != UE; ++UI) 2943 Worklist.push_back(cast<Instruction>(*UI)); 2944 } 2945 2946 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2947 /// instructions that depend on the given instruction and removes them from 2948 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2949 /// resolution. 2950 void 2951 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2952 SmallVector<Instruction *, 16> Worklist; 2953 PushDefUseChildren(PN, Worklist); 2954 2955 SmallPtrSet<Instruction *, 8> Visited; 2956 Visited.insert(PN); 2957 while (!Worklist.empty()) { 2958 Instruction *I = Worklist.pop_back_val(); 2959 if (!Visited.insert(I)) continue; 2960 2961 ValueExprMapType::iterator It = 2962 ValueExprMap.find(static_cast<Value *>(I)); 2963 if (It != ValueExprMap.end()) { 2964 const SCEV *Old = It->second; 2965 2966 // Short-circuit the def-use traversal if the symbolic name 2967 // ceases to appear in expressions. 2968 if (Old != SymName && !hasOperand(Old, SymName)) 2969 continue; 2970 2971 // SCEVUnknown for a PHI either means that it has an unrecognized 2972 // structure, it's a PHI that's in the progress of being computed 2973 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2974 // additional loop trip count information isn't going to change anything. 2975 // In the second case, createNodeForPHI will perform the necessary 2976 // updates on its own when it gets to that point. In the third, we do 2977 // want to forget the SCEVUnknown. 2978 if (!isa<PHINode>(I) || 2979 !isa<SCEVUnknown>(Old) || 2980 (I != PN && Old == SymName)) { 2981 forgetMemoizedResults(Old); 2982 ValueExprMap.erase(It); 2983 } 2984 } 2985 2986 PushDefUseChildren(I, Worklist); 2987 } 2988 } 2989 2990 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2991 /// a loop header, making it a potential recurrence, or it doesn't. 2992 /// 2993 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2994 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2995 if (L->getHeader() == PN->getParent()) { 2996 // The loop may have multiple entrances or multiple exits; we can analyze 2997 // this phi as an addrec if it has a unique entry value and a unique 2998 // backedge value. 2999 Value *BEValueV = 0, *StartValueV = 0; 3000 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3001 Value *V = PN->getIncomingValue(i); 3002 if (L->contains(PN->getIncomingBlock(i))) { 3003 if (!BEValueV) { 3004 BEValueV = V; 3005 } else if (BEValueV != V) { 3006 BEValueV = 0; 3007 break; 3008 } 3009 } else if (!StartValueV) { 3010 StartValueV = V; 3011 } else if (StartValueV != V) { 3012 StartValueV = 0; 3013 break; 3014 } 3015 } 3016 if (BEValueV && StartValueV) { 3017 // While we are analyzing this PHI node, handle its value symbolically. 3018 const SCEV *SymbolicName = getUnknown(PN); 3019 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 3020 "PHI node already processed?"); 3021 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3022 3023 // Using this symbolic name for the PHI, analyze the value coming around 3024 // the back-edge. 3025 const SCEV *BEValue = getSCEV(BEValueV); 3026 3027 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3028 // has a special value for the first iteration of the loop. 3029 3030 // If the value coming around the backedge is an add with the symbolic 3031 // value we just inserted, then we found a simple induction variable! 3032 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3033 // If there is a single occurrence of the symbolic value, replace it 3034 // with a recurrence. 3035 unsigned FoundIndex = Add->getNumOperands(); 3036 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3037 if (Add->getOperand(i) == SymbolicName) 3038 if (FoundIndex == e) { 3039 FoundIndex = i; 3040 break; 3041 } 3042 3043 if (FoundIndex != Add->getNumOperands()) { 3044 // Create an add with everything but the specified operand. 3045 SmallVector<const SCEV *, 8> Ops; 3046 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3047 if (i != FoundIndex) 3048 Ops.push_back(Add->getOperand(i)); 3049 const SCEV *Accum = getAddExpr(Ops); 3050 3051 // This is not a valid addrec if the step amount is varying each 3052 // loop iteration, but is not itself an addrec in this loop. 3053 if (isLoopInvariant(Accum, L) || 3054 (isa<SCEVAddRecExpr>(Accum) && 3055 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3056 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3057 3058 // If the increment doesn't overflow, then neither the addrec nor 3059 // the post-increment will overflow. 3060 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3061 if (OBO->hasNoUnsignedWrap()) 3062 Flags = setFlags(Flags, SCEV::FlagNUW); 3063 if (OBO->hasNoSignedWrap()) 3064 Flags = setFlags(Flags, SCEV::FlagNSW); 3065 } else if (const GEPOperator *GEP = 3066 dyn_cast<GEPOperator>(BEValueV)) { 3067 // If the increment is an inbounds GEP, then we know the address 3068 // space cannot be wrapped around. We cannot make any guarantee 3069 // about signed or unsigned overflow because pointers are 3070 // unsigned but we may have a negative index from the base 3071 // pointer. 3072 if (GEP->isInBounds()) 3073 Flags = setFlags(Flags, SCEV::FlagNW); 3074 } 3075 3076 const SCEV *StartVal = getSCEV(StartValueV); 3077 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3078 3079 // Since the no-wrap flags are on the increment, they apply to the 3080 // post-incremented value as well. 3081 if (isLoopInvariant(Accum, L)) 3082 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3083 Accum, L, Flags); 3084 3085 // Okay, for the entire analysis of this edge we assumed the PHI 3086 // to be symbolic. We now need to go back and purge all of the 3087 // entries for the scalars that use the symbolic expression. 3088 ForgetSymbolicName(PN, SymbolicName); 3089 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3090 return PHISCEV; 3091 } 3092 } 3093 } else if (const SCEVAddRecExpr *AddRec = 3094 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3095 // Otherwise, this could be a loop like this: 3096 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3097 // In this case, j = {1,+,1} and BEValue is j. 3098 // Because the other in-value of i (0) fits the evolution of BEValue 3099 // i really is an addrec evolution. 3100 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3101 const SCEV *StartVal = getSCEV(StartValueV); 3102 3103 // If StartVal = j.start - j.stride, we can use StartVal as the 3104 // initial step of the addrec evolution. 3105 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3106 AddRec->getOperand(1))) { 3107 // FIXME: For constant StartVal, we should be able to infer 3108 // no-wrap flags. 3109 const SCEV *PHISCEV = 3110 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3111 SCEV::FlagAnyWrap); 3112 3113 // Okay, for the entire analysis of this edge we assumed the PHI 3114 // to be symbolic. We now need to go back and purge all of the 3115 // entries for the scalars that use the symbolic expression. 3116 ForgetSymbolicName(PN, SymbolicName); 3117 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3118 return PHISCEV; 3119 } 3120 } 3121 } 3122 } 3123 } 3124 3125 // If the PHI has a single incoming value, follow that value, unless the 3126 // PHI's incoming blocks are in a different loop, in which case doing so 3127 // risks breaking LCSSA form. Instcombine would normally zap these, but 3128 // it doesn't have DominatorTree information, so it may miss cases. 3129 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT)) 3130 if (LI->replacementPreservesLCSSAForm(PN, V)) 3131 return getSCEV(V); 3132 3133 // If it's not a loop phi, we can't handle it yet. 3134 return getUnknown(PN); 3135 } 3136 3137 /// createNodeForGEP - Expand GEP instructions into add and multiply 3138 /// operations. This allows them to be analyzed by regular SCEV code. 3139 /// 3140 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3141 3142 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3143 // Add expression, because the Instruction may be guarded by control flow 3144 // and the no-overflow bits may not be valid for the expression in any 3145 // context. 3146 bool isInBounds = GEP->isInBounds(); 3147 3148 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3149 Value *Base = GEP->getOperand(0); 3150 // Don't attempt to analyze GEPs over unsized objects. 3151 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3152 return getUnknown(GEP); 3153 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3154 gep_type_iterator GTI = gep_type_begin(GEP); 3155 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3156 E = GEP->op_end(); 3157 I != E; ++I) { 3158 Value *Index = *I; 3159 // Compute the (potentially symbolic) offset in bytes for this index. 3160 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3161 // For a struct, add the member offset. 3162 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3163 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 3164 3165 // Add the field offset to the running total offset. 3166 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3167 } else { 3168 // For an array, add the element offset, explicitly scaled. 3169 const SCEV *ElementSize = getSizeOfExpr(*GTI); 3170 const SCEV *IndexS = getSCEV(Index); 3171 // Getelementptr indices are signed. 3172 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3173 3174 // Multiply the index by the element size to compute the element offset. 3175 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3176 isInBounds ? SCEV::FlagNSW : 3177 SCEV::FlagAnyWrap); 3178 3179 // Add the element offset to the running total offset. 3180 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3181 } 3182 } 3183 3184 // Get the SCEV for the GEP base. 3185 const SCEV *BaseS = getSCEV(Base); 3186 3187 // Add the total offset from all the GEP indices to the base. 3188 return getAddExpr(BaseS, TotalOffset, 3189 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3190 } 3191 3192 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3193 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3194 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3195 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3196 uint32_t 3197 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3198 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3199 return C->getValue()->getValue().countTrailingZeros(); 3200 3201 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3202 return std::min(GetMinTrailingZeros(T->getOperand()), 3203 (uint32_t)getTypeSizeInBits(T->getType())); 3204 3205 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3206 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3207 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3208 getTypeSizeInBits(E->getType()) : OpRes; 3209 } 3210 3211 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3212 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3213 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3214 getTypeSizeInBits(E->getType()) : OpRes; 3215 } 3216 3217 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3218 // The result is the min of all operands results. 3219 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3220 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3221 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3222 return MinOpRes; 3223 } 3224 3225 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3226 // The result is the sum of all operands results. 3227 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3228 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3229 for (unsigned i = 1, e = M->getNumOperands(); 3230 SumOpRes != BitWidth && i != e; ++i) 3231 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3232 BitWidth); 3233 return SumOpRes; 3234 } 3235 3236 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3237 // The result is the min of all operands results. 3238 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3239 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3240 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3241 return MinOpRes; 3242 } 3243 3244 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3245 // The result is the min of all operands results. 3246 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3247 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3248 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3249 return MinOpRes; 3250 } 3251 3252 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3253 // The result is the min of all operands results. 3254 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3255 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3256 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3257 return MinOpRes; 3258 } 3259 3260 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3261 // For a SCEVUnknown, ask ValueTracking. 3262 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3263 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3264 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3265 return Zeros.countTrailingOnes(); 3266 } 3267 3268 // SCEVUDivExpr 3269 return 0; 3270 } 3271 3272 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3273 /// 3274 ConstantRange 3275 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3276 // See if we've computed this range already. 3277 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3278 if (I != UnsignedRanges.end()) 3279 return I->second; 3280 3281 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3282 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3283 3284 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3285 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3286 3287 // If the value has known zeros, the maximum unsigned value will have those 3288 // known zeros as well. 3289 uint32_t TZ = GetMinTrailingZeros(S); 3290 if (TZ != 0) 3291 ConservativeResult = 3292 ConstantRange(APInt::getMinValue(BitWidth), 3293 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3294 3295 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3296 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3297 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3298 X = X.add(getUnsignedRange(Add->getOperand(i))); 3299 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3300 } 3301 3302 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3303 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3304 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3305 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3306 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3307 } 3308 3309 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3310 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3311 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3312 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3313 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3314 } 3315 3316 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3317 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3318 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3319 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3320 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3321 } 3322 3323 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3324 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3325 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3326 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3327 } 3328 3329 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3330 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3331 return setUnsignedRange(ZExt, 3332 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3333 } 3334 3335 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3336 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3337 return setUnsignedRange(SExt, 3338 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3339 } 3340 3341 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3342 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3343 return setUnsignedRange(Trunc, 3344 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3345 } 3346 3347 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3348 // If there's no unsigned wrap, the value will never be less than its 3349 // initial value. 3350 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3351 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3352 if (!C->getValue()->isZero()) 3353 ConservativeResult = 3354 ConservativeResult.intersectWith( 3355 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3356 3357 // TODO: non-affine addrec 3358 if (AddRec->isAffine()) { 3359 Type *Ty = AddRec->getType(); 3360 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3361 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3362 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3363 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3364 3365 const SCEV *Start = AddRec->getStart(); 3366 const SCEV *Step = AddRec->getStepRecurrence(*this); 3367 3368 ConstantRange StartRange = getUnsignedRange(Start); 3369 ConstantRange StepRange = getSignedRange(Step); 3370 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3371 ConstantRange EndRange = 3372 StartRange.add(MaxBECountRange.multiply(StepRange)); 3373 3374 // Check for overflow. This must be done with ConstantRange arithmetic 3375 // because we could be called from within the ScalarEvolution overflow 3376 // checking code. 3377 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3378 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3379 ConstantRange ExtMaxBECountRange = 3380 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3381 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3382 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3383 ExtEndRange) 3384 return setUnsignedRange(AddRec, ConservativeResult); 3385 3386 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3387 EndRange.getUnsignedMin()); 3388 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3389 EndRange.getUnsignedMax()); 3390 if (Min.isMinValue() && Max.isMaxValue()) 3391 return setUnsignedRange(AddRec, ConservativeResult); 3392 return setUnsignedRange(AddRec, 3393 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3394 } 3395 } 3396 3397 return setUnsignedRange(AddRec, ConservativeResult); 3398 } 3399 3400 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3401 // For a SCEVUnknown, ask ValueTracking. 3402 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3403 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD); 3404 if (Ones == ~Zeros + 1) 3405 return setUnsignedRange(U, ConservativeResult); 3406 return setUnsignedRange(U, 3407 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3408 } 3409 3410 return setUnsignedRange(S, ConservativeResult); 3411 } 3412 3413 /// getSignedRange - Determine the signed range for a particular SCEV. 3414 /// 3415 ConstantRange 3416 ScalarEvolution::getSignedRange(const SCEV *S) { 3417 // See if we've computed this range already. 3418 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3419 if (I != SignedRanges.end()) 3420 return I->second; 3421 3422 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3423 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3424 3425 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3426 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3427 3428 // If the value has known zeros, the maximum signed value will have those 3429 // known zeros as well. 3430 uint32_t TZ = GetMinTrailingZeros(S); 3431 if (TZ != 0) 3432 ConservativeResult = 3433 ConstantRange(APInt::getSignedMinValue(BitWidth), 3434 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3435 3436 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3437 ConstantRange X = getSignedRange(Add->getOperand(0)); 3438 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3439 X = X.add(getSignedRange(Add->getOperand(i))); 3440 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3441 } 3442 3443 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3444 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3445 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3446 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3447 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3448 } 3449 3450 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3451 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3452 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3453 X = X.smax(getSignedRange(SMax->getOperand(i))); 3454 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3455 } 3456 3457 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3458 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3459 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3460 X = X.umax(getSignedRange(UMax->getOperand(i))); 3461 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3462 } 3463 3464 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3465 ConstantRange X = getSignedRange(UDiv->getLHS()); 3466 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3467 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3468 } 3469 3470 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3471 ConstantRange X = getSignedRange(ZExt->getOperand()); 3472 return setSignedRange(ZExt, 3473 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3474 } 3475 3476 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3477 ConstantRange X = getSignedRange(SExt->getOperand()); 3478 return setSignedRange(SExt, 3479 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3480 } 3481 3482 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3483 ConstantRange X = getSignedRange(Trunc->getOperand()); 3484 return setSignedRange(Trunc, 3485 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3486 } 3487 3488 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3489 // If there's no signed wrap, and all the operands have the same sign or 3490 // zero, the value won't ever change sign. 3491 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3492 bool AllNonNeg = true; 3493 bool AllNonPos = true; 3494 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3495 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3496 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3497 } 3498 if (AllNonNeg) 3499 ConservativeResult = ConservativeResult.intersectWith( 3500 ConstantRange(APInt(BitWidth, 0), 3501 APInt::getSignedMinValue(BitWidth))); 3502 else if (AllNonPos) 3503 ConservativeResult = ConservativeResult.intersectWith( 3504 ConstantRange(APInt::getSignedMinValue(BitWidth), 3505 APInt(BitWidth, 1))); 3506 } 3507 3508 // TODO: non-affine addrec 3509 if (AddRec->isAffine()) { 3510 Type *Ty = AddRec->getType(); 3511 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3512 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3513 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3514 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3515 3516 const SCEV *Start = AddRec->getStart(); 3517 const SCEV *Step = AddRec->getStepRecurrence(*this); 3518 3519 ConstantRange StartRange = getSignedRange(Start); 3520 ConstantRange StepRange = getSignedRange(Step); 3521 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3522 ConstantRange EndRange = 3523 StartRange.add(MaxBECountRange.multiply(StepRange)); 3524 3525 // Check for overflow. This must be done with ConstantRange arithmetic 3526 // because we could be called from within the ScalarEvolution overflow 3527 // checking code. 3528 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3529 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3530 ConstantRange ExtMaxBECountRange = 3531 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3532 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3533 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3534 ExtEndRange) 3535 return setSignedRange(AddRec, ConservativeResult); 3536 3537 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3538 EndRange.getSignedMin()); 3539 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3540 EndRange.getSignedMax()); 3541 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3542 return setSignedRange(AddRec, ConservativeResult); 3543 return setSignedRange(AddRec, 3544 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3545 } 3546 } 3547 3548 return setSignedRange(AddRec, ConservativeResult); 3549 } 3550 3551 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3552 // For a SCEVUnknown, ask ValueTracking. 3553 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3554 return setSignedRange(U, ConservativeResult); 3555 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3556 if (NS == 1) 3557 return setSignedRange(U, ConservativeResult); 3558 return setSignedRange(U, ConservativeResult.intersectWith( 3559 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3560 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3561 } 3562 3563 return setSignedRange(S, ConservativeResult); 3564 } 3565 3566 /// createSCEV - We know that there is no SCEV for the specified value. 3567 /// Analyze the expression. 3568 /// 3569 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3570 if (!isSCEVable(V->getType())) 3571 return getUnknown(V); 3572 3573 unsigned Opcode = Instruction::UserOp1; 3574 if (Instruction *I = dyn_cast<Instruction>(V)) { 3575 Opcode = I->getOpcode(); 3576 3577 // Don't attempt to analyze instructions in blocks that aren't 3578 // reachable. Such instructions don't matter, and they aren't required 3579 // to obey basic rules for definitions dominating uses which this 3580 // analysis depends on. 3581 if (!DT->isReachableFromEntry(I->getParent())) 3582 return getUnknown(V); 3583 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3584 Opcode = CE->getOpcode(); 3585 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3586 return getConstant(CI); 3587 else if (isa<ConstantPointerNull>(V)) 3588 return getConstant(V->getType(), 0); 3589 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3590 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3591 else 3592 return getUnknown(V); 3593 3594 Operator *U = cast<Operator>(V); 3595 switch (Opcode) { 3596 case Instruction::Add: { 3597 // The simple thing to do would be to just call getSCEV on both operands 3598 // and call getAddExpr with the result. However if we're looking at a 3599 // bunch of things all added together, this can be quite inefficient, 3600 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3601 // Instead, gather up all the operands and make a single getAddExpr call. 3602 // LLVM IR canonical form means we need only traverse the left operands. 3603 // 3604 // Don't apply this instruction's NSW or NUW flags to the new 3605 // expression. The instruction may be guarded by control flow that the 3606 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3607 // mapped to the same SCEV expression, and it would be incorrect to transfer 3608 // NSW/NUW semantics to those operations. 3609 SmallVector<const SCEV *, 4> AddOps; 3610 AddOps.push_back(getSCEV(U->getOperand(1))); 3611 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3612 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3613 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3614 break; 3615 U = cast<Operator>(Op); 3616 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3617 if (Opcode == Instruction::Sub) 3618 AddOps.push_back(getNegativeSCEV(Op1)); 3619 else 3620 AddOps.push_back(Op1); 3621 } 3622 AddOps.push_back(getSCEV(U->getOperand(0))); 3623 return getAddExpr(AddOps); 3624 } 3625 case Instruction::Mul: { 3626 // Don't transfer NSW/NUW for the same reason as AddExpr. 3627 SmallVector<const SCEV *, 4> MulOps; 3628 MulOps.push_back(getSCEV(U->getOperand(1))); 3629 for (Value *Op = U->getOperand(0); 3630 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3631 Op = U->getOperand(0)) { 3632 U = cast<Operator>(Op); 3633 MulOps.push_back(getSCEV(U->getOperand(1))); 3634 } 3635 MulOps.push_back(getSCEV(U->getOperand(0))); 3636 return getMulExpr(MulOps); 3637 } 3638 case Instruction::UDiv: 3639 return getUDivExpr(getSCEV(U->getOperand(0)), 3640 getSCEV(U->getOperand(1))); 3641 case Instruction::Sub: 3642 return getMinusSCEV(getSCEV(U->getOperand(0)), 3643 getSCEV(U->getOperand(1))); 3644 case Instruction::And: 3645 // For an expression like x&255 that merely masks off the high bits, 3646 // use zext(trunc(x)) as the SCEV expression. 3647 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3648 if (CI->isNullValue()) 3649 return getSCEV(U->getOperand(1)); 3650 if (CI->isAllOnesValue()) 3651 return getSCEV(U->getOperand(0)); 3652 const APInt &A = CI->getValue(); 3653 3654 // Instcombine's ShrinkDemandedConstant may strip bits out of 3655 // constants, obscuring what would otherwise be a low-bits mask. 3656 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3657 // knew about to reconstruct a low-bits mask value. 3658 unsigned LZ = A.countLeadingZeros(); 3659 unsigned BitWidth = A.getBitWidth(); 3660 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3661 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD); 3662 3663 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3664 3665 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3666 return 3667 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3668 IntegerType::get(getContext(), BitWidth - LZ)), 3669 U->getType()); 3670 } 3671 break; 3672 3673 case Instruction::Or: 3674 // If the RHS of the Or is a constant, we may have something like: 3675 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3676 // optimizations will transparently handle this case. 3677 // 3678 // In order for this transformation to be safe, the LHS must be of the 3679 // form X*(2^n) and the Or constant must be less than 2^n. 3680 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3681 const SCEV *LHS = getSCEV(U->getOperand(0)); 3682 const APInt &CIVal = CI->getValue(); 3683 if (GetMinTrailingZeros(LHS) >= 3684 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3685 // Build a plain add SCEV. 3686 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3687 // If the LHS of the add was an addrec and it has no-wrap flags, 3688 // transfer the no-wrap flags, since an or won't introduce a wrap. 3689 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3690 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3691 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3692 OldAR->getNoWrapFlags()); 3693 } 3694 return S; 3695 } 3696 } 3697 break; 3698 case Instruction::Xor: 3699 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3700 // If the RHS of the xor is a signbit, then this is just an add. 3701 // Instcombine turns add of signbit into xor as a strength reduction step. 3702 if (CI->getValue().isSignBit()) 3703 return getAddExpr(getSCEV(U->getOperand(0)), 3704 getSCEV(U->getOperand(1))); 3705 3706 // If the RHS of xor is -1, then this is a not operation. 3707 if (CI->isAllOnesValue()) 3708 return getNotSCEV(getSCEV(U->getOperand(0))); 3709 3710 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3711 // This is a variant of the check for xor with -1, and it handles 3712 // the case where instcombine has trimmed non-demanded bits out 3713 // of an xor with -1. 3714 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3715 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3716 if (BO->getOpcode() == Instruction::And && 3717 LCI->getValue() == CI->getValue()) 3718 if (const SCEVZeroExtendExpr *Z = 3719 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3720 Type *UTy = U->getType(); 3721 const SCEV *Z0 = Z->getOperand(); 3722 Type *Z0Ty = Z0->getType(); 3723 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3724 3725 // If C is a low-bits mask, the zero extend is serving to 3726 // mask off the high bits. Complement the operand and 3727 // re-apply the zext. 3728 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3729 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3730 3731 // If C is a single bit, it may be in the sign-bit position 3732 // before the zero-extend. In this case, represent the xor 3733 // using an add, which is equivalent, and re-apply the zext. 3734 APInt Trunc = CI->getValue().trunc(Z0TySize); 3735 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3736 Trunc.isSignBit()) 3737 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3738 UTy); 3739 } 3740 } 3741 break; 3742 3743 case Instruction::Shl: 3744 // Turn shift left of a constant amount into a multiply. 3745 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3746 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3747 3748 // If the shift count is not less than the bitwidth, the result of 3749 // the shift is undefined. Don't try to analyze it, because the 3750 // resolution chosen here may differ from the resolution chosen in 3751 // other parts of the compiler. 3752 if (SA->getValue().uge(BitWidth)) 3753 break; 3754 3755 Constant *X = ConstantInt::get(getContext(), 3756 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3757 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3758 } 3759 break; 3760 3761 case Instruction::LShr: 3762 // Turn logical shift right of a constant into a unsigned divide. 3763 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3764 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3765 3766 // If the shift count is not less than the bitwidth, the result of 3767 // the shift is undefined. Don't try to analyze it, because the 3768 // resolution chosen here may differ from the resolution chosen in 3769 // other parts of the compiler. 3770 if (SA->getValue().uge(BitWidth)) 3771 break; 3772 3773 Constant *X = ConstantInt::get(getContext(), 3774 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3775 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3776 } 3777 break; 3778 3779 case Instruction::AShr: 3780 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3781 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3782 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3783 if (L->getOpcode() == Instruction::Shl && 3784 L->getOperand(1) == U->getOperand(1)) { 3785 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3786 3787 // If the shift count is not less than the bitwidth, the result of 3788 // the shift is undefined. Don't try to analyze it, because the 3789 // resolution chosen here may differ from the resolution chosen in 3790 // other parts of the compiler. 3791 if (CI->getValue().uge(BitWidth)) 3792 break; 3793 3794 uint64_t Amt = BitWidth - CI->getZExtValue(); 3795 if (Amt == BitWidth) 3796 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3797 return 3798 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3799 IntegerType::get(getContext(), 3800 Amt)), 3801 U->getType()); 3802 } 3803 break; 3804 3805 case Instruction::Trunc: 3806 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3807 3808 case Instruction::ZExt: 3809 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3810 3811 case Instruction::SExt: 3812 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3813 3814 case Instruction::BitCast: 3815 // BitCasts are no-op casts so we just eliminate the cast. 3816 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3817 return getSCEV(U->getOperand(0)); 3818 break; 3819 3820 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3821 // lead to pointer expressions which cannot safely be expanded to GEPs, 3822 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3823 // simplifying integer expressions. 3824 3825 case Instruction::GetElementPtr: 3826 return createNodeForGEP(cast<GEPOperator>(U)); 3827 3828 case Instruction::PHI: 3829 return createNodeForPHI(cast<PHINode>(U)); 3830 3831 case Instruction::Select: 3832 // This could be a smax or umax that was lowered earlier. 3833 // Try to recover it. 3834 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3835 Value *LHS = ICI->getOperand(0); 3836 Value *RHS = ICI->getOperand(1); 3837 switch (ICI->getPredicate()) { 3838 case ICmpInst::ICMP_SLT: 3839 case ICmpInst::ICMP_SLE: 3840 std::swap(LHS, RHS); 3841 // fall through 3842 case ICmpInst::ICMP_SGT: 3843 case ICmpInst::ICMP_SGE: 3844 // a >s b ? a+x : b+x -> smax(a, b)+x 3845 // a >s b ? b+x : a+x -> smin(a, b)+x 3846 if (LHS->getType() == U->getType()) { 3847 const SCEV *LS = getSCEV(LHS); 3848 const SCEV *RS = getSCEV(RHS); 3849 const SCEV *LA = getSCEV(U->getOperand(1)); 3850 const SCEV *RA = getSCEV(U->getOperand(2)); 3851 const SCEV *LDiff = getMinusSCEV(LA, LS); 3852 const SCEV *RDiff = getMinusSCEV(RA, RS); 3853 if (LDiff == RDiff) 3854 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3855 LDiff = getMinusSCEV(LA, RS); 3856 RDiff = getMinusSCEV(RA, LS); 3857 if (LDiff == RDiff) 3858 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3859 } 3860 break; 3861 case ICmpInst::ICMP_ULT: 3862 case ICmpInst::ICMP_ULE: 3863 std::swap(LHS, RHS); 3864 // fall through 3865 case ICmpInst::ICMP_UGT: 3866 case ICmpInst::ICMP_UGE: 3867 // a >u b ? a+x : b+x -> umax(a, b)+x 3868 // a >u b ? b+x : a+x -> umin(a, b)+x 3869 if (LHS->getType() == U->getType()) { 3870 const SCEV *LS = getSCEV(LHS); 3871 const SCEV *RS = getSCEV(RHS); 3872 const SCEV *LA = getSCEV(U->getOperand(1)); 3873 const SCEV *RA = getSCEV(U->getOperand(2)); 3874 const SCEV *LDiff = getMinusSCEV(LA, LS); 3875 const SCEV *RDiff = getMinusSCEV(RA, RS); 3876 if (LDiff == RDiff) 3877 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3878 LDiff = getMinusSCEV(LA, RS); 3879 RDiff = getMinusSCEV(RA, LS); 3880 if (LDiff == RDiff) 3881 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3882 } 3883 break; 3884 case ICmpInst::ICMP_NE: 3885 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3886 if (LHS->getType() == U->getType() && 3887 isa<ConstantInt>(RHS) && 3888 cast<ConstantInt>(RHS)->isZero()) { 3889 const SCEV *One = getConstant(LHS->getType(), 1); 3890 const SCEV *LS = getSCEV(LHS); 3891 const SCEV *LA = getSCEV(U->getOperand(1)); 3892 const SCEV *RA = getSCEV(U->getOperand(2)); 3893 const SCEV *LDiff = getMinusSCEV(LA, LS); 3894 const SCEV *RDiff = getMinusSCEV(RA, One); 3895 if (LDiff == RDiff) 3896 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3897 } 3898 break; 3899 case ICmpInst::ICMP_EQ: 3900 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3901 if (LHS->getType() == U->getType() && 3902 isa<ConstantInt>(RHS) && 3903 cast<ConstantInt>(RHS)->isZero()) { 3904 const SCEV *One = getConstant(LHS->getType(), 1); 3905 const SCEV *LS = getSCEV(LHS); 3906 const SCEV *LA = getSCEV(U->getOperand(1)); 3907 const SCEV *RA = getSCEV(U->getOperand(2)); 3908 const SCEV *LDiff = getMinusSCEV(LA, One); 3909 const SCEV *RDiff = getMinusSCEV(RA, LS); 3910 if (LDiff == RDiff) 3911 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3912 } 3913 break; 3914 default: 3915 break; 3916 } 3917 } 3918 3919 default: // We cannot analyze this expression. 3920 break; 3921 } 3922 3923 return getUnknown(V); 3924 } 3925 3926 3927 3928 //===----------------------------------------------------------------------===// 3929 // Iteration Count Computation Code 3930 // 3931 3932 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3933 /// normal unsigned value. Returns 0 if the trip count is unknown or not 3934 /// constant. Will also return 0 if the maximum trip count is very large (>= 3935 /// 2^32). 3936 /// 3937 /// This "trip count" assumes that control exits via ExitingBlock. More 3938 /// precisely, it is the number of times that control may reach ExitingBlock 3939 /// before taking the branch. For loops with multiple exits, it may not be the 3940 /// number times that the loop header executes because the loop may exit 3941 /// prematurely via another branch. 3942 unsigned ScalarEvolution:: 3943 getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) { 3944 const SCEVConstant *ExitCount = 3945 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 3946 if (!ExitCount) 3947 return 0; 3948 3949 ConstantInt *ExitConst = ExitCount->getValue(); 3950 3951 // Guard against huge trip counts. 3952 if (ExitConst->getValue().getActiveBits() > 32) 3953 return 0; 3954 3955 // In case of integer overflow, this returns 0, which is correct. 3956 return ((unsigned)ExitConst->getZExtValue()) + 1; 3957 } 3958 3959 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 3960 /// trip count of this loop as a normal unsigned value, if possible. This 3961 /// means that the actual trip count is always a multiple of the returned 3962 /// value (don't forget the trip count could very well be zero as well!). 3963 /// 3964 /// Returns 1 if the trip count is unknown or not guaranteed to be the 3965 /// multiple of a constant (which is also the case if the trip count is simply 3966 /// constant, use getSmallConstantTripCount for that case), Will also return 1 3967 /// if the trip count is very large (>= 2^32). 3968 /// 3969 /// As explained in the comments for getSmallConstantTripCount, this assumes 3970 /// that control exits the loop via ExitingBlock. 3971 unsigned ScalarEvolution:: 3972 getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) { 3973 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 3974 if (ExitCount == getCouldNotCompute()) 3975 return 1; 3976 3977 // Get the trip count from the BE count by adding 1. 3978 const SCEV *TCMul = getAddExpr(ExitCount, 3979 getConstant(ExitCount->getType(), 1)); 3980 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 3981 // to factor simple cases. 3982 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 3983 TCMul = Mul->getOperand(0); 3984 3985 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 3986 if (!MulC) 3987 return 1; 3988 3989 ConstantInt *Result = MulC->getValue(); 3990 3991 // Guard against huge trip counts. 3992 if (!Result || Result->getValue().getActiveBits() > 32) 3993 return 1; 3994 3995 return (unsigned)Result->getZExtValue(); 3996 } 3997 3998 // getExitCount - Get the expression for the number of loop iterations for which 3999 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return 4000 // SCEVCouldNotCompute. 4001 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4002 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4003 } 4004 4005 /// getBackedgeTakenCount - If the specified loop has a predictable 4006 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4007 /// object. The backedge-taken count is the number of times the loop header 4008 /// will be branched to from within the loop. This is one less than the 4009 /// trip count of the loop, since it doesn't count the first iteration, 4010 /// when the header is branched to from outside the loop. 4011 /// 4012 /// Note that it is not valid to call this method on a loop without a 4013 /// loop-invariant backedge-taken count (see 4014 /// hasLoopInvariantBackedgeTakenCount). 4015 /// 4016 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4017 return getBackedgeTakenInfo(L).getExact(this); 4018 } 4019 4020 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4021 /// return the least SCEV value that is known never to be less than the 4022 /// actual backedge taken count. 4023 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4024 return getBackedgeTakenInfo(L).getMax(this); 4025 } 4026 4027 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4028 /// onto the given Worklist. 4029 static void 4030 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4031 BasicBlock *Header = L->getHeader(); 4032 4033 // Push all Loop-header PHIs onto the Worklist stack. 4034 for (BasicBlock::iterator I = Header->begin(); 4035 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4036 Worklist.push_back(PN); 4037 } 4038 4039 const ScalarEvolution::BackedgeTakenInfo & 4040 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4041 // Initially insert an invalid entry for this loop. If the insertion 4042 // succeeds, proceed to actually compute a backedge-taken count and 4043 // update the value. The temporary CouldNotCompute value tells SCEV 4044 // code elsewhere that it shouldn't attempt to request a new 4045 // backedge-taken count, which could result in infinite recursion. 4046 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4047 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4048 if (!Pair.second) 4049 return Pair.first->second; 4050 4051 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4052 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4053 // must be cleared in this scope. 4054 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4055 4056 if (Result.getExact(this) != getCouldNotCompute()) { 4057 assert(isLoopInvariant(Result.getExact(this), L) && 4058 isLoopInvariant(Result.getMax(this), L) && 4059 "Computed backedge-taken count isn't loop invariant for loop!"); 4060 ++NumTripCountsComputed; 4061 } 4062 else if (Result.getMax(this) == getCouldNotCompute() && 4063 isa<PHINode>(L->getHeader()->begin())) { 4064 // Only count loops that have phi nodes as not being computable. 4065 ++NumTripCountsNotComputed; 4066 } 4067 4068 // Now that we know more about the trip count for this loop, forget any 4069 // existing SCEV values for PHI nodes in this loop since they are only 4070 // conservative estimates made without the benefit of trip count 4071 // information. This is similar to the code in forgetLoop, except that 4072 // it handles SCEVUnknown PHI nodes specially. 4073 if (Result.hasAnyInfo()) { 4074 SmallVector<Instruction *, 16> Worklist; 4075 PushLoopPHIs(L, Worklist); 4076 4077 SmallPtrSet<Instruction *, 8> Visited; 4078 while (!Worklist.empty()) { 4079 Instruction *I = Worklist.pop_back_val(); 4080 if (!Visited.insert(I)) continue; 4081 4082 ValueExprMapType::iterator It = 4083 ValueExprMap.find(static_cast<Value *>(I)); 4084 if (It != ValueExprMap.end()) { 4085 const SCEV *Old = It->second; 4086 4087 // SCEVUnknown for a PHI either means that it has an unrecognized 4088 // structure, or it's a PHI that's in the progress of being computed 4089 // by createNodeForPHI. In the former case, additional loop trip 4090 // count information isn't going to change anything. In the later 4091 // case, createNodeForPHI will perform the necessary updates on its 4092 // own when it gets to that point. 4093 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4094 forgetMemoizedResults(Old); 4095 ValueExprMap.erase(It); 4096 } 4097 if (PHINode *PN = dyn_cast<PHINode>(I)) 4098 ConstantEvolutionLoopExitValue.erase(PN); 4099 } 4100 4101 PushDefUseChildren(I, Worklist); 4102 } 4103 } 4104 4105 // Re-lookup the insert position, since the call to 4106 // ComputeBackedgeTakenCount above could result in a 4107 // recusive call to getBackedgeTakenInfo (on a different 4108 // loop), which would invalidate the iterator computed 4109 // earlier. 4110 return BackedgeTakenCounts.find(L)->second = Result; 4111 } 4112 4113 /// forgetLoop - This method should be called by the client when it has 4114 /// changed a loop in a way that may effect ScalarEvolution's ability to 4115 /// compute a trip count, or if the loop is deleted. 4116 void ScalarEvolution::forgetLoop(const Loop *L) { 4117 // Drop any stored trip count value. 4118 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4119 BackedgeTakenCounts.find(L); 4120 if (BTCPos != BackedgeTakenCounts.end()) { 4121 BTCPos->second.clear(); 4122 BackedgeTakenCounts.erase(BTCPos); 4123 } 4124 4125 // Drop information about expressions based on loop-header PHIs. 4126 SmallVector<Instruction *, 16> Worklist; 4127 PushLoopPHIs(L, Worklist); 4128 4129 SmallPtrSet<Instruction *, 8> Visited; 4130 while (!Worklist.empty()) { 4131 Instruction *I = Worklist.pop_back_val(); 4132 if (!Visited.insert(I)) continue; 4133 4134 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 4135 if (It != ValueExprMap.end()) { 4136 forgetMemoizedResults(It->second); 4137 ValueExprMap.erase(It); 4138 if (PHINode *PN = dyn_cast<PHINode>(I)) 4139 ConstantEvolutionLoopExitValue.erase(PN); 4140 } 4141 4142 PushDefUseChildren(I, Worklist); 4143 } 4144 4145 // Forget all contained loops too, to avoid dangling entries in the 4146 // ValuesAtScopes map. 4147 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4148 forgetLoop(*I); 4149 } 4150 4151 /// forgetValue - This method should be called by the client when it has 4152 /// changed a value in a way that may effect its value, or which may 4153 /// disconnect it from a def-use chain linking it to a loop. 4154 void ScalarEvolution::forgetValue(Value *V) { 4155 Instruction *I = dyn_cast<Instruction>(V); 4156 if (!I) return; 4157 4158 // Drop information about expressions based on loop-header PHIs. 4159 SmallVector<Instruction *, 16> Worklist; 4160 Worklist.push_back(I); 4161 4162 SmallPtrSet<Instruction *, 8> Visited; 4163 while (!Worklist.empty()) { 4164 I = Worklist.pop_back_val(); 4165 if (!Visited.insert(I)) continue; 4166 4167 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 4168 if (It != ValueExprMap.end()) { 4169 forgetMemoizedResults(It->second); 4170 ValueExprMap.erase(It); 4171 if (PHINode *PN = dyn_cast<PHINode>(I)) 4172 ConstantEvolutionLoopExitValue.erase(PN); 4173 } 4174 4175 PushDefUseChildren(I, Worklist); 4176 } 4177 } 4178 4179 /// getExact - Get the exact loop backedge taken count considering all loop 4180 /// exits. A computable result can only be return for loops with a single exit. 4181 /// Returning the minimum taken count among all exits is incorrect because one 4182 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4183 /// the limit of each loop test is never skipped. This is a valid assumption as 4184 /// long as the loop exits via that test. For precise results, it is the 4185 /// caller's responsibility to specify the relevant loop exit using 4186 /// getExact(ExitingBlock, SE). 4187 const SCEV * 4188 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4189 // If any exits were not computable, the loop is not computable. 4190 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4191 4192 // We need exactly one computable exit. 4193 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4194 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4195 4196 const SCEV *BECount = 0; 4197 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4198 ENT != 0; ENT = ENT->getNextExit()) { 4199 4200 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4201 4202 if (!BECount) 4203 BECount = ENT->ExactNotTaken; 4204 else if (BECount != ENT->ExactNotTaken) 4205 return SE->getCouldNotCompute(); 4206 } 4207 assert(BECount && "Invalid not taken count for loop exit"); 4208 return BECount; 4209 } 4210 4211 /// getExact - Get the exact not taken count for this loop exit. 4212 const SCEV * 4213 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4214 ScalarEvolution *SE) const { 4215 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4216 ENT != 0; ENT = ENT->getNextExit()) { 4217 4218 if (ENT->ExitingBlock == ExitingBlock) 4219 return ENT->ExactNotTaken; 4220 } 4221 return SE->getCouldNotCompute(); 4222 } 4223 4224 /// getMax - Get the max backedge taken count for the loop. 4225 const SCEV * 4226 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4227 return Max ? Max : SE->getCouldNotCompute(); 4228 } 4229 4230 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4231 /// computable exit into a persistent ExitNotTakenInfo array. 4232 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4233 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4234 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4235 4236 if (!Complete) 4237 ExitNotTaken.setIncomplete(); 4238 4239 unsigned NumExits = ExitCounts.size(); 4240 if (NumExits == 0) return; 4241 4242 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4243 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4244 if (NumExits == 1) return; 4245 4246 // Handle the rare case of multiple computable exits. 4247 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4248 4249 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4250 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4251 PrevENT->setNextExit(ENT); 4252 ENT->ExitingBlock = ExitCounts[i].first; 4253 ENT->ExactNotTaken = ExitCounts[i].second; 4254 } 4255 } 4256 4257 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4258 void ScalarEvolution::BackedgeTakenInfo::clear() { 4259 ExitNotTaken.ExitingBlock = 0; 4260 ExitNotTaken.ExactNotTaken = 0; 4261 delete[] ExitNotTaken.getNextExit(); 4262 } 4263 4264 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4265 /// of the specified loop will execute. 4266 ScalarEvolution::BackedgeTakenInfo 4267 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4268 SmallVector<BasicBlock *, 8> ExitingBlocks; 4269 L->getExitingBlocks(ExitingBlocks); 4270 4271 // Examine all exits and pick the most conservative values. 4272 const SCEV *MaxBECount = getCouldNotCompute(); 4273 bool CouldComputeBECount = true; 4274 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4275 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4276 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4277 if (EL.Exact == getCouldNotCompute()) 4278 // We couldn't compute an exact value for this exit, so 4279 // we won't be able to compute an exact value for the loop. 4280 CouldComputeBECount = false; 4281 else 4282 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4283 4284 if (MaxBECount == getCouldNotCompute()) 4285 MaxBECount = EL.Max; 4286 else if (EL.Max != getCouldNotCompute()) { 4287 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4288 // skip some loop tests. Taking the max over the exits is sufficiently 4289 // conservative. TODO: We could do better taking into consideration 4290 // that (1) the loop has unit stride (2) the last loop test is 4291 // less-than/greater-than (3) any loop test is less-than/greater-than AND 4292 // falls-through some constant times less then the other tests. 4293 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4294 } 4295 } 4296 4297 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4298 } 4299 4300 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4301 /// loop will execute if it exits via the specified block. 4302 ScalarEvolution::ExitLimit 4303 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4304 4305 // Okay, we've chosen an exiting block. See what condition causes us to 4306 // exit at this block. 4307 // 4308 // FIXME: we should be able to handle switch instructions (with a single exit) 4309 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4310 if (ExitBr == 0) return getCouldNotCompute(); 4311 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4312 4313 // At this point, we know we have a conditional branch that determines whether 4314 // the loop is exited. However, we don't know if the branch is executed each 4315 // time through the loop. If not, then the execution count of the branch will 4316 // not be equal to the trip count of the loop. 4317 // 4318 // Currently we check for this by checking to see if the Exit branch goes to 4319 // the loop header. If so, we know it will always execute the same number of 4320 // times as the loop. We also handle the case where the exit block *is* the 4321 // loop header. This is common for un-rotated loops. 4322 // 4323 // If both of those tests fail, walk up the unique predecessor chain to the 4324 // header, stopping if there is an edge that doesn't exit the loop. If the 4325 // header is reached, the execution count of the branch will be equal to the 4326 // trip count of the loop. 4327 // 4328 // More extensive analysis could be done to handle more cases here. 4329 // 4330 if (ExitBr->getSuccessor(0) != L->getHeader() && 4331 ExitBr->getSuccessor(1) != L->getHeader() && 4332 ExitBr->getParent() != L->getHeader()) { 4333 // The simple checks failed, try climbing the unique predecessor chain 4334 // up to the header. 4335 bool Ok = false; 4336 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4337 BasicBlock *Pred = BB->getUniquePredecessor(); 4338 if (!Pred) 4339 return getCouldNotCompute(); 4340 TerminatorInst *PredTerm = Pred->getTerminator(); 4341 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4342 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4343 if (PredSucc == BB) 4344 continue; 4345 // If the predecessor has a successor that isn't BB and isn't 4346 // outside the loop, assume the worst. 4347 if (L->contains(PredSucc)) 4348 return getCouldNotCompute(); 4349 } 4350 if (Pred == L->getHeader()) { 4351 Ok = true; 4352 break; 4353 } 4354 BB = Pred; 4355 } 4356 if (!Ok) 4357 return getCouldNotCompute(); 4358 } 4359 4360 // Proceed to the next level to examine the exit condition expression. 4361 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4362 ExitBr->getSuccessor(0), 4363 ExitBr->getSuccessor(1)); 4364 } 4365 4366 /// ComputeExitLimitFromCond - Compute the number of times the 4367 /// backedge of the specified loop will execute if its exit condition 4368 /// were a conditional branch of ExitCond, TBB, and FBB. 4369 ScalarEvolution::ExitLimit 4370 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4371 Value *ExitCond, 4372 BasicBlock *TBB, 4373 BasicBlock *FBB) { 4374 // Check if the controlling expression for this loop is an And or Or. 4375 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4376 if (BO->getOpcode() == Instruction::And) { 4377 // Recurse on the operands of the and. 4378 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4379 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4380 const SCEV *BECount = getCouldNotCompute(); 4381 const SCEV *MaxBECount = getCouldNotCompute(); 4382 if (L->contains(TBB)) { 4383 // Both conditions must be true for the loop to continue executing. 4384 // Choose the less conservative count. 4385 if (EL0.Exact == getCouldNotCompute() || 4386 EL1.Exact == getCouldNotCompute()) 4387 BECount = getCouldNotCompute(); 4388 else 4389 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4390 if (EL0.Max == getCouldNotCompute()) 4391 MaxBECount = EL1.Max; 4392 else if (EL1.Max == getCouldNotCompute()) 4393 MaxBECount = EL0.Max; 4394 else 4395 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4396 } else { 4397 // Both conditions must be true at the same time for the loop to exit. 4398 // For now, be conservative. 4399 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4400 if (EL0.Max == EL1.Max) 4401 MaxBECount = EL0.Max; 4402 if (EL0.Exact == EL1.Exact) 4403 BECount = EL0.Exact; 4404 } 4405 4406 return ExitLimit(BECount, MaxBECount); 4407 } 4408 if (BO->getOpcode() == Instruction::Or) { 4409 // Recurse on the operands of the or. 4410 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4411 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4412 const SCEV *BECount = getCouldNotCompute(); 4413 const SCEV *MaxBECount = getCouldNotCompute(); 4414 if (L->contains(FBB)) { 4415 // Both conditions must be false for the loop to continue executing. 4416 // Choose the less conservative count. 4417 if (EL0.Exact == getCouldNotCompute() || 4418 EL1.Exact == getCouldNotCompute()) 4419 BECount = getCouldNotCompute(); 4420 else 4421 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4422 if (EL0.Max == getCouldNotCompute()) 4423 MaxBECount = EL1.Max; 4424 else if (EL1.Max == getCouldNotCompute()) 4425 MaxBECount = EL0.Max; 4426 else 4427 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4428 } else { 4429 // Both conditions must be false at the same time for the loop to exit. 4430 // For now, be conservative. 4431 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4432 if (EL0.Max == EL1.Max) 4433 MaxBECount = EL0.Max; 4434 if (EL0.Exact == EL1.Exact) 4435 BECount = EL0.Exact; 4436 } 4437 4438 return ExitLimit(BECount, MaxBECount); 4439 } 4440 } 4441 4442 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4443 // Proceed to the next level to examine the icmp. 4444 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4445 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB); 4446 4447 // Check for a constant condition. These are normally stripped out by 4448 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4449 // preserve the CFG and is temporarily leaving constant conditions 4450 // in place. 4451 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4452 if (L->contains(FBB) == !CI->getZExtValue()) 4453 // The backedge is always taken. 4454 return getCouldNotCompute(); 4455 else 4456 // The backedge is never taken. 4457 return getConstant(CI->getType(), 0); 4458 } 4459 4460 // If it's not an integer or pointer comparison then compute it the hard way. 4461 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4462 } 4463 4464 /// ComputeExitLimitFromICmp - Compute the number of times the 4465 /// backedge of the specified loop will execute if its exit condition 4466 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4467 ScalarEvolution::ExitLimit 4468 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4469 ICmpInst *ExitCond, 4470 BasicBlock *TBB, 4471 BasicBlock *FBB) { 4472 4473 // If the condition was exit on true, convert the condition to exit on false 4474 ICmpInst::Predicate Cond; 4475 if (!L->contains(FBB)) 4476 Cond = ExitCond->getPredicate(); 4477 else 4478 Cond = ExitCond->getInversePredicate(); 4479 4480 // Handle common loops like: for (X = "string"; *X; ++X) 4481 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4482 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4483 ExitLimit ItCnt = 4484 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4485 if (ItCnt.hasAnyInfo()) 4486 return ItCnt; 4487 } 4488 4489 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4490 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4491 4492 // Try to evaluate any dependencies out of the loop. 4493 LHS = getSCEVAtScope(LHS, L); 4494 RHS = getSCEVAtScope(RHS, L); 4495 4496 // At this point, we would like to compute how many iterations of the 4497 // loop the predicate will return true for these inputs. 4498 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4499 // If there is a loop-invariant, force it into the RHS. 4500 std::swap(LHS, RHS); 4501 Cond = ICmpInst::getSwappedPredicate(Cond); 4502 } 4503 4504 // Simplify the operands before analyzing them. 4505 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4506 4507 // If we have a comparison of a chrec against a constant, try to use value 4508 // ranges to answer this query. 4509 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4510 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4511 if (AddRec->getLoop() == L) { 4512 // Form the constant range. 4513 ConstantRange CompRange( 4514 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4515 4516 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4517 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4518 } 4519 4520 switch (Cond) { 4521 case ICmpInst::ICMP_NE: { // while (X != Y) 4522 // Convert to: while (X-Y != 0) 4523 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4524 if (EL.hasAnyInfo()) return EL; 4525 break; 4526 } 4527 case ICmpInst::ICMP_EQ: { // while (X == Y) 4528 // Convert to: while (X-Y == 0) 4529 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4530 if (EL.hasAnyInfo()) return EL; 4531 break; 4532 } 4533 case ICmpInst::ICMP_SLT: { 4534 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true); 4535 if (EL.hasAnyInfo()) return EL; 4536 break; 4537 } 4538 case ICmpInst::ICMP_SGT: { 4539 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4540 getNotSCEV(RHS), L, true); 4541 if (EL.hasAnyInfo()) return EL; 4542 break; 4543 } 4544 case ICmpInst::ICMP_ULT: { 4545 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false); 4546 if (EL.hasAnyInfo()) return EL; 4547 break; 4548 } 4549 case ICmpInst::ICMP_UGT: { 4550 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4551 getNotSCEV(RHS), L, false); 4552 if (EL.hasAnyInfo()) return EL; 4553 break; 4554 } 4555 default: 4556 #if 0 4557 dbgs() << "ComputeBackedgeTakenCount "; 4558 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4559 dbgs() << "[unsigned] "; 4560 dbgs() << *LHS << " " 4561 << Instruction::getOpcodeName(Instruction::ICmp) 4562 << " " << *RHS << "\n"; 4563 #endif 4564 break; 4565 } 4566 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4567 } 4568 4569 static ConstantInt * 4570 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4571 ScalarEvolution &SE) { 4572 const SCEV *InVal = SE.getConstant(C); 4573 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4574 assert(isa<SCEVConstant>(Val) && 4575 "Evaluation of SCEV at constant didn't fold correctly?"); 4576 return cast<SCEVConstant>(Val)->getValue(); 4577 } 4578 4579 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4580 /// 'icmp op load X, cst', try to see if we can compute the backedge 4581 /// execution count. 4582 ScalarEvolution::ExitLimit 4583 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4584 LoadInst *LI, 4585 Constant *RHS, 4586 const Loop *L, 4587 ICmpInst::Predicate predicate) { 4588 4589 if (LI->isVolatile()) return getCouldNotCompute(); 4590 4591 // Check to see if the loaded pointer is a getelementptr of a global. 4592 // TODO: Use SCEV instead of manually grubbing with GEPs. 4593 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4594 if (!GEP) return getCouldNotCompute(); 4595 4596 // Make sure that it is really a constant global we are gepping, with an 4597 // initializer, and make sure the first IDX is really 0. 4598 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4599 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4600 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4601 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4602 return getCouldNotCompute(); 4603 4604 // Okay, we allow one non-constant index into the GEP instruction. 4605 Value *VarIdx = 0; 4606 std::vector<Constant*> Indexes; 4607 unsigned VarIdxNum = 0; 4608 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4609 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4610 Indexes.push_back(CI); 4611 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4612 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4613 VarIdx = GEP->getOperand(i); 4614 VarIdxNum = i-2; 4615 Indexes.push_back(0); 4616 } 4617 4618 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4619 if (!VarIdx) 4620 return getCouldNotCompute(); 4621 4622 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4623 // Check to see if X is a loop variant variable value now. 4624 const SCEV *Idx = getSCEV(VarIdx); 4625 Idx = getSCEVAtScope(Idx, L); 4626 4627 // We can only recognize very limited forms of loop index expressions, in 4628 // particular, only affine AddRec's like {C1,+,C2}. 4629 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4630 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4631 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4632 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4633 return getCouldNotCompute(); 4634 4635 unsigned MaxSteps = MaxBruteForceIterations; 4636 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4637 ConstantInt *ItCst = ConstantInt::get( 4638 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4639 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4640 4641 // Form the GEP offset. 4642 Indexes[VarIdxNum] = Val; 4643 4644 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4645 Indexes); 4646 if (Result == 0) break; // Cannot compute! 4647 4648 // Evaluate the condition for this iteration. 4649 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4650 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4651 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4652 #if 0 4653 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4654 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4655 << "***\n"; 4656 #endif 4657 ++NumArrayLenItCounts; 4658 return getConstant(ItCst); // Found terminating iteration! 4659 } 4660 } 4661 return getCouldNotCompute(); 4662 } 4663 4664 4665 /// CanConstantFold - Return true if we can constant fold an instruction of the 4666 /// specified type, assuming that all operands were constants. 4667 static bool CanConstantFold(const Instruction *I) { 4668 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4669 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4670 isa<LoadInst>(I)) 4671 return true; 4672 4673 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4674 if (const Function *F = CI->getCalledFunction()) 4675 return canConstantFoldCallTo(F); 4676 return false; 4677 } 4678 4679 /// Determine whether this instruction can constant evolve within this loop 4680 /// assuming its operands can all constant evolve. 4681 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4682 // An instruction outside of the loop can't be derived from a loop PHI. 4683 if (!L->contains(I)) return false; 4684 4685 if (isa<PHINode>(I)) { 4686 if (L->getHeader() == I->getParent()) 4687 return true; 4688 else 4689 // We don't currently keep track of the control flow needed to evaluate 4690 // PHIs, so we cannot handle PHIs inside of loops. 4691 return false; 4692 } 4693 4694 // If we won't be able to constant fold this expression even if the operands 4695 // are constants, bail early. 4696 return CanConstantFold(I); 4697 } 4698 4699 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4700 /// recursing through each instruction operand until reaching a loop header phi. 4701 static PHINode * 4702 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4703 DenseMap<Instruction *, PHINode *> &PHIMap) { 4704 4705 // Otherwise, we can evaluate this instruction if all of its operands are 4706 // constant or derived from a PHI node themselves. 4707 PHINode *PHI = 0; 4708 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4709 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4710 4711 if (isa<Constant>(*OpI)) continue; 4712 4713 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4714 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4715 4716 PHINode *P = dyn_cast<PHINode>(OpInst); 4717 if (!P) 4718 // If this operand is already visited, reuse the prior result. 4719 // We may have P != PHI if this is the deepest point at which the 4720 // inconsistent paths meet. 4721 P = PHIMap.lookup(OpInst); 4722 if (!P) { 4723 // Recurse and memoize the results, whether a phi is found or not. 4724 // This recursive call invalidates pointers into PHIMap. 4725 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4726 PHIMap[OpInst] = P; 4727 } 4728 if (P == 0) return 0; // Not evolving from PHI 4729 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4730 PHI = P; 4731 } 4732 // This is a expression evolving from a constant PHI! 4733 return PHI; 4734 } 4735 4736 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4737 /// in the loop that V is derived from. We allow arbitrary operations along the 4738 /// way, but the operands of an operation must either be constants or a value 4739 /// derived from a constant PHI. If this expression does not fit with these 4740 /// constraints, return null. 4741 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4742 Instruction *I = dyn_cast<Instruction>(V); 4743 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4744 4745 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4746 return PN; 4747 } 4748 4749 // Record non-constant instructions contained by the loop. 4750 DenseMap<Instruction *, PHINode *> PHIMap; 4751 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4752 } 4753 4754 /// EvaluateExpression - Given an expression that passes the 4755 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4756 /// in the loop has the value PHIVal. If we can't fold this expression for some 4757 /// reason, return null. 4758 static Constant *EvaluateExpression(Value *V, const Loop *L, 4759 DenseMap<Instruction *, Constant *> &Vals, 4760 const TargetData *TD, 4761 const TargetLibraryInfo *TLI) { 4762 // Convenient constant check, but redundant for recursive calls. 4763 if (Constant *C = dyn_cast<Constant>(V)) return C; 4764 Instruction *I = dyn_cast<Instruction>(V); 4765 if (!I) return 0; 4766 4767 if (Constant *C = Vals.lookup(I)) return C; 4768 4769 // An instruction inside the loop depends on a value outside the loop that we 4770 // weren't given a mapping for, or a value such as a call inside the loop. 4771 if (!canConstantEvolve(I, L)) return 0; 4772 4773 // An unmapped PHI can be due to a branch or another loop inside this loop, 4774 // or due to this not being the initial iteration through a loop where we 4775 // couldn't compute the evolution of this particular PHI last time. 4776 if (isa<PHINode>(I)) return 0; 4777 4778 std::vector<Constant*> Operands(I->getNumOperands()); 4779 4780 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4781 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4782 if (!Operand) { 4783 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4784 if (!Operands[i]) return 0; 4785 continue; 4786 } 4787 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI); 4788 Vals[Operand] = C; 4789 if (!C) return 0; 4790 Operands[i] = C; 4791 } 4792 4793 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4794 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4795 Operands[1], TD, TLI); 4796 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4797 if (!LI->isVolatile()) 4798 return ConstantFoldLoadFromConstPtr(Operands[0], TD); 4799 } 4800 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD, 4801 TLI); 4802 } 4803 4804 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4805 /// in the header of its containing loop, we know the loop executes a 4806 /// constant number of times, and the PHI node is just a recurrence 4807 /// involving constants, fold it. 4808 Constant * 4809 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4810 const APInt &BEs, 4811 const Loop *L) { 4812 DenseMap<PHINode*, Constant*>::const_iterator I = 4813 ConstantEvolutionLoopExitValue.find(PN); 4814 if (I != ConstantEvolutionLoopExitValue.end()) 4815 return I->second; 4816 4817 if (BEs.ugt(MaxBruteForceIterations)) 4818 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4819 4820 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4821 4822 DenseMap<Instruction *, Constant *> CurrentIterVals; 4823 BasicBlock *Header = L->getHeader(); 4824 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4825 4826 // Since the loop is canonicalized, the PHI node must have two entries. One 4827 // entry must be a constant (coming in from outside of the loop), and the 4828 // second must be derived from the same PHI. 4829 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4830 PHINode *PHI = 0; 4831 for (BasicBlock::iterator I = Header->begin(); 4832 (PHI = dyn_cast<PHINode>(I)); ++I) { 4833 Constant *StartCST = 4834 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4835 if (StartCST == 0) continue; 4836 CurrentIterVals[PHI] = StartCST; 4837 } 4838 if (!CurrentIterVals.count(PN)) 4839 return RetVal = 0; 4840 4841 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4842 4843 // Execute the loop symbolically to determine the exit value. 4844 if (BEs.getActiveBits() >= 32) 4845 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4846 4847 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4848 unsigned IterationNum = 0; 4849 for (; ; ++IterationNum) { 4850 if (IterationNum == NumIterations) 4851 return RetVal = CurrentIterVals[PN]; // Got exit value! 4852 4853 // Compute the value of the PHIs for the next iteration. 4854 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 4855 DenseMap<Instruction *, Constant *> NextIterVals; 4856 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, 4857 TLI); 4858 if (NextPHI == 0) 4859 return 0; // Couldn't evaluate! 4860 NextIterVals[PN] = NextPHI; 4861 4862 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 4863 4864 // Also evaluate the other PHI nodes. However, we don't get to stop if we 4865 // cease to be able to evaluate one of them or if they stop evolving, 4866 // because that doesn't necessarily prevent us from computing PN. 4867 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 4868 for (DenseMap<Instruction *, Constant *>::const_iterator 4869 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4870 PHINode *PHI = dyn_cast<PHINode>(I->first); 4871 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 4872 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 4873 } 4874 // We use two distinct loops because EvaluateExpression may invalidate any 4875 // iterators into CurrentIterVals. 4876 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 4877 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 4878 PHINode *PHI = I->first; 4879 Constant *&NextPHI = NextIterVals[PHI]; 4880 if (!NextPHI) { // Not already computed. 4881 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4882 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4883 } 4884 if (NextPHI != I->second) 4885 StoppedEvolving = false; 4886 } 4887 4888 // If all entries in CurrentIterVals == NextIterVals then we can stop 4889 // iterating, the loop can't continue to change. 4890 if (StoppedEvolving) 4891 return RetVal = CurrentIterVals[PN]; 4892 4893 CurrentIterVals.swap(NextIterVals); 4894 } 4895 } 4896 4897 /// ComputeExitCountExhaustively - If the loop is known to execute a 4898 /// constant number of times (the condition evolves only from constants), 4899 /// try to evaluate a few iterations of the loop until we get the exit 4900 /// condition gets a value of ExitWhen (true or false). If we cannot 4901 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4902 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4903 Value *Cond, 4904 bool ExitWhen) { 4905 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4906 if (PN == 0) return getCouldNotCompute(); 4907 4908 // If the loop is canonicalized, the PHI will have exactly two entries. 4909 // That's the only form we support here. 4910 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4911 4912 DenseMap<Instruction *, Constant *> CurrentIterVals; 4913 BasicBlock *Header = L->getHeader(); 4914 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4915 4916 // One entry must be a constant (coming in from outside of the loop), and the 4917 // second must be derived from the same PHI. 4918 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4919 PHINode *PHI = 0; 4920 for (BasicBlock::iterator I = Header->begin(); 4921 (PHI = dyn_cast<PHINode>(I)); ++I) { 4922 Constant *StartCST = 4923 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4924 if (StartCST == 0) continue; 4925 CurrentIterVals[PHI] = StartCST; 4926 } 4927 if (!CurrentIterVals.count(PN)) 4928 return getCouldNotCompute(); 4929 4930 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4931 // the loop symbolically to determine when the condition gets a value of 4932 // "ExitWhen". 4933 4934 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4935 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 4936 ConstantInt *CondVal = 4937 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 4938 TD, TLI)); 4939 4940 // Couldn't symbolically evaluate. 4941 if (!CondVal) return getCouldNotCompute(); 4942 4943 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4944 ++NumBruteForceTripCountsComputed; 4945 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4946 } 4947 4948 // Update all the PHI nodes for the next iteration. 4949 DenseMap<Instruction *, Constant *> NextIterVals; 4950 4951 // Create a list of which PHIs we need to compute. We want to do this before 4952 // calling EvaluateExpression on them because that may invalidate iterators 4953 // into CurrentIterVals. 4954 SmallVector<PHINode *, 8> PHIsToCompute; 4955 for (DenseMap<Instruction *, Constant *>::const_iterator 4956 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4957 PHINode *PHI = dyn_cast<PHINode>(I->first); 4958 if (!PHI || PHI->getParent() != Header) continue; 4959 PHIsToCompute.push_back(PHI); 4960 } 4961 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 4962 E = PHIsToCompute.end(); I != E; ++I) { 4963 PHINode *PHI = *I; 4964 Constant *&NextPHI = NextIterVals[PHI]; 4965 if (NextPHI) continue; // Already computed! 4966 4967 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4968 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4969 } 4970 CurrentIterVals.swap(NextIterVals); 4971 } 4972 4973 // Too many iterations were needed to evaluate. 4974 return getCouldNotCompute(); 4975 } 4976 4977 /// getSCEVAtScope - Return a SCEV expression for the specified value 4978 /// at the specified scope in the program. The L value specifies a loop 4979 /// nest to evaluate the expression at, where null is the top-level or a 4980 /// specified loop is immediately inside of the loop. 4981 /// 4982 /// This method can be used to compute the exit value for a variable defined 4983 /// in a loop by querying what the value will hold in the parent loop. 4984 /// 4985 /// In the case that a relevant loop exit value cannot be computed, the 4986 /// original value V is returned. 4987 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4988 // Check to see if we've folded this expression at this loop before. 4989 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4990 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4991 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4992 if (!Pair.second) 4993 return Pair.first->second ? Pair.first->second : V; 4994 4995 // Otherwise compute it. 4996 const SCEV *C = computeSCEVAtScope(V, L); 4997 ValuesAtScopes[V][L] = C; 4998 return C; 4999 } 5000 5001 /// This builds up a Constant using the ConstantExpr interface. That way, we 5002 /// will return Constants for objects which aren't represented by a 5003 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5004 /// Returns NULL if the SCEV isn't representable as a Constant. 5005 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5006 switch (V->getSCEVType()) { 5007 default: // TODO: smax, umax. 5008 case scCouldNotCompute: 5009 case scAddRecExpr: 5010 break; 5011 case scConstant: 5012 return cast<SCEVConstant>(V)->getValue(); 5013 case scUnknown: 5014 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5015 case scSignExtend: { 5016 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5017 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5018 return ConstantExpr::getSExt(CastOp, SS->getType()); 5019 break; 5020 } 5021 case scZeroExtend: { 5022 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5023 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5024 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5025 break; 5026 } 5027 case scTruncate: { 5028 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5029 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5030 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5031 break; 5032 } 5033 case scAddExpr: { 5034 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5035 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5036 if (C->getType()->isPointerTy()) 5037 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext())); 5038 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5039 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5040 if (!C2) return 0; 5041 5042 // First pointer! 5043 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5044 std::swap(C, C2); 5045 // The offsets have been converted to bytes. We can add bytes to an 5046 // i8* by GEP with the byte count in the first index. 5047 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext())); 5048 } 5049 5050 // Don't bother trying to sum two pointers. We probably can't 5051 // statically compute a load that results from it anyway. 5052 if (C2->getType()->isPointerTy()) 5053 return 0; 5054 5055 if (C->getType()->isPointerTy()) { 5056 if (cast<PointerType>(C->getType())->getElementType()->isStructTy()) 5057 C2 = ConstantExpr::getIntegerCast( 5058 C2, Type::getInt32Ty(C->getContext()), true); 5059 C = ConstantExpr::getGetElementPtr(C, C2); 5060 } else 5061 C = ConstantExpr::getAdd(C, C2); 5062 } 5063 return C; 5064 } 5065 break; 5066 } 5067 case scMulExpr: { 5068 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5069 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5070 // Don't bother with pointers at all. 5071 if (C->getType()->isPointerTy()) return 0; 5072 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5073 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5074 if (!C2 || C2->getType()->isPointerTy()) return 0; 5075 C = ConstantExpr::getMul(C, C2); 5076 } 5077 return C; 5078 } 5079 break; 5080 } 5081 case scUDivExpr: { 5082 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5083 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5084 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5085 if (LHS->getType() == RHS->getType()) 5086 return ConstantExpr::getUDiv(LHS, RHS); 5087 break; 5088 } 5089 } 5090 return 0; 5091 } 5092 5093 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5094 if (isa<SCEVConstant>(V)) return V; 5095 5096 // If this instruction is evolved from a constant-evolving PHI, compute the 5097 // exit value from the loop without using SCEVs. 5098 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5099 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5100 const Loop *LI = (*this->LI)[I->getParent()]; 5101 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5102 if (PHINode *PN = dyn_cast<PHINode>(I)) 5103 if (PN->getParent() == LI->getHeader()) { 5104 // Okay, there is no closed form solution for the PHI node. Check 5105 // to see if the loop that contains it has a known backedge-taken 5106 // count. If so, we may be able to force computation of the exit 5107 // value. 5108 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5109 if (const SCEVConstant *BTCC = 5110 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5111 // Okay, we know how many times the containing loop executes. If 5112 // this is a constant evolving PHI node, get the final value at 5113 // the specified iteration number. 5114 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5115 BTCC->getValue()->getValue(), 5116 LI); 5117 if (RV) return getSCEV(RV); 5118 } 5119 } 5120 5121 // Okay, this is an expression that we cannot symbolically evaluate 5122 // into a SCEV. Check to see if it's possible to symbolically evaluate 5123 // the arguments into constants, and if so, try to constant propagate the 5124 // result. This is particularly useful for computing loop exit values. 5125 if (CanConstantFold(I)) { 5126 SmallVector<Constant *, 4> Operands; 5127 bool MadeImprovement = false; 5128 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5129 Value *Op = I->getOperand(i); 5130 if (Constant *C = dyn_cast<Constant>(Op)) { 5131 Operands.push_back(C); 5132 continue; 5133 } 5134 5135 // If any of the operands is non-constant and if they are 5136 // non-integer and non-pointer, don't even try to analyze them 5137 // with scev techniques. 5138 if (!isSCEVable(Op->getType())) 5139 return V; 5140 5141 const SCEV *OrigV = getSCEV(Op); 5142 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5143 MadeImprovement |= OrigV != OpV; 5144 5145 Constant *C = BuildConstantFromSCEV(OpV); 5146 if (!C) return V; 5147 if (C->getType() != Op->getType()) 5148 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5149 Op->getType(), 5150 false), 5151 C, Op->getType()); 5152 Operands.push_back(C); 5153 } 5154 5155 // Check to see if getSCEVAtScope actually made an improvement. 5156 if (MadeImprovement) { 5157 Constant *C = 0; 5158 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5159 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5160 Operands[0], Operands[1], TD, 5161 TLI); 5162 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5163 if (!LI->isVolatile()) 5164 C = ConstantFoldLoadFromConstPtr(Operands[0], TD); 5165 } else 5166 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5167 Operands, TD, TLI); 5168 if (!C) return V; 5169 return getSCEV(C); 5170 } 5171 } 5172 } 5173 5174 // This is some other type of SCEVUnknown, just return it. 5175 return V; 5176 } 5177 5178 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5179 // Avoid performing the look-up in the common case where the specified 5180 // expression has no loop-variant portions. 5181 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5182 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5183 if (OpAtScope != Comm->getOperand(i)) { 5184 // Okay, at least one of these operands is loop variant but might be 5185 // foldable. Build a new instance of the folded commutative expression. 5186 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5187 Comm->op_begin()+i); 5188 NewOps.push_back(OpAtScope); 5189 5190 for (++i; i != e; ++i) { 5191 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5192 NewOps.push_back(OpAtScope); 5193 } 5194 if (isa<SCEVAddExpr>(Comm)) 5195 return getAddExpr(NewOps); 5196 if (isa<SCEVMulExpr>(Comm)) 5197 return getMulExpr(NewOps); 5198 if (isa<SCEVSMaxExpr>(Comm)) 5199 return getSMaxExpr(NewOps); 5200 if (isa<SCEVUMaxExpr>(Comm)) 5201 return getUMaxExpr(NewOps); 5202 llvm_unreachable("Unknown commutative SCEV type!"); 5203 } 5204 } 5205 // If we got here, all operands are loop invariant. 5206 return Comm; 5207 } 5208 5209 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5210 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5211 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5212 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5213 return Div; // must be loop invariant 5214 return getUDivExpr(LHS, RHS); 5215 } 5216 5217 // If this is a loop recurrence for a loop that does not contain L, then we 5218 // are dealing with the final value computed by the loop. 5219 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5220 // First, attempt to evaluate each operand. 5221 // Avoid performing the look-up in the common case where the specified 5222 // expression has no loop-variant portions. 5223 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5224 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5225 if (OpAtScope == AddRec->getOperand(i)) 5226 continue; 5227 5228 // Okay, at least one of these operands is loop variant but might be 5229 // foldable. Build a new instance of the folded commutative expression. 5230 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5231 AddRec->op_begin()+i); 5232 NewOps.push_back(OpAtScope); 5233 for (++i; i != e; ++i) 5234 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5235 5236 const SCEV *FoldedRec = 5237 getAddRecExpr(NewOps, AddRec->getLoop(), 5238 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5239 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5240 // The addrec may be folded to a nonrecurrence, for example, if the 5241 // induction variable is multiplied by zero after constant folding. Go 5242 // ahead and return the folded value. 5243 if (!AddRec) 5244 return FoldedRec; 5245 break; 5246 } 5247 5248 // If the scope is outside the addrec's loop, evaluate it by using the 5249 // loop exit value of the addrec. 5250 if (!AddRec->getLoop()->contains(L)) { 5251 // To evaluate this recurrence, we need to know how many times the AddRec 5252 // loop iterates. Compute this now. 5253 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5254 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5255 5256 // Then, evaluate the AddRec. 5257 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5258 } 5259 5260 return AddRec; 5261 } 5262 5263 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5264 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5265 if (Op == Cast->getOperand()) 5266 return Cast; // must be loop invariant 5267 return getZeroExtendExpr(Op, Cast->getType()); 5268 } 5269 5270 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5271 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5272 if (Op == Cast->getOperand()) 5273 return Cast; // must be loop invariant 5274 return getSignExtendExpr(Op, Cast->getType()); 5275 } 5276 5277 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5278 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5279 if (Op == Cast->getOperand()) 5280 return Cast; // must be loop invariant 5281 return getTruncateExpr(Op, Cast->getType()); 5282 } 5283 5284 llvm_unreachable("Unknown SCEV type!"); 5285 } 5286 5287 /// getSCEVAtScope - This is a convenience function which does 5288 /// getSCEVAtScope(getSCEV(V), L). 5289 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5290 return getSCEVAtScope(getSCEV(V), L); 5291 } 5292 5293 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5294 /// following equation: 5295 /// 5296 /// A * X = B (mod N) 5297 /// 5298 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5299 /// A and B isn't important. 5300 /// 5301 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5302 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5303 ScalarEvolution &SE) { 5304 uint32_t BW = A.getBitWidth(); 5305 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5306 assert(A != 0 && "A must be non-zero."); 5307 5308 // 1. D = gcd(A, N) 5309 // 5310 // The gcd of A and N may have only one prime factor: 2. The number of 5311 // trailing zeros in A is its multiplicity 5312 uint32_t Mult2 = A.countTrailingZeros(); 5313 // D = 2^Mult2 5314 5315 // 2. Check if B is divisible by D. 5316 // 5317 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5318 // is not less than multiplicity of this prime factor for D. 5319 if (B.countTrailingZeros() < Mult2) 5320 return SE.getCouldNotCompute(); 5321 5322 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5323 // modulo (N / D). 5324 // 5325 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5326 // bit width during computations. 5327 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5328 APInt Mod(BW + 1, 0); 5329 Mod.setBit(BW - Mult2); // Mod = N / D 5330 APInt I = AD.multiplicativeInverse(Mod); 5331 5332 // 4. Compute the minimum unsigned root of the equation: 5333 // I * (B / D) mod (N / D) 5334 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5335 5336 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5337 // bits. 5338 return SE.getConstant(Result.trunc(BW)); 5339 } 5340 5341 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5342 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5343 /// might be the same) or two SCEVCouldNotCompute objects. 5344 /// 5345 static std::pair<const SCEV *,const SCEV *> 5346 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5347 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5348 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5349 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5350 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5351 5352 // We currently can only solve this if the coefficients are constants. 5353 if (!LC || !MC || !NC) { 5354 const SCEV *CNC = SE.getCouldNotCompute(); 5355 return std::make_pair(CNC, CNC); 5356 } 5357 5358 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5359 const APInt &L = LC->getValue()->getValue(); 5360 const APInt &M = MC->getValue()->getValue(); 5361 const APInt &N = NC->getValue()->getValue(); 5362 APInt Two(BitWidth, 2); 5363 APInt Four(BitWidth, 4); 5364 5365 { 5366 using namespace APIntOps; 5367 const APInt& C = L; 5368 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5369 // The B coefficient is M-N/2 5370 APInt B(M); 5371 B -= sdiv(N,Two); 5372 5373 // The A coefficient is N/2 5374 APInt A(N.sdiv(Two)); 5375 5376 // Compute the B^2-4ac term. 5377 APInt SqrtTerm(B); 5378 SqrtTerm *= B; 5379 SqrtTerm -= Four * (A * C); 5380 5381 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5382 // integer value or else APInt::sqrt() will assert. 5383 APInt SqrtVal(SqrtTerm.sqrt()); 5384 5385 // Compute the two solutions for the quadratic formula. 5386 // The divisions must be performed as signed divisions. 5387 APInt NegB(-B); 5388 APInt TwoA(A << 1); 5389 if (TwoA.isMinValue()) { 5390 const SCEV *CNC = SE.getCouldNotCompute(); 5391 return std::make_pair(CNC, CNC); 5392 } 5393 5394 LLVMContext &Context = SE.getContext(); 5395 5396 ConstantInt *Solution1 = 5397 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5398 ConstantInt *Solution2 = 5399 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5400 5401 return std::make_pair(SE.getConstant(Solution1), 5402 SE.getConstant(Solution2)); 5403 } // end APIntOps namespace 5404 } 5405 5406 /// HowFarToZero - Return the number of times a backedge comparing the specified 5407 /// value to zero will execute. If not computable, return CouldNotCompute. 5408 /// 5409 /// This is only used for loops with a "x != y" exit test. The exit condition is 5410 /// now expressed as a single expression, V = x-y. So the exit test is 5411 /// effectively V != 0. We know and take advantage of the fact that this 5412 /// expression only being used in a comparison by zero context. 5413 ScalarEvolution::ExitLimit 5414 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 5415 // If the value is a constant 5416 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5417 // If the value is already zero, the branch will execute zero times. 5418 if (C->getValue()->isZero()) return C; 5419 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5420 } 5421 5422 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5423 if (!AddRec || AddRec->getLoop() != L) 5424 return getCouldNotCompute(); 5425 5426 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5427 // the quadratic equation to solve it. 5428 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5429 std::pair<const SCEV *,const SCEV *> Roots = 5430 SolveQuadraticEquation(AddRec, *this); 5431 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5432 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5433 if (R1 && R2) { 5434 #if 0 5435 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5436 << " sol#2: " << *R2 << "\n"; 5437 #endif 5438 // Pick the smallest positive root value. 5439 if (ConstantInt *CB = 5440 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5441 R1->getValue(), 5442 R2->getValue()))) { 5443 if (CB->getZExtValue() == false) 5444 std::swap(R1, R2); // R1 is the minimum root now. 5445 5446 // We can only use this value if the chrec ends up with an exact zero 5447 // value at this index. When solving for "X*X != 5", for example, we 5448 // should not accept a root of 2. 5449 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5450 if (Val->isZero()) 5451 return R1; // We found a quadratic root! 5452 } 5453 } 5454 return getCouldNotCompute(); 5455 } 5456 5457 // Otherwise we can only handle this if it is affine. 5458 if (!AddRec->isAffine()) 5459 return getCouldNotCompute(); 5460 5461 // If this is an affine expression, the execution count of this branch is 5462 // the minimum unsigned root of the following equation: 5463 // 5464 // Start + Step*N = 0 (mod 2^BW) 5465 // 5466 // equivalent to: 5467 // 5468 // Step*N = -Start (mod 2^BW) 5469 // 5470 // where BW is the common bit width of Start and Step. 5471 5472 // Get the initial value for the loop. 5473 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5474 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5475 5476 // For now we handle only constant steps. 5477 // 5478 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5479 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5480 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5481 // We have not yet seen any such cases. 5482 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5483 if (StepC == 0) 5484 return getCouldNotCompute(); 5485 5486 // For positive steps (counting up until unsigned overflow): 5487 // N = -Start/Step (as unsigned) 5488 // For negative steps (counting down to zero): 5489 // N = Start/-Step 5490 // First compute the unsigned distance from zero in the direction of Step. 5491 bool CountDown = StepC->getValue()->getValue().isNegative(); 5492 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5493 5494 // Handle unitary steps, which cannot wraparound. 5495 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5496 // N = Distance (as unsigned) 5497 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5498 ConstantRange CR = getUnsignedRange(Start); 5499 const SCEV *MaxBECount; 5500 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5501 // When counting up, the worst starting value is 1, not 0. 5502 MaxBECount = CR.getUnsignedMax().isMinValue() 5503 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5504 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5505 else 5506 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5507 : -CR.getUnsignedMin()); 5508 return ExitLimit(Distance, MaxBECount); 5509 } 5510 5511 // If the recurrence is known not to wraparound, unsigned divide computes the 5512 // back edge count. We know that the value will either become zero (and thus 5513 // the loop terminates), that the loop will terminate through some other exit 5514 // condition first, or that the loop has undefined behavior. This means 5515 // we can't "miss" the exit value, even with nonunit stride. 5516 // 5517 // FIXME: Prove that loops always exhibits *acceptable* undefined 5518 // behavior. Loops must exhibit defined behavior until a wrapped value is 5519 // actually used. So the trip count computed by udiv could be smaller than the 5520 // number of well-defined iterations. 5521 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5522 // FIXME: We really want an "isexact" bit for udiv. 5523 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5524 } 5525 // Then, try to solve the above equation provided that Start is constant. 5526 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5527 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5528 -StartC->getValue()->getValue(), 5529 *this); 5530 return getCouldNotCompute(); 5531 } 5532 5533 /// HowFarToNonZero - Return the number of times a backedge checking the 5534 /// specified value for nonzero will execute. If not computable, return 5535 /// CouldNotCompute 5536 ScalarEvolution::ExitLimit 5537 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5538 // Loops that look like: while (X == 0) are very strange indeed. We don't 5539 // handle them yet except for the trivial case. This could be expanded in the 5540 // future as needed. 5541 5542 // If the value is a constant, check to see if it is known to be non-zero 5543 // already. If so, the backedge will execute zero times. 5544 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5545 if (!C->getValue()->isNullValue()) 5546 return getConstant(C->getType(), 0); 5547 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5548 } 5549 5550 // We could implement others, but I really doubt anyone writes loops like 5551 // this, and if they did, they would already be constant folded. 5552 return getCouldNotCompute(); 5553 } 5554 5555 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5556 /// (which may not be an immediate predecessor) which has exactly one 5557 /// successor from which BB is reachable, or null if no such block is 5558 /// found. 5559 /// 5560 std::pair<BasicBlock *, BasicBlock *> 5561 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5562 // If the block has a unique predecessor, then there is no path from the 5563 // predecessor to the block that does not go through the direct edge 5564 // from the predecessor to the block. 5565 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5566 return std::make_pair(Pred, BB); 5567 5568 // A loop's header is defined to be a block that dominates the loop. 5569 // If the header has a unique predecessor outside the loop, it must be 5570 // a block that has exactly one successor that can reach the loop. 5571 if (Loop *L = LI->getLoopFor(BB)) 5572 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5573 5574 return std::pair<BasicBlock *, BasicBlock *>(); 5575 } 5576 5577 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5578 /// testing whether two expressions are equal, however for the purposes of 5579 /// looking for a condition guarding a loop, it can be useful to be a little 5580 /// more general, since a front-end may have replicated the controlling 5581 /// expression. 5582 /// 5583 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5584 // Quick check to see if they are the same SCEV. 5585 if (A == B) return true; 5586 5587 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5588 // two different instructions with the same value. Check for this case. 5589 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5590 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5591 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5592 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5593 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5594 return true; 5595 5596 // Otherwise assume they may have a different value. 5597 return false; 5598 } 5599 5600 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5601 /// predicate Pred. Return true iff any changes were made. 5602 /// 5603 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5604 const SCEV *&LHS, const SCEV *&RHS) { 5605 bool Changed = false; 5606 5607 // Canonicalize a constant to the right side. 5608 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5609 // Check for both operands constant. 5610 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5611 if (ConstantExpr::getICmp(Pred, 5612 LHSC->getValue(), 5613 RHSC->getValue())->isNullValue()) 5614 goto trivially_false; 5615 else 5616 goto trivially_true; 5617 } 5618 // Otherwise swap the operands to put the constant on the right. 5619 std::swap(LHS, RHS); 5620 Pred = ICmpInst::getSwappedPredicate(Pred); 5621 Changed = true; 5622 } 5623 5624 // If we're comparing an addrec with a value which is loop-invariant in the 5625 // addrec's loop, put the addrec on the left. Also make a dominance check, 5626 // as both operands could be addrecs loop-invariant in each other's loop. 5627 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5628 const Loop *L = AR->getLoop(); 5629 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5630 std::swap(LHS, RHS); 5631 Pred = ICmpInst::getSwappedPredicate(Pred); 5632 Changed = true; 5633 } 5634 } 5635 5636 // If there's a constant operand, canonicalize comparisons with boundary 5637 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5638 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5639 const APInt &RA = RC->getValue()->getValue(); 5640 switch (Pred) { 5641 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5642 case ICmpInst::ICMP_EQ: 5643 case ICmpInst::ICMP_NE: 5644 break; 5645 case ICmpInst::ICMP_UGE: 5646 if ((RA - 1).isMinValue()) { 5647 Pred = ICmpInst::ICMP_NE; 5648 RHS = getConstant(RA - 1); 5649 Changed = true; 5650 break; 5651 } 5652 if (RA.isMaxValue()) { 5653 Pred = ICmpInst::ICMP_EQ; 5654 Changed = true; 5655 break; 5656 } 5657 if (RA.isMinValue()) goto trivially_true; 5658 5659 Pred = ICmpInst::ICMP_UGT; 5660 RHS = getConstant(RA - 1); 5661 Changed = true; 5662 break; 5663 case ICmpInst::ICMP_ULE: 5664 if ((RA + 1).isMaxValue()) { 5665 Pred = ICmpInst::ICMP_NE; 5666 RHS = getConstant(RA + 1); 5667 Changed = true; 5668 break; 5669 } 5670 if (RA.isMinValue()) { 5671 Pred = ICmpInst::ICMP_EQ; 5672 Changed = true; 5673 break; 5674 } 5675 if (RA.isMaxValue()) goto trivially_true; 5676 5677 Pred = ICmpInst::ICMP_ULT; 5678 RHS = getConstant(RA + 1); 5679 Changed = true; 5680 break; 5681 case ICmpInst::ICMP_SGE: 5682 if ((RA - 1).isMinSignedValue()) { 5683 Pred = ICmpInst::ICMP_NE; 5684 RHS = getConstant(RA - 1); 5685 Changed = true; 5686 break; 5687 } 5688 if (RA.isMaxSignedValue()) { 5689 Pred = ICmpInst::ICMP_EQ; 5690 Changed = true; 5691 break; 5692 } 5693 if (RA.isMinSignedValue()) goto trivially_true; 5694 5695 Pred = ICmpInst::ICMP_SGT; 5696 RHS = getConstant(RA - 1); 5697 Changed = true; 5698 break; 5699 case ICmpInst::ICMP_SLE: 5700 if ((RA + 1).isMaxSignedValue()) { 5701 Pred = ICmpInst::ICMP_NE; 5702 RHS = getConstant(RA + 1); 5703 Changed = true; 5704 break; 5705 } 5706 if (RA.isMinSignedValue()) { 5707 Pred = ICmpInst::ICMP_EQ; 5708 Changed = true; 5709 break; 5710 } 5711 if (RA.isMaxSignedValue()) goto trivially_true; 5712 5713 Pred = ICmpInst::ICMP_SLT; 5714 RHS = getConstant(RA + 1); 5715 Changed = true; 5716 break; 5717 case ICmpInst::ICMP_UGT: 5718 if (RA.isMinValue()) { 5719 Pred = ICmpInst::ICMP_NE; 5720 Changed = true; 5721 break; 5722 } 5723 if ((RA + 1).isMaxValue()) { 5724 Pred = ICmpInst::ICMP_EQ; 5725 RHS = getConstant(RA + 1); 5726 Changed = true; 5727 break; 5728 } 5729 if (RA.isMaxValue()) goto trivially_false; 5730 break; 5731 case ICmpInst::ICMP_ULT: 5732 if (RA.isMaxValue()) { 5733 Pred = ICmpInst::ICMP_NE; 5734 Changed = true; 5735 break; 5736 } 5737 if ((RA - 1).isMinValue()) { 5738 Pred = ICmpInst::ICMP_EQ; 5739 RHS = getConstant(RA - 1); 5740 Changed = true; 5741 break; 5742 } 5743 if (RA.isMinValue()) goto trivially_false; 5744 break; 5745 case ICmpInst::ICMP_SGT: 5746 if (RA.isMinSignedValue()) { 5747 Pred = ICmpInst::ICMP_NE; 5748 Changed = true; 5749 break; 5750 } 5751 if ((RA + 1).isMaxSignedValue()) { 5752 Pred = ICmpInst::ICMP_EQ; 5753 RHS = getConstant(RA + 1); 5754 Changed = true; 5755 break; 5756 } 5757 if (RA.isMaxSignedValue()) goto trivially_false; 5758 break; 5759 case ICmpInst::ICMP_SLT: 5760 if (RA.isMaxSignedValue()) { 5761 Pred = ICmpInst::ICMP_NE; 5762 Changed = true; 5763 break; 5764 } 5765 if ((RA - 1).isMinSignedValue()) { 5766 Pred = ICmpInst::ICMP_EQ; 5767 RHS = getConstant(RA - 1); 5768 Changed = true; 5769 break; 5770 } 5771 if (RA.isMinSignedValue()) goto trivially_false; 5772 break; 5773 } 5774 } 5775 5776 // Check for obvious equality. 5777 if (HasSameValue(LHS, RHS)) { 5778 if (ICmpInst::isTrueWhenEqual(Pred)) 5779 goto trivially_true; 5780 if (ICmpInst::isFalseWhenEqual(Pred)) 5781 goto trivially_false; 5782 } 5783 5784 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5785 // adding or subtracting 1 from one of the operands. 5786 switch (Pred) { 5787 case ICmpInst::ICMP_SLE: 5788 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5789 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5790 SCEV::FlagNSW); 5791 Pred = ICmpInst::ICMP_SLT; 5792 Changed = true; 5793 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5794 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5795 SCEV::FlagNSW); 5796 Pred = ICmpInst::ICMP_SLT; 5797 Changed = true; 5798 } 5799 break; 5800 case ICmpInst::ICMP_SGE: 5801 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5802 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5803 SCEV::FlagNSW); 5804 Pred = ICmpInst::ICMP_SGT; 5805 Changed = true; 5806 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5807 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5808 SCEV::FlagNSW); 5809 Pred = ICmpInst::ICMP_SGT; 5810 Changed = true; 5811 } 5812 break; 5813 case ICmpInst::ICMP_ULE: 5814 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5815 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5816 SCEV::FlagNUW); 5817 Pred = ICmpInst::ICMP_ULT; 5818 Changed = true; 5819 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5820 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5821 SCEV::FlagNUW); 5822 Pred = ICmpInst::ICMP_ULT; 5823 Changed = true; 5824 } 5825 break; 5826 case ICmpInst::ICMP_UGE: 5827 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5828 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5829 SCEV::FlagNUW); 5830 Pred = ICmpInst::ICMP_UGT; 5831 Changed = true; 5832 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5833 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5834 SCEV::FlagNUW); 5835 Pred = ICmpInst::ICMP_UGT; 5836 Changed = true; 5837 } 5838 break; 5839 default: 5840 break; 5841 } 5842 5843 // TODO: More simplifications are possible here. 5844 5845 return Changed; 5846 5847 trivially_true: 5848 // Return 0 == 0. 5849 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5850 Pred = ICmpInst::ICMP_EQ; 5851 return true; 5852 5853 trivially_false: 5854 // Return 0 != 0. 5855 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5856 Pred = ICmpInst::ICMP_NE; 5857 return true; 5858 } 5859 5860 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5861 return getSignedRange(S).getSignedMax().isNegative(); 5862 } 5863 5864 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5865 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5866 } 5867 5868 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5869 return !getSignedRange(S).getSignedMin().isNegative(); 5870 } 5871 5872 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5873 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5874 } 5875 5876 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5877 return isKnownNegative(S) || isKnownPositive(S); 5878 } 5879 5880 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5881 const SCEV *LHS, const SCEV *RHS) { 5882 // Canonicalize the inputs first. 5883 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5884 5885 // If LHS or RHS is an addrec, check to see if the condition is true in 5886 // every iteration of the loop. 5887 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5888 if (isLoopEntryGuardedByCond( 5889 AR->getLoop(), Pred, AR->getStart(), RHS) && 5890 isLoopBackedgeGuardedByCond( 5891 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5892 return true; 5893 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5894 if (isLoopEntryGuardedByCond( 5895 AR->getLoop(), Pred, LHS, AR->getStart()) && 5896 isLoopBackedgeGuardedByCond( 5897 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5898 return true; 5899 5900 // Otherwise see what can be done with known constant ranges. 5901 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5902 } 5903 5904 bool 5905 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5906 const SCEV *LHS, const SCEV *RHS) { 5907 if (HasSameValue(LHS, RHS)) 5908 return ICmpInst::isTrueWhenEqual(Pred); 5909 5910 // This code is split out from isKnownPredicate because it is called from 5911 // within isLoopEntryGuardedByCond. 5912 switch (Pred) { 5913 default: 5914 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5915 case ICmpInst::ICMP_SGT: 5916 Pred = ICmpInst::ICMP_SLT; 5917 std::swap(LHS, RHS); 5918 case ICmpInst::ICMP_SLT: { 5919 ConstantRange LHSRange = getSignedRange(LHS); 5920 ConstantRange RHSRange = getSignedRange(RHS); 5921 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5922 return true; 5923 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5924 return false; 5925 break; 5926 } 5927 case ICmpInst::ICMP_SGE: 5928 Pred = ICmpInst::ICMP_SLE; 5929 std::swap(LHS, RHS); 5930 case ICmpInst::ICMP_SLE: { 5931 ConstantRange LHSRange = getSignedRange(LHS); 5932 ConstantRange RHSRange = getSignedRange(RHS); 5933 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5934 return true; 5935 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5936 return false; 5937 break; 5938 } 5939 case ICmpInst::ICMP_UGT: 5940 Pred = ICmpInst::ICMP_ULT; 5941 std::swap(LHS, RHS); 5942 case ICmpInst::ICMP_ULT: { 5943 ConstantRange LHSRange = getUnsignedRange(LHS); 5944 ConstantRange RHSRange = getUnsignedRange(RHS); 5945 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5946 return true; 5947 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5948 return false; 5949 break; 5950 } 5951 case ICmpInst::ICMP_UGE: 5952 Pred = ICmpInst::ICMP_ULE; 5953 std::swap(LHS, RHS); 5954 case ICmpInst::ICMP_ULE: { 5955 ConstantRange LHSRange = getUnsignedRange(LHS); 5956 ConstantRange RHSRange = getUnsignedRange(RHS); 5957 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5958 return true; 5959 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5960 return false; 5961 break; 5962 } 5963 case ICmpInst::ICMP_NE: { 5964 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5965 return true; 5966 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5967 return true; 5968 5969 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5970 if (isKnownNonZero(Diff)) 5971 return true; 5972 break; 5973 } 5974 case ICmpInst::ICMP_EQ: 5975 // The check at the top of the function catches the case where 5976 // the values are known to be equal. 5977 break; 5978 } 5979 return false; 5980 } 5981 5982 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5983 /// protected by a conditional between LHS and RHS. This is used to 5984 /// to eliminate casts. 5985 bool 5986 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5987 ICmpInst::Predicate Pred, 5988 const SCEV *LHS, const SCEV *RHS) { 5989 // Interpret a null as meaning no loop, where there is obviously no guard 5990 // (interprocedural conditions notwithstanding). 5991 if (!L) return true; 5992 5993 BasicBlock *Latch = L->getLoopLatch(); 5994 if (!Latch) 5995 return false; 5996 5997 BranchInst *LoopContinuePredicate = 5998 dyn_cast<BranchInst>(Latch->getTerminator()); 5999 if (!LoopContinuePredicate || 6000 LoopContinuePredicate->isUnconditional()) 6001 return false; 6002 6003 return isImpliedCond(Pred, LHS, RHS, 6004 LoopContinuePredicate->getCondition(), 6005 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6006 } 6007 6008 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6009 /// by a conditional between LHS and RHS. This is used to help avoid max 6010 /// expressions in loop trip counts, and to eliminate casts. 6011 bool 6012 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6013 ICmpInst::Predicate Pred, 6014 const SCEV *LHS, const SCEV *RHS) { 6015 // Interpret a null as meaning no loop, where there is obviously no guard 6016 // (interprocedural conditions notwithstanding). 6017 if (!L) return false; 6018 6019 // Starting at the loop predecessor, climb up the predecessor chain, as long 6020 // as there are predecessors that can be found that have unique successors 6021 // leading to the original header. 6022 for (std::pair<BasicBlock *, BasicBlock *> 6023 Pair(L->getLoopPredecessor(), L->getHeader()); 6024 Pair.first; 6025 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6026 6027 BranchInst *LoopEntryPredicate = 6028 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6029 if (!LoopEntryPredicate || 6030 LoopEntryPredicate->isUnconditional()) 6031 continue; 6032 6033 if (isImpliedCond(Pred, LHS, RHS, 6034 LoopEntryPredicate->getCondition(), 6035 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6036 return true; 6037 } 6038 6039 return false; 6040 } 6041 6042 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6043 /// and RHS is true whenever the given Cond value evaluates to true. 6044 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6045 const SCEV *LHS, const SCEV *RHS, 6046 Value *FoundCondValue, 6047 bool Inverse) { 6048 // Recursively handle And and Or conditions. 6049 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6050 if (BO->getOpcode() == Instruction::And) { 6051 if (!Inverse) 6052 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6053 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6054 } else if (BO->getOpcode() == Instruction::Or) { 6055 if (Inverse) 6056 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6057 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6058 } 6059 } 6060 6061 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6062 if (!ICI) return false; 6063 6064 // Bail if the ICmp's operands' types are wider than the needed type 6065 // before attempting to call getSCEV on them. This avoids infinite 6066 // recursion, since the analysis of widening casts can require loop 6067 // exit condition information for overflow checking, which would 6068 // lead back here. 6069 if (getTypeSizeInBits(LHS->getType()) < 6070 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6071 return false; 6072 6073 // Now that we found a conditional branch that dominates the loop, check to 6074 // see if it is the comparison we are looking for. 6075 ICmpInst::Predicate FoundPred; 6076 if (Inverse) 6077 FoundPred = ICI->getInversePredicate(); 6078 else 6079 FoundPred = ICI->getPredicate(); 6080 6081 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6082 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6083 6084 // Balance the types. The case where FoundLHS' type is wider than 6085 // LHS' type is checked for above. 6086 if (getTypeSizeInBits(LHS->getType()) > 6087 getTypeSizeInBits(FoundLHS->getType())) { 6088 if (CmpInst::isSigned(Pred)) { 6089 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6090 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6091 } else { 6092 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6093 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6094 } 6095 } 6096 6097 // Canonicalize the query to match the way instcombine will have 6098 // canonicalized the comparison. 6099 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6100 if (LHS == RHS) 6101 return CmpInst::isTrueWhenEqual(Pred); 6102 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6103 if (FoundLHS == FoundRHS) 6104 return CmpInst::isFalseWhenEqual(Pred); 6105 6106 // Check to see if we can make the LHS or RHS match. 6107 if (LHS == FoundRHS || RHS == FoundLHS) { 6108 if (isa<SCEVConstant>(RHS)) { 6109 std::swap(FoundLHS, FoundRHS); 6110 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6111 } else { 6112 std::swap(LHS, RHS); 6113 Pred = ICmpInst::getSwappedPredicate(Pred); 6114 } 6115 } 6116 6117 // Check whether the found predicate is the same as the desired predicate. 6118 if (FoundPred == Pred) 6119 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6120 6121 // Check whether swapping the found predicate makes it the same as the 6122 // desired predicate. 6123 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6124 if (isa<SCEVConstant>(RHS)) 6125 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6126 else 6127 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6128 RHS, LHS, FoundLHS, FoundRHS); 6129 } 6130 6131 // Check whether the actual condition is beyond sufficient. 6132 if (FoundPred == ICmpInst::ICMP_EQ) 6133 if (ICmpInst::isTrueWhenEqual(Pred)) 6134 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6135 return true; 6136 if (Pred == ICmpInst::ICMP_NE) 6137 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6138 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6139 return true; 6140 6141 // Otherwise assume the worst. 6142 return false; 6143 } 6144 6145 /// isImpliedCondOperands - Test whether the condition described by Pred, 6146 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6147 /// and FoundRHS is true. 6148 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6149 const SCEV *LHS, const SCEV *RHS, 6150 const SCEV *FoundLHS, 6151 const SCEV *FoundRHS) { 6152 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6153 FoundLHS, FoundRHS) || 6154 // ~x < ~y --> x > y 6155 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6156 getNotSCEV(FoundRHS), 6157 getNotSCEV(FoundLHS)); 6158 } 6159 6160 /// isImpliedCondOperandsHelper - Test whether the condition described by 6161 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6162 /// FoundLHS, and FoundRHS is true. 6163 bool 6164 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6165 const SCEV *LHS, const SCEV *RHS, 6166 const SCEV *FoundLHS, 6167 const SCEV *FoundRHS) { 6168 switch (Pred) { 6169 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6170 case ICmpInst::ICMP_EQ: 6171 case ICmpInst::ICMP_NE: 6172 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6173 return true; 6174 break; 6175 case ICmpInst::ICMP_SLT: 6176 case ICmpInst::ICMP_SLE: 6177 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6178 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6179 return true; 6180 break; 6181 case ICmpInst::ICMP_SGT: 6182 case ICmpInst::ICMP_SGE: 6183 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6184 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6185 return true; 6186 break; 6187 case ICmpInst::ICMP_ULT: 6188 case ICmpInst::ICMP_ULE: 6189 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6190 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6191 return true; 6192 break; 6193 case ICmpInst::ICMP_UGT: 6194 case ICmpInst::ICMP_UGE: 6195 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6196 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6197 return true; 6198 break; 6199 } 6200 6201 return false; 6202 } 6203 6204 /// getBECount - Subtract the end and start values and divide by the step, 6205 /// rounding up, to get the number of times the backedge is executed. Return 6206 /// CouldNotCompute if an intermediate computation overflows. 6207 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 6208 const SCEV *End, 6209 const SCEV *Step, 6210 bool NoWrap) { 6211 assert(!isKnownNegative(Step) && 6212 "This code doesn't handle negative strides yet!"); 6213 6214 Type *Ty = Start->getType(); 6215 6216 // When Start == End, we have an exact BECount == 0. Short-circuit this case 6217 // here because SCEV may not be able to determine that the unsigned division 6218 // after rounding is zero. 6219 if (Start == End) 6220 return getConstant(Ty, 0); 6221 6222 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 6223 const SCEV *Diff = getMinusSCEV(End, Start); 6224 const SCEV *RoundUp = getAddExpr(Step, NegOne); 6225 6226 // Add an adjustment to the difference between End and Start so that 6227 // the division will effectively round up. 6228 const SCEV *Add = getAddExpr(Diff, RoundUp); 6229 6230 if (!NoWrap) { 6231 // Check Add for unsigned overflow. 6232 // TODO: More sophisticated things could be done here. 6233 Type *WideTy = IntegerType::get(getContext(), 6234 getTypeSizeInBits(Ty) + 1); 6235 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 6236 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 6237 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 6238 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 6239 return getCouldNotCompute(); 6240 } 6241 6242 return getUDivExpr(Add, Step); 6243 } 6244 6245 /// HowManyLessThans - Return the number of times a backedge containing the 6246 /// specified less-than comparison will execute. If not computable, return 6247 /// CouldNotCompute. 6248 ScalarEvolution::ExitLimit 6249 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6250 const Loop *L, bool isSigned) { 6251 // Only handle: "ADDREC < LoopInvariant". 6252 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 6253 6254 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 6255 if (!AddRec || AddRec->getLoop() != L) 6256 return getCouldNotCompute(); 6257 6258 // Check to see if we have a flag which makes analysis easy. 6259 bool NoWrap = isSigned ? 6260 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) : 6261 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW)); 6262 6263 if (AddRec->isAffine()) { 6264 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 6265 const SCEV *Step = AddRec->getStepRecurrence(*this); 6266 6267 if (Step->isZero()) 6268 return getCouldNotCompute(); 6269 if (Step->isOne()) { 6270 // With unit stride, the iteration never steps past the limit value. 6271 } else if (isKnownPositive(Step)) { 6272 // Test whether a positive iteration can step past the limit 6273 // value and past the maximum value for its type in a single step. 6274 // Note that it's not sufficient to check NoWrap here, because even 6275 // though the value after a wrap is undefined, it's not undefined 6276 // behavior, so if wrap does occur, the loop could either terminate or 6277 // loop infinitely, but in either case, the loop is guaranteed to 6278 // iterate at least until the iteration where the wrapping occurs. 6279 const SCEV *One = getConstant(Step->getType(), 1); 6280 if (isSigned) { 6281 APInt Max = APInt::getSignedMaxValue(BitWidth); 6282 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 6283 .slt(getSignedRange(RHS).getSignedMax())) 6284 return getCouldNotCompute(); 6285 } else { 6286 APInt Max = APInt::getMaxValue(BitWidth); 6287 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 6288 .ult(getUnsignedRange(RHS).getUnsignedMax())) 6289 return getCouldNotCompute(); 6290 } 6291 } else 6292 // TODO: Handle negative strides here and below. 6293 return getCouldNotCompute(); 6294 6295 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 6296 // m. So, we count the number of iterations in which {n,+,s} < m is true. 6297 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 6298 // treat m-n as signed nor unsigned due to overflow possibility. 6299 6300 // First, we get the value of the LHS in the first iteration: n 6301 const SCEV *Start = AddRec->getOperand(0); 6302 6303 // Determine the minimum constant start value. 6304 const SCEV *MinStart = getConstant(isSigned ? 6305 getSignedRange(Start).getSignedMin() : 6306 getUnsignedRange(Start).getUnsignedMin()); 6307 6308 // If we know that the condition is true in order to enter the loop, 6309 // then we know that it will run exactly (m-n)/s times. Otherwise, we 6310 // only know that it will execute (max(m,n)-n)/s times. In both cases, 6311 // the division must round up. 6312 const SCEV *End = RHS; 6313 if (!isLoopEntryGuardedByCond(L, 6314 isSigned ? ICmpInst::ICMP_SLT : 6315 ICmpInst::ICMP_ULT, 6316 getMinusSCEV(Start, Step), RHS)) 6317 End = isSigned ? getSMaxExpr(RHS, Start) 6318 : getUMaxExpr(RHS, Start); 6319 6320 // Determine the maximum constant end value. 6321 const SCEV *MaxEnd = getConstant(isSigned ? 6322 getSignedRange(End).getSignedMax() : 6323 getUnsignedRange(End).getUnsignedMax()); 6324 6325 // If MaxEnd is within a step of the maximum integer value in its type, 6326 // adjust it down to the minimum value which would produce the same effect. 6327 // This allows the subsequent ceiling division of (N+(step-1))/step to 6328 // compute the correct value. 6329 const SCEV *StepMinusOne = getMinusSCEV(Step, 6330 getConstant(Step->getType(), 1)); 6331 MaxEnd = isSigned ? 6332 getSMinExpr(MaxEnd, 6333 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 6334 StepMinusOne)) : 6335 getUMinExpr(MaxEnd, 6336 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 6337 StepMinusOne)); 6338 6339 // Finally, we subtract these two values and divide, rounding up, to get 6340 // the number of times the backedge is executed. 6341 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 6342 6343 // The maximum backedge count is similar, except using the minimum start 6344 // value and the maximum end value. 6345 // If we already have an exact constant BECount, use it instead. 6346 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 6347 : getBECount(MinStart, MaxEnd, Step, NoWrap); 6348 6349 // If the stride is nonconstant, and NoWrap == true, then 6350 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 6351 // exact BECount and invalid MaxBECount, which should be avoided to catch 6352 // more optimization opportunities. 6353 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6354 MaxBECount = BECount; 6355 6356 return ExitLimit(BECount, MaxBECount); 6357 } 6358 6359 return getCouldNotCompute(); 6360 } 6361 6362 /// getNumIterationsInRange - Return the number of iterations of this loop that 6363 /// produce values in the specified constant range. Another way of looking at 6364 /// this is that it returns the first iteration number where the value is not in 6365 /// the condition, thus computing the exit count. If the iteration count can't 6366 /// be computed, an instance of SCEVCouldNotCompute is returned. 6367 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6368 ScalarEvolution &SE) const { 6369 if (Range.isFullSet()) // Infinite loop. 6370 return SE.getCouldNotCompute(); 6371 6372 // If the start is a non-zero constant, shift the range to simplify things. 6373 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6374 if (!SC->getValue()->isZero()) { 6375 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6376 Operands[0] = SE.getConstant(SC->getType(), 0); 6377 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6378 getNoWrapFlags(FlagNW)); 6379 if (const SCEVAddRecExpr *ShiftedAddRec = 6380 dyn_cast<SCEVAddRecExpr>(Shifted)) 6381 return ShiftedAddRec->getNumIterationsInRange( 6382 Range.subtract(SC->getValue()->getValue()), SE); 6383 // This is strange and shouldn't happen. 6384 return SE.getCouldNotCompute(); 6385 } 6386 6387 // The only time we can solve this is when we have all constant indices. 6388 // Otherwise, we cannot determine the overflow conditions. 6389 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6390 if (!isa<SCEVConstant>(getOperand(i))) 6391 return SE.getCouldNotCompute(); 6392 6393 6394 // Okay at this point we know that all elements of the chrec are constants and 6395 // that the start element is zero. 6396 6397 // First check to see if the range contains zero. If not, the first 6398 // iteration exits. 6399 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6400 if (!Range.contains(APInt(BitWidth, 0))) 6401 return SE.getConstant(getType(), 0); 6402 6403 if (isAffine()) { 6404 // If this is an affine expression then we have this situation: 6405 // Solve {0,+,A} in Range === Ax in Range 6406 6407 // We know that zero is in the range. If A is positive then we know that 6408 // the upper value of the range must be the first possible exit value. 6409 // If A is negative then the lower of the range is the last possible loop 6410 // value. Also note that we already checked for a full range. 6411 APInt One(BitWidth,1); 6412 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6413 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6414 6415 // The exit value should be (End+A)/A. 6416 APInt ExitVal = (End + A).udiv(A); 6417 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6418 6419 // Evaluate at the exit value. If we really did fall out of the valid 6420 // range, then we computed our trip count, otherwise wrap around or other 6421 // things must have happened. 6422 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6423 if (Range.contains(Val->getValue())) 6424 return SE.getCouldNotCompute(); // Something strange happened 6425 6426 // Ensure that the previous value is in the range. This is a sanity check. 6427 assert(Range.contains( 6428 EvaluateConstantChrecAtConstant(this, 6429 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6430 "Linear scev computation is off in a bad way!"); 6431 return SE.getConstant(ExitValue); 6432 } else if (isQuadratic()) { 6433 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6434 // quadratic equation to solve it. To do this, we must frame our problem in 6435 // terms of figuring out when zero is crossed, instead of when 6436 // Range.getUpper() is crossed. 6437 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6438 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6439 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6440 // getNoWrapFlags(FlagNW) 6441 FlagAnyWrap); 6442 6443 // Next, solve the constructed addrec 6444 std::pair<const SCEV *,const SCEV *> Roots = 6445 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6446 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6447 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6448 if (R1) { 6449 // Pick the smallest positive root value. 6450 if (ConstantInt *CB = 6451 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6452 R1->getValue(), R2->getValue()))) { 6453 if (CB->getZExtValue() == false) 6454 std::swap(R1, R2); // R1 is the minimum root now. 6455 6456 // Make sure the root is not off by one. The returned iteration should 6457 // not be in the range, but the previous one should be. When solving 6458 // for "X*X < 5", for example, we should not return a root of 2. 6459 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6460 R1->getValue(), 6461 SE); 6462 if (Range.contains(R1Val->getValue())) { 6463 // The next iteration must be out of the range... 6464 ConstantInt *NextVal = 6465 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6466 6467 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6468 if (!Range.contains(R1Val->getValue())) 6469 return SE.getConstant(NextVal); 6470 return SE.getCouldNotCompute(); // Something strange happened 6471 } 6472 6473 // If R1 was not in the range, then it is a good return value. Make 6474 // sure that R1-1 WAS in the range though, just in case. 6475 ConstantInt *NextVal = 6476 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6477 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6478 if (Range.contains(R1Val->getValue())) 6479 return R1; 6480 return SE.getCouldNotCompute(); // Something strange happened 6481 } 6482 } 6483 } 6484 6485 return SE.getCouldNotCompute(); 6486 } 6487 6488 6489 6490 //===----------------------------------------------------------------------===// 6491 // SCEVCallbackVH Class Implementation 6492 //===----------------------------------------------------------------------===// 6493 6494 void ScalarEvolution::SCEVCallbackVH::deleted() { 6495 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6496 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6497 SE->ConstantEvolutionLoopExitValue.erase(PN); 6498 SE->ValueExprMap.erase(getValPtr()); 6499 // this now dangles! 6500 } 6501 6502 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6503 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6504 6505 // Forget all the expressions associated with users of the old value, 6506 // so that future queries will recompute the expressions using the new 6507 // value. 6508 Value *Old = getValPtr(); 6509 SmallVector<User *, 16> Worklist; 6510 SmallPtrSet<User *, 8> Visited; 6511 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6512 UI != UE; ++UI) 6513 Worklist.push_back(*UI); 6514 while (!Worklist.empty()) { 6515 User *U = Worklist.pop_back_val(); 6516 // Deleting the Old value will cause this to dangle. Postpone 6517 // that until everything else is done. 6518 if (U == Old) 6519 continue; 6520 if (!Visited.insert(U)) 6521 continue; 6522 if (PHINode *PN = dyn_cast<PHINode>(U)) 6523 SE->ConstantEvolutionLoopExitValue.erase(PN); 6524 SE->ValueExprMap.erase(U); 6525 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6526 UI != UE; ++UI) 6527 Worklist.push_back(*UI); 6528 } 6529 // Delete the Old value. 6530 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6531 SE->ConstantEvolutionLoopExitValue.erase(PN); 6532 SE->ValueExprMap.erase(Old); 6533 // this now dangles! 6534 } 6535 6536 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6537 : CallbackVH(V), SE(se) {} 6538 6539 //===----------------------------------------------------------------------===// 6540 // ScalarEvolution Class Implementation 6541 //===----------------------------------------------------------------------===// 6542 6543 ScalarEvolution::ScalarEvolution() 6544 : FunctionPass(ID), FirstUnknown(0) { 6545 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6546 } 6547 6548 bool ScalarEvolution::runOnFunction(Function &F) { 6549 this->F = &F; 6550 LI = &getAnalysis<LoopInfo>(); 6551 TD = getAnalysisIfAvailable<TargetData>(); 6552 TLI = &getAnalysis<TargetLibraryInfo>(); 6553 DT = &getAnalysis<DominatorTree>(); 6554 return false; 6555 } 6556 6557 void ScalarEvolution::releaseMemory() { 6558 // Iterate through all the SCEVUnknown instances and call their 6559 // destructors, so that they release their references to their values. 6560 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6561 U->~SCEVUnknown(); 6562 FirstUnknown = 0; 6563 6564 ValueExprMap.clear(); 6565 6566 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6567 // that a loop had multiple computable exits. 6568 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6569 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6570 I != E; ++I) { 6571 I->second.clear(); 6572 } 6573 6574 BackedgeTakenCounts.clear(); 6575 ConstantEvolutionLoopExitValue.clear(); 6576 ValuesAtScopes.clear(); 6577 LoopDispositions.clear(); 6578 BlockDispositions.clear(); 6579 UnsignedRanges.clear(); 6580 SignedRanges.clear(); 6581 UniqueSCEVs.clear(); 6582 SCEVAllocator.Reset(); 6583 } 6584 6585 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6586 AU.setPreservesAll(); 6587 AU.addRequiredTransitive<LoopInfo>(); 6588 AU.addRequiredTransitive<DominatorTree>(); 6589 AU.addRequired<TargetLibraryInfo>(); 6590 } 6591 6592 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6593 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6594 } 6595 6596 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6597 const Loop *L) { 6598 // Print all inner loops first 6599 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6600 PrintLoopInfo(OS, SE, *I); 6601 6602 OS << "Loop "; 6603 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6604 OS << ": "; 6605 6606 SmallVector<BasicBlock *, 8> ExitBlocks; 6607 L->getExitBlocks(ExitBlocks); 6608 if (ExitBlocks.size() != 1) 6609 OS << "<multiple exits> "; 6610 6611 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6612 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6613 } else { 6614 OS << "Unpredictable backedge-taken count. "; 6615 } 6616 6617 OS << "\n" 6618 "Loop "; 6619 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6620 OS << ": "; 6621 6622 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6623 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6624 } else { 6625 OS << "Unpredictable max backedge-taken count. "; 6626 } 6627 6628 OS << "\n"; 6629 } 6630 6631 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6632 // ScalarEvolution's implementation of the print method is to print 6633 // out SCEV values of all instructions that are interesting. Doing 6634 // this potentially causes it to create new SCEV objects though, 6635 // which technically conflicts with the const qualifier. This isn't 6636 // observable from outside the class though, so casting away the 6637 // const isn't dangerous. 6638 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6639 6640 OS << "Classifying expressions for: "; 6641 WriteAsOperand(OS, F, /*PrintType=*/false); 6642 OS << "\n"; 6643 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6644 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6645 OS << *I << '\n'; 6646 OS << " --> "; 6647 const SCEV *SV = SE.getSCEV(&*I); 6648 SV->print(OS); 6649 6650 const Loop *L = LI->getLoopFor((*I).getParent()); 6651 6652 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6653 if (AtUse != SV) { 6654 OS << " --> "; 6655 AtUse->print(OS); 6656 } 6657 6658 if (L) { 6659 OS << "\t\t" "Exits: "; 6660 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6661 if (!SE.isLoopInvariant(ExitValue, L)) { 6662 OS << "<<Unknown>>"; 6663 } else { 6664 OS << *ExitValue; 6665 } 6666 } 6667 6668 OS << "\n"; 6669 } 6670 6671 OS << "Determining loop execution counts for: "; 6672 WriteAsOperand(OS, F, /*PrintType=*/false); 6673 OS << "\n"; 6674 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6675 PrintLoopInfo(OS, &SE, *I); 6676 } 6677 6678 ScalarEvolution::LoopDisposition 6679 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6680 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6681 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6682 Values.insert(std::make_pair(L, LoopVariant)); 6683 if (!Pair.second) 6684 return Pair.first->second; 6685 6686 LoopDisposition D = computeLoopDisposition(S, L); 6687 return LoopDispositions[S][L] = D; 6688 } 6689 6690 ScalarEvolution::LoopDisposition 6691 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6692 switch (S->getSCEVType()) { 6693 case scConstant: 6694 return LoopInvariant; 6695 case scTruncate: 6696 case scZeroExtend: 6697 case scSignExtend: 6698 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6699 case scAddRecExpr: { 6700 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6701 6702 // If L is the addrec's loop, it's computable. 6703 if (AR->getLoop() == L) 6704 return LoopComputable; 6705 6706 // Add recurrences are never invariant in the function-body (null loop). 6707 if (!L) 6708 return LoopVariant; 6709 6710 // This recurrence is variant w.r.t. L if L contains AR's loop. 6711 if (L->contains(AR->getLoop())) 6712 return LoopVariant; 6713 6714 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6715 if (AR->getLoop()->contains(L)) 6716 return LoopInvariant; 6717 6718 // This recurrence is variant w.r.t. L if any of its operands 6719 // are variant. 6720 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6721 I != E; ++I) 6722 if (!isLoopInvariant(*I, L)) 6723 return LoopVariant; 6724 6725 // Otherwise it's loop-invariant. 6726 return LoopInvariant; 6727 } 6728 case scAddExpr: 6729 case scMulExpr: 6730 case scUMaxExpr: 6731 case scSMaxExpr: { 6732 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6733 bool HasVarying = false; 6734 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6735 I != E; ++I) { 6736 LoopDisposition D = getLoopDisposition(*I, L); 6737 if (D == LoopVariant) 6738 return LoopVariant; 6739 if (D == LoopComputable) 6740 HasVarying = true; 6741 } 6742 return HasVarying ? LoopComputable : LoopInvariant; 6743 } 6744 case scUDivExpr: { 6745 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6746 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6747 if (LD == LoopVariant) 6748 return LoopVariant; 6749 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6750 if (RD == LoopVariant) 6751 return LoopVariant; 6752 return (LD == LoopInvariant && RD == LoopInvariant) ? 6753 LoopInvariant : LoopComputable; 6754 } 6755 case scUnknown: 6756 // All non-instruction values are loop invariant. All instructions are loop 6757 // invariant if they are not contained in the specified loop. 6758 // Instructions are never considered invariant in the function body 6759 // (null loop) because they are defined within the "loop". 6760 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6761 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6762 return LoopInvariant; 6763 case scCouldNotCompute: 6764 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6765 default: llvm_unreachable("Unknown SCEV kind!"); 6766 } 6767 } 6768 6769 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6770 return getLoopDisposition(S, L) == LoopInvariant; 6771 } 6772 6773 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6774 return getLoopDisposition(S, L) == LoopComputable; 6775 } 6776 6777 ScalarEvolution::BlockDisposition 6778 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6779 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6780 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6781 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6782 if (!Pair.second) 6783 return Pair.first->second; 6784 6785 BlockDisposition D = computeBlockDisposition(S, BB); 6786 return BlockDispositions[S][BB] = D; 6787 } 6788 6789 ScalarEvolution::BlockDisposition 6790 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6791 switch (S->getSCEVType()) { 6792 case scConstant: 6793 return ProperlyDominatesBlock; 6794 case scTruncate: 6795 case scZeroExtend: 6796 case scSignExtend: 6797 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6798 case scAddRecExpr: { 6799 // This uses a "dominates" query instead of "properly dominates" query 6800 // to test for proper dominance too, because the instruction which 6801 // produces the addrec's value is a PHI, and a PHI effectively properly 6802 // dominates its entire containing block. 6803 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6804 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6805 return DoesNotDominateBlock; 6806 } 6807 // FALL THROUGH into SCEVNAryExpr handling. 6808 case scAddExpr: 6809 case scMulExpr: 6810 case scUMaxExpr: 6811 case scSMaxExpr: { 6812 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6813 bool Proper = true; 6814 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6815 I != E; ++I) { 6816 BlockDisposition D = getBlockDisposition(*I, BB); 6817 if (D == DoesNotDominateBlock) 6818 return DoesNotDominateBlock; 6819 if (D == DominatesBlock) 6820 Proper = false; 6821 } 6822 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6823 } 6824 case scUDivExpr: { 6825 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6826 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6827 BlockDisposition LD = getBlockDisposition(LHS, BB); 6828 if (LD == DoesNotDominateBlock) 6829 return DoesNotDominateBlock; 6830 BlockDisposition RD = getBlockDisposition(RHS, BB); 6831 if (RD == DoesNotDominateBlock) 6832 return DoesNotDominateBlock; 6833 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6834 ProperlyDominatesBlock : DominatesBlock; 6835 } 6836 case scUnknown: 6837 if (Instruction *I = 6838 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6839 if (I->getParent() == BB) 6840 return DominatesBlock; 6841 if (DT->properlyDominates(I->getParent(), BB)) 6842 return ProperlyDominatesBlock; 6843 return DoesNotDominateBlock; 6844 } 6845 return ProperlyDominatesBlock; 6846 case scCouldNotCompute: 6847 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6848 default: 6849 llvm_unreachable("Unknown SCEV kind!"); 6850 } 6851 } 6852 6853 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6854 return getBlockDisposition(S, BB) >= DominatesBlock; 6855 } 6856 6857 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6858 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6859 } 6860 6861 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6862 SmallVector<const SCEV *, 8> Worklist; 6863 Worklist.push_back(S); 6864 do { 6865 S = Worklist.pop_back_val(); 6866 6867 switch (S->getSCEVType()) { 6868 case scConstant: 6869 break; 6870 case scTruncate: 6871 case scZeroExtend: 6872 case scSignExtend: { 6873 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6874 const SCEV *CastOp = Cast->getOperand(); 6875 if (Op == CastOp) 6876 return true; 6877 Worklist.push_back(CastOp); 6878 break; 6879 } 6880 case scAddRecExpr: 6881 case scAddExpr: 6882 case scMulExpr: 6883 case scUMaxExpr: 6884 case scSMaxExpr: { 6885 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6886 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6887 I != E; ++I) { 6888 const SCEV *NAryOp = *I; 6889 if (NAryOp == Op) 6890 return true; 6891 Worklist.push_back(NAryOp); 6892 } 6893 break; 6894 } 6895 case scUDivExpr: { 6896 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6897 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6898 if (LHS == Op || RHS == Op) 6899 return true; 6900 Worklist.push_back(LHS); 6901 Worklist.push_back(RHS); 6902 break; 6903 } 6904 case scUnknown: 6905 break; 6906 case scCouldNotCompute: 6907 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6908 default: 6909 llvm_unreachable("Unknown SCEV kind!"); 6910 } 6911 } while (!Worklist.empty()); 6912 6913 return false; 6914 } 6915 6916 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6917 ValuesAtScopes.erase(S); 6918 LoopDispositions.erase(S); 6919 BlockDispositions.erase(S); 6920 UnsignedRanges.erase(S); 6921 SignedRanges.erase(S); 6922 } 6923