1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 static RegisterPass<ScalarEvolution> 107 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 181 UniqueSCEVs.InsertNode(S, IP); 182 return S; 183 } 184 185 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(getContext(), Val)); 187 } 188 189 const SCEV * 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 192 return getConstant(ConstantInt::get(ITy, V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 202 unsigned SCEVTy, const SCEV *op, const Type *ty) 203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 204 205 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 206 return Op->dominates(BB, DT); 207 } 208 209 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->properlyDominates(BB, DT); 211 } 212 213 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 214 const SCEV *op, const Type *ty) 215 : SCEVCastExpr(ID, scTruncate, op, ty) { 216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 217 (Ty->isIntegerTy() || Ty->isPointerTy()) && 218 "Cannot truncate non-integer value!"); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 226 const SCEV *op, const Type *ty) 227 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 229 (Ty->isIntegerTy() || Ty->isPointerTy()) && 230 "Cannot zero extend non-integer value!"); 231 } 232 233 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 235 } 236 237 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 238 const SCEV *op, const Type *ty) 239 : SCEVCastExpr(ID, scSignExtend, op, ty) { 240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 241 (Ty->isIntegerTy() || Ty->isPointerTy()) && 242 "Cannot sign extend non-integer value!"); 243 } 244 245 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 247 } 248 249 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 250 const char *OpStr = getOperationStr(); 251 OS << "("; 252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 253 OS << **I; 254 if (next(I) != E) 255 OS << OpStr; 256 } 257 OS << ")"; 258 } 259 260 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 262 if (!getOperand(i)->dominates(BB, DT)) 263 return false; 264 } 265 return true; 266 } 267 268 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 270 if (!getOperand(i)->properlyDominates(BB, DT)) 271 return false; 272 } 273 return true; 274 } 275 276 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 278 } 279 280 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 282 } 283 284 void SCEVUDivExpr::print(raw_ostream &OS) const { 285 OS << "(" << *LHS << " /u " << *RHS << ")"; 286 } 287 288 const Type *SCEVUDivExpr::getType() const { 289 // In most cases the types of LHS and RHS will be the same, but in some 290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 291 // depend on the type for correctness, but handling types carefully can 292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 293 // a pointer type than the RHS, so use the RHS' type here. 294 return RHS->getType(); 295 } 296 297 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 298 // Add recurrences are never invariant in the function-body (null loop). 299 if (!QueryLoop) 300 return false; 301 302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 303 if (QueryLoop->contains(L)) 304 return false; 305 306 // This recurrence is variant w.r.t. QueryLoop if any of its operands 307 // are variant. 308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 309 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 310 return false; 311 312 // Otherwise it's loop-invariant. 313 return true; 314 } 315 316 bool 317 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 318 return DT->dominates(L->getHeader(), BB) && 319 SCEVNAryExpr::dominates(BB, DT); 320 } 321 322 bool 323 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 324 // This uses a "dominates" query instead of "properly dominates" query because 325 // the instruction which produces the addrec's value is a PHI, and a PHI 326 // effectively properly dominates its entire containing block. 327 return DT->dominates(L->getHeader(), BB) && 328 SCEVNAryExpr::properlyDominates(BB, DT); 329 } 330 331 void SCEVAddRecExpr::print(raw_ostream &OS) const { 332 OS << "{" << *Operands[0]; 333 for (unsigned i = 1, e = NumOperands; i != e; ++i) 334 OS << ",+," << *Operands[i]; 335 OS << "}<"; 336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 337 OS << ">"; 338 } 339 340 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 341 // All non-instruction values are loop invariant. All instructions are loop 342 // invariant if they are not contained in the specified loop. 343 // Instructions are never considered invariant in the function body 344 // (null loop) because they are defined within the "loop". 345 if (Instruction *I = dyn_cast<Instruction>(V)) 346 return L && !L->contains(I); 347 return true; 348 } 349 350 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 351 if (Instruction *I = dyn_cast<Instruction>(getValue())) 352 return DT->dominates(I->getParent(), BB); 353 return true; 354 } 355 356 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 357 if (Instruction *I = dyn_cast<Instruction>(getValue())) 358 return DT->properlyDominates(I->getParent(), BB); 359 return true; 360 } 361 362 const Type *SCEVUnknown::getType() const { 363 return V->getType(); 364 } 365 366 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 368 if (VCE->getOpcode() == Instruction::PtrToInt) 369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 370 if (CE->getOpcode() == Instruction::GetElementPtr && 371 CE->getOperand(0)->isNullValue() && 372 CE->getNumOperands() == 2) 373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 374 if (CI->isOne()) { 375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 376 ->getElementType(); 377 return true; 378 } 379 380 return false; 381 } 382 383 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 385 if (VCE->getOpcode() == Instruction::PtrToInt) 386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 387 if (CE->getOpcode() == Instruction::GetElementPtr && 388 CE->getOperand(0)->isNullValue()) { 389 const Type *Ty = 390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 391 if (const StructType *STy = dyn_cast<StructType>(Ty)) 392 if (!STy->isPacked() && 393 CE->getNumOperands() == 3 && 394 CE->getOperand(1)->isNullValue()) { 395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 396 if (CI->isOne() && 397 STy->getNumElements() == 2 && 398 STy->getElementType(0)->isIntegerTy(1)) { 399 AllocTy = STy->getElementType(1); 400 return true; 401 } 402 } 403 } 404 405 return false; 406 } 407 408 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 410 if (VCE->getOpcode() == Instruction::PtrToInt) 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 412 if (CE->getOpcode() == Instruction::GetElementPtr && 413 CE->getNumOperands() == 3 && 414 CE->getOperand(0)->isNullValue() && 415 CE->getOperand(1)->isNullValue()) { 416 const Type *Ty = 417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 418 // Ignore vector types here so that ScalarEvolutionExpander doesn't 419 // emit getelementptrs that index into vectors. 420 if (Ty->isStructTy() || Ty->isArrayTy()) { 421 CTy = Ty; 422 FieldNo = CE->getOperand(2); 423 return true; 424 } 425 } 426 427 return false; 428 } 429 430 void SCEVUnknown::print(raw_ostream &OS) const { 431 const Type *AllocTy; 432 if (isSizeOf(AllocTy)) { 433 OS << "sizeof(" << *AllocTy << ")"; 434 return; 435 } 436 if (isAlignOf(AllocTy)) { 437 OS << "alignof(" << *AllocTy << ")"; 438 return; 439 } 440 441 const Type *CTy; 442 Constant *FieldNo; 443 if (isOffsetOf(CTy, FieldNo)) { 444 OS << "offsetof(" << *CTy << ", "; 445 WriteAsOperand(OS, FieldNo, false); 446 OS << ")"; 447 return; 448 } 449 450 // Otherwise just print it normally. 451 WriteAsOperand(OS, V, false); 452 } 453 454 //===----------------------------------------------------------------------===// 455 // SCEV Utilities 456 //===----------------------------------------------------------------------===// 457 458 static bool CompareTypes(const Type *A, const Type *B) { 459 if (A->getTypeID() != B->getTypeID()) 460 return A->getTypeID() < B->getTypeID(); 461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 462 const IntegerType *BI = cast<IntegerType>(B); 463 return AI->getBitWidth() < BI->getBitWidth(); 464 } 465 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 466 const PointerType *BI = cast<PointerType>(B); 467 return CompareTypes(AI->getElementType(), BI->getElementType()); 468 } 469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 470 const ArrayType *BI = cast<ArrayType>(B); 471 if (AI->getNumElements() != BI->getNumElements()) 472 return AI->getNumElements() < BI->getNumElements(); 473 return CompareTypes(AI->getElementType(), BI->getElementType()); 474 } 475 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 476 const VectorType *BI = cast<VectorType>(B); 477 if (AI->getNumElements() != BI->getNumElements()) 478 return AI->getNumElements() < BI->getNumElements(); 479 return CompareTypes(AI->getElementType(), BI->getElementType()); 480 } 481 if (const StructType *AI = dyn_cast<StructType>(A)) { 482 const StructType *BI = cast<StructType>(B); 483 if (AI->getNumElements() != BI->getNumElements()) 484 return AI->getNumElements() < BI->getNumElements(); 485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 487 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 488 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 489 } 490 return false; 491 } 492 493 namespace { 494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 495 /// than the complexity of the RHS. This comparator is used to canonicalize 496 /// expressions. 497 class SCEVComplexityCompare { 498 LoopInfo *LI; 499 public: 500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 501 502 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 503 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 504 if (LHS == RHS) 505 return false; 506 507 // Primarily, sort the SCEVs by their getSCEVType(). 508 if (LHS->getSCEVType() != RHS->getSCEVType()) 509 return LHS->getSCEVType() < RHS->getSCEVType(); 510 511 // Aside from the getSCEVType() ordering, the particular ordering 512 // isn't very important except that it's beneficial to be consistent, 513 // so that (a + b) and (b + a) don't end up as different expressions. 514 515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 516 // not as complete as it could be. 517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 519 520 // Order pointer values after integer values. This helps SCEVExpander 521 // form GEPs. 522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy()) 523 return false; 524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy()) 525 return true; 526 527 // Compare getValueID values. 528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 529 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 530 531 // Sort arguments by their position. 532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 533 const Argument *RA = cast<Argument>(RU->getValue()); 534 return LA->getArgNo() < RA->getArgNo(); 535 } 536 537 // For instructions, compare their loop depth, and their opcode. 538 // This is pretty loose. 539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 540 Instruction *RV = cast<Instruction>(RU->getValue()); 541 542 // Compare loop depths. 543 if (LI->getLoopDepth(LV->getParent()) != 544 LI->getLoopDepth(RV->getParent())) 545 return LI->getLoopDepth(LV->getParent()) < 546 LI->getLoopDepth(RV->getParent()); 547 548 // Compare opcodes. 549 if (LV->getOpcode() != RV->getOpcode()) 550 return LV->getOpcode() < RV->getOpcode(); 551 552 // Compare the number of operands. 553 if (LV->getNumOperands() != RV->getNumOperands()) 554 return LV->getNumOperands() < RV->getNumOperands(); 555 } 556 557 return false; 558 } 559 560 // Compare constant values. 561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 562 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) 564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); 565 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 566 } 567 568 // Compare addrec loop depths. 569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 573 } 574 575 // Lexicographically compare n-ary expressions. 576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 579 if (i >= RC->getNumOperands()) 580 return false; 581 if (operator()(LC->getOperand(i), RC->getOperand(i))) 582 return true; 583 if (operator()(RC->getOperand(i), LC->getOperand(i))) 584 return false; 585 } 586 return LC->getNumOperands() < RC->getNumOperands(); 587 } 588 589 // Lexicographically compare udiv expressions. 590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 592 if (operator()(LC->getLHS(), RC->getLHS())) 593 return true; 594 if (operator()(RC->getLHS(), LC->getLHS())) 595 return false; 596 if (operator()(LC->getRHS(), RC->getRHS())) 597 return true; 598 if (operator()(RC->getRHS(), LC->getRHS())) 599 return false; 600 return false; 601 } 602 603 // Compare cast expressions by operand. 604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 606 return operator()(LC->getOperand(), RC->getOperand()); 607 } 608 609 llvm_unreachable("Unknown SCEV kind!"); 610 return false; 611 } 612 }; 613 } 614 615 /// GroupByComplexity - Given a list of SCEV objects, order them by their 616 /// complexity, and group objects of the same complexity together by value. 617 /// When this routine is finished, we know that any duplicates in the vector are 618 /// consecutive and that complexity is monotonically increasing. 619 /// 620 /// Note that we go take special precautions to ensure that we get deterministic 621 /// results from this routine. In other words, we don't want the results of 622 /// this to depend on where the addresses of various SCEV objects happened to 623 /// land in memory. 624 /// 625 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 626 LoopInfo *LI) { 627 if (Ops.size() < 2) return; // Noop 628 if (Ops.size() == 2) { 629 // This is the common case, which also happens to be trivially simple. 630 // Special case it. 631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 632 std::swap(Ops[0], Ops[1]); 633 return; 634 } 635 636 // Do the rough sort by complexity. 637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 638 639 // Now that we are sorted by complexity, group elements of the same 640 // complexity. Note that this is, at worst, N^2, but the vector is likely to 641 // be extremely short in practice. Note that we take this approach because we 642 // do not want to depend on the addresses of the objects we are grouping. 643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 644 const SCEV *S = Ops[i]; 645 unsigned Complexity = S->getSCEVType(); 646 647 // If there are any objects of the same complexity and same value as this 648 // one, group them. 649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 650 if (Ops[j] == S) { // Found a duplicate. 651 // Move it to immediately after i'th element. 652 std::swap(Ops[i+1], Ops[j]); 653 ++i; // no need to rescan it. 654 if (i == e-2) return; // Done! 655 } 656 } 657 } 658 } 659 660 661 662 //===----------------------------------------------------------------------===// 663 // Simple SCEV method implementations 664 //===----------------------------------------------------------------------===// 665 666 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 667 /// Assume, K > 0. 668 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 669 ScalarEvolution &SE, 670 const Type* ResultTy) { 671 // Handle the simplest case efficiently. 672 if (K == 1) 673 return SE.getTruncateOrZeroExtend(It, ResultTy); 674 675 // We are using the following formula for BC(It, K): 676 // 677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 678 // 679 // Suppose, W is the bitwidth of the return value. We must be prepared for 680 // overflow. Hence, we must assure that the result of our computation is 681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 682 // safe in modular arithmetic. 683 // 684 // However, this code doesn't use exactly that formula; the formula it uses 685 // is something like the following, where T is the number of factors of 2 in 686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 687 // exponentiation: 688 // 689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 690 // 691 // This formula is trivially equivalent to the previous formula. However, 692 // this formula can be implemented much more efficiently. The trick is that 693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 694 // arithmetic. To do exact division in modular arithmetic, all we have 695 // to do is multiply by the inverse. Therefore, this step can be done at 696 // width W. 697 // 698 // The next issue is how to safely do the division by 2^T. The way this 699 // is done is by doing the multiplication step at a width of at least W + T 700 // bits. This way, the bottom W+T bits of the product are accurate. Then, 701 // when we perform the division by 2^T (which is equivalent to a right shift 702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 703 // truncated out after the division by 2^T. 704 // 705 // In comparison to just directly using the first formula, this technique 706 // is much more efficient; using the first formula requires W * K bits, 707 // but this formula less than W + K bits. Also, the first formula requires 708 // a division step, whereas this formula only requires multiplies and shifts. 709 // 710 // It doesn't matter whether the subtraction step is done in the calculation 711 // width or the input iteration count's width; if the subtraction overflows, 712 // the result must be zero anyway. We prefer here to do it in the width of 713 // the induction variable because it helps a lot for certain cases; CodeGen 714 // isn't smart enough to ignore the overflow, which leads to much less 715 // efficient code if the width of the subtraction is wider than the native 716 // register width. 717 // 718 // (It's possible to not widen at all by pulling out factors of 2 before 719 // the multiplication; for example, K=2 can be calculated as 720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 721 // extra arithmetic, so it's not an obvious win, and it gets 722 // much more complicated for K > 3.) 723 724 // Protection from insane SCEVs; this bound is conservative, 725 // but it probably doesn't matter. 726 if (K > 1000) 727 return SE.getCouldNotCompute(); 728 729 unsigned W = SE.getTypeSizeInBits(ResultTy); 730 731 // Calculate K! / 2^T and T; we divide out the factors of two before 732 // multiplying for calculating K! / 2^T to avoid overflow. 733 // Other overflow doesn't matter because we only care about the bottom 734 // W bits of the result. 735 APInt OddFactorial(W, 1); 736 unsigned T = 1; 737 for (unsigned i = 3; i <= K; ++i) { 738 APInt Mult(W, i); 739 unsigned TwoFactors = Mult.countTrailingZeros(); 740 T += TwoFactors; 741 Mult = Mult.lshr(TwoFactors); 742 OddFactorial *= Mult; 743 } 744 745 // We need at least W + T bits for the multiplication step 746 unsigned CalculationBits = W + T; 747 748 // Calculate 2^T, at width T+W. 749 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 750 751 // Calculate the multiplicative inverse of K! / 2^T; 752 // this multiplication factor will perform the exact division by 753 // K! / 2^T. 754 APInt Mod = APInt::getSignedMinValue(W+1); 755 APInt MultiplyFactor = OddFactorial.zext(W+1); 756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 757 MultiplyFactor = MultiplyFactor.trunc(W); 758 759 // Calculate the product, at width T+W 760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 761 CalculationBits); 762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 763 for (unsigned i = 1; i != K; ++i) { 764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 765 Dividend = SE.getMulExpr(Dividend, 766 SE.getTruncateOrZeroExtend(S, CalculationTy)); 767 } 768 769 // Divide by 2^T 770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 771 772 // Truncate the result, and divide by K! / 2^T. 773 774 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 775 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 776 } 777 778 /// evaluateAtIteration - Return the value of this chain of recurrences at 779 /// the specified iteration number. We can evaluate this recurrence by 780 /// multiplying each element in the chain by the binomial coefficient 781 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 782 /// 783 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 784 /// 785 /// where BC(It, k) stands for binomial coefficient. 786 /// 787 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 788 ScalarEvolution &SE) const { 789 const SCEV *Result = getStart(); 790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 791 // The computation is correct in the face of overflow provided that the 792 // multiplication is performed _after_ the evaluation of the binomial 793 // coefficient. 794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 795 if (isa<SCEVCouldNotCompute>(Coeff)) 796 return Coeff; 797 798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 799 } 800 return Result; 801 } 802 803 //===----------------------------------------------------------------------===// 804 // SCEV Expression folder implementations 805 //===----------------------------------------------------------------------===// 806 807 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 808 const Type *Ty) { 809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 810 "This is not a truncating conversion!"); 811 assert(isSCEVable(Ty) && 812 "This is not a conversion to a SCEVable type!"); 813 Ty = getEffectiveSCEVType(Ty); 814 815 FoldingSetNodeID ID; 816 ID.AddInteger(scTruncate); 817 ID.AddPointer(Op); 818 ID.AddPointer(Ty); 819 void *IP = 0; 820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 821 822 // Fold if the operand is constant. 823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 824 return getConstant( 825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 826 getEffectiveSCEVType(Ty)))); 827 828 // trunc(trunc(x)) --> trunc(x) 829 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 830 return getTruncateExpr(ST->getOperand(), Ty); 831 832 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 833 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 834 return getTruncateOrSignExtend(SS->getOperand(), Ty); 835 836 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 837 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 838 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 839 840 // If the input value is a chrec scev, truncate the chrec's operands. 841 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 842 SmallVector<const SCEV *, 4> Operands; 843 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 844 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 845 return getAddRecExpr(Operands, AddRec->getLoop()); 846 } 847 848 // The cast wasn't folded; create an explicit cast node. We can reuse 849 // the existing insert position since if we get here, we won't have 850 // made any changes which would invalidate it. 851 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 852 Op, Ty); 853 UniqueSCEVs.InsertNode(S, IP); 854 return S; 855 } 856 857 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 858 const Type *Ty) { 859 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 860 "This is not an extending conversion!"); 861 assert(isSCEVable(Ty) && 862 "This is not a conversion to a SCEVable type!"); 863 Ty = getEffectiveSCEVType(Ty); 864 865 // Fold if the operand is constant. 866 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 867 return getConstant( 868 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 869 getEffectiveSCEVType(Ty)))); 870 871 // zext(zext(x)) --> zext(x) 872 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 873 return getZeroExtendExpr(SZ->getOperand(), Ty); 874 875 // Before doing any expensive analysis, check to see if we've already 876 // computed a SCEV for this Op and Ty. 877 FoldingSetNodeID ID; 878 ID.AddInteger(scZeroExtend); 879 ID.AddPointer(Op); 880 ID.AddPointer(Ty); 881 void *IP = 0; 882 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 883 884 // If the input value is a chrec scev, and we can prove that the value 885 // did not overflow the old, smaller, value, we can zero extend all of the 886 // operands (often constants). This allows analysis of something like 887 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 888 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 889 if (AR->isAffine()) { 890 const SCEV *Start = AR->getStart(); 891 const SCEV *Step = AR->getStepRecurrence(*this); 892 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 893 const Loop *L = AR->getLoop(); 894 895 // If we have special knowledge that this addrec won't overflow, 896 // we don't need to do any further analysis. 897 if (AR->hasNoUnsignedWrap()) 898 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 899 getZeroExtendExpr(Step, Ty), 900 L); 901 902 // Check whether the backedge-taken count is SCEVCouldNotCompute. 903 // Note that this serves two purposes: It filters out loops that are 904 // simply not analyzable, and it covers the case where this code is 905 // being called from within backedge-taken count analysis, such that 906 // attempting to ask for the backedge-taken count would likely result 907 // in infinite recursion. In the later case, the analysis code will 908 // cope with a conservative value, and it will take care to purge 909 // that value once it has finished. 910 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 911 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 912 // Manually compute the final value for AR, checking for 913 // overflow. 914 915 // Check whether the backedge-taken count can be losslessly casted to 916 // the addrec's type. The count is always unsigned. 917 const SCEV *CastedMaxBECount = 918 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 919 const SCEV *RecastedMaxBECount = 920 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 921 if (MaxBECount == RecastedMaxBECount) { 922 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 923 // Check whether Start+Step*MaxBECount has no unsigned overflow. 924 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 925 const SCEV *Add = getAddExpr(Start, ZMul); 926 const SCEV *OperandExtendedAdd = 927 getAddExpr(getZeroExtendExpr(Start, WideTy), 928 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 929 getZeroExtendExpr(Step, WideTy))); 930 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 931 // Return the expression with the addrec on the outside. 932 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 933 getZeroExtendExpr(Step, Ty), 934 L); 935 936 // Similar to above, only this time treat the step value as signed. 937 // This covers loops that count down. 938 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 939 Add = getAddExpr(Start, SMul); 940 OperandExtendedAdd = 941 getAddExpr(getZeroExtendExpr(Start, WideTy), 942 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 943 getSignExtendExpr(Step, WideTy))); 944 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 945 // Return the expression with the addrec on the outside. 946 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 947 getSignExtendExpr(Step, Ty), 948 L); 949 } 950 951 // If the backedge is guarded by a comparison with the pre-inc value 952 // the addrec is safe. Also, if the entry is guarded by a comparison 953 // with the start value and the backedge is guarded by a comparison 954 // with the post-inc value, the addrec is safe. 955 if (isKnownPositive(Step)) { 956 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 957 getUnsignedRange(Step).getUnsignedMax()); 958 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 959 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 960 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 961 AR->getPostIncExpr(*this), N))) 962 // Return the expression with the addrec on the outside. 963 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 964 getZeroExtendExpr(Step, Ty), 965 L); 966 } else if (isKnownNegative(Step)) { 967 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 968 getSignedRange(Step).getSignedMin()); 969 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 970 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 971 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 972 AR->getPostIncExpr(*this), N))) 973 // Return the expression with the addrec on the outside. 974 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 975 getSignExtendExpr(Step, Ty), 976 L); 977 } 978 } 979 } 980 981 // The cast wasn't folded; create an explicit cast node. 982 // Recompute the insert position, as it may have been invalidated. 983 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 984 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 985 Op, Ty); 986 UniqueSCEVs.InsertNode(S, IP); 987 return S; 988 } 989 990 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 991 const Type *Ty) { 992 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 993 "This is not an extending conversion!"); 994 assert(isSCEVable(Ty) && 995 "This is not a conversion to a SCEVable type!"); 996 Ty = getEffectiveSCEVType(Ty); 997 998 // Fold if the operand is constant. 999 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1000 return getConstant( 1001 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1002 getEffectiveSCEVType(Ty)))); 1003 1004 // sext(sext(x)) --> sext(x) 1005 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1006 return getSignExtendExpr(SS->getOperand(), Ty); 1007 1008 // Before doing any expensive analysis, check to see if we've already 1009 // computed a SCEV for this Op and Ty. 1010 FoldingSetNodeID ID; 1011 ID.AddInteger(scSignExtend); 1012 ID.AddPointer(Op); 1013 ID.AddPointer(Ty); 1014 void *IP = 0; 1015 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1016 1017 // If the input value is a chrec scev, and we can prove that the value 1018 // did not overflow the old, smaller, value, we can sign extend all of the 1019 // operands (often constants). This allows analysis of something like 1020 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1021 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1022 if (AR->isAffine()) { 1023 const SCEV *Start = AR->getStart(); 1024 const SCEV *Step = AR->getStepRecurrence(*this); 1025 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1026 const Loop *L = AR->getLoop(); 1027 1028 // If we have special knowledge that this addrec won't overflow, 1029 // we don't need to do any further analysis. 1030 if (AR->hasNoSignedWrap()) 1031 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1032 getSignExtendExpr(Step, Ty), 1033 L); 1034 1035 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1036 // Note that this serves two purposes: It filters out loops that are 1037 // simply not analyzable, and it covers the case where this code is 1038 // being called from within backedge-taken count analysis, such that 1039 // attempting to ask for the backedge-taken count would likely result 1040 // in infinite recursion. In the later case, the analysis code will 1041 // cope with a conservative value, and it will take care to purge 1042 // that value once it has finished. 1043 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1044 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1045 // Manually compute the final value for AR, checking for 1046 // overflow. 1047 1048 // Check whether the backedge-taken count can be losslessly casted to 1049 // the addrec's type. The count is always unsigned. 1050 const SCEV *CastedMaxBECount = 1051 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1052 const SCEV *RecastedMaxBECount = 1053 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1054 if (MaxBECount == RecastedMaxBECount) { 1055 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1056 // Check whether Start+Step*MaxBECount has no signed overflow. 1057 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1058 const SCEV *Add = getAddExpr(Start, SMul); 1059 const SCEV *OperandExtendedAdd = 1060 getAddExpr(getSignExtendExpr(Start, WideTy), 1061 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1062 getSignExtendExpr(Step, WideTy))); 1063 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1064 // Return the expression with the addrec on the outside. 1065 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1066 getSignExtendExpr(Step, Ty), 1067 L); 1068 1069 // Similar to above, only this time treat the step value as unsigned. 1070 // This covers loops that count up with an unsigned step. 1071 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1072 Add = getAddExpr(Start, UMul); 1073 OperandExtendedAdd = 1074 getAddExpr(getSignExtendExpr(Start, WideTy), 1075 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1076 getZeroExtendExpr(Step, WideTy))); 1077 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1078 // Return the expression with the addrec on the outside. 1079 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1080 getZeroExtendExpr(Step, Ty), 1081 L); 1082 } 1083 1084 // If the backedge is guarded by a comparison with the pre-inc value 1085 // the addrec is safe. Also, if the entry is guarded by a comparison 1086 // with the start value and the backedge is guarded by a comparison 1087 // with the post-inc value, the addrec is safe. 1088 if (isKnownPositive(Step)) { 1089 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1090 getSignedRange(Step).getSignedMax()); 1091 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1092 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1093 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1094 AR->getPostIncExpr(*this), N))) 1095 // Return the expression with the addrec on the outside. 1096 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1097 getSignExtendExpr(Step, Ty), 1098 L); 1099 } else if (isKnownNegative(Step)) { 1100 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1101 getSignedRange(Step).getSignedMin()); 1102 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1103 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1104 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1105 AR->getPostIncExpr(*this), N))) 1106 // Return the expression with the addrec on the outside. 1107 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1108 getSignExtendExpr(Step, Ty), 1109 L); 1110 } 1111 } 1112 } 1113 1114 // The cast wasn't folded; create an explicit cast node. 1115 // Recompute the insert position, as it may have been invalidated. 1116 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1117 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1118 Op, Ty); 1119 UniqueSCEVs.InsertNode(S, IP); 1120 return S; 1121 } 1122 1123 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1124 /// unspecified bits out to the given type. 1125 /// 1126 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1127 const Type *Ty) { 1128 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1129 "This is not an extending conversion!"); 1130 assert(isSCEVable(Ty) && 1131 "This is not a conversion to a SCEVable type!"); 1132 Ty = getEffectiveSCEVType(Ty); 1133 1134 // Sign-extend negative constants. 1135 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1136 if (SC->getValue()->getValue().isNegative()) 1137 return getSignExtendExpr(Op, Ty); 1138 1139 // Peel off a truncate cast. 1140 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1141 const SCEV *NewOp = T->getOperand(); 1142 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1143 return getAnyExtendExpr(NewOp, Ty); 1144 return getTruncateOrNoop(NewOp, Ty); 1145 } 1146 1147 // Next try a zext cast. If the cast is folded, use it. 1148 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1149 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1150 return ZExt; 1151 1152 // Next try a sext cast. If the cast is folded, use it. 1153 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1154 if (!isa<SCEVSignExtendExpr>(SExt)) 1155 return SExt; 1156 1157 // Force the cast to be folded into the operands of an addrec. 1158 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1159 SmallVector<const SCEV *, 4> Ops; 1160 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1161 I != E; ++I) 1162 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1163 return getAddRecExpr(Ops, AR->getLoop()); 1164 } 1165 1166 // If the expression is obviously signed, use the sext cast value. 1167 if (isa<SCEVSMaxExpr>(Op)) 1168 return SExt; 1169 1170 // Absent any other information, use the zext cast value. 1171 return ZExt; 1172 } 1173 1174 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1175 /// a list of operands to be added under the given scale, update the given 1176 /// map. This is a helper function for getAddRecExpr. As an example of 1177 /// what it does, given a sequence of operands that would form an add 1178 /// expression like this: 1179 /// 1180 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1181 /// 1182 /// where A and B are constants, update the map with these values: 1183 /// 1184 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1185 /// 1186 /// and add 13 + A*B*29 to AccumulatedConstant. 1187 /// This will allow getAddRecExpr to produce this: 1188 /// 1189 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1190 /// 1191 /// This form often exposes folding opportunities that are hidden in 1192 /// the original operand list. 1193 /// 1194 /// Return true iff it appears that any interesting folding opportunities 1195 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1196 /// the common case where no interesting opportunities are present, and 1197 /// is also used as a check to avoid infinite recursion. 1198 /// 1199 static bool 1200 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1201 SmallVector<const SCEV *, 8> &NewOps, 1202 APInt &AccumulatedConstant, 1203 const SCEV *const *Ops, size_t NumOperands, 1204 const APInt &Scale, 1205 ScalarEvolution &SE) { 1206 bool Interesting = false; 1207 1208 // Iterate over the add operands. They are sorted, with constants first. 1209 unsigned i = 0; 1210 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1211 ++i; 1212 // Pull a buried constant out to the outside. 1213 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1214 Interesting = true; 1215 AccumulatedConstant += Scale * C->getValue()->getValue(); 1216 } 1217 1218 // Next comes everything else. We're especially interested in multiplies 1219 // here, but they're in the middle, so just visit the rest with one loop. 1220 for (; i != NumOperands; ++i) { 1221 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1222 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1223 APInt NewScale = 1224 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1225 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1226 // A multiplication of a constant with another add; recurse. 1227 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1228 Interesting |= 1229 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1230 Add->op_begin(), Add->getNumOperands(), 1231 NewScale, SE); 1232 } else { 1233 // A multiplication of a constant with some other value. Update 1234 // the map. 1235 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1236 const SCEV *Key = SE.getMulExpr(MulOps); 1237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1238 M.insert(std::make_pair(Key, NewScale)); 1239 if (Pair.second) { 1240 NewOps.push_back(Pair.first->first); 1241 } else { 1242 Pair.first->second += NewScale; 1243 // The map already had an entry for this value, which may indicate 1244 // a folding opportunity. 1245 Interesting = true; 1246 } 1247 } 1248 } else { 1249 // An ordinary operand. Update the map. 1250 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1251 M.insert(std::make_pair(Ops[i], Scale)); 1252 if (Pair.second) { 1253 NewOps.push_back(Pair.first->first); 1254 } else { 1255 Pair.first->second += Scale; 1256 // The map already had an entry for this value, which may indicate 1257 // a folding opportunity. 1258 Interesting = true; 1259 } 1260 } 1261 } 1262 1263 return Interesting; 1264 } 1265 1266 namespace { 1267 struct APIntCompare { 1268 bool operator()(const APInt &LHS, const APInt &RHS) const { 1269 return LHS.ult(RHS); 1270 } 1271 }; 1272 } 1273 1274 /// getAddExpr - Get a canonical add expression, or something simpler if 1275 /// possible. 1276 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1277 bool HasNUW, bool HasNSW) { 1278 assert(!Ops.empty() && "Cannot get empty add!"); 1279 if (Ops.size() == 1) return Ops[0]; 1280 #ifndef NDEBUG 1281 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1282 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1283 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1284 "SCEVAddExpr operand types don't match!"); 1285 #endif 1286 1287 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1288 if (!HasNUW && HasNSW) { 1289 bool All = true; 1290 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1291 if (!isKnownNonNegative(Ops[i])) { 1292 All = false; 1293 break; 1294 } 1295 if (All) HasNUW = true; 1296 } 1297 1298 // Sort by complexity, this groups all similar expression types together. 1299 GroupByComplexity(Ops, LI); 1300 1301 // If there are any constants, fold them together. 1302 unsigned Idx = 0; 1303 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1304 ++Idx; 1305 assert(Idx < Ops.size()); 1306 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1307 // We found two constants, fold them together! 1308 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1309 RHSC->getValue()->getValue()); 1310 if (Ops.size() == 2) return Ops[0]; 1311 Ops.erase(Ops.begin()+1); // Erase the folded element 1312 LHSC = cast<SCEVConstant>(Ops[0]); 1313 } 1314 1315 // If we are left with a constant zero being added, strip it off. 1316 if (LHSC->getValue()->isZero()) { 1317 Ops.erase(Ops.begin()); 1318 --Idx; 1319 } 1320 1321 if (Ops.size() == 1) return Ops[0]; 1322 } 1323 1324 // Okay, check to see if the same value occurs in the operand list twice. If 1325 // so, merge them together into an multiply expression. Since we sorted the 1326 // list, these values are required to be adjacent. 1327 const Type *Ty = Ops[0]->getType(); 1328 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1329 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1330 // Found a match, merge the two values into a multiply, and add any 1331 // remaining values to the result. 1332 const SCEV *Two = getConstant(Ty, 2); 1333 const SCEV *Mul = getMulExpr(Ops[i], Two); 1334 if (Ops.size() == 2) 1335 return Mul; 1336 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1337 Ops.push_back(Mul); 1338 return getAddExpr(Ops, HasNUW, HasNSW); 1339 } 1340 1341 // Check for truncates. If all the operands are truncated from the same 1342 // type, see if factoring out the truncate would permit the result to be 1343 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1344 // if the contents of the resulting outer trunc fold to something simple. 1345 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1346 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1347 const Type *DstType = Trunc->getType(); 1348 const Type *SrcType = Trunc->getOperand()->getType(); 1349 SmallVector<const SCEV *, 8> LargeOps; 1350 bool Ok = true; 1351 // Check all the operands to see if they can be represented in the 1352 // source type of the truncate. 1353 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1354 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1355 if (T->getOperand()->getType() != SrcType) { 1356 Ok = false; 1357 break; 1358 } 1359 LargeOps.push_back(T->getOperand()); 1360 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1361 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1362 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1363 SmallVector<const SCEV *, 8> LargeMulOps; 1364 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1365 if (const SCEVTruncateExpr *T = 1366 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1367 if (T->getOperand()->getType() != SrcType) { 1368 Ok = false; 1369 break; 1370 } 1371 LargeMulOps.push_back(T->getOperand()); 1372 } else if (const SCEVConstant *C = 1373 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1374 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1375 } else { 1376 Ok = false; 1377 break; 1378 } 1379 } 1380 if (Ok) 1381 LargeOps.push_back(getMulExpr(LargeMulOps)); 1382 } else { 1383 Ok = false; 1384 break; 1385 } 1386 } 1387 if (Ok) { 1388 // Evaluate the expression in the larger type. 1389 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1390 // If it folds to something simple, use it. Otherwise, don't. 1391 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1392 return getTruncateExpr(Fold, DstType); 1393 } 1394 } 1395 1396 // Skip past any other cast SCEVs. 1397 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1398 ++Idx; 1399 1400 // If there are add operands they would be next. 1401 if (Idx < Ops.size()) { 1402 bool DeletedAdd = false; 1403 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1404 // If we have an add, expand the add operands onto the end of the operands 1405 // list. 1406 Ops.erase(Ops.begin()+Idx); 1407 Ops.append(Add->op_begin(), Add->op_end()); 1408 DeletedAdd = true; 1409 } 1410 1411 // If we deleted at least one add, we added operands to the end of the list, 1412 // and they are not necessarily sorted. Recurse to resort and resimplify 1413 // any operands we just acquired. 1414 if (DeletedAdd) 1415 return getAddExpr(Ops); 1416 } 1417 1418 // Skip over the add expression until we get to a multiply. 1419 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1420 ++Idx; 1421 1422 // Check to see if there are any folding opportunities present with 1423 // operands multiplied by constant values. 1424 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1425 uint64_t BitWidth = getTypeSizeInBits(Ty); 1426 DenseMap<const SCEV *, APInt> M; 1427 SmallVector<const SCEV *, 8> NewOps; 1428 APInt AccumulatedConstant(BitWidth, 0); 1429 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1430 Ops.data(), Ops.size(), 1431 APInt(BitWidth, 1), *this)) { 1432 // Some interesting folding opportunity is present, so its worthwhile to 1433 // re-generate the operands list. Group the operands by constant scale, 1434 // to avoid multiplying by the same constant scale multiple times. 1435 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1436 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1437 E = NewOps.end(); I != E; ++I) 1438 MulOpLists[M.find(*I)->second].push_back(*I); 1439 // Re-generate the operands list. 1440 Ops.clear(); 1441 if (AccumulatedConstant != 0) 1442 Ops.push_back(getConstant(AccumulatedConstant)); 1443 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1444 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1445 if (I->first != 0) 1446 Ops.push_back(getMulExpr(getConstant(I->first), 1447 getAddExpr(I->second))); 1448 if (Ops.empty()) 1449 return getConstant(Ty, 0); 1450 if (Ops.size() == 1) 1451 return Ops[0]; 1452 return getAddExpr(Ops); 1453 } 1454 } 1455 1456 // If we are adding something to a multiply expression, make sure the 1457 // something is not already an operand of the multiply. If so, merge it into 1458 // the multiply. 1459 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1460 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1461 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1462 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1463 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1464 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1465 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1466 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1467 if (Mul->getNumOperands() != 2) { 1468 // If the multiply has more than two operands, we must get the 1469 // Y*Z term. 1470 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1471 MulOps.erase(MulOps.begin()+MulOp); 1472 InnerMul = getMulExpr(MulOps); 1473 } 1474 const SCEV *One = getConstant(Ty, 1); 1475 const SCEV *AddOne = getAddExpr(InnerMul, One); 1476 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1477 if (Ops.size() == 2) return OuterMul; 1478 if (AddOp < Idx) { 1479 Ops.erase(Ops.begin()+AddOp); 1480 Ops.erase(Ops.begin()+Idx-1); 1481 } else { 1482 Ops.erase(Ops.begin()+Idx); 1483 Ops.erase(Ops.begin()+AddOp-1); 1484 } 1485 Ops.push_back(OuterMul); 1486 return getAddExpr(Ops); 1487 } 1488 1489 // Check this multiply against other multiplies being added together. 1490 for (unsigned OtherMulIdx = Idx+1; 1491 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1492 ++OtherMulIdx) { 1493 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1494 // If MulOp occurs in OtherMul, we can fold the two multiplies 1495 // together. 1496 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1497 OMulOp != e; ++OMulOp) 1498 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1499 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1500 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1501 if (Mul->getNumOperands() != 2) { 1502 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1503 Mul->op_end()); 1504 MulOps.erase(MulOps.begin()+MulOp); 1505 InnerMul1 = getMulExpr(MulOps); 1506 } 1507 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1508 if (OtherMul->getNumOperands() != 2) { 1509 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1510 OtherMul->op_end()); 1511 MulOps.erase(MulOps.begin()+OMulOp); 1512 InnerMul2 = getMulExpr(MulOps); 1513 } 1514 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1515 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1516 if (Ops.size() == 2) return OuterMul; 1517 Ops.erase(Ops.begin()+Idx); 1518 Ops.erase(Ops.begin()+OtherMulIdx-1); 1519 Ops.push_back(OuterMul); 1520 return getAddExpr(Ops); 1521 } 1522 } 1523 } 1524 } 1525 1526 // If there are any add recurrences in the operands list, see if any other 1527 // added values are loop invariant. If so, we can fold them into the 1528 // recurrence. 1529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1530 ++Idx; 1531 1532 // Scan over all recurrences, trying to fold loop invariants into them. 1533 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1534 // Scan all of the other operands to this add and add them to the vector if 1535 // they are loop invariant w.r.t. the recurrence. 1536 SmallVector<const SCEV *, 8> LIOps; 1537 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1538 const Loop *AddRecLoop = AddRec->getLoop(); 1539 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1540 if (Ops[i]->isLoopInvariant(AddRecLoop)) { 1541 LIOps.push_back(Ops[i]); 1542 Ops.erase(Ops.begin()+i); 1543 --i; --e; 1544 } 1545 1546 // If we found some loop invariants, fold them into the recurrence. 1547 if (!LIOps.empty()) { 1548 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1549 LIOps.push_back(AddRec->getStart()); 1550 1551 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1552 AddRec->op_end()); 1553 AddRecOps[0] = getAddExpr(LIOps); 1554 1555 // Build the new addrec. Propagate the NUW and NSW flags if both the 1556 // outer add and the inner addrec are guaranteed to have no overflow. 1557 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1558 HasNUW && AddRec->hasNoUnsignedWrap(), 1559 HasNSW && AddRec->hasNoSignedWrap()); 1560 1561 // If all of the other operands were loop invariant, we are done. 1562 if (Ops.size() == 1) return NewRec; 1563 1564 // Otherwise, add the folded AddRec by the non-liv parts. 1565 for (unsigned i = 0;; ++i) 1566 if (Ops[i] == AddRec) { 1567 Ops[i] = NewRec; 1568 break; 1569 } 1570 return getAddExpr(Ops); 1571 } 1572 1573 // Okay, if there weren't any loop invariants to be folded, check to see if 1574 // there are multiple AddRec's with the same loop induction variable being 1575 // added together. If so, we can fold them. 1576 for (unsigned OtherIdx = Idx+1; 1577 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1578 if (OtherIdx != Idx) { 1579 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1580 if (AddRecLoop == OtherAddRec->getLoop()) { 1581 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1582 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1583 AddRec->op_end()); 1584 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1585 if (i >= NewOps.size()) { 1586 NewOps.append(OtherAddRec->op_begin()+i, 1587 OtherAddRec->op_end()); 1588 break; 1589 } 1590 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1591 } 1592 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop); 1593 1594 if (Ops.size() == 2) return NewAddRec; 1595 1596 Ops.erase(Ops.begin()+Idx); 1597 Ops.erase(Ops.begin()+OtherIdx-1); 1598 Ops.push_back(NewAddRec); 1599 return getAddExpr(Ops); 1600 } 1601 } 1602 1603 // Otherwise couldn't fold anything into this recurrence. Move onto the 1604 // next one. 1605 } 1606 1607 // Okay, it looks like we really DO need an add expr. Check to see if we 1608 // already have one, otherwise create a new one. 1609 FoldingSetNodeID ID; 1610 ID.AddInteger(scAddExpr); 1611 ID.AddInteger(Ops.size()); 1612 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1613 ID.AddPointer(Ops[i]); 1614 void *IP = 0; 1615 SCEVAddExpr *S = 1616 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1617 if (!S) { 1618 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1619 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1620 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1621 O, Ops.size()); 1622 UniqueSCEVs.InsertNode(S, IP); 1623 } 1624 if (HasNUW) S->setHasNoUnsignedWrap(true); 1625 if (HasNSW) S->setHasNoSignedWrap(true); 1626 return S; 1627 } 1628 1629 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1630 /// possible. 1631 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1632 bool HasNUW, bool HasNSW) { 1633 assert(!Ops.empty() && "Cannot get empty mul!"); 1634 if (Ops.size() == 1) return Ops[0]; 1635 #ifndef NDEBUG 1636 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1637 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1638 getEffectiveSCEVType(Ops[0]->getType()) && 1639 "SCEVMulExpr operand types don't match!"); 1640 #endif 1641 1642 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1643 if (!HasNUW && HasNSW) { 1644 bool All = true; 1645 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1646 if (!isKnownNonNegative(Ops[i])) { 1647 All = false; 1648 break; 1649 } 1650 if (All) HasNUW = true; 1651 } 1652 1653 // Sort by complexity, this groups all similar expression types together. 1654 GroupByComplexity(Ops, LI); 1655 1656 // If there are any constants, fold them together. 1657 unsigned Idx = 0; 1658 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1659 1660 // C1*(C2+V) -> C1*C2 + C1*V 1661 if (Ops.size() == 2) 1662 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1663 if (Add->getNumOperands() == 2 && 1664 isa<SCEVConstant>(Add->getOperand(0))) 1665 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1666 getMulExpr(LHSC, Add->getOperand(1))); 1667 1668 ++Idx; 1669 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1670 // We found two constants, fold them together! 1671 ConstantInt *Fold = ConstantInt::get(getContext(), 1672 LHSC->getValue()->getValue() * 1673 RHSC->getValue()->getValue()); 1674 Ops[0] = getConstant(Fold); 1675 Ops.erase(Ops.begin()+1); // Erase the folded element 1676 if (Ops.size() == 1) return Ops[0]; 1677 LHSC = cast<SCEVConstant>(Ops[0]); 1678 } 1679 1680 // If we are left with a constant one being multiplied, strip it off. 1681 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1682 Ops.erase(Ops.begin()); 1683 --Idx; 1684 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1685 // If we have a multiply of zero, it will always be zero. 1686 return Ops[0]; 1687 } else if (Ops[0]->isAllOnesValue()) { 1688 // If we have a mul by -1 of an add, try distributing the -1 among the 1689 // add operands. 1690 if (Ops.size() == 2) 1691 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1692 SmallVector<const SCEV *, 4> NewOps; 1693 bool AnyFolded = false; 1694 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1695 I != E; ++I) { 1696 const SCEV *Mul = getMulExpr(Ops[0], *I); 1697 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1698 NewOps.push_back(Mul); 1699 } 1700 if (AnyFolded) 1701 return getAddExpr(NewOps); 1702 } 1703 } 1704 1705 if (Ops.size() == 1) 1706 return Ops[0]; 1707 } 1708 1709 // Skip over the add expression until we get to a multiply. 1710 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1711 ++Idx; 1712 1713 // If there are mul operands inline them all into this expression. 1714 if (Idx < Ops.size()) { 1715 bool DeletedMul = false; 1716 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1717 // If we have an mul, expand the mul operands onto the end of the operands 1718 // list. 1719 Ops.erase(Ops.begin()+Idx); 1720 Ops.append(Mul->op_begin(), Mul->op_end()); 1721 DeletedMul = true; 1722 } 1723 1724 // If we deleted at least one mul, we added operands to the end of the list, 1725 // and they are not necessarily sorted. Recurse to resort and resimplify 1726 // any operands we just acquired. 1727 if (DeletedMul) 1728 return getMulExpr(Ops); 1729 } 1730 1731 // If there are any add recurrences in the operands list, see if any other 1732 // added values are loop invariant. If so, we can fold them into the 1733 // recurrence. 1734 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1735 ++Idx; 1736 1737 // Scan over all recurrences, trying to fold loop invariants into them. 1738 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1739 // Scan all of the other operands to this mul and add them to the vector if 1740 // they are loop invariant w.r.t. the recurrence. 1741 SmallVector<const SCEV *, 8> LIOps; 1742 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1743 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1744 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1745 LIOps.push_back(Ops[i]); 1746 Ops.erase(Ops.begin()+i); 1747 --i; --e; 1748 } 1749 1750 // If we found some loop invariants, fold them into the recurrence. 1751 if (!LIOps.empty()) { 1752 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1753 SmallVector<const SCEV *, 4> NewOps; 1754 NewOps.reserve(AddRec->getNumOperands()); 1755 const SCEV *Scale = getMulExpr(LIOps); 1756 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1757 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1758 1759 // Build the new addrec. Propagate the NUW and NSW flags if both the 1760 // outer mul and the inner addrec are guaranteed to have no overflow. 1761 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1762 HasNUW && AddRec->hasNoUnsignedWrap(), 1763 HasNSW && AddRec->hasNoSignedWrap()); 1764 1765 // If all of the other operands were loop invariant, we are done. 1766 if (Ops.size() == 1) return NewRec; 1767 1768 // Otherwise, multiply the folded AddRec by the non-liv parts. 1769 for (unsigned i = 0;; ++i) 1770 if (Ops[i] == AddRec) { 1771 Ops[i] = NewRec; 1772 break; 1773 } 1774 return getMulExpr(Ops); 1775 } 1776 1777 // Okay, if there weren't any loop invariants to be folded, check to see if 1778 // there are multiple AddRec's with the same loop induction variable being 1779 // multiplied together. If so, we can fold them. 1780 for (unsigned OtherIdx = Idx+1; 1781 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1782 if (OtherIdx != Idx) { 1783 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1784 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1785 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1786 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1787 const SCEV *NewStart = getMulExpr(F->getStart(), 1788 G->getStart()); 1789 const SCEV *B = F->getStepRecurrence(*this); 1790 const SCEV *D = G->getStepRecurrence(*this); 1791 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1792 getMulExpr(G, B), 1793 getMulExpr(B, D)); 1794 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1795 F->getLoop()); 1796 if (Ops.size() == 2) return NewAddRec; 1797 1798 Ops.erase(Ops.begin()+Idx); 1799 Ops.erase(Ops.begin()+OtherIdx-1); 1800 Ops.push_back(NewAddRec); 1801 return getMulExpr(Ops); 1802 } 1803 } 1804 1805 // Otherwise couldn't fold anything into this recurrence. Move onto the 1806 // next one. 1807 } 1808 1809 // Okay, it looks like we really DO need an mul expr. Check to see if we 1810 // already have one, otherwise create a new one. 1811 FoldingSetNodeID ID; 1812 ID.AddInteger(scMulExpr); 1813 ID.AddInteger(Ops.size()); 1814 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1815 ID.AddPointer(Ops[i]); 1816 void *IP = 0; 1817 SCEVMulExpr *S = 1818 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1819 if (!S) { 1820 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1821 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1822 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1823 O, Ops.size()); 1824 UniqueSCEVs.InsertNode(S, IP); 1825 } 1826 if (HasNUW) S->setHasNoUnsignedWrap(true); 1827 if (HasNSW) S->setHasNoSignedWrap(true); 1828 return S; 1829 } 1830 1831 /// getUDivExpr - Get a canonical unsigned division expression, or something 1832 /// simpler if possible. 1833 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1834 const SCEV *RHS) { 1835 assert(getEffectiveSCEVType(LHS->getType()) == 1836 getEffectiveSCEVType(RHS->getType()) && 1837 "SCEVUDivExpr operand types don't match!"); 1838 1839 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1840 if (RHSC->getValue()->equalsInt(1)) 1841 return LHS; // X udiv 1 --> x 1842 // If the denominator is zero, the result of the udiv is undefined. Don't 1843 // try to analyze it, because the resolution chosen here may differ from 1844 // the resolution chosen in other parts of the compiler. 1845 if (!RHSC->getValue()->isZero()) { 1846 // Determine if the division can be folded into the operands of 1847 // its operands. 1848 // TODO: Generalize this to non-constants by using known-bits information. 1849 const Type *Ty = LHS->getType(); 1850 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1851 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1852 // For non-power-of-two values, effectively round the value up to the 1853 // nearest power of two. 1854 if (!RHSC->getValue()->getValue().isPowerOf2()) 1855 ++MaxShiftAmt; 1856 const IntegerType *ExtTy = 1857 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1858 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1859 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1860 if (const SCEVConstant *Step = 1861 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1862 if (!Step->getValue()->getValue() 1863 .urem(RHSC->getValue()->getValue()) && 1864 getZeroExtendExpr(AR, ExtTy) == 1865 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1866 getZeroExtendExpr(Step, ExtTy), 1867 AR->getLoop())) { 1868 SmallVector<const SCEV *, 4> Operands; 1869 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1870 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1871 return getAddRecExpr(Operands, AR->getLoop()); 1872 } 1873 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1874 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1875 SmallVector<const SCEV *, 4> Operands; 1876 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1877 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1878 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1879 // Find an operand that's safely divisible. 1880 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1881 const SCEV *Op = M->getOperand(i); 1882 const SCEV *Div = getUDivExpr(Op, RHSC); 1883 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1884 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1885 M->op_end()); 1886 Operands[i] = Div; 1887 return getMulExpr(Operands); 1888 } 1889 } 1890 } 1891 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1892 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1893 SmallVector<const SCEV *, 4> Operands; 1894 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1895 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1896 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1897 Operands.clear(); 1898 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1899 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1900 if (isa<SCEVUDivExpr>(Op) || 1901 getMulExpr(Op, RHS) != A->getOperand(i)) 1902 break; 1903 Operands.push_back(Op); 1904 } 1905 if (Operands.size() == A->getNumOperands()) 1906 return getAddExpr(Operands); 1907 } 1908 } 1909 1910 // Fold if both operands are constant. 1911 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1912 Constant *LHSCV = LHSC->getValue(); 1913 Constant *RHSCV = RHSC->getValue(); 1914 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1915 RHSCV))); 1916 } 1917 } 1918 } 1919 1920 FoldingSetNodeID ID; 1921 ID.AddInteger(scUDivExpr); 1922 ID.AddPointer(LHS); 1923 ID.AddPointer(RHS); 1924 void *IP = 0; 1925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1926 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 1927 LHS, RHS); 1928 UniqueSCEVs.InsertNode(S, IP); 1929 return S; 1930 } 1931 1932 1933 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1934 /// Simplify the expression as much as possible. 1935 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1936 const SCEV *Step, const Loop *L, 1937 bool HasNUW, bool HasNSW) { 1938 SmallVector<const SCEV *, 4> Operands; 1939 Operands.push_back(Start); 1940 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1941 if (StepChrec->getLoop() == L) { 1942 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 1943 return getAddRecExpr(Operands, L); 1944 } 1945 1946 Operands.push_back(Step); 1947 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1948 } 1949 1950 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1951 /// Simplify the expression as much as possible. 1952 const SCEV * 1953 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1954 const Loop *L, 1955 bool HasNUW, bool HasNSW) { 1956 if (Operands.size() == 1) return Operands[0]; 1957 #ifndef NDEBUG 1958 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1959 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1960 getEffectiveSCEVType(Operands[0]->getType()) && 1961 "SCEVAddRecExpr operand types don't match!"); 1962 #endif 1963 1964 if (Operands.back()->isZero()) { 1965 Operands.pop_back(); 1966 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 1967 } 1968 1969 // It's tempting to want to call getMaxBackedgeTakenCount count here and 1970 // use that information to infer NUW and NSW flags. However, computing a 1971 // BE count requires calling getAddRecExpr, so we may not yet have a 1972 // meaningful BE count at this point (and if we don't, we'd be stuck 1973 // with a SCEVCouldNotCompute as the cached BE count). 1974 1975 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1976 if (!HasNUW && HasNSW) { 1977 bool All = true; 1978 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1979 if (!isKnownNonNegative(Operands[i])) { 1980 All = false; 1981 break; 1982 } 1983 if (All) HasNUW = true; 1984 } 1985 1986 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1987 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1988 const Loop *NestedLoop = NestedAR->getLoop(); 1989 if (L->contains(NestedLoop->getHeader()) ? 1990 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 1991 (!NestedLoop->contains(L->getHeader()) && 1992 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 1993 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 1994 NestedAR->op_end()); 1995 Operands[0] = NestedAR->getStart(); 1996 // AddRecs require their operands be loop-invariant with respect to their 1997 // loops. Don't perform this transformation if it would break this 1998 // requirement. 1999 bool AllInvariant = true; 2000 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2001 if (!Operands[i]->isLoopInvariant(L)) { 2002 AllInvariant = false; 2003 break; 2004 } 2005 if (AllInvariant) { 2006 NestedOperands[0] = getAddRecExpr(Operands, L); 2007 AllInvariant = true; 2008 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2009 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 2010 AllInvariant = false; 2011 break; 2012 } 2013 if (AllInvariant) 2014 // Ok, both add recurrences are valid after the transformation. 2015 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2016 } 2017 // Reset Operands to its original state. 2018 Operands[0] = NestedAR; 2019 } 2020 } 2021 2022 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2023 // already have one, otherwise create a new one. 2024 FoldingSetNodeID ID; 2025 ID.AddInteger(scAddRecExpr); 2026 ID.AddInteger(Operands.size()); 2027 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2028 ID.AddPointer(Operands[i]); 2029 ID.AddPointer(L); 2030 void *IP = 0; 2031 SCEVAddRecExpr *S = 2032 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2033 if (!S) { 2034 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2035 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2036 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2037 O, Operands.size(), L); 2038 UniqueSCEVs.InsertNode(S, IP); 2039 } 2040 if (HasNUW) S->setHasNoUnsignedWrap(true); 2041 if (HasNSW) S->setHasNoSignedWrap(true); 2042 return S; 2043 } 2044 2045 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2046 const SCEV *RHS) { 2047 SmallVector<const SCEV *, 2> Ops; 2048 Ops.push_back(LHS); 2049 Ops.push_back(RHS); 2050 return getSMaxExpr(Ops); 2051 } 2052 2053 const SCEV * 2054 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2055 assert(!Ops.empty() && "Cannot get empty smax!"); 2056 if (Ops.size() == 1) return Ops[0]; 2057 #ifndef NDEBUG 2058 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2059 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2060 getEffectiveSCEVType(Ops[0]->getType()) && 2061 "SCEVSMaxExpr operand types don't match!"); 2062 #endif 2063 2064 // Sort by complexity, this groups all similar expression types together. 2065 GroupByComplexity(Ops, LI); 2066 2067 // If there are any constants, fold them together. 2068 unsigned Idx = 0; 2069 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2070 ++Idx; 2071 assert(Idx < Ops.size()); 2072 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2073 // We found two constants, fold them together! 2074 ConstantInt *Fold = ConstantInt::get(getContext(), 2075 APIntOps::smax(LHSC->getValue()->getValue(), 2076 RHSC->getValue()->getValue())); 2077 Ops[0] = getConstant(Fold); 2078 Ops.erase(Ops.begin()+1); // Erase the folded element 2079 if (Ops.size() == 1) return Ops[0]; 2080 LHSC = cast<SCEVConstant>(Ops[0]); 2081 } 2082 2083 // If we are left with a constant minimum-int, strip it off. 2084 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2085 Ops.erase(Ops.begin()); 2086 --Idx; 2087 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2088 // If we have an smax with a constant maximum-int, it will always be 2089 // maximum-int. 2090 return Ops[0]; 2091 } 2092 2093 if (Ops.size() == 1) return Ops[0]; 2094 } 2095 2096 // Find the first SMax 2097 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2098 ++Idx; 2099 2100 // Check to see if one of the operands is an SMax. If so, expand its operands 2101 // onto our operand list, and recurse to simplify. 2102 if (Idx < Ops.size()) { 2103 bool DeletedSMax = false; 2104 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2105 Ops.erase(Ops.begin()+Idx); 2106 Ops.append(SMax->op_begin(), SMax->op_end()); 2107 DeletedSMax = true; 2108 } 2109 2110 if (DeletedSMax) 2111 return getSMaxExpr(Ops); 2112 } 2113 2114 // Okay, check to see if the same value occurs in the operand list twice. If 2115 // so, delete one. Since we sorted the list, these values are required to 2116 // be adjacent. 2117 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2118 // X smax Y smax Y --> X smax Y 2119 // X smax Y --> X, if X is always greater than Y 2120 if (Ops[i] == Ops[i+1] || 2121 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2122 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2123 --i; --e; 2124 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2125 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2126 --i; --e; 2127 } 2128 2129 if (Ops.size() == 1) return Ops[0]; 2130 2131 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2132 2133 // Okay, it looks like we really DO need an smax expr. Check to see if we 2134 // already have one, otherwise create a new one. 2135 FoldingSetNodeID ID; 2136 ID.AddInteger(scSMaxExpr); 2137 ID.AddInteger(Ops.size()); 2138 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2139 ID.AddPointer(Ops[i]); 2140 void *IP = 0; 2141 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2142 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2143 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2144 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2145 O, Ops.size()); 2146 UniqueSCEVs.InsertNode(S, IP); 2147 return S; 2148 } 2149 2150 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2151 const SCEV *RHS) { 2152 SmallVector<const SCEV *, 2> Ops; 2153 Ops.push_back(LHS); 2154 Ops.push_back(RHS); 2155 return getUMaxExpr(Ops); 2156 } 2157 2158 const SCEV * 2159 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2160 assert(!Ops.empty() && "Cannot get empty umax!"); 2161 if (Ops.size() == 1) return Ops[0]; 2162 #ifndef NDEBUG 2163 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2164 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2165 getEffectiveSCEVType(Ops[0]->getType()) && 2166 "SCEVUMaxExpr operand types don't match!"); 2167 #endif 2168 2169 // Sort by complexity, this groups all similar expression types together. 2170 GroupByComplexity(Ops, LI); 2171 2172 // If there are any constants, fold them together. 2173 unsigned Idx = 0; 2174 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2175 ++Idx; 2176 assert(Idx < Ops.size()); 2177 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2178 // We found two constants, fold them together! 2179 ConstantInt *Fold = ConstantInt::get(getContext(), 2180 APIntOps::umax(LHSC->getValue()->getValue(), 2181 RHSC->getValue()->getValue())); 2182 Ops[0] = getConstant(Fold); 2183 Ops.erase(Ops.begin()+1); // Erase the folded element 2184 if (Ops.size() == 1) return Ops[0]; 2185 LHSC = cast<SCEVConstant>(Ops[0]); 2186 } 2187 2188 // If we are left with a constant minimum-int, strip it off. 2189 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2190 Ops.erase(Ops.begin()); 2191 --Idx; 2192 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2193 // If we have an umax with a constant maximum-int, it will always be 2194 // maximum-int. 2195 return Ops[0]; 2196 } 2197 2198 if (Ops.size() == 1) return Ops[0]; 2199 } 2200 2201 // Find the first UMax 2202 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2203 ++Idx; 2204 2205 // Check to see if one of the operands is a UMax. If so, expand its operands 2206 // onto our operand list, and recurse to simplify. 2207 if (Idx < Ops.size()) { 2208 bool DeletedUMax = false; 2209 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2210 Ops.erase(Ops.begin()+Idx); 2211 Ops.append(UMax->op_begin(), UMax->op_end()); 2212 DeletedUMax = true; 2213 } 2214 2215 if (DeletedUMax) 2216 return getUMaxExpr(Ops); 2217 } 2218 2219 // Okay, check to see if the same value occurs in the operand list twice. If 2220 // so, delete one. Since we sorted the list, these values are required to 2221 // be adjacent. 2222 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2223 // X umax Y umax Y --> X umax Y 2224 // X umax Y --> X, if X is always greater than Y 2225 if (Ops[i] == Ops[i+1] || 2226 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2227 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2228 --i; --e; 2229 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2230 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2231 --i; --e; 2232 } 2233 2234 if (Ops.size() == 1) return Ops[0]; 2235 2236 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2237 2238 // Okay, it looks like we really DO need a umax expr. Check to see if we 2239 // already have one, otherwise create a new one. 2240 FoldingSetNodeID ID; 2241 ID.AddInteger(scUMaxExpr); 2242 ID.AddInteger(Ops.size()); 2243 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2244 ID.AddPointer(Ops[i]); 2245 void *IP = 0; 2246 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2247 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2248 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2249 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2250 O, Ops.size()); 2251 UniqueSCEVs.InsertNode(S, IP); 2252 return S; 2253 } 2254 2255 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2256 const SCEV *RHS) { 2257 // ~smax(~x, ~y) == smin(x, y). 2258 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2259 } 2260 2261 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2262 const SCEV *RHS) { 2263 // ~umax(~x, ~y) == umin(x, y) 2264 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2265 } 2266 2267 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2268 // If we have TargetData, we can bypass creating a target-independent 2269 // constant expression and then folding it back into a ConstantInt. 2270 // This is just a compile-time optimization. 2271 if (TD) 2272 return getConstant(TD->getIntPtrType(getContext()), 2273 TD->getTypeAllocSize(AllocTy)); 2274 2275 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2276 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2277 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2278 C = Folded; 2279 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2280 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2281 } 2282 2283 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2284 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2285 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2286 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2287 C = Folded; 2288 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2289 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2290 } 2291 2292 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2293 unsigned FieldNo) { 2294 // If we have TargetData, we can bypass creating a target-independent 2295 // constant expression and then folding it back into a ConstantInt. 2296 // This is just a compile-time optimization. 2297 if (TD) 2298 return getConstant(TD->getIntPtrType(getContext()), 2299 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2300 2301 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2302 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2303 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2304 C = Folded; 2305 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2306 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2307 } 2308 2309 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2310 Constant *FieldNo) { 2311 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2312 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2313 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2314 C = Folded; 2315 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2316 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2317 } 2318 2319 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2320 // Don't attempt to do anything other than create a SCEVUnknown object 2321 // here. createSCEV only calls getUnknown after checking for all other 2322 // interesting possibilities, and any other code that calls getUnknown 2323 // is doing so in order to hide a value from SCEV canonicalization. 2324 2325 FoldingSetNodeID ID; 2326 ID.AddInteger(scUnknown); 2327 ID.AddPointer(V); 2328 void *IP = 0; 2329 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2330 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V); 2331 UniqueSCEVs.InsertNode(S, IP); 2332 return S; 2333 } 2334 2335 //===----------------------------------------------------------------------===// 2336 // Basic SCEV Analysis and PHI Idiom Recognition Code 2337 // 2338 2339 /// isSCEVable - Test if values of the given type are analyzable within 2340 /// the SCEV framework. This primarily includes integer types, and it 2341 /// can optionally include pointer types if the ScalarEvolution class 2342 /// has access to target-specific information. 2343 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2344 // Integers and pointers are always SCEVable. 2345 return Ty->isIntegerTy() || Ty->isPointerTy(); 2346 } 2347 2348 /// getTypeSizeInBits - Return the size in bits of the specified type, 2349 /// for which isSCEVable must return true. 2350 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2351 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2352 2353 // If we have a TargetData, use it! 2354 if (TD) 2355 return TD->getTypeSizeInBits(Ty); 2356 2357 // Integer types have fixed sizes. 2358 if (Ty->isIntegerTy()) 2359 return Ty->getPrimitiveSizeInBits(); 2360 2361 // The only other support type is pointer. Without TargetData, conservatively 2362 // assume pointers are 64-bit. 2363 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2364 return 64; 2365 } 2366 2367 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2368 /// the given type and which represents how SCEV will treat the given 2369 /// type, for which isSCEVable must return true. For pointer types, 2370 /// this is the pointer-sized integer type. 2371 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2372 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2373 2374 if (Ty->isIntegerTy()) 2375 return Ty; 2376 2377 // The only other support type is pointer. 2378 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2379 if (TD) return TD->getIntPtrType(getContext()); 2380 2381 // Without TargetData, conservatively assume pointers are 64-bit. 2382 return Type::getInt64Ty(getContext()); 2383 } 2384 2385 const SCEV *ScalarEvolution::getCouldNotCompute() { 2386 return &CouldNotCompute; 2387 } 2388 2389 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2390 /// expression and create a new one. 2391 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2392 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2393 2394 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2395 if (I != Scalars.end()) return I->second; 2396 const SCEV *S = createSCEV(V); 2397 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2398 return S; 2399 } 2400 2401 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2402 /// 2403 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2404 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2405 return getConstant( 2406 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2407 2408 const Type *Ty = V->getType(); 2409 Ty = getEffectiveSCEVType(Ty); 2410 return getMulExpr(V, 2411 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2412 } 2413 2414 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2415 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2416 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2417 return getConstant( 2418 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2419 2420 const Type *Ty = V->getType(); 2421 Ty = getEffectiveSCEVType(Ty); 2422 const SCEV *AllOnes = 2423 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2424 return getMinusSCEV(AllOnes, V); 2425 } 2426 2427 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2428 /// 2429 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2430 const SCEV *RHS) { 2431 // X - Y --> X + -Y 2432 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2433 } 2434 2435 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2436 /// input value to the specified type. If the type must be extended, it is zero 2437 /// extended. 2438 const SCEV * 2439 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2440 const Type *Ty) { 2441 const Type *SrcTy = V->getType(); 2442 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2443 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2444 "Cannot truncate or zero extend with non-integer arguments!"); 2445 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2446 return V; // No conversion 2447 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2448 return getTruncateExpr(V, Ty); 2449 return getZeroExtendExpr(V, Ty); 2450 } 2451 2452 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2453 /// input value to the specified type. If the type must be extended, it is sign 2454 /// extended. 2455 const SCEV * 2456 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2457 const Type *Ty) { 2458 const Type *SrcTy = V->getType(); 2459 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2460 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2461 "Cannot truncate or zero extend with non-integer arguments!"); 2462 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2463 return V; // No conversion 2464 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2465 return getTruncateExpr(V, Ty); 2466 return getSignExtendExpr(V, Ty); 2467 } 2468 2469 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2470 /// input value to the specified type. If the type must be extended, it is zero 2471 /// extended. The conversion must not be narrowing. 2472 const SCEV * 2473 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2474 const Type *SrcTy = V->getType(); 2475 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2476 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2477 "Cannot noop or zero extend with non-integer arguments!"); 2478 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2479 "getNoopOrZeroExtend cannot truncate!"); 2480 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2481 return V; // No conversion 2482 return getZeroExtendExpr(V, Ty); 2483 } 2484 2485 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2486 /// input value to the specified type. If the type must be extended, it is sign 2487 /// extended. The conversion must not be narrowing. 2488 const SCEV * 2489 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2490 const Type *SrcTy = V->getType(); 2491 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2492 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2493 "Cannot noop or sign extend with non-integer arguments!"); 2494 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2495 "getNoopOrSignExtend cannot truncate!"); 2496 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2497 return V; // No conversion 2498 return getSignExtendExpr(V, Ty); 2499 } 2500 2501 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2502 /// the input value to the specified type. If the type must be extended, 2503 /// it is extended with unspecified bits. The conversion must not be 2504 /// narrowing. 2505 const SCEV * 2506 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2507 const Type *SrcTy = V->getType(); 2508 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2509 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2510 "Cannot noop or any extend with non-integer arguments!"); 2511 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2512 "getNoopOrAnyExtend cannot truncate!"); 2513 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2514 return V; // No conversion 2515 return getAnyExtendExpr(V, Ty); 2516 } 2517 2518 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2519 /// input value to the specified type. The conversion must not be widening. 2520 const SCEV * 2521 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2522 const Type *SrcTy = V->getType(); 2523 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2524 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2525 "Cannot truncate or noop with non-integer arguments!"); 2526 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2527 "getTruncateOrNoop cannot extend!"); 2528 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2529 return V; // No conversion 2530 return getTruncateExpr(V, Ty); 2531 } 2532 2533 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2534 /// the types using zero-extension, and then perform a umax operation 2535 /// with them. 2536 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2537 const SCEV *RHS) { 2538 const SCEV *PromotedLHS = LHS; 2539 const SCEV *PromotedRHS = RHS; 2540 2541 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2542 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2543 else 2544 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2545 2546 return getUMaxExpr(PromotedLHS, PromotedRHS); 2547 } 2548 2549 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2550 /// the types using zero-extension, and then perform a umin operation 2551 /// with them. 2552 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2553 const SCEV *RHS) { 2554 const SCEV *PromotedLHS = LHS; 2555 const SCEV *PromotedRHS = RHS; 2556 2557 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2558 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2559 else 2560 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2561 2562 return getUMinExpr(PromotedLHS, PromotedRHS); 2563 } 2564 2565 /// PushDefUseChildren - Push users of the given Instruction 2566 /// onto the given Worklist. 2567 static void 2568 PushDefUseChildren(Instruction *I, 2569 SmallVectorImpl<Instruction *> &Worklist) { 2570 // Push the def-use children onto the Worklist stack. 2571 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2572 UI != UE; ++UI) 2573 Worklist.push_back(cast<Instruction>(UI)); 2574 } 2575 2576 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2577 /// instructions that depend on the given instruction and removes them from 2578 /// the Scalars map if they reference SymName. This is used during PHI 2579 /// resolution. 2580 void 2581 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2582 SmallVector<Instruction *, 16> Worklist; 2583 PushDefUseChildren(PN, Worklist); 2584 2585 SmallPtrSet<Instruction *, 8> Visited; 2586 Visited.insert(PN); 2587 while (!Worklist.empty()) { 2588 Instruction *I = Worklist.pop_back_val(); 2589 if (!Visited.insert(I)) continue; 2590 2591 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 2592 Scalars.find(static_cast<Value *>(I)); 2593 if (It != Scalars.end()) { 2594 // Short-circuit the def-use traversal if the symbolic name 2595 // ceases to appear in expressions. 2596 if (It->second != SymName && !It->second->hasOperand(SymName)) 2597 continue; 2598 2599 // SCEVUnknown for a PHI either means that it has an unrecognized 2600 // structure, it's a PHI that's in the progress of being computed 2601 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2602 // additional loop trip count information isn't going to change anything. 2603 // In the second case, createNodeForPHI will perform the necessary 2604 // updates on its own when it gets to that point. In the third, we do 2605 // want to forget the SCEVUnknown. 2606 if (!isa<PHINode>(I) || 2607 !isa<SCEVUnknown>(It->second) || 2608 (I != PN && It->second == SymName)) { 2609 ValuesAtScopes.erase(It->second); 2610 Scalars.erase(It); 2611 } 2612 } 2613 2614 PushDefUseChildren(I, Worklist); 2615 } 2616 } 2617 2618 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2619 /// a loop header, making it a potential recurrence, or it doesn't. 2620 /// 2621 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2622 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2623 if (L->getHeader() == PN->getParent()) { 2624 // The loop may have multiple entrances or multiple exits; we can analyze 2625 // this phi as an addrec if it has a unique entry value and a unique 2626 // backedge value. 2627 Value *BEValueV = 0, *StartValueV = 0; 2628 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2629 Value *V = PN->getIncomingValue(i); 2630 if (L->contains(PN->getIncomingBlock(i))) { 2631 if (!BEValueV) { 2632 BEValueV = V; 2633 } else if (BEValueV != V) { 2634 BEValueV = 0; 2635 break; 2636 } 2637 } else if (!StartValueV) { 2638 StartValueV = V; 2639 } else if (StartValueV != V) { 2640 StartValueV = 0; 2641 break; 2642 } 2643 } 2644 if (BEValueV && StartValueV) { 2645 // While we are analyzing this PHI node, handle its value symbolically. 2646 const SCEV *SymbolicName = getUnknown(PN); 2647 assert(Scalars.find(PN) == Scalars.end() && 2648 "PHI node already processed?"); 2649 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2650 2651 // Using this symbolic name for the PHI, analyze the value coming around 2652 // the back-edge. 2653 const SCEV *BEValue = getSCEV(BEValueV); 2654 2655 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2656 // has a special value for the first iteration of the loop. 2657 2658 // If the value coming around the backedge is an add with the symbolic 2659 // value we just inserted, then we found a simple induction variable! 2660 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2661 // If there is a single occurrence of the symbolic value, replace it 2662 // with a recurrence. 2663 unsigned FoundIndex = Add->getNumOperands(); 2664 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2665 if (Add->getOperand(i) == SymbolicName) 2666 if (FoundIndex == e) { 2667 FoundIndex = i; 2668 break; 2669 } 2670 2671 if (FoundIndex != Add->getNumOperands()) { 2672 // Create an add with everything but the specified operand. 2673 SmallVector<const SCEV *, 8> Ops; 2674 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2675 if (i != FoundIndex) 2676 Ops.push_back(Add->getOperand(i)); 2677 const SCEV *Accum = getAddExpr(Ops); 2678 2679 // This is not a valid addrec if the step amount is varying each 2680 // loop iteration, but is not itself an addrec in this loop. 2681 if (Accum->isLoopInvariant(L) || 2682 (isa<SCEVAddRecExpr>(Accum) && 2683 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2684 bool HasNUW = false; 2685 bool HasNSW = false; 2686 2687 // If the increment doesn't overflow, then neither the addrec nor 2688 // the post-increment will overflow. 2689 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2690 if (OBO->hasNoUnsignedWrap()) 2691 HasNUW = true; 2692 if (OBO->hasNoSignedWrap()) 2693 HasNSW = true; 2694 } 2695 2696 const SCEV *StartVal = getSCEV(StartValueV); 2697 const SCEV *PHISCEV = 2698 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2699 2700 // Since the no-wrap flags are on the increment, they apply to the 2701 // post-incremented value as well. 2702 if (Accum->isLoopInvariant(L)) 2703 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2704 Accum, L, HasNUW, HasNSW); 2705 2706 // Okay, for the entire analysis of this edge we assumed the PHI 2707 // to be symbolic. We now need to go back and purge all of the 2708 // entries for the scalars that use the symbolic expression. 2709 ForgetSymbolicName(PN, SymbolicName); 2710 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2711 return PHISCEV; 2712 } 2713 } 2714 } else if (const SCEVAddRecExpr *AddRec = 2715 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2716 // Otherwise, this could be a loop like this: 2717 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2718 // In this case, j = {1,+,1} and BEValue is j. 2719 // Because the other in-value of i (0) fits the evolution of BEValue 2720 // i really is an addrec evolution. 2721 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2722 const SCEV *StartVal = getSCEV(StartValueV); 2723 2724 // If StartVal = j.start - j.stride, we can use StartVal as the 2725 // initial step of the addrec evolution. 2726 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2727 AddRec->getOperand(1))) { 2728 const SCEV *PHISCEV = 2729 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2730 2731 // Okay, for the entire analysis of this edge we assumed the PHI 2732 // to be symbolic. We now need to go back and purge all of the 2733 // entries for the scalars that use the symbolic expression. 2734 ForgetSymbolicName(PN, SymbolicName); 2735 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2736 return PHISCEV; 2737 } 2738 } 2739 } 2740 } 2741 } 2742 2743 // If the PHI has a single incoming value, follow that value, unless the 2744 // PHI's incoming blocks are in a different loop, in which case doing so 2745 // risks breaking LCSSA form. Instcombine would normally zap these, but 2746 // it doesn't have DominatorTree information, so it may miss cases. 2747 if (Value *V = PN->hasConstantValue(DT)) { 2748 bool AllSameLoop = true; 2749 Loop *PNLoop = LI->getLoopFor(PN->getParent()); 2750 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2751 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) { 2752 AllSameLoop = false; 2753 break; 2754 } 2755 if (AllSameLoop) 2756 return getSCEV(V); 2757 } 2758 2759 // If it's not a loop phi, we can't handle it yet. 2760 return getUnknown(PN); 2761 } 2762 2763 /// createNodeForGEP - Expand GEP instructions into add and multiply 2764 /// operations. This allows them to be analyzed by regular SCEV code. 2765 /// 2766 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2767 2768 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2769 // Add expression, because the Instruction may be guarded by control flow 2770 // and the no-overflow bits may not be valid for the expression in any 2771 // context. 2772 2773 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2774 Value *Base = GEP->getOperand(0); 2775 // Don't attempt to analyze GEPs over unsized objects. 2776 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2777 return getUnknown(GEP); 2778 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2779 gep_type_iterator GTI = gep_type_begin(GEP); 2780 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2781 E = GEP->op_end(); 2782 I != E; ++I) { 2783 Value *Index = *I; 2784 // Compute the (potentially symbolic) offset in bytes for this index. 2785 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2786 // For a struct, add the member offset. 2787 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2788 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2789 2790 // Add the field offset to the running total offset. 2791 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2792 } else { 2793 // For an array, add the element offset, explicitly scaled. 2794 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2795 const SCEV *IndexS = getSCEV(Index); 2796 // Getelementptr indices are signed. 2797 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2798 2799 // Multiply the index by the element size to compute the element offset. 2800 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2801 2802 // Add the element offset to the running total offset. 2803 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2804 } 2805 } 2806 2807 // Get the SCEV for the GEP base. 2808 const SCEV *BaseS = getSCEV(Base); 2809 2810 // Add the total offset from all the GEP indices to the base. 2811 return getAddExpr(BaseS, TotalOffset); 2812 } 2813 2814 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2815 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2816 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2817 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2818 uint32_t 2819 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2820 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2821 return C->getValue()->getValue().countTrailingZeros(); 2822 2823 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2824 return std::min(GetMinTrailingZeros(T->getOperand()), 2825 (uint32_t)getTypeSizeInBits(T->getType())); 2826 2827 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2828 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2829 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2830 getTypeSizeInBits(E->getType()) : OpRes; 2831 } 2832 2833 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2834 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2835 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2836 getTypeSizeInBits(E->getType()) : OpRes; 2837 } 2838 2839 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2840 // The result is the min of all operands results. 2841 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2842 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2843 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2844 return MinOpRes; 2845 } 2846 2847 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2848 // The result is the sum of all operands results. 2849 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2850 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2851 for (unsigned i = 1, e = M->getNumOperands(); 2852 SumOpRes != BitWidth && i != e; ++i) 2853 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2854 BitWidth); 2855 return SumOpRes; 2856 } 2857 2858 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2859 // The result is the min of all operands results. 2860 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2861 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2862 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2863 return MinOpRes; 2864 } 2865 2866 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2867 // The result is the min of all operands results. 2868 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2869 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2870 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2871 return MinOpRes; 2872 } 2873 2874 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2875 // The result is the min of all operands results. 2876 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2877 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2878 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2879 return MinOpRes; 2880 } 2881 2882 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2883 // For a SCEVUnknown, ask ValueTracking. 2884 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2885 APInt Mask = APInt::getAllOnesValue(BitWidth); 2886 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2887 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2888 return Zeros.countTrailingOnes(); 2889 } 2890 2891 // SCEVUDivExpr 2892 return 0; 2893 } 2894 2895 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2896 /// 2897 ConstantRange 2898 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2899 2900 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2901 return ConstantRange(C->getValue()->getValue()); 2902 2903 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2904 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2905 2906 // If the value has known zeros, the maximum unsigned value will have those 2907 // known zeros as well. 2908 uint32_t TZ = GetMinTrailingZeros(S); 2909 if (TZ != 0) 2910 ConservativeResult = 2911 ConstantRange(APInt::getMinValue(BitWidth), 2912 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2913 2914 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2915 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2916 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2917 X = X.add(getUnsignedRange(Add->getOperand(i))); 2918 return ConservativeResult.intersectWith(X); 2919 } 2920 2921 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2922 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2923 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2924 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2925 return ConservativeResult.intersectWith(X); 2926 } 2927 2928 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2929 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2930 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2931 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2932 return ConservativeResult.intersectWith(X); 2933 } 2934 2935 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2936 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2937 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2938 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2939 return ConservativeResult.intersectWith(X); 2940 } 2941 2942 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2943 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2944 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2945 return ConservativeResult.intersectWith(X.udiv(Y)); 2946 } 2947 2948 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2949 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2950 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 2951 } 2952 2953 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2954 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2955 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 2956 } 2957 2958 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2959 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2960 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 2961 } 2962 2963 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2964 // If there's no unsigned wrap, the value will never be less than its 2965 // initial value. 2966 if (AddRec->hasNoUnsignedWrap()) 2967 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 2968 if (!C->getValue()->isZero()) 2969 ConservativeResult = 2970 ConservativeResult.intersectWith( 2971 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 2972 2973 // TODO: non-affine addrec 2974 if (AddRec->isAffine()) { 2975 const Type *Ty = AddRec->getType(); 2976 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2977 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 2978 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 2979 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2980 2981 const SCEV *Start = AddRec->getStart(); 2982 const SCEV *Step = AddRec->getStepRecurrence(*this); 2983 2984 ConstantRange StartRange = getUnsignedRange(Start); 2985 ConstantRange StepRange = getSignedRange(Step); 2986 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 2987 ConstantRange EndRange = 2988 StartRange.add(MaxBECountRange.multiply(StepRange)); 2989 2990 // Check for overflow. This must be done with ConstantRange arithmetic 2991 // because we could be called from within the ScalarEvolution overflow 2992 // checking code. 2993 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 2994 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 2995 ConstantRange ExtMaxBECountRange = 2996 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 2997 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 2998 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 2999 ExtEndRange) 3000 return ConservativeResult; 3001 3002 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3003 EndRange.getUnsignedMin()); 3004 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3005 EndRange.getUnsignedMax()); 3006 if (Min.isMinValue() && Max.isMaxValue()) 3007 return ConservativeResult; 3008 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3009 } 3010 } 3011 3012 return ConservativeResult; 3013 } 3014 3015 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3016 // For a SCEVUnknown, ask ValueTracking. 3017 APInt Mask = APInt::getAllOnesValue(BitWidth); 3018 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3019 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3020 if (Ones == ~Zeros + 1) 3021 return ConservativeResult; 3022 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 3023 } 3024 3025 return ConservativeResult; 3026 } 3027 3028 /// getSignedRange - Determine the signed range for a particular SCEV. 3029 /// 3030 ConstantRange 3031 ScalarEvolution::getSignedRange(const SCEV *S) { 3032 3033 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3034 return ConstantRange(C->getValue()->getValue()); 3035 3036 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3037 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3038 3039 // If the value has known zeros, the maximum signed value will have those 3040 // known zeros as well. 3041 uint32_t TZ = GetMinTrailingZeros(S); 3042 if (TZ != 0) 3043 ConservativeResult = 3044 ConstantRange(APInt::getSignedMinValue(BitWidth), 3045 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3046 3047 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3048 ConstantRange X = getSignedRange(Add->getOperand(0)); 3049 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3050 X = X.add(getSignedRange(Add->getOperand(i))); 3051 return ConservativeResult.intersectWith(X); 3052 } 3053 3054 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3055 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3056 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3057 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3058 return ConservativeResult.intersectWith(X); 3059 } 3060 3061 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3062 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3063 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3064 X = X.smax(getSignedRange(SMax->getOperand(i))); 3065 return ConservativeResult.intersectWith(X); 3066 } 3067 3068 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3069 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3070 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3071 X = X.umax(getSignedRange(UMax->getOperand(i))); 3072 return ConservativeResult.intersectWith(X); 3073 } 3074 3075 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3076 ConstantRange X = getSignedRange(UDiv->getLHS()); 3077 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3078 return ConservativeResult.intersectWith(X.udiv(Y)); 3079 } 3080 3081 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3082 ConstantRange X = getSignedRange(ZExt->getOperand()); 3083 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3084 } 3085 3086 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3087 ConstantRange X = getSignedRange(SExt->getOperand()); 3088 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3089 } 3090 3091 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3092 ConstantRange X = getSignedRange(Trunc->getOperand()); 3093 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3094 } 3095 3096 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3097 // If there's no signed wrap, and all the operands have the same sign or 3098 // zero, the value won't ever change sign. 3099 if (AddRec->hasNoSignedWrap()) { 3100 bool AllNonNeg = true; 3101 bool AllNonPos = true; 3102 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3103 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3104 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3105 } 3106 if (AllNonNeg) 3107 ConservativeResult = ConservativeResult.intersectWith( 3108 ConstantRange(APInt(BitWidth, 0), 3109 APInt::getSignedMinValue(BitWidth))); 3110 else if (AllNonPos) 3111 ConservativeResult = ConservativeResult.intersectWith( 3112 ConstantRange(APInt::getSignedMinValue(BitWidth), 3113 APInt(BitWidth, 1))); 3114 } 3115 3116 // TODO: non-affine addrec 3117 if (AddRec->isAffine()) { 3118 const Type *Ty = AddRec->getType(); 3119 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3120 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3121 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3122 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3123 3124 const SCEV *Start = AddRec->getStart(); 3125 const SCEV *Step = AddRec->getStepRecurrence(*this); 3126 3127 ConstantRange StartRange = getSignedRange(Start); 3128 ConstantRange StepRange = getSignedRange(Step); 3129 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3130 ConstantRange EndRange = 3131 StartRange.add(MaxBECountRange.multiply(StepRange)); 3132 3133 // Check for overflow. This must be done with ConstantRange arithmetic 3134 // because we could be called from within the ScalarEvolution overflow 3135 // checking code. 3136 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3137 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3138 ConstantRange ExtMaxBECountRange = 3139 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3140 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3141 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3142 ExtEndRange) 3143 return ConservativeResult; 3144 3145 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3146 EndRange.getSignedMin()); 3147 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3148 EndRange.getSignedMax()); 3149 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3150 return ConservativeResult; 3151 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3152 } 3153 } 3154 3155 return ConservativeResult; 3156 } 3157 3158 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3159 // For a SCEVUnknown, ask ValueTracking. 3160 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3161 return ConservativeResult; 3162 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3163 if (NS == 1) 3164 return ConservativeResult; 3165 return ConservativeResult.intersectWith( 3166 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3167 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3168 } 3169 3170 return ConservativeResult; 3171 } 3172 3173 /// createSCEV - We know that there is no SCEV for the specified value. 3174 /// Analyze the expression. 3175 /// 3176 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3177 if (!isSCEVable(V->getType())) 3178 return getUnknown(V); 3179 3180 unsigned Opcode = Instruction::UserOp1; 3181 if (Instruction *I = dyn_cast<Instruction>(V)) { 3182 Opcode = I->getOpcode(); 3183 3184 // Don't attempt to analyze instructions in blocks that aren't 3185 // reachable. Such instructions don't matter, and they aren't required 3186 // to obey basic rules for definitions dominating uses which this 3187 // analysis depends on. 3188 if (!DT->isReachableFromEntry(I->getParent())) 3189 return getUnknown(V); 3190 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3191 Opcode = CE->getOpcode(); 3192 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3193 return getConstant(CI); 3194 else if (isa<ConstantPointerNull>(V)) 3195 return getConstant(V->getType(), 0); 3196 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3197 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3198 else 3199 return getUnknown(V); 3200 3201 Operator *U = cast<Operator>(V); 3202 switch (Opcode) { 3203 case Instruction::Add: 3204 return getAddExpr(getSCEV(U->getOperand(0)), 3205 getSCEV(U->getOperand(1))); 3206 case Instruction::Mul: 3207 return getMulExpr(getSCEV(U->getOperand(0)), 3208 getSCEV(U->getOperand(1))); 3209 case Instruction::UDiv: 3210 return getUDivExpr(getSCEV(U->getOperand(0)), 3211 getSCEV(U->getOperand(1))); 3212 case Instruction::Sub: 3213 return getMinusSCEV(getSCEV(U->getOperand(0)), 3214 getSCEV(U->getOperand(1))); 3215 case Instruction::And: 3216 // For an expression like x&255 that merely masks off the high bits, 3217 // use zext(trunc(x)) as the SCEV expression. 3218 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3219 if (CI->isNullValue()) 3220 return getSCEV(U->getOperand(1)); 3221 if (CI->isAllOnesValue()) 3222 return getSCEV(U->getOperand(0)); 3223 const APInt &A = CI->getValue(); 3224 3225 // Instcombine's ShrinkDemandedConstant may strip bits out of 3226 // constants, obscuring what would otherwise be a low-bits mask. 3227 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3228 // knew about to reconstruct a low-bits mask value. 3229 unsigned LZ = A.countLeadingZeros(); 3230 unsigned BitWidth = A.getBitWidth(); 3231 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3232 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3233 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3234 3235 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3236 3237 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3238 return 3239 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3240 IntegerType::get(getContext(), BitWidth - LZ)), 3241 U->getType()); 3242 } 3243 break; 3244 3245 case Instruction::Or: 3246 // If the RHS of the Or is a constant, we may have something like: 3247 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3248 // optimizations will transparently handle this case. 3249 // 3250 // In order for this transformation to be safe, the LHS must be of the 3251 // form X*(2^n) and the Or constant must be less than 2^n. 3252 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3253 const SCEV *LHS = getSCEV(U->getOperand(0)); 3254 const APInt &CIVal = CI->getValue(); 3255 if (GetMinTrailingZeros(LHS) >= 3256 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3257 // Build a plain add SCEV. 3258 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3259 // If the LHS of the add was an addrec and it has no-wrap flags, 3260 // transfer the no-wrap flags, since an or won't introduce a wrap. 3261 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3262 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3263 if (OldAR->hasNoUnsignedWrap()) 3264 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3265 if (OldAR->hasNoSignedWrap()) 3266 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3267 } 3268 return S; 3269 } 3270 } 3271 break; 3272 case Instruction::Xor: 3273 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3274 // If the RHS of the xor is a signbit, then this is just an add. 3275 // Instcombine turns add of signbit into xor as a strength reduction step. 3276 if (CI->getValue().isSignBit()) 3277 return getAddExpr(getSCEV(U->getOperand(0)), 3278 getSCEV(U->getOperand(1))); 3279 3280 // If the RHS of xor is -1, then this is a not operation. 3281 if (CI->isAllOnesValue()) 3282 return getNotSCEV(getSCEV(U->getOperand(0))); 3283 3284 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3285 // This is a variant of the check for xor with -1, and it handles 3286 // the case where instcombine has trimmed non-demanded bits out 3287 // of an xor with -1. 3288 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3289 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3290 if (BO->getOpcode() == Instruction::And && 3291 LCI->getValue() == CI->getValue()) 3292 if (const SCEVZeroExtendExpr *Z = 3293 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3294 const Type *UTy = U->getType(); 3295 const SCEV *Z0 = Z->getOperand(); 3296 const Type *Z0Ty = Z0->getType(); 3297 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3298 3299 // If C is a low-bits mask, the zero extend is serving to 3300 // mask off the high bits. Complement the operand and 3301 // re-apply the zext. 3302 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3303 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3304 3305 // If C is a single bit, it may be in the sign-bit position 3306 // before the zero-extend. In this case, represent the xor 3307 // using an add, which is equivalent, and re-apply the zext. 3308 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3309 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3310 Trunc.isSignBit()) 3311 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3312 UTy); 3313 } 3314 } 3315 break; 3316 3317 case Instruction::Shl: 3318 // Turn shift left of a constant amount into a multiply. 3319 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3320 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3321 3322 // If the shift count is not less than the bitwidth, the result of 3323 // the shift is undefined. Don't try to analyze it, because the 3324 // resolution chosen here may differ from the resolution chosen in 3325 // other parts of the compiler. 3326 if (SA->getValue().uge(BitWidth)) 3327 break; 3328 3329 Constant *X = ConstantInt::get(getContext(), 3330 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3331 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3332 } 3333 break; 3334 3335 case Instruction::LShr: 3336 // Turn logical shift right of a constant into a unsigned divide. 3337 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3338 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3339 3340 // If the shift count is not less than the bitwidth, the result of 3341 // the shift is undefined. Don't try to analyze it, because the 3342 // resolution chosen here may differ from the resolution chosen in 3343 // other parts of the compiler. 3344 if (SA->getValue().uge(BitWidth)) 3345 break; 3346 3347 Constant *X = ConstantInt::get(getContext(), 3348 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3349 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3350 } 3351 break; 3352 3353 case Instruction::AShr: 3354 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3355 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3356 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3357 if (L->getOpcode() == Instruction::Shl && 3358 L->getOperand(1) == U->getOperand(1)) { 3359 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3360 3361 // If the shift count is not less than the bitwidth, the result of 3362 // the shift is undefined. Don't try to analyze it, because the 3363 // resolution chosen here may differ from the resolution chosen in 3364 // other parts of the compiler. 3365 if (CI->getValue().uge(BitWidth)) 3366 break; 3367 3368 uint64_t Amt = BitWidth - CI->getZExtValue(); 3369 if (Amt == BitWidth) 3370 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3371 return 3372 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3373 IntegerType::get(getContext(), 3374 Amt)), 3375 U->getType()); 3376 } 3377 break; 3378 3379 case Instruction::Trunc: 3380 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3381 3382 case Instruction::ZExt: 3383 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3384 3385 case Instruction::SExt: 3386 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3387 3388 case Instruction::BitCast: 3389 // BitCasts are no-op casts so we just eliminate the cast. 3390 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3391 return getSCEV(U->getOperand(0)); 3392 break; 3393 3394 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3395 // lead to pointer expressions which cannot safely be expanded to GEPs, 3396 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3397 // simplifying integer expressions. 3398 3399 case Instruction::GetElementPtr: 3400 return createNodeForGEP(cast<GEPOperator>(U)); 3401 3402 case Instruction::PHI: 3403 return createNodeForPHI(cast<PHINode>(U)); 3404 3405 case Instruction::Select: 3406 // This could be a smax or umax that was lowered earlier. 3407 // Try to recover it. 3408 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3409 Value *LHS = ICI->getOperand(0); 3410 Value *RHS = ICI->getOperand(1); 3411 switch (ICI->getPredicate()) { 3412 case ICmpInst::ICMP_SLT: 3413 case ICmpInst::ICMP_SLE: 3414 std::swap(LHS, RHS); 3415 // fall through 3416 case ICmpInst::ICMP_SGT: 3417 case ICmpInst::ICMP_SGE: 3418 // a >s b ? a+x : b+x -> smax(a, b)+x 3419 // a >s b ? b+x : a+x -> smin(a, b)+x 3420 if (LHS->getType() == U->getType()) { 3421 const SCEV *LS = getSCEV(LHS); 3422 const SCEV *RS = getSCEV(RHS); 3423 const SCEV *LA = getSCEV(U->getOperand(1)); 3424 const SCEV *RA = getSCEV(U->getOperand(2)); 3425 const SCEV *LDiff = getMinusSCEV(LA, LS); 3426 const SCEV *RDiff = getMinusSCEV(RA, RS); 3427 if (LDiff == RDiff) 3428 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3429 LDiff = getMinusSCEV(LA, RS); 3430 RDiff = getMinusSCEV(RA, LS); 3431 if (LDiff == RDiff) 3432 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3433 } 3434 break; 3435 case ICmpInst::ICMP_ULT: 3436 case ICmpInst::ICMP_ULE: 3437 std::swap(LHS, RHS); 3438 // fall through 3439 case ICmpInst::ICMP_UGT: 3440 case ICmpInst::ICMP_UGE: 3441 // a >u b ? a+x : b+x -> umax(a, b)+x 3442 // a >u b ? b+x : a+x -> umin(a, b)+x 3443 if (LHS->getType() == U->getType()) { 3444 const SCEV *LS = getSCEV(LHS); 3445 const SCEV *RS = getSCEV(RHS); 3446 const SCEV *LA = getSCEV(U->getOperand(1)); 3447 const SCEV *RA = getSCEV(U->getOperand(2)); 3448 const SCEV *LDiff = getMinusSCEV(LA, LS); 3449 const SCEV *RDiff = getMinusSCEV(RA, RS); 3450 if (LDiff == RDiff) 3451 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3452 LDiff = getMinusSCEV(LA, RS); 3453 RDiff = getMinusSCEV(RA, LS); 3454 if (LDiff == RDiff) 3455 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3456 } 3457 break; 3458 case ICmpInst::ICMP_NE: 3459 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3460 if (LHS->getType() == U->getType() && 3461 isa<ConstantInt>(RHS) && 3462 cast<ConstantInt>(RHS)->isZero()) { 3463 const SCEV *One = getConstant(LHS->getType(), 1); 3464 const SCEV *LS = getSCEV(LHS); 3465 const SCEV *LA = getSCEV(U->getOperand(1)); 3466 const SCEV *RA = getSCEV(U->getOperand(2)); 3467 const SCEV *LDiff = getMinusSCEV(LA, LS); 3468 const SCEV *RDiff = getMinusSCEV(RA, One); 3469 if (LDiff == RDiff) 3470 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3471 } 3472 break; 3473 case ICmpInst::ICMP_EQ: 3474 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3475 if (LHS->getType() == U->getType() && 3476 isa<ConstantInt>(RHS) && 3477 cast<ConstantInt>(RHS)->isZero()) { 3478 const SCEV *One = getConstant(LHS->getType(), 1); 3479 const SCEV *LS = getSCEV(LHS); 3480 const SCEV *LA = getSCEV(U->getOperand(1)); 3481 const SCEV *RA = getSCEV(U->getOperand(2)); 3482 const SCEV *LDiff = getMinusSCEV(LA, One); 3483 const SCEV *RDiff = getMinusSCEV(RA, LS); 3484 if (LDiff == RDiff) 3485 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3486 } 3487 break; 3488 default: 3489 break; 3490 } 3491 } 3492 3493 default: // We cannot analyze this expression. 3494 break; 3495 } 3496 3497 return getUnknown(V); 3498 } 3499 3500 3501 3502 //===----------------------------------------------------------------------===// 3503 // Iteration Count Computation Code 3504 // 3505 3506 /// getBackedgeTakenCount - If the specified loop has a predictable 3507 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3508 /// object. The backedge-taken count is the number of times the loop header 3509 /// will be branched to from within the loop. This is one less than the 3510 /// trip count of the loop, since it doesn't count the first iteration, 3511 /// when the header is branched to from outside the loop. 3512 /// 3513 /// Note that it is not valid to call this method on a loop without a 3514 /// loop-invariant backedge-taken count (see 3515 /// hasLoopInvariantBackedgeTakenCount). 3516 /// 3517 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3518 return getBackedgeTakenInfo(L).Exact; 3519 } 3520 3521 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3522 /// return the least SCEV value that is known never to be less than the 3523 /// actual backedge taken count. 3524 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3525 return getBackedgeTakenInfo(L).Max; 3526 } 3527 3528 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3529 /// onto the given Worklist. 3530 static void 3531 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3532 BasicBlock *Header = L->getHeader(); 3533 3534 // Push all Loop-header PHIs onto the Worklist stack. 3535 for (BasicBlock::iterator I = Header->begin(); 3536 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3537 Worklist.push_back(PN); 3538 } 3539 3540 const ScalarEvolution::BackedgeTakenInfo & 3541 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3542 // Initially insert a CouldNotCompute for this loop. If the insertion 3543 // succeeds, proceed to actually compute a backedge-taken count and 3544 // update the value. The temporary CouldNotCompute value tells SCEV 3545 // code elsewhere that it shouldn't attempt to request a new 3546 // backedge-taken count, which could result in infinite recursion. 3547 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3548 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3549 if (Pair.second) { 3550 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3551 if (BECount.Exact != getCouldNotCompute()) { 3552 assert(BECount.Exact->isLoopInvariant(L) && 3553 BECount.Max->isLoopInvariant(L) && 3554 "Computed backedge-taken count isn't loop invariant for loop!"); 3555 ++NumTripCountsComputed; 3556 3557 // Update the value in the map. 3558 Pair.first->second = BECount; 3559 } else { 3560 if (BECount.Max != getCouldNotCompute()) 3561 // Update the value in the map. 3562 Pair.first->second = BECount; 3563 if (isa<PHINode>(L->getHeader()->begin())) 3564 // Only count loops that have phi nodes as not being computable. 3565 ++NumTripCountsNotComputed; 3566 } 3567 3568 // Now that we know more about the trip count for this loop, forget any 3569 // existing SCEV values for PHI nodes in this loop since they are only 3570 // conservative estimates made without the benefit of trip count 3571 // information. This is similar to the code in forgetLoop, except that 3572 // it handles SCEVUnknown PHI nodes specially. 3573 if (BECount.hasAnyInfo()) { 3574 SmallVector<Instruction *, 16> Worklist; 3575 PushLoopPHIs(L, Worklist); 3576 3577 SmallPtrSet<Instruction *, 8> Visited; 3578 while (!Worklist.empty()) { 3579 Instruction *I = Worklist.pop_back_val(); 3580 if (!Visited.insert(I)) continue; 3581 3582 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3583 Scalars.find(static_cast<Value *>(I)); 3584 if (It != Scalars.end()) { 3585 // SCEVUnknown for a PHI either means that it has an unrecognized 3586 // structure, or it's a PHI that's in the progress of being computed 3587 // by createNodeForPHI. In the former case, additional loop trip 3588 // count information isn't going to change anything. In the later 3589 // case, createNodeForPHI will perform the necessary updates on its 3590 // own when it gets to that point. 3591 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3592 ValuesAtScopes.erase(It->second); 3593 Scalars.erase(It); 3594 } 3595 if (PHINode *PN = dyn_cast<PHINode>(I)) 3596 ConstantEvolutionLoopExitValue.erase(PN); 3597 } 3598 3599 PushDefUseChildren(I, Worklist); 3600 } 3601 } 3602 } 3603 return Pair.first->second; 3604 } 3605 3606 /// forgetLoop - This method should be called by the client when it has 3607 /// changed a loop in a way that may effect ScalarEvolution's ability to 3608 /// compute a trip count, or if the loop is deleted. 3609 void ScalarEvolution::forgetLoop(const Loop *L) { 3610 // Drop any stored trip count value. 3611 BackedgeTakenCounts.erase(L); 3612 3613 // Drop information about expressions based on loop-header PHIs. 3614 SmallVector<Instruction *, 16> Worklist; 3615 PushLoopPHIs(L, Worklist); 3616 3617 SmallPtrSet<Instruction *, 8> Visited; 3618 while (!Worklist.empty()) { 3619 Instruction *I = Worklist.pop_back_val(); 3620 if (!Visited.insert(I)) continue; 3621 3622 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3623 Scalars.find(static_cast<Value *>(I)); 3624 if (It != Scalars.end()) { 3625 ValuesAtScopes.erase(It->second); 3626 Scalars.erase(It); 3627 if (PHINode *PN = dyn_cast<PHINode>(I)) 3628 ConstantEvolutionLoopExitValue.erase(PN); 3629 } 3630 3631 PushDefUseChildren(I, Worklist); 3632 } 3633 } 3634 3635 /// forgetValue - This method should be called by the client when it has 3636 /// changed a value in a way that may effect its value, or which may 3637 /// disconnect it from a def-use chain linking it to a loop. 3638 void ScalarEvolution::forgetValue(Value *V) { 3639 Instruction *I = dyn_cast<Instruction>(V); 3640 if (!I) return; 3641 3642 // Drop information about expressions based on loop-header PHIs. 3643 SmallVector<Instruction *, 16> Worklist; 3644 Worklist.push_back(I); 3645 3646 SmallPtrSet<Instruction *, 8> Visited; 3647 while (!Worklist.empty()) { 3648 I = Worklist.pop_back_val(); 3649 if (!Visited.insert(I)) continue; 3650 3651 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3652 Scalars.find(static_cast<Value *>(I)); 3653 if (It != Scalars.end()) { 3654 ValuesAtScopes.erase(It->second); 3655 Scalars.erase(It); 3656 if (PHINode *PN = dyn_cast<PHINode>(I)) 3657 ConstantEvolutionLoopExitValue.erase(PN); 3658 } 3659 3660 PushDefUseChildren(I, Worklist); 3661 } 3662 } 3663 3664 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3665 /// of the specified loop will execute. 3666 ScalarEvolution::BackedgeTakenInfo 3667 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3668 SmallVector<BasicBlock *, 8> ExitingBlocks; 3669 L->getExitingBlocks(ExitingBlocks); 3670 3671 // Examine all exits and pick the most conservative values. 3672 const SCEV *BECount = getCouldNotCompute(); 3673 const SCEV *MaxBECount = getCouldNotCompute(); 3674 bool CouldNotComputeBECount = false; 3675 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3676 BackedgeTakenInfo NewBTI = 3677 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3678 3679 if (NewBTI.Exact == getCouldNotCompute()) { 3680 // We couldn't compute an exact value for this exit, so 3681 // we won't be able to compute an exact value for the loop. 3682 CouldNotComputeBECount = true; 3683 BECount = getCouldNotCompute(); 3684 } else if (!CouldNotComputeBECount) { 3685 if (BECount == getCouldNotCompute()) 3686 BECount = NewBTI.Exact; 3687 else 3688 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3689 } 3690 if (MaxBECount == getCouldNotCompute()) 3691 MaxBECount = NewBTI.Max; 3692 else if (NewBTI.Max != getCouldNotCompute()) 3693 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3694 } 3695 3696 return BackedgeTakenInfo(BECount, MaxBECount); 3697 } 3698 3699 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3700 /// of the specified loop will execute if it exits via the specified block. 3701 ScalarEvolution::BackedgeTakenInfo 3702 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3703 BasicBlock *ExitingBlock) { 3704 3705 // Okay, we've chosen an exiting block. See what condition causes us to 3706 // exit at this block. 3707 // 3708 // FIXME: we should be able to handle switch instructions (with a single exit) 3709 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3710 if (ExitBr == 0) return getCouldNotCompute(); 3711 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3712 3713 // At this point, we know we have a conditional branch that determines whether 3714 // the loop is exited. However, we don't know if the branch is executed each 3715 // time through the loop. If not, then the execution count of the branch will 3716 // not be equal to the trip count of the loop. 3717 // 3718 // Currently we check for this by checking to see if the Exit branch goes to 3719 // the loop header. If so, we know it will always execute the same number of 3720 // times as the loop. We also handle the case where the exit block *is* the 3721 // loop header. This is common for un-rotated loops. 3722 // 3723 // If both of those tests fail, walk up the unique predecessor chain to the 3724 // header, stopping if there is an edge that doesn't exit the loop. If the 3725 // header is reached, the execution count of the branch will be equal to the 3726 // trip count of the loop. 3727 // 3728 // More extensive analysis could be done to handle more cases here. 3729 // 3730 if (ExitBr->getSuccessor(0) != L->getHeader() && 3731 ExitBr->getSuccessor(1) != L->getHeader() && 3732 ExitBr->getParent() != L->getHeader()) { 3733 // The simple checks failed, try climbing the unique predecessor chain 3734 // up to the header. 3735 bool Ok = false; 3736 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3737 BasicBlock *Pred = BB->getUniquePredecessor(); 3738 if (!Pred) 3739 return getCouldNotCompute(); 3740 TerminatorInst *PredTerm = Pred->getTerminator(); 3741 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3742 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3743 if (PredSucc == BB) 3744 continue; 3745 // If the predecessor has a successor that isn't BB and isn't 3746 // outside the loop, assume the worst. 3747 if (L->contains(PredSucc)) 3748 return getCouldNotCompute(); 3749 } 3750 if (Pred == L->getHeader()) { 3751 Ok = true; 3752 break; 3753 } 3754 BB = Pred; 3755 } 3756 if (!Ok) 3757 return getCouldNotCompute(); 3758 } 3759 3760 // Proceed to the next level to examine the exit condition expression. 3761 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3762 ExitBr->getSuccessor(0), 3763 ExitBr->getSuccessor(1)); 3764 } 3765 3766 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3767 /// backedge of the specified loop will execute if its exit condition 3768 /// were a conditional branch of ExitCond, TBB, and FBB. 3769 ScalarEvolution::BackedgeTakenInfo 3770 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3771 Value *ExitCond, 3772 BasicBlock *TBB, 3773 BasicBlock *FBB) { 3774 // Check if the controlling expression for this loop is an And or Or. 3775 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3776 if (BO->getOpcode() == Instruction::And) { 3777 // Recurse on the operands of the and. 3778 BackedgeTakenInfo BTI0 = 3779 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3780 BackedgeTakenInfo BTI1 = 3781 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3782 const SCEV *BECount = getCouldNotCompute(); 3783 const SCEV *MaxBECount = getCouldNotCompute(); 3784 if (L->contains(TBB)) { 3785 // Both conditions must be true for the loop to continue executing. 3786 // Choose the less conservative count. 3787 if (BTI0.Exact == getCouldNotCompute() || 3788 BTI1.Exact == getCouldNotCompute()) 3789 BECount = getCouldNotCompute(); 3790 else 3791 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3792 if (BTI0.Max == getCouldNotCompute()) 3793 MaxBECount = BTI1.Max; 3794 else if (BTI1.Max == getCouldNotCompute()) 3795 MaxBECount = BTI0.Max; 3796 else 3797 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3798 } else { 3799 // Both conditions must be true for the loop to exit. 3800 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3801 if (BTI0.Exact != getCouldNotCompute() && 3802 BTI1.Exact != getCouldNotCompute()) 3803 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3804 if (BTI0.Max != getCouldNotCompute() && 3805 BTI1.Max != getCouldNotCompute()) 3806 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3807 } 3808 3809 return BackedgeTakenInfo(BECount, MaxBECount); 3810 } 3811 if (BO->getOpcode() == Instruction::Or) { 3812 // Recurse on the operands of the or. 3813 BackedgeTakenInfo BTI0 = 3814 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3815 BackedgeTakenInfo BTI1 = 3816 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3817 const SCEV *BECount = getCouldNotCompute(); 3818 const SCEV *MaxBECount = getCouldNotCompute(); 3819 if (L->contains(FBB)) { 3820 // Both conditions must be false for the loop to continue executing. 3821 // Choose the less conservative count. 3822 if (BTI0.Exact == getCouldNotCompute() || 3823 BTI1.Exact == getCouldNotCompute()) 3824 BECount = getCouldNotCompute(); 3825 else 3826 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3827 if (BTI0.Max == getCouldNotCompute()) 3828 MaxBECount = BTI1.Max; 3829 else if (BTI1.Max == getCouldNotCompute()) 3830 MaxBECount = BTI0.Max; 3831 else 3832 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3833 } else { 3834 // Both conditions must be false for the loop to exit. 3835 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3836 if (BTI0.Exact != getCouldNotCompute() && 3837 BTI1.Exact != getCouldNotCompute()) 3838 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3839 if (BTI0.Max != getCouldNotCompute() && 3840 BTI1.Max != getCouldNotCompute()) 3841 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3842 } 3843 3844 return BackedgeTakenInfo(BECount, MaxBECount); 3845 } 3846 } 3847 3848 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3849 // Proceed to the next level to examine the icmp. 3850 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3851 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3852 3853 // Check for a constant condition. These are normally stripped out by 3854 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3855 // preserve the CFG and is temporarily leaving constant conditions 3856 // in place. 3857 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3858 if (L->contains(FBB) == !CI->getZExtValue()) 3859 // The backedge is always taken. 3860 return getCouldNotCompute(); 3861 else 3862 // The backedge is never taken. 3863 return getConstant(CI->getType(), 0); 3864 } 3865 3866 // If it's not an integer or pointer comparison then compute it the hard way. 3867 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3868 } 3869 3870 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3871 /// backedge of the specified loop will execute if its exit condition 3872 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3873 ScalarEvolution::BackedgeTakenInfo 3874 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3875 ICmpInst *ExitCond, 3876 BasicBlock *TBB, 3877 BasicBlock *FBB) { 3878 3879 // If the condition was exit on true, convert the condition to exit on false 3880 ICmpInst::Predicate Cond; 3881 if (!L->contains(FBB)) 3882 Cond = ExitCond->getPredicate(); 3883 else 3884 Cond = ExitCond->getInversePredicate(); 3885 3886 // Handle common loops like: for (X = "string"; *X; ++X) 3887 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3888 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3889 BackedgeTakenInfo ItCnt = 3890 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3891 if (ItCnt.hasAnyInfo()) 3892 return ItCnt; 3893 } 3894 3895 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3896 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3897 3898 // Try to evaluate any dependencies out of the loop. 3899 LHS = getSCEVAtScope(LHS, L); 3900 RHS = getSCEVAtScope(RHS, L); 3901 3902 // At this point, we would like to compute how many iterations of the 3903 // loop the predicate will return true for these inputs. 3904 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3905 // If there is a loop-invariant, force it into the RHS. 3906 std::swap(LHS, RHS); 3907 Cond = ICmpInst::getSwappedPredicate(Cond); 3908 } 3909 3910 // Simplify the operands before analyzing them. 3911 (void)SimplifyICmpOperands(Cond, LHS, RHS); 3912 3913 // If we have a comparison of a chrec against a constant, try to use value 3914 // ranges to answer this query. 3915 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3916 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3917 if (AddRec->getLoop() == L) { 3918 // Form the constant range. 3919 ConstantRange CompRange( 3920 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3921 3922 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3923 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3924 } 3925 3926 switch (Cond) { 3927 case ICmpInst::ICMP_NE: { // while (X != Y) 3928 // Convert to: while (X-Y != 0) 3929 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3930 if (BTI.hasAnyInfo()) return BTI; 3931 break; 3932 } 3933 case ICmpInst::ICMP_EQ: { // while (X == Y) 3934 // Convert to: while (X-Y == 0) 3935 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3936 if (BTI.hasAnyInfo()) return BTI; 3937 break; 3938 } 3939 case ICmpInst::ICMP_SLT: { 3940 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3941 if (BTI.hasAnyInfo()) return BTI; 3942 break; 3943 } 3944 case ICmpInst::ICMP_SGT: { 3945 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3946 getNotSCEV(RHS), L, true); 3947 if (BTI.hasAnyInfo()) return BTI; 3948 break; 3949 } 3950 case ICmpInst::ICMP_ULT: { 3951 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3952 if (BTI.hasAnyInfo()) return BTI; 3953 break; 3954 } 3955 case ICmpInst::ICMP_UGT: { 3956 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3957 getNotSCEV(RHS), L, false); 3958 if (BTI.hasAnyInfo()) return BTI; 3959 break; 3960 } 3961 default: 3962 #if 0 3963 dbgs() << "ComputeBackedgeTakenCount "; 3964 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3965 dbgs() << "[unsigned] "; 3966 dbgs() << *LHS << " " 3967 << Instruction::getOpcodeName(Instruction::ICmp) 3968 << " " << *RHS << "\n"; 3969 #endif 3970 break; 3971 } 3972 return 3973 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3974 } 3975 3976 static ConstantInt * 3977 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3978 ScalarEvolution &SE) { 3979 const SCEV *InVal = SE.getConstant(C); 3980 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 3981 assert(isa<SCEVConstant>(Val) && 3982 "Evaluation of SCEV at constant didn't fold correctly?"); 3983 return cast<SCEVConstant>(Val)->getValue(); 3984 } 3985 3986 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3987 /// and a GEP expression (missing the pointer index) indexing into it, return 3988 /// the addressed element of the initializer or null if the index expression is 3989 /// invalid. 3990 static Constant * 3991 GetAddressedElementFromGlobal(GlobalVariable *GV, 3992 const std::vector<ConstantInt*> &Indices) { 3993 Constant *Init = GV->getInitializer(); 3994 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3995 uint64_t Idx = Indices[i]->getZExtValue(); 3996 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3997 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3998 Init = cast<Constant>(CS->getOperand(Idx)); 3999 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4000 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4001 Init = cast<Constant>(CA->getOperand(Idx)); 4002 } else if (isa<ConstantAggregateZero>(Init)) { 4003 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4004 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4005 Init = Constant::getNullValue(STy->getElementType(Idx)); 4006 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4007 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4008 Init = Constant::getNullValue(ATy->getElementType()); 4009 } else { 4010 llvm_unreachable("Unknown constant aggregate type!"); 4011 } 4012 return 0; 4013 } else { 4014 return 0; // Unknown initializer type 4015 } 4016 } 4017 return Init; 4018 } 4019 4020 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4021 /// 'icmp op load X, cst', try to see if we can compute the backedge 4022 /// execution count. 4023 ScalarEvolution::BackedgeTakenInfo 4024 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4025 LoadInst *LI, 4026 Constant *RHS, 4027 const Loop *L, 4028 ICmpInst::Predicate predicate) { 4029 if (LI->isVolatile()) return getCouldNotCompute(); 4030 4031 // Check to see if the loaded pointer is a getelementptr of a global. 4032 // TODO: Use SCEV instead of manually grubbing with GEPs. 4033 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4034 if (!GEP) return getCouldNotCompute(); 4035 4036 // Make sure that it is really a constant global we are gepping, with an 4037 // initializer, and make sure the first IDX is really 0. 4038 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4039 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4040 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4041 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4042 return getCouldNotCompute(); 4043 4044 // Okay, we allow one non-constant index into the GEP instruction. 4045 Value *VarIdx = 0; 4046 std::vector<ConstantInt*> Indexes; 4047 unsigned VarIdxNum = 0; 4048 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4049 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4050 Indexes.push_back(CI); 4051 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4052 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4053 VarIdx = GEP->getOperand(i); 4054 VarIdxNum = i-2; 4055 Indexes.push_back(0); 4056 } 4057 4058 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4059 // Check to see if X is a loop variant variable value now. 4060 const SCEV *Idx = getSCEV(VarIdx); 4061 Idx = getSCEVAtScope(Idx, L); 4062 4063 // We can only recognize very limited forms of loop index expressions, in 4064 // particular, only affine AddRec's like {C1,+,C2}. 4065 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4066 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 4067 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4068 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4069 return getCouldNotCompute(); 4070 4071 unsigned MaxSteps = MaxBruteForceIterations; 4072 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4073 ConstantInt *ItCst = ConstantInt::get( 4074 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4075 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4076 4077 // Form the GEP offset. 4078 Indexes[VarIdxNum] = Val; 4079 4080 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4081 if (Result == 0) break; // Cannot compute! 4082 4083 // Evaluate the condition for this iteration. 4084 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4085 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4086 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4087 #if 0 4088 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4089 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4090 << "***\n"; 4091 #endif 4092 ++NumArrayLenItCounts; 4093 return getConstant(ItCst); // Found terminating iteration! 4094 } 4095 } 4096 return getCouldNotCompute(); 4097 } 4098 4099 4100 /// CanConstantFold - Return true if we can constant fold an instruction of the 4101 /// specified type, assuming that all operands were constants. 4102 static bool CanConstantFold(const Instruction *I) { 4103 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4104 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4105 return true; 4106 4107 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4108 if (const Function *F = CI->getCalledFunction()) 4109 return canConstantFoldCallTo(F); 4110 return false; 4111 } 4112 4113 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4114 /// in the loop that V is derived from. We allow arbitrary operations along the 4115 /// way, but the operands of an operation must either be constants or a value 4116 /// derived from a constant PHI. If this expression does not fit with these 4117 /// constraints, return null. 4118 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4119 // If this is not an instruction, or if this is an instruction outside of the 4120 // loop, it can't be derived from a loop PHI. 4121 Instruction *I = dyn_cast<Instruction>(V); 4122 if (I == 0 || !L->contains(I)) return 0; 4123 4124 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4125 if (L->getHeader() == I->getParent()) 4126 return PN; 4127 else 4128 // We don't currently keep track of the control flow needed to evaluate 4129 // PHIs, so we cannot handle PHIs inside of loops. 4130 return 0; 4131 } 4132 4133 // If we won't be able to constant fold this expression even if the operands 4134 // are constants, return early. 4135 if (!CanConstantFold(I)) return 0; 4136 4137 // Otherwise, we can evaluate this instruction if all of its operands are 4138 // constant or derived from a PHI node themselves. 4139 PHINode *PHI = 0; 4140 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4141 if (!isa<Constant>(I->getOperand(Op))) { 4142 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4143 if (P == 0) return 0; // Not evolving from PHI 4144 if (PHI == 0) 4145 PHI = P; 4146 else if (PHI != P) 4147 return 0; // Evolving from multiple different PHIs. 4148 } 4149 4150 // This is a expression evolving from a constant PHI! 4151 return PHI; 4152 } 4153 4154 /// EvaluateExpression - Given an expression that passes the 4155 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4156 /// in the loop has the value PHIVal. If we can't fold this expression for some 4157 /// reason, return null. 4158 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4159 const TargetData *TD) { 4160 if (isa<PHINode>(V)) return PHIVal; 4161 if (Constant *C = dyn_cast<Constant>(V)) return C; 4162 Instruction *I = cast<Instruction>(V); 4163 4164 std::vector<Constant*> Operands(I->getNumOperands()); 4165 4166 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4167 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4168 if (Operands[i] == 0) return 0; 4169 } 4170 4171 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4172 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4173 Operands[1], TD); 4174 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4175 &Operands[0], Operands.size(), TD); 4176 } 4177 4178 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4179 /// in the header of its containing loop, we know the loop executes a 4180 /// constant number of times, and the PHI node is just a recurrence 4181 /// involving constants, fold it. 4182 Constant * 4183 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4184 const APInt &BEs, 4185 const Loop *L) { 4186 std::map<PHINode*, Constant*>::iterator I = 4187 ConstantEvolutionLoopExitValue.find(PN); 4188 if (I != ConstantEvolutionLoopExitValue.end()) 4189 return I->second; 4190 4191 if (BEs.ugt(MaxBruteForceIterations)) 4192 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4193 4194 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4195 4196 // Since the loop is canonicalized, the PHI node must have two entries. One 4197 // entry must be a constant (coming in from outside of the loop), and the 4198 // second must be derived from the same PHI. 4199 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4200 Constant *StartCST = 4201 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4202 if (StartCST == 0) 4203 return RetVal = 0; // Must be a constant. 4204 4205 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4206 if (getConstantEvolvingPHI(BEValue, L) != PN && 4207 !isa<Constant>(BEValue)) 4208 return RetVal = 0; // Not derived from same PHI. 4209 4210 // Execute the loop symbolically to determine the exit value. 4211 if (BEs.getActiveBits() >= 32) 4212 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4213 4214 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4215 unsigned IterationNum = 0; 4216 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4217 if (IterationNum == NumIterations) 4218 return RetVal = PHIVal; // Got exit value! 4219 4220 // Compute the value of the PHI node for the next iteration. 4221 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4222 if (NextPHI == PHIVal) 4223 return RetVal = NextPHI; // Stopped evolving! 4224 if (NextPHI == 0) 4225 return 0; // Couldn't evaluate! 4226 PHIVal = NextPHI; 4227 } 4228 } 4229 4230 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4231 /// constant number of times (the condition evolves only from constants), 4232 /// try to evaluate a few iterations of the loop until we get the exit 4233 /// condition gets a value of ExitWhen (true or false). If we cannot 4234 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4235 const SCEV * 4236 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4237 Value *Cond, 4238 bool ExitWhen) { 4239 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4240 if (PN == 0) return getCouldNotCompute(); 4241 4242 // If the loop is canonicalized, the PHI will have exactly two entries. 4243 // That's the only form we support here. 4244 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4245 4246 // One entry must be a constant (coming in from outside of the loop), and the 4247 // second must be derived from the same PHI. 4248 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4249 Constant *StartCST = 4250 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4251 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4252 4253 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4254 if (getConstantEvolvingPHI(BEValue, L) != PN && 4255 !isa<Constant>(BEValue)) 4256 return getCouldNotCompute(); // Not derived from same PHI. 4257 4258 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4259 // the loop symbolically to determine when the condition gets a value of 4260 // "ExitWhen". 4261 unsigned IterationNum = 0; 4262 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4263 for (Constant *PHIVal = StartCST; 4264 IterationNum != MaxIterations; ++IterationNum) { 4265 ConstantInt *CondVal = 4266 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4267 4268 // Couldn't symbolically evaluate. 4269 if (!CondVal) return getCouldNotCompute(); 4270 4271 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4272 ++NumBruteForceTripCountsComputed; 4273 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4274 } 4275 4276 // Compute the value of the PHI node for the next iteration. 4277 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4278 if (NextPHI == 0 || NextPHI == PHIVal) 4279 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4280 PHIVal = NextPHI; 4281 } 4282 4283 // Too many iterations were needed to evaluate. 4284 return getCouldNotCompute(); 4285 } 4286 4287 /// getSCEVAtScope - Return a SCEV expression for the specified value 4288 /// at the specified scope in the program. The L value specifies a loop 4289 /// nest to evaluate the expression at, where null is the top-level or a 4290 /// specified loop is immediately inside of the loop. 4291 /// 4292 /// This method can be used to compute the exit value for a variable defined 4293 /// in a loop by querying what the value will hold in the parent loop. 4294 /// 4295 /// In the case that a relevant loop exit value cannot be computed, the 4296 /// original value V is returned. 4297 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4298 // Check to see if we've folded this expression at this loop before. 4299 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4300 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4301 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4302 if (!Pair.second) 4303 return Pair.first->second ? Pair.first->second : V; 4304 4305 // Otherwise compute it. 4306 const SCEV *C = computeSCEVAtScope(V, L); 4307 ValuesAtScopes[V][L] = C; 4308 return C; 4309 } 4310 4311 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4312 if (isa<SCEVConstant>(V)) return V; 4313 4314 // If this instruction is evolved from a constant-evolving PHI, compute the 4315 // exit value from the loop without using SCEVs. 4316 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4317 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4318 const Loop *LI = (*this->LI)[I->getParent()]; 4319 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4320 if (PHINode *PN = dyn_cast<PHINode>(I)) 4321 if (PN->getParent() == LI->getHeader()) { 4322 // Okay, there is no closed form solution for the PHI node. Check 4323 // to see if the loop that contains it has a known backedge-taken 4324 // count. If so, we may be able to force computation of the exit 4325 // value. 4326 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4327 if (const SCEVConstant *BTCC = 4328 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4329 // Okay, we know how many times the containing loop executes. If 4330 // this is a constant evolving PHI node, get the final value at 4331 // the specified iteration number. 4332 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4333 BTCC->getValue()->getValue(), 4334 LI); 4335 if (RV) return getSCEV(RV); 4336 } 4337 } 4338 4339 // Okay, this is an expression that we cannot symbolically evaluate 4340 // into a SCEV. Check to see if it's possible to symbolically evaluate 4341 // the arguments into constants, and if so, try to constant propagate the 4342 // result. This is particularly useful for computing loop exit values. 4343 if (CanConstantFold(I)) { 4344 SmallVector<Constant *, 4> Operands; 4345 bool MadeImprovement = false; 4346 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4347 Value *Op = I->getOperand(i); 4348 if (Constant *C = dyn_cast<Constant>(Op)) { 4349 Operands.push_back(C); 4350 continue; 4351 } 4352 4353 // If any of the operands is non-constant and if they are 4354 // non-integer and non-pointer, don't even try to analyze them 4355 // with scev techniques. 4356 if (!isSCEVable(Op->getType())) 4357 return V; 4358 4359 const SCEV *OrigV = getSCEV(Op); 4360 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4361 MadeImprovement |= OrigV != OpV; 4362 4363 Constant *C = 0; 4364 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4365 C = SC->getValue(); 4366 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4367 C = dyn_cast<Constant>(SU->getValue()); 4368 if (!C) return V; 4369 if (C->getType() != Op->getType()) 4370 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4371 Op->getType(), 4372 false), 4373 C, Op->getType()); 4374 Operands.push_back(C); 4375 } 4376 4377 // Check to see if getSCEVAtScope actually made an improvement. 4378 if (MadeImprovement) { 4379 Constant *C = 0; 4380 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4381 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4382 Operands[0], Operands[1], TD); 4383 else 4384 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4385 &Operands[0], Operands.size(), TD); 4386 if (!C) return V; 4387 return getSCEV(C); 4388 } 4389 } 4390 } 4391 4392 // This is some other type of SCEVUnknown, just return it. 4393 return V; 4394 } 4395 4396 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4397 // Avoid performing the look-up in the common case where the specified 4398 // expression has no loop-variant portions. 4399 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4400 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4401 if (OpAtScope != Comm->getOperand(i)) { 4402 // Okay, at least one of these operands is loop variant but might be 4403 // foldable. Build a new instance of the folded commutative expression. 4404 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4405 Comm->op_begin()+i); 4406 NewOps.push_back(OpAtScope); 4407 4408 for (++i; i != e; ++i) { 4409 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4410 NewOps.push_back(OpAtScope); 4411 } 4412 if (isa<SCEVAddExpr>(Comm)) 4413 return getAddExpr(NewOps); 4414 if (isa<SCEVMulExpr>(Comm)) 4415 return getMulExpr(NewOps); 4416 if (isa<SCEVSMaxExpr>(Comm)) 4417 return getSMaxExpr(NewOps); 4418 if (isa<SCEVUMaxExpr>(Comm)) 4419 return getUMaxExpr(NewOps); 4420 llvm_unreachable("Unknown commutative SCEV type!"); 4421 } 4422 } 4423 // If we got here, all operands are loop invariant. 4424 return Comm; 4425 } 4426 4427 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4428 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4429 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4430 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4431 return Div; // must be loop invariant 4432 return getUDivExpr(LHS, RHS); 4433 } 4434 4435 // If this is a loop recurrence for a loop that does not contain L, then we 4436 // are dealing with the final value computed by the loop. 4437 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4438 // First, attempt to evaluate each operand. 4439 // Avoid performing the look-up in the common case where the specified 4440 // expression has no loop-variant portions. 4441 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4442 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4443 if (OpAtScope == AddRec->getOperand(i)) 4444 continue; 4445 4446 // Okay, at least one of these operands is loop variant but might be 4447 // foldable. Build a new instance of the folded commutative expression. 4448 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4449 AddRec->op_begin()+i); 4450 NewOps.push_back(OpAtScope); 4451 for (++i; i != e; ++i) 4452 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4453 4454 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4455 break; 4456 } 4457 4458 // If the scope is outside the addrec's loop, evaluate it by using the 4459 // loop exit value of the addrec. 4460 if (!AddRec->getLoop()->contains(L)) { 4461 // To evaluate this recurrence, we need to know how many times the AddRec 4462 // loop iterates. Compute this now. 4463 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4464 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4465 4466 // Then, evaluate the AddRec. 4467 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4468 } 4469 4470 return AddRec; 4471 } 4472 4473 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4474 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4475 if (Op == Cast->getOperand()) 4476 return Cast; // must be loop invariant 4477 return getZeroExtendExpr(Op, Cast->getType()); 4478 } 4479 4480 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4481 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4482 if (Op == Cast->getOperand()) 4483 return Cast; // must be loop invariant 4484 return getSignExtendExpr(Op, Cast->getType()); 4485 } 4486 4487 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4488 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4489 if (Op == Cast->getOperand()) 4490 return Cast; // must be loop invariant 4491 return getTruncateExpr(Op, Cast->getType()); 4492 } 4493 4494 llvm_unreachable("Unknown SCEV type!"); 4495 return 0; 4496 } 4497 4498 /// getSCEVAtScope - This is a convenience function which does 4499 /// getSCEVAtScope(getSCEV(V), L). 4500 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4501 return getSCEVAtScope(getSCEV(V), L); 4502 } 4503 4504 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4505 /// following equation: 4506 /// 4507 /// A * X = B (mod N) 4508 /// 4509 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4510 /// A and B isn't important. 4511 /// 4512 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4513 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4514 ScalarEvolution &SE) { 4515 uint32_t BW = A.getBitWidth(); 4516 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4517 assert(A != 0 && "A must be non-zero."); 4518 4519 // 1. D = gcd(A, N) 4520 // 4521 // The gcd of A and N may have only one prime factor: 2. The number of 4522 // trailing zeros in A is its multiplicity 4523 uint32_t Mult2 = A.countTrailingZeros(); 4524 // D = 2^Mult2 4525 4526 // 2. Check if B is divisible by D. 4527 // 4528 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4529 // is not less than multiplicity of this prime factor for D. 4530 if (B.countTrailingZeros() < Mult2) 4531 return SE.getCouldNotCompute(); 4532 4533 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4534 // modulo (N / D). 4535 // 4536 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4537 // bit width during computations. 4538 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4539 APInt Mod(BW + 1, 0); 4540 Mod.set(BW - Mult2); // Mod = N / D 4541 APInt I = AD.multiplicativeInverse(Mod); 4542 4543 // 4. Compute the minimum unsigned root of the equation: 4544 // I * (B / D) mod (N / D) 4545 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4546 4547 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4548 // bits. 4549 return SE.getConstant(Result.trunc(BW)); 4550 } 4551 4552 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4553 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4554 /// might be the same) or two SCEVCouldNotCompute objects. 4555 /// 4556 static std::pair<const SCEV *,const SCEV *> 4557 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4558 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4559 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4560 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4561 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4562 4563 // We currently can only solve this if the coefficients are constants. 4564 if (!LC || !MC || !NC) { 4565 const SCEV *CNC = SE.getCouldNotCompute(); 4566 return std::make_pair(CNC, CNC); 4567 } 4568 4569 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4570 const APInt &L = LC->getValue()->getValue(); 4571 const APInt &M = MC->getValue()->getValue(); 4572 const APInt &N = NC->getValue()->getValue(); 4573 APInt Two(BitWidth, 2); 4574 APInt Four(BitWidth, 4); 4575 4576 { 4577 using namespace APIntOps; 4578 const APInt& C = L; 4579 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4580 // The B coefficient is M-N/2 4581 APInt B(M); 4582 B -= sdiv(N,Two); 4583 4584 // The A coefficient is N/2 4585 APInt A(N.sdiv(Two)); 4586 4587 // Compute the B^2-4ac term. 4588 APInt SqrtTerm(B); 4589 SqrtTerm *= B; 4590 SqrtTerm -= Four * (A * C); 4591 4592 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4593 // integer value or else APInt::sqrt() will assert. 4594 APInt SqrtVal(SqrtTerm.sqrt()); 4595 4596 // Compute the two solutions for the quadratic formula. 4597 // The divisions must be performed as signed divisions. 4598 APInt NegB(-B); 4599 APInt TwoA( A << 1 ); 4600 if (TwoA.isMinValue()) { 4601 const SCEV *CNC = SE.getCouldNotCompute(); 4602 return std::make_pair(CNC, CNC); 4603 } 4604 4605 LLVMContext &Context = SE.getContext(); 4606 4607 ConstantInt *Solution1 = 4608 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4609 ConstantInt *Solution2 = 4610 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4611 4612 return std::make_pair(SE.getConstant(Solution1), 4613 SE.getConstant(Solution2)); 4614 } // end APIntOps namespace 4615 } 4616 4617 /// HowFarToZero - Return the number of times a backedge comparing the specified 4618 /// value to zero will execute. If not computable, return CouldNotCompute. 4619 ScalarEvolution::BackedgeTakenInfo 4620 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4621 // If the value is a constant 4622 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4623 // If the value is already zero, the branch will execute zero times. 4624 if (C->getValue()->isZero()) return C; 4625 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4626 } 4627 4628 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4629 if (!AddRec || AddRec->getLoop() != L) 4630 return getCouldNotCompute(); 4631 4632 if (AddRec->isAffine()) { 4633 // If this is an affine expression, the execution count of this branch is 4634 // the minimum unsigned root of the following equation: 4635 // 4636 // Start + Step*N = 0 (mod 2^BW) 4637 // 4638 // equivalent to: 4639 // 4640 // Step*N = -Start (mod 2^BW) 4641 // 4642 // where BW is the common bit width of Start and Step. 4643 4644 // Get the initial value for the loop. 4645 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4646 L->getParentLoop()); 4647 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4648 L->getParentLoop()); 4649 4650 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4651 // For now we handle only constant steps. 4652 4653 // First, handle unitary steps. 4654 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4655 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4656 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4657 return Start; // N = Start (as unsigned) 4658 4659 // Then, try to solve the above equation provided that Start is constant. 4660 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4661 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4662 -StartC->getValue()->getValue(), 4663 *this); 4664 } 4665 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4666 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4667 // the quadratic equation to solve it. 4668 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4669 *this); 4670 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4671 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4672 if (R1) { 4673 #if 0 4674 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4675 << " sol#2: " << *R2 << "\n"; 4676 #endif 4677 // Pick the smallest positive root value. 4678 if (ConstantInt *CB = 4679 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4680 R1->getValue(), R2->getValue()))) { 4681 if (CB->getZExtValue() == false) 4682 std::swap(R1, R2); // R1 is the minimum root now. 4683 4684 // We can only use this value if the chrec ends up with an exact zero 4685 // value at this index. When solving for "X*X != 5", for example, we 4686 // should not accept a root of 2. 4687 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4688 if (Val->isZero()) 4689 return R1; // We found a quadratic root! 4690 } 4691 } 4692 } 4693 4694 return getCouldNotCompute(); 4695 } 4696 4697 /// HowFarToNonZero - Return the number of times a backedge checking the 4698 /// specified value for nonzero will execute. If not computable, return 4699 /// CouldNotCompute 4700 ScalarEvolution::BackedgeTakenInfo 4701 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4702 // Loops that look like: while (X == 0) are very strange indeed. We don't 4703 // handle them yet except for the trivial case. This could be expanded in the 4704 // future as needed. 4705 4706 // If the value is a constant, check to see if it is known to be non-zero 4707 // already. If so, the backedge will execute zero times. 4708 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4709 if (!C->getValue()->isNullValue()) 4710 return getConstant(C->getType(), 0); 4711 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4712 } 4713 4714 // We could implement others, but I really doubt anyone writes loops like 4715 // this, and if they did, they would already be constant folded. 4716 return getCouldNotCompute(); 4717 } 4718 4719 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4720 /// (which may not be an immediate predecessor) which has exactly one 4721 /// successor from which BB is reachable, or null if no such block is 4722 /// found. 4723 /// 4724 std::pair<BasicBlock *, BasicBlock *> 4725 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4726 // If the block has a unique predecessor, then there is no path from the 4727 // predecessor to the block that does not go through the direct edge 4728 // from the predecessor to the block. 4729 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4730 return std::make_pair(Pred, BB); 4731 4732 // A loop's header is defined to be a block that dominates the loop. 4733 // If the header has a unique predecessor outside the loop, it must be 4734 // a block that has exactly one successor that can reach the loop. 4735 if (Loop *L = LI->getLoopFor(BB)) 4736 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4737 4738 return std::pair<BasicBlock *, BasicBlock *>(); 4739 } 4740 4741 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4742 /// testing whether two expressions are equal, however for the purposes of 4743 /// looking for a condition guarding a loop, it can be useful to be a little 4744 /// more general, since a front-end may have replicated the controlling 4745 /// expression. 4746 /// 4747 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4748 // Quick check to see if they are the same SCEV. 4749 if (A == B) return true; 4750 4751 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4752 // two different instructions with the same value. Check for this case. 4753 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4754 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4755 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4756 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4757 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4758 return true; 4759 4760 // Otherwise assume they may have a different value. 4761 return false; 4762 } 4763 4764 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4765 /// predicate Pred. Return true iff any changes were made. 4766 /// 4767 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4768 const SCEV *&LHS, const SCEV *&RHS) { 4769 bool Changed = false; 4770 4771 // Canonicalize a constant to the right side. 4772 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4773 // Check for both operands constant. 4774 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 4775 if (ConstantExpr::getICmp(Pred, 4776 LHSC->getValue(), 4777 RHSC->getValue())->isNullValue()) 4778 goto trivially_false; 4779 else 4780 goto trivially_true; 4781 } 4782 // Otherwise swap the operands to put the constant on the right. 4783 std::swap(LHS, RHS); 4784 Pred = ICmpInst::getSwappedPredicate(Pred); 4785 Changed = true; 4786 } 4787 4788 // If we're comparing an addrec with a value which is loop-invariant in the 4789 // addrec's loop, put the addrec on the left. Also make a dominance check, 4790 // as both operands could be addrecs loop-invariant in each other's loop. 4791 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 4792 const Loop *L = AR->getLoop(); 4793 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) { 4794 std::swap(LHS, RHS); 4795 Pred = ICmpInst::getSwappedPredicate(Pred); 4796 Changed = true; 4797 } 4798 } 4799 4800 // If there's a constant operand, canonicalize comparisons with boundary 4801 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 4802 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4803 const APInt &RA = RC->getValue()->getValue(); 4804 switch (Pred) { 4805 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4806 case ICmpInst::ICMP_EQ: 4807 case ICmpInst::ICMP_NE: 4808 break; 4809 case ICmpInst::ICMP_UGE: 4810 if ((RA - 1).isMinValue()) { 4811 Pred = ICmpInst::ICMP_NE; 4812 RHS = getConstant(RA - 1); 4813 Changed = true; 4814 break; 4815 } 4816 if (RA.isMaxValue()) { 4817 Pred = ICmpInst::ICMP_EQ; 4818 Changed = true; 4819 break; 4820 } 4821 if (RA.isMinValue()) goto trivially_true; 4822 4823 Pred = ICmpInst::ICMP_UGT; 4824 RHS = getConstant(RA - 1); 4825 Changed = true; 4826 break; 4827 case ICmpInst::ICMP_ULE: 4828 if ((RA + 1).isMaxValue()) { 4829 Pred = ICmpInst::ICMP_NE; 4830 RHS = getConstant(RA + 1); 4831 Changed = true; 4832 break; 4833 } 4834 if (RA.isMinValue()) { 4835 Pred = ICmpInst::ICMP_EQ; 4836 Changed = true; 4837 break; 4838 } 4839 if (RA.isMaxValue()) goto trivially_true; 4840 4841 Pred = ICmpInst::ICMP_ULT; 4842 RHS = getConstant(RA + 1); 4843 Changed = true; 4844 break; 4845 case ICmpInst::ICMP_SGE: 4846 if ((RA - 1).isMinSignedValue()) { 4847 Pred = ICmpInst::ICMP_NE; 4848 RHS = getConstant(RA - 1); 4849 Changed = true; 4850 break; 4851 } 4852 if (RA.isMaxSignedValue()) { 4853 Pred = ICmpInst::ICMP_EQ; 4854 Changed = true; 4855 break; 4856 } 4857 if (RA.isMinSignedValue()) goto trivially_true; 4858 4859 Pred = ICmpInst::ICMP_SGT; 4860 RHS = getConstant(RA - 1); 4861 Changed = true; 4862 break; 4863 case ICmpInst::ICMP_SLE: 4864 if ((RA + 1).isMaxSignedValue()) { 4865 Pred = ICmpInst::ICMP_NE; 4866 RHS = getConstant(RA + 1); 4867 Changed = true; 4868 break; 4869 } 4870 if (RA.isMinSignedValue()) { 4871 Pred = ICmpInst::ICMP_EQ; 4872 Changed = true; 4873 break; 4874 } 4875 if (RA.isMaxSignedValue()) goto trivially_true; 4876 4877 Pred = ICmpInst::ICMP_SLT; 4878 RHS = getConstant(RA + 1); 4879 Changed = true; 4880 break; 4881 case ICmpInst::ICMP_UGT: 4882 if (RA.isMinValue()) { 4883 Pred = ICmpInst::ICMP_NE; 4884 Changed = true; 4885 break; 4886 } 4887 if ((RA + 1).isMaxValue()) { 4888 Pred = ICmpInst::ICMP_EQ; 4889 RHS = getConstant(RA + 1); 4890 Changed = true; 4891 break; 4892 } 4893 if (RA.isMaxValue()) goto trivially_false; 4894 break; 4895 case ICmpInst::ICMP_ULT: 4896 if (RA.isMaxValue()) { 4897 Pred = ICmpInst::ICMP_NE; 4898 Changed = true; 4899 break; 4900 } 4901 if ((RA - 1).isMinValue()) { 4902 Pred = ICmpInst::ICMP_EQ; 4903 RHS = getConstant(RA - 1); 4904 Changed = true; 4905 break; 4906 } 4907 if (RA.isMinValue()) goto trivially_false; 4908 break; 4909 case ICmpInst::ICMP_SGT: 4910 if (RA.isMinSignedValue()) { 4911 Pred = ICmpInst::ICMP_NE; 4912 Changed = true; 4913 break; 4914 } 4915 if ((RA + 1).isMaxSignedValue()) { 4916 Pred = ICmpInst::ICMP_EQ; 4917 RHS = getConstant(RA + 1); 4918 Changed = true; 4919 break; 4920 } 4921 if (RA.isMaxSignedValue()) goto trivially_false; 4922 break; 4923 case ICmpInst::ICMP_SLT: 4924 if (RA.isMaxSignedValue()) { 4925 Pred = ICmpInst::ICMP_NE; 4926 Changed = true; 4927 break; 4928 } 4929 if ((RA - 1).isMinSignedValue()) { 4930 Pred = ICmpInst::ICMP_EQ; 4931 RHS = getConstant(RA - 1); 4932 Changed = true; 4933 break; 4934 } 4935 if (RA.isMinSignedValue()) goto trivially_false; 4936 break; 4937 } 4938 } 4939 4940 // Check for obvious equality. 4941 if (HasSameValue(LHS, RHS)) { 4942 if (ICmpInst::isTrueWhenEqual(Pred)) 4943 goto trivially_true; 4944 if (ICmpInst::isFalseWhenEqual(Pred)) 4945 goto trivially_false; 4946 } 4947 4948 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 4949 // adding or subtracting 1 from one of the operands. 4950 switch (Pred) { 4951 case ICmpInst::ICMP_SLE: 4952 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 4953 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 4954 /*HasNUW=*/false, /*HasNSW=*/true); 4955 Pred = ICmpInst::ICMP_SLT; 4956 Changed = true; 4957 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 4958 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 4959 /*HasNUW=*/false, /*HasNSW=*/true); 4960 Pred = ICmpInst::ICMP_SLT; 4961 Changed = true; 4962 } 4963 break; 4964 case ICmpInst::ICMP_SGE: 4965 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 4966 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 4967 /*HasNUW=*/false, /*HasNSW=*/true); 4968 Pred = ICmpInst::ICMP_SGT; 4969 Changed = true; 4970 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 4971 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 4972 /*HasNUW=*/false, /*HasNSW=*/true); 4973 Pred = ICmpInst::ICMP_SGT; 4974 Changed = true; 4975 } 4976 break; 4977 case ICmpInst::ICMP_ULE: 4978 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 4979 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 4980 /*HasNUW=*/true, /*HasNSW=*/false); 4981 Pred = ICmpInst::ICMP_ULT; 4982 Changed = true; 4983 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 4984 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 4985 /*HasNUW=*/true, /*HasNSW=*/false); 4986 Pred = ICmpInst::ICMP_ULT; 4987 Changed = true; 4988 } 4989 break; 4990 case ICmpInst::ICMP_UGE: 4991 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 4992 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 4993 /*HasNUW=*/true, /*HasNSW=*/false); 4994 Pred = ICmpInst::ICMP_UGT; 4995 Changed = true; 4996 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 4997 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 4998 /*HasNUW=*/true, /*HasNSW=*/false); 4999 Pred = ICmpInst::ICMP_UGT; 5000 Changed = true; 5001 } 5002 break; 5003 default: 5004 break; 5005 } 5006 5007 // TODO: More simplifications are possible here. 5008 5009 return Changed; 5010 5011 trivially_true: 5012 // Return 0 == 0. 5013 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5014 Pred = ICmpInst::ICMP_EQ; 5015 return true; 5016 5017 trivially_false: 5018 // Return 0 != 0. 5019 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5020 Pred = ICmpInst::ICMP_NE; 5021 return true; 5022 } 5023 5024 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5025 return getSignedRange(S).getSignedMax().isNegative(); 5026 } 5027 5028 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5029 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5030 } 5031 5032 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5033 return !getSignedRange(S).getSignedMin().isNegative(); 5034 } 5035 5036 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5037 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5038 } 5039 5040 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5041 return isKnownNegative(S) || isKnownPositive(S); 5042 } 5043 5044 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5045 const SCEV *LHS, const SCEV *RHS) { 5046 // Canonicalize the inputs first. 5047 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5048 5049 // If LHS or RHS is an addrec, check to see if the condition is true in 5050 // every iteration of the loop. 5051 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5052 if (isLoopEntryGuardedByCond( 5053 AR->getLoop(), Pred, AR->getStart(), RHS) && 5054 isLoopBackedgeGuardedByCond( 5055 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5056 return true; 5057 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5058 if (isLoopEntryGuardedByCond( 5059 AR->getLoop(), Pred, LHS, AR->getStart()) && 5060 isLoopBackedgeGuardedByCond( 5061 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5062 return true; 5063 5064 // Otherwise see what can be done with known constant ranges. 5065 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5066 } 5067 5068 bool 5069 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5070 const SCEV *LHS, const SCEV *RHS) { 5071 if (HasSameValue(LHS, RHS)) 5072 return ICmpInst::isTrueWhenEqual(Pred); 5073 5074 // This code is split out from isKnownPredicate because it is called from 5075 // within isLoopEntryGuardedByCond. 5076 switch (Pred) { 5077 default: 5078 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5079 break; 5080 case ICmpInst::ICMP_SGT: 5081 Pred = ICmpInst::ICMP_SLT; 5082 std::swap(LHS, RHS); 5083 case ICmpInst::ICMP_SLT: { 5084 ConstantRange LHSRange = getSignedRange(LHS); 5085 ConstantRange RHSRange = getSignedRange(RHS); 5086 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5087 return true; 5088 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5089 return false; 5090 break; 5091 } 5092 case ICmpInst::ICMP_SGE: 5093 Pred = ICmpInst::ICMP_SLE; 5094 std::swap(LHS, RHS); 5095 case ICmpInst::ICMP_SLE: { 5096 ConstantRange LHSRange = getSignedRange(LHS); 5097 ConstantRange RHSRange = getSignedRange(RHS); 5098 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5099 return true; 5100 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5101 return false; 5102 break; 5103 } 5104 case ICmpInst::ICMP_UGT: 5105 Pred = ICmpInst::ICMP_ULT; 5106 std::swap(LHS, RHS); 5107 case ICmpInst::ICMP_ULT: { 5108 ConstantRange LHSRange = getUnsignedRange(LHS); 5109 ConstantRange RHSRange = getUnsignedRange(RHS); 5110 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5111 return true; 5112 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5113 return false; 5114 break; 5115 } 5116 case ICmpInst::ICMP_UGE: 5117 Pred = ICmpInst::ICMP_ULE; 5118 std::swap(LHS, RHS); 5119 case ICmpInst::ICMP_ULE: { 5120 ConstantRange LHSRange = getUnsignedRange(LHS); 5121 ConstantRange RHSRange = getUnsignedRange(RHS); 5122 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5123 return true; 5124 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5125 return false; 5126 break; 5127 } 5128 case ICmpInst::ICMP_NE: { 5129 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5130 return true; 5131 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5132 return true; 5133 5134 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5135 if (isKnownNonZero(Diff)) 5136 return true; 5137 break; 5138 } 5139 case ICmpInst::ICMP_EQ: 5140 // The check at the top of the function catches the case where 5141 // the values are known to be equal. 5142 break; 5143 } 5144 return false; 5145 } 5146 5147 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5148 /// protected by a conditional between LHS and RHS. This is used to 5149 /// to eliminate casts. 5150 bool 5151 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5152 ICmpInst::Predicate Pred, 5153 const SCEV *LHS, const SCEV *RHS) { 5154 // Interpret a null as meaning no loop, where there is obviously no guard 5155 // (interprocedural conditions notwithstanding). 5156 if (!L) return true; 5157 5158 BasicBlock *Latch = L->getLoopLatch(); 5159 if (!Latch) 5160 return false; 5161 5162 BranchInst *LoopContinuePredicate = 5163 dyn_cast<BranchInst>(Latch->getTerminator()); 5164 if (!LoopContinuePredicate || 5165 LoopContinuePredicate->isUnconditional()) 5166 return false; 5167 5168 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, 5169 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5170 } 5171 5172 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5173 /// by a conditional between LHS and RHS. This is used to help avoid max 5174 /// expressions in loop trip counts, and to eliminate casts. 5175 bool 5176 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5177 ICmpInst::Predicate Pred, 5178 const SCEV *LHS, const SCEV *RHS) { 5179 // Interpret a null as meaning no loop, where there is obviously no guard 5180 // (interprocedural conditions notwithstanding). 5181 if (!L) return false; 5182 5183 // Starting at the loop predecessor, climb up the predecessor chain, as long 5184 // as there are predecessors that can be found that have unique successors 5185 // leading to the original header. 5186 for (std::pair<BasicBlock *, BasicBlock *> 5187 Pair(L->getLoopPredecessor(), L->getHeader()); 5188 Pair.first; 5189 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5190 5191 BranchInst *LoopEntryPredicate = 5192 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5193 if (!LoopEntryPredicate || 5194 LoopEntryPredicate->isUnconditional()) 5195 continue; 5196 5197 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 5198 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5199 return true; 5200 } 5201 5202 return false; 5203 } 5204 5205 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5206 /// and RHS is true whenever the given Cond value evaluates to true. 5207 bool ScalarEvolution::isImpliedCond(Value *CondValue, 5208 ICmpInst::Predicate Pred, 5209 const SCEV *LHS, const SCEV *RHS, 5210 bool Inverse) { 5211 // Recursively handle And and Or conditions. 5212 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 5213 if (BO->getOpcode() == Instruction::And) { 5214 if (!Inverse) 5215 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 5216 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 5217 } else if (BO->getOpcode() == Instruction::Or) { 5218 if (Inverse) 5219 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 5220 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 5221 } 5222 } 5223 5224 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 5225 if (!ICI) return false; 5226 5227 // Bail if the ICmp's operands' types are wider than the needed type 5228 // before attempting to call getSCEV on them. This avoids infinite 5229 // recursion, since the analysis of widening casts can require loop 5230 // exit condition information for overflow checking, which would 5231 // lead back here. 5232 if (getTypeSizeInBits(LHS->getType()) < 5233 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5234 return false; 5235 5236 // Now that we found a conditional branch that dominates the loop, check to 5237 // see if it is the comparison we are looking for. 5238 ICmpInst::Predicate FoundPred; 5239 if (Inverse) 5240 FoundPred = ICI->getInversePredicate(); 5241 else 5242 FoundPred = ICI->getPredicate(); 5243 5244 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5245 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5246 5247 // Balance the types. The case where FoundLHS' type is wider than 5248 // LHS' type is checked for above. 5249 if (getTypeSizeInBits(LHS->getType()) > 5250 getTypeSizeInBits(FoundLHS->getType())) { 5251 if (CmpInst::isSigned(Pred)) { 5252 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5253 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5254 } else { 5255 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5256 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5257 } 5258 } 5259 5260 // Canonicalize the query to match the way instcombine will have 5261 // canonicalized the comparison. 5262 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5263 if (LHS == RHS) 5264 return CmpInst::isTrueWhenEqual(Pred); 5265 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5266 if (FoundLHS == FoundRHS) 5267 return CmpInst::isFalseWhenEqual(Pred); 5268 5269 // Check to see if we can make the LHS or RHS match. 5270 if (LHS == FoundRHS || RHS == FoundLHS) { 5271 if (isa<SCEVConstant>(RHS)) { 5272 std::swap(FoundLHS, FoundRHS); 5273 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5274 } else { 5275 std::swap(LHS, RHS); 5276 Pred = ICmpInst::getSwappedPredicate(Pred); 5277 } 5278 } 5279 5280 // Check whether the found predicate is the same as the desired predicate. 5281 if (FoundPred == Pred) 5282 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5283 5284 // Check whether swapping the found predicate makes it the same as the 5285 // desired predicate. 5286 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5287 if (isa<SCEVConstant>(RHS)) 5288 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5289 else 5290 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5291 RHS, LHS, FoundLHS, FoundRHS); 5292 } 5293 5294 // Check whether the actual condition is beyond sufficient. 5295 if (FoundPred == ICmpInst::ICMP_EQ) 5296 if (ICmpInst::isTrueWhenEqual(Pred)) 5297 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5298 return true; 5299 if (Pred == ICmpInst::ICMP_NE) 5300 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5301 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5302 return true; 5303 5304 // Otherwise assume the worst. 5305 return false; 5306 } 5307 5308 /// isImpliedCondOperands - Test whether the condition described by Pred, 5309 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5310 /// and FoundRHS is true. 5311 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5312 const SCEV *LHS, const SCEV *RHS, 5313 const SCEV *FoundLHS, 5314 const SCEV *FoundRHS) { 5315 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5316 FoundLHS, FoundRHS) || 5317 // ~x < ~y --> x > y 5318 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5319 getNotSCEV(FoundRHS), 5320 getNotSCEV(FoundLHS)); 5321 } 5322 5323 /// isImpliedCondOperandsHelper - Test whether the condition described by 5324 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5325 /// FoundLHS, and FoundRHS is true. 5326 bool 5327 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5328 const SCEV *LHS, const SCEV *RHS, 5329 const SCEV *FoundLHS, 5330 const SCEV *FoundRHS) { 5331 switch (Pred) { 5332 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5333 case ICmpInst::ICMP_EQ: 5334 case ICmpInst::ICMP_NE: 5335 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5336 return true; 5337 break; 5338 case ICmpInst::ICMP_SLT: 5339 case ICmpInst::ICMP_SLE: 5340 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5341 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5342 return true; 5343 break; 5344 case ICmpInst::ICMP_SGT: 5345 case ICmpInst::ICMP_SGE: 5346 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5347 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5348 return true; 5349 break; 5350 case ICmpInst::ICMP_ULT: 5351 case ICmpInst::ICMP_ULE: 5352 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5353 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5354 return true; 5355 break; 5356 case ICmpInst::ICMP_UGT: 5357 case ICmpInst::ICMP_UGE: 5358 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5359 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5360 return true; 5361 break; 5362 } 5363 5364 return false; 5365 } 5366 5367 /// getBECount - Subtract the end and start values and divide by the step, 5368 /// rounding up, to get the number of times the backedge is executed. Return 5369 /// CouldNotCompute if an intermediate computation overflows. 5370 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5371 const SCEV *End, 5372 const SCEV *Step, 5373 bool NoWrap) { 5374 assert(!isKnownNegative(Step) && 5375 "This code doesn't handle negative strides yet!"); 5376 5377 const Type *Ty = Start->getType(); 5378 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5379 const SCEV *Diff = getMinusSCEV(End, Start); 5380 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5381 5382 // Add an adjustment to the difference between End and Start so that 5383 // the division will effectively round up. 5384 const SCEV *Add = getAddExpr(Diff, RoundUp); 5385 5386 if (!NoWrap) { 5387 // Check Add for unsigned overflow. 5388 // TODO: More sophisticated things could be done here. 5389 const Type *WideTy = IntegerType::get(getContext(), 5390 getTypeSizeInBits(Ty) + 1); 5391 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5392 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5393 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5394 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5395 return getCouldNotCompute(); 5396 } 5397 5398 return getUDivExpr(Add, Step); 5399 } 5400 5401 /// HowManyLessThans - Return the number of times a backedge containing the 5402 /// specified less-than comparison will execute. If not computable, return 5403 /// CouldNotCompute. 5404 ScalarEvolution::BackedgeTakenInfo 5405 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5406 const Loop *L, bool isSigned) { 5407 // Only handle: "ADDREC < LoopInvariant". 5408 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5409 5410 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5411 if (!AddRec || AddRec->getLoop() != L) 5412 return getCouldNotCompute(); 5413 5414 // Check to see if we have a flag which makes analysis easy. 5415 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5416 AddRec->hasNoUnsignedWrap(); 5417 5418 if (AddRec->isAffine()) { 5419 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5420 const SCEV *Step = AddRec->getStepRecurrence(*this); 5421 5422 if (Step->isZero()) 5423 return getCouldNotCompute(); 5424 if (Step->isOne()) { 5425 // With unit stride, the iteration never steps past the limit value. 5426 } else if (isKnownPositive(Step)) { 5427 // Test whether a positive iteration can step past the limit 5428 // value and past the maximum value for its type in a single step. 5429 // Note that it's not sufficient to check NoWrap here, because even 5430 // though the value after a wrap is undefined, it's not undefined 5431 // behavior, so if wrap does occur, the loop could either terminate or 5432 // loop infinitely, but in either case, the loop is guaranteed to 5433 // iterate at least until the iteration where the wrapping occurs. 5434 const SCEV *One = getConstant(Step->getType(), 1); 5435 if (isSigned) { 5436 APInt Max = APInt::getSignedMaxValue(BitWidth); 5437 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5438 .slt(getSignedRange(RHS).getSignedMax())) 5439 return getCouldNotCompute(); 5440 } else { 5441 APInt Max = APInt::getMaxValue(BitWidth); 5442 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5443 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5444 return getCouldNotCompute(); 5445 } 5446 } else 5447 // TODO: Handle negative strides here and below. 5448 return getCouldNotCompute(); 5449 5450 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5451 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5452 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5453 // treat m-n as signed nor unsigned due to overflow possibility. 5454 5455 // First, we get the value of the LHS in the first iteration: n 5456 const SCEV *Start = AddRec->getOperand(0); 5457 5458 // Determine the minimum constant start value. 5459 const SCEV *MinStart = getConstant(isSigned ? 5460 getSignedRange(Start).getSignedMin() : 5461 getUnsignedRange(Start).getUnsignedMin()); 5462 5463 // If we know that the condition is true in order to enter the loop, 5464 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5465 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5466 // the division must round up. 5467 const SCEV *End = RHS; 5468 if (!isLoopEntryGuardedByCond(L, 5469 isSigned ? ICmpInst::ICMP_SLT : 5470 ICmpInst::ICMP_ULT, 5471 getMinusSCEV(Start, Step), RHS)) 5472 End = isSigned ? getSMaxExpr(RHS, Start) 5473 : getUMaxExpr(RHS, Start); 5474 5475 // Determine the maximum constant end value. 5476 const SCEV *MaxEnd = getConstant(isSigned ? 5477 getSignedRange(End).getSignedMax() : 5478 getUnsignedRange(End).getUnsignedMax()); 5479 5480 // If MaxEnd is within a step of the maximum integer value in its type, 5481 // adjust it down to the minimum value which would produce the same effect. 5482 // This allows the subsequent ceiling division of (N+(step-1))/step to 5483 // compute the correct value. 5484 const SCEV *StepMinusOne = getMinusSCEV(Step, 5485 getConstant(Step->getType(), 1)); 5486 MaxEnd = isSigned ? 5487 getSMinExpr(MaxEnd, 5488 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5489 StepMinusOne)) : 5490 getUMinExpr(MaxEnd, 5491 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5492 StepMinusOne)); 5493 5494 // Finally, we subtract these two values and divide, rounding up, to get 5495 // the number of times the backedge is executed. 5496 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5497 5498 // The maximum backedge count is similar, except using the minimum start 5499 // value and the maximum end value. 5500 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5501 5502 return BackedgeTakenInfo(BECount, MaxBECount); 5503 } 5504 5505 return getCouldNotCompute(); 5506 } 5507 5508 /// getNumIterationsInRange - Return the number of iterations of this loop that 5509 /// produce values in the specified constant range. Another way of looking at 5510 /// this is that it returns the first iteration number where the value is not in 5511 /// the condition, thus computing the exit count. If the iteration count can't 5512 /// be computed, an instance of SCEVCouldNotCompute is returned. 5513 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5514 ScalarEvolution &SE) const { 5515 if (Range.isFullSet()) // Infinite loop. 5516 return SE.getCouldNotCompute(); 5517 5518 // If the start is a non-zero constant, shift the range to simplify things. 5519 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5520 if (!SC->getValue()->isZero()) { 5521 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5522 Operands[0] = SE.getConstant(SC->getType(), 0); 5523 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5524 if (const SCEVAddRecExpr *ShiftedAddRec = 5525 dyn_cast<SCEVAddRecExpr>(Shifted)) 5526 return ShiftedAddRec->getNumIterationsInRange( 5527 Range.subtract(SC->getValue()->getValue()), SE); 5528 // This is strange and shouldn't happen. 5529 return SE.getCouldNotCompute(); 5530 } 5531 5532 // The only time we can solve this is when we have all constant indices. 5533 // Otherwise, we cannot determine the overflow conditions. 5534 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5535 if (!isa<SCEVConstant>(getOperand(i))) 5536 return SE.getCouldNotCompute(); 5537 5538 5539 // Okay at this point we know that all elements of the chrec are constants and 5540 // that the start element is zero. 5541 5542 // First check to see if the range contains zero. If not, the first 5543 // iteration exits. 5544 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5545 if (!Range.contains(APInt(BitWidth, 0))) 5546 return SE.getConstant(getType(), 0); 5547 5548 if (isAffine()) { 5549 // If this is an affine expression then we have this situation: 5550 // Solve {0,+,A} in Range === Ax in Range 5551 5552 // We know that zero is in the range. If A is positive then we know that 5553 // the upper value of the range must be the first possible exit value. 5554 // If A is negative then the lower of the range is the last possible loop 5555 // value. Also note that we already checked for a full range. 5556 APInt One(BitWidth,1); 5557 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5558 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5559 5560 // The exit value should be (End+A)/A. 5561 APInt ExitVal = (End + A).udiv(A); 5562 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5563 5564 // Evaluate at the exit value. If we really did fall out of the valid 5565 // range, then we computed our trip count, otherwise wrap around or other 5566 // things must have happened. 5567 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5568 if (Range.contains(Val->getValue())) 5569 return SE.getCouldNotCompute(); // Something strange happened 5570 5571 // Ensure that the previous value is in the range. This is a sanity check. 5572 assert(Range.contains( 5573 EvaluateConstantChrecAtConstant(this, 5574 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5575 "Linear scev computation is off in a bad way!"); 5576 return SE.getConstant(ExitValue); 5577 } else if (isQuadratic()) { 5578 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5579 // quadratic equation to solve it. To do this, we must frame our problem in 5580 // terms of figuring out when zero is crossed, instead of when 5581 // Range.getUpper() is crossed. 5582 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5583 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5584 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5585 5586 // Next, solve the constructed addrec 5587 std::pair<const SCEV *,const SCEV *> Roots = 5588 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5589 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5590 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5591 if (R1) { 5592 // Pick the smallest positive root value. 5593 if (ConstantInt *CB = 5594 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5595 R1->getValue(), R2->getValue()))) { 5596 if (CB->getZExtValue() == false) 5597 std::swap(R1, R2); // R1 is the minimum root now. 5598 5599 // Make sure the root is not off by one. The returned iteration should 5600 // not be in the range, but the previous one should be. When solving 5601 // for "X*X < 5", for example, we should not return a root of 2. 5602 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5603 R1->getValue(), 5604 SE); 5605 if (Range.contains(R1Val->getValue())) { 5606 // The next iteration must be out of the range... 5607 ConstantInt *NextVal = 5608 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5609 5610 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5611 if (!Range.contains(R1Val->getValue())) 5612 return SE.getConstant(NextVal); 5613 return SE.getCouldNotCompute(); // Something strange happened 5614 } 5615 5616 // If R1 was not in the range, then it is a good return value. Make 5617 // sure that R1-1 WAS in the range though, just in case. 5618 ConstantInt *NextVal = 5619 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5620 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5621 if (Range.contains(R1Val->getValue())) 5622 return R1; 5623 return SE.getCouldNotCompute(); // Something strange happened 5624 } 5625 } 5626 } 5627 5628 return SE.getCouldNotCompute(); 5629 } 5630 5631 5632 5633 //===----------------------------------------------------------------------===// 5634 // SCEVCallbackVH Class Implementation 5635 //===----------------------------------------------------------------------===// 5636 5637 void ScalarEvolution::SCEVCallbackVH::deleted() { 5638 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5639 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5640 SE->ConstantEvolutionLoopExitValue.erase(PN); 5641 SE->Scalars.erase(getValPtr()); 5642 // this now dangles! 5643 } 5644 5645 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 5646 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5647 5648 // Forget all the expressions associated with users of the old value, 5649 // so that future queries will recompute the expressions using the new 5650 // value. 5651 SmallVector<User *, 16> Worklist; 5652 SmallPtrSet<User *, 8> Visited; 5653 Value *Old = getValPtr(); 5654 bool DeleteOld = false; 5655 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5656 UI != UE; ++UI) 5657 Worklist.push_back(*UI); 5658 while (!Worklist.empty()) { 5659 User *U = Worklist.pop_back_val(); 5660 // Deleting the Old value will cause this to dangle. Postpone 5661 // that until everything else is done. 5662 if (U == Old) { 5663 DeleteOld = true; 5664 continue; 5665 } 5666 if (!Visited.insert(U)) 5667 continue; 5668 if (PHINode *PN = dyn_cast<PHINode>(U)) 5669 SE->ConstantEvolutionLoopExitValue.erase(PN); 5670 SE->Scalars.erase(U); 5671 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5672 UI != UE; ++UI) 5673 Worklist.push_back(*UI); 5674 } 5675 // Delete the Old value if it (indirectly) references itself. 5676 if (DeleteOld) { 5677 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5678 SE->ConstantEvolutionLoopExitValue.erase(PN); 5679 SE->Scalars.erase(Old); 5680 // this now dangles! 5681 } 5682 // this may dangle! 5683 } 5684 5685 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5686 : CallbackVH(V), SE(se) {} 5687 5688 //===----------------------------------------------------------------------===// 5689 // ScalarEvolution Class Implementation 5690 //===----------------------------------------------------------------------===// 5691 5692 ScalarEvolution::ScalarEvolution() 5693 : FunctionPass(&ID) { 5694 } 5695 5696 bool ScalarEvolution::runOnFunction(Function &F) { 5697 this->F = &F; 5698 LI = &getAnalysis<LoopInfo>(); 5699 TD = getAnalysisIfAvailable<TargetData>(); 5700 DT = &getAnalysis<DominatorTree>(); 5701 return false; 5702 } 5703 5704 void ScalarEvolution::releaseMemory() { 5705 Scalars.clear(); 5706 BackedgeTakenCounts.clear(); 5707 ConstantEvolutionLoopExitValue.clear(); 5708 ValuesAtScopes.clear(); 5709 UniqueSCEVs.clear(); 5710 SCEVAllocator.Reset(); 5711 } 5712 5713 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5714 AU.setPreservesAll(); 5715 AU.addRequiredTransitive<LoopInfo>(); 5716 AU.addRequiredTransitive<DominatorTree>(); 5717 } 5718 5719 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5720 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5721 } 5722 5723 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5724 const Loop *L) { 5725 // Print all inner loops first 5726 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5727 PrintLoopInfo(OS, SE, *I); 5728 5729 OS << "Loop "; 5730 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5731 OS << ": "; 5732 5733 SmallVector<BasicBlock *, 8> ExitBlocks; 5734 L->getExitBlocks(ExitBlocks); 5735 if (ExitBlocks.size() != 1) 5736 OS << "<multiple exits> "; 5737 5738 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5739 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5740 } else { 5741 OS << "Unpredictable backedge-taken count. "; 5742 } 5743 5744 OS << "\n" 5745 "Loop "; 5746 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5747 OS << ": "; 5748 5749 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5750 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5751 } else { 5752 OS << "Unpredictable max backedge-taken count. "; 5753 } 5754 5755 OS << "\n"; 5756 } 5757 5758 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5759 // ScalarEvolution's implementation of the print method is to print 5760 // out SCEV values of all instructions that are interesting. Doing 5761 // this potentially causes it to create new SCEV objects though, 5762 // which technically conflicts with the const qualifier. This isn't 5763 // observable from outside the class though, so casting away the 5764 // const isn't dangerous. 5765 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5766 5767 OS << "Classifying expressions for: "; 5768 WriteAsOperand(OS, F, /*PrintType=*/false); 5769 OS << "\n"; 5770 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5771 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 5772 OS << *I << '\n'; 5773 OS << " --> "; 5774 const SCEV *SV = SE.getSCEV(&*I); 5775 SV->print(OS); 5776 5777 const Loop *L = LI->getLoopFor((*I).getParent()); 5778 5779 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5780 if (AtUse != SV) { 5781 OS << " --> "; 5782 AtUse->print(OS); 5783 } 5784 5785 if (L) { 5786 OS << "\t\t" "Exits: "; 5787 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5788 if (!ExitValue->isLoopInvariant(L)) { 5789 OS << "<<Unknown>>"; 5790 } else { 5791 OS << *ExitValue; 5792 } 5793 } 5794 5795 OS << "\n"; 5796 } 5797 5798 OS << "Determining loop execution counts for: "; 5799 WriteAsOperand(OS, F, /*PrintType=*/false); 5800 OS << "\n"; 5801 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5802 PrintLoopInfo(OS, &SE, *I); 5803 } 5804 5805