xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision bdd971025248a2dc78c47b7fc06bc90b0a40ada2)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "scalar-evolution"
97 
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106 
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113 
114 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119     VerifySCEVMap("verify-scev-maps",
120                   cl::desc("Verify no dangling value in ScalarEvolution's "
121                            "ExprValueMap (slow)"));
122 
123 //===----------------------------------------------------------------------===//
124 //                           SCEV class definitions
125 //===----------------------------------------------------------------------===//
126 
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130 
131 LLVM_DUMP_METHOD
132 void SCEV::dump() const {
133   print(dbgs());
134   dbgs() << '\n';
135 }
136 
137 void SCEV::print(raw_ostream &OS) const {
138   switch (static_cast<SCEVTypes>(getSCEVType())) {
139   case scConstant:
140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141     return;
142   case scTruncate: {
143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144     const SCEV *Op = Trunc->getOperand();
145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146        << *Trunc->getType() << ")";
147     return;
148   }
149   case scZeroExtend: {
150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151     const SCEV *Op = ZExt->getOperand();
152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
153        << *ZExt->getType() << ")";
154     return;
155   }
156   case scSignExtend: {
157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158     const SCEV *Op = SExt->getOperand();
159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
160        << *SExt->getType() << ")";
161     return;
162   }
163   case scAddRecExpr: {
164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165     OS << "{" << *AR->getOperand(0);
166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167       OS << ",+," << *AR->getOperand(i);
168     OS << "}<";
169     if (AR->hasNoUnsignedWrap())
170       OS << "nuw><";
171     if (AR->hasNoSignedWrap())
172       OS << "nsw><";
173     if (AR->hasNoSelfWrap() &&
174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175       OS << "nw><";
176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177     OS << ">";
178     return;
179   }
180   case scAddExpr:
181   case scMulExpr:
182   case scUMaxExpr:
183   case scSMaxExpr: {
184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185     const char *OpStr = nullptr;
186     switch (NAry->getSCEVType()) {
187     case scAddExpr: OpStr = " + "; break;
188     case scMulExpr: OpStr = " * "; break;
189     case scUMaxExpr: OpStr = " umax "; break;
190     case scSMaxExpr: OpStr = " smax "; break;
191     }
192     OS << "(";
193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194          I != E; ++I) {
195       OS << **I;
196       if (std::next(I) != E)
197         OS << OpStr;
198     }
199     OS << ")";
200     switch (NAry->getSCEVType()) {
201     case scAddExpr:
202     case scMulExpr:
203       if (NAry->hasNoUnsignedWrap())
204         OS << "<nuw>";
205       if (NAry->hasNoSignedWrap())
206         OS << "<nsw>";
207     }
208     return;
209   }
210   case scUDivExpr: {
211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213     return;
214   }
215   case scUnknown: {
216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
217     Type *AllocTy;
218     if (U->isSizeOf(AllocTy)) {
219       OS << "sizeof(" << *AllocTy << ")";
220       return;
221     }
222     if (U->isAlignOf(AllocTy)) {
223       OS << "alignof(" << *AllocTy << ")";
224       return;
225     }
226 
227     Type *CTy;
228     Constant *FieldNo;
229     if (U->isOffsetOf(CTy, FieldNo)) {
230       OS << "offsetof(" << *CTy << ", ";
231       FieldNo->printAsOperand(OS, false);
232       OS << ")";
233       return;
234     }
235 
236     // Otherwise just print it normally.
237     U->getValue()->printAsOperand(OS, false);
238     return;
239   }
240   case scCouldNotCompute:
241     OS << "***COULDNOTCOMPUTE***";
242     return;
243   }
244   llvm_unreachable("Unknown SCEV kind!");
245 }
246 
247 Type *SCEV::getType() const {
248   switch (static_cast<SCEVTypes>(getSCEVType())) {
249   case scConstant:
250     return cast<SCEVConstant>(this)->getType();
251   case scTruncate:
252   case scZeroExtend:
253   case scSignExtend:
254     return cast<SCEVCastExpr>(this)->getType();
255   case scAddRecExpr:
256   case scMulExpr:
257   case scUMaxExpr:
258   case scSMaxExpr:
259     return cast<SCEVNAryExpr>(this)->getType();
260   case scAddExpr:
261     return cast<SCEVAddExpr>(this)->getType();
262   case scUDivExpr:
263     return cast<SCEVUDivExpr>(this)->getType();
264   case scUnknown:
265     return cast<SCEVUnknown>(this)->getType();
266   case scCouldNotCompute:
267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268   }
269   llvm_unreachable("Unknown SCEV kind!");
270 }
271 
272 bool SCEV::isZero() const {
273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274     return SC->getValue()->isZero();
275   return false;
276 }
277 
278 bool SCEV::isOne() const {
279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280     return SC->getValue()->isOne();
281   return false;
282 }
283 
284 bool SCEV::isAllOnesValue() const {
285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286     return SC->getValue()->isAllOnesValue();
287   return false;
288 }
289 
290 bool SCEV::isNonConstantNegative() const {
291   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
292   if (!Mul) return false;
293 
294   // If there is a constant factor, it will be first.
295   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
296   if (!SC) return false;
297 
298   // Return true if the value is negative, this matches things like (-42 * V).
299   return SC->getAPInt().isNegative();
300 }
301 
302 SCEVCouldNotCompute::SCEVCouldNotCompute() :
303   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
304 
305 bool SCEVCouldNotCompute::classof(const SCEV *S) {
306   return S->getSCEVType() == scCouldNotCompute;
307 }
308 
309 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
310   FoldingSetNodeID ID;
311   ID.AddInteger(scConstant);
312   ID.AddPointer(V);
313   void *IP = nullptr;
314   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
315   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
316   UniqueSCEVs.InsertNode(S, IP);
317   return S;
318 }
319 
320 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
321   return getConstant(ConstantInt::get(getContext(), Val));
322 }
323 
324 const SCEV *
325 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
326   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
327   return getConstant(ConstantInt::get(ITy, V, isSigned));
328 }
329 
330 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
331                            unsigned SCEVTy, const SCEV *op, Type *ty)
332   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
333 
334 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
335                                    const SCEV *op, Type *ty)
336   : SCEVCastExpr(ID, scTruncate, op, ty) {
337   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
338          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
339          "Cannot truncate non-integer value!");
340 }
341 
342 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
343                                        const SCEV *op, Type *ty)
344   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
345   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
346          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
347          "Cannot zero extend non-integer value!");
348 }
349 
350 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
351                                        const SCEV *op, Type *ty)
352   : SCEVCastExpr(ID, scSignExtend, op, ty) {
353   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
354          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
355          "Cannot sign extend non-integer value!");
356 }
357 
358 void SCEVUnknown::deleted() {
359   // Clear this SCEVUnknown from various maps.
360   SE->forgetMemoizedResults(this);
361 
362   // Remove this SCEVUnknown from the uniquing map.
363   SE->UniqueSCEVs.RemoveNode(this);
364 
365   // Release the value.
366   setValPtr(nullptr);
367 }
368 
369 void SCEVUnknown::allUsesReplacedWith(Value *New) {
370   // Clear this SCEVUnknown from various maps.
371   SE->forgetMemoizedResults(this);
372 
373   // Remove this SCEVUnknown from the uniquing map.
374   SE->UniqueSCEVs.RemoveNode(this);
375 
376   // Update this SCEVUnknown to point to the new value. This is needed
377   // because there may still be outstanding SCEVs which still point to
378   // this SCEVUnknown.
379   setValPtr(New);
380 }
381 
382 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
383   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
384     if (VCE->getOpcode() == Instruction::PtrToInt)
385       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
386         if (CE->getOpcode() == Instruction::GetElementPtr &&
387             CE->getOperand(0)->isNullValue() &&
388             CE->getNumOperands() == 2)
389           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
390             if (CI->isOne()) {
391               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
392                                  ->getElementType();
393               return true;
394             }
395 
396   return false;
397 }
398 
399 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
400   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401     if (VCE->getOpcode() == Instruction::PtrToInt)
402       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403         if (CE->getOpcode() == Instruction::GetElementPtr &&
404             CE->getOperand(0)->isNullValue()) {
405           Type *Ty =
406             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
407           if (StructType *STy = dyn_cast<StructType>(Ty))
408             if (!STy->isPacked() &&
409                 CE->getNumOperands() == 3 &&
410                 CE->getOperand(1)->isNullValue()) {
411               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
412                 if (CI->isOne() &&
413                     STy->getNumElements() == 2 &&
414                     STy->getElementType(0)->isIntegerTy(1)) {
415                   AllocTy = STy->getElementType(1);
416                   return true;
417                 }
418             }
419         }
420 
421   return false;
422 }
423 
424 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
425   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
426     if (VCE->getOpcode() == Instruction::PtrToInt)
427       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
428         if (CE->getOpcode() == Instruction::GetElementPtr &&
429             CE->getNumOperands() == 3 &&
430             CE->getOperand(0)->isNullValue() &&
431             CE->getOperand(1)->isNullValue()) {
432           Type *Ty =
433             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
434           // Ignore vector types here so that ScalarEvolutionExpander doesn't
435           // emit getelementptrs that index into vectors.
436           if (Ty->isStructTy() || Ty->isArrayTy()) {
437             CTy = Ty;
438             FieldNo = CE->getOperand(2);
439             return true;
440           }
441         }
442 
443   return false;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                               SCEV Utilities
448 //===----------------------------------------------------------------------===//
449 
450 namespace {
451 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
452 /// than the complexity of the RHS.  This comparator is used to canonicalize
453 /// expressions.
454 class SCEVComplexityCompare {
455   const LoopInfo *const LI;
456 public:
457   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
458 
459   // Return true or false if LHS is less than, or at least RHS, respectively.
460   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
461     return compare(LHS, RHS) < 0;
462   }
463 
464   // Return negative, zero, or positive, if LHS is less than, equal to, or
465   // greater than RHS, respectively. A three-way result allows recursive
466   // comparisons to be more efficient.
467   int compare(const SCEV *LHS, const SCEV *RHS) const {
468     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
469     if (LHS == RHS)
470       return 0;
471 
472     // Primarily, sort the SCEVs by their getSCEVType().
473     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
474     if (LType != RType)
475       return (int)LType - (int)RType;
476 
477     // Aside from the getSCEVType() ordering, the particular ordering
478     // isn't very important except that it's beneficial to be consistent,
479     // so that (a + b) and (b + a) don't end up as different expressions.
480     switch (static_cast<SCEVTypes>(LType)) {
481     case scUnknown: {
482       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
483       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
484 
485       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
486       // not as complete as it could be.
487       const Value *LV = LU->getValue(), *RV = RU->getValue();
488 
489       // Order pointer values after integer values. This helps SCEVExpander
490       // form GEPs.
491       bool LIsPointer = LV->getType()->isPointerTy(),
492         RIsPointer = RV->getType()->isPointerTy();
493       if (LIsPointer != RIsPointer)
494         return (int)LIsPointer - (int)RIsPointer;
495 
496       // Compare getValueID values.
497       unsigned LID = LV->getValueID(),
498         RID = RV->getValueID();
499       if (LID != RID)
500         return (int)LID - (int)RID;
501 
502       // Sort arguments by their position.
503       if (const Argument *LA = dyn_cast<Argument>(LV)) {
504         const Argument *RA = cast<Argument>(RV);
505         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
506         return (int)LArgNo - (int)RArgNo;
507       }
508 
509       // For instructions, compare their loop depth, and their operand
510       // count.  This is pretty loose.
511       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
512         const Instruction *RInst = cast<Instruction>(RV);
513 
514         // Compare loop depths.
515         const BasicBlock *LParent = LInst->getParent(),
516           *RParent = RInst->getParent();
517         if (LParent != RParent) {
518           unsigned LDepth = LI->getLoopDepth(LParent),
519             RDepth = LI->getLoopDepth(RParent);
520           if (LDepth != RDepth)
521             return (int)LDepth - (int)RDepth;
522         }
523 
524         // Compare the number of operands.
525         unsigned LNumOps = LInst->getNumOperands(),
526           RNumOps = RInst->getNumOperands();
527         return (int)LNumOps - (int)RNumOps;
528       }
529 
530       return 0;
531     }
532 
533     case scConstant: {
534       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
535       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
536 
537       // Compare constant values.
538       const APInt &LA = LC->getAPInt();
539       const APInt &RA = RC->getAPInt();
540       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
541       if (LBitWidth != RBitWidth)
542         return (int)LBitWidth - (int)RBitWidth;
543       return LA.ult(RA) ? -1 : 1;
544     }
545 
546     case scAddRecExpr: {
547       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
548       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
549 
550       // Compare addrec loop depths.
551       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
552       if (LLoop != RLoop) {
553         unsigned LDepth = LLoop->getLoopDepth(),
554           RDepth = RLoop->getLoopDepth();
555         if (LDepth != RDepth)
556           return (int)LDepth - (int)RDepth;
557       }
558 
559       // Addrec complexity grows with operand count.
560       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
561       if (LNumOps != RNumOps)
562         return (int)LNumOps - (int)RNumOps;
563 
564       // Lexicographically compare.
565       for (unsigned i = 0; i != LNumOps; ++i) {
566         long X = compare(LA->getOperand(i), RA->getOperand(i));
567         if (X != 0)
568           return X;
569       }
570 
571       return 0;
572     }
573 
574     case scAddExpr:
575     case scMulExpr:
576     case scSMaxExpr:
577     case scUMaxExpr: {
578       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
579       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
580 
581       // Lexicographically compare n-ary expressions.
582       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
583       if (LNumOps != RNumOps)
584         return (int)LNumOps - (int)RNumOps;
585 
586       for (unsigned i = 0; i != LNumOps; ++i) {
587         if (i >= RNumOps)
588           return 1;
589         long X = compare(LC->getOperand(i), RC->getOperand(i));
590         if (X != 0)
591           return X;
592       }
593       return (int)LNumOps - (int)RNumOps;
594     }
595 
596     case scUDivExpr: {
597       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
598       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
599 
600       // Lexicographically compare udiv expressions.
601       long X = compare(LC->getLHS(), RC->getLHS());
602       if (X != 0)
603         return X;
604       return compare(LC->getRHS(), RC->getRHS());
605     }
606 
607     case scTruncate:
608     case scZeroExtend:
609     case scSignExtend: {
610       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
611       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
612 
613       // Compare cast expressions by operand.
614       return compare(LC->getOperand(), RC->getOperand());
615     }
616 
617     case scCouldNotCompute:
618       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
619     }
620     llvm_unreachable("Unknown SCEV kind!");
621   }
622 };
623 }  // end anonymous namespace
624 
625 /// Given a list of SCEV objects, order them by their complexity, and group
626 /// objects of the same complexity together by value.  When this routine is
627 /// finished, we know that any duplicates in the vector are consecutive and that
628 /// complexity is monotonically increasing.
629 ///
630 /// Note that we go take special precautions to ensure that we get deterministic
631 /// results from this routine.  In other words, we don't want the results of
632 /// this to depend on where the addresses of various SCEV objects happened to
633 /// land in memory.
634 ///
635 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
636                               LoopInfo *LI) {
637   if (Ops.size() < 2) return;  // Noop
638   if (Ops.size() == 2) {
639     // This is the common case, which also happens to be trivially simple.
640     // Special case it.
641     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
642     if (SCEVComplexityCompare(LI)(RHS, LHS))
643       std::swap(LHS, RHS);
644     return;
645   }
646 
647   // Do the rough sort by complexity.
648   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
649 
650   // Now that we are sorted by complexity, group elements of the same
651   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
652   // be extremely short in practice.  Note that we take this approach because we
653   // do not want to depend on the addresses of the objects we are grouping.
654   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
655     const SCEV *S = Ops[i];
656     unsigned Complexity = S->getSCEVType();
657 
658     // If there are any objects of the same complexity and same value as this
659     // one, group them.
660     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
661       if (Ops[j] == S) { // Found a duplicate.
662         // Move it to immediately after i'th element.
663         std::swap(Ops[i+1], Ops[j]);
664         ++i;   // no need to rescan it.
665         if (i == e-2) return;  // Done!
666       }
667     }
668   }
669 }
670 
671 // Returns the size of the SCEV S.
672 static inline int sizeOfSCEV(const SCEV *S) {
673   struct FindSCEVSize {
674     int Size;
675     FindSCEVSize() : Size(0) {}
676 
677     bool follow(const SCEV *S) {
678       ++Size;
679       // Keep looking at all operands of S.
680       return true;
681     }
682     bool isDone() const {
683       return false;
684     }
685   };
686 
687   FindSCEVSize F;
688   SCEVTraversal<FindSCEVSize> ST(F);
689   ST.visitAll(S);
690   return F.Size;
691 }
692 
693 namespace {
694 
695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
696 public:
697   // Computes the Quotient and Remainder of the division of Numerator by
698   // Denominator.
699   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700                      const SCEV *Denominator, const SCEV **Quotient,
701                      const SCEV **Remainder) {
702     assert(Numerator && Denominator && "Uninitialized SCEV");
703 
704     SCEVDivision D(SE, Numerator, Denominator);
705 
706     // Check for the trivial case here to avoid having to check for it in the
707     // rest of the code.
708     if (Numerator == Denominator) {
709       *Quotient = D.One;
710       *Remainder = D.Zero;
711       return;
712     }
713 
714     if (Numerator->isZero()) {
715       *Quotient = D.Zero;
716       *Remainder = D.Zero;
717       return;
718     }
719 
720     // A simple case when N/1. The quotient is N.
721     if (Denominator->isOne()) {
722       *Quotient = Numerator;
723       *Remainder = D.Zero;
724       return;
725     }
726 
727     // Split the Denominator when it is a product.
728     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
729       const SCEV *Q, *R;
730       *Quotient = Numerator;
731       for (const SCEV *Op : T->operands()) {
732         divide(SE, *Quotient, Op, &Q, &R);
733         *Quotient = Q;
734 
735         // Bail out when the Numerator is not divisible by one of the terms of
736         // the Denominator.
737         if (!R->isZero()) {
738           *Quotient = D.Zero;
739           *Remainder = Numerator;
740           return;
741         }
742       }
743       *Remainder = D.Zero;
744       return;
745     }
746 
747     D.visit(Numerator);
748     *Quotient = D.Quotient;
749     *Remainder = D.Remainder;
750   }
751 
752   // Except in the trivial case described above, we do not know how to divide
753   // Expr by Denominator for the following functions with empty implementation.
754   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760   void visitUnknown(const SCEVUnknown *Numerator) {}
761   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762 
763   void visitConstant(const SCEVConstant *Numerator) {
764     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765       APInt NumeratorVal = Numerator->getAPInt();
766       APInt DenominatorVal = D->getAPInt();
767       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769 
770       if (NumeratorBW > DenominatorBW)
771         DenominatorVal = DenominatorVal.sext(NumeratorBW);
772       else if (NumeratorBW < DenominatorBW)
773         NumeratorVal = NumeratorVal.sext(DenominatorBW);
774 
775       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778       Quotient = SE.getConstant(QuotientVal);
779       Remainder = SE.getConstant(RemainderVal);
780       return;
781     }
782   }
783 
784   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785     const SCEV *StartQ, *StartR, *StepQ, *StepR;
786     if (!Numerator->isAffine())
787       return cannotDivide(Numerator);
788     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
790     // Bail out if the types do not match.
791     Type *Ty = Denominator->getType();
792     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
793         Ty != StepQ->getType() || Ty != StepR->getType())
794       return cannotDivide(Numerator);
795     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796                                 Numerator->getNoWrapFlags());
797     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798                                  Numerator->getNoWrapFlags());
799   }
800 
801   void visitAddExpr(const SCEVAddExpr *Numerator) {
802     SmallVector<const SCEV *, 2> Qs, Rs;
803     Type *Ty = Denominator->getType();
804 
805     for (const SCEV *Op : Numerator->operands()) {
806       const SCEV *Q, *R;
807       divide(SE, Op, Denominator, &Q, &R);
808 
809       // Bail out if types do not match.
810       if (Ty != Q->getType() || Ty != R->getType())
811         return cannotDivide(Numerator);
812 
813       Qs.push_back(Q);
814       Rs.push_back(R);
815     }
816 
817     if (Qs.size() == 1) {
818       Quotient = Qs[0];
819       Remainder = Rs[0];
820       return;
821     }
822 
823     Quotient = SE.getAddExpr(Qs);
824     Remainder = SE.getAddExpr(Rs);
825   }
826 
827   void visitMulExpr(const SCEVMulExpr *Numerator) {
828     SmallVector<const SCEV *, 2> Qs;
829     Type *Ty = Denominator->getType();
830 
831     bool FoundDenominatorTerm = false;
832     for (const SCEV *Op : Numerator->operands()) {
833       // Bail out if types do not match.
834       if (Ty != Op->getType())
835         return cannotDivide(Numerator);
836 
837       if (FoundDenominatorTerm) {
838         Qs.push_back(Op);
839         continue;
840       }
841 
842       // Check whether Denominator divides one of the product operands.
843       const SCEV *Q, *R;
844       divide(SE, Op, Denominator, &Q, &R);
845       if (!R->isZero()) {
846         Qs.push_back(Op);
847         continue;
848       }
849 
850       // Bail out if types do not match.
851       if (Ty != Q->getType())
852         return cannotDivide(Numerator);
853 
854       FoundDenominatorTerm = true;
855       Qs.push_back(Q);
856     }
857 
858     if (FoundDenominatorTerm) {
859       Remainder = Zero;
860       if (Qs.size() == 1)
861         Quotient = Qs[0];
862       else
863         Quotient = SE.getMulExpr(Qs);
864       return;
865     }
866 
867     if (!isa<SCEVUnknown>(Denominator))
868       return cannotDivide(Numerator);
869 
870     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871     ValueToValueMap RewriteMap;
872     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873         cast<SCEVConstant>(Zero)->getValue();
874     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875 
876     if (Remainder->isZero()) {
877       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879           cast<SCEVConstant>(One)->getValue();
880       Quotient =
881           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882       return;
883     }
884 
885     // Quotient is (Numerator - Remainder) divided by Denominator.
886     const SCEV *Q, *R;
887     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
888     // This SCEV does not seem to simplify: fail the division here.
889     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890       return cannotDivide(Numerator);
891     divide(SE, Diff, Denominator, &Q, &R);
892     if (R != Zero)
893       return cannotDivide(Numerator);
894     Quotient = Q;
895   }
896 
897 private:
898   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899                const SCEV *Denominator)
900       : SE(S), Denominator(Denominator) {
901     Zero = SE.getZero(Denominator->getType());
902     One = SE.getOne(Denominator->getType());
903 
904     // We generally do not know how to divide Expr by Denominator. We
905     // initialize the division to a "cannot divide" state to simplify the rest
906     // of the code.
907     cannotDivide(Numerator);
908   }
909 
910   // Convenience function for giving up on the division. We set the quotient to
911   // be equal to zero and the remainder to be equal to the numerator.
912   void cannotDivide(const SCEV *Numerator) {
913     Quotient = Zero;
914     Remainder = Numerator;
915   }
916 
917   ScalarEvolution &SE;
918   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
919 };
920 
921 }
922 
923 //===----------------------------------------------------------------------===//
924 //                      Simple SCEV method implementations
925 //===----------------------------------------------------------------------===//
926 
927 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
928 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
929                                        ScalarEvolution &SE,
930                                        Type *ResultTy) {
931   // Handle the simplest case efficiently.
932   if (K == 1)
933     return SE.getTruncateOrZeroExtend(It, ResultTy);
934 
935   // We are using the following formula for BC(It, K):
936   //
937   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
938   //
939   // Suppose, W is the bitwidth of the return value.  We must be prepared for
940   // overflow.  Hence, we must assure that the result of our computation is
941   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
942   // safe in modular arithmetic.
943   //
944   // However, this code doesn't use exactly that formula; the formula it uses
945   // is something like the following, where T is the number of factors of 2 in
946   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
947   // exponentiation:
948   //
949   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
950   //
951   // This formula is trivially equivalent to the previous formula.  However,
952   // this formula can be implemented much more efficiently.  The trick is that
953   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
954   // arithmetic.  To do exact division in modular arithmetic, all we have
955   // to do is multiply by the inverse.  Therefore, this step can be done at
956   // width W.
957   //
958   // The next issue is how to safely do the division by 2^T.  The way this
959   // is done is by doing the multiplication step at a width of at least W + T
960   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
961   // when we perform the division by 2^T (which is equivalent to a right shift
962   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
963   // truncated out after the division by 2^T.
964   //
965   // In comparison to just directly using the first formula, this technique
966   // is much more efficient; using the first formula requires W * K bits,
967   // but this formula less than W + K bits. Also, the first formula requires
968   // a division step, whereas this formula only requires multiplies and shifts.
969   //
970   // It doesn't matter whether the subtraction step is done in the calculation
971   // width or the input iteration count's width; if the subtraction overflows,
972   // the result must be zero anyway.  We prefer here to do it in the width of
973   // the induction variable because it helps a lot for certain cases; CodeGen
974   // isn't smart enough to ignore the overflow, which leads to much less
975   // efficient code if the width of the subtraction is wider than the native
976   // register width.
977   //
978   // (It's possible to not widen at all by pulling out factors of 2 before
979   // the multiplication; for example, K=2 can be calculated as
980   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
981   // extra arithmetic, so it's not an obvious win, and it gets
982   // much more complicated for K > 3.)
983 
984   // Protection from insane SCEVs; this bound is conservative,
985   // but it probably doesn't matter.
986   if (K > 1000)
987     return SE.getCouldNotCompute();
988 
989   unsigned W = SE.getTypeSizeInBits(ResultTy);
990 
991   // Calculate K! / 2^T and T; we divide out the factors of two before
992   // multiplying for calculating K! / 2^T to avoid overflow.
993   // Other overflow doesn't matter because we only care about the bottom
994   // W bits of the result.
995   APInt OddFactorial(W, 1);
996   unsigned T = 1;
997   for (unsigned i = 3; i <= K; ++i) {
998     APInt Mult(W, i);
999     unsigned TwoFactors = Mult.countTrailingZeros();
1000     T += TwoFactors;
1001     Mult = Mult.lshr(TwoFactors);
1002     OddFactorial *= Mult;
1003   }
1004 
1005   // We need at least W + T bits for the multiplication step
1006   unsigned CalculationBits = W + T;
1007 
1008   // Calculate 2^T, at width T+W.
1009   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1010 
1011   // Calculate the multiplicative inverse of K! / 2^T;
1012   // this multiplication factor will perform the exact division by
1013   // K! / 2^T.
1014   APInt Mod = APInt::getSignedMinValue(W+1);
1015   APInt MultiplyFactor = OddFactorial.zext(W+1);
1016   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1017   MultiplyFactor = MultiplyFactor.trunc(W);
1018 
1019   // Calculate the product, at width T+W
1020   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1021                                                       CalculationBits);
1022   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1023   for (unsigned i = 1; i != K; ++i) {
1024     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1025     Dividend = SE.getMulExpr(Dividend,
1026                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1027   }
1028 
1029   // Divide by 2^T
1030   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1031 
1032   // Truncate the result, and divide by K! / 2^T.
1033 
1034   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1035                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1036 }
1037 
1038 /// Return the value of this chain of recurrences at the specified iteration
1039 /// number.  We can evaluate this recurrence by multiplying each element in the
1040 /// chain by the binomial coefficient corresponding to it.  In other words, we
1041 /// can evaluate {A,+,B,+,C,+,D} as:
1042 ///
1043 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1044 ///
1045 /// where BC(It, k) stands for binomial coefficient.
1046 ///
1047 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1048                                                 ScalarEvolution &SE) const {
1049   const SCEV *Result = getStart();
1050   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1051     // The computation is correct in the face of overflow provided that the
1052     // multiplication is performed _after_ the evaluation of the binomial
1053     // coefficient.
1054     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1055     if (isa<SCEVCouldNotCompute>(Coeff))
1056       return Coeff;
1057 
1058     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1059   }
1060   return Result;
1061 }
1062 
1063 //===----------------------------------------------------------------------===//
1064 //                    SCEV Expression folder implementations
1065 //===----------------------------------------------------------------------===//
1066 
1067 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1068                                              Type *Ty) {
1069   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1070          "This is not a truncating conversion!");
1071   assert(isSCEVable(Ty) &&
1072          "This is not a conversion to a SCEVable type!");
1073   Ty = getEffectiveSCEVType(Ty);
1074 
1075   FoldingSetNodeID ID;
1076   ID.AddInteger(scTruncate);
1077   ID.AddPointer(Op);
1078   ID.AddPointer(Ty);
1079   void *IP = nullptr;
1080   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1081 
1082   // Fold if the operand is constant.
1083   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084     return getConstant(
1085       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1086 
1087   // trunc(trunc(x)) --> trunc(x)
1088   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1089     return getTruncateExpr(ST->getOperand(), Ty);
1090 
1091   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1092   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1093     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1094 
1095   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1096   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1097     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1098 
1099   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1100   // eliminate all the truncates, or we replace other casts with truncates.
1101   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1102     SmallVector<const SCEV *, 4> Operands;
1103     bool hasTrunc = false;
1104     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1105       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1106       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1107         hasTrunc = isa<SCEVTruncateExpr>(S);
1108       Operands.push_back(S);
1109     }
1110     if (!hasTrunc)
1111       return getAddExpr(Operands);
1112     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1113   }
1114 
1115   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1116   // eliminate all the truncates, or we replace other casts with truncates.
1117   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1118     SmallVector<const SCEV *, 4> Operands;
1119     bool hasTrunc = false;
1120     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1121       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1122       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1123         hasTrunc = isa<SCEVTruncateExpr>(S);
1124       Operands.push_back(S);
1125     }
1126     if (!hasTrunc)
1127       return getMulExpr(Operands);
1128     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1129   }
1130 
1131   // If the input value is a chrec scev, truncate the chrec's operands.
1132   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1133     SmallVector<const SCEV *, 4> Operands;
1134     for (const SCEV *Op : AddRec->operands())
1135       Operands.push_back(getTruncateExpr(Op, Ty));
1136     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1137   }
1138 
1139   // The cast wasn't folded; create an explicit cast node. We can reuse
1140   // the existing insert position since if we get here, we won't have
1141   // made any changes which would invalidate it.
1142   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1143                                                  Op, Ty);
1144   UniqueSCEVs.InsertNode(S, IP);
1145   return S;
1146 }
1147 
1148 // Get the limit of a recurrence such that incrementing by Step cannot cause
1149 // signed overflow as long as the value of the recurrence within the
1150 // loop does not exceed this limit before incrementing.
1151 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1152                                                  ICmpInst::Predicate *Pred,
1153                                                  ScalarEvolution *SE) {
1154   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1155   if (SE->isKnownPositive(Step)) {
1156     *Pred = ICmpInst::ICMP_SLT;
1157     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1158                            SE->getSignedRange(Step).getSignedMax());
1159   }
1160   if (SE->isKnownNegative(Step)) {
1161     *Pred = ICmpInst::ICMP_SGT;
1162     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1163                            SE->getSignedRange(Step).getSignedMin());
1164   }
1165   return nullptr;
1166 }
1167 
1168 // Get the limit of a recurrence such that incrementing by Step cannot cause
1169 // unsigned overflow as long as the value of the recurrence within the loop does
1170 // not exceed this limit before incrementing.
1171 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1172                                                    ICmpInst::Predicate *Pred,
1173                                                    ScalarEvolution *SE) {
1174   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1175   *Pred = ICmpInst::ICMP_ULT;
1176 
1177   return SE->getConstant(APInt::getMinValue(BitWidth) -
1178                          SE->getUnsignedRange(Step).getUnsignedMax());
1179 }
1180 
1181 namespace {
1182 
1183 struct ExtendOpTraitsBase {
1184   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1185 };
1186 
1187 // Used to make code generic over signed and unsigned overflow.
1188 template <typename ExtendOp> struct ExtendOpTraits {
1189   // Members present:
1190   //
1191   // static const SCEV::NoWrapFlags WrapType;
1192   //
1193   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1194   //
1195   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1196   //                                           ICmpInst::Predicate *Pred,
1197   //                                           ScalarEvolution *SE);
1198 };
1199 
1200 template <>
1201 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1202   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1203 
1204   static const GetExtendExprTy GetExtendExpr;
1205 
1206   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1207                                              ICmpInst::Predicate *Pred,
1208                                              ScalarEvolution *SE) {
1209     return getSignedOverflowLimitForStep(Step, Pred, SE);
1210   }
1211 };
1212 
1213 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1214     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1215 
1216 template <>
1217 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1218   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1219 
1220   static const GetExtendExprTy GetExtendExpr;
1221 
1222   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1223                                              ICmpInst::Predicate *Pred,
1224                                              ScalarEvolution *SE) {
1225     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1226   }
1227 };
1228 
1229 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1230     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1231 }
1232 
1233 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1234 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1235 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1236 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1237 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1238 // expression "Step + sext/zext(PreIncAR)" is congruent with
1239 // "sext/zext(PostIncAR)"
1240 template <typename ExtendOpTy>
1241 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1242                                         ScalarEvolution *SE) {
1243   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1244   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1245 
1246   const Loop *L = AR->getLoop();
1247   const SCEV *Start = AR->getStart();
1248   const SCEV *Step = AR->getStepRecurrence(*SE);
1249 
1250   // Check for a simple looking step prior to loop entry.
1251   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1252   if (!SA)
1253     return nullptr;
1254 
1255   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1256   // subtraction is expensive. For this purpose, perform a quick and dirty
1257   // difference, by checking for Step in the operand list.
1258   SmallVector<const SCEV *, 4> DiffOps;
1259   for (const SCEV *Op : SA->operands())
1260     if (Op != Step)
1261       DiffOps.push_back(Op);
1262 
1263   if (DiffOps.size() == SA->getNumOperands())
1264     return nullptr;
1265 
1266   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1267   // `Step`:
1268 
1269   // 1. NSW/NUW flags on the step increment.
1270   auto PreStartFlags =
1271     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1272   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1273   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1274       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1275 
1276   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1277   // "S+X does not sign/unsign-overflow".
1278   //
1279 
1280   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1281   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1282       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1283     return PreStart;
1284 
1285   // 2. Direct overflow check on the step operation's expression.
1286   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1287   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1288   const SCEV *OperandExtendedStart =
1289       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1290                      (SE->*GetExtendExpr)(Step, WideTy));
1291   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1292     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1293       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1294       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1295       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1296       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1297     }
1298     return PreStart;
1299   }
1300 
1301   // 3. Loop precondition.
1302   ICmpInst::Predicate Pred;
1303   const SCEV *OverflowLimit =
1304       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1305 
1306   if (OverflowLimit &&
1307       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1308     return PreStart;
1309 
1310   return nullptr;
1311 }
1312 
1313 // Get the normalized zero or sign extended expression for this AddRec's Start.
1314 template <typename ExtendOpTy>
1315 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1316                                         ScalarEvolution *SE) {
1317   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1318 
1319   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1320   if (!PreStart)
1321     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1322 
1323   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1324                         (SE->*GetExtendExpr)(PreStart, Ty));
1325 }
1326 
1327 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1328 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1329 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1330 //
1331 // Formally:
1332 //
1333 //     {S,+,X} == {S-T,+,X} + T
1334 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1335 //
1336 // If ({S-T,+,X} + T) does not overflow  ... (1)
1337 //
1338 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1339 //
1340 // If {S-T,+,X} does not overflow  ... (2)
1341 //
1342 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1343 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1344 //
1345 // If (S-T)+T does not overflow  ... (3)
1346 //
1347 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1348 //      == {Ext(S),+,Ext(X)} == LHS
1349 //
1350 // Thus, if (1), (2) and (3) are true for some T, then
1351 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1352 //
1353 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1354 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1355 // to check for (1) and (2).
1356 //
1357 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1358 // is `Delta` (defined below).
1359 //
1360 template <typename ExtendOpTy>
1361 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1362                                                 const SCEV *Step,
1363                                                 const Loop *L) {
1364   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1365 
1366   // We restrict `Start` to a constant to prevent SCEV from spending too much
1367   // time here.  It is correct (but more expensive) to continue with a
1368   // non-constant `Start` and do a general SCEV subtraction to compute
1369   // `PreStart` below.
1370   //
1371   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1372   if (!StartC)
1373     return false;
1374 
1375   APInt StartAI = StartC->getAPInt();
1376 
1377   for (unsigned Delta : {-2, -1, 1, 2}) {
1378     const SCEV *PreStart = getConstant(StartAI - Delta);
1379 
1380     FoldingSetNodeID ID;
1381     ID.AddInteger(scAddRecExpr);
1382     ID.AddPointer(PreStart);
1383     ID.AddPointer(Step);
1384     ID.AddPointer(L);
1385     void *IP = nullptr;
1386     const auto *PreAR =
1387       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1388 
1389     // Give up if we don't already have the add recurrence we need because
1390     // actually constructing an add recurrence is relatively expensive.
1391     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1392       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1393       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1394       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1395           DeltaS, &Pred, this);
1396       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1397         return true;
1398     }
1399   }
1400 
1401   return false;
1402 }
1403 
1404 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1405                                                Type *Ty) {
1406   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1407          "This is not an extending conversion!");
1408   assert(isSCEVable(Ty) &&
1409          "This is not a conversion to a SCEVable type!");
1410   Ty = getEffectiveSCEVType(Ty);
1411 
1412   // Fold if the operand is constant.
1413   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1414     return getConstant(
1415       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1416 
1417   // zext(zext(x)) --> zext(x)
1418   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1419     return getZeroExtendExpr(SZ->getOperand(), Ty);
1420 
1421   // Before doing any expensive analysis, check to see if we've already
1422   // computed a SCEV for this Op and Ty.
1423   FoldingSetNodeID ID;
1424   ID.AddInteger(scZeroExtend);
1425   ID.AddPointer(Op);
1426   ID.AddPointer(Ty);
1427   void *IP = nullptr;
1428   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1429 
1430   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1431   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1432     // It's possible the bits taken off by the truncate were all zero bits. If
1433     // so, we should be able to simplify this further.
1434     const SCEV *X = ST->getOperand();
1435     ConstantRange CR = getUnsignedRange(X);
1436     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1437     unsigned NewBits = getTypeSizeInBits(Ty);
1438     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1439             CR.zextOrTrunc(NewBits)))
1440       return getTruncateOrZeroExtend(X, Ty);
1441   }
1442 
1443   // If the input value is a chrec scev, and we can prove that the value
1444   // did not overflow the old, smaller, value, we can zero extend all of the
1445   // operands (often constants).  This allows analysis of something like
1446   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1447   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1448     if (AR->isAffine()) {
1449       const SCEV *Start = AR->getStart();
1450       const SCEV *Step = AR->getStepRecurrence(*this);
1451       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1452       const Loop *L = AR->getLoop();
1453 
1454       if (!AR->hasNoUnsignedWrap()) {
1455         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1456         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1457       }
1458 
1459       // If we have special knowledge that this addrec won't overflow,
1460       // we don't need to do any further analysis.
1461       if (AR->hasNoUnsignedWrap())
1462         return getAddRecExpr(
1463             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1464             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1465 
1466       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1467       // Note that this serves two purposes: It filters out loops that are
1468       // simply not analyzable, and it covers the case where this code is
1469       // being called from within backedge-taken count analysis, such that
1470       // attempting to ask for the backedge-taken count would likely result
1471       // in infinite recursion. In the later case, the analysis code will
1472       // cope with a conservative value, and it will take care to purge
1473       // that value once it has finished.
1474       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1475       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1476         // Manually compute the final value for AR, checking for
1477         // overflow.
1478 
1479         // Check whether the backedge-taken count can be losslessly casted to
1480         // the addrec's type. The count is always unsigned.
1481         const SCEV *CastedMaxBECount =
1482           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1483         const SCEV *RecastedMaxBECount =
1484           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1485         if (MaxBECount == RecastedMaxBECount) {
1486           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1487           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1488           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1489           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1490           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1491           const SCEV *WideMaxBECount =
1492             getZeroExtendExpr(CastedMaxBECount, WideTy);
1493           const SCEV *OperandExtendedAdd =
1494             getAddExpr(WideStart,
1495                        getMulExpr(WideMaxBECount,
1496                                   getZeroExtendExpr(Step, WideTy)));
1497           if (ZAdd == OperandExtendedAdd) {
1498             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1499             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1500             // Return the expression with the addrec on the outside.
1501             return getAddRecExpr(
1502                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1503                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1504           }
1505           // Similar to above, only this time treat the step value as signed.
1506           // This covers loops that count down.
1507           OperandExtendedAdd =
1508             getAddExpr(WideStart,
1509                        getMulExpr(WideMaxBECount,
1510                                   getSignExtendExpr(Step, WideTy)));
1511           if (ZAdd == OperandExtendedAdd) {
1512             // Cache knowledge of AR NW, which is propagated to this AddRec.
1513             // Negative step causes unsigned wrap, but it still can't self-wrap.
1514             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1515             // Return the expression with the addrec on the outside.
1516             return getAddRecExpr(
1517                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1519           }
1520         }
1521       }
1522 
1523       // Normally, in the cases we can prove no-overflow via a
1524       // backedge guarding condition, we can also compute a backedge
1525       // taken count for the loop.  The exceptions are assumptions and
1526       // guards present in the loop -- SCEV is not great at exploiting
1527       // these to compute max backedge taken counts, but can still use
1528       // these to prove lack of overflow.  Use this fact to avoid
1529       // doing extra work that may not pay off.
1530       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1531           !AC.assumptions().empty()) {
1532         // If the backedge is guarded by a comparison with the pre-inc
1533         // value the addrec is safe. Also, if the entry is guarded by
1534         // a comparison with the start value and the backedge is
1535         // guarded by a comparison with the post-inc value, the addrec
1536         // is safe.
1537         if (isKnownPositive(Step)) {
1538           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1539                                       getUnsignedRange(Step).getUnsignedMax());
1540           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1541               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1542                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1543                                            AR->getPostIncExpr(*this), N))) {
1544             // Cache knowledge of AR NUW, which is propagated to this
1545             // AddRec.
1546             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1547             // Return the expression with the addrec on the outside.
1548             return getAddRecExpr(
1549                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1550                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1551           }
1552         } else if (isKnownNegative(Step)) {
1553           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1554                                       getSignedRange(Step).getSignedMin());
1555           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1556               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1557                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1558                                            AR->getPostIncExpr(*this), N))) {
1559             // Cache knowledge of AR NW, which is propagated to this
1560             // AddRec.  Negative step causes unsigned wrap, but it
1561             // still can't self-wrap.
1562             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1563             // Return the expression with the addrec on the outside.
1564             return getAddRecExpr(
1565                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1566                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1567           }
1568         }
1569       }
1570 
1571       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1572         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1573         return getAddRecExpr(
1574             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1575             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1576       }
1577     }
1578 
1579   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1580     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1581     if (SA->hasNoUnsignedWrap()) {
1582       // If the addition does not unsign overflow then we can, by definition,
1583       // commute the zero extension with the addition operation.
1584       SmallVector<const SCEV *, 4> Ops;
1585       for (const auto *Op : SA->operands())
1586         Ops.push_back(getZeroExtendExpr(Op, Ty));
1587       return getAddExpr(Ops, SCEV::FlagNUW);
1588     }
1589   }
1590 
1591   // The cast wasn't folded; create an explicit cast node.
1592   // Recompute the insert position, as it may have been invalidated.
1593   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1594   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1595                                                    Op, Ty);
1596   UniqueSCEVs.InsertNode(S, IP);
1597   return S;
1598 }
1599 
1600 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1601                                                Type *Ty) {
1602   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1603          "This is not an extending conversion!");
1604   assert(isSCEVable(Ty) &&
1605          "This is not a conversion to a SCEVable type!");
1606   Ty = getEffectiveSCEVType(Ty);
1607 
1608   // Fold if the operand is constant.
1609   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1610     return getConstant(
1611       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1612 
1613   // sext(sext(x)) --> sext(x)
1614   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1615     return getSignExtendExpr(SS->getOperand(), Ty);
1616 
1617   // sext(zext(x)) --> zext(x)
1618   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1619     return getZeroExtendExpr(SZ->getOperand(), Ty);
1620 
1621   // Before doing any expensive analysis, check to see if we've already
1622   // computed a SCEV for this Op and Ty.
1623   FoldingSetNodeID ID;
1624   ID.AddInteger(scSignExtend);
1625   ID.AddPointer(Op);
1626   ID.AddPointer(Ty);
1627   void *IP = nullptr;
1628   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1629 
1630   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1631   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1632     // It's possible the bits taken off by the truncate were all sign bits. If
1633     // so, we should be able to simplify this further.
1634     const SCEV *X = ST->getOperand();
1635     ConstantRange CR = getSignedRange(X);
1636     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1637     unsigned NewBits = getTypeSizeInBits(Ty);
1638     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1639             CR.sextOrTrunc(NewBits)))
1640       return getTruncateOrSignExtend(X, Ty);
1641   }
1642 
1643   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1644   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1645     if (SA->getNumOperands() == 2) {
1646       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1647       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1648       if (SMul && SC1) {
1649         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1650           const APInt &C1 = SC1->getAPInt();
1651           const APInt &C2 = SC2->getAPInt();
1652           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1653               C2.ugt(C1) && C2.isPowerOf2())
1654             return getAddExpr(getSignExtendExpr(SC1, Ty),
1655                               getSignExtendExpr(SMul, Ty));
1656         }
1657       }
1658     }
1659 
1660     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1661     if (SA->hasNoSignedWrap()) {
1662       // If the addition does not sign overflow then we can, by definition,
1663       // commute the sign extension with the addition operation.
1664       SmallVector<const SCEV *, 4> Ops;
1665       for (const auto *Op : SA->operands())
1666         Ops.push_back(getSignExtendExpr(Op, Ty));
1667       return getAddExpr(Ops, SCEV::FlagNSW);
1668     }
1669   }
1670   // If the input value is a chrec scev, and we can prove that the value
1671   // did not overflow the old, smaller, value, we can sign extend all of the
1672   // operands (often constants).  This allows analysis of something like
1673   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1674   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1675     if (AR->isAffine()) {
1676       const SCEV *Start = AR->getStart();
1677       const SCEV *Step = AR->getStepRecurrence(*this);
1678       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1679       const Loop *L = AR->getLoop();
1680 
1681       if (!AR->hasNoSignedWrap()) {
1682         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1683         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1684       }
1685 
1686       // If we have special knowledge that this addrec won't overflow,
1687       // we don't need to do any further analysis.
1688       if (AR->hasNoSignedWrap())
1689         return getAddRecExpr(
1690             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1691             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1692 
1693       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1694       // Note that this serves two purposes: It filters out loops that are
1695       // simply not analyzable, and it covers the case where this code is
1696       // being called from within backedge-taken count analysis, such that
1697       // attempting to ask for the backedge-taken count would likely result
1698       // in infinite recursion. In the later case, the analysis code will
1699       // cope with a conservative value, and it will take care to purge
1700       // that value once it has finished.
1701       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1702       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1703         // Manually compute the final value for AR, checking for
1704         // overflow.
1705 
1706         // Check whether the backedge-taken count can be losslessly casted to
1707         // the addrec's type. The count is always unsigned.
1708         const SCEV *CastedMaxBECount =
1709           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1710         const SCEV *RecastedMaxBECount =
1711           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1712         if (MaxBECount == RecastedMaxBECount) {
1713           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1714           // Check whether Start+Step*MaxBECount has no signed overflow.
1715           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1716           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1717           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1718           const SCEV *WideMaxBECount =
1719             getZeroExtendExpr(CastedMaxBECount, WideTy);
1720           const SCEV *OperandExtendedAdd =
1721             getAddExpr(WideStart,
1722                        getMulExpr(WideMaxBECount,
1723                                   getSignExtendExpr(Step, WideTy)));
1724           if (SAdd == OperandExtendedAdd) {
1725             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1726             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1727             // Return the expression with the addrec on the outside.
1728             return getAddRecExpr(
1729                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1730                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1731           }
1732           // Similar to above, only this time treat the step value as unsigned.
1733           // This covers loops that count up with an unsigned step.
1734           OperandExtendedAdd =
1735             getAddExpr(WideStart,
1736                        getMulExpr(WideMaxBECount,
1737                                   getZeroExtendExpr(Step, WideTy)));
1738           if (SAdd == OperandExtendedAdd) {
1739             // If AR wraps around then
1740             //
1741             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1742             // => SAdd != OperandExtendedAdd
1743             //
1744             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1745             // (SAdd == OperandExtendedAdd => AR is NW)
1746 
1747             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748 
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1753           }
1754         }
1755       }
1756 
1757       // Normally, in the cases we can prove no-overflow via a
1758       // backedge guarding condition, we can also compute a backedge
1759       // taken count for the loop.  The exceptions are assumptions and
1760       // guards present in the loop -- SCEV is not great at exploiting
1761       // these to compute max backedge taken counts, but can still use
1762       // these to prove lack of overflow.  Use this fact to avoid
1763       // doing extra work that may not pay off.
1764 
1765       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766           !AC.assumptions().empty()) {
1767         // If the backedge is guarded by a comparison with the pre-inc
1768         // value the addrec is safe. Also, if the entry is guarded by
1769         // a comparison with the start value and the backedge is
1770         // guarded by a comparison with the post-inc value, the addrec
1771         // is safe.
1772         ICmpInst::Predicate Pred;
1773         const SCEV *OverflowLimit =
1774             getSignedOverflowLimitForStep(Step, &Pred, this);
1775         if (OverflowLimit &&
1776             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1777              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1778               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1779                                           OverflowLimit)))) {
1780           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1781           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1782           return getAddRecExpr(
1783               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1784               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1785         }
1786       }
1787 
1788       // If Start and Step are constants, check if we can apply this
1789       // transformation:
1790       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1791       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1792       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1793       if (SC1 && SC2) {
1794         const APInt &C1 = SC1->getAPInt();
1795         const APInt &C2 = SC2->getAPInt();
1796         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1797             C2.isPowerOf2()) {
1798           Start = getSignExtendExpr(Start, Ty);
1799           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1800                                             AR->getNoWrapFlags());
1801           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1802         }
1803       }
1804 
1805       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1806         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1807         return getAddRecExpr(
1808             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1809             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1810       }
1811     }
1812 
1813   // If the input value is provably positive and we could not simplify
1814   // away the sext build a zext instead.
1815   if (isKnownNonNegative(Op))
1816     return getZeroExtendExpr(Op, Ty);
1817 
1818   // The cast wasn't folded; create an explicit cast node.
1819   // Recompute the insert position, as it may have been invalidated.
1820   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1821   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1822                                                    Op, Ty);
1823   UniqueSCEVs.InsertNode(S, IP);
1824   return S;
1825 }
1826 
1827 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1828 /// unspecified bits out to the given type.
1829 ///
1830 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1831                                               Type *Ty) {
1832   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1833          "This is not an extending conversion!");
1834   assert(isSCEVable(Ty) &&
1835          "This is not a conversion to a SCEVable type!");
1836   Ty = getEffectiveSCEVType(Ty);
1837 
1838   // Sign-extend negative constants.
1839   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1840     if (SC->getAPInt().isNegative())
1841       return getSignExtendExpr(Op, Ty);
1842 
1843   // Peel off a truncate cast.
1844   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1845     const SCEV *NewOp = T->getOperand();
1846     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1847       return getAnyExtendExpr(NewOp, Ty);
1848     return getTruncateOrNoop(NewOp, Ty);
1849   }
1850 
1851   // Next try a zext cast. If the cast is folded, use it.
1852   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1853   if (!isa<SCEVZeroExtendExpr>(ZExt))
1854     return ZExt;
1855 
1856   // Next try a sext cast. If the cast is folded, use it.
1857   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1858   if (!isa<SCEVSignExtendExpr>(SExt))
1859     return SExt;
1860 
1861   // Force the cast to be folded into the operands of an addrec.
1862   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1863     SmallVector<const SCEV *, 4> Ops;
1864     for (const SCEV *Op : AR->operands())
1865       Ops.push_back(getAnyExtendExpr(Op, Ty));
1866     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1867   }
1868 
1869   // If the expression is obviously signed, use the sext cast value.
1870   if (isa<SCEVSMaxExpr>(Op))
1871     return SExt;
1872 
1873   // Absent any other information, use the zext cast value.
1874   return ZExt;
1875 }
1876 
1877 /// Process the given Ops list, which is a list of operands to be added under
1878 /// the given scale, update the given map. This is a helper function for
1879 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1880 /// that would form an add expression like this:
1881 ///
1882 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1883 ///
1884 /// where A and B are constants, update the map with these values:
1885 ///
1886 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1887 ///
1888 /// and add 13 + A*B*29 to AccumulatedConstant.
1889 /// This will allow getAddRecExpr to produce this:
1890 ///
1891 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1892 ///
1893 /// This form often exposes folding opportunities that are hidden in
1894 /// the original operand list.
1895 ///
1896 /// Return true iff it appears that any interesting folding opportunities
1897 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1898 /// the common case where no interesting opportunities are present, and
1899 /// is also used as a check to avoid infinite recursion.
1900 ///
1901 static bool
1902 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1903                              SmallVectorImpl<const SCEV *> &NewOps,
1904                              APInt &AccumulatedConstant,
1905                              const SCEV *const *Ops, size_t NumOperands,
1906                              const APInt &Scale,
1907                              ScalarEvolution &SE) {
1908   bool Interesting = false;
1909 
1910   // Iterate over the add operands. They are sorted, with constants first.
1911   unsigned i = 0;
1912   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1913     ++i;
1914     // Pull a buried constant out to the outside.
1915     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1916       Interesting = true;
1917     AccumulatedConstant += Scale * C->getAPInt();
1918   }
1919 
1920   // Next comes everything else. We're especially interested in multiplies
1921   // here, but they're in the middle, so just visit the rest with one loop.
1922   for (; i != NumOperands; ++i) {
1923     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1924     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1925       APInt NewScale =
1926           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1927       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1928         // A multiplication of a constant with another add; recurse.
1929         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1930         Interesting |=
1931           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1932                                        Add->op_begin(), Add->getNumOperands(),
1933                                        NewScale, SE);
1934       } else {
1935         // A multiplication of a constant with some other value. Update
1936         // the map.
1937         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1938         const SCEV *Key = SE.getMulExpr(MulOps);
1939         auto Pair = M.insert({Key, NewScale});
1940         if (Pair.second) {
1941           NewOps.push_back(Pair.first->first);
1942         } else {
1943           Pair.first->second += NewScale;
1944           // The map already had an entry for this value, which may indicate
1945           // a folding opportunity.
1946           Interesting = true;
1947         }
1948       }
1949     } else {
1950       // An ordinary operand. Update the map.
1951       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1952           M.insert({Ops[i], Scale});
1953       if (Pair.second) {
1954         NewOps.push_back(Pair.first->first);
1955       } else {
1956         Pair.first->second += Scale;
1957         // The map already had an entry for this value, which may indicate
1958         // a folding opportunity.
1959         Interesting = true;
1960       }
1961     }
1962   }
1963 
1964   return Interesting;
1965 }
1966 
1967 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1968 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1969 // can't-overflow flags for the operation if possible.
1970 static SCEV::NoWrapFlags
1971 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1972                       const SmallVectorImpl<const SCEV *> &Ops,
1973                       SCEV::NoWrapFlags Flags) {
1974   using namespace std::placeholders;
1975   typedef OverflowingBinaryOperator OBO;
1976 
1977   bool CanAnalyze =
1978       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1979   (void)CanAnalyze;
1980   assert(CanAnalyze && "don't call from other places!");
1981 
1982   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1983   SCEV::NoWrapFlags SignOrUnsignWrap =
1984       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1985 
1986   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1987   auto IsKnownNonNegative = [&](const SCEV *S) {
1988     return SE->isKnownNonNegative(S);
1989   };
1990 
1991   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1992     Flags =
1993         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1994 
1995   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1996 
1997   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1998       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1999 
2000     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2001     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2002 
2003     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2004     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2005       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2006           Instruction::Add, C, OBO::NoSignedWrap);
2007       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2008         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2009     }
2010     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2011       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2012           Instruction::Add, C, OBO::NoUnsignedWrap);
2013       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2014         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2015     }
2016   }
2017 
2018   return Flags;
2019 }
2020 
2021 /// Get a canonical add expression, or something simpler if possible.
2022 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2023                                         SCEV::NoWrapFlags Flags) {
2024   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2025          "only nuw or nsw allowed");
2026   assert(!Ops.empty() && "Cannot get empty add!");
2027   if (Ops.size() == 1) return Ops[0];
2028 #ifndef NDEBUG
2029   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2030   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2031     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2032            "SCEVAddExpr operand types don't match!");
2033 #endif
2034 
2035   // Sort by complexity, this groups all similar expression types together.
2036   GroupByComplexity(Ops, &LI);
2037 
2038   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2039 
2040   // If there are any constants, fold them together.
2041   unsigned Idx = 0;
2042   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2043     ++Idx;
2044     assert(Idx < Ops.size());
2045     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2046       // We found two constants, fold them together!
2047       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2048       if (Ops.size() == 2) return Ops[0];
2049       Ops.erase(Ops.begin()+1);  // Erase the folded element
2050       LHSC = cast<SCEVConstant>(Ops[0]);
2051     }
2052 
2053     // If we are left with a constant zero being added, strip it off.
2054     if (LHSC->getValue()->isZero()) {
2055       Ops.erase(Ops.begin());
2056       --Idx;
2057     }
2058 
2059     if (Ops.size() == 1) return Ops[0];
2060   }
2061 
2062   // Okay, check to see if the same value occurs in the operand list more than
2063   // once.  If so, merge them together into an multiply expression.  Since we
2064   // sorted the list, these values are required to be adjacent.
2065   Type *Ty = Ops[0]->getType();
2066   bool FoundMatch = false;
2067   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2068     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2069       // Scan ahead to count how many equal operands there are.
2070       unsigned Count = 2;
2071       while (i+Count != e && Ops[i+Count] == Ops[i])
2072         ++Count;
2073       // Merge the values into a multiply.
2074       const SCEV *Scale = getConstant(Ty, Count);
2075       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2076       if (Ops.size() == Count)
2077         return Mul;
2078       Ops[i] = Mul;
2079       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2080       --i; e -= Count - 1;
2081       FoundMatch = true;
2082     }
2083   if (FoundMatch)
2084     return getAddExpr(Ops, Flags);
2085 
2086   // Check for truncates. If all the operands are truncated from the same
2087   // type, see if factoring out the truncate would permit the result to be
2088   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2089   // if the contents of the resulting outer trunc fold to something simple.
2090   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2091     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2092     Type *DstType = Trunc->getType();
2093     Type *SrcType = Trunc->getOperand()->getType();
2094     SmallVector<const SCEV *, 8> LargeOps;
2095     bool Ok = true;
2096     // Check all the operands to see if they can be represented in the
2097     // source type of the truncate.
2098     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2099       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2100         if (T->getOperand()->getType() != SrcType) {
2101           Ok = false;
2102           break;
2103         }
2104         LargeOps.push_back(T->getOperand());
2105       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2106         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2107       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2108         SmallVector<const SCEV *, 8> LargeMulOps;
2109         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2110           if (const SCEVTruncateExpr *T =
2111                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2112             if (T->getOperand()->getType() != SrcType) {
2113               Ok = false;
2114               break;
2115             }
2116             LargeMulOps.push_back(T->getOperand());
2117           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2118             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2119           } else {
2120             Ok = false;
2121             break;
2122           }
2123         }
2124         if (Ok)
2125           LargeOps.push_back(getMulExpr(LargeMulOps));
2126       } else {
2127         Ok = false;
2128         break;
2129       }
2130     }
2131     if (Ok) {
2132       // Evaluate the expression in the larger type.
2133       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2134       // If it folds to something simple, use it. Otherwise, don't.
2135       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2136         return getTruncateExpr(Fold, DstType);
2137     }
2138   }
2139 
2140   // Skip past any other cast SCEVs.
2141   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2142     ++Idx;
2143 
2144   // If there are add operands they would be next.
2145   if (Idx < Ops.size()) {
2146     bool DeletedAdd = false;
2147     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2148       // If we have an add, expand the add operands onto the end of the operands
2149       // list.
2150       Ops.erase(Ops.begin()+Idx);
2151       Ops.append(Add->op_begin(), Add->op_end());
2152       DeletedAdd = true;
2153     }
2154 
2155     // If we deleted at least one add, we added operands to the end of the list,
2156     // and they are not necessarily sorted.  Recurse to resort and resimplify
2157     // any operands we just acquired.
2158     if (DeletedAdd)
2159       return getAddExpr(Ops);
2160   }
2161 
2162   // Skip over the add expression until we get to a multiply.
2163   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2164     ++Idx;
2165 
2166   // Check to see if there are any folding opportunities present with
2167   // operands multiplied by constant values.
2168   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2169     uint64_t BitWidth = getTypeSizeInBits(Ty);
2170     DenseMap<const SCEV *, APInt> M;
2171     SmallVector<const SCEV *, 8> NewOps;
2172     APInt AccumulatedConstant(BitWidth, 0);
2173     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2174                                      Ops.data(), Ops.size(),
2175                                      APInt(BitWidth, 1), *this)) {
2176       struct APIntCompare {
2177         bool operator()(const APInt &LHS, const APInt &RHS) const {
2178           return LHS.ult(RHS);
2179         }
2180       };
2181 
2182       // Some interesting folding opportunity is present, so its worthwhile to
2183       // re-generate the operands list. Group the operands by constant scale,
2184       // to avoid multiplying by the same constant scale multiple times.
2185       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2186       for (const SCEV *NewOp : NewOps)
2187         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2188       // Re-generate the operands list.
2189       Ops.clear();
2190       if (AccumulatedConstant != 0)
2191         Ops.push_back(getConstant(AccumulatedConstant));
2192       for (auto &MulOp : MulOpLists)
2193         if (MulOp.first != 0)
2194           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2195                                    getAddExpr(MulOp.second)));
2196       if (Ops.empty())
2197         return getZero(Ty);
2198       if (Ops.size() == 1)
2199         return Ops[0];
2200       return getAddExpr(Ops);
2201     }
2202   }
2203 
2204   // If we are adding something to a multiply expression, make sure the
2205   // something is not already an operand of the multiply.  If so, merge it into
2206   // the multiply.
2207   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2208     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2209     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2210       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2211       if (isa<SCEVConstant>(MulOpSCEV))
2212         continue;
2213       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2214         if (MulOpSCEV == Ops[AddOp]) {
2215           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2216           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2217           if (Mul->getNumOperands() != 2) {
2218             // If the multiply has more than two operands, we must get the
2219             // Y*Z term.
2220             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2221                                                 Mul->op_begin()+MulOp);
2222             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2223             InnerMul = getMulExpr(MulOps);
2224           }
2225           const SCEV *One = getOne(Ty);
2226           const SCEV *AddOne = getAddExpr(One, InnerMul);
2227           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2228           if (Ops.size() == 2) return OuterMul;
2229           if (AddOp < Idx) {
2230             Ops.erase(Ops.begin()+AddOp);
2231             Ops.erase(Ops.begin()+Idx-1);
2232           } else {
2233             Ops.erase(Ops.begin()+Idx);
2234             Ops.erase(Ops.begin()+AddOp-1);
2235           }
2236           Ops.push_back(OuterMul);
2237           return getAddExpr(Ops);
2238         }
2239 
2240       // Check this multiply against other multiplies being added together.
2241       for (unsigned OtherMulIdx = Idx+1;
2242            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2243            ++OtherMulIdx) {
2244         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2245         // If MulOp occurs in OtherMul, we can fold the two multiplies
2246         // together.
2247         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2248              OMulOp != e; ++OMulOp)
2249           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2250             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2251             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2252             if (Mul->getNumOperands() != 2) {
2253               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2254                                                   Mul->op_begin()+MulOp);
2255               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2256               InnerMul1 = getMulExpr(MulOps);
2257             }
2258             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2259             if (OtherMul->getNumOperands() != 2) {
2260               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2261                                                   OtherMul->op_begin()+OMulOp);
2262               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2263               InnerMul2 = getMulExpr(MulOps);
2264             }
2265             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2266             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2267             if (Ops.size() == 2) return OuterMul;
2268             Ops.erase(Ops.begin()+Idx);
2269             Ops.erase(Ops.begin()+OtherMulIdx-1);
2270             Ops.push_back(OuterMul);
2271             return getAddExpr(Ops);
2272           }
2273       }
2274     }
2275   }
2276 
2277   // If there are any add recurrences in the operands list, see if any other
2278   // added values are loop invariant.  If so, we can fold them into the
2279   // recurrence.
2280   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2281     ++Idx;
2282 
2283   // Scan over all recurrences, trying to fold loop invariants into them.
2284   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2285     // Scan all of the other operands to this add and add them to the vector if
2286     // they are loop invariant w.r.t. the recurrence.
2287     SmallVector<const SCEV *, 8> LIOps;
2288     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2289     const Loop *AddRecLoop = AddRec->getLoop();
2290     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2291       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2292         LIOps.push_back(Ops[i]);
2293         Ops.erase(Ops.begin()+i);
2294         --i; --e;
2295       }
2296 
2297     // If we found some loop invariants, fold them into the recurrence.
2298     if (!LIOps.empty()) {
2299       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2300       LIOps.push_back(AddRec->getStart());
2301 
2302       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2303                                              AddRec->op_end());
2304       // This follows from the fact that the no-wrap flags on the outer add
2305       // expression are applicable on the 0th iteration, when the add recurrence
2306       // will be equal to its start value.
2307       AddRecOps[0] = getAddExpr(LIOps, Flags);
2308 
2309       // Build the new addrec. Propagate the NUW and NSW flags if both the
2310       // outer add and the inner addrec are guaranteed to have no overflow.
2311       // Always propagate NW.
2312       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2313       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2314 
2315       // If all of the other operands were loop invariant, we are done.
2316       if (Ops.size() == 1) return NewRec;
2317 
2318       // Otherwise, add the folded AddRec by the non-invariant parts.
2319       for (unsigned i = 0;; ++i)
2320         if (Ops[i] == AddRec) {
2321           Ops[i] = NewRec;
2322           break;
2323         }
2324       return getAddExpr(Ops);
2325     }
2326 
2327     // Okay, if there weren't any loop invariants to be folded, check to see if
2328     // there are multiple AddRec's with the same loop induction variable being
2329     // added together.  If so, we can fold them.
2330     for (unsigned OtherIdx = Idx+1;
2331          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2332          ++OtherIdx)
2333       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2334         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2335         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2336                                                AddRec->op_end());
2337         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2338              ++OtherIdx)
2339           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2340             if (OtherAddRec->getLoop() == AddRecLoop) {
2341               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2342                    i != e; ++i) {
2343                 if (i >= AddRecOps.size()) {
2344                   AddRecOps.append(OtherAddRec->op_begin()+i,
2345                                    OtherAddRec->op_end());
2346                   break;
2347                 }
2348                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2349                                           OtherAddRec->getOperand(i));
2350               }
2351               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2352             }
2353         // Step size has changed, so we cannot guarantee no self-wraparound.
2354         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2355         return getAddExpr(Ops);
2356       }
2357 
2358     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2359     // next one.
2360   }
2361 
2362   // Okay, it looks like we really DO need an add expr.  Check to see if we
2363   // already have one, otherwise create a new one.
2364   FoldingSetNodeID ID;
2365   ID.AddInteger(scAddExpr);
2366   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2367     ID.AddPointer(Ops[i]);
2368   void *IP = nullptr;
2369   SCEVAddExpr *S =
2370     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2371   if (!S) {
2372     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2373     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2374     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2375                                         O, Ops.size());
2376     UniqueSCEVs.InsertNode(S, IP);
2377   }
2378   S->setNoWrapFlags(Flags);
2379   return S;
2380 }
2381 
2382 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2383   uint64_t k = i*j;
2384   if (j > 1 && k / j != i) Overflow = true;
2385   return k;
2386 }
2387 
2388 /// Compute the result of "n choose k", the binomial coefficient.  If an
2389 /// intermediate computation overflows, Overflow will be set and the return will
2390 /// be garbage. Overflow is not cleared on absence of overflow.
2391 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2392   // We use the multiplicative formula:
2393   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2394   // At each iteration, we take the n-th term of the numeral and divide by the
2395   // (k-n)th term of the denominator.  This division will always produce an
2396   // integral result, and helps reduce the chance of overflow in the
2397   // intermediate computations. However, we can still overflow even when the
2398   // final result would fit.
2399 
2400   if (n == 0 || n == k) return 1;
2401   if (k > n) return 0;
2402 
2403   if (k > n/2)
2404     k = n-k;
2405 
2406   uint64_t r = 1;
2407   for (uint64_t i = 1; i <= k; ++i) {
2408     r = umul_ov(r, n-(i-1), Overflow);
2409     r /= i;
2410   }
2411   return r;
2412 }
2413 
2414 /// Determine if any of the operands in this SCEV are a constant or if
2415 /// any of the add or multiply expressions in this SCEV contain a constant.
2416 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2417   SmallVector<const SCEV *, 4> Ops;
2418   Ops.push_back(StartExpr);
2419   while (!Ops.empty()) {
2420     const SCEV *CurrentExpr = Ops.pop_back_val();
2421     if (isa<SCEVConstant>(*CurrentExpr))
2422       return true;
2423 
2424     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2425       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2426       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2427     }
2428   }
2429   return false;
2430 }
2431 
2432 /// Get a canonical multiply expression, or something simpler if possible.
2433 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2434                                         SCEV::NoWrapFlags Flags) {
2435   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2436          "only nuw or nsw allowed");
2437   assert(!Ops.empty() && "Cannot get empty mul!");
2438   if (Ops.size() == 1) return Ops[0];
2439 #ifndef NDEBUG
2440   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2441   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2442     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2443            "SCEVMulExpr operand types don't match!");
2444 #endif
2445 
2446   // Sort by complexity, this groups all similar expression types together.
2447   GroupByComplexity(Ops, &LI);
2448 
2449   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2450 
2451   // If there are any constants, fold them together.
2452   unsigned Idx = 0;
2453   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2454 
2455     // C1*(C2+V) -> C1*C2 + C1*V
2456     if (Ops.size() == 2)
2457         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2458           // If any of Add's ops are Adds or Muls with a constant,
2459           // apply this transformation as well.
2460           if (Add->getNumOperands() == 2)
2461             if (containsConstantSomewhere(Add))
2462               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2463                                 getMulExpr(LHSC, Add->getOperand(1)));
2464 
2465     ++Idx;
2466     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2467       // We found two constants, fold them together!
2468       ConstantInt *Fold =
2469           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2470       Ops[0] = getConstant(Fold);
2471       Ops.erase(Ops.begin()+1);  // Erase the folded element
2472       if (Ops.size() == 1) return Ops[0];
2473       LHSC = cast<SCEVConstant>(Ops[0]);
2474     }
2475 
2476     // If we are left with a constant one being multiplied, strip it off.
2477     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2478       Ops.erase(Ops.begin());
2479       --Idx;
2480     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2481       // If we have a multiply of zero, it will always be zero.
2482       return Ops[0];
2483     } else if (Ops[0]->isAllOnesValue()) {
2484       // If we have a mul by -1 of an add, try distributing the -1 among the
2485       // add operands.
2486       if (Ops.size() == 2) {
2487         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2488           SmallVector<const SCEV *, 4> NewOps;
2489           bool AnyFolded = false;
2490           for (const SCEV *AddOp : Add->operands()) {
2491             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2492             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2493             NewOps.push_back(Mul);
2494           }
2495           if (AnyFolded)
2496             return getAddExpr(NewOps);
2497         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2498           // Negation preserves a recurrence's no self-wrap property.
2499           SmallVector<const SCEV *, 4> Operands;
2500           for (const SCEV *AddRecOp : AddRec->operands())
2501             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2502 
2503           return getAddRecExpr(Operands, AddRec->getLoop(),
2504                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2505         }
2506       }
2507     }
2508 
2509     if (Ops.size() == 1)
2510       return Ops[0];
2511   }
2512 
2513   // Skip over the add expression until we get to a multiply.
2514   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2515     ++Idx;
2516 
2517   // If there are mul operands inline them all into this expression.
2518   if (Idx < Ops.size()) {
2519     bool DeletedMul = false;
2520     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2521       // If we have an mul, expand the mul operands onto the end of the operands
2522       // list.
2523       Ops.erase(Ops.begin()+Idx);
2524       Ops.append(Mul->op_begin(), Mul->op_end());
2525       DeletedMul = true;
2526     }
2527 
2528     // If we deleted at least one mul, we added operands to the end of the list,
2529     // and they are not necessarily sorted.  Recurse to resort and resimplify
2530     // any operands we just acquired.
2531     if (DeletedMul)
2532       return getMulExpr(Ops);
2533   }
2534 
2535   // If there are any add recurrences in the operands list, see if any other
2536   // added values are loop invariant.  If so, we can fold them into the
2537   // recurrence.
2538   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2539     ++Idx;
2540 
2541   // Scan over all recurrences, trying to fold loop invariants into them.
2542   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2543     // Scan all of the other operands to this mul and add them to the vector if
2544     // they are loop invariant w.r.t. the recurrence.
2545     SmallVector<const SCEV *, 8> LIOps;
2546     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2547     const Loop *AddRecLoop = AddRec->getLoop();
2548     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2549       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2550         LIOps.push_back(Ops[i]);
2551         Ops.erase(Ops.begin()+i);
2552         --i; --e;
2553       }
2554 
2555     // If we found some loop invariants, fold them into the recurrence.
2556     if (!LIOps.empty()) {
2557       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2558       SmallVector<const SCEV *, 4> NewOps;
2559       NewOps.reserve(AddRec->getNumOperands());
2560       const SCEV *Scale = getMulExpr(LIOps);
2561       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2562         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2563 
2564       // Build the new addrec. Propagate the NUW and NSW flags if both the
2565       // outer mul and the inner addrec are guaranteed to have no overflow.
2566       //
2567       // No self-wrap cannot be guaranteed after changing the step size, but
2568       // will be inferred if either NUW or NSW is true.
2569       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2570       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2571 
2572       // If all of the other operands were loop invariant, we are done.
2573       if (Ops.size() == 1) return NewRec;
2574 
2575       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2576       for (unsigned i = 0;; ++i)
2577         if (Ops[i] == AddRec) {
2578           Ops[i] = NewRec;
2579           break;
2580         }
2581       return getMulExpr(Ops);
2582     }
2583 
2584     // Okay, if there weren't any loop invariants to be folded, check to see if
2585     // there are multiple AddRec's with the same loop induction variable being
2586     // multiplied together.  If so, we can fold them.
2587 
2588     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2589     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2590     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2591     //   ]]],+,...up to x=2n}.
2592     // Note that the arguments to choose() are always integers with values
2593     // known at compile time, never SCEV objects.
2594     //
2595     // The implementation avoids pointless extra computations when the two
2596     // addrec's are of different length (mathematically, it's equivalent to
2597     // an infinite stream of zeros on the right).
2598     bool OpsModified = false;
2599     for (unsigned OtherIdx = Idx+1;
2600          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2601          ++OtherIdx) {
2602       const SCEVAddRecExpr *OtherAddRec =
2603         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2604       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2605         continue;
2606 
2607       bool Overflow = false;
2608       Type *Ty = AddRec->getType();
2609       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2610       SmallVector<const SCEV*, 7> AddRecOps;
2611       for (int x = 0, xe = AddRec->getNumOperands() +
2612              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2613         const SCEV *Term = getZero(Ty);
2614         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2615           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2616           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2617                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2618                z < ze && !Overflow; ++z) {
2619             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2620             uint64_t Coeff;
2621             if (LargerThan64Bits)
2622               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2623             else
2624               Coeff = Coeff1*Coeff2;
2625             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2626             const SCEV *Term1 = AddRec->getOperand(y-z);
2627             const SCEV *Term2 = OtherAddRec->getOperand(z);
2628             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2629           }
2630         }
2631         AddRecOps.push_back(Term);
2632       }
2633       if (!Overflow) {
2634         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2635                                               SCEV::FlagAnyWrap);
2636         if (Ops.size() == 2) return NewAddRec;
2637         Ops[Idx] = NewAddRec;
2638         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2639         OpsModified = true;
2640         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2641         if (!AddRec)
2642           break;
2643       }
2644     }
2645     if (OpsModified)
2646       return getMulExpr(Ops);
2647 
2648     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2649     // next one.
2650   }
2651 
2652   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2653   // already have one, otherwise create a new one.
2654   FoldingSetNodeID ID;
2655   ID.AddInteger(scMulExpr);
2656   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2657     ID.AddPointer(Ops[i]);
2658   void *IP = nullptr;
2659   SCEVMulExpr *S =
2660     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2661   if (!S) {
2662     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2663     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2664     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2665                                         O, Ops.size());
2666     UniqueSCEVs.InsertNode(S, IP);
2667   }
2668   S->setNoWrapFlags(Flags);
2669   return S;
2670 }
2671 
2672 /// Get a canonical unsigned division expression, or something simpler if
2673 /// possible.
2674 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2675                                          const SCEV *RHS) {
2676   assert(getEffectiveSCEVType(LHS->getType()) ==
2677          getEffectiveSCEVType(RHS->getType()) &&
2678          "SCEVUDivExpr operand types don't match!");
2679 
2680   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2681     if (RHSC->getValue()->equalsInt(1))
2682       return LHS;                               // X udiv 1 --> x
2683     // If the denominator is zero, the result of the udiv is undefined. Don't
2684     // try to analyze it, because the resolution chosen here may differ from
2685     // the resolution chosen in other parts of the compiler.
2686     if (!RHSC->getValue()->isZero()) {
2687       // Determine if the division can be folded into the operands of
2688       // its operands.
2689       // TODO: Generalize this to non-constants by using known-bits information.
2690       Type *Ty = LHS->getType();
2691       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2692       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2693       // For non-power-of-two values, effectively round the value up to the
2694       // nearest power of two.
2695       if (!RHSC->getAPInt().isPowerOf2())
2696         ++MaxShiftAmt;
2697       IntegerType *ExtTy =
2698         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2699       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2700         if (const SCEVConstant *Step =
2701             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2702           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2703           const APInt &StepInt = Step->getAPInt();
2704           const APInt &DivInt = RHSC->getAPInt();
2705           if (!StepInt.urem(DivInt) &&
2706               getZeroExtendExpr(AR, ExtTy) ==
2707               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2708                             getZeroExtendExpr(Step, ExtTy),
2709                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2710             SmallVector<const SCEV *, 4> Operands;
2711             for (const SCEV *Op : AR->operands())
2712               Operands.push_back(getUDivExpr(Op, RHS));
2713             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2714           }
2715           /// Get a canonical UDivExpr for a recurrence.
2716           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2717           // We can currently only fold X%N if X is constant.
2718           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2719           if (StartC && !DivInt.urem(StepInt) &&
2720               getZeroExtendExpr(AR, ExtTy) ==
2721               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2722                             getZeroExtendExpr(Step, ExtTy),
2723                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2724             const APInt &StartInt = StartC->getAPInt();
2725             const APInt &StartRem = StartInt.urem(StepInt);
2726             if (StartRem != 0)
2727               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2728                                   AR->getLoop(), SCEV::FlagNW);
2729           }
2730         }
2731       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2732       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2733         SmallVector<const SCEV *, 4> Operands;
2734         for (const SCEV *Op : M->operands())
2735           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2736         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2737           // Find an operand that's safely divisible.
2738           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2739             const SCEV *Op = M->getOperand(i);
2740             const SCEV *Div = getUDivExpr(Op, RHSC);
2741             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2742               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2743                                                       M->op_end());
2744               Operands[i] = Div;
2745               return getMulExpr(Operands);
2746             }
2747           }
2748       }
2749       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2750       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2751         SmallVector<const SCEV *, 4> Operands;
2752         for (const SCEV *Op : A->operands())
2753           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2754         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2755           Operands.clear();
2756           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2757             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2758             if (isa<SCEVUDivExpr>(Op) ||
2759                 getMulExpr(Op, RHS) != A->getOperand(i))
2760               break;
2761             Operands.push_back(Op);
2762           }
2763           if (Operands.size() == A->getNumOperands())
2764             return getAddExpr(Operands);
2765         }
2766       }
2767 
2768       // Fold if both operands are constant.
2769       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2770         Constant *LHSCV = LHSC->getValue();
2771         Constant *RHSCV = RHSC->getValue();
2772         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2773                                                                    RHSCV)));
2774       }
2775     }
2776   }
2777 
2778   FoldingSetNodeID ID;
2779   ID.AddInteger(scUDivExpr);
2780   ID.AddPointer(LHS);
2781   ID.AddPointer(RHS);
2782   void *IP = nullptr;
2783   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2784   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2785                                              LHS, RHS);
2786   UniqueSCEVs.InsertNode(S, IP);
2787   return S;
2788 }
2789 
2790 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2791   APInt A = C1->getAPInt().abs();
2792   APInt B = C2->getAPInt().abs();
2793   uint32_t ABW = A.getBitWidth();
2794   uint32_t BBW = B.getBitWidth();
2795 
2796   if (ABW > BBW)
2797     B = B.zext(ABW);
2798   else if (ABW < BBW)
2799     A = A.zext(BBW);
2800 
2801   return APIntOps::GreatestCommonDivisor(A, B);
2802 }
2803 
2804 /// Get a canonical unsigned division expression, or something simpler if
2805 /// possible. There is no representation for an exact udiv in SCEV IR, but we
2806 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
2807 /// it's not exact because the udiv may be clearing bits.
2808 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2809                                               const SCEV *RHS) {
2810   // TODO: we could try to find factors in all sorts of things, but for now we
2811   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2812   // end of this file for inspiration.
2813 
2814   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2815   if (!Mul)
2816     return getUDivExpr(LHS, RHS);
2817 
2818   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2819     // If the mulexpr multiplies by a constant, then that constant must be the
2820     // first element of the mulexpr.
2821     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2822       if (LHSCst == RHSCst) {
2823         SmallVector<const SCEV *, 2> Operands;
2824         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2825         return getMulExpr(Operands);
2826       }
2827 
2828       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2829       // that there's a factor provided by one of the other terms. We need to
2830       // check.
2831       APInt Factor = gcd(LHSCst, RHSCst);
2832       if (!Factor.isIntN(1)) {
2833         LHSCst =
2834             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2835         RHSCst =
2836             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2837         SmallVector<const SCEV *, 2> Operands;
2838         Operands.push_back(LHSCst);
2839         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2840         LHS = getMulExpr(Operands);
2841         RHS = RHSCst;
2842         Mul = dyn_cast<SCEVMulExpr>(LHS);
2843         if (!Mul)
2844           return getUDivExactExpr(LHS, RHS);
2845       }
2846     }
2847   }
2848 
2849   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2850     if (Mul->getOperand(i) == RHS) {
2851       SmallVector<const SCEV *, 2> Operands;
2852       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2853       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2854       return getMulExpr(Operands);
2855     }
2856   }
2857 
2858   return getUDivExpr(LHS, RHS);
2859 }
2860 
2861 /// Get an add recurrence expression for the specified loop.  Simplify the
2862 /// expression as much as possible.
2863 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2864                                            const Loop *L,
2865                                            SCEV::NoWrapFlags Flags) {
2866   SmallVector<const SCEV *, 4> Operands;
2867   Operands.push_back(Start);
2868   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2869     if (StepChrec->getLoop() == L) {
2870       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2871       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2872     }
2873 
2874   Operands.push_back(Step);
2875   return getAddRecExpr(Operands, L, Flags);
2876 }
2877 
2878 /// Get an add recurrence expression for the specified loop.  Simplify the
2879 /// expression as much as possible.
2880 const SCEV *
2881 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2882                                const Loop *L, SCEV::NoWrapFlags Flags) {
2883   if (Operands.size() == 1) return Operands[0];
2884 #ifndef NDEBUG
2885   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2886   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2887     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2888            "SCEVAddRecExpr operand types don't match!");
2889   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2890     assert(isLoopInvariant(Operands[i], L) &&
2891            "SCEVAddRecExpr operand is not loop-invariant!");
2892 #endif
2893 
2894   if (Operands.back()->isZero()) {
2895     Operands.pop_back();
2896     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2897   }
2898 
2899   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2900   // use that information to infer NUW and NSW flags. However, computing a
2901   // BE count requires calling getAddRecExpr, so we may not yet have a
2902   // meaningful BE count at this point (and if we don't, we'd be stuck
2903   // with a SCEVCouldNotCompute as the cached BE count).
2904 
2905   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2906 
2907   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2908   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2909     const Loop *NestedLoop = NestedAR->getLoop();
2910     if (L->contains(NestedLoop)
2911             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2912             : (!NestedLoop->contains(L) &&
2913                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2914       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2915                                                   NestedAR->op_end());
2916       Operands[0] = NestedAR->getStart();
2917       // AddRecs require their operands be loop-invariant with respect to their
2918       // loops. Don't perform this transformation if it would break this
2919       // requirement.
2920       bool AllInvariant = all_of(
2921           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2922 
2923       if (AllInvariant) {
2924         // Create a recurrence for the outer loop with the same step size.
2925         //
2926         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2927         // inner recurrence has the same property.
2928         SCEV::NoWrapFlags OuterFlags =
2929           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2930 
2931         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2932         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2933           return isLoopInvariant(Op, NestedLoop);
2934         });
2935 
2936         if (AllInvariant) {
2937           // Ok, both add recurrences are valid after the transformation.
2938           //
2939           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2940           // the outer recurrence has the same property.
2941           SCEV::NoWrapFlags InnerFlags =
2942             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2943           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2944         }
2945       }
2946       // Reset Operands to its original state.
2947       Operands[0] = NestedAR;
2948     }
2949   }
2950 
2951   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2952   // already have one, otherwise create a new one.
2953   FoldingSetNodeID ID;
2954   ID.AddInteger(scAddRecExpr);
2955   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2956     ID.AddPointer(Operands[i]);
2957   ID.AddPointer(L);
2958   void *IP = nullptr;
2959   SCEVAddRecExpr *S =
2960     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2961   if (!S) {
2962     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2963     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2964     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2965                                            O, Operands.size(), L);
2966     UniqueSCEVs.InsertNode(S, IP);
2967   }
2968   S->setNoWrapFlags(Flags);
2969   return S;
2970 }
2971 
2972 const SCEV *
2973 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2974                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2975                             bool InBounds) {
2976   // getSCEV(Base)->getType() has the same address space as Base->getType()
2977   // because SCEV::getType() preserves the address space.
2978   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2979   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2980   // instruction to its SCEV, because the Instruction may be guarded by control
2981   // flow and the no-overflow bits may not be valid for the expression in any
2982   // context. This can be fixed similarly to how these flags are handled for
2983   // adds.
2984   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2985 
2986   const SCEV *TotalOffset = getZero(IntPtrTy);
2987   // The address space is unimportant. The first thing we do on CurTy is getting
2988   // its element type.
2989   Type *CurTy = PointerType::getUnqual(PointeeType);
2990   for (const SCEV *IndexExpr : IndexExprs) {
2991     // Compute the (potentially symbolic) offset in bytes for this index.
2992     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2993       // For a struct, add the member offset.
2994       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2995       unsigned FieldNo = Index->getZExtValue();
2996       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2997 
2998       // Add the field offset to the running total offset.
2999       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3000 
3001       // Update CurTy to the type of the field at Index.
3002       CurTy = STy->getTypeAtIndex(Index);
3003     } else {
3004       // Update CurTy to its element type.
3005       CurTy = cast<SequentialType>(CurTy)->getElementType();
3006       // For an array, add the element offset, explicitly scaled.
3007       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3008       // Getelementptr indices are signed.
3009       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3010 
3011       // Multiply the index by the element size to compute the element offset.
3012       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3013 
3014       // Add the element offset to the running total offset.
3015       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3016     }
3017   }
3018 
3019   // Add the total offset from all the GEP indices to the base.
3020   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3021 }
3022 
3023 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3024                                          const SCEV *RHS) {
3025   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3026   return getSMaxExpr(Ops);
3027 }
3028 
3029 const SCEV *
3030 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3031   assert(!Ops.empty() && "Cannot get empty smax!");
3032   if (Ops.size() == 1) return Ops[0];
3033 #ifndef NDEBUG
3034   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3035   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3036     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3037            "SCEVSMaxExpr operand types don't match!");
3038 #endif
3039 
3040   // Sort by complexity, this groups all similar expression types together.
3041   GroupByComplexity(Ops, &LI);
3042 
3043   // If there are any constants, fold them together.
3044   unsigned Idx = 0;
3045   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3046     ++Idx;
3047     assert(Idx < Ops.size());
3048     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3049       // We found two constants, fold them together!
3050       ConstantInt *Fold = ConstantInt::get(
3051           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3052       Ops[0] = getConstant(Fold);
3053       Ops.erase(Ops.begin()+1);  // Erase the folded element
3054       if (Ops.size() == 1) return Ops[0];
3055       LHSC = cast<SCEVConstant>(Ops[0]);
3056     }
3057 
3058     // If we are left with a constant minimum-int, strip it off.
3059     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3060       Ops.erase(Ops.begin());
3061       --Idx;
3062     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3063       // If we have an smax with a constant maximum-int, it will always be
3064       // maximum-int.
3065       return Ops[0];
3066     }
3067 
3068     if (Ops.size() == 1) return Ops[0];
3069   }
3070 
3071   // Find the first SMax
3072   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3073     ++Idx;
3074 
3075   // Check to see if one of the operands is an SMax. If so, expand its operands
3076   // onto our operand list, and recurse to simplify.
3077   if (Idx < Ops.size()) {
3078     bool DeletedSMax = false;
3079     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3080       Ops.erase(Ops.begin()+Idx);
3081       Ops.append(SMax->op_begin(), SMax->op_end());
3082       DeletedSMax = true;
3083     }
3084 
3085     if (DeletedSMax)
3086       return getSMaxExpr(Ops);
3087   }
3088 
3089   // Okay, check to see if the same value occurs in the operand list twice.  If
3090   // so, delete one.  Since we sorted the list, these values are required to
3091   // be adjacent.
3092   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3093     //  X smax Y smax Y  -->  X smax Y
3094     //  X smax Y         -->  X, if X is always greater than Y
3095     if (Ops[i] == Ops[i+1] ||
3096         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3097       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3098       --i; --e;
3099     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3100       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3101       --i; --e;
3102     }
3103 
3104   if (Ops.size() == 1) return Ops[0];
3105 
3106   assert(!Ops.empty() && "Reduced smax down to nothing!");
3107 
3108   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3109   // already have one, otherwise create a new one.
3110   FoldingSetNodeID ID;
3111   ID.AddInteger(scSMaxExpr);
3112   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3113     ID.AddPointer(Ops[i]);
3114   void *IP = nullptr;
3115   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3116   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3117   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3118   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3119                                              O, Ops.size());
3120   UniqueSCEVs.InsertNode(S, IP);
3121   return S;
3122 }
3123 
3124 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3125                                          const SCEV *RHS) {
3126   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3127   return getUMaxExpr(Ops);
3128 }
3129 
3130 const SCEV *
3131 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3132   assert(!Ops.empty() && "Cannot get empty umax!");
3133   if (Ops.size() == 1) return Ops[0];
3134 #ifndef NDEBUG
3135   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3136   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3137     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3138            "SCEVUMaxExpr operand types don't match!");
3139 #endif
3140 
3141   // Sort by complexity, this groups all similar expression types together.
3142   GroupByComplexity(Ops, &LI);
3143 
3144   // If there are any constants, fold them together.
3145   unsigned Idx = 0;
3146   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3147     ++Idx;
3148     assert(Idx < Ops.size());
3149     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3150       // We found two constants, fold them together!
3151       ConstantInt *Fold = ConstantInt::get(
3152           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3153       Ops[0] = getConstant(Fold);
3154       Ops.erase(Ops.begin()+1);  // Erase the folded element
3155       if (Ops.size() == 1) return Ops[0];
3156       LHSC = cast<SCEVConstant>(Ops[0]);
3157     }
3158 
3159     // If we are left with a constant minimum-int, strip it off.
3160     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3161       Ops.erase(Ops.begin());
3162       --Idx;
3163     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3164       // If we have an umax with a constant maximum-int, it will always be
3165       // maximum-int.
3166       return Ops[0];
3167     }
3168 
3169     if (Ops.size() == 1) return Ops[0];
3170   }
3171 
3172   // Find the first UMax
3173   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3174     ++Idx;
3175 
3176   // Check to see if one of the operands is a UMax. If so, expand its operands
3177   // onto our operand list, and recurse to simplify.
3178   if (Idx < Ops.size()) {
3179     bool DeletedUMax = false;
3180     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3181       Ops.erase(Ops.begin()+Idx);
3182       Ops.append(UMax->op_begin(), UMax->op_end());
3183       DeletedUMax = true;
3184     }
3185 
3186     if (DeletedUMax)
3187       return getUMaxExpr(Ops);
3188   }
3189 
3190   // Okay, check to see if the same value occurs in the operand list twice.  If
3191   // so, delete one.  Since we sorted the list, these values are required to
3192   // be adjacent.
3193   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3194     //  X umax Y umax Y  -->  X umax Y
3195     //  X umax Y         -->  X, if X is always greater than Y
3196     if (Ops[i] == Ops[i+1] ||
3197         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3198       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3199       --i; --e;
3200     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3201       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3202       --i; --e;
3203     }
3204 
3205   if (Ops.size() == 1) return Ops[0];
3206 
3207   assert(!Ops.empty() && "Reduced umax down to nothing!");
3208 
3209   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3210   // already have one, otherwise create a new one.
3211   FoldingSetNodeID ID;
3212   ID.AddInteger(scUMaxExpr);
3213   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3214     ID.AddPointer(Ops[i]);
3215   void *IP = nullptr;
3216   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3217   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3218   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3219   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3220                                              O, Ops.size());
3221   UniqueSCEVs.InsertNode(S, IP);
3222   return S;
3223 }
3224 
3225 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3226                                          const SCEV *RHS) {
3227   // ~smax(~x, ~y) == smin(x, y).
3228   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3229 }
3230 
3231 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3232                                          const SCEV *RHS) {
3233   // ~umax(~x, ~y) == umin(x, y)
3234   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3235 }
3236 
3237 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3238   // We can bypass creating a target-independent
3239   // constant expression and then folding it back into a ConstantInt.
3240   // This is just a compile-time optimization.
3241   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3242 }
3243 
3244 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3245                                              StructType *STy,
3246                                              unsigned FieldNo) {
3247   // We can bypass creating a target-independent
3248   // constant expression and then folding it back into a ConstantInt.
3249   // This is just a compile-time optimization.
3250   return getConstant(
3251       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3252 }
3253 
3254 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3255   // Don't attempt to do anything other than create a SCEVUnknown object
3256   // here.  createSCEV only calls getUnknown after checking for all other
3257   // interesting possibilities, and any other code that calls getUnknown
3258   // is doing so in order to hide a value from SCEV canonicalization.
3259 
3260   FoldingSetNodeID ID;
3261   ID.AddInteger(scUnknown);
3262   ID.AddPointer(V);
3263   void *IP = nullptr;
3264   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3265     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3266            "Stale SCEVUnknown in uniquing map!");
3267     return S;
3268   }
3269   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3270                                             FirstUnknown);
3271   FirstUnknown = cast<SCEVUnknown>(S);
3272   UniqueSCEVs.InsertNode(S, IP);
3273   return S;
3274 }
3275 
3276 //===----------------------------------------------------------------------===//
3277 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3278 //
3279 
3280 /// Test if values of the given type are analyzable within the SCEV
3281 /// framework. This primarily includes integer types, and it can optionally
3282 /// include pointer types if the ScalarEvolution class has access to
3283 /// target-specific information.
3284 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3285   // Integers and pointers are always SCEVable.
3286   return Ty->isIntegerTy() || Ty->isPointerTy();
3287 }
3288 
3289 /// Return the size in bits of the specified type, for which isSCEVable must
3290 /// return true.
3291 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3292   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3293   return getDataLayout().getTypeSizeInBits(Ty);
3294 }
3295 
3296 /// Return a type with the same bitwidth as the given type and which represents
3297 /// how SCEV will treat the given type, for which isSCEVable must return
3298 /// true. For pointer types, this is the pointer-sized integer type.
3299 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3300   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3301 
3302   if (Ty->isIntegerTy())
3303     return Ty;
3304 
3305   // The only other support type is pointer.
3306   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3307   return getDataLayout().getIntPtrType(Ty);
3308 }
3309 
3310 const SCEV *ScalarEvolution::getCouldNotCompute() {
3311   return CouldNotCompute.get();
3312 }
3313 
3314 
3315 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3316   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3317   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3318   // is set iff if find such SCEVUnknown.
3319   //
3320   struct FindInvalidSCEVUnknown {
3321     bool FindOne;
3322     FindInvalidSCEVUnknown() { FindOne = false; }
3323     bool follow(const SCEV *S) {
3324       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3325       case scConstant:
3326         return false;
3327       case scUnknown:
3328         if (!cast<SCEVUnknown>(S)->getValue())
3329           FindOne = true;
3330         return false;
3331       default:
3332         return true;
3333       }
3334     }
3335     bool isDone() const { return FindOne; }
3336   };
3337 
3338   FindInvalidSCEVUnknown F;
3339   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3340   ST.visitAll(S);
3341 
3342   return !F.FindOne;
3343 }
3344 
3345 namespace {
3346 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3347 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
3348 // iff if such sub scAddRecExpr type SCEV is found.
3349 struct FindAddRecurrence {
3350   bool FoundOne;
3351   FindAddRecurrence() : FoundOne(false) {}
3352 
3353   bool follow(const SCEV *S) {
3354     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3355     case scAddRecExpr:
3356       FoundOne = true;
3357     case scConstant:
3358     case scUnknown:
3359     case scCouldNotCompute:
3360       return false;
3361     default:
3362       return true;
3363     }
3364   }
3365   bool isDone() const { return FoundOne; }
3366 };
3367 }
3368 
3369 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3370   HasRecMapType::iterator I = HasRecMap.find_as(S);
3371   if (I != HasRecMap.end())
3372     return I->second;
3373 
3374   FindAddRecurrence F;
3375   SCEVTraversal<FindAddRecurrence> ST(F);
3376   ST.visitAll(S);
3377   HasRecMap.insert({S, F.FoundOne});
3378   return F.FoundOne;
3379 }
3380 
3381 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3382 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3383 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3384 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3385   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3386   if (!Add)
3387     return {S, nullptr};
3388 
3389   if (Add->getNumOperands() != 2)
3390     return {S, nullptr};
3391 
3392   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3393   if (!ConstOp)
3394     return {S, nullptr};
3395 
3396   return {Add->getOperand(1), ConstOp->getValue()};
3397 }
3398 
3399 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3400 /// by the value and offset from any ValueOffsetPair in the set.
3401 SetVector<ScalarEvolution::ValueOffsetPair> *
3402 ScalarEvolution::getSCEVValues(const SCEV *S) {
3403   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3404   if (SI == ExprValueMap.end())
3405     return nullptr;
3406 #ifndef NDEBUG
3407   if (VerifySCEVMap) {
3408     // Check there is no dangling Value in the set returned.
3409     for (const auto &VE : SI->second)
3410       assert(ValueExprMap.count(VE.first));
3411   }
3412 #endif
3413   return &SI->second;
3414 }
3415 
3416 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3417 /// cannot be used separately. eraseValueFromMap should be used to remove
3418 /// V from ValueExprMap and ExprValueMap at the same time.
3419 void ScalarEvolution::eraseValueFromMap(Value *V) {
3420   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3421   if (I != ValueExprMap.end()) {
3422     const SCEV *S = I->second;
3423     // Remove {V, 0} from the set of ExprValueMap[S]
3424     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3425       SV->remove({V, nullptr});
3426 
3427     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3428     const SCEV *Stripped;
3429     ConstantInt *Offset;
3430     std::tie(Stripped, Offset) = splitAddExpr(S);
3431     if (Offset != nullptr) {
3432       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3433         SV->remove({V, Offset});
3434     }
3435     ValueExprMap.erase(V);
3436   }
3437 }
3438 
3439 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3440 /// create a new one.
3441 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3442   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3443 
3444   const SCEV *S = getExistingSCEV(V);
3445   if (S == nullptr) {
3446     S = createSCEV(V);
3447     // During PHI resolution, it is possible to create two SCEVs for the same
3448     // V, so it is needed to double check whether V->S is inserted into
3449     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3450     std::pair<ValueExprMapType::iterator, bool> Pair =
3451         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3452     if (Pair.second) {
3453       ExprValueMap[S].insert({V, nullptr});
3454 
3455       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3456       // ExprValueMap.
3457       const SCEV *Stripped = S;
3458       ConstantInt *Offset = nullptr;
3459       std::tie(Stripped, Offset) = splitAddExpr(S);
3460       // If stripped is SCEVUnknown, don't bother to save
3461       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3462       // increase the complexity of the expansion code.
3463       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3464       // because it may generate add/sub instead of GEP in SCEV expansion.
3465       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3466           !isa<GetElementPtrInst>(V))
3467         ExprValueMap[Stripped].insert({V, Offset});
3468     }
3469   }
3470   return S;
3471 }
3472 
3473 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3474   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3475 
3476   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3477   if (I != ValueExprMap.end()) {
3478     const SCEV *S = I->second;
3479     if (checkValidity(S))
3480       return S;
3481     eraseValueFromMap(V);
3482     forgetMemoizedResults(S);
3483   }
3484   return nullptr;
3485 }
3486 
3487 /// Return a SCEV corresponding to -V = -1*V
3488 ///
3489 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3490                                              SCEV::NoWrapFlags Flags) {
3491   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3492     return getConstant(
3493                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3494 
3495   Type *Ty = V->getType();
3496   Ty = getEffectiveSCEVType(Ty);
3497   return getMulExpr(
3498       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3499 }
3500 
3501 /// Return a SCEV corresponding to ~V = -1-V
3502 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3503   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3504     return getConstant(
3505                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3506 
3507   Type *Ty = V->getType();
3508   Ty = getEffectiveSCEVType(Ty);
3509   const SCEV *AllOnes =
3510                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3511   return getMinusSCEV(AllOnes, V);
3512 }
3513 
3514 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3515                                           SCEV::NoWrapFlags Flags) {
3516   // Fast path: X - X --> 0.
3517   if (LHS == RHS)
3518     return getZero(LHS->getType());
3519 
3520   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3521   // makes it so that we cannot make much use of NUW.
3522   auto AddFlags = SCEV::FlagAnyWrap;
3523   const bool RHSIsNotMinSigned =
3524       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3525   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3526     // Let M be the minimum representable signed value. Then (-1)*RHS
3527     // signed-wraps if and only if RHS is M. That can happen even for
3528     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3529     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3530     // (-1)*RHS, we need to prove that RHS != M.
3531     //
3532     // If LHS is non-negative and we know that LHS - RHS does not
3533     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3534     // either by proving that RHS > M or that LHS >= 0.
3535     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3536       AddFlags = SCEV::FlagNSW;
3537     }
3538   }
3539 
3540   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3541   // RHS is NSW and LHS >= 0.
3542   //
3543   // The difficulty here is that the NSW flag may have been proven
3544   // relative to a loop that is to be found in a recurrence in LHS and
3545   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3546   // larger scope than intended.
3547   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3548 
3549   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3550 }
3551 
3552 const SCEV *
3553 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3554   Type *SrcTy = V->getType();
3555   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3556          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3557          "Cannot truncate or zero extend with non-integer arguments!");
3558   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3559     return V;  // No conversion
3560   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3561     return getTruncateExpr(V, Ty);
3562   return getZeroExtendExpr(V, Ty);
3563 }
3564 
3565 const SCEV *
3566 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3567                                          Type *Ty) {
3568   Type *SrcTy = V->getType();
3569   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3570          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3571          "Cannot truncate or zero extend with non-integer arguments!");
3572   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3573     return V;  // No conversion
3574   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3575     return getTruncateExpr(V, Ty);
3576   return getSignExtendExpr(V, Ty);
3577 }
3578 
3579 const SCEV *
3580 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3581   Type *SrcTy = V->getType();
3582   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3583          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3584          "Cannot noop or zero extend with non-integer arguments!");
3585   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3586          "getNoopOrZeroExtend cannot truncate!");
3587   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3588     return V;  // No conversion
3589   return getZeroExtendExpr(V, Ty);
3590 }
3591 
3592 const SCEV *
3593 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3594   Type *SrcTy = V->getType();
3595   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3596          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3597          "Cannot noop or sign extend with non-integer arguments!");
3598   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3599          "getNoopOrSignExtend cannot truncate!");
3600   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3601     return V;  // No conversion
3602   return getSignExtendExpr(V, Ty);
3603 }
3604 
3605 const SCEV *
3606 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3607   Type *SrcTy = V->getType();
3608   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3609          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3610          "Cannot noop or any extend with non-integer arguments!");
3611   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3612          "getNoopOrAnyExtend cannot truncate!");
3613   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3614     return V;  // No conversion
3615   return getAnyExtendExpr(V, Ty);
3616 }
3617 
3618 const SCEV *
3619 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3620   Type *SrcTy = V->getType();
3621   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3622          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3623          "Cannot truncate or noop with non-integer arguments!");
3624   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3625          "getTruncateOrNoop cannot extend!");
3626   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3627     return V;  // No conversion
3628   return getTruncateExpr(V, Ty);
3629 }
3630 
3631 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3632                                                         const SCEV *RHS) {
3633   const SCEV *PromotedLHS = LHS;
3634   const SCEV *PromotedRHS = RHS;
3635 
3636   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3637     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3638   else
3639     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3640 
3641   return getUMaxExpr(PromotedLHS, PromotedRHS);
3642 }
3643 
3644 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3645                                                         const SCEV *RHS) {
3646   const SCEV *PromotedLHS = LHS;
3647   const SCEV *PromotedRHS = RHS;
3648 
3649   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3650     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3651   else
3652     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3653 
3654   return getUMinExpr(PromotedLHS, PromotedRHS);
3655 }
3656 
3657 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3658   // A pointer operand may evaluate to a nonpointer expression, such as null.
3659   if (!V->getType()->isPointerTy())
3660     return V;
3661 
3662   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3663     return getPointerBase(Cast->getOperand());
3664   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3665     const SCEV *PtrOp = nullptr;
3666     for (const SCEV *NAryOp : NAry->operands()) {
3667       if (NAryOp->getType()->isPointerTy()) {
3668         // Cannot find the base of an expression with multiple pointer operands.
3669         if (PtrOp)
3670           return V;
3671         PtrOp = NAryOp;
3672       }
3673     }
3674     if (!PtrOp)
3675       return V;
3676     return getPointerBase(PtrOp);
3677   }
3678   return V;
3679 }
3680 
3681 /// Push users of the given Instruction onto the given Worklist.
3682 static void
3683 PushDefUseChildren(Instruction *I,
3684                    SmallVectorImpl<Instruction *> &Worklist) {
3685   // Push the def-use children onto the Worklist stack.
3686   for (User *U : I->users())
3687     Worklist.push_back(cast<Instruction>(U));
3688 }
3689 
3690 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3691   SmallVector<Instruction *, 16> Worklist;
3692   PushDefUseChildren(PN, Worklist);
3693 
3694   SmallPtrSet<Instruction *, 8> Visited;
3695   Visited.insert(PN);
3696   while (!Worklist.empty()) {
3697     Instruction *I = Worklist.pop_back_val();
3698     if (!Visited.insert(I).second)
3699       continue;
3700 
3701     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3702     if (It != ValueExprMap.end()) {
3703       const SCEV *Old = It->second;
3704 
3705       // Short-circuit the def-use traversal if the symbolic name
3706       // ceases to appear in expressions.
3707       if (Old != SymName && !hasOperand(Old, SymName))
3708         continue;
3709 
3710       // SCEVUnknown for a PHI either means that it has an unrecognized
3711       // structure, it's a PHI that's in the progress of being computed
3712       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3713       // additional loop trip count information isn't going to change anything.
3714       // In the second case, createNodeForPHI will perform the necessary
3715       // updates on its own when it gets to that point. In the third, we do
3716       // want to forget the SCEVUnknown.
3717       if (!isa<PHINode>(I) ||
3718           !isa<SCEVUnknown>(Old) ||
3719           (I != PN && Old == SymName)) {
3720         eraseValueFromMap(It->first);
3721         forgetMemoizedResults(Old);
3722       }
3723     }
3724 
3725     PushDefUseChildren(I, Worklist);
3726   }
3727 }
3728 
3729 namespace {
3730 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3731 public:
3732   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3733                              ScalarEvolution &SE) {
3734     SCEVInitRewriter Rewriter(L, SE);
3735     const SCEV *Result = Rewriter.visit(S);
3736     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3737   }
3738 
3739   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3740       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3741 
3742   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3743     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3744       Valid = false;
3745     return Expr;
3746   }
3747 
3748   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3749     // Only allow AddRecExprs for this loop.
3750     if (Expr->getLoop() == L)
3751       return Expr->getStart();
3752     Valid = false;
3753     return Expr;
3754   }
3755 
3756   bool isValid() { return Valid; }
3757 
3758 private:
3759   const Loop *L;
3760   bool Valid;
3761 };
3762 
3763 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3764 public:
3765   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3766                              ScalarEvolution &SE) {
3767     SCEVShiftRewriter Rewriter(L, SE);
3768     const SCEV *Result = Rewriter.visit(S);
3769     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3770   }
3771 
3772   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3773       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3774 
3775   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3776     // Only allow AddRecExprs for this loop.
3777     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3778       Valid = false;
3779     return Expr;
3780   }
3781 
3782   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3783     if (Expr->getLoop() == L && Expr->isAffine())
3784       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3785     Valid = false;
3786     return Expr;
3787   }
3788   bool isValid() { return Valid; }
3789 
3790 private:
3791   const Loop *L;
3792   bool Valid;
3793 };
3794 } // end anonymous namespace
3795 
3796 SCEV::NoWrapFlags
3797 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3798   if (!AR->isAffine())
3799     return SCEV::FlagAnyWrap;
3800 
3801   typedef OverflowingBinaryOperator OBO;
3802   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3803 
3804   if (!AR->hasNoSignedWrap()) {
3805     ConstantRange AddRecRange = getSignedRange(AR);
3806     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3807 
3808     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3809         Instruction::Add, IncRange, OBO::NoSignedWrap);
3810     if (NSWRegion.contains(AddRecRange))
3811       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3812   }
3813 
3814   if (!AR->hasNoUnsignedWrap()) {
3815     ConstantRange AddRecRange = getUnsignedRange(AR);
3816     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3817 
3818     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3819         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3820     if (NUWRegion.contains(AddRecRange))
3821       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3822   }
3823 
3824   return Result;
3825 }
3826 
3827 namespace {
3828 /// Represents an abstract binary operation.  This may exist as a
3829 /// normal instruction or constant expression, or may have been
3830 /// derived from an expression tree.
3831 struct BinaryOp {
3832   unsigned Opcode;
3833   Value *LHS;
3834   Value *RHS;
3835   bool IsNSW;
3836   bool IsNUW;
3837 
3838   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3839   /// constant expression.
3840   Operator *Op;
3841 
3842   explicit BinaryOp(Operator *Op)
3843       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3844         IsNSW(false), IsNUW(false), Op(Op) {
3845     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3846       IsNSW = OBO->hasNoSignedWrap();
3847       IsNUW = OBO->hasNoUnsignedWrap();
3848     }
3849   }
3850 
3851   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3852                     bool IsNUW = false)
3853       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3854         Op(nullptr) {}
3855 };
3856 }
3857 
3858 
3859 /// Try to map \p V into a BinaryOp, and return \c None on failure.
3860 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
3861   auto *Op = dyn_cast<Operator>(V);
3862   if (!Op)
3863     return None;
3864 
3865   // Implementation detail: all the cleverness here should happen without
3866   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3867   // SCEV expressions when possible, and we should not break that.
3868 
3869   switch (Op->getOpcode()) {
3870   case Instruction::Add:
3871   case Instruction::Sub:
3872   case Instruction::Mul:
3873   case Instruction::UDiv:
3874   case Instruction::And:
3875   case Instruction::Or:
3876   case Instruction::AShr:
3877   case Instruction::Shl:
3878     return BinaryOp(Op);
3879 
3880   case Instruction::Xor:
3881     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3882       // If the RHS of the xor is a signbit, then this is just an add.
3883       // Instcombine turns add of signbit into xor as a strength reduction step.
3884       if (RHSC->getValue().isSignBit())
3885         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3886     return BinaryOp(Op);
3887 
3888   case Instruction::LShr:
3889     // Turn logical shift right of a constant into a unsigned divide.
3890     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3891       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3892 
3893       // If the shift count is not less than the bitwidth, the result of
3894       // the shift is undefined. Don't try to analyze it, because the
3895       // resolution chosen here may differ from the resolution chosen in
3896       // other parts of the compiler.
3897       if (SA->getValue().ult(BitWidth)) {
3898         Constant *X =
3899             ConstantInt::get(SA->getContext(),
3900                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3901         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3902       }
3903     }
3904     return BinaryOp(Op);
3905 
3906   case Instruction::ExtractValue: {
3907     auto *EVI = cast<ExtractValueInst>(Op);
3908     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3909       break;
3910 
3911     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3912     if (!CI)
3913       break;
3914 
3915     if (auto *F = CI->getCalledFunction())
3916       switch (F->getIntrinsicID()) {
3917       case Intrinsic::sadd_with_overflow:
3918       case Intrinsic::uadd_with_overflow: {
3919         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3920           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3921                           CI->getArgOperand(1));
3922 
3923         // Now that we know that all uses of the arithmetic-result component of
3924         // CI are guarded by the overflow check, we can go ahead and pretend
3925         // that the arithmetic is non-overflowing.
3926         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3927           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3928                           CI->getArgOperand(1), /* IsNSW = */ true,
3929                           /* IsNUW = */ false);
3930         else
3931           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3932                           CI->getArgOperand(1), /* IsNSW = */ false,
3933                           /* IsNUW*/ true);
3934       }
3935 
3936       case Intrinsic::ssub_with_overflow:
3937       case Intrinsic::usub_with_overflow:
3938         return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3939                         CI->getArgOperand(1));
3940 
3941       case Intrinsic::smul_with_overflow:
3942       case Intrinsic::umul_with_overflow:
3943         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3944                         CI->getArgOperand(1));
3945       default:
3946         break;
3947       }
3948   }
3949 
3950   default:
3951     break;
3952   }
3953 
3954   return None;
3955 }
3956 
3957 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3958   const Loop *L = LI.getLoopFor(PN->getParent());
3959   if (!L || L->getHeader() != PN->getParent())
3960     return nullptr;
3961 
3962   // The loop may have multiple entrances or multiple exits; we can analyze
3963   // this phi as an addrec if it has a unique entry value and a unique
3964   // backedge value.
3965   Value *BEValueV = nullptr, *StartValueV = nullptr;
3966   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3967     Value *V = PN->getIncomingValue(i);
3968     if (L->contains(PN->getIncomingBlock(i))) {
3969       if (!BEValueV) {
3970         BEValueV = V;
3971       } else if (BEValueV != V) {
3972         BEValueV = nullptr;
3973         break;
3974       }
3975     } else if (!StartValueV) {
3976       StartValueV = V;
3977     } else if (StartValueV != V) {
3978       StartValueV = nullptr;
3979       break;
3980     }
3981   }
3982   if (BEValueV && StartValueV) {
3983     // While we are analyzing this PHI node, handle its value symbolically.
3984     const SCEV *SymbolicName = getUnknown(PN);
3985     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3986            "PHI node already processed?");
3987     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3988 
3989     // Using this symbolic name for the PHI, analyze the value coming around
3990     // the back-edge.
3991     const SCEV *BEValue = getSCEV(BEValueV);
3992 
3993     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3994     // has a special value for the first iteration of the loop.
3995 
3996     // If the value coming around the backedge is an add with the symbolic
3997     // value we just inserted, then we found a simple induction variable!
3998     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3999       // If there is a single occurrence of the symbolic value, replace it
4000       // with a recurrence.
4001       unsigned FoundIndex = Add->getNumOperands();
4002       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4003         if (Add->getOperand(i) == SymbolicName)
4004           if (FoundIndex == e) {
4005             FoundIndex = i;
4006             break;
4007           }
4008 
4009       if (FoundIndex != Add->getNumOperands()) {
4010         // Create an add with everything but the specified operand.
4011         SmallVector<const SCEV *, 8> Ops;
4012         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4013           if (i != FoundIndex)
4014             Ops.push_back(Add->getOperand(i));
4015         const SCEV *Accum = getAddExpr(Ops);
4016 
4017         // This is not a valid addrec if the step amount is varying each
4018         // loop iteration, but is not itself an addrec in this loop.
4019         if (isLoopInvariant(Accum, L) ||
4020             (isa<SCEVAddRecExpr>(Accum) &&
4021              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4022           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4023 
4024           if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4025             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4026               if (BO->IsNUW)
4027                 Flags = setFlags(Flags, SCEV::FlagNUW);
4028               if (BO->IsNSW)
4029                 Flags = setFlags(Flags, SCEV::FlagNSW);
4030             }
4031           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4032             // If the increment is an inbounds GEP, then we know the address
4033             // space cannot be wrapped around. We cannot make any guarantee
4034             // about signed or unsigned overflow because pointers are
4035             // unsigned but we may have a negative index from the base
4036             // pointer. We can guarantee that no unsigned wrap occurs if the
4037             // indices form a positive value.
4038             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4039               Flags = setFlags(Flags, SCEV::FlagNW);
4040 
4041               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4042               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4043                 Flags = setFlags(Flags, SCEV::FlagNUW);
4044             }
4045 
4046             // We cannot transfer nuw and nsw flags from subtraction
4047             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4048             // for instance.
4049           }
4050 
4051           const SCEV *StartVal = getSCEV(StartValueV);
4052           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4053 
4054           // Okay, for the entire analysis of this edge we assumed the PHI
4055           // to be symbolic.  We now need to go back and purge all of the
4056           // entries for the scalars that use the symbolic expression.
4057           forgetSymbolicName(PN, SymbolicName);
4058           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4059 
4060           // We can add Flags to the post-inc expression only if we
4061           // know that it us *undefined behavior* for BEValueV to
4062           // overflow.
4063           if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4064             if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4065               (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4066 
4067           return PHISCEV;
4068         }
4069       }
4070     } else {
4071       // Otherwise, this could be a loop like this:
4072       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4073       // In this case, j = {1,+,1}  and BEValue is j.
4074       // Because the other in-value of i (0) fits the evolution of BEValue
4075       // i really is an addrec evolution.
4076       //
4077       // We can generalize this saying that i is the shifted value of BEValue
4078       // by one iteration:
4079       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4080       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4081       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4082       if (Shifted != getCouldNotCompute() &&
4083           Start != getCouldNotCompute()) {
4084         const SCEV *StartVal = getSCEV(StartValueV);
4085         if (Start == StartVal) {
4086           // Okay, for the entire analysis of this edge we assumed the PHI
4087           // to be symbolic.  We now need to go back and purge all of the
4088           // entries for the scalars that use the symbolic expression.
4089           forgetSymbolicName(PN, SymbolicName);
4090           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4091           return Shifted;
4092         }
4093       }
4094     }
4095 
4096     // Remove the temporary PHI node SCEV that has been inserted while intending
4097     // to create an AddRecExpr for this PHI node. We can not keep this temporary
4098     // as it will prevent later (possibly simpler) SCEV expressions to be added
4099     // to the ValueExprMap.
4100     eraseValueFromMap(PN);
4101   }
4102 
4103   return nullptr;
4104 }
4105 
4106 // Checks if the SCEV S is available at BB.  S is considered available at BB
4107 // if S can be materialized at BB without introducing a fault.
4108 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4109                                BasicBlock *BB) {
4110   struct CheckAvailable {
4111     bool TraversalDone = false;
4112     bool Available = true;
4113 
4114     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4115     BasicBlock *BB = nullptr;
4116     DominatorTree &DT;
4117 
4118     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4119       : L(L), BB(BB), DT(DT) {}
4120 
4121     bool setUnavailable() {
4122       TraversalDone = true;
4123       Available = false;
4124       return false;
4125     }
4126 
4127     bool follow(const SCEV *S) {
4128       switch (S->getSCEVType()) {
4129       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4130       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4131         // These expressions are available if their operand(s) is/are.
4132         return true;
4133 
4134       case scAddRecExpr: {
4135         // We allow add recurrences that are on the loop BB is in, or some
4136         // outer loop.  This guarantees availability because the value of the
4137         // add recurrence at BB is simply the "current" value of the induction
4138         // variable.  We can relax this in the future; for instance an add
4139         // recurrence on a sibling dominating loop is also available at BB.
4140         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4141         if (L && (ARLoop == L || ARLoop->contains(L)))
4142           return true;
4143 
4144         return setUnavailable();
4145       }
4146 
4147       case scUnknown: {
4148         // For SCEVUnknown, we check for simple dominance.
4149         const auto *SU = cast<SCEVUnknown>(S);
4150         Value *V = SU->getValue();
4151 
4152         if (isa<Argument>(V))
4153           return false;
4154 
4155         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4156           return false;
4157 
4158         return setUnavailable();
4159       }
4160 
4161       case scUDivExpr:
4162       case scCouldNotCompute:
4163         // We do not try to smart about these at all.
4164         return setUnavailable();
4165       }
4166       llvm_unreachable("switch should be fully covered!");
4167     }
4168 
4169     bool isDone() { return TraversalDone; }
4170   };
4171 
4172   CheckAvailable CA(L, BB, DT);
4173   SCEVTraversal<CheckAvailable> ST(CA);
4174 
4175   ST.visitAll(S);
4176   return CA.Available;
4177 }
4178 
4179 // Try to match a control flow sequence that branches out at BI and merges back
4180 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4181 // match.
4182 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4183                           Value *&C, Value *&LHS, Value *&RHS) {
4184   C = BI->getCondition();
4185 
4186   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4187   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4188 
4189   if (!LeftEdge.isSingleEdge())
4190     return false;
4191 
4192   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4193 
4194   Use &LeftUse = Merge->getOperandUse(0);
4195   Use &RightUse = Merge->getOperandUse(1);
4196 
4197   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4198     LHS = LeftUse;
4199     RHS = RightUse;
4200     return true;
4201   }
4202 
4203   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4204     LHS = RightUse;
4205     RHS = LeftUse;
4206     return true;
4207   }
4208 
4209   return false;
4210 }
4211 
4212 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4213   auto IsReachable =
4214       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
4215   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
4216     const Loop *L = LI.getLoopFor(PN->getParent());
4217 
4218     // We don't want to break LCSSA, even in a SCEV expression tree.
4219     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4220       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4221         return nullptr;
4222 
4223     // Try to match
4224     //
4225     //  br %cond, label %left, label %right
4226     // left:
4227     //  br label %merge
4228     // right:
4229     //  br label %merge
4230     // merge:
4231     //  V = phi [ %x, %left ], [ %y, %right ]
4232     //
4233     // as "select %cond, %x, %y"
4234 
4235     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4236     assert(IDom && "At least the entry block should dominate PN");
4237 
4238     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4239     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4240 
4241     if (BI && BI->isConditional() &&
4242         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4243         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4244         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4245       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4246   }
4247 
4248   return nullptr;
4249 }
4250 
4251 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4252   if (const SCEV *S = createAddRecFromPHI(PN))
4253     return S;
4254 
4255   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4256     return S;
4257 
4258   // If the PHI has a single incoming value, follow that value, unless the
4259   // PHI's incoming blocks are in a different loop, in which case doing so
4260   // risks breaking LCSSA form. Instcombine would normally zap these, but
4261   // it doesn't have DominatorTree information, so it may miss cases.
4262   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4263     if (LI.replacementPreservesLCSSAForm(PN, V))
4264       return getSCEV(V);
4265 
4266   // If it's not a loop phi, we can't handle it yet.
4267   return getUnknown(PN);
4268 }
4269 
4270 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4271                                                       Value *Cond,
4272                                                       Value *TrueVal,
4273                                                       Value *FalseVal) {
4274   // Handle "constant" branch or select. This can occur for instance when a
4275   // loop pass transforms an inner loop and moves on to process the outer loop.
4276   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4277     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4278 
4279   // Try to match some simple smax or umax patterns.
4280   auto *ICI = dyn_cast<ICmpInst>(Cond);
4281   if (!ICI)
4282     return getUnknown(I);
4283 
4284   Value *LHS = ICI->getOperand(0);
4285   Value *RHS = ICI->getOperand(1);
4286 
4287   switch (ICI->getPredicate()) {
4288   case ICmpInst::ICMP_SLT:
4289   case ICmpInst::ICMP_SLE:
4290     std::swap(LHS, RHS);
4291     LLVM_FALLTHROUGH;
4292   case ICmpInst::ICMP_SGT:
4293   case ICmpInst::ICMP_SGE:
4294     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4295     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4296     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4297       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4298       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4299       const SCEV *LA = getSCEV(TrueVal);
4300       const SCEV *RA = getSCEV(FalseVal);
4301       const SCEV *LDiff = getMinusSCEV(LA, LS);
4302       const SCEV *RDiff = getMinusSCEV(RA, RS);
4303       if (LDiff == RDiff)
4304         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4305       LDiff = getMinusSCEV(LA, RS);
4306       RDiff = getMinusSCEV(RA, LS);
4307       if (LDiff == RDiff)
4308         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4309     }
4310     break;
4311   case ICmpInst::ICMP_ULT:
4312   case ICmpInst::ICMP_ULE:
4313     std::swap(LHS, RHS);
4314     LLVM_FALLTHROUGH;
4315   case ICmpInst::ICMP_UGT:
4316   case ICmpInst::ICMP_UGE:
4317     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4318     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4319     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4320       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4321       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4322       const SCEV *LA = getSCEV(TrueVal);
4323       const SCEV *RA = getSCEV(FalseVal);
4324       const SCEV *LDiff = getMinusSCEV(LA, LS);
4325       const SCEV *RDiff = getMinusSCEV(RA, RS);
4326       if (LDiff == RDiff)
4327         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4328       LDiff = getMinusSCEV(LA, RS);
4329       RDiff = getMinusSCEV(RA, LS);
4330       if (LDiff == RDiff)
4331         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4332     }
4333     break;
4334   case ICmpInst::ICMP_NE:
4335     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4336     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4337         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4338       const SCEV *One = getOne(I->getType());
4339       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4340       const SCEV *LA = getSCEV(TrueVal);
4341       const SCEV *RA = getSCEV(FalseVal);
4342       const SCEV *LDiff = getMinusSCEV(LA, LS);
4343       const SCEV *RDiff = getMinusSCEV(RA, One);
4344       if (LDiff == RDiff)
4345         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4346     }
4347     break;
4348   case ICmpInst::ICMP_EQ:
4349     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4350     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4351         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4352       const SCEV *One = getOne(I->getType());
4353       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4354       const SCEV *LA = getSCEV(TrueVal);
4355       const SCEV *RA = getSCEV(FalseVal);
4356       const SCEV *LDiff = getMinusSCEV(LA, One);
4357       const SCEV *RDiff = getMinusSCEV(RA, LS);
4358       if (LDiff == RDiff)
4359         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4360     }
4361     break;
4362   default:
4363     break;
4364   }
4365 
4366   return getUnknown(I);
4367 }
4368 
4369 /// Expand GEP instructions into add and multiply operations. This allows them
4370 /// to be analyzed by regular SCEV code.
4371 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4372   // Don't attempt to analyze GEPs over unsized objects.
4373   if (!GEP->getSourceElementType()->isSized())
4374     return getUnknown(GEP);
4375 
4376   SmallVector<const SCEV *, 4> IndexExprs;
4377   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4378     IndexExprs.push_back(getSCEV(*Index));
4379   return getGEPExpr(GEP->getSourceElementType(),
4380                     getSCEV(GEP->getPointerOperand()),
4381                     IndexExprs, GEP->isInBounds());
4382 }
4383 
4384 uint32_t
4385 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4386   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4387     return C->getAPInt().countTrailingZeros();
4388 
4389   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4390     return std::min(GetMinTrailingZeros(T->getOperand()),
4391                     (uint32_t)getTypeSizeInBits(T->getType()));
4392 
4393   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4394     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4395     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4396              getTypeSizeInBits(E->getType()) : OpRes;
4397   }
4398 
4399   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4400     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4401     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4402              getTypeSizeInBits(E->getType()) : OpRes;
4403   }
4404 
4405   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4406     // The result is the min of all operands results.
4407     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4408     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4409       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4410     return MinOpRes;
4411   }
4412 
4413   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4414     // The result is the sum of all operands results.
4415     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4416     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4417     for (unsigned i = 1, e = M->getNumOperands();
4418          SumOpRes != BitWidth && i != e; ++i)
4419       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4420                           BitWidth);
4421     return SumOpRes;
4422   }
4423 
4424   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4425     // The result is the min of all operands results.
4426     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4427     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4428       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4429     return MinOpRes;
4430   }
4431 
4432   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4433     // The result is the min of all operands results.
4434     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4435     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4436       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4437     return MinOpRes;
4438   }
4439 
4440   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4441     // The result is the min of all operands results.
4442     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4443     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4444       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4445     return MinOpRes;
4446   }
4447 
4448   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4449     // For a SCEVUnknown, ask ValueTracking.
4450     unsigned BitWidth = getTypeSizeInBits(U->getType());
4451     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4452     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4453                      nullptr, &DT);
4454     return Zeros.countTrailingOnes();
4455   }
4456 
4457   // SCEVUDivExpr
4458   return 0;
4459 }
4460 
4461 /// Helper method to assign a range to V from metadata present in the IR.
4462 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4463   if (Instruction *I = dyn_cast<Instruction>(V))
4464     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4465       return getConstantRangeFromMetadata(*MD);
4466 
4467   return None;
4468 }
4469 
4470 /// Determine the range for a particular SCEV.  If SignHint is
4471 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4472 /// with a "cleaner" unsigned (resp. signed) representation.
4473 ConstantRange
4474 ScalarEvolution::getRange(const SCEV *S,
4475                           ScalarEvolution::RangeSignHint SignHint) {
4476   DenseMap<const SCEV *, ConstantRange> &Cache =
4477       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4478                                                        : SignedRanges;
4479 
4480   // See if we've computed this range already.
4481   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4482   if (I != Cache.end())
4483     return I->second;
4484 
4485   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4486     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4487 
4488   unsigned BitWidth = getTypeSizeInBits(S->getType());
4489   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4490 
4491   // If the value has known zeros, the maximum value will have those known zeros
4492   // as well.
4493   uint32_t TZ = GetMinTrailingZeros(S);
4494   if (TZ != 0) {
4495     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4496       ConservativeResult =
4497           ConstantRange(APInt::getMinValue(BitWidth),
4498                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4499     else
4500       ConservativeResult = ConstantRange(
4501           APInt::getSignedMinValue(BitWidth),
4502           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4503   }
4504 
4505   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4506     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4507     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4508       X = X.add(getRange(Add->getOperand(i), SignHint));
4509     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4510   }
4511 
4512   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4513     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4514     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4515       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4516     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4517   }
4518 
4519   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4520     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4521     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4522       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4523     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4524   }
4525 
4526   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4527     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4528     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4529       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4530     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4531   }
4532 
4533   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4534     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4535     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4536     return setRange(UDiv, SignHint,
4537                     ConservativeResult.intersectWith(X.udiv(Y)));
4538   }
4539 
4540   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4541     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4542     return setRange(ZExt, SignHint,
4543                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4544   }
4545 
4546   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4547     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4548     return setRange(SExt, SignHint,
4549                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4550   }
4551 
4552   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4553     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4554     return setRange(Trunc, SignHint,
4555                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4556   }
4557 
4558   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4559     // If there's no unsigned wrap, the value will never be less than its
4560     // initial value.
4561     if (AddRec->hasNoUnsignedWrap())
4562       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4563         if (!C->getValue()->isZero())
4564           ConservativeResult = ConservativeResult.intersectWith(
4565               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4566 
4567     // If there's no signed wrap, and all the operands have the same sign or
4568     // zero, the value won't ever change sign.
4569     if (AddRec->hasNoSignedWrap()) {
4570       bool AllNonNeg = true;
4571       bool AllNonPos = true;
4572       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4573         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4574         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4575       }
4576       if (AllNonNeg)
4577         ConservativeResult = ConservativeResult.intersectWith(
4578           ConstantRange(APInt(BitWidth, 0),
4579                         APInt::getSignedMinValue(BitWidth)));
4580       else if (AllNonPos)
4581         ConservativeResult = ConservativeResult.intersectWith(
4582           ConstantRange(APInt::getSignedMinValue(BitWidth),
4583                         APInt(BitWidth, 1)));
4584     }
4585 
4586     // TODO: non-affine addrec
4587     if (AddRec->isAffine()) {
4588       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4589       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4590           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4591         auto RangeFromAffine = getRangeForAffineAR(
4592             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4593             BitWidth);
4594         if (!RangeFromAffine.isFullSet())
4595           ConservativeResult =
4596               ConservativeResult.intersectWith(RangeFromAffine);
4597 
4598         auto RangeFromFactoring = getRangeViaFactoring(
4599             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4600             BitWidth);
4601         if (!RangeFromFactoring.isFullSet())
4602           ConservativeResult =
4603               ConservativeResult.intersectWith(RangeFromFactoring);
4604       }
4605     }
4606 
4607     return setRange(AddRec, SignHint, ConservativeResult);
4608   }
4609 
4610   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4611     // Check if the IR explicitly contains !range metadata.
4612     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4613     if (MDRange.hasValue())
4614       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4615 
4616     // Split here to avoid paying the compile-time cost of calling both
4617     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4618     // if needed.
4619     const DataLayout &DL = getDataLayout();
4620     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4621       // For a SCEVUnknown, ask ValueTracking.
4622       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4623       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4624       if (Ones != ~Zeros + 1)
4625         ConservativeResult =
4626             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4627     } else {
4628       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4629              "generalize as needed!");
4630       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4631       if (NS > 1)
4632         ConservativeResult = ConservativeResult.intersectWith(
4633             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4634                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4635     }
4636 
4637     return setRange(U, SignHint, ConservativeResult);
4638   }
4639 
4640   return setRange(S, SignHint, ConservativeResult);
4641 }
4642 
4643 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4644                                                    const SCEV *Step,
4645                                                    const SCEV *MaxBECount,
4646                                                    unsigned BitWidth) {
4647   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4648          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4649          "Precondition!");
4650 
4651   ConstantRange Result(BitWidth, /* isFullSet = */ true);
4652 
4653   // Check for overflow.  This must be done with ConstantRange arithmetic
4654   // because we could be called from within the ScalarEvolution overflow
4655   // checking code.
4656 
4657   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4658   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4659   ConstantRange ZExtMaxBECountRange =
4660       MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4661 
4662   ConstantRange StepSRange = getSignedRange(Step);
4663   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4664 
4665   ConstantRange StartURange = getUnsignedRange(Start);
4666   ConstantRange EndURange =
4667       StartURange.add(MaxBECountRange.multiply(StepSRange));
4668 
4669   // Check for unsigned overflow.
4670   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4671   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4672   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4673       ZExtEndURange) {
4674     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4675                                EndURange.getUnsignedMin());
4676     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4677                                EndURange.getUnsignedMax());
4678     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4679     if (!IsFullRange)
4680       Result =
4681           Result.intersectWith(ConstantRange(Min, Max + 1));
4682   }
4683 
4684   ConstantRange StartSRange = getSignedRange(Start);
4685   ConstantRange EndSRange =
4686       StartSRange.add(MaxBECountRange.multiply(StepSRange));
4687 
4688   // Check for signed overflow. This must be done with ConstantRange
4689   // arithmetic because we could be called from within the ScalarEvolution
4690   // overflow checking code.
4691   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4692   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4693   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4694       SExtEndSRange) {
4695     APInt Min =
4696         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4697     APInt Max =
4698         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4699     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4700     if (!IsFullRange)
4701       Result =
4702           Result.intersectWith(ConstantRange(Min, Max + 1));
4703   }
4704 
4705   return Result;
4706 }
4707 
4708 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4709                                                     const SCEV *Step,
4710                                                     const SCEV *MaxBECount,
4711                                                     unsigned BitWidth) {
4712   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4713   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4714 
4715   struct SelectPattern {
4716     Value *Condition = nullptr;
4717     APInt TrueValue;
4718     APInt FalseValue;
4719 
4720     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4721                            const SCEV *S) {
4722       Optional<unsigned> CastOp;
4723       APInt Offset(BitWidth, 0);
4724 
4725       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4726              "Should be!");
4727 
4728       // Peel off a constant offset:
4729       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4730         // In the future we could consider being smarter here and handle
4731         // {Start+Step,+,Step} too.
4732         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4733           return;
4734 
4735         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4736         S = SA->getOperand(1);
4737       }
4738 
4739       // Peel off a cast operation
4740       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4741         CastOp = SCast->getSCEVType();
4742         S = SCast->getOperand();
4743       }
4744 
4745       using namespace llvm::PatternMatch;
4746 
4747       auto *SU = dyn_cast<SCEVUnknown>(S);
4748       const APInt *TrueVal, *FalseVal;
4749       if (!SU ||
4750           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4751                                           m_APInt(FalseVal)))) {
4752         Condition = nullptr;
4753         return;
4754       }
4755 
4756       TrueValue = *TrueVal;
4757       FalseValue = *FalseVal;
4758 
4759       // Re-apply the cast we peeled off earlier
4760       if (CastOp.hasValue())
4761         switch (*CastOp) {
4762         default:
4763           llvm_unreachable("Unknown SCEV cast type!");
4764 
4765         case scTruncate:
4766           TrueValue = TrueValue.trunc(BitWidth);
4767           FalseValue = FalseValue.trunc(BitWidth);
4768           break;
4769         case scZeroExtend:
4770           TrueValue = TrueValue.zext(BitWidth);
4771           FalseValue = FalseValue.zext(BitWidth);
4772           break;
4773         case scSignExtend:
4774           TrueValue = TrueValue.sext(BitWidth);
4775           FalseValue = FalseValue.sext(BitWidth);
4776           break;
4777         }
4778 
4779       // Re-apply the constant offset we peeled off earlier
4780       TrueValue += Offset;
4781       FalseValue += Offset;
4782     }
4783 
4784     bool isRecognized() { return Condition != nullptr; }
4785   };
4786 
4787   SelectPattern StartPattern(*this, BitWidth, Start);
4788   if (!StartPattern.isRecognized())
4789     return ConstantRange(BitWidth, /* isFullSet = */ true);
4790 
4791   SelectPattern StepPattern(*this, BitWidth, Step);
4792   if (!StepPattern.isRecognized())
4793     return ConstantRange(BitWidth, /* isFullSet = */ true);
4794 
4795   if (StartPattern.Condition != StepPattern.Condition) {
4796     // We don't handle this case today; but we could, by considering four
4797     // possibilities below instead of two. I'm not sure if there are cases where
4798     // that will help over what getRange already does, though.
4799     return ConstantRange(BitWidth, /* isFullSet = */ true);
4800   }
4801 
4802   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4803   // construct arbitrary general SCEV expressions here.  This function is called
4804   // from deep in the call stack, and calling getSCEV (on a sext instruction,
4805   // say) can end up caching a suboptimal value.
4806 
4807   // FIXME: without the explicit `this` receiver below, MSVC errors out with
4808   // C2352 and C2512 (otherwise it isn't needed).
4809 
4810   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4811   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4812   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4813   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4814 
4815   ConstantRange TrueRange =
4816       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4817   ConstantRange FalseRange =
4818       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4819 
4820   return TrueRange.unionWith(FalseRange);
4821 }
4822 
4823 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4824   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4825   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4826 
4827   // Return early if there are no flags to propagate to the SCEV.
4828   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4829   if (BinOp->hasNoUnsignedWrap())
4830     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4831   if (BinOp->hasNoSignedWrap())
4832     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4833   if (Flags == SCEV::FlagAnyWrap)
4834     return SCEV::FlagAnyWrap;
4835 
4836   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4837 }
4838 
4839 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4840   // Here we check that I is in the header of the innermost loop containing I,
4841   // since we only deal with instructions in the loop header. The actual loop we
4842   // need to check later will come from an add recurrence, but getting that
4843   // requires computing the SCEV of the operands, which can be expensive. This
4844   // check we can do cheaply to rule out some cases early.
4845   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4846   if (InnermostContainingLoop == nullptr ||
4847       InnermostContainingLoop->getHeader() != I->getParent())
4848     return false;
4849 
4850   // Only proceed if we can prove that I does not yield poison.
4851   if (!isKnownNotFullPoison(I)) return false;
4852 
4853   // At this point we know that if I is executed, then it does not wrap
4854   // according to at least one of NSW or NUW. If I is not executed, then we do
4855   // not know if the calculation that I represents would wrap. Multiple
4856   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4857   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4858   // derived from other instructions that map to the same SCEV. We cannot make
4859   // that guarantee for cases where I is not executed. So we need to find the
4860   // loop that I is considered in relation to and prove that I is executed for
4861   // every iteration of that loop. That implies that the value that I
4862   // calculates does not wrap anywhere in the loop, so then we can apply the
4863   // flags to the SCEV.
4864   //
4865   // We check isLoopInvariant to disambiguate in case we are adding recurrences
4866   // from different loops, so that we know which loop to prove that I is
4867   // executed in.
4868   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4869     // I could be an extractvalue from a call to an overflow intrinsic.
4870     // TODO: We can do better here in some cases.
4871     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
4872       return false;
4873     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4874     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4875       bool AllOtherOpsLoopInvariant = true;
4876       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4877            ++OtherOpIndex) {
4878         if (OtherOpIndex != OpIndex) {
4879           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4880           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4881             AllOtherOpsLoopInvariant = false;
4882             break;
4883           }
4884         }
4885       }
4886       if (AllOtherOpsLoopInvariant &&
4887           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4888         return true;
4889     }
4890   }
4891   return false;
4892 }
4893 
4894 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4895   // If we know that \c I can never be poison period, then that's enough.
4896   if (isSCEVExprNeverPoison(I))
4897     return true;
4898 
4899   // For an add recurrence specifically, we assume that infinite loops without
4900   // side effects are undefined behavior, and then reason as follows:
4901   //
4902   // If the add recurrence is poison in any iteration, it is poison on all
4903   // future iterations (since incrementing poison yields poison). If the result
4904   // of the add recurrence is fed into the loop latch condition and the loop
4905   // does not contain any throws or exiting blocks other than the latch, we now
4906   // have the ability to "choose" whether the backedge is taken or not (by
4907   // choosing a sufficiently evil value for the poison feeding into the branch)
4908   // for every iteration including and after the one in which \p I first became
4909   // poison.  There are two possibilities (let's call the iteration in which \p
4910   // I first became poison as K):
4911   //
4912   //  1. In the set of iterations including and after K, the loop body executes
4913   //     no side effects.  In this case executing the backege an infinte number
4914   //     of times will yield undefined behavior.
4915   //
4916   //  2. In the set of iterations including and after K, the loop body executes
4917   //     at least one side effect.  In this case, that specific instance of side
4918   //     effect is control dependent on poison, which also yields undefined
4919   //     behavior.
4920 
4921   auto *ExitingBB = L->getExitingBlock();
4922   auto *LatchBB = L->getLoopLatch();
4923   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4924     return false;
4925 
4926   SmallPtrSet<const Instruction *, 16> Pushed;
4927   SmallVector<const Instruction *, 8> PoisonStack;
4928 
4929   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
4930   // things that are known to be fully poison under that assumption go on the
4931   // PoisonStack.
4932   Pushed.insert(I);
4933   PoisonStack.push_back(I);
4934 
4935   bool LatchControlDependentOnPoison = false;
4936   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
4937     const Instruction *Poison = PoisonStack.pop_back_val();
4938 
4939     for (auto *PoisonUser : Poison->users()) {
4940       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
4941         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
4942           PoisonStack.push_back(cast<Instruction>(PoisonUser));
4943       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
4944         assert(BI->isConditional() && "Only possibility!");
4945         if (BI->getParent() == LatchBB) {
4946           LatchControlDependentOnPoison = true;
4947           break;
4948         }
4949       }
4950     }
4951   }
4952 
4953   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
4954 }
4955 
4956 bool ScalarEvolution::loopHasNoSideEffects(const Loop *L) {
4957   auto Itr = LoopHasNoSideEffects.find(L);
4958   if (Itr == LoopHasNoSideEffects.end()) {
4959     auto NoSideEffectsInBB = [&](BasicBlock *BB) {
4960       return all_of(*BB, [](Instruction &I) {
4961         // Non-atomic, non-volatile stores are ok.
4962         if (auto *SI = dyn_cast<StoreInst>(&I))
4963           return SI->isSimple();
4964 
4965         return !I.mayHaveSideEffects();
4966       });
4967     };
4968 
4969     auto InsertPair = LoopHasNoSideEffects.insert(
4970         {L, all_of(L->getBlocks(), NoSideEffectsInBB)});
4971     assert(InsertPair.second && "We just checked!");
4972     Itr = InsertPair.first;
4973   }
4974 
4975   return Itr->second;
4976 }
4977 
4978 bool ScalarEvolution::loopHasNoAbnormalExits(const Loop *L) {
4979   auto Itr = LoopHasNoAbnormalExits.find(L);
4980   if (Itr == LoopHasNoAbnormalExits.end()) {
4981     auto NoAbnormalExitInBB = [&](BasicBlock *BB) {
4982       return all_of(*BB, [](Instruction &I) {
4983         return isGuaranteedToTransferExecutionToSuccessor(&I);
4984       });
4985     };
4986 
4987     auto InsertPair = LoopHasNoAbnormalExits.insert(
4988         {L, all_of(L->getBlocks(), NoAbnormalExitInBB)});
4989     assert(InsertPair.second && "We just checked!");
4990     Itr = InsertPair.first;
4991   }
4992 
4993   return Itr->second;
4994 }
4995 
4996 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4997   if (!isSCEVable(V->getType()))
4998     return getUnknown(V);
4999 
5000   if (Instruction *I = dyn_cast<Instruction>(V)) {
5001     // Don't attempt to analyze instructions in blocks that aren't
5002     // reachable. Such instructions don't matter, and they aren't required
5003     // to obey basic rules for definitions dominating uses which this
5004     // analysis depends on.
5005     if (!DT.isReachableFromEntry(I->getParent()))
5006       return getUnknown(V);
5007   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5008     return getConstant(CI);
5009   else if (isa<ConstantPointerNull>(V))
5010     return getZero(V->getType());
5011   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5012     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5013   else if (!isa<ConstantExpr>(V))
5014     return getUnknown(V);
5015 
5016   Operator *U = cast<Operator>(V);
5017   if (auto BO = MatchBinaryOp(U, DT)) {
5018     switch (BO->Opcode) {
5019     case Instruction::Add: {
5020       // The simple thing to do would be to just call getSCEV on both operands
5021       // and call getAddExpr with the result. However if we're looking at a
5022       // bunch of things all added together, this can be quite inefficient,
5023       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5024       // Instead, gather up all the operands and make a single getAddExpr call.
5025       // LLVM IR canonical form means we need only traverse the left operands.
5026       SmallVector<const SCEV *, 4> AddOps;
5027       do {
5028         if (BO->Op) {
5029           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5030             AddOps.push_back(OpSCEV);
5031             break;
5032           }
5033 
5034           // If a NUW or NSW flag can be applied to the SCEV for this
5035           // addition, then compute the SCEV for this addition by itself
5036           // with a separate call to getAddExpr. We need to do that
5037           // instead of pushing the operands of the addition onto AddOps,
5038           // since the flags are only known to apply to this particular
5039           // addition - they may not apply to other additions that can be
5040           // formed with operands from AddOps.
5041           const SCEV *RHS = getSCEV(BO->RHS);
5042           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5043           if (Flags != SCEV::FlagAnyWrap) {
5044             const SCEV *LHS = getSCEV(BO->LHS);
5045             if (BO->Opcode == Instruction::Sub)
5046               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5047             else
5048               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5049             break;
5050           }
5051         }
5052 
5053         if (BO->Opcode == Instruction::Sub)
5054           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5055         else
5056           AddOps.push_back(getSCEV(BO->RHS));
5057 
5058         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5059         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5060                        NewBO->Opcode != Instruction::Sub)) {
5061           AddOps.push_back(getSCEV(BO->LHS));
5062           break;
5063         }
5064         BO = NewBO;
5065       } while (true);
5066 
5067       return getAddExpr(AddOps);
5068     }
5069 
5070     case Instruction::Mul: {
5071       SmallVector<const SCEV *, 4> MulOps;
5072       do {
5073         if (BO->Op) {
5074           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5075             MulOps.push_back(OpSCEV);
5076             break;
5077           }
5078 
5079           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5080           if (Flags != SCEV::FlagAnyWrap) {
5081             MulOps.push_back(
5082                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5083             break;
5084           }
5085         }
5086 
5087         MulOps.push_back(getSCEV(BO->RHS));
5088         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5089         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5090           MulOps.push_back(getSCEV(BO->LHS));
5091           break;
5092         }
5093         BO = NewBO;
5094       } while (true);
5095 
5096       return getMulExpr(MulOps);
5097     }
5098     case Instruction::UDiv:
5099       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5100     case Instruction::Sub: {
5101       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5102       if (BO->Op)
5103         Flags = getNoWrapFlagsFromUB(BO->Op);
5104       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5105     }
5106     case Instruction::And:
5107       // For an expression like x&255 that merely masks off the high bits,
5108       // use zext(trunc(x)) as the SCEV expression.
5109       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5110         if (CI->isNullValue())
5111           return getSCEV(BO->RHS);
5112         if (CI->isAllOnesValue())
5113           return getSCEV(BO->LHS);
5114         const APInt &A = CI->getValue();
5115 
5116         // Instcombine's ShrinkDemandedConstant may strip bits out of
5117         // constants, obscuring what would otherwise be a low-bits mask.
5118         // Use computeKnownBits to compute what ShrinkDemandedConstant
5119         // knew about to reconstruct a low-bits mask value.
5120         unsigned LZ = A.countLeadingZeros();
5121         unsigned TZ = A.countTrailingZeros();
5122         unsigned BitWidth = A.getBitWidth();
5123         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5124         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5125                          0, &AC, nullptr, &DT);
5126 
5127         APInt EffectiveMask =
5128             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5129         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5130           const SCEV *MulCount = getConstant(ConstantInt::get(
5131               getContext(), APInt::getOneBitSet(BitWidth, TZ)));
5132           return getMulExpr(
5133               getZeroExtendExpr(
5134                   getTruncateExpr(
5135                       getUDivExactExpr(getSCEV(BO->LHS), MulCount),
5136                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5137                   BO->LHS->getType()),
5138               MulCount);
5139         }
5140       }
5141       break;
5142 
5143     case Instruction::Or:
5144       // If the RHS of the Or is a constant, we may have something like:
5145       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5146       // optimizations will transparently handle this case.
5147       //
5148       // In order for this transformation to be safe, the LHS must be of the
5149       // form X*(2^n) and the Or constant must be less than 2^n.
5150       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5151         const SCEV *LHS = getSCEV(BO->LHS);
5152         const APInt &CIVal = CI->getValue();
5153         if (GetMinTrailingZeros(LHS) >=
5154             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5155           // Build a plain add SCEV.
5156           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5157           // If the LHS of the add was an addrec and it has no-wrap flags,
5158           // transfer the no-wrap flags, since an or won't introduce a wrap.
5159           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5160             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5161             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5162                 OldAR->getNoWrapFlags());
5163           }
5164           return S;
5165         }
5166       }
5167       break;
5168 
5169     case Instruction::Xor:
5170       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5171         // If the RHS of xor is -1, then this is a not operation.
5172         if (CI->isAllOnesValue())
5173           return getNotSCEV(getSCEV(BO->LHS));
5174 
5175         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5176         // This is a variant of the check for xor with -1, and it handles
5177         // the case where instcombine has trimmed non-demanded bits out
5178         // of an xor with -1.
5179         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5180           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5181             if (LBO->getOpcode() == Instruction::And &&
5182                 LCI->getValue() == CI->getValue())
5183               if (const SCEVZeroExtendExpr *Z =
5184                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5185                 Type *UTy = BO->LHS->getType();
5186                 const SCEV *Z0 = Z->getOperand();
5187                 Type *Z0Ty = Z0->getType();
5188                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5189 
5190                 // If C is a low-bits mask, the zero extend is serving to
5191                 // mask off the high bits. Complement the operand and
5192                 // re-apply the zext.
5193                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5194                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5195 
5196                 // If C is a single bit, it may be in the sign-bit position
5197                 // before the zero-extend. In this case, represent the xor
5198                 // using an add, which is equivalent, and re-apply the zext.
5199                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5200                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5201                     Trunc.isSignBit())
5202                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5203                                            UTy);
5204               }
5205       }
5206       break;
5207 
5208   case Instruction::Shl:
5209     // Turn shift left of a constant amount into a multiply.
5210     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5211       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5212 
5213       // If the shift count is not less than the bitwidth, the result of
5214       // the shift is undefined. Don't try to analyze it, because the
5215       // resolution chosen here may differ from the resolution chosen in
5216       // other parts of the compiler.
5217       if (SA->getValue().uge(BitWidth))
5218         break;
5219 
5220       // It is currently not resolved how to interpret NSW for left
5221       // shift by BitWidth - 1, so we avoid applying flags in that
5222       // case. Remove this check (or this comment) once the situation
5223       // is resolved. See
5224       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5225       // and http://reviews.llvm.org/D8890 .
5226       auto Flags = SCEV::FlagAnyWrap;
5227       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5228         Flags = getNoWrapFlagsFromUB(BO->Op);
5229 
5230       Constant *X = ConstantInt::get(getContext(),
5231         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5232       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5233     }
5234     break;
5235 
5236     case Instruction::AShr:
5237       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5238       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5239         if (Operator *L = dyn_cast<Operator>(BO->LHS))
5240           if (L->getOpcode() == Instruction::Shl &&
5241               L->getOperand(1) == BO->RHS) {
5242             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5243 
5244             // If the shift count is not less than the bitwidth, the result of
5245             // the shift is undefined. Don't try to analyze it, because the
5246             // resolution chosen here may differ from the resolution chosen in
5247             // other parts of the compiler.
5248             if (CI->getValue().uge(BitWidth))
5249               break;
5250 
5251             uint64_t Amt = BitWidth - CI->getZExtValue();
5252             if (Amt == BitWidth)
5253               return getSCEV(L->getOperand(0)); // shift by zero --> noop
5254             return getSignExtendExpr(
5255                 getTruncateExpr(getSCEV(L->getOperand(0)),
5256                                 IntegerType::get(getContext(), Amt)),
5257                 BO->LHS->getType());
5258           }
5259       break;
5260     }
5261   }
5262 
5263   switch (U->getOpcode()) {
5264   case Instruction::Trunc:
5265     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5266 
5267   case Instruction::ZExt:
5268     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5269 
5270   case Instruction::SExt:
5271     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5272 
5273   case Instruction::BitCast:
5274     // BitCasts are no-op casts so we just eliminate the cast.
5275     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5276       return getSCEV(U->getOperand(0));
5277     break;
5278 
5279   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5280   // lead to pointer expressions which cannot safely be expanded to GEPs,
5281   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5282   // simplifying integer expressions.
5283 
5284   case Instruction::GetElementPtr:
5285     return createNodeForGEP(cast<GEPOperator>(U));
5286 
5287   case Instruction::PHI:
5288     return createNodeForPHI(cast<PHINode>(U));
5289 
5290   case Instruction::Select:
5291     // U can also be a select constant expr, which let fall through.  Since
5292     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5293     // constant expressions cannot have instructions as operands, we'd have
5294     // returned getUnknown for a select constant expressions anyway.
5295     if (isa<Instruction>(U))
5296       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5297                                       U->getOperand(1), U->getOperand(2));
5298     break;
5299 
5300   case Instruction::Call:
5301   case Instruction::Invoke:
5302     if (Value *RV = CallSite(U).getReturnedArgOperand())
5303       return getSCEV(RV);
5304     break;
5305   }
5306 
5307   return getUnknown(V);
5308 }
5309 
5310 
5311 
5312 //===----------------------------------------------------------------------===//
5313 //                   Iteration Count Computation Code
5314 //
5315 
5316 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5317   if (BasicBlock *ExitingBB = L->getExitingBlock())
5318     return getSmallConstantTripCount(L, ExitingBB);
5319 
5320   // No trip count information for multiple exits.
5321   return 0;
5322 }
5323 
5324 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5325                                                     BasicBlock *ExitingBlock) {
5326   assert(ExitingBlock && "Must pass a non-null exiting block!");
5327   assert(L->isLoopExiting(ExitingBlock) &&
5328          "Exiting block must actually branch out of the loop!");
5329   const SCEVConstant *ExitCount =
5330       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5331   if (!ExitCount)
5332     return 0;
5333 
5334   ConstantInt *ExitConst = ExitCount->getValue();
5335 
5336   // Guard against huge trip counts.
5337   if (ExitConst->getValue().getActiveBits() > 32)
5338     return 0;
5339 
5340   // In case of integer overflow, this returns 0, which is correct.
5341   return ((unsigned)ExitConst->getZExtValue()) + 1;
5342 }
5343 
5344 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5345   if (BasicBlock *ExitingBB = L->getExitingBlock())
5346     return getSmallConstantTripMultiple(L, ExitingBB);
5347 
5348   // No trip multiple information for multiple exits.
5349   return 0;
5350 }
5351 
5352 /// Returns the largest constant divisor of the trip count of this loop as a
5353 /// normal unsigned value, if possible. This means that the actual trip count is
5354 /// always a multiple of the returned value (don't forget the trip count could
5355 /// very well be zero as well!).
5356 ///
5357 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5358 /// multiple of a constant (which is also the case if the trip count is simply
5359 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5360 /// if the trip count is very large (>= 2^32).
5361 ///
5362 /// As explained in the comments for getSmallConstantTripCount, this assumes
5363 /// that control exits the loop via ExitingBlock.
5364 unsigned
5365 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5366                                               BasicBlock *ExitingBlock) {
5367   assert(ExitingBlock && "Must pass a non-null exiting block!");
5368   assert(L->isLoopExiting(ExitingBlock) &&
5369          "Exiting block must actually branch out of the loop!");
5370   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5371   if (ExitCount == getCouldNotCompute())
5372     return 1;
5373 
5374   // Get the trip count from the BE count by adding 1.
5375   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5376   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5377   // to factor simple cases.
5378   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5379     TCMul = Mul->getOperand(0);
5380 
5381   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5382   if (!MulC)
5383     return 1;
5384 
5385   ConstantInt *Result = MulC->getValue();
5386 
5387   // Guard against huge trip counts (this requires checking
5388   // for zero to handle the case where the trip count == -1 and the
5389   // addition wraps).
5390   if (!Result || Result->getValue().getActiveBits() > 32 ||
5391       Result->getValue().getActiveBits() == 0)
5392     return 1;
5393 
5394   return (unsigned)Result->getZExtValue();
5395 }
5396 
5397 /// Get the expression for the number of loop iterations for which this loop is
5398 /// guaranteed not to exit via ExitingBlock. Otherwise return
5399 /// SCEVCouldNotCompute.
5400 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5401   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5402 }
5403 
5404 const SCEV *
5405 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5406                                                  SCEVUnionPredicate &Preds) {
5407   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5408 }
5409 
5410 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5411   return getBackedgeTakenInfo(L).getExact(this);
5412 }
5413 
5414 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5415 /// known never to be less than the actual backedge taken count.
5416 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5417   return getBackedgeTakenInfo(L).getMax(this);
5418 }
5419 
5420 /// Push PHI nodes in the header of the given loop onto the given Worklist.
5421 static void
5422 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5423   BasicBlock *Header = L->getHeader();
5424 
5425   // Push all Loop-header PHIs onto the Worklist stack.
5426   for (BasicBlock::iterator I = Header->begin();
5427        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5428     Worklist.push_back(PN);
5429 }
5430 
5431 const ScalarEvolution::BackedgeTakenInfo &
5432 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5433   auto &BTI = getBackedgeTakenInfo(L);
5434   if (BTI.hasFullInfo())
5435     return BTI;
5436 
5437   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5438 
5439   if (!Pair.second)
5440     return Pair.first->second;
5441 
5442   BackedgeTakenInfo Result =
5443       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5444 
5445   return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5446 }
5447 
5448 const ScalarEvolution::BackedgeTakenInfo &
5449 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5450   // Initially insert an invalid entry for this loop. If the insertion
5451   // succeeds, proceed to actually compute a backedge-taken count and
5452   // update the value. The temporary CouldNotCompute value tells SCEV
5453   // code elsewhere that it shouldn't attempt to request a new
5454   // backedge-taken count, which could result in infinite recursion.
5455   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5456       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5457   if (!Pair.second)
5458     return Pair.first->second;
5459 
5460   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5461   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5462   // must be cleared in this scope.
5463   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5464 
5465   if (Result.getExact(this) != getCouldNotCompute()) {
5466     assert(isLoopInvariant(Result.getExact(this), L) &&
5467            isLoopInvariant(Result.getMax(this), L) &&
5468            "Computed backedge-taken count isn't loop invariant for loop!");
5469     ++NumTripCountsComputed;
5470   }
5471   else if (Result.getMax(this) == getCouldNotCompute() &&
5472            isa<PHINode>(L->getHeader()->begin())) {
5473     // Only count loops that have phi nodes as not being computable.
5474     ++NumTripCountsNotComputed;
5475   }
5476 
5477   // Now that we know more about the trip count for this loop, forget any
5478   // existing SCEV values for PHI nodes in this loop since they are only
5479   // conservative estimates made without the benefit of trip count
5480   // information. This is similar to the code in forgetLoop, except that
5481   // it handles SCEVUnknown PHI nodes specially.
5482   if (Result.hasAnyInfo()) {
5483     SmallVector<Instruction *, 16> Worklist;
5484     PushLoopPHIs(L, Worklist);
5485 
5486     SmallPtrSet<Instruction *, 8> Visited;
5487     while (!Worklist.empty()) {
5488       Instruction *I = Worklist.pop_back_val();
5489       if (!Visited.insert(I).second)
5490         continue;
5491 
5492       ValueExprMapType::iterator It =
5493         ValueExprMap.find_as(static_cast<Value *>(I));
5494       if (It != ValueExprMap.end()) {
5495         const SCEV *Old = It->second;
5496 
5497         // SCEVUnknown for a PHI either means that it has an unrecognized
5498         // structure, or it's a PHI that's in the progress of being computed
5499         // by createNodeForPHI.  In the former case, additional loop trip
5500         // count information isn't going to change anything. In the later
5501         // case, createNodeForPHI will perform the necessary updates on its
5502         // own when it gets to that point.
5503         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5504           eraseValueFromMap(It->first);
5505           forgetMemoizedResults(Old);
5506         }
5507         if (PHINode *PN = dyn_cast<PHINode>(I))
5508           ConstantEvolutionLoopExitValue.erase(PN);
5509       }
5510 
5511       PushDefUseChildren(I, Worklist);
5512     }
5513   }
5514 
5515   // Re-lookup the insert position, since the call to
5516   // computeBackedgeTakenCount above could result in a
5517   // recusive call to getBackedgeTakenInfo (on a different
5518   // loop), which would invalidate the iterator computed
5519   // earlier.
5520   return BackedgeTakenCounts.find(L)->second = Result;
5521 }
5522 
5523 void ScalarEvolution::forgetLoop(const Loop *L) {
5524   // Drop any stored trip count value.
5525   auto RemoveLoopFromBackedgeMap =
5526       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5527         auto BTCPos = Map.find(L);
5528         if (BTCPos != Map.end()) {
5529           BTCPos->second.clear();
5530           Map.erase(BTCPos);
5531         }
5532       };
5533 
5534   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5535   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5536 
5537   // Drop information about expressions based on loop-header PHIs.
5538   SmallVector<Instruction *, 16> Worklist;
5539   PushLoopPHIs(L, Worklist);
5540 
5541   SmallPtrSet<Instruction *, 8> Visited;
5542   while (!Worklist.empty()) {
5543     Instruction *I = Worklist.pop_back_val();
5544     if (!Visited.insert(I).second)
5545       continue;
5546 
5547     ValueExprMapType::iterator It =
5548       ValueExprMap.find_as(static_cast<Value *>(I));
5549     if (It != ValueExprMap.end()) {
5550       eraseValueFromMap(It->first);
5551       forgetMemoizedResults(It->second);
5552       if (PHINode *PN = dyn_cast<PHINode>(I))
5553         ConstantEvolutionLoopExitValue.erase(PN);
5554     }
5555 
5556     PushDefUseChildren(I, Worklist);
5557   }
5558 
5559   // Forget all contained loops too, to avoid dangling entries in the
5560   // ValuesAtScopes map.
5561   for (Loop *I : *L)
5562     forgetLoop(I);
5563 
5564   LoopHasNoAbnormalExits.erase(L);
5565   LoopHasNoSideEffects.erase(L);
5566 }
5567 
5568 void ScalarEvolution::forgetValue(Value *V) {
5569   Instruction *I = dyn_cast<Instruction>(V);
5570   if (!I) return;
5571 
5572   // Drop information about expressions based on loop-header PHIs.
5573   SmallVector<Instruction *, 16> Worklist;
5574   Worklist.push_back(I);
5575 
5576   SmallPtrSet<Instruction *, 8> Visited;
5577   while (!Worklist.empty()) {
5578     I = Worklist.pop_back_val();
5579     if (!Visited.insert(I).second)
5580       continue;
5581 
5582     ValueExprMapType::iterator It =
5583       ValueExprMap.find_as(static_cast<Value *>(I));
5584     if (It != ValueExprMap.end()) {
5585       eraseValueFromMap(It->first);
5586       forgetMemoizedResults(It->second);
5587       if (PHINode *PN = dyn_cast<PHINode>(I))
5588         ConstantEvolutionLoopExitValue.erase(PN);
5589     }
5590 
5591     PushDefUseChildren(I, Worklist);
5592   }
5593 }
5594 
5595 /// Get the exact loop backedge taken count considering all loop exits. A
5596 /// computable result can only be returned for loops with a single exit.
5597 /// Returning the minimum taken count among all exits is incorrect because one
5598 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5599 /// the limit of each loop test is never skipped. This is a valid assumption as
5600 /// long as the loop exits via that test. For precise results, it is the
5601 /// caller's responsibility to specify the relevant loop exit using
5602 /// getExact(ExitingBlock, SE).
5603 const SCEV *
5604 ScalarEvolution::BackedgeTakenInfo::getExact(
5605     ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
5606   // If any exits were not computable, the loop is not computable.
5607   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5608 
5609   // We need exactly one computable exit.
5610   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5611   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5612 
5613   const SCEV *BECount = nullptr;
5614   for (auto &ENT : ExitNotTaken) {
5615     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5616 
5617     if (!BECount)
5618       BECount = ENT.ExactNotTaken;
5619     else if (BECount != ENT.ExactNotTaken)
5620       return SE->getCouldNotCompute();
5621     if (Preds && ENT.getPred())
5622       Preds->add(ENT.getPred());
5623 
5624     assert((Preds || ENT.hasAlwaysTruePred()) &&
5625            "Predicate should be always true!");
5626   }
5627 
5628   assert(BECount && "Invalid not taken count for loop exit");
5629   return BECount;
5630 }
5631 
5632 /// Get the exact not taken count for this loop exit.
5633 const SCEV *
5634 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5635                                              ScalarEvolution *SE) const {
5636   for (auto &ENT : ExitNotTaken)
5637     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5638       return ENT.ExactNotTaken;
5639 
5640   return SE->getCouldNotCompute();
5641 }
5642 
5643 /// getMax - Get the max backedge taken count for the loop.
5644 const SCEV *
5645 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5646   for (auto &ENT : ExitNotTaken)
5647     if (!ENT.hasAlwaysTruePred())
5648       return SE->getCouldNotCompute();
5649 
5650   return Max ? Max : SE->getCouldNotCompute();
5651 }
5652 
5653 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5654                                                     ScalarEvolution *SE) const {
5655   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5656     return true;
5657 
5658   if (!ExitNotTaken.ExitingBlock)
5659     return false;
5660 
5661   for (auto &ENT : ExitNotTaken)
5662     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5663         SE->hasOperand(ENT.ExactNotTaken, S))
5664       return true;
5665 
5666   return false;
5667 }
5668 
5669 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5670 /// computable exit into a persistent ExitNotTakenInfo array.
5671 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5672     ArrayRef<ScalarEvolution::EdgeExitInfo> ExitCounts, bool Complete,
5673     const SCEV *MaxCount)
5674     : Max(MaxCount) {
5675 
5676   if (!Complete)
5677     ExitNotTaken.setIncomplete();
5678 
5679   unsigned NumExits = ExitCounts.size();
5680   if (NumExits == 0)
5681     return;
5682 
5683   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
5684   ExitNotTaken.ExactNotTaken = ExitCounts[0].second.Exact;
5685 
5686   // Determine the number of ExitNotTakenExtras structures that we need.
5687   unsigned ExtraInfoSize = 0;
5688   if (NumExits > 1) {
5689     auto HasNonTrivialPredicate =
5690         [](const ScalarEvolution::EdgeExitInfo &Entry) {
5691           return !Entry.second.Pred.isAlwaysTrue();
5692         };
5693     ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5694                                       ExitCounts.end(), HasNonTrivialPredicate);
5695   } else if (!ExitCounts[0].second.Pred.isAlwaysTrue())
5696     ExtraInfoSize = 1;
5697 
5698   ExitNotTakenExtras *ENT = nullptr;
5699 
5700   // Allocate the ExitNotTakenExtras structures and initialize the first
5701   // element (ExitNotTaken).
5702   if (ExtraInfoSize > 0) {
5703     ENT = new ExitNotTakenExtras[ExtraInfoSize];
5704     ExitNotTaken.ExtraInfo = &ENT[0];
5705     *ExitNotTaken.getPred() = std::move(ExitCounts[0].second.Pred);
5706   }
5707 
5708   if (NumExits == 1)
5709     return;
5710 
5711   assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit");
5712 
5713   auto &Exits = ExitNotTaken.ExtraInfo->Exits;
5714 
5715   // Handle the rare case of multiple computable exits.
5716   for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5717     ExitNotTakenExtras *Ptr = nullptr;
5718     if (!ExitCounts[i].second.Pred.isAlwaysTrue()) {
5719       Ptr = &ENT[PredPos++];
5720       Ptr->Pred = std::move(ExitCounts[i].second.Pred);
5721     }
5722 
5723     Exits.emplace_back(ExitCounts[i].first, ExitCounts[i].second.Exact, Ptr);
5724   }
5725 }
5726 
5727 /// Invalidate this result and free the ExitNotTakenInfo array.
5728 void ScalarEvolution::BackedgeTakenInfo::clear() {
5729   ExitNotTaken.ExitingBlock = nullptr;
5730   ExitNotTaken.ExactNotTaken = nullptr;
5731   delete[] ExitNotTaken.ExtraInfo;
5732 }
5733 
5734 /// Compute the number of times the backedge of the specified loop will execute.
5735 ScalarEvolution::BackedgeTakenInfo
5736 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5737                                            bool AllowPredicates) {
5738   SmallVector<BasicBlock *, 8> ExitingBlocks;
5739   L->getExitingBlocks(ExitingBlocks);
5740 
5741   SmallVector<ScalarEvolution::EdgeExitInfo, 4> ExitCounts;
5742   bool CouldComputeBECount = true;
5743   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5744   const SCEV *MustExitMaxBECount = nullptr;
5745   const SCEV *MayExitMaxBECount = nullptr;
5746 
5747   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5748   // and compute maxBECount.
5749   // Do a union of all the predicates here.
5750   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5751     BasicBlock *ExitBB = ExitingBlocks[i];
5752     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5753 
5754     assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
5755            "Predicated exit limit when predicates are not allowed!");
5756 
5757     // 1. For each exit that can be computed, add an entry to ExitCounts.
5758     // CouldComputeBECount is true only if all exits can be computed.
5759     if (EL.Exact == getCouldNotCompute())
5760       // We couldn't compute an exact value for this exit, so
5761       // we won't be able to compute an exact value for the loop.
5762       CouldComputeBECount = false;
5763     else
5764       ExitCounts.emplace_back(ExitBB, EL);
5765 
5766     // 2. Derive the loop's MaxBECount from each exit's max number of
5767     // non-exiting iterations. Partition the loop exits into two kinds:
5768     // LoopMustExits and LoopMayExits.
5769     //
5770     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5771     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5772     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5773     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5774     // considered greater than any computable EL.Max.
5775     if (EL.Max != getCouldNotCompute() && Latch &&
5776         DT.dominates(ExitBB, Latch)) {
5777       if (!MustExitMaxBECount)
5778         MustExitMaxBECount = EL.Max;
5779       else {
5780         MustExitMaxBECount =
5781           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5782       }
5783     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5784       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5785         MayExitMaxBECount = EL.Max;
5786       else {
5787         MayExitMaxBECount =
5788           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5789       }
5790     }
5791   }
5792   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5793     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5794   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5795 }
5796 
5797 ScalarEvolution::ExitLimit
5798 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5799                                   bool AllowPredicates) {
5800 
5801   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5802   // at this block and remember the exit block and whether all other targets
5803   // lead to the loop header.
5804   bool MustExecuteLoopHeader = true;
5805   BasicBlock *Exit = nullptr;
5806   for (auto *SBB : successors(ExitingBlock))
5807     if (!L->contains(SBB)) {
5808       if (Exit) // Multiple exit successors.
5809         return getCouldNotCompute();
5810       Exit = SBB;
5811     } else if (SBB != L->getHeader()) {
5812       MustExecuteLoopHeader = false;
5813     }
5814 
5815   // At this point, we know we have a conditional branch that determines whether
5816   // the loop is exited.  However, we don't know if the branch is executed each
5817   // time through the loop.  If not, then the execution count of the branch will
5818   // not be equal to the trip count of the loop.
5819   //
5820   // Currently we check for this by checking to see if the Exit branch goes to
5821   // the loop header.  If so, we know it will always execute the same number of
5822   // times as the loop.  We also handle the case where the exit block *is* the
5823   // loop header.  This is common for un-rotated loops.
5824   //
5825   // If both of those tests fail, walk up the unique predecessor chain to the
5826   // header, stopping if there is an edge that doesn't exit the loop. If the
5827   // header is reached, the execution count of the branch will be equal to the
5828   // trip count of the loop.
5829   //
5830   //  More extensive analysis could be done to handle more cases here.
5831   //
5832   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5833     // The simple checks failed, try climbing the unique predecessor chain
5834     // up to the header.
5835     bool Ok = false;
5836     for (BasicBlock *BB = ExitingBlock; BB; ) {
5837       BasicBlock *Pred = BB->getUniquePredecessor();
5838       if (!Pred)
5839         return getCouldNotCompute();
5840       TerminatorInst *PredTerm = Pred->getTerminator();
5841       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5842         if (PredSucc == BB)
5843           continue;
5844         // If the predecessor has a successor that isn't BB and isn't
5845         // outside the loop, assume the worst.
5846         if (L->contains(PredSucc))
5847           return getCouldNotCompute();
5848       }
5849       if (Pred == L->getHeader()) {
5850         Ok = true;
5851         break;
5852       }
5853       BB = Pred;
5854     }
5855     if (!Ok)
5856       return getCouldNotCompute();
5857   }
5858 
5859   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5860   TerminatorInst *Term = ExitingBlock->getTerminator();
5861   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5862     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5863     // Proceed to the next level to examine the exit condition expression.
5864     return computeExitLimitFromCond(
5865         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5866         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5867   }
5868 
5869   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5870     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5871                                                 /*ControlsExit=*/IsOnlyExit);
5872 
5873   return getCouldNotCompute();
5874 }
5875 
5876 ScalarEvolution::ExitLimit
5877 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5878                                           Value *ExitCond,
5879                                           BasicBlock *TBB,
5880                                           BasicBlock *FBB,
5881                                           bool ControlsExit,
5882                                           bool AllowPredicates) {
5883   // Check if the controlling expression for this loop is an And or Or.
5884   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5885     if (BO->getOpcode() == Instruction::And) {
5886       // Recurse on the operands of the and.
5887       bool EitherMayExit = L->contains(TBB);
5888       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5889                                                ControlsExit && !EitherMayExit,
5890                                                AllowPredicates);
5891       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5892                                                ControlsExit && !EitherMayExit,
5893                                                AllowPredicates);
5894       const SCEV *BECount = getCouldNotCompute();
5895       const SCEV *MaxBECount = getCouldNotCompute();
5896       if (EitherMayExit) {
5897         // Both conditions must be true for the loop to continue executing.
5898         // Choose the less conservative count.
5899         if (EL0.Exact == getCouldNotCompute() ||
5900             EL1.Exact == getCouldNotCompute())
5901           BECount = getCouldNotCompute();
5902         else
5903           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5904         if (EL0.Max == getCouldNotCompute())
5905           MaxBECount = EL1.Max;
5906         else if (EL1.Max == getCouldNotCompute())
5907           MaxBECount = EL0.Max;
5908         else
5909           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5910       } else {
5911         // Both conditions must be true at the same time for the loop to exit.
5912         // For now, be conservative.
5913         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5914         if (EL0.Max == EL1.Max)
5915           MaxBECount = EL0.Max;
5916         if (EL0.Exact == EL1.Exact)
5917           BECount = EL0.Exact;
5918       }
5919 
5920       SCEVUnionPredicate NP;
5921       NP.add(&EL0.Pred);
5922       NP.add(&EL1.Pred);
5923       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5924       // to be more aggressive when computing BECount than when computing
5925       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
5926       // to match, but for EL0.Max and EL1.Max to not.
5927       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5928           !isa<SCEVCouldNotCompute>(BECount))
5929         MaxBECount = BECount;
5930 
5931       return ExitLimit(BECount, MaxBECount, NP);
5932     }
5933     if (BO->getOpcode() == Instruction::Or) {
5934       // Recurse on the operands of the or.
5935       bool EitherMayExit = L->contains(FBB);
5936       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5937                                                ControlsExit && !EitherMayExit,
5938                                                AllowPredicates);
5939       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5940                                                ControlsExit && !EitherMayExit,
5941                                                AllowPredicates);
5942       const SCEV *BECount = getCouldNotCompute();
5943       const SCEV *MaxBECount = getCouldNotCompute();
5944       if (EitherMayExit) {
5945         // Both conditions must be false for the loop to continue executing.
5946         // Choose the less conservative count.
5947         if (EL0.Exact == getCouldNotCompute() ||
5948             EL1.Exact == getCouldNotCompute())
5949           BECount = getCouldNotCompute();
5950         else
5951           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5952         if (EL0.Max == getCouldNotCompute())
5953           MaxBECount = EL1.Max;
5954         else if (EL1.Max == getCouldNotCompute())
5955           MaxBECount = EL0.Max;
5956         else
5957           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5958       } else {
5959         // Both conditions must be false at the same time for the loop to exit.
5960         // For now, be conservative.
5961         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5962         if (EL0.Max == EL1.Max)
5963           MaxBECount = EL0.Max;
5964         if (EL0.Exact == EL1.Exact)
5965           BECount = EL0.Exact;
5966       }
5967 
5968       SCEVUnionPredicate NP;
5969       NP.add(&EL0.Pred);
5970       NP.add(&EL1.Pred);
5971       return ExitLimit(BECount, MaxBECount, NP);
5972     }
5973   }
5974 
5975   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5976   // Proceed to the next level to examine the icmp.
5977   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5978     ExitLimit EL =
5979         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5980     if (EL.hasFullInfo() || !AllowPredicates)
5981       return EL;
5982 
5983     // Try again, but use SCEV predicates this time.
5984     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5985                                     /*AllowPredicates=*/true);
5986   }
5987 
5988   // Check for a constant condition. These are normally stripped out by
5989   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5990   // preserve the CFG and is temporarily leaving constant conditions
5991   // in place.
5992   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5993     if (L->contains(FBB) == !CI->getZExtValue())
5994       // The backedge is always taken.
5995       return getCouldNotCompute();
5996     else
5997       // The backedge is never taken.
5998       return getZero(CI->getType());
5999   }
6000 
6001   // If it's not an integer or pointer comparison then compute it the hard way.
6002   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6003 }
6004 
6005 ScalarEvolution::ExitLimit
6006 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
6007                                           ICmpInst *ExitCond,
6008                                           BasicBlock *TBB,
6009                                           BasicBlock *FBB,
6010                                           bool ControlsExit,
6011                                           bool AllowPredicates) {
6012 
6013   // If the condition was exit on true, convert the condition to exit on false
6014   ICmpInst::Predicate Cond;
6015   if (!L->contains(FBB))
6016     Cond = ExitCond->getPredicate();
6017   else
6018     Cond = ExitCond->getInversePredicate();
6019 
6020   // Handle common loops like: for (X = "string"; *X; ++X)
6021   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
6022     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
6023       ExitLimit ItCnt =
6024         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
6025       if (ItCnt.hasAnyInfo())
6026         return ItCnt;
6027     }
6028 
6029   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
6030   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
6031 
6032   // Try to evaluate any dependencies out of the loop.
6033   LHS = getSCEVAtScope(LHS, L);
6034   RHS = getSCEVAtScope(RHS, L);
6035 
6036   // At this point, we would like to compute how many iterations of the
6037   // loop the predicate will return true for these inputs.
6038   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
6039     // If there is a loop-invariant, force it into the RHS.
6040     std::swap(LHS, RHS);
6041     Cond = ICmpInst::getSwappedPredicate(Cond);
6042   }
6043 
6044   // Simplify the operands before analyzing them.
6045   (void)SimplifyICmpOperands(Cond, LHS, RHS);
6046 
6047   // If we have a comparison of a chrec against a constant, try to use value
6048   // ranges to answer this query.
6049   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
6050     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
6051       if (AddRec->getLoop() == L) {
6052         // Form the constant range.
6053         ConstantRange CompRange(
6054             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
6055 
6056         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
6057         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
6058       }
6059 
6060   switch (Cond) {
6061   case ICmpInst::ICMP_NE: {                     // while (X != Y)
6062     // Convert to: while (X-Y != 0)
6063     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
6064                                 AllowPredicates);
6065     if (EL.hasAnyInfo()) return EL;
6066     break;
6067   }
6068   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
6069     // Convert to: while (X-Y == 0)
6070     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
6071     if (EL.hasAnyInfo()) return EL;
6072     break;
6073   }
6074   case ICmpInst::ICMP_SLT:
6075   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
6076     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6077     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6078                                     AllowPredicates);
6079     if (EL.hasAnyInfo()) return EL;
6080     break;
6081   }
6082   case ICmpInst::ICMP_SGT:
6083   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
6084     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6085     ExitLimit EL =
6086         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6087                             AllowPredicates);
6088     if (EL.hasAnyInfo()) return EL;
6089     break;
6090   }
6091   default:
6092     break;
6093   }
6094 
6095   auto *ExhaustiveCount =
6096       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6097 
6098   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
6099     return ExhaustiveCount;
6100 
6101   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
6102                                       ExitCond->getOperand(1), L, Cond);
6103 }
6104 
6105 ScalarEvolution::ExitLimit
6106 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6107                                                       SwitchInst *Switch,
6108                                                       BasicBlock *ExitingBlock,
6109                                                       bool ControlsExit) {
6110   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6111 
6112   // Give up if the exit is the default dest of a switch.
6113   if (Switch->getDefaultDest() == ExitingBlock)
6114     return getCouldNotCompute();
6115 
6116   assert(L->contains(Switch->getDefaultDest()) &&
6117          "Default case must not exit the loop!");
6118   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6119   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6120 
6121   // while (X != Y) --> while (X-Y != 0)
6122   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6123   if (EL.hasAnyInfo())
6124     return EL;
6125 
6126   return getCouldNotCompute();
6127 }
6128 
6129 static ConstantInt *
6130 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6131                                 ScalarEvolution &SE) {
6132   const SCEV *InVal = SE.getConstant(C);
6133   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6134   assert(isa<SCEVConstant>(Val) &&
6135          "Evaluation of SCEV at constant didn't fold correctly?");
6136   return cast<SCEVConstant>(Val)->getValue();
6137 }
6138 
6139 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
6140 /// compute the backedge execution count.
6141 ScalarEvolution::ExitLimit
6142 ScalarEvolution::computeLoadConstantCompareExitLimit(
6143   LoadInst *LI,
6144   Constant *RHS,
6145   const Loop *L,
6146   ICmpInst::Predicate predicate) {
6147 
6148   if (LI->isVolatile()) return getCouldNotCompute();
6149 
6150   // Check to see if the loaded pointer is a getelementptr of a global.
6151   // TODO: Use SCEV instead of manually grubbing with GEPs.
6152   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6153   if (!GEP) return getCouldNotCompute();
6154 
6155   // Make sure that it is really a constant global we are gepping, with an
6156   // initializer, and make sure the first IDX is really 0.
6157   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6158   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6159       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6160       !cast<Constant>(GEP->getOperand(1))->isNullValue())
6161     return getCouldNotCompute();
6162 
6163   // Okay, we allow one non-constant index into the GEP instruction.
6164   Value *VarIdx = nullptr;
6165   std::vector<Constant*> Indexes;
6166   unsigned VarIdxNum = 0;
6167   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6168     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6169       Indexes.push_back(CI);
6170     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6171       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
6172       VarIdx = GEP->getOperand(i);
6173       VarIdxNum = i-2;
6174       Indexes.push_back(nullptr);
6175     }
6176 
6177   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6178   if (!VarIdx)
6179     return getCouldNotCompute();
6180 
6181   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6182   // Check to see if X is a loop variant variable value now.
6183   const SCEV *Idx = getSCEV(VarIdx);
6184   Idx = getSCEVAtScope(Idx, L);
6185 
6186   // We can only recognize very limited forms of loop index expressions, in
6187   // particular, only affine AddRec's like {C1,+,C2}.
6188   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6189   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6190       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6191       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6192     return getCouldNotCompute();
6193 
6194   unsigned MaxSteps = MaxBruteForceIterations;
6195   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6196     ConstantInt *ItCst = ConstantInt::get(
6197                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
6198     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6199 
6200     // Form the GEP offset.
6201     Indexes[VarIdxNum] = Val;
6202 
6203     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6204                                                          Indexes);
6205     if (!Result) break;  // Cannot compute!
6206 
6207     // Evaluate the condition for this iteration.
6208     Result = ConstantExpr::getICmp(predicate, Result, RHS);
6209     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
6210     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6211       ++NumArrayLenItCounts;
6212       return getConstant(ItCst);   // Found terminating iteration!
6213     }
6214   }
6215   return getCouldNotCompute();
6216 }
6217 
6218 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6219     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6220   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6221   if (!RHS)
6222     return getCouldNotCompute();
6223 
6224   const BasicBlock *Latch = L->getLoopLatch();
6225   if (!Latch)
6226     return getCouldNotCompute();
6227 
6228   const BasicBlock *Predecessor = L->getLoopPredecessor();
6229   if (!Predecessor)
6230     return getCouldNotCompute();
6231 
6232   // Return true if V is of the form "LHS `shift_op` <positive constant>".
6233   // Return LHS in OutLHS and shift_opt in OutOpCode.
6234   auto MatchPositiveShift =
6235       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6236 
6237     using namespace PatternMatch;
6238 
6239     ConstantInt *ShiftAmt;
6240     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6241       OutOpCode = Instruction::LShr;
6242     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6243       OutOpCode = Instruction::AShr;
6244     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6245       OutOpCode = Instruction::Shl;
6246     else
6247       return false;
6248 
6249     return ShiftAmt->getValue().isStrictlyPositive();
6250   };
6251 
6252   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6253   //
6254   // loop:
6255   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6256   //   %iv.shifted = lshr i32 %iv, <positive constant>
6257   //
6258   // Return true on a succesful match.  Return the corresponding PHI node (%iv
6259   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6260   auto MatchShiftRecurrence =
6261       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6262     Optional<Instruction::BinaryOps> PostShiftOpCode;
6263 
6264     {
6265       Instruction::BinaryOps OpC;
6266       Value *V;
6267 
6268       // If we encounter a shift instruction, "peel off" the shift operation,
6269       // and remember that we did so.  Later when we inspect %iv's backedge
6270       // value, we will make sure that the backedge value uses the same
6271       // operation.
6272       //
6273       // Note: the peeled shift operation does not have to be the same
6274       // instruction as the one feeding into the PHI's backedge value.  We only
6275       // really care about it being the same *kind* of shift instruction --
6276       // that's all that is required for our later inferences to hold.
6277       if (MatchPositiveShift(LHS, V, OpC)) {
6278         PostShiftOpCode = OpC;
6279         LHS = V;
6280       }
6281     }
6282 
6283     PNOut = dyn_cast<PHINode>(LHS);
6284     if (!PNOut || PNOut->getParent() != L->getHeader())
6285       return false;
6286 
6287     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6288     Value *OpLHS;
6289 
6290     return
6291         // The backedge value for the PHI node must be a shift by a positive
6292         // amount
6293         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6294 
6295         // of the PHI node itself
6296         OpLHS == PNOut &&
6297 
6298         // and the kind of shift should be match the kind of shift we peeled
6299         // off, if any.
6300         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6301   };
6302 
6303   PHINode *PN;
6304   Instruction::BinaryOps OpCode;
6305   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6306     return getCouldNotCompute();
6307 
6308   const DataLayout &DL = getDataLayout();
6309 
6310   // The key rationale for this optimization is that for some kinds of shift
6311   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6312   // within a finite number of iterations.  If the condition guarding the
6313   // backedge (in the sense that the backedge is taken if the condition is true)
6314   // is false for the value the shift recurrence stabilizes to, then we know
6315   // that the backedge is taken only a finite number of times.
6316 
6317   ConstantInt *StableValue = nullptr;
6318   switch (OpCode) {
6319   default:
6320     llvm_unreachable("Impossible case!");
6321 
6322   case Instruction::AShr: {
6323     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6324     // bitwidth(K) iterations.
6325     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6326     bool KnownZero, KnownOne;
6327     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6328                    Predecessor->getTerminator(), &DT);
6329     auto *Ty = cast<IntegerType>(RHS->getType());
6330     if (KnownZero)
6331       StableValue = ConstantInt::get(Ty, 0);
6332     else if (KnownOne)
6333       StableValue = ConstantInt::get(Ty, -1, true);
6334     else
6335       return getCouldNotCompute();
6336 
6337     break;
6338   }
6339   case Instruction::LShr:
6340   case Instruction::Shl:
6341     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6342     // stabilize to 0 in at most bitwidth(K) iterations.
6343     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6344     break;
6345   }
6346 
6347   auto *Result =
6348       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6349   assert(Result->getType()->isIntegerTy(1) &&
6350          "Otherwise cannot be an operand to a branch instruction");
6351 
6352   if (Result->isZeroValue()) {
6353     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6354     const SCEV *UpperBound =
6355         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6356     SCEVUnionPredicate P;
6357     return ExitLimit(getCouldNotCompute(), UpperBound, P);
6358   }
6359 
6360   return getCouldNotCompute();
6361 }
6362 
6363 /// Return true if we can constant fold an instruction of the specified type,
6364 /// assuming that all operands were constants.
6365 static bool CanConstantFold(const Instruction *I) {
6366   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6367       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6368       isa<LoadInst>(I))
6369     return true;
6370 
6371   if (const CallInst *CI = dyn_cast<CallInst>(I))
6372     if (const Function *F = CI->getCalledFunction())
6373       return canConstantFoldCallTo(F);
6374   return false;
6375 }
6376 
6377 /// Determine whether this instruction can constant evolve within this loop
6378 /// assuming its operands can all constant evolve.
6379 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6380   // An instruction outside of the loop can't be derived from a loop PHI.
6381   if (!L->contains(I)) return false;
6382 
6383   if (isa<PHINode>(I)) {
6384     // We don't currently keep track of the control flow needed to evaluate
6385     // PHIs, so we cannot handle PHIs inside of loops.
6386     return L->getHeader() == I->getParent();
6387   }
6388 
6389   // If we won't be able to constant fold this expression even if the operands
6390   // are constants, bail early.
6391   return CanConstantFold(I);
6392 }
6393 
6394 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6395 /// recursing through each instruction operand until reaching a loop header phi.
6396 static PHINode *
6397 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6398                                DenseMap<Instruction *, PHINode *> &PHIMap) {
6399 
6400   // Otherwise, we can evaluate this instruction if all of its operands are
6401   // constant or derived from a PHI node themselves.
6402   PHINode *PHI = nullptr;
6403   for (Value *Op : UseInst->operands()) {
6404     if (isa<Constant>(Op)) continue;
6405 
6406     Instruction *OpInst = dyn_cast<Instruction>(Op);
6407     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6408 
6409     PHINode *P = dyn_cast<PHINode>(OpInst);
6410     if (!P)
6411       // If this operand is already visited, reuse the prior result.
6412       // We may have P != PHI if this is the deepest point at which the
6413       // inconsistent paths meet.
6414       P = PHIMap.lookup(OpInst);
6415     if (!P) {
6416       // Recurse and memoize the results, whether a phi is found or not.
6417       // This recursive call invalidates pointers into PHIMap.
6418       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6419       PHIMap[OpInst] = P;
6420     }
6421     if (!P)
6422       return nullptr;  // Not evolving from PHI
6423     if (PHI && PHI != P)
6424       return nullptr;  // Evolving from multiple different PHIs.
6425     PHI = P;
6426   }
6427   // This is a expression evolving from a constant PHI!
6428   return PHI;
6429 }
6430 
6431 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6432 /// in the loop that V is derived from.  We allow arbitrary operations along the
6433 /// way, but the operands of an operation must either be constants or a value
6434 /// derived from a constant PHI.  If this expression does not fit with these
6435 /// constraints, return null.
6436 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6437   Instruction *I = dyn_cast<Instruction>(V);
6438   if (!I || !canConstantEvolve(I, L)) return nullptr;
6439 
6440   if (PHINode *PN = dyn_cast<PHINode>(I))
6441     return PN;
6442 
6443   // Record non-constant instructions contained by the loop.
6444   DenseMap<Instruction *, PHINode *> PHIMap;
6445   return getConstantEvolvingPHIOperands(I, L, PHIMap);
6446 }
6447 
6448 /// EvaluateExpression - Given an expression that passes the
6449 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6450 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6451 /// reason, return null.
6452 static Constant *EvaluateExpression(Value *V, const Loop *L,
6453                                     DenseMap<Instruction *, Constant *> &Vals,
6454                                     const DataLayout &DL,
6455                                     const TargetLibraryInfo *TLI) {
6456   // Convenient constant check, but redundant for recursive calls.
6457   if (Constant *C = dyn_cast<Constant>(V)) return C;
6458   Instruction *I = dyn_cast<Instruction>(V);
6459   if (!I) return nullptr;
6460 
6461   if (Constant *C = Vals.lookup(I)) return C;
6462 
6463   // An instruction inside the loop depends on a value outside the loop that we
6464   // weren't given a mapping for, or a value such as a call inside the loop.
6465   if (!canConstantEvolve(I, L)) return nullptr;
6466 
6467   // An unmapped PHI can be due to a branch or another loop inside this loop,
6468   // or due to this not being the initial iteration through a loop where we
6469   // couldn't compute the evolution of this particular PHI last time.
6470   if (isa<PHINode>(I)) return nullptr;
6471 
6472   std::vector<Constant*> Operands(I->getNumOperands());
6473 
6474   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6475     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6476     if (!Operand) {
6477       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6478       if (!Operands[i]) return nullptr;
6479       continue;
6480     }
6481     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6482     Vals[Operand] = C;
6483     if (!C) return nullptr;
6484     Operands[i] = C;
6485   }
6486 
6487   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6488     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6489                                            Operands[1], DL, TLI);
6490   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6491     if (!LI->isVolatile())
6492       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6493   }
6494   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6495 }
6496 
6497 
6498 // If every incoming value to PN except the one for BB is a specific Constant,
6499 // return that, else return nullptr.
6500 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6501   Constant *IncomingVal = nullptr;
6502 
6503   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6504     if (PN->getIncomingBlock(i) == BB)
6505       continue;
6506 
6507     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6508     if (!CurrentVal)
6509       return nullptr;
6510 
6511     if (IncomingVal != CurrentVal) {
6512       if (IncomingVal)
6513         return nullptr;
6514       IncomingVal = CurrentVal;
6515     }
6516   }
6517 
6518   return IncomingVal;
6519 }
6520 
6521 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6522 /// in the header of its containing loop, we know the loop executes a
6523 /// constant number of times, and the PHI node is just a recurrence
6524 /// involving constants, fold it.
6525 Constant *
6526 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6527                                                    const APInt &BEs,
6528                                                    const Loop *L) {
6529   auto I = ConstantEvolutionLoopExitValue.find(PN);
6530   if (I != ConstantEvolutionLoopExitValue.end())
6531     return I->second;
6532 
6533   if (BEs.ugt(MaxBruteForceIterations))
6534     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6535 
6536   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6537 
6538   DenseMap<Instruction *, Constant *> CurrentIterVals;
6539   BasicBlock *Header = L->getHeader();
6540   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6541 
6542   BasicBlock *Latch = L->getLoopLatch();
6543   if (!Latch)
6544     return nullptr;
6545 
6546   for (auto &I : *Header) {
6547     PHINode *PHI = dyn_cast<PHINode>(&I);
6548     if (!PHI) break;
6549     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6550     if (!StartCST) continue;
6551     CurrentIterVals[PHI] = StartCST;
6552   }
6553   if (!CurrentIterVals.count(PN))
6554     return RetVal = nullptr;
6555 
6556   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6557 
6558   // Execute the loop symbolically to determine the exit value.
6559   if (BEs.getActiveBits() >= 32)
6560     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6561 
6562   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6563   unsigned IterationNum = 0;
6564   const DataLayout &DL = getDataLayout();
6565   for (; ; ++IterationNum) {
6566     if (IterationNum == NumIterations)
6567       return RetVal = CurrentIterVals[PN];  // Got exit value!
6568 
6569     // Compute the value of the PHIs for the next iteration.
6570     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6571     DenseMap<Instruction *, Constant *> NextIterVals;
6572     Constant *NextPHI =
6573         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6574     if (!NextPHI)
6575       return nullptr;        // Couldn't evaluate!
6576     NextIterVals[PN] = NextPHI;
6577 
6578     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6579 
6580     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6581     // cease to be able to evaluate one of them or if they stop evolving,
6582     // because that doesn't necessarily prevent us from computing PN.
6583     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6584     for (const auto &I : CurrentIterVals) {
6585       PHINode *PHI = dyn_cast<PHINode>(I.first);
6586       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6587       PHIsToCompute.emplace_back(PHI, I.second);
6588     }
6589     // We use two distinct loops because EvaluateExpression may invalidate any
6590     // iterators into CurrentIterVals.
6591     for (const auto &I : PHIsToCompute) {
6592       PHINode *PHI = I.first;
6593       Constant *&NextPHI = NextIterVals[PHI];
6594       if (!NextPHI) {   // Not already computed.
6595         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6596         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6597       }
6598       if (NextPHI != I.second)
6599         StoppedEvolving = false;
6600     }
6601 
6602     // If all entries in CurrentIterVals == NextIterVals then we can stop
6603     // iterating, the loop can't continue to change.
6604     if (StoppedEvolving)
6605       return RetVal = CurrentIterVals[PN];
6606 
6607     CurrentIterVals.swap(NextIterVals);
6608   }
6609 }
6610 
6611 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6612                                                           Value *Cond,
6613                                                           bool ExitWhen) {
6614   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6615   if (!PN) return getCouldNotCompute();
6616 
6617   // If the loop is canonicalized, the PHI will have exactly two entries.
6618   // That's the only form we support here.
6619   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6620 
6621   DenseMap<Instruction *, Constant *> CurrentIterVals;
6622   BasicBlock *Header = L->getHeader();
6623   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6624 
6625   BasicBlock *Latch = L->getLoopLatch();
6626   assert(Latch && "Should follow from NumIncomingValues == 2!");
6627 
6628   for (auto &I : *Header) {
6629     PHINode *PHI = dyn_cast<PHINode>(&I);
6630     if (!PHI)
6631       break;
6632     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6633     if (!StartCST) continue;
6634     CurrentIterVals[PHI] = StartCST;
6635   }
6636   if (!CurrentIterVals.count(PN))
6637     return getCouldNotCompute();
6638 
6639   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6640   // the loop symbolically to determine when the condition gets a value of
6641   // "ExitWhen".
6642   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6643   const DataLayout &DL = getDataLayout();
6644   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6645     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6646         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6647 
6648     // Couldn't symbolically evaluate.
6649     if (!CondVal) return getCouldNotCompute();
6650 
6651     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6652       ++NumBruteForceTripCountsComputed;
6653       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6654     }
6655 
6656     // Update all the PHI nodes for the next iteration.
6657     DenseMap<Instruction *, Constant *> NextIterVals;
6658 
6659     // Create a list of which PHIs we need to compute. We want to do this before
6660     // calling EvaluateExpression on them because that may invalidate iterators
6661     // into CurrentIterVals.
6662     SmallVector<PHINode *, 8> PHIsToCompute;
6663     for (const auto &I : CurrentIterVals) {
6664       PHINode *PHI = dyn_cast<PHINode>(I.first);
6665       if (!PHI || PHI->getParent() != Header) continue;
6666       PHIsToCompute.push_back(PHI);
6667     }
6668     for (PHINode *PHI : PHIsToCompute) {
6669       Constant *&NextPHI = NextIterVals[PHI];
6670       if (NextPHI) continue;    // Already computed!
6671 
6672       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6673       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6674     }
6675     CurrentIterVals.swap(NextIterVals);
6676   }
6677 
6678   // Too many iterations were needed to evaluate.
6679   return getCouldNotCompute();
6680 }
6681 
6682 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6683   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6684       ValuesAtScopes[V];
6685   // Check to see if we've folded this expression at this loop before.
6686   for (auto &LS : Values)
6687     if (LS.first == L)
6688       return LS.second ? LS.second : V;
6689 
6690   Values.emplace_back(L, nullptr);
6691 
6692   // Otherwise compute it.
6693   const SCEV *C = computeSCEVAtScope(V, L);
6694   for (auto &LS : reverse(ValuesAtScopes[V]))
6695     if (LS.first == L) {
6696       LS.second = C;
6697       break;
6698     }
6699   return C;
6700 }
6701 
6702 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6703 /// will return Constants for objects which aren't represented by a
6704 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6705 /// Returns NULL if the SCEV isn't representable as a Constant.
6706 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6707   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6708     case scCouldNotCompute:
6709     case scAddRecExpr:
6710       break;
6711     case scConstant:
6712       return cast<SCEVConstant>(V)->getValue();
6713     case scUnknown:
6714       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6715     case scSignExtend: {
6716       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6717       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6718         return ConstantExpr::getSExt(CastOp, SS->getType());
6719       break;
6720     }
6721     case scZeroExtend: {
6722       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6723       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6724         return ConstantExpr::getZExt(CastOp, SZ->getType());
6725       break;
6726     }
6727     case scTruncate: {
6728       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6729       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6730         return ConstantExpr::getTrunc(CastOp, ST->getType());
6731       break;
6732     }
6733     case scAddExpr: {
6734       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6735       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6736         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6737           unsigned AS = PTy->getAddressSpace();
6738           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6739           C = ConstantExpr::getBitCast(C, DestPtrTy);
6740         }
6741         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6742           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6743           if (!C2) return nullptr;
6744 
6745           // First pointer!
6746           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6747             unsigned AS = C2->getType()->getPointerAddressSpace();
6748             std::swap(C, C2);
6749             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6750             // The offsets have been converted to bytes.  We can add bytes to an
6751             // i8* by GEP with the byte count in the first index.
6752             C = ConstantExpr::getBitCast(C, DestPtrTy);
6753           }
6754 
6755           // Don't bother trying to sum two pointers. We probably can't
6756           // statically compute a load that results from it anyway.
6757           if (C2->getType()->isPointerTy())
6758             return nullptr;
6759 
6760           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6761             if (PTy->getElementType()->isStructTy())
6762               C2 = ConstantExpr::getIntegerCast(
6763                   C2, Type::getInt32Ty(C->getContext()), true);
6764             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6765           } else
6766             C = ConstantExpr::getAdd(C, C2);
6767         }
6768         return C;
6769       }
6770       break;
6771     }
6772     case scMulExpr: {
6773       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6774       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6775         // Don't bother with pointers at all.
6776         if (C->getType()->isPointerTy()) return nullptr;
6777         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6778           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6779           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6780           C = ConstantExpr::getMul(C, C2);
6781         }
6782         return C;
6783       }
6784       break;
6785     }
6786     case scUDivExpr: {
6787       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6788       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6789         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6790           if (LHS->getType() == RHS->getType())
6791             return ConstantExpr::getUDiv(LHS, RHS);
6792       break;
6793     }
6794     case scSMaxExpr:
6795     case scUMaxExpr:
6796       break; // TODO: smax, umax.
6797   }
6798   return nullptr;
6799 }
6800 
6801 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6802   if (isa<SCEVConstant>(V)) return V;
6803 
6804   // If this instruction is evolved from a constant-evolving PHI, compute the
6805   // exit value from the loop without using SCEVs.
6806   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6807     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6808       const Loop *LI = this->LI[I->getParent()];
6809       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6810         if (PHINode *PN = dyn_cast<PHINode>(I))
6811           if (PN->getParent() == LI->getHeader()) {
6812             // Okay, there is no closed form solution for the PHI node.  Check
6813             // to see if the loop that contains it has a known backedge-taken
6814             // count.  If so, we may be able to force computation of the exit
6815             // value.
6816             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6817             if (const SCEVConstant *BTCC =
6818                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6819               // Okay, we know how many times the containing loop executes.  If
6820               // this is a constant evolving PHI node, get the final value at
6821               // the specified iteration number.
6822               Constant *RV =
6823                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6824               if (RV) return getSCEV(RV);
6825             }
6826           }
6827 
6828       // Okay, this is an expression that we cannot symbolically evaluate
6829       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6830       // the arguments into constants, and if so, try to constant propagate the
6831       // result.  This is particularly useful for computing loop exit values.
6832       if (CanConstantFold(I)) {
6833         SmallVector<Constant *, 4> Operands;
6834         bool MadeImprovement = false;
6835         for (Value *Op : I->operands()) {
6836           if (Constant *C = dyn_cast<Constant>(Op)) {
6837             Operands.push_back(C);
6838             continue;
6839           }
6840 
6841           // If any of the operands is non-constant and if they are
6842           // non-integer and non-pointer, don't even try to analyze them
6843           // with scev techniques.
6844           if (!isSCEVable(Op->getType()))
6845             return V;
6846 
6847           const SCEV *OrigV = getSCEV(Op);
6848           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6849           MadeImprovement |= OrigV != OpV;
6850 
6851           Constant *C = BuildConstantFromSCEV(OpV);
6852           if (!C) return V;
6853           if (C->getType() != Op->getType())
6854             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6855                                                               Op->getType(),
6856                                                               false),
6857                                       C, Op->getType());
6858           Operands.push_back(C);
6859         }
6860 
6861         // Check to see if getSCEVAtScope actually made an improvement.
6862         if (MadeImprovement) {
6863           Constant *C = nullptr;
6864           const DataLayout &DL = getDataLayout();
6865           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6866             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6867                                                 Operands[1], DL, &TLI);
6868           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6869             if (!LI->isVolatile())
6870               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6871           } else
6872             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6873           if (!C) return V;
6874           return getSCEV(C);
6875         }
6876       }
6877     }
6878 
6879     // This is some other type of SCEVUnknown, just return it.
6880     return V;
6881   }
6882 
6883   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6884     // Avoid performing the look-up in the common case where the specified
6885     // expression has no loop-variant portions.
6886     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6887       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6888       if (OpAtScope != Comm->getOperand(i)) {
6889         // Okay, at least one of these operands is loop variant but might be
6890         // foldable.  Build a new instance of the folded commutative expression.
6891         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6892                                             Comm->op_begin()+i);
6893         NewOps.push_back(OpAtScope);
6894 
6895         for (++i; i != e; ++i) {
6896           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6897           NewOps.push_back(OpAtScope);
6898         }
6899         if (isa<SCEVAddExpr>(Comm))
6900           return getAddExpr(NewOps);
6901         if (isa<SCEVMulExpr>(Comm))
6902           return getMulExpr(NewOps);
6903         if (isa<SCEVSMaxExpr>(Comm))
6904           return getSMaxExpr(NewOps);
6905         if (isa<SCEVUMaxExpr>(Comm))
6906           return getUMaxExpr(NewOps);
6907         llvm_unreachable("Unknown commutative SCEV type!");
6908       }
6909     }
6910     // If we got here, all operands are loop invariant.
6911     return Comm;
6912   }
6913 
6914   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6915     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6916     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6917     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6918       return Div;   // must be loop invariant
6919     return getUDivExpr(LHS, RHS);
6920   }
6921 
6922   // If this is a loop recurrence for a loop that does not contain L, then we
6923   // are dealing with the final value computed by the loop.
6924   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6925     // First, attempt to evaluate each operand.
6926     // Avoid performing the look-up in the common case where the specified
6927     // expression has no loop-variant portions.
6928     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6929       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6930       if (OpAtScope == AddRec->getOperand(i))
6931         continue;
6932 
6933       // Okay, at least one of these operands is loop variant but might be
6934       // foldable.  Build a new instance of the folded commutative expression.
6935       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6936                                           AddRec->op_begin()+i);
6937       NewOps.push_back(OpAtScope);
6938       for (++i; i != e; ++i)
6939         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6940 
6941       const SCEV *FoldedRec =
6942         getAddRecExpr(NewOps, AddRec->getLoop(),
6943                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6944       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6945       // The addrec may be folded to a nonrecurrence, for example, if the
6946       // induction variable is multiplied by zero after constant folding. Go
6947       // ahead and return the folded value.
6948       if (!AddRec)
6949         return FoldedRec;
6950       break;
6951     }
6952 
6953     // If the scope is outside the addrec's loop, evaluate it by using the
6954     // loop exit value of the addrec.
6955     if (!AddRec->getLoop()->contains(L)) {
6956       // To evaluate this recurrence, we need to know how many times the AddRec
6957       // loop iterates.  Compute this now.
6958       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6959       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6960 
6961       // Then, evaluate the AddRec.
6962       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6963     }
6964 
6965     return AddRec;
6966   }
6967 
6968   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6969     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6970     if (Op == Cast->getOperand())
6971       return Cast;  // must be loop invariant
6972     return getZeroExtendExpr(Op, Cast->getType());
6973   }
6974 
6975   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6976     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6977     if (Op == Cast->getOperand())
6978       return Cast;  // must be loop invariant
6979     return getSignExtendExpr(Op, Cast->getType());
6980   }
6981 
6982   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6983     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6984     if (Op == Cast->getOperand())
6985       return Cast;  // must be loop invariant
6986     return getTruncateExpr(Op, Cast->getType());
6987   }
6988 
6989   llvm_unreachable("Unknown SCEV type!");
6990 }
6991 
6992 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6993   return getSCEVAtScope(getSCEV(V), L);
6994 }
6995 
6996 /// Finds the minimum unsigned root of the following equation:
6997 ///
6998 ///     A * X = B (mod N)
6999 ///
7000 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
7001 /// A and B isn't important.
7002 ///
7003 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
7004 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
7005                                                ScalarEvolution &SE) {
7006   uint32_t BW = A.getBitWidth();
7007   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
7008   assert(A != 0 && "A must be non-zero.");
7009 
7010   // 1. D = gcd(A, N)
7011   //
7012   // The gcd of A and N may have only one prime factor: 2. The number of
7013   // trailing zeros in A is its multiplicity
7014   uint32_t Mult2 = A.countTrailingZeros();
7015   // D = 2^Mult2
7016 
7017   // 2. Check if B is divisible by D.
7018   //
7019   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
7020   // is not less than multiplicity of this prime factor for D.
7021   if (B.countTrailingZeros() < Mult2)
7022     return SE.getCouldNotCompute();
7023 
7024   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
7025   // modulo (N / D).
7026   //
7027   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
7028   // bit width during computations.
7029   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
7030   APInt Mod(BW + 1, 0);
7031   Mod.setBit(BW - Mult2);  // Mod = N / D
7032   APInt I = AD.multiplicativeInverse(Mod);
7033 
7034   // 4. Compute the minimum unsigned root of the equation:
7035   // I * (B / D) mod (N / D)
7036   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
7037 
7038   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
7039   // bits.
7040   return SE.getConstant(Result.trunc(BW));
7041 }
7042 
7043 /// Find the roots of the quadratic equation for the given quadratic chrec
7044 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
7045 /// two SCEVCouldNotCompute objects.
7046 ///
7047 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
7048 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
7049   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
7050   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
7051   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
7052   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
7053 
7054   // We currently can only solve this if the coefficients are constants.
7055   if (!LC || !MC || !NC)
7056     return None;
7057 
7058   uint32_t BitWidth = LC->getAPInt().getBitWidth();
7059   const APInt &L = LC->getAPInt();
7060   const APInt &M = MC->getAPInt();
7061   const APInt &N = NC->getAPInt();
7062   APInt Two(BitWidth, 2);
7063   APInt Four(BitWidth, 4);
7064 
7065   {
7066     using namespace APIntOps;
7067     const APInt& C = L;
7068     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
7069     // The B coefficient is M-N/2
7070     APInt B(M);
7071     B -= sdiv(N,Two);
7072 
7073     // The A coefficient is N/2
7074     APInt A(N.sdiv(Two));
7075 
7076     // Compute the B^2-4ac term.
7077     APInt SqrtTerm(B);
7078     SqrtTerm *= B;
7079     SqrtTerm -= Four * (A * C);
7080 
7081     if (SqrtTerm.isNegative()) {
7082       // The loop is provably infinite.
7083       return None;
7084     }
7085 
7086     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7087     // integer value or else APInt::sqrt() will assert.
7088     APInt SqrtVal(SqrtTerm.sqrt());
7089 
7090     // Compute the two solutions for the quadratic formula.
7091     // The divisions must be performed as signed divisions.
7092     APInt NegB(-B);
7093     APInt TwoA(A << 1);
7094     if (TwoA.isMinValue())
7095       return None;
7096 
7097     LLVMContext &Context = SE.getContext();
7098 
7099     ConstantInt *Solution1 =
7100       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7101     ConstantInt *Solution2 =
7102       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7103 
7104     return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7105                           cast<SCEVConstant>(SE.getConstant(Solution2)));
7106   } // end APIntOps namespace
7107 }
7108 
7109 ScalarEvolution::ExitLimit
7110 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7111                               bool AllowPredicates) {
7112 
7113   // This is only used for loops with a "x != y" exit test. The exit condition
7114   // is now expressed as a single expression, V = x-y. So the exit test is
7115   // effectively V != 0.  We know and take advantage of the fact that this
7116   // expression only being used in a comparison by zero context.
7117 
7118   SCEVUnionPredicate P;
7119   // If the value is a constant
7120   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7121     // If the value is already zero, the branch will execute zero times.
7122     if (C->getValue()->isZero()) return C;
7123     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7124   }
7125 
7126   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7127   if (!AddRec && AllowPredicates)
7128     // Try to make this an AddRec using runtime tests, in the first X
7129     // iterations of this loop, where X is the SCEV expression found by the
7130     // algorithm below.
7131     AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7132 
7133   if (!AddRec || AddRec->getLoop() != L)
7134     return getCouldNotCompute();
7135 
7136   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7137   // the quadratic equation to solve it.
7138   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7139     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
7140       const SCEVConstant *R1 = Roots->first;
7141       const SCEVConstant *R2 = Roots->second;
7142       // Pick the smallest positive root value.
7143       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
7144               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
7145         if (!CB->getZExtValue())
7146           std::swap(R1, R2); // R1 is the minimum root now.
7147 
7148         // We can only use this value if the chrec ends up with an exact zero
7149         // value at this index.  When solving for "X*X != 5", for example, we
7150         // should not accept a root of 2.
7151         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7152         if (Val->isZero())
7153           return ExitLimit(R1, R1, P); // We found a quadratic root!
7154       }
7155     }
7156     return getCouldNotCompute();
7157   }
7158 
7159   // Otherwise we can only handle this if it is affine.
7160   if (!AddRec->isAffine())
7161     return getCouldNotCompute();
7162 
7163   // If this is an affine expression, the execution count of this branch is
7164   // the minimum unsigned root of the following equation:
7165   //
7166   //     Start + Step*N = 0 (mod 2^BW)
7167   //
7168   // equivalent to:
7169   //
7170   //             Step*N = -Start (mod 2^BW)
7171   //
7172   // where BW is the common bit width of Start and Step.
7173 
7174   // Get the initial value for the loop.
7175   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7176   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7177 
7178   // For now we handle only constant steps.
7179   //
7180   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7181   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7182   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7183   // We have not yet seen any such cases.
7184   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7185   if (!StepC || StepC->getValue()->equalsInt(0))
7186     return getCouldNotCompute();
7187 
7188   // For positive steps (counting up until unsigned overflow):
7189   //   N = -Start/Step (as unsigned)
7190   // For negative steps (counting down to zero):
7191   //   N = Start/-Step
7192   // First compute the unsigned distance from zero in the direction of Step.
7193   bool CountDown = StepC->getAPInt().isNegative();
7194   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7195 
7196   // Handle unitary steps, which cannot wraparound.
7197   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7198   //   N = Distance (as unsigned)
7199   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7200     ConstantRange CR = getUnsignedRange(Start);
7201     const SCEV *MaxBECount;
7202     if (!CountDown && CR.getUnsignedMin().isMinValue())
7203       // When counting up, the worst starting value is 1, not 0.
7204       MaxBECount = CR.getUnsignedMax().isMinValue()
7205         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7206         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7207     else
7208       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7209                                          : -CR.getUnsignedMin());
7210     return ExitLimit(Distance, MaxBECount, P);
7211   }
7212 
7213   // As a special case, handle the instance where Step is a positive power of
7214   // two. In this case, determining whether Step divides Distance evenly can be
7215   // done by counting and comparing the number of trailing zeros of Step and
7216   // Distance.
7217   if (!CountDown) {
7218     const APInt &StepV = StepC->getAPInt();
7219     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
7220     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7221     // case is not handled as this code is guarded by !CountDown.
7222     if (StepV.isPowerOf2() &&
7223         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7224       // Here we've constrained the equation to be of the form
7225       //
7226       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
7227       //
7228       // where we're operating on a W bit wide integer domain and k is
7229       // non-negative.  The smallest unsigned solution for X is the trip count.
7230       //
7231       // (0) is equivalent to:
7232       //
7233       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
7234       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7235       // <=>  2^k * Distance' - X = L * 2^(W - N)
7236       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
7237       //
7238       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7239       // by 2^(W - N).
7240       //
7241       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
7242       //
7243       // E.g. say we're solving
7244       //
7245       //   2 * Val = 2 * X  (in i8)   ... (3)
7246       //
7247       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7248       //
7249       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7250       // necessarily the smallest unsigned value of X that satisfies (3).
7251       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7252       // is i8 1, not i8 -127
7253 
7254       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7255 
7256       // Since SCEV does not have a URem node, we construct one using a truncate
7257       // and a zero extend.
7258 
7259       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7260       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7261       auto *WideTy = Distance->getType();
7262 
7263       const SCEV *Limit =
7264           getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7265       return ExitLimit(Limit, Limit, P);
7266     }
7267   }
7268 
7269   // If the condition controls loop exit (the loop exits only if the expression
7270   // is true) and the addition is no-wrap we can use unsigned divide to
7271   // compute the backedge count.  In this case, the step may not divide the
7272   // distance, but we don't care because if the condition is "missed" the loop
7273   // will have undefined behavior due to wrapping.
7274   if (ControlsExit && AddRec->hasNoSelfWrap() &&
7275       loopHasNoAbnormalExits(AddRec->getLoop())) {
7276     const SCEV *Exact =
7277         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7278     return ExitLimit(Exact, Exact, P);
7279   }
7280 
7281   // Then, try to solve the above equation provided that Start is constant.
7282   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7283     const SCEV *E = SolveLinEquationWithOverflow(
7284         StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7285     return ExitLimit(E, E, P);
7286   }
7287   return getCouldNotCompute();
7288 }
7289 
7290 ScalarEvolution::ExitLimit
7291 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
7292   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7293   // handle them yet except for the trivial case.  This could be expanded in the
7294   // future as needed.
7295 
7296   // If the value is a constant, check to see if it is known to be non-zero
7297   // already.  If so, the backedge will execute zero times.
7298   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7299     if (!C->getValue()->isNullValue())
7300       return getZero(C->getType());
7301     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7302   }
7303 
7304   // We could implement others, but I really doubt anyone writes loops like
7305   // this, and if they did, they would already be constant folded.
7306   return getCouldNotCompute();
7307 }
7308 
7309 std::pair<BasicBlock *, BasicBlock *>
7310 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7311   // If the block has a unique predecessor, then there is no path from the
7312   // predecessor to the block that does not go through the direct edge
7313   // from the predecessor to the block.
7314   if (BasicBlock *Pred = BB->getSinglePredecessor())
7315     return {Pred, BB};
7316 
7317   // A loop's header is defined to be a block that dominates the loop.
7318   // If the header has a unique predecessor outside the loop, it must be
7319   // a block that has exactly one successor that can reach the loop.
7320   if (Loop *L = LI.getLoopFor(BB))
7321     return {L->getLoopPredecessor(), L->getHeader()};
7322 
7323   return {nullptr, nullptr};
7324 }
7325 
7326 /// SCEV structural equivalence is usually sufficient for testing whether two
7327 /// expressions are equal, however for the purposes of looking for a condition
7328 /// guarding a loop, it can be useful to be a little more general, since a
7329 /// front-end may have replicated the controlling expression.
7330 ///
7331 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7332   // Quick check to see if they are the same SCEV.
7333   if (A == B) return true;
7334 
7335   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7336     // Not all instructions that are "identical" compute the same value.  For
7337     // instance, two distinct alloca instructions allocating the same type are
7338     // identical and do not read memory; but compute distinct values.
7339     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7340   };
7341 
7342   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7343   // two different instructions with the same value. Check for this case.
7344   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7345     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7346       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7347         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7348           if (ComputesEqualValues(AI, BI))
7349             return true;
7350 
7351   // Otherwise assume they may have a different value.
7352   return false;
7353 }
7354 
7355 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7356                                            const SCEV *&LHS, const SCEV *&RHS,
7357                                            unsigned Depth) {
7358   bool Changed = false;
7359 
7360   // If we hit the max recursion limit bail out.
7361   if (Depth >= 3)
7362     return false;
7363 
7364   // Canonicalize a constant to the right side.
7365   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7366     // Check for both operands constant.
7367     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7368       if (ConstantExpr::getICmp(Pred,
7369                                 LHSC->getValue(),
7370                                 RHSC->getValue())->isNullValue())
7371         goto trivially_false;
7372       else
7373         goto trivially_true;
7374     }
7375     // Otherwise swap the operands to put the constant on the right.
7376     std::swap(LHS, RHS);
7377     Pred = ICmpInst::getSwappedPredicate(Pred);
7378     Changed = true;
7379   }
7380 
7381   // If we're comparing an addrec with a value which is loop-invariant in the
7382   // addrec's loop, put the addrec on the left. Also make a dominance check,
7383   // as both operands could be addrecs loop-invariant in each other's loop.
7384   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7385     const Loop *L = AR->getLoop();
7386     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7387       std::swap(LHS, RHS);
7388       Pred = ICmpInst::getSwappedPredicate(Pred);
7389       Changed = true;
7390     }
7391   }
7392 
7393   // If there's a constant operand, canonicalize comparisons with boundary
7394   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7395   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7396     const APInt &RA = RC->getAPInt();
7397     switch (Pred) {
7398     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7399     case ICmpInst::ICMP_EQ:
7400     case ICmpInst::ICMP_NE:
7401       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7402       if (!RA)
7403         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7404           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7405             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7406                 ME->getOperand(0)->isAllOnesValue()) {
7407               RHS = AE->getOperand(1);
7408               LHS = ME->getOperand(1);
7409               Changed = true;
7410             }
7411       break;
7412     case ICmpInst::ICMP_UGE:
7413       if ((RA - 1).isMinValue()) {
7414         Pred = ICmpInst::ICMP_NE;
7415         RHS = getConstant(RA - 1);
7416         Changed = true;
7417         break;
7418       }
7419       if (RA.isMaxValue()) {
7420         Pred = ICmpInst::ICMP_EQ;
7421         Changed = true;
7422         break;
7423       }
7424       if (RA.isMinValue()) goto trivially_true;
7425 
7426       Pred = ICmpInst::ICMP_UGT;
7427       RHS = getConstant(RA - 1);
7428       Changed = true;
7429       break;
7430     case ICmpInst::ICMP_ULE:
7431       if ((RA + 1).isMaxValue()) {
7432         Pred = ICmpInst::ICMP_NE;
7433         RHS = getConstant(RA + 1);
7434         Changed = true;
7435         break;
7436       }
7437       if (RA.isMinValue()) {
7438         Pred = ICmpInst::ICMP_EQ;
7439         Changed = true;
7440         break;
7441       }
7442       if (RA.isMaxValue()) goto trivially_true;
7443 
7444       Pred = ICmpInst::ICMP_ULT;
7445       RHS = getConstant(RA + 1);
7446       Changed = true;
7447       break;
7448     case ICmpInst::ICMP_SGE:
7449       if ((RA - 1).isMinSignedValue()) {
7450         Pred = ICmpInst::ICMP_NE;
7451         RHS = getConstant(RA - 1);
7452         Changed = true;
7453         break;
7454       }
7455       if (RA.isMaxSignedValue()) {
7456         Pred = ICmpInst::ICMP_EQ;
7457         Changed = true;
7458         break;
7459       }
7460       if (RA.isMinSignedValue()) goto trivially_true;
7461 
7462       Pred = ICmpInst::ICMP_SGT;
7463       RHS = getConstant(RA - 1);
7464       Changed = true;
7465       break;
7466     case ICmpInst::ICMP_SLE:
7467       if ((RA + 1).isMaxSignedValue()) {
7468         Pred = ICmpInst::ICMP_NE;
7469         RHS = getConstant(RA + 1);
7470         Changed = true;
7471         break;
7472       }
7473       if (RA.isMinSignedValue()) {
7474         Pred = ICmpInst::ICMP_EQ;
7475         Changed = true;
7476         break;
7477       }
7478       if (RA.isMaxSignedValue()) goto trivially_true;
7479 
7480       Pred = ICmpInst::ICMP_SLT;
7481       RHS = getConstant(RA + 1);
7482       Changed = true;
7483       break;
7484     case ICmpInst::ICMP_UGT:
7485       if (RA.isMinValue()) {
7486         Pred = ICmpInst::ICMP_NE;
7487         Changed = true;
7488         break;
7489       }
7490       if ((RA + 1).isMaxValue()) {
7491         Pred = ICmpInst::ICMP_EQ;
7492         RHS = getConstant(RA + 1);
7493         Changed = true;
7494         break;
7495       }
7496       if (RA.isMaxValue()) goto trivially_false;
7497       break;
7498     case ICmpInst::ICMP_ULT:
7499       if (RA.isMaxValue()) {
7500         Pred = ICmpInst::ICMP_NE;
7501         Changed = true;
7502         break;
7503       }
7504       if ((RA - 1).isMinValue()) {
7505         Pred = ICmpInst::ICMP_EQ;
7506         RHS = getConstant(RA - 1);
7507         Changed = true;
7508         break;
7509       }
7510       if (RA.isMinValue()) goto trivially_false;
7511       break;
7512     case ICmpInst::ICMP_SGT:
7513       if (RA.isMinSignedValue()) {
7514         Pred = ICmpInst::ICMP_NE;
7515         Changed = true;
7516         break;
7517       }
7518       if ((RA + 1).isMaxSignedValue()) {
7519         Pred = ICmpInst::ICMP_EQ;
7520         RHS = getConstant(RA + 1);
7521         Changed = true;
7522         break;
7523       }
7524       if (RA.isMaxSignedValue()) goto trivially_false;
7525       break;
7526     case ICmpInst::ICMP_SLT:
7527       if (RA.isMaxSignedValue()) {
7528         Pred = ICmpInst::ICMP_NE;
7529         Changed = true;
7530         break;
7531       }
7532       if ((RA - 1).isMinSignedValue()) {
7533        Pred = ICmpInst::ICMP_EQ;
7534        RHS = getConstant(RA - 1);
7535         Changed = true;
7536        break;
7537       }
7538       if (RA.isMinSignedValue()) goto trivially_false;
7539       break;
7540     }
7541   }
7542 
7543   // Check for obvious equality.
7544   if (HasSameValue(LHS, RHS)) {
7545     if (ICmpInst::isTrueWhenEqual(Pred))
7546       goto trivially_true;
7547     if (ICmpInst::isFalseWhenEqual(Pred))
7548       goto trivially_false;
7549   }
7550 
7551   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7552   // adding or subtracting 1 from one of the operands.
7553   switch (Pred) {
7554   case ICmpInst::ICMP_SLE:
7555     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7556       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7557                        SCEV::FlagNSW);
7558       Pred = ICmpInst::ICMP_SLT;
7559       Changed = true;
7560     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7561       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7562                        SCEV::FlagNSW);
7563       Pred = ICmpInst::ICMP_SLT;
7564       Changed = true;
7565     }
7566     break;
7567   case ICmpInst::ICMP_SGE:
7568     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7569       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7570                        SCEV::FlagNSW);
7571       Pred = ICmpInst::ICMP_SGT;
7572       Changed = true;
7573     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7574       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7575                        SCEV::FlagNSW);
7576       Pred = ICmpInst::ICMP_SGT;
7577       Changed = true;
7578     }
7579     break;
7580   case ICmpInst::ICMP_ULE:
7581     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7582       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7583                        SCEV::FlagNUW);
7584       Pred = ICmpInst::ICMP_ULT;
7585       Changed = true;
7586     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7587       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7588       Pred = ICmpInst::ICMP_ULT;
7589       Changed = true;
7590     }
7591     break;
7592   case ICmpInst::ICMP_UGE:
7593     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7594       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7595       Pred = ICmpInst::ICMP_UGT;
7596       Changed = true;
7597     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7598       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7599                        SCEV::FlagNUW);
7600       Pred = ICmpInst::ICMP_UGT;
7601       Changed = true;
7602     }
7603     break;
7604   default:
7605     break;
7606   }
7607 
7608   // TODO: More simplifications are possible here.
7609 
7610   // Recursively simplify until we either hit a recursion limit or nothing
7611   // changes.
7612   if (Changed)
7613     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7614 
7615   return Changed;
7616 
7617 trivially_true:
7618   // Return 0 == 0.
7619   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7620   Pred = ICmpInst::ICMP_EQ;
7621   return true;
7622 
7623 trivially_false:
7624   // Return 0 != 0.
7625   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7626   Pred = ICmpInst::ICMP_NE;
7627   return true;
7628 }
7629 
7630 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7631   return getSignedRange(S).getSignedMax().isNegative();
7632 }
7633 
7634 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7635   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7636 }
7637 
7638 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7639   return !getSignedRange(S).getSignedMin().isNegative();
7640 }
7641 
7642 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7643   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7644 }
7645 
7646 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7647   return isKnownNegative(S) || isKnownPositive(S);
7648 }
7649 
7650 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7651                                        const SCEV *LHS, const SCEV *RHS) {
7652   // Canonicalize the inputs first.
7653   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7654 
7655   // If LHS or RHS is an addrec, check to see if the condition is true in
7656   // every iteration of the loop.
7657   // If LHS and RHS are both addrec, both conditions must be true in
7658   // every iteration of the loop.
7659   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7660   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7661   bool LeftGuarded = false;
7662   bool RightGuarded = false;
7663   if (LAR) {
7664     const Loop *L = LAR->getLoop();
7665     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7666         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7667       if (!RAR) return true;
7668       LeftGuarded = true;
7669     }
7670   }
7671   if (RAR) {
7672     const Loop *L = RAR->getLoop();
7673     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7674         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7675       if (!LAR) return true;
7676       RightGuarded = true;
7677     }
7678   }
7679   if (LeftGuarded && RightGuarded)
7680     return true;
7681 
7682   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7683     return true;
7684 
7685   // Otherwise see what can be done with known constant ranges.
7686   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7687 }
7688 
7689 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7690                                            ICmpInst::Predicate Pred,
7691                                            bool &Increasing) {
7692   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7693 
7694 #ifndef NDEBUG
7695   // Verify an invariant: inverting the predicate should turn a monotonically
7696   // increasing change to a monotonically decreasing one, and vice versa.
7697   bool IncreasingSwapped;
7698   bool ResultSwapped = isMonotonicPredicateImpl(
7699       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7700 
7701   assert(Result == ResultSwapped && "should be able to analyze both!");
7702   if (ResultSwapped)
7703     assert(Increasing == !IncreasingSwapped &&
7704            "monotonicity should flip as we flip the predicate");
7705 #endif
7706 
7707   return Result;
7708 }
7709 
7710 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7711                                                ICmpInst::Predicate Pred,
7712                                                bool &Increasing) {
7713 
7714   // A zero step value for LHS means the induction variable is essentially a
7715   // loop invariant value. We don't really depend on the predicate actually
7716   // flipping from false to true (for increasing predicates, and the other way
7717   // around for decreasing predicates), all we care about is that *if* the
7718   // predicate changes then it only changes from false to true.
7719   //
7720   // A zero step value in itself is not very useful, but there may be places
7721   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7722   // as general as possible.
7723 
7724   switch (Pred) {
7725   default:
7726     return false; // Conservative answer
7727 
7728   case ICmpInst::ICMP_UGT:
7729   case ICmpInst::ICMP_UGE:
7730   case ICmpInst::ICMP_ULT:
7731   case ICmpInst::ICMP_ULE:
7732     if (!LHS->hasNoUnsignedWrap())
7733       return false;
7734 
7735     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7736     return true;
7737 
7738   case ICmpInst::ICMP_SGT:
7739   case ICmpInst::ICMP_SGE:
7740   case ICmpInst::ICMP_SLT:
7741   case ICmpInst::ICMP_SLE: {
7742     if (!LHS->hasNoSignedWrap())
7743       return false;
7744 
7745     const SCEV *Step = LHS->getStepRecurrence(*this);
7746 
7747     if (isKnownNonNegative(Step)) {
7748       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7749       return true;
7750     }
7751 
7752     if (isKnownNonPositive(Step)) {
7753       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7754       return true;
7755     }
7756 
7757     return false;
7758   }
7759 
7760   }
7761 
7762   llvm_unreachable("switch has default clause!");
7763 }
7764 
7765 bool ScalarEvolution::isLoopInvariantPredicate(
7766     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7767     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7768     const SCEV *&InvariantRHS) {
7769 
7770   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7771   if (!isLoopInvariant(RHS, L)) {
7772     if (!isLoopInvariant(LHS, L))
7773       return false;
7774 
7775     std::swap(LHS, RHS);
7776     Pred = ICmpInst::getSwappedPredicate(Pred);
7777   }
7778 
7779   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7780   if (!ArLHS || ArLHS->getLoop() != L)
7781     return false;
7782 
7783   bool Increasing;
7784   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7785     return false;
7786 
7787   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7788   // true as the loop iterates, and the backedge is control dependent on
7789   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7790   //
7791   //   * if the predicate was false in the first iteration then the predicate
7792   //     is never evaluated again, since the loop exits without taking the
7793   //     backedge.
7794   //   * if the predicate was true in the first iteration then it will
7795   //     continue to be true for all future iterations since it is
7796   //     monotonically increasing.
7797   //
7798   // For both the above possibilities, we can replace the loop varying
7799   // predicate with its value on the first iteration of the loop (which is
7800   // loop invariant).
7801   //
7802   // A similar reasoning applies for a monotonically decreasing predicate, by
7803   // replacing true with false and false with true in the above two bullets.
7804 
7805   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7806 
7807   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7808     return false;
7809 
7810   InvariantPred = Pred;
7811   InvariantLHS = ArLHS->getStart();
7812   InvariantRHS = RHS;
7813   return true;
7814 }
7815 
7816 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7817     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7818   if (HasSameValue(LHS, RHS))
7819     return ICmpInst::isTrueWhenEqual(Pred);
7820 
7821   // This code is split out from isKnownPredicate because it is called from
7822   // within isLoopEntryGuardedByCond.
7823 
7824   auto CheckRanges =
7825       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7826     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7827         .contains(RangeLHS);
7828   };
7829 
7830   // The check at the top of the function catches the case where the values are
7831   // known to be equal.
7832   if (Pred == CmpInst::ICMP_EQ)
7833     return false;
7834 
7835   if (Pred == CmpInst::ICMP_NE)
7836     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7837            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7838            isKnownNonZero(getMinusSCEV(LHS, RHS));
7839 
7840   if (CmpInst::isSigned(Pred))
7841     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7842 
7843   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7844 }
7845 
7846 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7847                                                     const SCEV *LHS,
7848                                                     const SCEV *RHS) {
7849 
7850   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7851   // Return Y via OutY.
7852   auto MatchBinaryAddToConst =
7853       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7854              SCEV::NoWrapFlags ExpectedFlags) {
7855     const SCEV *NonConstOp, *ConstOp;
7856     SCEV::NoWrapFlags FlagsPresent;
7857 
7858     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7859         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7860       return false;
7861 
7862     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7863     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7864   };
7865 
7866   APInt C;
7867 
7868   switch (Pred) {
7869   default:
7870     break;
7871 
7872   case ICmpInst::ICMP_SGE:
7873     std::swap(LHS, RHS);
7874   case ICmpInst::ICMP_SLE:
7875     // X s<= (X + C)<nsw> if C >= 0
7876     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7877       return true;
7878 
7879     // (X + C)<nsw> s<= X if C <= 0
7880     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7881         !C.isStrictlyPositive())
7882       return true;
7883     break;
7884 
7885   case ICmpInst::ICMP_SGT:
7886     std::swap(LHS, RHS);
7887   case ICmpInst::ICMP_SLT:
7888     // X s< (X + C)<nsw> if C > 0
7889     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7890         C.isStrictlyPositive())
7891       return true;
7892 
7893     // (X + C)<nsw> s< X if C < 0
7894     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7895       return true;
7896     break;
7897   }
7898 
7899   return false;
7900 }
7901 
7902 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7903                                                    const SCEV *LHS,
7904                                                    const SCEV *RHS) {
7905   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7906     return false;
7907 
7908   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7909   // the stack can result in exponential time complexity.
7910   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7911 
7912   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7913   //
7914   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7915   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7916   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7917   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7918   // use isKnownPredicate later if needed.
7919   return isKnownNonNegative(RHS) &&
7920          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7921          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7922 }
7923 
7924 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7925                                         ICmpInst::Predicate Pred,
7926                                         const SCEV *LHS, const SCEV *RHS) {
7927   // No need to even try if we know the module has no guards.
7928   if (!HasGuards)
7929     return false;
7930 
7931   return any_of(*BB, [&](Instruction &I) {
7932     using namespace llvm::PatternMatch;
7933 
7934     Value *Condition;
7935     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7936                          m_Value(Condition))) &&
7937            isImpliedCond(Pred, LHS, RHS, Condition, false);
7938   });
7939 }
7940 
7941 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7942 /// protected by a conditional between LHS and RHS.  This is used to
7943 /// to eliminate casts.
7944 bool
7945 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7946                                              ICmpInst::Predicate Pred,
7947                                              const SCEV *LHS, const SCEV *RHS) {
7948   // Interpret a null as meaning no loop, where there is obviously no guard
7949   // (interprocedural conditions notwithstanding).
7950   if (!L) return true;
7951 
7952   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7953     return true;
7954 
7955   BasicBlock *Latch = L->getLoopLatch();
7956   if (!Latch)
7957     return false;
7958 
7959   BranchInst *LoopContinuePredicate =
7960     dyn_cast<BranchInst>(Latch->getTerminator());
7961   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7962       isImpliedCond(Pred, LHS, RHS,
7963                     LoopContinuePredicate->getCondition(),
7964                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7965     return true;
7966 
7967   // We don't want more than one activation of the following loops on the stack
7968   // -- that can lead to O(n!) time complexity.
7969   if (WalkingBEDominatingConds)
7970     return false;
7971 
7972   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7973 
7974   // See if we can exploit a trip count to prove the predicate.
7975   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7976   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7977   if (LatchBECount != getCouldNotCompute()) {
7978     // We know that Latch branches back to the loop header exactly
7979     // LatchBECount times.  This means the backdege condition at Latch is
7980     // equivalent to  "{0,+,1} u< LatchBECount".
7981     Type *Ty = LatchBECount->getType();
7982     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7983     const SCEV *LoopCounter =
7984       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7985     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7986                       LatchBECount))
7987       return true;
7988   }
7989 
7990   // Check conditions due to any @llvm.assume intrinsics.
7991   for (auto &AssumeVH : AC.assumptions()) {
7992     if (!AssumeVH)
7993       continue;
7994     auto *CI = cast<CallInst>(AssumeVH);
7995     if (!DT.dominates(CI, Latch->getTerminator()))
7996       continue;
7997 
7998     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7999       return true;
8000   }
8001 
8002   // If the loop is not reachable from the entry block, we risk running into an
8003   // infinite loop as we walk up into the dom tree.  These loops do not matter
8004   // anyway, so we just return a conservative answer when we see them.
8005   if (!DT.isReachableFromEntry(L->getHeader()))
8006     return false;
8007 
8008   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
8009     return true;
8010 
8011   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
8012        DTN != HeaderDTN; DTN = DTN->getIDom()) {
8013 
8014     assert(DTN && "should reach the loop header before reaching the root!");
8015 
8016     BasicBlock *BB = DTN->getBlock();
8017     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
8018       return true;
8019 
8020     BasicBlock *PBB = BB->getSinglePredecessor();
8021     if (!PBB)
8022       continue;
8023 
8024     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
8025     if (!ContinuePredicate || !ContinuePredicate->isConditional())
8026       continue;
8027 
8028     Value *Condition = ContinuePredicate->getCondition();
8029 
8030     // If we have an edge `E` within the loop body that dominates the only
8031     // latch, the condition guarding `E` also guards the backedge.  This
8032     // reasoning works only for loops with a single latch.
8033 
8034     BasicBlockEdge DominatingEdge(PBB, BB);
8035     if (DominatingEdge.isSingleEdge()) {
8036       // We're constructively (and conservatively) enumerating edges within the
8037       // loop body that dominate the latch.  The dominator tree better agree
8038       // with us on this:
8039       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
8040 
8041       if (isImpliedCond(Pred, LHS, RHS, Condition,
8042                         BB != ContinuePredicate->getSuccessor(0)))
8043         return true;
8044     }
8045   }
8046 
8047   return false;
8048 }
8049 
8050 bool
8051 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
8052                                           ICmpInst::Predicate Pred,
8053                                           const SCEV *LHS, const SCEV *RHS) {
8054   // Interpret a null as meaning no loop, where there is obviously no guard
8055   // (interprocedural conditions notwithstanding).
8056   if (!L) return false;
8057 
8058   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8059     return true;
8060 
8061   // Starting at the loop predecessor, climb up the predecessor chain, as long
8062   // as there are predecessors that can be found that have unique successors
8063   // leading to the original header.
8064   for (std::pair<BasicBlock *, BasicBlock *>
8065          Pair(L->getLoopPredecessor(), L->getHeader());
8066        Pair.first;
8067        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
8068 
8069     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
8070       return true;
8071 
8072     BranchInst *LoopEntryPredicate =
8073       dyn_cast<BranchInst>(Pair.first->getTerminator());
8074     if (!LoopEntryPredicate ||
8075         LoopEntryPredicate->isUnconditional())
8076       continue;
8077 
8078     if (isImpliedCond(Pred, LHS, RHS,
8079                       LoopEntryPredicate->getCondition(),
8080                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
8081       return true;
8082   }
8083 
8084   // Check conditions due to any @llvm.assume intrinsics.
8085   for (auto &AssumeVH : AC.assumptions()) {
8086     if (!AssumeVH)
8087       continue;
8088     auto *CI = cast<CallInst>(AssumeVH);
8089     if (!DT.dominates(CI, L->getHeader()))
8090       continue;
8091 
8092     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8093       return true;
8094   }
8095 
8096   return false;
8097 }
8098 
8099 namespace {
8100 /// RAII wrapper to prevent recursive application of isImpliedCond.
8101 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
8102 /// currently evaluating isImpliedCond.
8103 struct MarkPendingLoopPredicate {
8104   Value *Cond;
8105   DenseSet<Value*> &LoopPreds;
8106   bool Pending;
8107 
8108   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
8109     : Cond(C), LoopPreds(LP) {
8110     Pending = !LoopPreds.insert(Cond).second;
8111   }
8112   ~MarkPendingLoopPredicate() {
8113     if (!Pending)
8114       LoopPreds.erase(Cond);
8115   }
8116 };
8117 } // end anonymous namespace
8118 
8119 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8120                                     const SCEV *LHS, const SCEV *RHS,
8121                                     Value *FoundCondValue,
8122                                     bool Inverse) {
8123   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
8124   if (Mark.Pending)
8125     return false;
8126 
8127   // Recursively handle And and Or conditions.
8128   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8129     if (BO->getOpcode() == Instruction::And) {
8130       if (!Inverse)
8131         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8132                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8133     } else if (BO->getOpcode() == Instruction::Or) {
8134       if (Inverse)
8135         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8136                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8137     }
8138   }
8139 
8140   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8141   if (!ICI) return false;
8142 
8143   // Now that we found a conditional branch that dominates the loop or controls
8144   // the loop latch. Check to see if it is the comparison we are looking for.
8145   ICmpInst::Predicate FoundPred;
8146   if (Inverse)
8147     FoundPred = ICI->getInversePredicate();
8148   else
8149     FoundPred = ICI->getPredicate();
8150 
8151   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8152   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8153 
8154   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8155 }
8156 
8157 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8158                                     const SCEV *RHS,
8159                                     ICmpInst::Predicate FoundPred,
8160                                     const SCEV *FoundLHS,
8161                                     const SCEV *FoundRHS) {
8162   // Balance the types.
8163   if (getTypeSizeInBits(LHS->getType()) <
8164       getTypeSizeInBits(FoundLHS->getType())) {
8165     if (CmpInst::isSigned(Pred)) {
8166       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8167       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8168     } else {
8169       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8170       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8171     }
8172   } else if (getTypeSizeInBits(LHS->getType()) >
8173       getTypeSizeInBits(FoundLHS->getType())) {
8174     if (CmpInst::isSigned(FoundPred)) {
8175       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8176       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8177     } else {
8178       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8179       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8180     }
8181   }
8182 
8183   // Canonicalize the query to match the way instcombine will have
8184   // canonicalized the comparison.
8185   if (SimplifyICmpOperands(Pred, LHS, RHS))
8186     if (LHS == RHS)
8187       return CmpInst::isTrueWhenEqual(Pred);
8188   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8189     if (FoundLHS == FoundRHS)
8190       return CmpInst::isFalseWhenEqual(FoundPred);
8191 
8192   // Check to see if we can make the LHS or RHS match.
8193   if (LHS == FoundRHS || RHS == FoundLHS) {
8194     if (isa<SCEVConstant>(RHS)) {
8195       std::swap(FoundLHS, FoundRHS);
8196       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8197     } else {
8198       std::swap(LHS, RHS);
8199       Pred = ICmpInst::getSwappedPredicate(Pred);
8200     }
8201   }
8202 
8203   // Check whether the found predicate is the same as the desired predicate.
8204   if (FoundPred == Pred)
8205     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8206 
8207   // Check whether swapping the found predicate makes it the same as the
8208   // desired predicate.
8209   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8210     if (isa<SCEVConstant>(RHS))
8211       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8212     else
8213       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8214                                    RHS, LHS, FoundLHS, FoundRHS);
8215   }
8216 
8217   // Unsigned comparison is the same as signed comparison when both the operands
8218   // are non-negative.
8219   if (CmpInst::isUnsigned(FoundPred) &&
8220       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8221       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8222     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8223 
8224   // Check if we can make progress by sharpening ranges.
8225   if (FoundPred == ICmpInst::ICMP_NE &&
8226       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8227 
8228     const SCEVConstant *C = nullptr;
8229     const SCEV *V = nullptr;
8230 
8231     if (isa<SCEVConstant>(FoundLHS)) {
8232       C = cast<SCEVConstant>(FoundLHS);
8233       V = FoundRHS;
8234     } else {
8235       C = cast<SCEVConstant>(FoundRHS);
8236       V = FoundLHS;
8237     }
8238 
8239     // The guarding predicate tells us that C != V. If the known range
8240     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8241     // range we consider has to correspond to same signedness as the
8242     // predicate we're interested in folding.
8243 
8244     APInt Min = ICmpInst::isSigned(Pred) ?
8245         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8246 
8247     if (Min == C->getAPInt()) {
8248       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8249       // This is true even if (Min + 1) wraps around -- in case of
8250       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8251 
8252       APInt SharperMin = Min + 1;
8253 
8254       switch (Pred) {
8255         case ICmpInst::ICMP_SGE:
8256         case ICmpInst::ICMP_UGE:
8257           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8258           // RHS, we're done.
8259           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8260                                     getConstant(SharperMin)))
8261             return true;
8262 
8263         case ICmpInst::ICMP_SGT:
8264         case ICmpInst::ICMP_UGT:
8265           // We know from the range information that (V `Pred` Min ||
8266           // V == Min).  We know from the guarding condition that !(V
8267           // == Min).  This gives us
8268           //
8269           //       V `Pred` Min || V == Min && !(V == Min)
8270           //   =>  V `Pred` Min
8271           //
8272           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8273 
8274           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8275             return true;
8276 
8277         default:
8278           // No change
8279           break;
8280       }
8281     }
8282   }
8283 
8284   // Check whether the actual condition is beyond sufficient.
8285   if (FoundPred == ICmpInst::ICMP_EQ)
8286     if (ICmpInst::isTrueWhenEqual(Pred))
8287       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8288         return true;
8289   if (Pred == ICmpInst::ICMP_NE)
8290     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8291       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8292         return true;
8293 
8294   // Otherwise assume the worst.
8295   return false;
8296 }
8297 
8298 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8299                                      const SCEV *&L, const SCEV *&R,
8300                                      SCEV::NoWrapFlags &Flags) {
8301   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8302   if (!AE || AE->getNumOperands() != 2)
8303     return false;
8304 
8305   L = AE->getOperand(0);
8306   R = AE->getOperand(1);
8307   Flags = AE->getNoWrapFlags();
8308   return true;
8309 }
8310 
8311 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
8312                                                            const SCEV *Less) {
8313   // We avoid subtracting expressions here because this function is usually
8314   // fairly deep in the call stack (i.e. is called many times).
8315 
8316   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8317     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8318     const auto *MAR = cast<SCEVAddRecExpr>(More);
8319 
8320     if (LAR->getLoop() != MAR->getLoop())
8321       return None;
8322 
8323     // We look at affine expressions only; not for correctness but to keep
8324     // getStepRecurrence cheap.
8325     if (!LAR->isAffine() || !MAR->isAffine())
8326       return None;
8327 
8328     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8329       return None;
8330 
8331     Less = LAR->getStart();
8332     More = MAR->getStart();
8333 
8334     // fall through
8335   }
8336 
8337   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8338     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8339     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8340     return M - L;
8341   }
8342 
8343   const SCEV *L, *R;
8344   SCEV::NoWrapFlags Flags;
8345   if (splitBinaryAdd(Less, L, R, Flags))
8346     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8347       if (R == More)
8348         return -(LC->getAPInt());
8349 
8350   if (splitBinaryAdd(More, L, R, Flags))
8351     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8352       if (R == Less)
8353         return LC->getAPInt();
8354 
8355   return None;
8356 }
8357 
8358 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8359     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8360     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8361   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8362     return false;
8363 
8364   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8365   if (!AddRecLHS)
8366     return false;
8367 
8368   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8369   if (!AddRecFoundLHS)
8370     return false;
8371 
8372   // We'd like to let SCEV reason about control dependencies, so we constrain
8373   // both the inequalities to be about add recurrences on the same loop.  This
8374   // way we can use isLoopEntryGuardedByCond later.
8375 
8376   const Loop *L = AddRecFoundLHS->getLoop();
8377   if (L != AddRecLHS->getLoop())
8378     return false;
8379 
8380   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8381   //
8382   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8383   //                                                                  ... (2)
8384   //
8385   // Informal proof for (2), assuming (1) [*]:
8386   //
8387   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8388   //
8389   // Then
8390   //
8391   //       FoundLHS s< FoundRHS s< INT_MIN - C
8392   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8393   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8394   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8395   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8396   // <=>  FoundLHS + C s< FoundRHS + C
8397   //
8398   // [*]: (1) can be proved by ruling out overflow.
8399   //
8400   // [**]: This can be proved by analyzing all the four possibilities:
8401   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8402   //    (A s>= 0, B s>= 0).
8403   //
8404   // Note:
8405   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8406   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8407   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8408   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8409   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8410   // C)".
8411 
8412   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
8413   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
8414   if (!LDiff || !RDiff || *LDiff != *RDiff)
8415     return false;
8416 
8417   if (LDiff->isMinValue())
8418     return true;
8419 
8420   APInt FoundRHSLimit;
8421 
8422   if (Pred == CmpInst::ICMP_ULT) {
8423     FoundRHSLimit = -(*RDiff);
8424   } else {
8425     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8426     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
8427   }
8428 
8429   // Try to prove (1) or (2), as needed.
8430   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8431                                   getConstant(FoundRHSLimit));
8432 }
8433 
8434 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8435                                             const SCEV *LHS, const SCEV *RHS,
8436                                             const SCEV *FoundLHS,
8437                                             const SCEV *FoundRHS) {
8438   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8439     return true;
8440 
8441   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8442     return true;
8443 
8444   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8445                                      FoundLHS, FoundRHS) ||
8446          // ~x < ~y --> x > y
8447          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8448                                      getNotSCEV(FoundRHS),
8449                                      getNotSCEV(FoundLHS));
8450 }
8451 
8452 
8453 /// If Expr computes ~A, return A else return nullptr
8454 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8455   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8456   if (!Add || Add->getNumOperands() != 2 ||
8457       !Add->getOperand(0)->isAllOnesValue())
8458     return nullptr;
8459 
8460   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8461   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8462       !AddRHS->getOperand(0)->isAllOnesValue())
8463     return nullptr;
8464 
8465   return AddRHS->getOperand(1);
8466 }
8467 
8468 
8469 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8470 template<typename MaxExprType>
8471 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8472                               const SCEV *Candidate) {
8473   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8474   if (!MaxExpr) return false;
8475 
8476   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8477 }
8478 
8479 
8480 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8481 template<typename MaxExprType>
8482 static bool IsMinConsistingOf(ScalarEvolution &SE,
8483                               const SCEV *MaybeMinExpr,
8484                               const SCEV *Candidate) {
8485   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8486   if (!MaybeMaxExpr)
8487     return false;
8488 
8489   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8490 }
8491 
8492 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8493                                            ICmpInst::Predicate Pred,
8494                                            const SCEV *LHS, const SCEV *RHS) {
8495 
8496   // If both sides are affine addrecs for the same loop, with equal
8497   // steps, and we know the recurrences don't wrap, then we only
8498   // need to check the predicate on the starting values.
8499 
8500   if (!ICmpInst::isRelational(Pred))
8501     return false;
8502 
8503   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8504   if (!LAR)
8505     return false;
8506   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8507   if (!RAR)
8508     return false;
8509   if (LAR->getLoop() != RAR->getLoop())
8510     return false;
8511   if (!LAR->isAffine() || !RAR->isAffine())
8512     return false;
8513 
8514   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8515     return false;
8516 
8517   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8518                          SCEV::FlagNSW : SCEV::FlagNUW;
8519   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8520     return false;
8521 
8522   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8523 }
8524 
8525 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8526 /// expression?
8527 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8528                                         ICmpInst::Predicate Pred,
8529                                         const SCEV *LHS, const SCEV *RHS) {
8530   switch (Pred) {
8531   default:
8532     return false;
8533 
8534   case ICmpInst::ICMP_SGE:
8535     std::swap(LHS, RHS);
8536     LLVM_FALLTHROUGH;
8537   case ICmpInst::ICMP_SLE:
8538     return
8539       // min(A, ...) <= A
8540       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8541       // A <= max(A, ...)
8542       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8543 
8544   case ICmpInst::ICMP_UGE:
8545     std::swap(LHS, RHS);
8546     LLVM_FALLTHROUGH;
8547   case ICmpInst::ICMP_ULE:
8548     return
8549       // min(A, ...) <= A
8550       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8551       // A <= max(A, ...)
8552       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8553   }
8554 
8555   llvm_unreachable("covered switch fell through?!");
8556 }
8557 
8558 bool
8559 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8560                                              const SCEV *LHS, const SCEV *RHS,
8561                                              const SCEV *FoundLHS,
8562                                              const SCEV *FoundRHS) {
8563   auto IsKnownPredicateFull =
8564       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8565     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8566            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8567            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8568            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8569   };
8570 
8571   switch (Pred) {
8572   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8573   case ICmpInst::ICMP_EQ:
8574   case ICmpInst::ICMP_NE:
8575     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8576       return true;
8577     break;
8578   case ICmpInst::ICMP_SLT:
8579   case ICmpInst::ICMP_SLE:
8580     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8581         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8582       return true;
8583     break;
8584   case ICmpInst::ICMP_SGT:
8585   case ICmpInst::ICMP_SGE:
8586     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8587         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8588       return true;
8589     break;
8590   case ICmpInst::ICMP_ULT:
8591   case ICmpInst::ICMP_ULE:
8592     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8593         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8594       return true;
8595     break;
8596   case ICmpInst::ICMP_UGT:
8597   case ICmpInst::ICMP_UGE:
8598     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8599         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8600       return true;
8601     break;
8602   }
8603 
8604   return false;
8605 }
8606 
8607 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8608                                                      const SCEV *LHS,
8609                                                      const SCEV *RHS,
8610                                                      const SCEV *FoundLHS,
8611                                                      const SCEV *FoundRHS) {
8612   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8613     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8614     // reduce the compile time impact of this optimization.
8615     return false;
8616 
8617   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
8618   if (!Addend)
8619     return false;
8620 
8621   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8622 
8623   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8624   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8625   ConstantRange FoundLHSRange =
8626       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8627 
8628   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
8629   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
8630 
8631   // We can also compute the range of values for `LHS` that satisfy the
8632   // consequent, "`LHS` `Pred` `RHS`":
8633   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8634   ConstantRange SatisfyingLHSRange =
8635       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8636 
8637   // The antecedent implies the consequent if every value of `LHS` that
8638   // satisfies the antecedent also satisfies the consequent.
8639   return SatisfyingLHSRange.contains(LHSRange);
8640 }
8641 
8642 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8643                                          bool IsSigned, bool NoWrap) {
8644   assert(isKnownPositive(Stride) && "Positive stride expected!");
8645 
8646   if (NoWrap) return false;
8647 
8648   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8649   const SCEV *One = getOne(Stride->getType());
8650 
8651   if (IsSigned) {
8652     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8653     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8654     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8655                                 .getSignedMax();
8656 
8657     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8658     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8659   }
8660 
8661   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8662   APInt MaxValue = APInt::getMaxValue(BitWidth);
8663   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8664                               .getUnsignedMax();
8665 
8666   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8667   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8668 }
8669 
8670 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8671                                          bool IsSigned, bool NoWrap) {
8672   if (NoWrap) return false;
8673 
8674   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8675   const SCEV *One = getOne(Stride->getType());
8676 
8677   if (IsSigned) {
8678     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8679     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8680     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8681                                .getSignedMax();
8682 
8683     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8684     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8685   }
8686 
8687   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8688   APInt MinValue = APInt::getMinValue(BitWidth);
8689   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8690                             .getUnsignedMax();
8691 
8692   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8693   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8694 }
8695 
8696 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8697                                             bool Equality) {
8698   const SCEV *One = getOne(Step->getType());
8699   Delta = Equality ? getAddExpr(Delta, Step)
8700                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8701   return getUDivExpr(Delta, Step);
8702 }
8703 
8704 ScalarEvolution::ExitLimit
8705 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
8706                                   const Loop *L, bool IsSigned,
8707                                   bool ControlsExit, bool AllowPredicates) {
8708   SCEVUnionPredicate P;
8709   // We handle only IV < Invariant
8710   if (!isLoopInvariant(RHS, L))
8711     return getCouldNotCompute();
8712 
8713   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8714   bool PredicatedIV = false;
8715 
8716   if (!IV && AllowPredicates) {
8717     // Try to make this an AddRec using runtime tests, in the first X
8718     // iterations of this loop, where X is the SCEV expression found by the
8719     // algorithm below.
8720     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8721     PredicatedIV = true;
8722   }
8723 
8724   // Avoid weird loops
8725   if (!IV || IV->getLoop() != L || !IV->isAffine())
8726     return getCouldNotCompute();
8727 
8728   bool NoWrap = ControlsExit &&
8729                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8730 
8731   const SCEV *Stride = IV->getStepRecurrence(*this);
8732 
8733   bool PositiveStride = isKnownPositive(Stride);
8734 
8735   // Avoid negative or zero stride values.
8736   if (!PositiveStride) {
8737     // We can compute the correct backedge taken count for loops with unknown
8738     // strides if we can prove that the loop is not an infinite loop with side
8739     // effects. Here's the loop structure we are trying to handle -
8740     //
8741     // i = start
8742     // do {
8743     //   A[i] = i;
8744     //   i += s;
8745     // } while (i < end);
8746     //
8747     // The backedge taken count for such loops is evaluated as -
8748     // (max(end, start + stride) - start - 1) /u stride
8749     //
8750     // The additional preconditions that we need to check to prove correctness
8751     // of the above formula is as follows -
8752     //
8753     // a) IV is either nuw or nsw depending upon signedness (indicated by the
8754     //    NoWrap flag).
8755     // b) loop is single exit with no side effects.
8756     //
8757     //
8758     // Precondition a) implies that if the stride is negative, this is a single
8759     // trip loop. The backedge taken count formula reduces to zero in this case.
8760     //
8761     // Precondition b) implies that the unknown stride cannot be zero otherwise
8762     // we have UB.
8763     //
8764     // The positive stride case is the same as isKnownPositive(Stride) returning
8765     // true (original behavior of the function).
8766     //
8767     // We want to make sure that the stride is truly unknown as there are edge
8768     // cases where ScalarEvolution propagates no wrap flags to the
8769     // post-increment/decrement IV even though the increment/decrement operation
8770     // itself is wrapping. The computed backedge taken count may be wrong in
8771     // such cases. This is prevented by checking that the stride is not known to
8772     // be either positive or non-positive. For example, no wrap flags are
8773     // propagated to the post-increment IV of this loop with a trip count of 2 -
8774     //
8775     // unsigned char i;
8776     // for(i=127; i<128; i+=129)
8777     //   A[i] = i;
8778     //
8779     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
8780         !loopHasNoSideEffects(L))
8781       return getCouldNotCompute();
8782 
8783   } else if (!Stride->isOne() &&
8784              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8785     // Avoid proven overflow cases: this will ensure that the backedge taken
8786     // count will not generate any unsigned overflow. Relaxed no-overflow
8787     // conditions exploit NoWrapFlags, allowing to optimize in presence of
8788     // undefined behaviors like the case of C language.
8789     return getCouldNotCompute();
8790 
8791   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8792                                       : ICmpInst::ICMP_ULT;
8793   const SCEV *Start = IV->getStart();
8794   const SCEV *End = RHS;
8795   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
8796     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
8797 
8798   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8799 
8800   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8801                             : getUnsignedRange(Start).getUnsignedMin();
8802 
8803   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8804 
8805   APInt StrideForMaxBECount;
8806 
8807   if (PositiveStride)
8808     StrideForMaxBECount = IsSigned ? getSignedRange(Stride).getSignedMin()
8809                                    : getUnsignedRange(Stride).getUnsignedMin();
8810   else
8811     // Using a stride of 1 is safe when computing max backedge taken count for
8812     // a loop with unknown stride.
8813     StrideForMaxBECount = APInt(BitWidth, 1, IsSigned);
8814 
8815   APInt Limit =
8816       IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1)
8817                : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1);
8818 
8819   // Although End can be a MAX expression we estimate MaxEnd considering only
8820   // the case End = RHS. This is safe because in the other case (End - Start)
8821   // is zero, leading to a zero maximum backedge taken count.
8822   APInt MaxEnd =
8823     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8824              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8825 
8826   const SCEV *MaxBECount;
8827   if (isa<SCEVConstant>(BECount))
8828     MaxBECount = BECount;
8829   else
8830     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8831                                 getConstant(StrideForMaxBECount), false);
8832 
8833   if (isa<SCEVCouldNotCompute>(MaxBECount))
8834     MaxBECount = BECount;
8835 
8836   return ExitLimit(BECount, MaxBECount, P);
8837 }
8838 
8839 ScalarEvolution::ExitLimit
8840 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8841                                      const Loop *L, bool IsSigned,
8842                                      bool ControlsExit, bool AllowPredicates) {
8843   SCEVUnionPredicate P;
8844   // We handle only IV > Invariant
8845   if (!isLoopInvariant(RHS, L))
8846     return getCouldNotCompute();
8847 
8848   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8849   if (!IV && AllowPredicates)
8850     // Try to make this an AddRec using runtime tests, in the first X
8851     // iterations of this loop, where X is the SCEV expression found by the
8852     // algorithm below.
8853     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8854 
8855   // Avoid weird loops
8856   if (!IV || IV->getLoop() != L || !IV->isAffine())
8857     return getCouldNotCompute();
8858 
8859   bool NoWrap = ControlsExit &&
8860                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8861 
8862   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8863 
8864   // Avoid negative or zero stride values
8865   if (!isKnownPositive(Stride))
8866     return getCouldNotCompute();
8867 
8868   // Avoid proven overflow cases: this will ensure that the backedge taken count
8869   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8870   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8871   // behaviors like the case of C language.
8872   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8873     return getCouldNotCompute();
8874 
8875   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8876                                       : ICmpInst::ICMP_UGT;
8877 
8878   const SCEV *Start = IV->getStart();
8879   const SCEV *End = RHS;
8880   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
8881     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
8882 
8883   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8884 
8885   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8886                             : getUnsignedRange(Start).getUnsignedMax();
8887 
8888   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8889                              : getUnsignedRange(Stride).getUnsignedMin();
8890 
8891   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8892   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8893                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8894 
8895   // Although End can be a MIN expression we estimate MinEnd considering only
8896   // the case End = RHS. This is safe because in the other case (Start - End)
8897   // is zero, leading to a zero maximum backedge taken count.
8898   APInt MinEnd =
8899     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8900              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8901 
8902 
8903   const SCEV *MaxBECount = getCouldNotCompute();
8904   if (isa<SCEVConstant>(BECount))
8905     MaxBECount = BECount;
8906   else
8907     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8908                                 getConstant(MinStride), false);
8909 
8910   if (isa<SCEVCouldNotCompute>(MaxBECount))
8911     MaxBECount = BECount;
8912 
8913   return ExitLimit(BECount, MaxBECount, P);
8914 }
8915 
8916 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
8917                                                     ScalarEvolution &SE) const {
8918   if (Range.isFullSet())  // Infinite loop.
8919     return SE.getCouldNotCompute();
8920 
8921   // If the start is a non-zero constant, shift the range to simplify things.
8922   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8923     if (!SC->getValue()->isZero()) {
8924       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8925       Operands[0] = SE.getZero(SC->getType());
8926       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8927                                              getNoWrapFlags(FlagNW));
8928       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8929         return ShiftedAddRec->getNumIterationsInRange(
8930             Range.subtract(SC->getAPInt()), SE);
8931       // This is strange and shouldn't happen.
8932       return SE.getCouldNotCompute();
8933     }
8934 
8935   // The only time we can solve this is when we have all constant indices.
8936   // Otherwise, we cannot determine the overflow conditions.
8937   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8938     return SE.getCouldNotCompute();
8939 
8940   // Okay at this point we know that all elements of the chrec are constants and
8941   // that the start element is zero.
8942 
8943   // First check to see if the range contains zero.  If not, the first
8944   // iteration exits.
8945   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8946   if (!Range.contains(APInt(BitWidth, 0)))
8947     return SE.getZero(getType());
8948 
8949   if (isAffine()) {
8950     // If this is an affine expression then we have this situation:
8951     //   Solve {0,+,A} in Range  ===  Ax in Range
8952 
8953     // We know that zero is in the range.  If A is positive then we know that
8954     // the upper value of the range must be the first possible exit value.
8955     // If A is negative then the lower of the range is the last possible loop
8956     // value.  Also note that we already checked for a full range.
8957     APInt One(BitWidth,1);
8958     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8959     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8960 
8961     // The exit value should be (End+A)/A.
8962     APInt ExitVal = (End + A).udiv(A);
8963     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8964 
8965     // Evaluate at the exit value.  If we really did fall out of the valid
8966     // range, then we computed our trip count, otherwise wrap around or other
8967     // things must have happened.
8968     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8969     if (Range.contains(Val->getValue()))
8970       return SE.getCouldNotCompute();  // Something strange happened
8971 
8972     // Ensure that the previous value is in the range.  This is a sanity check.
8973     assert(Range.contains(
8974            EvaluateConstantChrecAtConstant(this,
8975            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8976            "Linear scev computation is off in a bad way!");
8977     return SE.getConstant(ExitValue);
8978   } else if (isQuadratic()) {
8979     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8980     // quadratic equation to solve it.  To do this, we must frame our problem in
8981     // terms of figuring out when zero is crossed, instead of when
8982     // Range.getUpper() is crossed.
8983     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8984     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8985     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8986                                              // getNoWrapFlags(FlagNW)
8987                                              FlagAnyWrap);
8988 
8989     // Next, solve the constructed addrec
8990     if (auto Roots =
8991             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
8992       const SCEVConstant *R1 = Roots->first;
8993       const SCEVConstant *R2 = Roots->second;
8994       // Pick the smallest positive root value.
8995       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8996               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8997         if (!CB->getZExtValue())
8998           std::swap(R1, R2); // R1 is the minimum root now.
8999 
9000         // Make sure the root is not off by one.  The returned iteration should
9001         // not be in the range, but the previous one should be.  When solving
9002         // for "X*X < 5", for example, we should not return a root of 2.
9003         ConstantInt *R1Val =
9004             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
9005         if (Range.contains(R1Val->getValue())) {
9006           // The next iteration must be out of the range...
9007           ConstantInt *NextVal =
9008               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
9009 
9010           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
9011           if (!Range.contains(R1Val->getValue()))
9012             return SE.getConstant(NextVal);
9013           return SE.getCouldNotCompute(); // Something strange happened
9014         }
9015 
9016         // If R1 was not in the range, then it is a good return value.  Make
9017         // sure that R1-1 WAS in the range though, just in case.
9018         ConstantInt *NextVal =
9019             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
9020         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
9021         if (Range.contains(R1Val->getValue()))
9022           return R1;
9023         return SE.getCouldNotCompute(); // Something strange happened
9024       }
9025     }
9026   }
9027 
9028   return SE.getCouldNotCompute();
9029 }
9030 
9031 namespace {
9032 struct FindUndefs {
9033   bool Found;
9034   FindUndefs() : Found(false) {}
9035 
9036   bool follow(const SCEV *S) {
9037     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
9038       if (isa<UndefValue>(C->getValue()))
9039         Found = true;
9040     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
9041       if (isa<UndefValue>(C->getValue()))
9042         Found = true;
9043     }
9044 
9045     // Keep looking if we haven't found it yet.
9046     return !Found;
9047   }
9048   bool isDone() const {
9049     // Stop recursion if we have found an undef.
9050     return Found;
9051   }
9052 };
9053 }
9054 
9055 // Return true when S contains at least an undef value.
9056 static inline bool
9057 containsUndefs(const SCEV *S) {
9058   FindUndefs F;
9059   SCEVTraversal<FindUndefs> ST(F);
9060   ST.visitAll(S);
9061 
9062   return F.Found;
9063 }
9064 
9065 namespace {
9066 // Collect all steps of SCEV expressions.
9067 struct SCEVCollectStrides {
9068   ScalarEvolution &SE;
9069   SmallVectorImpl<const SCEV *> &Strides;
9070 
9071   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
9072       : SE(SE), Strides(S) {}
9073 
9074   bool follow(const SCEV *S) {
9075     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
9076       Strides.push_back(AR->getStepRecurrence(SE));
9077     return true;
9078   }
9079   bool isDone() const { return false; }
9080 };
9081 
9082 // Collect all SCEVUnknown and SCEVMulExpr expressions.
9083 struct SCEVCollectTerms {
9084   SmallVectorImpl<const SCEV *> &Terms;
9085 
9086   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
9087       : Terms(T) {}
9088 
9089   bool follow(const SCEV *S) {
9090     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
9091       if (!containsUndefs(S))
9092         Terms.push_back(S);
9093 
9094       // Stop recursion: once we collected a term, do not walk its operands.
9095       return false;
9096     }
9097 
9098     // Keep looking.
9099     return true;
9100   }
9101   bool isDone() const { return false; }
9102 };
9103 
9104 // Check if a SCEV contains an AddRecExpr.
9105 struct SCEVHasAddRec {
9106   bool &ContainsAddRec;
9107 
9108   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9109    ContainsAddRec = false;
9110   }
9111 
9112   bool follow(const SCEV *S) {
9113     if (isa<SCEVAddRecExpr>(S)) {
9114       ContainsAddRec = true;
9115 
9116       // Stop recursion: once we collected a term, do not walk its operands.
9117       return false;
9118     }
9119 
9120     // Keep looking.
9121     return true;
9122   }
9123   bool isDone() const { return false; }
9124 };
9125 
9126 // Find factors that are multiplied with an expression that (possibly as a
9127 // subexpression) contains an AddRecExpr. In the expression:
9128 //
9129 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
9130 //
9131 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9132 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9133 // parameters as they form a product with an induction variable.
9134 //
9135 // This collector expects all array size parameters to be in the same MulExpr.
9136 // It might be necessary to later add support for collecting parameters that are
9137 // spread over different nested MulExpr.
9138 struct SCEVCollectAddRecMultiplies {
9139   SmallVectorImpl<const SCEV *> &Terms;
9140   ScalarEvolution &SE;
9141 
9142   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9143       : Terms(T), SE(SE) {}
9144 
9145   bool follow(const SCEV *S) {
9146     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9147       bool HasAddRec = false;
9148       SmallVector<const SCEV *, 0> Operands;
9149       for (auto Op : Mul->operands()) {
9150         if (isa<SCEVUnknown>(Op)) {
9151           Operands.push_back(Op);
9152         } else {
9153           bool ContainsAddRec;
9154           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9155           visitAll(Op, ContiansAddRec);
9156           HasAddRec |= ContainsAddRec;
9157         }
9158       }
9159       if (Operands.size() == 0)
9160         return true;
9161 
9162       if (!HasAddRec)
9163         return false;
9164 
9165       Terms.push_back(SE.getMulExpr(Operands));
9166       // Stop recursion: once we collected a term, do not walk its operands.
9167       return false;
9168     }
9169 
9170     // Keep looking.
9171     return true;
9172   }
9173   bool isDone() const { return false; }
9174 };
9175 }
9176 
9177 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9178 /// two places:
9179 ///   1) The strides of AddRec expressions.
9180 ///   2) Unknowns that are multiplied with AddRec expressions.
9181 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9182     SmallVectorImpl<const SCEV *> &Terms) {
9183   SmallVector<const SCEV *, 4> Strides;
9184   SCEVCollectStrides StrideCollector(*this, Strides);
9185   visitAll(Expr, StrideCollector);
9186 
9187   DEBUG({
9188       dbgs() << "Strides:\n";
9189       for (const SCEV *S : Strides)
9190         dbgs() << *S << "\n";
9191     });
9192 
9193   for (const SCEV *S : Strides) {
9194     SCEVCollectTerms TermCollector(Terms);
9195     visitAll(S, TermCollector);
9196   }
9197 
9198   DEBUG({
9199       dbgs() << "Terms:\n";
9200       for (const SCEV *T : Terms)
9201         dbgs() << *T << "\n";
9202     });
9203 
9204   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9205   visitAll(Expr, MulCollector);
9206 }
9207 
9208 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9209                                    SmallVectorImpl<const SCEV *> &Terms,
9210                                    SmallVectorImpl<const SCEV *> &Sizes) {
9211   int Last = Terms.size() - 1;
9212   const SCEV *Step = Terms[Last];
9213 
9214   // End of recursion.
9215   if (Last == 0) {
9216     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9217       SmallVector<const SCEV *, 2> Qs;
9218       for (const SCEV *Op : M->operands())
9219         if (!isa<SCEVConstant>(Op))
9220           Qs.push_back(Op);
9221 
9222       Step = SE.getMulExpr(Qs);
9223     }
9224 
9225     Sizes.push_back(Step);
9226     return true;
9227   }
9228 
9229   for (const SCEV *&Term : Terms) {
9230     // Normalize the terms before the next call to findArrayDimensionsRec.
9231     const SCEV *Q, *R;
9232     SCEVDivision::divide(SE, Term, Step, &Q, &R);
9233 
9234     // Bail out when GCD does not evenly divide one of the terms.
9235     if (!R->isZero())
9236       return false;
9237 
9238     Term = Q;
9239   }
9240 
9241   // Remove all SCEVConstants.
9242   Terms.erase(
9243       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
9244       Terms.end());
9245 
9246   if (Terms.size() > 0)
9247     if (!findArrayDimensionsRec(SE, Terms, Sizes))
9248       return false;
9249 
9250   Sizes.push_back(Step);
9251   return true;
9252 }
9253 
9254 // Returns true when S contains at least a SCEVUnknown parameter.
9255 static inline bool
9256 containsParameters(const SCEV *S) {
9257   struct FindParameter {
9258     bool FoundParameter;
9259     FindParameter() : FoundParameter(false) {}
9260 
9261     bool follow(const SCEV *S) {
9262       if (isa<SCEVUnknown>(S)) {
9263         FoundParameter = true;
9264         // Stop recursion: we found a parameter.
9265         return false;
9266       }
9267       // Keep looking.
9268       return true;
9269     }
9270     bool isDone() const {
9271       // Stop recursion if we have found a parameter.
9272       return FoundParameter;
9273     }
9274   };
9275 
9276   FindParameter F;
9277   SCEVTraversal<FindParameter> ST(F);
9278   ST.visitAll(S);
9279 
9280   return F.FoundParameter;
9281 }
9282 
9283 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9284 static inline bool
9285 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9286   for (const SCEV *T : Terms)
9287     if (containsParameters(T))
9288       return true;
9289   return false;
9290 }
9291 
9292 // Return the number of product terms in S.
9293 static inline int numberOfTerms(const SCEV *S) {
9294   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9295     return Expr->getNumOperands();
9296   return 1;
9297 }
9298 
9299 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9300   if (isa<SCEVConstant>(T))
9301     return nullptr;
9302 
9303   if (isa<SCEVUnknown>(T))
9304     return T;
9305 
9306   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9307     SmallVector<const SCEV *, 2> Factors;
9308     for (const SCEV *Op : M->operands())
9309       if (!isa<SCEVConstant>(Op))
9310         Factors.push_back(Op);
9311 
9312     return SE.getMulExpr(Factors);
9313   }
9314 
9315   return T;
9316 }
9317 
9318 /// Return the size of an element read or written by Inst.
9319 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9320   Type *Ty;
9321   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9322     Ty = Store->getValueOperand()->getType();
9323   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9324     Ty = Load->getType();
9325   else
9326     return nullptr;
9327 
9328   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9329   return getSizeOfExpr(ETy, Ty);
9330 }
9331 
9332 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9333                                           SmallVectorImpl<const SCEV *> &Sizes,
9334                                           const SCEV *ElementSize) const {
9335   if (Terms.size() < 1 || !ElementSize)
9336     return;
9337 
9338   // Early return when Terms do not contain parameters: we do not delinearize
9339   // non parametric SCEVs.
9340   if (!containsParameters(Terms))
9341     return;
9342 
9343   DEBUG({
9344       dbgs() << "Terms:\n";
9345       for (const SCEV *T : Terms)
9346         dbgs() << *T << "\n";
9347     });
9348 
9349   // Remove duplicates.
9350   std::sort(Terms.begin(), Terms.end());
9351   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9352 
9353   // Put larger terms first.
9354   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9355     return numberOfTerms(LHS) > numberOfTerms(RHS);
9356   });
9357 
9358   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9359 
9360   // Try to divide all terms by the element size. If term is not divisible by
9361   // element size, proceed with the original term.
9362   for (const SCEV *&Term : Terms) {
9363     const SCEV *Q, *R;
9364     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9365     if (!Q->isZero())
9366       Term = Q;
9367   }
9368 
9369   SmallVector<const SCEV *, 4> NewTerms;
9370 
9371   // Remove constant factors.
9372   for (const SCEV *T : Terms)
9373     if (const SCEV *NewT = removeConstantFactors(SE, T))
9374       NewTerms.push_back(NewT);
9375 
9376   DEBUG({
9377       dbgs() << "Terms after sorting:\n";
9378       for (const SCEV *T : NewTerms)
9379         dbgs() << *T << "\n";
9380     });
9381 
9382   if (NewTerms.empty() ||
9383       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9384     Sizes.clear();
9385     return;
9386   }
9387 
9388   // The last element to be pushed into Sizes is the size of an element.
9389   Sizes.push_back(ElementSize);
9390 
9391   DEBUG({
9392       dbgs() << "Sizes:\n";
9393       for (const SCEV *S : Sizes)
9394         dbgs() << *S << "\n";
9395     });
9396 }
9397 
9398 void ScalarEvolution::computeAccessFunctions(
9399     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9400     SmallVectorImpl<const SCEV *> &Sizes) {
9401 
9402   // Early exit in case this SCEV is not an affine multivariate function.
9403   if (Sizes.empty())
9404     return;
9405 
9406   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9407     if (!AR->isAffine())
9408       return;
9409 
9410   const SCEV *Res = Expr;
9411   int Last = Sizes.size() - 1;
9412   for (int i = Last; i >= 0; i--) {
9413     const SCEV *Q, *R;
9414     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9415 
9416     DEBUG({
9417         dbgs() << "Res: " << *Res << "\n";
9418         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9419         dbgs() << "Res divided by Sizes[i]:\n";
9420         dbgs() << "Quotient: " << *Q << "\n";
9421         dbgs() << "Remainder: " << *R << "\n";
9422       });
9423 
9424     Res = Q;
9425 
9426     // Do not record the last subscript corresponding to the size of elements in
9427     // the array.
9428     if (i == Last) {
9429 
9430       // Bail out if the remainder is too complex.
9431       if (isa<SCEVAddRecExpr>(R)) {
9432         Subscripts.clear();
9433         Sizes.clear();
9434         return;
9435       }
9436 
9437       continue;
9438     }
9439 
9440     // Record the access function for the current subscript.
9441     Subscripts.push_back(R);
9442   }
9443 
9444   // Also push in last position the remainder of the last division: it will be
9445   // the access function of the innermost dimension.
9446   Subscripts.push_back(Res);
9447 
9448   std::reverse(Subscripts.begin(), Subscripts.end());
9449 
9450   DEBUG({
9451       dbgs() << "Subscripts:\n";
9452       for (const SCEV *S : Subscripts)
9453         dbgs() << *S << "\n";
9454     });
9455 }
9456 
9457 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9458 /// sizes of an array access. Returns the remainder of the delinearization that
9459 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9460 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9461 /// expressions in the stride and base of a SCEV corresponding to the
9462 /// computation of a GCD (greatest common divisor) of base and stride.  When
9463 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9464 ///
9465 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9466 ///
9467 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9468 ///
9469 ///    for (long i = 0; i < n; i++)
9470 ///      for (long j = 0; j < m; j++)
9471 ///        for (long k = 0; k < o; k++)
9472 ///          A[i][j][k] = 1.0;
9473 ///  }
9474 ///
9475 /// the delinearization input is the following AddRec SCEV:
9476 ///
9477 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9478 ///
9479 /// From this SCEV, we are able to say that the base offset of the access is %A
9480 /// because it appears as an offset that does not divide any of the strides in
9481 /// the loops:
9482 ///
9483 ///  CHECK: Base offset: %A
9484 ///
9485 /// and then SCEV->delinearize determines the size of some of the dimensions of
9486 /// the array as these are the multiples by which the strides are happening:
9487 ///
9488 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9489 ///
9490 /// Note that the outermost dimension remains of UnknownSize because there are
9491 /// no strides that would help identifying the size of the last dimension: when
9492 /// the array has been statically allocated, one could compute the size of that
9493 /// dimension by dividing the overall size of the array by the size of the known
9494 /// dimensions: %m * %o * 8.
9495 ///
9496 /// Finally delinearize provides the access functions for the array reference
9497 /// that does correspond to A[i][j][k] of the above C testcase:
9498 ///
9499 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9500 ///
9501 /// The testcases are checking the output of a function pass:
9502 /// DelinearizationPass that walks through all loads and stores of a function
9503 /// asking for the SCEV of the memory access with respect to all enclosing
9504 /// loops, calling SCEV->delinearize on that and printing the results.
9505 
9506 void ScalarEvolution::delinearize(const SCEV *Expr,
9507                                  SmallVectorImpl<const SCEV *> &Subscripts,
9508                                  SmallVectorImpl<const SCEV *> &Sizes,
9509                                  const SCEV *ElementSize) {
9510   // First step: collect parametric terms.
9511   SmallVector<const SCEV *, 4> Terms;
9512   collectParametricTerms(Expr, Terms);
9513 
9514   if (Terms.empty())
9515     return;
9516 
9517   // Second step: find subscript sizes.
9518   findArrayDimensions(Terms, Sizes, ElementSize);
9519 
9520   if (Sizes.empty())
9521     return;
9522 
9523   // Third step: compute the access functions for each subscript.
9524   computeAccessFunctions(Expr, Subscripts, Sizes);
9525 
9526   if (Subscripts.empty())
9527     return;
9528 
9529   DEBUG({
9530       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9531       dbgs() << "ArrayDecl[UnknownSize]";
9532       for (const SCEV *S : Sizes)
9533         dbgs() << "[" << *S << "]";
9534 
9535       dbgs() << "\nArrayRef";
9536       for (const SCEV *S : Subscripts)
9537         dbgs() << "[" << *S << "]";
9538       dbgs() << "\n";
9539     });
9540 }
9541 
9542 //===----------------------------------------------------------------------===//
9543 //                   SCEVCallbackVH Class Implementation
9544 //===----------------------------------------------------------------------===//
9545 
9546 void ScalarEvolution::SCEVCallbackVH::deleted() {
9547   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9548   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9549     SE->ConstantEvolutionLoopExitValue.erase(PN);
9550   SE->eraseValueFromMap(getValPtr());
9551   // this now dangles!
9552 }
9553 
9554 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9555   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9556 
9557   // Forget all the expressions associated with users of the old value,
9558   // so that future queries will recompute the expressions using the new
9559   // value.
9560   Value *Old = getValPtr();
9561   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9562   SmallPtrSet<User *, 8> Visited;
9563   while (!Worklist.empty()) {
9564     User *U = Worklist.pop_back_val();
9565     // Deleting the Old value will cause this to dangle. Postpone
9566     // that until everything else is done.
9567     if (U == Old)
9568       continue;
9569     if (!Visited.insert(U).second)
9570       continue;
9571     if (PHINode *PN = dyn_cast<PHINode>(U))
9572       SE->ConstantEvolutionLoopExitValue.erase(PN);
9573     SE->eraseValueFromMap(U);
9574     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9575   }
9576   // Delete the Old value.
9577   if (PHINode *PN = dyn_cast<PHINode>(Old))
9578     SE->ConstantEvolutionLoopExitValue.erase(PN);
9579   SE->eraseValueFromMap(Old);
9580   // this now dangles!
9581 }
9582 
9583 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9584   : CallbackVH(V), SE(se) {}
9585 
9586 //===----------------------------------------------------------------------===//
9587 //                   ScalarEvolution Class Implementation
9588 //===----------------------------------------------------------------------===//
9589 
9590 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9591                                  AssumptionCache &AC, DominatorTree &DT,
9592                                  LoopInfo &LI)
9593     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9594       CouldNotCompute(new SCEVCouldNotCompute()),
9595       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9596       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9597       FirstUnknown(nullptr) {
9598 
9599   // To use guards for proving predicates, we need to scan every instruction in
9600   // relevant basic blocks, and not just terminators.  Doing this is a waste of
9601   // time if the IR does not actually contain any calls to
9602   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9603   //
9604   // This pessimizes the case where a pass that preserves ScalarEvolution wants
9605   // to _add_ guards to the module when there weren't any before, and wants
9606   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
9607   // efficient in lieu of being smart in that rather obscure case.
9608 
9609   auto *GuardDecl = F.getParent()->getFunction(
9610       Intrinsic::getName(Intrinsic::experimental_guard));
9611   HasGuards = GuardDecl && !GuardDecl->use_empty();
9612 }
9613 
9614 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9615     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9616       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9617       ValueExprMap(std::move(Arg.ValueExprMap)),
9618       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9619       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9620       PredicatedBackedgeTakenCounts(
9621           std::move(Arg.PredicatedBackedgeTakenCounts)),
9622       ConstantEvolutionLoopExitValue(
9623           std::move(Arg.ConstantEvolutionLoopExitValue)),
9624       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9625       LoopDispositions(std::move(Arg.LoopDispositions)),
9626       BlockDispositions(std::move(Arg.BlockDispositions)),
9627       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9628       SignedRanges(std::move(Arg.SignedRanges)),
9629       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9630       UniquePreds(std::move(Arg.UniquePreds)),
9631       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9632       FirstUnknown(Arg.FirstUnknown) {
9633   Arg.FirstUnknown = nullptr;
9634 }
9635 
9636 ScalarEvolution::~ScalarEvolution() {
9637   // Iterate through all the SCEVUnknown instances and call their
9638   // destructors, so that they release their references to their values.
9639   for (SCEVUnknown *U = FirstUnknown; U;) {
9640     SCEVUnknown *Tmp = U;
9641     U = U->Next;
9642     Tmp->~SCEVUnknown();
9643   }
9644   FirstUnknown = nullptr;
9645 
9646   ExprValueMap.clear();
9647   ValueExprMap.clear();
9648   HasRecMap.clear();
9649 
9650   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9651   // that a loop had multiple computable exits.
9652   for (auto &BTCI : BackedgeTakenCounts)
9653     BTCI.second.clear();
9654   for (auto &BTCI : PredicatedBackedgeTakenCounts)
9655     BTCI.second.clear();
9656 
9657   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9658   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9659   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9660 }
9661 
9662 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9663   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9664 }
9665 
9666 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9667                           const Loop *L) {
9668   // Print all inner loops first
9669   for (Loop *I : *L)
9670     PrintLoopInfo(OS, SE, I);
9671 
9672   OS << "Loop ";
9673   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9674   OS << ": ";
9675 
9676   SmallVector<BasicBlock *, 8> ExitBlocks;
9677   L->getExitBlocks(ExitBlocks);
9678   if (ExitBlocks.size() != 1)
9679     OS << "<multiple exits> ";
9680 
9681   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9682     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9683   } else {
9684     OS << "Unpredictable backedge-taken count. ";
9685   }
9686 
9687   OS << "\n"
9688         "Loop ";
9689   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9690   OS << ": ";
9691 
9692   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9693     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9694   } else {
9695     OS << "Unpredictable max backedge-taken count. ";
9696   }
9697 
9698   OS << "\n"
9699         "Loop ";
9700   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9701   OS << ": ";
9702 
9703   SCEVUnionPredicate Pred;
9704   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9705   if (!isa<SCEVCouldNotCompute>(PBT)) {
9706     OS << "Predicated backedge-taken count is " << *PBT << "\n";
9707     OS << " Predicates:\n";
9708     Pred.print(OS, 4);
9709   } else {
9710     OS << "Unpredictable predicated backedge-taken count. ";
9711   }
9712   OS << "\n";
9713 }
9714 
9715 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9716   switch (LD) {
9717   case ScalarEvolution::LoopVariant:
9718     return "Variant";
9719   case ScalarEvolution::LoopInvariant:
9720     return "Invariant";
9721   case ScalarEvolution::LoopComputable:
9722     return "Computable";
9723   }
9724   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
9725 }
9726 
9727 void ScalarEvolution::print(raw_ostream &OS) const {
9728   // ScalarEvolution's implementation of the print method is to print
9729   // out SCEV values of all instructions that are interesting. Doing
9730   // this potentially causes it to create new SCEV objects though,
9731   // which technically conflicts with the const qualifier. This isn't
9732   // observable from outside the class though, so casting away the
9733   // const isn't dangerous.
9734   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9735 
9736   OS << "Classifying expressions for: ";
9737   F.printAsOperand(OS, /*PrintType=*/false);
9738   OS << "\n";
9739   for (Instruction &I : instructions(F))
9740     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9741       OS << I << '\n';
9742       OS << "  -->  ";
9743       const SCEV *SV = SE.getSCEV(&I);
9744       SV->print(OS);
9745       if (!isa<SCEVCouldNotCompute>(SV)) {
9746         OS << " U: ";
9747         SE.getUnsignedRange(SV).print(OS);
9748         OS << " S: ";
9749         SE.getSignedRange(SV).print(OS);
9750       }
9751 
9752       const Loop *L = LI.getLoopFor(I.getParent());
9753 
9754       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9755       if (AtUse != SV) {
9756         OS << "  -->  ";
9757         AtUse->print(OS);
9758         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9759           OS << " U: ";
9760           SE.getUnsignedRange(AtUse).print(OS);
9761           OS << " S: ";
9762           SE.getSignedRange(AtUse).print(OS);
9763         }
9764       }
9765 
9766       if (L) {
9767         OS << "\t\t" "Exits: ";
9768         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9769         if (!SE.isLoopInvariant(ExitValue, L)) {
9770           OS << "<<Unknown>>";
9771         } else {
9772           OS << *ExitValue;
9773         }
9774 
9775         bool First = true;
9776         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9777           if (First) {
9778             OS << "\t\t" "LoopDispositions: { ";
9779             First = false;
9780           } else {
9781             OS << ", ";
9782           }
9783 
9784           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9785           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9786         }
9787 
9788         for (auto *InnerL : depth_first(L)) {
9789           if (InnerL == L)
9790             continue;
9791           if (First) {
9792             OS << "\t\t" "LoopDispositions: { ";
9793             First = false;
9794           } else {
9795             OS << ", ";
9796           }
9797 
9798           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9799           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9800         }
9801 
9802         OS << " }";
9803       }
9804 
9805       OS << "\n";
9806     }
9807 
9808   OS << "Determining loop execution counts for: ";
9809   F.printAsOperand(OS, /*PrintType=*/false);
9810   OS << "\n";
9811   for (Loop *I : LI)
9812     PrintLoopInfo(OS, &SE, I);
9813 }
9814 
9815 ScalarEvolution::LoopDisposition
9816 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9817   auto &Values = LoopDispositions[S];
9818   for (auto &V : Values) {
9819     if (V.getPointer() == L)
9820       return V.getInt();
9821   }
9822   Values.emplace_back(L, LoopVariant);
9823   LoopDisposition D = computeLoopDisposition(S, L);
9824   auto &Values2 = LoopDispositions[S];
9825   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9826     if (V.getPointer() == L) {
9827       V.setInt(D);
9828       break;
9829     }
9830   }
9831   return D;
9832 }
9833 
9834 ScalarEvolution::LoopDisposition
9835 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9836   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9837   case scConstant:
9838     return LoopInvariant;
9839   case scTruncate:
9840   case scZeroExtend:
9841   case scSignExtend:
9842     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9843   case scAddRecExpr: {
9844     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9845 
9846     // If L is the addrec's loop, it's computable.
9847     if (AR->getLoop() == L)
9848       return LoopComputable;
9849 
9850     // Add recurrences are never invariant in the function-body (null loop).
9851     if (!L)
9852       return LoopVariant;
9853 
9854     // This recurrence is variant w.r.t. L if L contains AR's loop.
9855     if (L->contains(AR->getLoop()))
9856       return LoopVariant;
9857 
9858     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9859     if (AR->getLoop()->contains(L))
9860       return LoopInvariant;
9861 
9862     // This recurrence is variant w.r.t. L if any of its operands
9863     // are variant.
9864     for (auto *Op : AR->operands())
9865       if (!isLoopInvariant(Op, L))
9866         return LoopVariant;
9867 
9868     // Otherwise it's loop-invariant.
9869     return LoopInvariant;
9870   }
9871   case scAddExpr:
9872   case scMulExpr:
9873   case scUMaxExpr:
9874   case scSMaxExpr: {
9875     bool HasVarying = false;
9876     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9877       LoopDisposition D = getLoopDisposition(Op, L);
9878       if (D == LoopVariant)
9879         return LoopVariant;
9880       if (D == LoopComputable)
9881         HasVarying = true;
9882     }
9883     return HasVarying ? LoopComputable : LoopInvariant;
9884   }
9885   case scUDivExpr: {
9886     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9887     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9888     if (LD == LoopVariant)
9889       return LoopVariant;
9890     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9891     if (RD == LoopVariant)
9892       return LoopVariant;
9893     return (LD == LoopInvariant && RD == LoopInvariant) ?
9894            LoopInvariant : LoopComputable;
9895   }
9896   case scUnknown:
9897     // All non-instruction values are loop invariant.  All instructions are loop
9898     // invariant if they are not contained in the specified loop.
9899     // Instructions are never considered invariant in the function body
9900     // (null loop) because they are defined within the "loop".
9901     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9902       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9903     return LoopInvariant;
9904   case scCouldNotCompute:
9905     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9906   }
9907   llvm_unreachable("Unknown SCEV kind!");
9908 }
9909 
9910 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9911   return getLoopDisposition(S, L) == LoopInvariant;
9912 }
9913 
9914 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9915   return getLoopDisposition(S, L) == LoopComputable;
9916 }
9917 
9918 ScalarEvolution::BlockDisposition
9919 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9920   auto &Values = BlockDispositions[S];
9921   for (auto &V : Values) {
9922     if (V.getPointer() == BB)
9923       return V.getInt();
9924   }
9925   Values.emplace_back(BB, DoesNotDominateBlock);
9926   BlockDisposition D = computeBlockDisposition(S, BB);
9927   auto &Values2 = BlockDispositions[S];
9928   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9929     if (V.getPointer() == BB) {
9930       V.setInt(D);
9931       break;
9932     }
9933   }
9934   return D;
9935 }
9936 
9937 ScalarEvolution::BlockDisposition
9938 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9939   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9940   case scConstant:
9941     return ProperlyDominatesBlock;
9942   case scTruncate:
9943   case scZeroExtend:
9944   case scSignExtend:
9945     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9946   case scAddRecExpr: {
9947     // This uses a "dominates" query instead of "properly dominates" query
9948     // to test for proper dominance too, because the instruction which
9949     // produces the addrec's value is a PHI, and a PHI effectively properly
9950     // dominates its entire containing block.
9951     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9952     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9953       return DoesNotDominateBlock;
9954 
9955     // Fall through into SCEVNAryExpr handling.
9956     LLVM_FALLTHROUGH;
9957   }
9958   case scAddExpr:
9959   case scMulExpr:
9960   case scUMaxExpr:
9961   case scSMaxExpr: {
9962     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9963     bool Proper = true;
9964     for (const SCEV *NAryOp : NAry->operands()) {
9965       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9966       if (D == DoesNotDominateBlock)
9967         return DoesNotDominateBlock;
9968       if (D == DominatesBlock)
9969         Proper = false;
9970     }
9971     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9972   }
9973   case scUDivExpr: {
9974     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9975     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9976     BlockDisposition LD = getBlockDisposition(LHS, BB);
9977     if (LD == DoesNotDominateBlock)
9978       return DoesNotDominateBlock;
9979     BlockDisposition RD = getBlockDisposition(RHS, BB);
9980     if (RD == DoesNotDominateBlock)
9981       return DoesNotDominateBlock;
9982     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9983       ProperlyDominatesBlock : DominatesBlock;
9984   }
9985   case scUnknown:
9986     if (Instruction *I =
9987           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9988       if (I->getParent() == BB)
9989         return DominatesBlock;
9990       if (DT.properlyDominates(I->getParent(), BB))
9991         return ProperlyDominatesBlock;
9992       return DoesNotDominateBlock;
9993     }
9994     return ProperlyDominatesBlock;
9995   case scCouldNotCompute:
9996     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9997   }
9998   llvm_unreachable("Unknown SCEV kind!");
9999 }
10000 
10001 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
10002   return getBlockDisposition(S, BB) >= DominatesBlock;
10003 }
10004 
10005 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
10006   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
10007 }
10008 
10009 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
10010   // Search for a SCEV expression node within an expression tree.
10011   // Implements SCEVTraversal::Visitor.
10012   struct SCEVSearch {
10013     const SCEV *Node;
10014     bool IsFound;
10015 
10016     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
10017 
10018     bool follow(const SCEV *S) {
10019       IsFound |= (S == Node);
10020       return !IsFound;
10021     }
10022     bool isDone() const { return IsFound; }
10023   };
10024 
10025   SCEVSearch Search(Op);
10026   visitAll(S, Search);
10027   return Search.IsFound;
10028 }
10029 
10030 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
10031   ValuesAtScopes.erase(S);
10032   LoopDispositions.erase(S);
10033   BlockDispositions.erase(S);
10034   UnsignedRanges.erase(S);
10035   SignedRanges.erase(S);
10036   ExprValueMap.erase(S);
10037   HasRecMap.erase(S);
10038 
10039   auto RemoveSCEVFromBackedgeMap =
10040       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
10041         for (auto I = Map.begin(), E = Map.end(); I != E;) {
10042           BackedgeTakenInfo &BEInfo = I->second;
10043           if (BEInfo.hasOperand(S, this)) {
10044             BEInfo.clear();
10045             Map.erase(I++);
10046           } else
10047             ++I;
10048         }
10049       };
10050 
10051   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
10052   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
10053 }
10054 
10055 typedef DenseMap<const Loop *, std::string> VerifyMap;
10056 
10057 /// replaceSubString - Replaces all occurrences of From in Str with To.
10058 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
10059   size_t Pos = 0;
10060   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
10061     Str.replace(Pos, From.size(), To.data(), To.size());
10062     Pos += To.size();
10063   }
10064 }
10065 
10066 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
10067 static void
10068 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
10069   std::string &S = Map[L];
10070   if (S.empty()) {
10071     raw_string_ostream OS(S);
10072     SE.getBackedgeTakenCount(L)->print(OS);
10073 
10074     // false and 0 are semantically equivalent. This can happen in dead loops.
10075     replaceSubString(OS.str(), "false", "0");
10076     // Remove wrap flags, their use in SCEV is highly fragile.
10077     // FIXME: Remove this when SCEV gets smarter about them.
10078     replaceSubString(OS.str(), "<nw>", "");
10079     replaceSubString(OS.str(), "<nsw>", "");
10080     replaceSubString(OS.str(), "<nuw>", "");
10081   }
10082 
10083   for (auto *R : reverse(*L))
10084     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
10085 }
10086 
10087 void ScalarEvolution::verify() const {
10088   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
10089 
10090   // Gather stringified backedge taken counts for all loops using SCEV's caches.
10091   // FIXME: It would be much better to store actual values instead of strings,
10092   //        but SCEV pointers will change if we drop the caches.
10093   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
10094   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10095     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
10096 
10097   // Gather stringified backedge taken counts for all loops using a fresh
10098   // ScalarEvolution object.
10099   ScalarEvolution SE2(F, TLI, AC, DT, LI);
10100   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10101     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
10102 
10103   // Now compare whether they're the same with and without caches. This allows
10104   // verifying that no pass changed the cache.
10105   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
10106          "New loops suddenly appeared!");
10107 
10108   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
10109                            OldE = BackedgeDumpsOld.end(),
10110                            NewI = BackedgeDumpsNew.begin();
10111        OldI != OldE; ++OldI, ++NewI) {
10112     assert(OldI->first == NewI->first && "Loop order changed!");
10113 
10114     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10115     // changes.
10116     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
10117     // means that a pass is buggy or SCEV has to learn a new pattern but is
10118     // usually not harmful.
10119     if (OldI->second != NewI->second &&
10120         OldI->second.find("undef") == std::string::npos &&
10121         NewI->second.find("undef") == std::string::npos &&
10122         OldI->second != "***COULDNOTCOMPUTE***" &&
10123         NewI->second != "***COULDNOTCOMPUTE***") {
10124       dbgs() << "SCEVValidator: SCEV for loop '"
10125              << OldI->first->getHeader()->getName()
10126              << "' changed from '" << OldI->second
10127              << "' to '" << NewI->second << "'!\n";
10128       std::abort();
10129     }
10130   }
10131 
10132   // TODO: Verify more things.
10133 }
10134 
10135 char ScalarEvolutionAnalysis::PassID;
10136 
10137 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10138                                              FunctionAnalysisManager &AM) {
10139   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10140                          AM.getResult<AssumptionAnalysis>(F),
10141                          AM.getResult<DominatorTreeAnalysis>(F),
10142                          AM.getResult<LoopAnalysis>(F));
10143 }
10144 
10145 PreservedAnalyses
10146 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
10147   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10148   return PreservedAnalyses::all();
10149 }
10150 
10151 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10152                       "Scalar Evolution Analysis", false, true)
10153 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10154 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10155 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10156 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10157 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10158                     "Scalar Evolution Analysis", false, true)
10159 char ScalarEvolutionWrapperPass::ID = 0;
10160 
10161 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10162   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10163 }
10164 
10165 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10166   SE.reset(new ScalarEvolution(
10167       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10168       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10169       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10170       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10171   return false;
10172 }
10173 
10174 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10175 
10176 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10177   SE->print(OS);
10178 }
10179 
10180 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10181   if (!VerifySCEV)
10182     return;
10183 
10184   SE->verify();
10185 }
10186 
10187 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10188   AU.setPreservesAll();
10189   AU.addRequiredTransitive<AssumptionCacheTracker>();
10190   AU.addRequiredTransitive<LoopInfoWrapperPass>();
10191   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10192   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10193 }
10194 
10195 const SCEVPredicate *
10196 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10197                                    const SCEVConstant *RHS) {
10198   FoldingSetNodeID ID;
10199   // Unique this node based on the arguments
10200   ID.AddInteger(SCEVPredicate::P_Equal);
10201   ID.AddPointer(LHS);
10202   ID.AddPointer(RHS);
10203   void *IP = nullptr;
10204   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10205     return S;
10206   SCEVEqualPredicate *Eq = new (SCEVAllocator)
10207       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10208   UniquePreds.InsertNode(Eq, IP);
10209   return Eq;
10210 }
10211 
10212 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10213     const SCEVAddRecExpr *AR,
10214     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10215   FoldingSetNodeID ID;
10216   // Unique this node based on the arguments
10217   ID.AddInteger(SCEVPredicate::P_Wrap);
10218   ID.AddPointer(AR);
10219   ID.AddInteger(AddedFlags);
10220   void *IP = nullptr;
10221   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10222     return S;
10223   auto *OF = new (SCEVAllocator)
10224       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10225   UniquePreds.InsertNode(OF, IP);
10226   return OF;
10227 }
10228 
10229 namespace {
10230 
10231 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10232 public:
10233   // Rewrites \p S in the context of a loop L and the predicate A.
10234   // If Assume is true, rewrite is free to add further predicates to A
10235   // such that the result will be an AddRecExpr.
10236   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10237                              SCEVUnionPredicate &A, bool Assume) {
10238     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
10239     return Rewriter.visit(S);
10240   }
10241 
10242   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10243                         SCEVUnionPredicate &P, bool Assume)
10244       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
10245 
10246   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10247     auto ExprPreds = P.getPredicatesForExpr(Expr);
10248     for (auto *Pred : ExprPreds)
10249       if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
10250         if (IPred->getLHS() == Expr)
10251           return IPred->getRHS();
10252 
10253     return Expr;
10254   }
10255 
10256   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10257     const SCEV *Operand = visit(Expr->getOperand());
10258     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10259     if (AR && AR->getLoop() == L && AR->isAffine()) {
10260       // This couldn't be folded because the operand didn't have the nuw
10261       // flag. Add the nusw flag as an assumption that we could make.
10262       const SCEV *Step = AR->getStepRecurrence(SE);
10263       Type *Ty = Expr->getType();
10264       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10265         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10266                                 SE.getSignExtendExpr(Step, Ty), L,
10267                                 AR->getNoWrapFlags());
10268     }
10269     return SE.getZeroExtendExpr(Operand, Expr->getType());
10270   }
10271 
10272   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10273     const SCEV *Operand = visit(Expr->getOperand());
10274     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10275     if (AR && AR->getLoop() == L && AR->isAffine()) {
10276       // This couldn't be folded because the operand didn't have the nsw
10277       // flag. Add the nssw flag as an assumption that we could make.
10278       const SCEV *Step = AR->getStepRecurrence(SE);
10279       Type *Ty = Expr->getType();
10280       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10281         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10282                                 SE.getSignExtendExpr(Step, Ty), L,
10283                                 AR->getNoWrapFlags());
10284     }
10285     return SE.getSignExtendExpr(Operand, Expr->getType());
10286   }
10287 
10288 private:
10289   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10290                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10291     auto *A = SE.getWrapPredicate(AR, AddedFlags);
10292     if (!Assume) {
10293       // Check if we've already made this assumption.
10294       if (P.implies(A))
10295         return true;
10296       return false;
10297     }
10298     P.add(A);
10299     return true;
10300   }
10301 
10302   SCEVUnionPredicate &P;
10303   const Loop *L;
10304   bool Assume;
10305 };
10306 } // end anonymous namespace
10307 
10308 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10309                                                    SCEVUnionPredicate &Preds) {
10310   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
10311 }
10312 
10313 const SCEVAddRecExpr *
10314 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10315                                                    SCEVUnionPredicate &Preds) {
10316   SCEVUnionPredicate TransformPreds;
10317   S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10318   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10319 
10320   if (!AddRec)
10321     return nullptr;
10322 
10323   // Since the transformation was successful, we can now transfer the SCEV
10324   // predicates.
10325   Preds.add(&TransformPreds);
10326   return AddRec;
10327 }
10328 
10329 /// SCEV predicates
10330 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10331                              SCEVPredicateKind Kind)
10332     : FastID(ID), Kind(Kind) {}
10333 
10334 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10335                                        const SCEVUnknown *LHS,
10336                                        const SCEVConstant *RHS)
10337     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10338 
10339 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10340   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
10341 
10342   if (!Op)
10343     return false;
10344 
10345   return Op->LHS == LHS && Op->RHS == RHS;
10346 }
10347 
10348 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10349 
10350 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10351 
10352 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10353   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10354 }
10355 
10356 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10357                                      const SCEVAddRecExpr *AR,
10358                                      IncrementWrapFlags Flags)
10359     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10360 
10361 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10362 
10363 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10364   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10365 
10366   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10367 }
10368 
10369 bool SCEVWrapPredicate::isAlwaysTrue() const {
10370   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10371   IncrementWrapFlags IFlags = Flags;
10372 
10373   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10374     IFlags = clearFlags(IFlags, IncrementNSSW);
10375 
10376   return IFlags == IncrementAnyWrap;
10377 }
10378 
10379 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10380   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10381   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10382     OS << "<nusw>";
10383   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10384     OS << "<nssw>";
10385   OS << "\n";
10386 }
10387 
10388 SCEVWrapPredicate::IncrementWrapFlags
10389 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10390                                    ScalarEvolution &SE) {
10391   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10392   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10393 
10394   // We can safely transfer the NSW flag as NSSW.
10395   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10396     ImpliedFlags = IncrementNSSW;
10397 
10398   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10399     // If the increment is positive, the SCEV NUW flag will also imply the
10400     // WrapPredicate NUSW flag.
10401     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10402       if (Step->getValue()->getValue().isNonNegative())
10403         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10404   }
10405 
10406   return ImpliedFlags;
10407 }
10408 
10409 /// Union predicates don't get cached so create a dummy set ID for it.
10410 SCEVUnionPredicate::SCEVUnionPredicate()
10411     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10412 
10413 bool SCEVUnionPredicate::isAlwaysTrue() const {
10414   return all_of(Preds,
10415                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10416 }
10417 
10418 ArrayRef<const SCEVPredicate *>
10419 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10420   auto I = SCEVToPreds.find(Expr);
10421   if (I == SCEVToPreds.end())
10422     return ArrayRef<const SCEVPredicate *>();
10423   return I->second;
10424 }
10425 
10426 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10427   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
10428     return all_of(Set->Preds,
10429                   [this](const SCEVPredicate *I) { return this->implies(I); });
10430 
10431   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10432   if (ScevPredsIt == SCEVToPreds.end())
10433     return false;
10434   auto &SCEVPreds = ScevPredsIt->second;
10435 
10436   return any_of(SCEVPreds,
10437                 [N](const SCEVPredicate *I) { return I->implies(N); });
10438 }
10439 
10440 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10441 
10442 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10443   for (auto Pred : Preds)
10444     Pred->print(OS, Depth);
10445 }
10446 
10447 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10448   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
10449     for (auto Pred : Set->Preds)
10450       add(Pred);
10451     return;
10452   }
10453 
10454   if (implies(N))
10455     return;
10456 
10457   const SCEV *Key = N->getExpr();
10458   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10459                 " associated expression!");
10460 
10461   SCEVToPreds[Key].push_back(N);
10462   Preds.push_back(N);
10463 }
10464 
10465 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10466                                                      Loop &L)
10467     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10468 
10469 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10470   const SCEV *Expr = SE.getSCEV(V);
10471   RewriteEntry &Entry = RewriteMap[Expr];
10472 
10473   // If we already have an entry and the version matches, return it.
10474   if (Entry.second && Generation == Entry.first)
10475     return Entry.second;
10476 
10477   // We found an entry but it's stale. Rewrite the stale entry
10478   // acording to the current predicate.
10479   if (Entry.second)
10480     Expr = Entry.second;
10481 
10482   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10483   Entry = {Generation, NewSCEV};
10484 
10485   return NewSCEV;
10486 }
10487 
10488 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10489   if (!BackedgeCount) {
10490     SCEVUnionPredicate BackedgePred;
10491     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10492     addPredicate(BackedgePred);
10493   }
10494   return BackedgeCount;
10495 }
10496 
10497 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10498   if (Preds.implies(&Pred))
10499     return;
10500   Preds.add(&Pred);
10501   updateGeneration();
10502 }
10503 
10504 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10505   return Preds;
10506 }
10507 
10508 void PredicatedScalarEvolution::updateGeneration() {
10509   // If the generation number wrapped recompute everything.
10510   if (++Generation == 0) {
10511     for (auto &II : RewriteMap) {
10512       const SCEV *Rewritten = II.second.second;
10513       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10514     }
10515   }
10516 }
10517 
10518 void PredicatedScalarEvolution::setNoOverflow(
10519     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10520   const SCEV *Expr = getSCEV(V);
10521   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10522 
10523   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10524 
10525   // Clear the statically implied flags.
10526   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10527   addPredicate(*SE.getWrapPredicate(AR, Flags));
10528 
10529   auto II = FlagsMap.insert({V, Flags});
10530   if (!II.second)
10531     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10532 }
10533 
10534 bool PredicatedScalarEvolution::hasNoOverflow(
10535     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10536   const SCEV *Expr = getSCEV(V);
10537   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10538 
10539   Flags = SCEVWrapPredicate::clearFlags(
10540       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10541 
10542   auto II = FlagsMap.find(V);
10543 
10544   if (II != FlagsMap.end())
10545     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10546 
10547   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10548 }
10549 
10550 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10551   const SCEV *Expr = this->getSCEV(V);
10552   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10553 
10554   if (!New)
10555     return nullptr;
10556 
10557   updateGeneration();
10558   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10559   return New;
10560 }
10561 
10562 PredicatedScalarEvolution::PredicatedScalarEvolution(
10563     const PredicatedScalarEvolution &Init)
10564     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10565       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10566   for (const auto &I : Init.FlagsMap)
10567     FlagsMap.insert(I);
10568 }
10569 
10570 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10571   // For each block.
10572   for (auto *BB : L.getBlocks())
10573     for (auto &I : *BB) {
10574       if (!SE.isSCEVable(I.getType()))
10575         continue;
10576 
10577       auto *Expr = SE.getSCEV(&I);
10578       auto II = RewriteMap.find(Expr);
10579 
10580       if (II == RewriteMap.end())
10581         continue;
10582 
10583       // Don't print things that are not interesting.
10584       if (II->second.second == Expr)
10585         continue;
10586 
10587       OS.indent(Depth) << "[PSE]" << I << ":\n";
10588       OS.indent(Depth + 2) << *Expr << "\n";
10589       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10590     }
10591 }
10592