xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision bbb0ee6e34db1d8e00367ea03ee1972d1131d1e0)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumArrayLenItCounts,
142           "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144           "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146           "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148           "Number of loops with trip counts computed by force");
149 
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                         cl::ZeroOrMore,
153                         cl::desc("Maximum number of iterations SCEV will "
154                                  "symbolically execute a constant "
155                                  "derived loop"),
156                         cl::init(100));
157 
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160     "verify-scev", cl::Hidden,
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 
230 //===----------------------------------------------------------------------===//
231 //                           SCEV class definitions
232 //===----------------------------------------------------------------------===//
233 
234 //===----------------------------------------------------------------------===//
235 // Implementation of the SCEV class.
236 //
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD void SCEV::dump() const {
240   print(dbgs());
241   dbgs() << '\n';
242 }
243 #endif
244 
245 void SCEV::print(raw_ostream &OS) const {
246   switch (static_cast<SCEVTypes>(getSCEVType())) {
247   case scConstant:
248     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
249     return;
250   case scTruncate: {
251     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
252     const SCEV *Op = Trunc->getOperand();
253     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
254        << *Trunc->getType() << ")";
255     return;
256   }
257   case scZeroExtend: {
258     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
259     const SCEV *Op = ZExt->getOperand();
260     OS << "(zext " << *Op->getType() << " " << *Op << " to "
261        << *ZExt->getType() << ")";
262     return;
263   }
264   case scSignExtend: {
265     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
266     const SCEV *Op = SExt->getOperand();
267     OS << "(sext " << *Op->getType() << " " << *Op << " to "
268        << *SExt->getType() << ")";
269     return;
270   }
271   case scAddRecExpr: {
272     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
273     OS << "{" << *AR->getOperand(0);
274     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
275       OS << ",+," << *AR->getOperand(i);
276     OS << "}<";
277     if (AR->hasNoUnsignedWrap())
278       OS << "nuw><";
279     if (AR->hasNoSignedWrap())
280       OS << "nsw><";
281     if (AR->hasNoSelfWrap() &&
282         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
283       OS << "nw><";
284     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
285     OS << ">";
286     return;
287   }
288   case scAddExpr:
289   case scMulExpr:
290   case scUMaxExpr:
291   case scSMaxExpr:
292   case scUMinExpr:
293   case scSMinExpr: {
294     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
295     const char *OpStr = nullptr;
296     switch (NAry->getSCEVType()) {
297     case scAddExpr: OpStr = " + "; break;
298     case scMulExpr: OpStr = " * "; break;
299     case scUMaxExpr: OpStr = " umax "; break;
300     case scSMaxExpr: OpStr = " smax "; break;
301     case scUMinExpr:
302       OpStr = " umin ";
303       break;
304     case scSMinExpr:
305       OpStr = " smin ";
306       break;
307     }
308     OS << "(";
309     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
310          I != E; ++I) {
311       OS << **I;
312       if (std::next(I) != E)
313         OS << OpStr;
314     }
315     OS << ")";
316     switch (NAry->getSCEVType()) {
317     case scAddExpr:
318     case scMulExpr:
319       if (NAry->hasNoUnsignedWrap())
320         OS << "<nuw>";
321       if (NAry->hasNoSignedWrap())
322         OS << "<nsw>";
323     }
324     return;
325   }
326   case scUDivExpr: {
327     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
328     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
329     return;
330   }
331   case scUnknown: {
332     const SCEVUnknown *U = cast<SCEVUnknown>(this);
333     Type *AllocTy;
334     if (U->isSizeOf(AllocTy)) {
335       OS << "sizeof(" << *AllocTy << ")";
336       return;
337     }
338     if (U->isAlignOf(AllocTy)) {
339       OS << "alignof(" << *AllocTy << ")";
340       return;
341     }
342 
343     Type *CTy;
344     Constant *FieldNo;
345     if (U->isOffsetOf(CTy, FieldNo)) {
346       OS << "offsetof(" << *CTy << ", ";
347       FieldNo->printAsOperand(OS, false);
348       OS << ")";
349       return;
350     }
351 
352     // Otherwise just print it normally.
353     U->getValue()->printAsOperand(OS, false);
354     return;
355   }
356   case scCouldNotCompute:
357     OS << "***COULDNOTCOMPUTE***";
358     return;
359   }
360   llvm_unreachable("Unknown SCEV kind!");
361 }
362 
363 Type *SCEV::getType() const {
364   switch (static_cast<SCEVTypes>(getSCEVType())) {
365   case scConstant:
366     return cast<SCEVConstant>(this)->getType();
367   case scTruncate:
368   case scZeroExtend:
369   case scSignExtend:
370     return cast<SCEVCastExpr>(this)->getType();
371   case scAddRecExpr:
372   case scMulExpr:
373   case scUMaxExpr:
374   case scSMaxExpr:
375   case scUMinExpr:
376   case scSMinExpr:
377     return cast<SCEVNAryExpr>(this)->getType();
378   case scAddExpr:
379     return cast<SCEVAddExpr>(this)->getType();
380   case scUDivExpr:
381     return cast<SCEVUDivExpr>(this)->getType();
382   case scUnknown:
383     return cast<SCEVUnknown>(this)->getType();
384   case scCouldNotCompute:
385     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
386   }
387   llvm_unreachable("Unknown SCEV kind!");
388 }
389 
390 bool SCEV::isZero() const {
391   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
392     return SC->getValue()->isZero();
393   return false;
394 }
395 
396 bool SCEV::isOne() const {
397   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
398     return SC->getValue()->isOne();
399   return false;
400 }
401 
402 bool SCEV::isAllOnesValue() const {
403   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
404     return SC->getValue()->isMinusOne();
405   return false;
406 }
407 
408 bool SCEV::isNonConstantNegative() const {
409   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
410   if (!Mul) return false;
411 
412   // If there is a constant factor, it will be first.
413   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
414   if (!SC) return false;
415 
416   // Return true if the value is negative, this matches things like (-42 * V).
417   return SC->getAPInt().isNegative();
418 }
419 
420 SCEVCouldNotCompute::SCEVCouldNotCompute() :
421   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
422 
423 bool SCEVCouldNotCompute::classof(const SCEV *S) {
424   return S->getSCEVType() == scCouldNotCompute;
425 }
426 
427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
428   FoldingSetNodeID ID;
429   ID.AddInteger(scConstant);
430   ID.AddPointer(V);
431   void *IP = nullptr;
432   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
433   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
434   UniqueSCEVs.InsertNode(S, IP);
435   return S;
436 }
437 
438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
439   return getConstant(ConstantInt::get(getContext(), Val));
440 }
441 
442 const SCEV *
443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
444   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
445   return getConstant(ConstantInt::get(ITy, V, isSigned));
446 }
447 
448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
449                            unsigned SCEVTy, const SCEV *op, Type *ty)
450   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
451     Operands[0] = op;
452 }
453 
454 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
455                                    const SCEV *op, Type *ty)
456   : SCEVCastExpr(ID, scTruncate, op, ty) {
457   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
458          "Cannot truncate non-integer value!");
459 }
460 
461 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
462                                        const SCEV *op, Type *ty)
463   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
464   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
465          "Cannot zero extend non-integer value!");
466 }
467 
468 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
469                                        const SCEV *op, Type *ty)
470   : SCEVCastExpr(ID, scSignExtend, op, ty) {
471   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
472          "Cannot sign extend non-integer value!");
473 }
474 
475 void SCEVUnknown::deleted() {
476   // Clear this SCEVUnknown from various maps.
477   SE->forgetMemoizedResults(this);
478 
479   // Remove this SCEVUnknown from the uniquing map.
480   SE->UniqueSCEVs.RemoveNode(this);
481 
482   // Release the value.
483   setValPtr(nullptr);
484 }
485 
486 void SCEVUnknown::allUsesReplacedWith(Value *New) {
487   // Remove this SCEVUnknown from the uniquing map.
488   SE->UniqueSCEVs.RemoveNode(this);
489 
490   // Update this SCEVUnknown to point to the new value. This is needed
491   // because there may still be outstanding SCEVs which still point to
492   // this SCEVUnknown.
493   setValPtr(New);
494 }
495 
496 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
497   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
498     if (VCE->getOpcode() == Instruction::PtrToInt)
499       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
500         if (CE->getOpcode() == Instruction::GetElementPtr &&
501             CE->getOperand(0)->isNullValue() &&
502             CE->getNumOperands() == 2)
503           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
504             if (CI->isOne()) {
505               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
506                                  ->getElementType();
507               return true;
508             }
509 
510   return false;
511 }
512 
513 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
514   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
515     if (VCE->getOpcode() == Instruction::PtrToInt)
516       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
517         if (CE->getOpcode() == Instruction::GetElementPtr &&
518             CE->getOperand(0)->isNullValue()) {
519           Type *Ty =
520             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
521           if (StructType *STy = dyn_cast<StructType>(Ty))
522             if (!STy->isPacked() &&
523                 CE->getNumOperands() == 3 &&
524                 CE->getOperand(1)->isNullValue()) {
525               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
526                 if (CI->isOne() &&
527                     STy->getNumElements() == 2 &&
528                     STy->getElementType(0)->isIntegerTy(1)) {
529                   AllocTy = STy->getElementType(1);
530                   return true;
531                 }
532             }
533         }
534 
535   return false;
536 }
537 
538 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
539   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
540     if (VCE->getOpcode() == Instruction::PtrToInt)
541       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
542         if (CE->getOpcode() == Instruction::GetElementPtr &&
543             CE->getNumOperands() == 3 &&
544             CE->getOperand(0)->isNullValue() &&
545             CE->getOperand(1)->isNullValue()) {
546           Type *Ty =
547             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
548           // Ignore vector types here so that ScalarEvolutionExpander doesn't
549           // emit getelementptrs that index into vectors.
550           if (Ty->isStructTy() || Ty->isArrayTy()) {
551             CTy = Ty;
552             FieldNo = CE->getOperand(2);
553             return true;
554           }
555         }
556 
557   return false;
558 }
559 
560 //===----------------------------------------------------------------------===//
561 //                               SCEV Utilities
562 //===----------------------------------------------------------------------===//
563 
564 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
565 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
566 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
567 /// have been previously deemed to be "equally complex" by this routine.  It is
568 /// intended to avoid exponential time complexity in cases like:
569 ///
570 ///   %a = f(%x, %y)
571 ///   %b = f(%a, %a)
572 ///   %c = f(%b, %b)
573 ///
574 ///   %d = f(%x, %y)
575 ///   %e = f(%d, %d)
576 ///   %f = f(%e, %e)
577 ///
578 ///   CompareValueComplexity(%f, %c)
579 ///
580 /// Since we do not continue running this routine on expression trees once we
581 /// have seen unequal values, there is no need to track them in the cache.
582 static int
583 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
584                        const LoopInfo *const LI, Value *LV, Value *RV,
585                        unsigned Depth) {
586   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
587     return 0;
588 
589   // Order pointer values after integer values. This helps SCEVExpander form
590   // GEPs.
591   bool LIsPointer = LV->getType()->isPointerTy(),
592        RIsPointer = RV->getType()->isPointerTy();
593   if (LIsPointer != RIsPointer)
594     return (int)LIsPointer - (int)RIsPointer;
595 
596   // Compare getValueID values.
597   unsigned LID = LV->getValueID(), RID = RV->getValueID();
598   if (LID != RID)
599     return (int)LID - (int)RID;
600 
601   // Sort arguments by their position.
602   if (const auto *LA = dyn_cast<Argument>(LV)) {
603     const auto *RA = cast<Argument>(RV);
604     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
605     return (int)LArgNo - (int)RArgNo;
606   }
607 
608   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
609     const auto *RGV = cast<GlobalValue>(RV);
610 
611     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
612       auto LT = GV->getLinkage();
613       return !(GlobalValue::isPrivateLinkage(LT) ||
614                GlobalValue::isInternalLinkage(LT));
615     };
616 
617     // Use the names to distinguish the two values, but only if the
618     // names are semantically important.
619     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
620       return LGV->getName().compare(RGV->getName());
621   }
622 
623   // For instructions, compare their loop depth, and their operand count.  This
624   // is pretty loose.
625   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
626     const auto *RInst = cast<Instruction>(RV);
627 
628     // Compare loop depths.
629     const BasicBlock *LParent = LInst->getParent(),
630                      *RParent = RInst->getParent();
631     if (LParent != RParent) {
632       unsigned LDepth = LI->getLoopDepth(LParent),
633                RDepth = LI->getLoopDepth(RParent);
634       if (LDepth != RDepth)
635         return (int)LDepth - (int)RDepth;
636     }
637 
638     // Compare the number of operands.
639     unsigned LNumOps = LInst->getNumOperands(),
640              RNumOps = RInst->getNumOperands();
641     if (LNumOps != RNumOps)
642       return (int)LNumOps - (int)RNumOps;
643 
644     for (unsigned Idx : seq(0u, LNumOps)) {
645       int Result =
646           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
647                                  RInst->getOperand(Idx), Depth + 1);
648       if (Result != 0)
649         return Result;
650     }
651   }
652 
653   EqCacheValue.unionSets(LV, RV);
654   return 0;
655 }
656 
657 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
658 // than RHS, respectively. A three-way result allows recursive comparisons to be
659 // more efficient.
660 static int CompareSCEVComplexity(
661     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
662     EquivalenceClasses<const Value *> &EqCacheValue,
663     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
664     DominatorTree &DT, unsigned Depth = 0) {
665   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
666   if (LHS == RHS)
667     return 0;
668 
669   // Primarily, sort the SCEVs by their getSCEVType().
670   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
671   if (LType != RType)
672     return (int)LType - (int)RType;
673 
674   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
675     return 0;
676   // Aside from the getSCEVType() ordering, the particular ordering
677   // isn't very important except that it's beneficial to be consistent,
678   // so that (a + b) and (b + a) don't end up as different expressions.
679   switch (static_cast<SCEVTypes>(LType)) {
680   case scUnknown: {
681     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
682     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
683 
684     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
685                                    RU->getValue(), Depth + 1);
686     if (X == 0)
687       EqCacheSCEV.unionSets(LHS, RHS);
688     return X;
689   }
690 
691   case scConstant: {
692     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
693     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
694 
695     // Compare constant values.
696     const APInt &LA = LC->getAPInt();
697     const APInt &RA = RC->getAPInt();
698     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
699     if (LBitWidth != RBitWidth)
700       return (int)LBitWidth - (int)RBitWidth;
701     return LA.ult(RA) ? -1 : 1;
702   }
703 
704   case scAddRecExpr: {
705     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
706     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
707 
708     // There is always a dominance between two recs that are used by one SCEV,
709     // so we can safely sort recs by loop header dominance. We require such
710     // order in getAddExpr.
711     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
712     if (LLoop != RLoop) {
713       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
714       assert(LHead != RHead && "Two loops share the same header?");
715       if (DT.dominates(LHead, RHead))
716         return 1;
717       else
718         assert(DT.dominates(RHead, LHead) &&
719                "No dominance between recurrences used by one SCEV?");
720       return -1;
721     }
722 
723     // Addrec complexity grows with operand count.
724     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
725     if (LNumOps != RNumOps)
726       return (int)LNumOps - (int)RNumOps;
727 
728     // Lexicographically compare.
729     for (unsigned i = 0; i != LNumOps; ++i) {
730       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
731                                     LA->getOperand(i), RA->getOperand(i), DT,
732                                     Depth + 1);
733       if (X != 0)
734         return X;
735     }
736     EqCacheSCEV.unionSets(LHS, RHS);
737     return 0;
738   }
739 
740   case scAddExpr:
741   case scMulExpr:
742   case scSMaxExpr:
743   case scUMaxExpr:
744   case scSMinExpr:
745   case scUMinExpr: {
746     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
747     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
748 
749     // Lexicographically compare n-ary expressions.
750     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
751     if (LNumOps != RNumOps)
752       return (int)LNumOps - (int)RNumOps;
753 
754     for (unsigned i = 0; i != LNumOps; ++i) {
755       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
756                                     LC->getOperand(i), RC->getOperand(i), DT,
757                                     Depth + 1);
758       if (X != 0)
759         return X;
760     }
761     EqCacheSCEV.unionSets(LHS, RHS);
762     return 0;
763   }
764 
765   case scUDivExpr: {
766     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
767     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
768 
769     // Lexicographically compare udiv expressions.
770     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
771                                   RC->getLHS(), DT, Depth + 1);
772     if (X != 0)
773       return X;
774     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
775                               RC->getRHS(), DT, Depth + 1);
776     if (X == 0)
777       EqCacheSCEV.unionSets(LHS, RHS);
778     return X;
779   }
780 
781   case scTruncate:
782   case scZeroExtend:
783   case scSignExtend: {
784     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
785     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
786 
787     // Compare cast expressions by operand.
788     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
789                                   LC->getOperand(), RC->getOperand(), DT,
790                                   Depth + 1);
791     if (X == 0)
792       EqCacheSCEV.unionSets(LHS, RHS);
793     return X;
794   }
795 
796   case scCouldNotCompute:
797     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
798   }
799   llvm_unreachable("Unknown SCEV kind!");
800 }
801 
802 /// Given a list of SCEV objects, order them by their complexity, and group
803 /// objects of the same complexity together by value.  When this routine is
804 /// finished, we know that any duplicates in the vector are consecutive and that
805 /// complexity is monotonically increasing.
806 ///
807 /// Note that we go take special precautions to ensure that we get deterministic
808 /// results from this routine.  In other words, we don't want the results of
809 /// this to depend on where the addresses of various SCEV objects happened to
810 /// land in memory.
811 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
812                               LoopInfo *LI, DominatorTree &DT) {
813   if (Ops.size() < 2) return;  // Noop
814 
815   EquivalenceClasses<const SCEV *> EqCacheSCEV;
816   EquivalenceClasses<const Value *> EqCacheValue;
817   if (Ops.size() == 2) {
818     // This is the common case, which also happens to be trivially simple.
819     // Special case it.
820     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
821     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
822       std::swap(LHS, RHS);
823     return;
824   }
825 
826   // Do the rough sort by complexity.
827   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
828     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
829            0;
830   });
831 
832   // Now that we are sorted by complexity, group elements of the same
833   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
834   // be extremely short in practice.  Note that we take this approach because we
835   // do not want to depend on the addresses of the objects we are grouping.
836   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
837     const SCEV *S = Ops[i];
838     unsigned Complexity = S->getSCEVType();
839 
840     // If there are any objects of the same complexity and same value as this
841     // one, group them.
842     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
843       if (Ops[j] == S) { // Found a duplicate.
844         // Move it to immediately after i'th element.
845         std::swap(Ops[i+1], Ops[j]);
846         ++i;   // no need to rescan it.
847         if (i == e-2) return;  // Done!
848       }
849     }
850   }
851 }
852 
853 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
854 /// least HugeExprThreshold nodes).
855 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
856   return any_of(Ops, [](const SCEV *S) {
857     return S->getExpressionSize() >= HugeExprThreshold;
858   });
859 }
860 
861 //===----------------------------------------------------------------------===//
862 //                      Simple SCEV method implementations
863 //===----------------------------------------------------------------------===//
864 
865 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
866 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
867                                        ScalarEvolution &SE,
868                                        Type *ResultTy) {
869   // Handle the simplest case efficiently.
870   if (K == 1)
871     return SE.getTruncateOrZeroExtend(It, ResultTy);
872 
873   // We are using the following formula for BC(It, K):
874   //
875   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
876   //
877   // Suppose, W is the bitwidth of the return value.  We must be prepared for
878   // overflow.  Hence, we must assure that the result of our computation is
879   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
880   // safe in modular arithmetic.
881   //
882   // However, this code doesn't use exactly that formula; the formula it uses
883   // is something like the following, where T is the number of factors of 2 in
884   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
885   // exponentiation:
886   //
887   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
888   //
889   // This formula is trivially equivalent to the previous formula.  However,
890   // this formula can be implemented much more efficiently.  The trick is that
891   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
892   // arithmetic.  To do exact division in modular arithmetic, all we have
893   // to do is multiply by the inverse.  Therefore, this step can be done at
894   // width W.
895   //
896   // The next issue is how to safely do the division by 2^T.  The way this
897   // is done is by doing the multiplication step at a width of at least W + T
898   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
899   // when we perform the division by 2^T (which is equivalent to a right shift
900   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
901   // truncated out after the division by 2^T.
902   //
903   // In comparison to just directly using the first formula, this technique
904   // is much more efficient; using the first formula requires W * K bits,
905   // but this formula less than W + K bits. Also, the first formula requires
906   // a division step, whereas this formula only requires multiplies and shifts.
907   //
908   // It doesn't matter whether the subtraction step is done in the calculation
909   // width or the input iteration count's width; if the subtraction overflows,
910   // the result must be zero anyway.  We prefer here to do it in the width of
911   // the induction variable because it helps a lot for certain cases; CodeGen
912   // isn't smart enough to ignore the overflow, which leads to much less
913   // efficient code if the width of the subtraction is wider than the native
914   // register width.
915   //
916   // (It's possible to not widen at all by pulling out factors of 2 before
917   // the multiplication; for example, K=2 can be calculated as
918   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
919   // extra arithmetic, so it's not an obvious win, and it gets
920   // much more complicated for K > 3.)
921 
922   // Protection from insane SCEVs; this bound is conservative,
923   // but it probably doesn't matter.
924   if (K > 1000)
925     return SE.getCouldNotCompute();
926 
927   unsigned W = SE.getTypeSizeInBits(ResultTy);
928 
929   // Calculate K! / 2^T and T; we divide out the factors of two before
930   // multiplying for calculating K! / 2^T to avoid overflow.
931   // Other overflow doesn't matter because we only care about the bottom
932   // W bits of the result.
933   APInt OddFactorial(W, 1);
934   unsigned T = 1;
935   for (unsigned i = 3; i <= K; ++i) {
936     APInt Mult(W, i);
937     unsigned TwoFactors = Mult.countTrailingZeros();
938     T += TwoFactors;
939     Mult.lshrInPlace(TwoFactors);
940     OddFactorial *= Mult;
941   }
942 
943   // We need at least W + T bits for the multiplication step
944   unsigned CalculationBits = W + T;
945 
946   // Calculate 2^T, at width T+W.
947   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
948 
949   // Calculate the multiplicative inverse of K! / 2^T;
950   // this multiplication factor will perform the exact division by
951   // K! / 2^T.
952   APInt Mod = APInt::getSignedMinValue(W+1);
953   APInt MultiplyFactor = OddFactorial.zext(W+1);
954   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
955   MultiplyFactor = MultiplyFactor.trunc(W);
956 
957   // Calculate the product, at width T+W
958   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
959                                                       CalculationBits);
960   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
961   for (unsigned i = 1; i != K; ++i) {
962     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
963     Dividend = SE.getMulExpr(Dividend,
964                              SE.getTruncateOrZeroExtend(S, CalculationTy));
965   }
966 
967   // Divide by 2^T
968   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
969 
970   // Truncate the result, and divide by K! / 2^T.
971 
972   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
973                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
974 }
975 
976 /// Return the value of this chain of recurrences at the specified iteration
977 /// number.  We can evaluate this recurrence by multiplying each element in the
978 /// chain by the binomial coefficient corresponding to it.  In other words, we
979 /// can evaluate {A,+,B,+,C,+,D} as:
980 ///
981 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
982 ///
983 /// where BC(It, k) stands for binomial coefficient.
984 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
985                                                 ScalarEvolution &SE) const {
986   const SCEV *Result = getStart();
987   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
988     // The computation is correct in the face of overflow provided that the
989     // multiplication is performed _after_ the evaluation of the binomial
990     // coefficient.
991     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
992     if (isa<SCEVCouldNotCompute>(Coeff))
993       return Coeff;
994 
995     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
996   }
997   return Result;
998 }
999 
1000 //===----------------------------------------------------------------------===//
1001 //                    SCEV Expression folder implementations
1002 //===----------------------------------------------------------------------===//
1003 
1004 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1005                                              unsigned Depth) {
1006   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1007          "This is not a truncating conversion!");
1008   assert(isSCEVable(Ty) &&
1009          "This is not a conversion to a SCEVable type!");
1010   Ty = getEffectiveSCEVType(Ty);
1011 
1012   FoldingSetNodeID ID;
1013   ID.AddInteger(scTruncate);
1014   ID.AddPointer(Op);
1015   ID.AddPointer(Ty);
1016   void *IP = nullptr;
1017   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1018 
1019   // Fold if the operand is constant.
1020   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1021     return getConstant(
1022       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1023 
1024   // trunc(trunc(x)) --> trunc(x)
1025   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1026     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1027 
1028   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1029   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1030     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1031 
1032   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1033   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1034     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1035 
1036   if (Depth > MaxCastDepth) {
1037     SCEV *S =
1038         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1039     UniqueSCEVs.InsertNode(S, IP);
1040     addToLoopUseLists(S);
1041     return S;
1042   }
1043 
1044   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1045   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1046   // if after transforming we have at most one truncate, not counting truncates
1047   // that replace other casts.
1048   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1049     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1050     SmallVector<const SCEV *, 4> Operands;
1051     unsigned numTruncs = 0;
1052     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1053          ++i) {
1054       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1055       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1056         numTruncs++;
1057       Operands.push_back(S);
1058     }
1059     if (numTruncs < 2) {
1060       if (isa<SCEVAddExpr>(Op))
1061         return getAddExpr(Operands);
1062       else if (isa<SCEVMulExpr>(Op))
1063         return getMulExpr(Operands);
1064       else
1065         llvm_unreachable("Unexpected SCEV type for Op.");
1066     }
1067     // Although we checked in the beginning that ID is not in the cache, it is
1068     // possible that during recursion and different modification ID was inserted
1069     // into the cache. So if we find it, just return it.
1070     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071       return S;
1072   }
1073 
1074   // If the input value is a chrec scev, truncate the chrec's operands.
1075   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1076     SmallVector<const SCEV *, 4> Operands;
1077     for (const SCEV *Op : AddRec->operands())
1078       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1079     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1080   }
1081 
1082   // The cast wasn't folded; create an explicit cast node. We can reuse
1083   // the existing insert position since if we get here, we won't have
1084   // made any changes which would invalidate it.
1085   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1086                                                  Op, Ty);
1087   UniqueSCEVs.InsertNode(S, IP);
1088   addToLoopUseLists(S);
1089   return S;
1090 }
1091 
1092 // Get the limit of a recurrence such that incrementing by Step cannot cause
1093 // signed overflow as long as the value of the recurrence within the
1094 // loop does not exceed this limit before incrementing.
1095 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1096                                                  ICmpInst::Predicate *Pred,
1097                                                  ScalarEvolution *SE) {
1098   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1099   if (SE->isKnownPositive(Step)) {
1100     *Pred = ICmpInst::ICMP_SLT;
1101     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1102                            SE->getSignedRangeMax(Step));
1103   }
1104   if (SE->isKnownNegative(Step)) {
1105     *Pred = ICmpInst::ICMP_SGT;
1106     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1107                            SE->getSignedRangeMin(Step));
1108   }
1109   return nullptr;
1110 }
1111 
1112 // Get the limit of a recurrence such that incrementing by Step cannot cause
1113 // unsigned overflow as long as the value of the recurrence within the loop does
1114 // not exceed this limit before incrementing.
1115 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1116                                                    ICmpInst::Predicate *Pred,
1117                                                    ScalarEvolution *SE) {
1118   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1119   *Pred = ICmpInst::ICMP_ULT;
1120 
1121   return SE->getConstant(APInt::getMinValue(BitWidth) -
1122                          SE->getUnsignedRangeMax(Step));
1123 }
1124 
1125 namespace {
1126 
1127 struct ExtendOpTraitsBase {
1128   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1129                                                           unsigned);
1130 };
1131 
1132 // Used to make code generic over signed and unsigned overflow.
1133 template <typename ExtendOp> struct ExtendOpTraits {
1134   // Members present:
1135   //
1136   // static const SCEV::NoWrapFlags WrapType;
1137   //
1138   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1139   //
1140   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1141   //                                           ICmpInst::Predicate *Pred,
1142   //                                           ScalarEvolution *SE);
1143 };
1144 
1145 template <>
1146 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1147   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1148 
1149   static const GetExtendExprTy GetExtendExpr;
1150 
1151   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1152                                              ICmpInst::Predicate *Pred,
1153                                              ScalarEvolution *SE) {
1154     return getSignedOverflowLimitForStep(Step, Pred, SE);
1155   }
1156 };
1157 
1158 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1159     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1160 
1161 template <>
1162 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1163   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1164 
1165   static const GetExtendExprTy GetExtendExpr;
1166 
1167   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1168                                              ICmpInst::Predicate *Pred,
1169                                              ScalarEvolution *SE) {
1170     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1171   }
1172 };
1173 
1174 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1175     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1176 
1177 } // end anonymous namespace
1178 
1179 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1180 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1181 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1182 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1183 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1184 // expression "Step + sext/zext(PreIncAR)" is congruent with
1185 // "sext/zext(PostIncAR)"
1186 template <typename ExtendOpTy>
1187 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1188                                         ScalarEvolution *SE, unsigned Depth) {
1189   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1190   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1191 
1192   const Loop *L = AR->getLoop();
1193   const SCEV *Start = AR->getStart();
1194   const SCEV *Step = AR->getStepRecurrence(*SE);
1195 
1196   // Check for a simple looking step prior to loop entry.
1197   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1198   if (!SA)
1199     return nullptr;
1200 
1201   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1202   // subtraction is expensive. For this purpose, perform a quick and dirty
1203   // difference, by checking for Step in the operand list.
1204   SmallVector<const SCEV *, 4> DiffOps;
1205   for (const SCEV *Op : SA->operands())
1206     if (Op != Step)
1207       DiffOps.push_back(Op);
1208 
1209   if (DiffOps.size() == SA->getNumOperands())
1210     return nullptr;
1211 
1212   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1213   // `Step`:
1214 
1215   // 1. NSW/NUW flags on the step increment.
1216   auto PreStartFlags =
1217     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1218   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1219   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1220       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1221 
1222   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1223   // "S+X does not sign/unsign-overflow".
1224   //
1225 
1226   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1227   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1228       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1229     return PreStart;
1230 
1231   // 2. Direct overflow check on the step operation's expression.
1232   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1233   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1234   const SCEV *OperandExtendedStart =
1235       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1236                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1237   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1238     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1239       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1240       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1241       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1242       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1243     }
1244     return PreStart;
1245   }
1246 
1247   // 3. Loop precondition.
1248   ICmpInst::Predicate Pred;
1249   const SCEV *OverflowLimit =
1250       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1251 
1252   if (OverflowLimit &&
1253       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1254     return PreStart;
1255 
1256   return nullptr;
1257 }
1258 
1259 // Get the normalized zero or sign extended expression for this AddRec's Start.
1260 template <typename ExtendOpTy>
1261 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1262                                         ScalarEvolution *SE,
1263                                         unsigned Depth) {
1264   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1265 
1266   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1267   if (!PreStart)
1268     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1269 
1270   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1271                                              Depth),
1272                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1273 }
1274 
1275 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1276 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1277 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1278 //
1279 // Formally:
1280 //
1281 //     {S,+,X} == {S-T,+,X} + T
1282 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1283 //
1284 // If ({S-T,+,X} + T) does not overflow  ... (1)
1285 //
1286 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1287 //
1288 // If {S-T,+,X} does not overflow  ... (2)
1289 //
1290 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1291 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1292 //
1293 // If (S-T)+T does not overflow  ... (3)
1294 //
1295 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1296 //      == {Ext(S),+,Ext(X)} == LHS
1297 //
1298 // Thus, if (1), (2) and (3) are true for some T, then
1299 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1300 //
1301 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1302 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1303 // to check for (1) and (2).
1304 //
1305 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1306 // is `Delta` (defined below).
1307 template <typename ExtendOpTy>
1308 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1309                                                 const SCEV *Step,
1310                                                 const Loop *L) {
1311   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1312 
1313   // We restrict `Start` to a constant to prevent SCEV from spending too much
1314   // time here.  It is correct (but more expensive) to continue with a
1315   // non-constant `Start` and do a general SCEV subtraction to compute
1316   // `PreStart` below.
1317   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1318   if (!StartC)
1319     return false;
1320 
1321   APInt StartAI = StartC->getAPInt();
1322 
1323   for (unsigned Delta : {-2, -1, 1, 2}) {
1324     const SCEV *PreStart = getConstant(StartAI - Delta);
1325 
1326     FoldingSetNodeID ID;
1327     ID.AddInteger(scAddRecExpr);
1328     ID.AddPointer(PreStart);
1329     ID.AddPointer(Step);
1330     ID.AddPointer(L);
1331     void *IP = nullptr;
1332     const auto *PreAR =
1333       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1334 
1335     // Give up if we don't already have the add recurrence we need because
1336     // actually constructing an add recurrence is relatively expensive.
1337     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1338       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1339       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1340       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1341           DeltaS, &Pred, this);
1342       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1343         return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 // Finds an integer D for an expression (C + x + y + ...) such that the top
1351 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1352 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1353 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1354 // the (C + x + y + ...) expression is \p WholeAddExpr.
1355 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1356                                             const SCEVConstant *ConstantTerm,
1357                                             const SCEVAddExpr *WholeAddExpr) {
1358   const APInt &C = ConstantTerm->getAPInt();
1359   const unsigned BitWidth = C.getBitWidth();
1360   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1361   uint32_t TZ = BitWidth;
1362   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1363     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1364   if (TZ) {
1365     // Set D to be as many least significant bits of C as possible while still
1366     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1367     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1368   }
1369   return APInt(BitWidth, 0);
1370 }
1371 
1372 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1373 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1374 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1375 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1376 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1377                                             const APInt &ConstantStart,
1378                                             const SCEV *Step) {
1379   const unsigned BitWidth = ConstantStart.getBitWidth();
1380   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1381   if (TZ)
1382     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1383                          : ConstantStart;
1384   return APInt(BitWidth, 0);
1385 }
1386 
1387 const SCEV *
1388 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1389   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1390          "This is not an extending conversion!");
1391   assert(isSCEVable(Ty) &&
1392          "This is not a conversion to a SCEVable type!");
1393   Ty = getEffectiveSCEVType(Ty);
1394 
1395   // Fold if the operand is constant.
1396   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1397     return getConstant(
1398       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1399 
1400   // zext(zext(x)) --> zext(x)
1401   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1402     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1403 
1404   // Before doing any expensive analysis, check to see if we've already
1405   // computed a SCEV for this Op and Ty.
1406   FoldingSetNodeID ID;
1407   ID.AddInteger(scZeroExtend);
1408   ID.AddPointer(Op);
1409   ID.AddPointer(Ty);
1410   void *IP = nullptr;
1411   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1412   if (Depth > MaxCastDepth) {
1413     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1414                                                      Op, Ty);
1415     UniqueSCEVs.InsertNode(S, IP);
1416     addToLoopUseLists(S);
1417     return S;
1418   }
1419 
1420   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1421   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1422     // It's possible the bits taken off by the truncate were all zero bits. If
1423     // so, we should be able to simplify this further.
1424     const SCEV *X = ST->getOperand();
1425     ConstantRange CR = getUnsignedRange(X);
1426     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1427     unsigned NewBits = getTypeSizeInBits(Ty);
1428     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1429             CR.zextOrTrunc(NewBits)))
1430       return getTruncateOrZeroExtend(X, Ty, Depth);
1431   }
1432 
1433   // If the input value is a chrec scev, and we can prove that the value
1434   // did not overflow the old, smaller, value, we can zero extend all of the
1435   // operands (often constants).  This allows analysis of something like
1436   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1437   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1438     if (AR->isAffine()) {
1439       const SCEV *Start = AR->getStart();
1440       const SCEV *Step = AR->getStepRecurrence(*this);
1441       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1442       const Loop *L = AR->getLoop();
1443 
1444       if (!AR->hasNoUnsignedWrap()) {
1445         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1446         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1447       }
1448 
1449       // If we have special knowledge that this addrec won't overflow,
1450       // we don't need to do any further analysis.
1451       if (AR->hasNoUnsignedWrap())
1452         return getAddRecExpr(
1453             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1454             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1455 
1456       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1457       // Note that this serves two purposes: It filters out loops that are
1458       // simply not analyzable, and it covers the case where this code is
1459       // being called from within backedge-taken count analysis, such that
1460       // attempting to ask for the backedge-taken count would likely result
1461       // in infinite recursion. In the later case, the analysis code will
1462       // cope with a conservative value, and it will take care to purge
1463       // that value once it has finished.
1464       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1465       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1466         // Manually compute the final value for AR, checking for
1467         // overflow.
1468 
1469         // Check whether the backedge-taken count can be losslessly casted to
1470         // the addrec's type. The count is always unsigned.
1471         const SCEV *CastedMaxBECount =
1472             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1473         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1474             CastedMaxBECount, MaxBECount->getType(), Depth);
1475         if (MaxBECount == RecastedMaxBECount) {
1476           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1477           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1478           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1479                                         SCEV::FlagAnyWrap, Depth + 1);
1480           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1481                                                           SCEV::FlagAnyWrap,
1482                                                           Depth + 1),
1483                                                WideTy, Depth + 1);
1484           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1485           const SCEV *WideMaxBECount =
1486             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1487           const SCEV *OperandExtendedAdd =
1488             getAddExpr(WideStart,
1489                        getMulExpr(WideMaxBECount,
1490                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1491                                   SCEV::FlagAnyWrap, Depth + 1),
1492                        SCEV::FlagAnyWrap, Depth + 1);
1493           if (ZAdd == OperandExtendedAdd) {
1494             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1495             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1496             // Return the expression with the addrec on the outside.
1497             return getAddRecExpr(
1498                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1499                                                          Depth + 1),
1500                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1501                 AR->getNoWrapFlags());
1502           }
1503           // Similar to above, only this time treat the step value as signed.
1504           // This covers loops that count down.
1505           OperandExtendedAdd =
1506             getAddExpr(WideStart,
1507                        getMulExpr(WideMaxBECount,
1508                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1509                                   SCEV::FlagAnyWrap, Depth + 1),
1510                        SCEV::FlagAnyWrap, Depth + 1);
1511           if (ZAdd == OperandExtendedAdd) {
1512             // Cache knowledge of AR NW, which is propagated to this AddRec.
1513             // Negative step causes unsigned wrap, but it still can't self-wrap.
1514             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1515             // Return the expression with the addrec on the outside.
1516             return getAddRecExpr(
1517                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1518                                                          Depth + 1),
1519                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1520                 AR->getNoWrapFlags());
1521           }
1522         }
1523       }
1524 
1525       // Normally, in the cases we can prove no-overflow via a
1526       // backedge guarding condition, we can also compute a backedge
1527       // taken count for the loop.  The exceptions are assumptions and
1528       // guards present in the loop -- SCEV is not great at exploiting
1529       // these to compute max backedge taken counts, but can still use
1530       // these to prove lack of overflow.  Use this fact to avoid
1531       // doing extra work that may not pay off.
1532       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1533           !AC.assumptions().empty()) {
1534         // If the backedge is guarded by a comparison with the pre-inc
1535         // value the addrec is safe. Also, if the entry is guarded by
1536         // a comparison with the start value and the backedge is
1537         // guarded by a comparison with the post-inc value, the addrec
1538         // is safe.
1539         if (isKnownPositive(Step)) {
1540           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1541                                       getUnsignedRangeMax(Step));
1542           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1543               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1544             // Cache knowledge of AR NUW, which is propagated to this
1545             // AddRec.
1546             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1547             // Return the expression with the addrec on the outside.
1548             return getAddRecExpr(
1549                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1550                                                          Depth + 1),
1551                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1552                 AR->getNoWrapFlags());
1553           }
1554         } else if (isKnownNegative(Step)) {
1555           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1556                                       getSignedRangeMin(Step));
1557           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1558               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1559             // Cache knowledge of AR NW, which is propagated to this
1560             // AddRec.  Negative step causes unsigned wrap, but it
1561             // still can't self-wrap.
1562             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1563             // Return the expression with the addrec on the outside.
1564             return getAddRecExpr(
1565                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1566                                                          Depth + 1),
1567                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1568                 AR->getNoWrapFlags());
1569           }
1570         }
1571       }
1572 
1573       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1574       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1575       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1576       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1577         const APInt &C = SC->getAPInt();
1578         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1579         if (D != 0) {
1580           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1581           const SCEV *SResidual =
1582               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1583           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1584           return getAddExpr(SZExtD, SZExtR,
1585                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1586                             Depth + 1);
1587         }
1588       }
1589 
1590       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1591         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1592         return getAddRecExpr(
1593             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1594             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1595       }
1596     }
1597 
1598   // zext(A % B) --> zext(A) % zext(B)
1599   {
1600     const SCEV *LHS;
1601     const SCEV *RHS;
1602     if (matchURem(Op, LHS, RHS))
1603       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1604                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1605   }
1606 
1607   // zext(A / B) --> zext(A) / zext(B).
1608   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1609     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1610                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1611 
1612   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1613     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1614     if (SA->hasNoUnsignedWrap()) {
1615       // If the addition does not unsign overflow then we can, by definition,
1616       // commute the zero extension with the addition operation.
1617       SmallVector<const SCEV *, 4> Ops;
1618       for (const auto *Op : SA->operands())
1619         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1620       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1621     }
1622 
1623     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1624     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1625     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1626     //
1627     // Often address arithmetics contain expressions like
1628     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1629     // This transformation is useful while proving that such expressions are
1630     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1631     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1632       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1633       if (D != 0) {
1634         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1635         const SCEV *SResidual =
1636             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1637         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1638         return getAddExpr(SZExtD, SZExtR,
1639                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1640                           Depth + 1);
1641       }
1642     }
1643   }
1644 
1645   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1646     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1647     if (SM->hasNoUnsignedWrap()) {
1648       // If the multiply does not unsign overflow then we can, by definition,
1649       // commute the zero extension with the multiply operation.
1650       SmallVector<const SCEV *, 4> Ops;
1651       for (const auto *Op : SM->operands())
1652         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1653       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1654     }
1655 
1656     // zext(2^K * (trunc X to iN)) to iM ->
1657     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1658     //
1659     // Proof:
1660     //
1661     //     zext(2^K * (trunc X to iN)) to iM
1662     //   = zext((trunc X to iN) << K) to iM
1663     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1664     //     (because shl removes the top K bits)
1665     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1666     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1667     //
1668     if (SM->getNumOperands() == 2)
1669       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1670         if (MulLHS->getAPInt().isPowerOf2())
1671           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1672             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1673                                MulLHS->getAPInt().logBase2();
1674             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1675             return getMulExpr(
1676                 getZeroExtendExpr(MulLHS, Ty),
1677                 getZeroExtendExpr(
1678                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1679                 SCEV::FlagNUW, Depth + 1);
1680           }
1681   }
1682 
1683   // The cast wasn't folded; create an explicit cast node.
1684   // Recompute the insert position, as it may have been invalidated.
1685   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1686   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1687                                                    Op, Ty);
1688   UniqueSCEVs.InsertNode(S, IP);
1689   addToLoopUseLists(S);
1690   return S;
1691 }
1692 
1693 const SCEV *
1694 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1695   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1696          "This is not an extending conversion!");
1697   assert(isSCEVable(Ty) &&
1698          "This is not a conversion to a SCEVable type!");
1699   Ty = getEffectiveSCEVType(Ty);
1700 
1701   // Fold if the operand is constant.
1702   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1703     return getConstant(
1704       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1705 
1706   // sext(sext(x)) --> sext(x)
1707   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1708     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1709 
1710   // sext(zext(x)) --> zext(x)
1711   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1712     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1713 
1714   // Before doing any expensive analysis, check to see if we've already
1715   // computed a SCEV for this Op and Ty.
1716   FoldingSetNodeID ID;
1717   ID.AddInteger(scSignExtend);
1718   ID.AddPointer(Op);
1719   ID.AddPointer(Ty);
1720   void *IP = nullptr;
1721   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1722   // Limit recursion depth.
1723   if (Depth > MaxCastDepth) {
1724     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1725                                                      Op, Ty);
1726     UniqueSCEVs.InsertNode(S, IP);
1727     addToLoopUseLists(S);
1728     return S;
1729   }
1730 
1731   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1732   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1733     // It's possible the bits taken off by the truncate were all sign bits. If
1734     // so, we should be able to simplify this further.
1735     const SCEV *X = ST->getOperand();
1736     ConstantRange CR = getSignedRange(X);
1737     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1738     unsigned NewBits = getTypeSizeInBits(Ty);
1739     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1740             CR.sextOrTrunc(NewBits)))
1741       return getTruncateOrSignExtend(X, Ty, Depth);
1742   }
1743 
1744   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1745     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1746     if (SA->hasNoSignedWrap()) {
1747       // If the addition does not sign overflow then we can, by definition,
1748       // commute the sign extension with the addition operation.
1749       SmallVector<const SCEV *, 4> Ops;
1750       for (const auto *Op : SA->operands())
1751         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1752       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1753     }
1754 
1755     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1756     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1757     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1758     //
1759     // For instance, this will bring two seemingly different expressions:
1760     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1761     //         sext(6 + 20 * %x + 24 * %y)
1762     // to the same form:
1763     //     2 + sext(4 + 20 * %x + 24 * %y)
1764     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1765       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1766       if (D != 0) {
1767         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1768         const SCEV *SResidual =
1769             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1770         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1771         return getAddExpr(SSExtD, SSExtR,
1772                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1773                           Depth + 1);
1774       }
1775     }
1776   }
1777   // If the input value is a chrec scev, and we can prove that the value
1778   // did not overflow the old, smaller, value, we can sign extend all of the
1779   // operands (often constants).  This allows analysis of something like
1780   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1781   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1782     if (AR->isAffine()) {
1783       const SCEV *Start = AR->getStart();
1784       const SCEV *Step = AR->getStepRecurrence(*this);
1785       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1786       const Loop *L = AR->getLoop();
1787 
1788       if (!AR->hasNoSignedWrap()) {
1789         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1790         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1791       }
1792 
1793       // If we have special knowledge that this addrec won't overflow,
1794       // we don't need to do any further analysis.
1795       if (AR->hasNoSignedWrap())
1796         return getAddRecExpr(
1797             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1798             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1799 
1800       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1801       // Note that this serves two purposes: It filters out loops that are
1802       // simply not analyzable, and it covers the case where this code is
1803       // being called from within backedge-taken count analysis, such that
1804       // attempting to ask for the backedge-taken count would likely result
1805       // in infinite recursion. In the later case, the analysis code will
1806       // cope with a conservative value, and it will take care to purge
1807       // that value once it has finished.
1808       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1809       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1810         // Manually compute the final value for AR, checking for
1811         // overflow.
1812 
1813         // Check whether the backedge-taken count can be losslessly casted to
1814         // the addrec's type. The count is always unsigned.
1815         const SCEV *CastedMaxBECount =
1816             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1817         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1818             CastedMaxBECount, MaxBECount->getType(), Depth);
1819         if (MaxBECount == RecastedMaxBECount) {
1820           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1821           // Check whether Start+Step*MaxBECount has no signed overflow.
1822           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1823                                         SCEV::FlagAnyWrap, Depth + 1);
1824           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1825                                                           SCEV::FlagAnyWrap,
1826                                                           Depth + 1),
1827                                                WideTy, Depth + 1);
1828           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1829           const SCEV *WideMaxBECount =
1830             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1831           const SCEV *OperandExtendedAdd =
1832             getAddExpr(WideStart,
1833                        getMulExpr(WideMaxBECount,
1834                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1835                                   SCEV::FlagAnyWrap, Depth + 1),
1836                        SCEV::FlagAnyWrap, Depth + 1);
1837           if (SAdd == OperandExtendedAdd) {
1838             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1839             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1840             // Return the expression with the addrec on the outside.
1841             return getAddRecExpr(
1842                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1843                                                          Depth + 1),
1844                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1845                 AR->getNoWrapFlags());
1846           }
1847           // Similar to above, only this time treat the step value as unsigned.
1848           // This covers loops that count up with an unsigned step.
1849           OperandExtendedAdd =
1850             getAddExpr(WideStart,
1851                        getMulExpr(WideMaxBECount,
1852                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1853                                   SCEV::FlagAnyWrap, Depth + 1),
1854                        SCEV::FlagAnyWrap, Depth + 1);
1855           if (SAdd == OperandExtendedAdd) {
1856             // If AR wraps around then
1857             //
1858             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1859             // => SAdd != OperandExtendedAdd
1860             //
1861             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1862             // (SAdd == OperandExtendedAdd => AR is NW)
1863 
1864             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1865 
1866             // Return the expression with the addrec on the outside.
1867             return getAddRecExpr(
1868                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1869                                                          Depth + 1),
1870                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1871                 AR->getNoWrapFlags());
1872           }
1873         }
1874       }
1875 
1876       // Normally, in the cases we can prove no-overflow via a
1877       // backedge guarding condition, we can also compute a backedge
1878       // taken count for the loop.  The exceptions are assumptions and
1879       // guards present in the loop -- SCEV is not great at exploiting
1880       // these to compute max backedge taken counts, but can still use
1881       // these to prove lack of overflow.  Use this fact to avoid
1882       // doing extra work that may not pay off.
1883 
1884       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1885           !AC.assumptions().empty()) {
1886         // If the backedge is guarded by a comparison with the pre-inc
1887         // value the addrec is safe. Also, if the entry is guarded by
1888         // a comparison with the start value and the backedge is
1889         // guarded by a comparison with the post-inc value, the addrec
1890         // is safe.
1891         ICmpInst::Predicate Pred;
1892         const SCEV *OverflowLimit =
1893             getSignedOverflowLimitForStep(Step, &Pred, this);
1894         if (OverflowLimit &&
1895             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1896              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
1897           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1898           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1899           return getAddRecExpr(
1900               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1901               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1902         }
1903       }
1904 
1905       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
1906       // if D + (C - D + Step * n) could be proven to not signed wrap
1907       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1908       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1909         const APInt &C = SC->getAPInt();
1910         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1911         if (D != 0) {
1912           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1913           const SCEV *SResidual =
1914               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1915           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1916           return getAddExpr(SSExtD, SSExtR,
1917                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1918                             Depth + 1);
1919         }
1920       }
1921 
1922       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1923         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1924         return getAddRecExpr(
1925             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1926             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1927       }
1928     }
1929 
1930   // If the input value is provably positive and we could not simplify
1931   // away the sext build a zext instead.
1932   if (isKnownNonNegative(Op))
1933     return getZeroExtendExpr(Op, Ty, Depth + 1);
1934 
1935   // The cast wasn't folded; create an explicit cast node.
1936   // Recompute the insert position, as it may have been invalidated.
1937   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1938   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1939                                                    Op, Ty);
1940   UniqueSCEVs.InsertNode(S, IP);
1941   addToLoopUseLists(S);
1942   return S;
1943 }
1944 
1945 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1946 /// unspecified bits out to the given type.
1947 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1948                                               Type *Ty) {
1949   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1950          "This is not an extending conversion!");
1951   assert(isSCEVable(Ty) &&
1952          "This is not a conversion to a SCEVable type!");
1953   Ty = getEffectiveSCEVType(Ty);
1954 
1955   // Sign-extend negative constants.
1956   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1957     if (SC->getAPInt().isNegative())
1958       return getSignExtendExpr(Op, Ty);
1959 
1960   // Peel off a truncate cast.
1961   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1962     const SCEV *NewOp = T->getOperand();
1963     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1964       return getAnyExtendExpr(NewOp, Ty);
1965     return getTruncateOrNoop(NewOp, Ty);
1966   }
1967 
1968   // Next try a zext cast. If the cast is folded, use it.
1969   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1970   if (!isa<SCEVZeroExtendExpr>(ZExt))
1971     return ZExt;
1972 
1973   // Next try a sext cast. If the cast is folded, use it.
1974   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1975   if (!isa<SCEVSignExtendExpr>(SExt))
1976     return SExt;
1977 
1978   // Force the cast to be folded into the operands of an addrec.
1979   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1980     SmallVector<const SCEV *, 4> Ops;
1981     for (const SCEV *Op : AR->operands())
1982       Ops.push_back(getAnyExtendExpr(Op, Ty));
1983     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1984   }
1985 
1986   // If the expression is obviously signed, use the sext cast value.
1987   if (isa<SCEVSMaxExpr>(Op))
1988     return SExt;
1989 
1990   // Absent any other information, use the zext cast value.
1991   return ZExt;
1992 }
1993 
1994 /// Process the given Ops list, which is a list of operands to be added under
1995 /// the given scale, update the given map. This is a helper function for
1996 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1997 /// that would form an add expression like this:
1998 ///
1999 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2000 ///
2001 /// where A and B are constants, update the map with these values:
2002 ///
2003 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2004 ///
2005 /// and add 13 + A*B*29 to AccumulatedConstant.
2006 /// This will allow getAddRecExpr to produce this:
2007 ///
2008 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2009 ///
2010 /// This form often exposes folding opportunities that are hidden in
2011 /// the original operand list.
2012 ///
2013 /// Return true iff it appears that any interesting folding opportunities
2014 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2015 /// the common case where no interesting opportunities are present, and
2016 /// is also used as a check to avoid infinite recursion.
2017 static bool
2018 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2019                              SmallVectorImpl<const SCEV *> &NewOps,
2020                              APInt &AccumulatedConstant,
2021                              const SCEV *const *Ops, size_t NumOperands,
2022                              const APInt &Scale,
2023                              ScalarEvolution &SE) {
2024   bool Interesting = false;
2025 
2026   // Iterate over the add operands. They are sorted, with constants first.
2027   unsigned i = 0;
2028   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2029     ++i;
2030     // Pull a buried constant out to the outside.
2031     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2032       Interesting = true;
2033     AccumulatedConstant += Scale * C->getAPInt();
2034   }
2035 
2036   // Next comes everything else. We're especially interested in multiplies
2037   // here, but they're in the middle, so just visit the rest with one loop.
2038   for (; i != NumOperands; ++i) {
2039     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2040     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2041       APInt NewScale =
2042           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2043       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2044         // A multiplication of a constant with another add; recurse.
2045         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2046         Interesting |=
2047           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2048                                        Add->op_begin(), Add->getNumOperands(),
2049                                        NewScale, SE);
2050       } else {
2051         // A multiplication of a constant with some other value. Update
2052         // the map.
2053         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2054         const SCEV *Key = SE.getMulExpr(MulOps);
2055         auto Pair = M.insert({Key, NewScale});
2056         if (Pair.second) {
2057           NewOps.push_back(Pair.first->first);
2058         } else {
2059           Pair.first->second += NewScale;
2060           // The map already had an entry for this value, which may indicate
2061           // a folding opportunity.
2062           Interesting = true;
2063         }
2064       }
2065     } else {
2066       // An ordinary operand. Update the map.
2067       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2068           M.insert({Ops[i], Scale});
2069       if (Pair.second) {
2070         NewOps.push_back(Pair.first->first);
2071       } else {
2072         Pair.first->second += Scale;
2073         // The map already had an entry for this value, which may indicate
2074         // a folding opportunity.
2075         Interesting = true;
2076       }
2077     }
2078   }
2079 
2080   return Interesting;
2081 }
2082 
2083 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2084 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2085 // can't-overflow flags for the operation if possible.
2086 static SCEV::NoWrapFlags
2087 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2088                       const ArrayRef<const SCEV *> Ops,
2089                       SCEV::NoWrapFlags Flags) {
2090   using namespace std::placeholders;
2091 
2092   using OBO = OverflowingBinaryOperator;
2093 
2094   bool CanAnalyze =
2095       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2096   (void)CanAnalyze;
2097   assert(CanAnalyze && "don't call from other places!");
2098 
2099   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2100   SCEV::NoWrapFlags SignOrUnsignWrap =
2101       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2102 
2103   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2104   auto IsKnownNonNegative = [&](const SCEV *S) {
2105     return SE->isKnownNonNegative(S);
2106   };
2107 
2108   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2109     Flags =
2110         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2111 
2112   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2113 
2114   if (SignOrUnsignWrap != SignOrUnsignMask &&
2115       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2116       isa<SCEVConstant>(Ops[0])) {
2117 
2118     auto Opcode = [&] {
2119       switch (Type) {
2120       case scAddExpr:
2121         return Instruction::Add;
2122       case scMulExpr:
2123         return Instruction::Mul;
2124       default:
2125         llvm_unreachable("Unexpected SCEV op.");
2126       }
2127     }();
2128 
2129     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2130 
2131     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2132     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2133       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2134           Opcode, C, OBO::NoSignedWrap);
2135       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2136         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2137     }
2138 
2139     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2140     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2141       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2142           Opcode, C, OBO::NoUnsignedWrap);
2143       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2144         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2145     }
2146   }
2147 
2148   return Flags;
2149 }
2150 
2151 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2152   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2153 }
2154 
2155 /// Get a canonical add expression, or something simpler if possible.
2156 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2157                                         SCEV::NoWrapFlags Flags,
2158                                         unsigned Depth) {
2159   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2160          "only nuw or nsw allowed");
2161   assert(!Ops.empty() && "Cannot get empty add!");
2162   if (Ops.size() == 1) return Ops[0];
2163 #ifndef NDEBUG
2164   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2165   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2166     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2167            "SCEVAddExpr operand types don't match!");
2168 #endif
2169 
2170   // Sort by complexity, this groups all similar expression types together.
2171   GroupByComplexity(Ops, &LI, DT);
2172 
2173   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2174 
2175   // If there are any constants, fold them together.
2176   unsigned Idx = 0;
2177   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2178     ++Idx;
2179     assert(Idx < Ops.size());
2180     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2181       // We found two constants, fold them together!
2182       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2183       if (Ops.size() == 2) return Ops[0];
2184       Ops.erase(Ops.begin()+1);  // Erase the folded element
2185       LHSC = cast<SCEVConstant>(Ops[0]);
2186     }
2187 
2188     // If we are left with a constant zero being added, strip it off.
2189     if (LHSC->getValue()->isZero()) {
2190       Ops.erase(Ops.begin());
2191       --Idx;
2192     }
2193 
2194     if (Ops.size() == 1) return Ops[0];
2195   }
2196 
2197   // Limit recursion calls depth.
2198   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2199     return getOrCreateAddExpr(Ops, Flags);
2200 
2201   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2202     static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags);
2203     return S;
2204   }
2205 
2206   // Okay, check to see if the same value occurs in the operand list more than
2207   // once.  If so, merge them together into an multiply expression.  Since we
2208   // sorted the list, these values are required to be adjacent.
2209   Type *Ty = Ops[0]->getType();
2210   bool FoundMatch = false;
2211   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2212     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2213       // Scan ahead to count how many equal operands there are.
2214       unsigned Count = 2;
2215       while (i+Count != e && Ops[i+Count] == Ops[i])
2216         ++Count;
2217       // Merge the values into a multiply.
2218       const SCEV *Scale = getConstant(Ty, Count);
2219       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2220       if (Ops.size() == Count)
2221         return Mul;
2222       Ops[i] = Mul;
2223       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2224       --i; e -= Count - 1;
2225       FoundMatch = true;
2226     }
2227   if (FoundMatch)
2228     return getAddExpr(Ops, Flags, Depth + 1);
2229 
2230   // Check for truncates. If all the operands are truncated from the same
2231   // type, see if factoring out the truncate would permit the result to be
2232   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2233   // if the contents of the resulting outer trunc fold to something simple.
2234   auto FindTruncSrcType = [&]() -> Type * {
2235     // We're ultimately looking to fold an addrec of truncs and muls of only
2236     // constants and truncs, so if we find any other types of SCEV
2237     // as operands of the addrec then we bail and return nullptr here.
2238     // Otherwise, we return the type of the operand of a trunc that we find.
2239     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2240       return T->getOperand()->getType();
2241     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2242       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2243       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2244         return T->getOperand()->getType();
2245     }
2246     return nullptr;
2247   };
2248   if (auto *SrcType = FindTruncSrcType()) {
2249     SmallVector<const SCEV *, 8> LargeOps;
2250     bool Ok = true;
2251     // Check all the operands to see if they can be represented in the
2252     // source type of the truncate.
2253     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2254       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2255         if (T->getOperand()->getType() != SrcType) {
2256           Ok = false;
2257           break;
2258         }
2259         LargeOps.push_back(T->getOperand());
2260       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2261         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2262       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2263         SmallVector<const SCEV *, 8> LargeMulOps;
2264         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2265           if (const SCEVTruncateExpr *T =
2266                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2267             if (T->getOperand()->getType() != SrcType) {
2268               Ok = false;
2269               break;
2270             }
2271             LargeMulOps.push_back(T->getOperand());
2272           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2273             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2274           } else {
2275             Ok = false;
2276             break;
2277           }
2278         }
2279         if (Ok)
2280           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2281       } else {
2282         Ok = false;
2283         break;
2284       }
2285     }
2286     if (Ok) {
2287       // Evaluate the expression in the larger type.
2288       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2289       // If it folds to something simple, use it. Otherwise, don't.
2290       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2291         return getTruncateExpr(Fold, Ty);
2292     }
2293   }
2294 
2295   // Skip past any other cast SCEVs.
2296   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2297     ++Idx;
2298 
2299   // If there are add operands they would be next.
2300   if (Idx < Ops.size()) {
2301     bool DeletedAdd = false;
2302     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2303       if (Ops.size() > AddOpsInlineThreshold ||
2304           Add->getNumOperands() > AddOpsInlineThreshold)
2305         break;
2306       // If we have an add, expand the add operands onto the end of the operands
2307       // list.
2308       Ops.erase(Ops.begin()+Idx);
2309       Ops.append(Add->op_begin(), Add->op_end());
2310       DeletedAdd = true;
2311     }
2312 
2313     // If we deleted at least one add, we added operands to the end of the list,
2314     // and they are not necessarily sorted.  Recurse to resort and resimplify
2315     // any operands we just acquired.
2316     if (DeletedAdd)
2317       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2318   }
2319 
2320   // Skip over the add expression until we get to a multiply.
2321   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2322     ++Idx;
2323 
2324   // Check to see if there are any folding opportunities present with
2325   // operands multiplied by constant values.
2326   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2327     uint64_t BitWidth = getTypeSizeInBits(Ty);
2328     DenseMap<const SCEV *, APInt> M;
2329     SmallVector<const SCEV *, 8> NewOps;
2330     APInt AccumulatedConstant(BitWidth, 0);
2331     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2332                                      Ops.data(), Ops.size(),
2333                                      APInt(BitWidth, 1), *this)) {
2334       struct APIntCompare {
2335         bool operator()(const APInt &LHS, const APInt &RHS) const {
2336           return LHS.ult(RHS);
2337         }
2338       };
2339 
2340       // Some interesting folding opportunity is present, so its worthwhile to
2341       // re-generate the operands list. Group the operands by constant scale,
2342       // to avoid multiplying by the same constant scale multiple times.
2343       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2344       for (const SCEV *NewOp : NewOps)
2345         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2346       // Re-generate the operands list.
2347       Ops.clear();
2348       if (AccumulatedConstant != 0)
2349         Ops.push_back(getConstant(AccumulatedConstant));
2350       for (auto &MulOp : MulOpLists)
2351         if (MulOp.first != 0)
2352           Ops.push_back(getMulExpr(
2353               getConstant(MulOp.first),
2354               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2355               SCEV::FlagAnyWrap, Depth + 1));
2356       if (Ops.empty())
2357         return getZero(Ty);
2358       if (Ops.size() == 1)
2359         return Ops[0];
2360       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2361     }
2362   }
2363 
2364   // If we are adding something to a multiply expression, make sure the
2365   // something is not already an operand of the multiply.  If so, merge it into
2366   // the multiply.
2367   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2368     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2369     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2370       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2371       if (isa<SCEVConstant>(MulOpSCEV))
2372         continue;
2373       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2374         if (MulOpSCEV == Ops[AddOp]) {
2375           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2376           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2377           if (Mul->getNumOperands() != 2) {
2378             // If the multiply has more than two operands, we must get the
2379             // Y*Z term.
2380             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2381                                                 Mul->op_begin()+MulOp);
2382             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2383             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2384           }
2385           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2386           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2387           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2388                                             SCEV::FlagAnyWrap, Depth + 1);
2389           if (Ops.size() == 2) return OuterMul;
2390           if (AddOp < Idx) {
2391             Ops.erase(Ops.begin()+AddOp);
2392             Ops.erase(Ops.begin()+Idx-1);
2393           } else {
2394             Ops.erase(Ops.begin()+Idx);
2395             Ops.erase(Ops.begin()+AddOp-1);
2396           }
2397           Ops.push_back(OuterMul);
2398           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2399         }
2400 
2401       // Check this multiply against other multiplies being added together.
2402       for (unsigned OtherMulIdx = Idx+1;
2403            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2404            ++OtherMulIdx) {
2405         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2406         // If MulOp occurs in OtherMul, we can fold the two multiplies
2407         // together.
2408         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2409              OMulOp != e; ++OMulOp)
2410           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2411             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2412             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2413             if (Mul->getNumOperands() != 2) {
2414               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2415                                                   Mul->op_begin()+MulOp);
2416               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2417               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2418             }
2419             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2420             if (OtherMul->getNumOperands() != 2) {
2421               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2422                                                   OtherMul->op_begin()+OMulOp);
2423               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2424               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2425             }
2426             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2427             const SCEV *InnerMulSum =
2428                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2429             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2430                                               SCEV::FlagAnyWrap, Depth + 1);
2431             if (Ops.size() == 2) return OuterMul;
2432             Ops.erase(Ops.begin()+Idx);
2433             Ops.erase(Ops.begin()+OtherMulIdx-1);
2434             Ops.push_back(OuterMul);
2435             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2436           }
2437       }
2438     }
2439   }
2440 
2441   // If there are any add recurrences in the operands list, see if any other
2442   // added values are loop invariant.  If so, we can fold them into the
2443   // recurrence.
2444   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2445     ++Idx;
2446 
2447   // Scan over all recurrences, trying to fold loop invariants into them.
2448   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2449     // Scan all of the other operands to this add and add them to the vector if
2450     // they are loop invariant w.r.t. the recurrence.
2451     SmallVector<const SCEV *, 8> LIOps;
2452     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2453     const Loop *AddRecLoop = AddRec->getLoop();
2454     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2455       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2456         LIOps.push_back(Ops[i]);
2457         Ops.erase(Ops.begin()+i);
2458         --i; --e;
2459       }
2460 
2461     // If we found some loop invariants, fold them into the recurrence.
2462     if (!LIOps.empty()) {
2463       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2464       LIOps.push_back(AddRec->getStart());
2465 
2466       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2467                                              AddRec->op_end());
2468       // This follows from the fact that the no-wrap flags on the outer add
2469       // expression are applicable on the 0th iteration, when the add recurrence
2470       // will be equal to its start value.
2471       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2472 
2473       // Build the new addrec. Propagate the NUW and NSW flags if both the
2474       // outer add and the inner addrec are guaranteed to have no overflow.
2475       // Always propagate NW.
2476       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2477       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2478 
2479       // If all of the other operands were loop invariant, we are done.
2480       if (Ops.size() == 1) return NewRec;
2481 
2482       // Otherwise, add the folded AddRec by the non-invariant parts.
2483       for (unsigned i = 0;; ++i)
2484         if (Ops[i] == AddRec) {
2485           Ops[i] = NewRec;
2486           break;
2487         }
2488       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2489     }
2490 
2491     // Okay, if there weren't any loop invariants to be folded, check to see if
2492     // there are multiple AddRec's with the same loop induction variable being
2493     // added together.  If so, we can fold them.
2494     for (unsigned OtherIdx = Idx+1;
2495          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2496          ++OtherIdx) {
2497       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2498       // so that the 1st found AddRecExpr is dominated by all others.
2499       assert(DT.dominates(
2500            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2501            AddRec->getLoop()->getHeader()) &&
2502         "AddRecExprs are not sorted in reverse dominance order?");
2503       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2504         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2505         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2506                                                AddRec->op_end());
2507         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2508              ++OtherIdx) {
2509           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2510           if (OtherAddRec->getLoop() == AddRecLoop) {
2511             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2512                  i != e; ++i) {
2513               if (i >= AddRecOps.size()) {
2514                 AddRecOps.append(OtherAddRec->op_begin()+i,
2515                                  OtherAddRec->op_end());
2516                 break;
2517               }
2518               SmallVector<const SCEV *, 2> TwoOps = {
2519                   AddRecOps[i], OtherAddRec->getOperand(i)};
2520               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2521             }
2522             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2523           }
2524         }
2525         // Step size has changed, so we cannot guarantee no self-wraparound.
2526         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2527         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2528       }
2529     }
2530 
2531     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2532     // next one.
2533   }
2534 
2535   // Okay, it looks like we really DO need an add expr.  Check to see if we
2536   // already have one, otherwise create a new one.
2537   return getOrCreateAddExpr(Ops, Flags);
2538 }
2539 
2540 const SCEV *
2541 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2542                                     SCEV::NoWrapFlags Flags) {
2543   FoldingSetNodeID ID;
2544   ID.AddInteger(scAddExpr);
2545   for (const SCEV *Op : Ops)
2546     ID.AddPointer(Op);
2547   void *IP = nullptr;
2548   SCEVAddExpr *S =
2549       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2550   if (!S) {
2551     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2552     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2553     S = new (SCEVAllocator)
2554         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2555     UniqueSCEVs.InsertNode(S, IP);
2556     addToLoopUseLists(S);
2557   }
2558   S->setNoWrapFlags(Flags);
2559   return S;
2560 }
2561 
2562 const SCEV *
2563 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2564                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2565   FoldingSetNodeID ID;
2566   ID.AddInteger(scAddRecExpr);
2567   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2568     ID.AddPointer(Ops[i]);
2569   ID.AddPointer(L);
2570   void *IP = nullptr;
2571   SCEVAddRecExpr *S =
2572       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2573   if (!S) {
2574     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2575     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2576     S = new (SCEVAllocator)
2577         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2578     UniqueSCEVs.InsertNode(S, IP);
2579     addToLoopUseLists(S);
2580   }
2581   S->setNoWrapFlags(Flags);
2582   return S;
2583 }
2584 
2585 const SCEV *
2586 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2587                                     SCEV::NoWrapFlags Flags) {
2588   FoldingSetNodeID ID;
2589   ID.AddInteger(scMulExpr);
2590   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2591     ID.AddPointer(Ops[i]);
2592   void *IP = nullptr;
2593   SCEVMulExpr *S =
2594     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2595   if (!S) {
2596     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2597     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2598     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2599                                         O, Ops.size());
2600     UniqueSCEVs.InsertNode(S, IP);
2601     addToLoopUseLists(S);
2602   }
2603   S->setNoWrapFlags(Flags);
2604   return S;
2605 }
2606 
2607 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2608   uint64_t k = i*j;
2609   if (j > 1 && k / j != i) Overflow = true;
2610   return k;
2611 }
2612 
2613 /// Compute the result of "n choose k", the binomial coefficient.  If an
2614 /// intermediate computation overflows, Overflow will be set and the return will
2615 /// be garbage. Overflow is not cleared on absence of overflow.
2616 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2617   // We use the multiplicative formula:
2618   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2619   // At each iteration, we take the n-th term of the numeral and divide by the
2620   // (k-n)th term of the denominator.  This division will always produce an
2621   // integral result, and helps reduce the chance of overflow in the
2622   // intermediate computations. However, we can still overflow even when the
2623   // final result would fit.
2624 
2625   if (n == 0 || n == k) return 1;
2626   if (k > n) return 0;
2627 
2628   if (k > n/2)
2629     k = n-k;
2630 
2631   uint64_t r = 1;
2632   for (uint64_t i = 1; i <= k; ++i) {
2633     r = umul_ov(r, n-(i-1), Overflow);
2634     r /= i;
2635   }
2636   return r;
2637 }
2638 
2639 /// Determine if any of the operands in this SCEV are a constant or if
2640 /// any of the add or multiply expressions in this SCEV contain a constant.
2641 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2642   struct FindConstantInAddMulChain {
2643     bool FoundConstant = false;
2644 
2645     bool follow(const SCEV *S) {
2646       FoundConstant |= isa<SCEVConstant>(S);
2647       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2648     }
2649 
2650     bool isDone() const {
2651       return FoundConstant;
2652     }
2653   };
2654 
2655   FindConstantInAddMulChain F;
2656   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2657   ST.visitAll(StartExpr);
2658   return F.FoundConstant;
2659 }
2660 
2661 /// Get a canonical multiply expression, or something simpler if possible.
2662 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2663                                         SCEV::NoWrapFlags Flags,
2664                                         unsigned Depth) {
2665   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2666          "only nuw or nsw allowed");
2667   assert(!Ops.empty() && "Cannot get empty mul!");
2668   if (Ops.size() == 1) return Ops[0];
2669 #ifndef NDEBUG
2670   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2671   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2672     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2673            "SCEVMulExpr operand types don't match!");
2674 #endif
2675 
2676   // Sort by complexity, this groups all similar expression types together.
2677   GroupByComplexity(Ops, &LI, DT);
2678 
2679   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2680 
2681   // Limit recursion calls depth, but fold all-constant expressions.
2682   // `Ops` is sorted, so it's enough to check just last one.
2683   if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) &&
2684       !isa<SCEVConstant>(Ops.back()))
2685     return getOrCreateMulExpr(Ops, Flags);
2686 
2687   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2688     static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags);
2689     return S;
2690   }
2691 
2692   // If there are any constants, fold them together.
2693   unsigned Idx = 0;
2694   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2695 
2696     if (Ops.size() == 2)
2697       // C1*(C2+V) -> C1*C2 + C1*V
2698       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2699         // If any of Add's ops are Adds or Muls with a constant, apply this
2700         // transformation as well.
2701         //
2702         // TODO: There are some cases where this transformation is not
2703         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2704         // this transformation should be narrowed down.
2705         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2706           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2707                                        SCEV::FlagAnyWrap, Depth + 1),
2708                             getMulExpr(LHSC, Add->getOperand(1),
2709                                        SCEV::FlagAnyWrap, Depth + 1),
2710                             SCEV::FlagAnyWrap, Depth + 1);
2711 
2712     ++Idx;
2713     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2714       // We found two constants, fold them together!
2715       ConstantInt *Fold =
2716           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2717       Ops[0] = getConstant(Fold);
2718       Ops.erase(Ops.begin()+1);  // Erase the folded element
2719       if (Ops.size() == 1) return Ops[0];
2720       LHSC = cast<SCEVConstant>(Ops[0]);
2721     }
2722 
2723     // If we are left with a constant one being multiplied, strip it off.
2724     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2725       Ops.erase(Ops.begin());
2726       --Idx;
2727     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2728       // If we have a multiply of zero, it will always be zero.
2729       return Ops[0];
2730     } else if (Ops[0]->isAllOnesValue()) {
2731       // If we have a mul by -1 of an add, try distributing the -1 among the
2732       // add operands.
2733       if (Ops.size() == 2) {
2734         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2735           SmallVector<const SCEV *, 4> NewOps;
2736           bool AnyFolded = false;
2737           for (const SCEV *AddOp : Add->operands()) {
2738             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2739                                          Depth + 1);
2740             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2741             NewOps.push_back(Mul);
2742           }
2743           if (AnyFolded)
2744             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2745         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2746           // Negation preserves a recurrence's no self-wrap property.
2747           SmallVector<const SCEV *, 4> Operands;
2748           for (const SCEV *AddRecOp : AddRec->operands())
2749             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2750                                           Depth + 1));
2751 
2752           return getAddRecExpr(Operands, AddRec->getLoop(),
2753                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2754         }
2755       }
2756     }
2757 
2758     if (Ops.size() == 1)
2759       return Ops[0];
2760   }
2761 
2762   // Skip over the add expression until we get to a multiply.
2763   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2764     ++Idx;
2765 
2766   // If there are mul operands inline them all into this expression.
2767   if (Idx < Ops.size()) {
2768     bool DeletedMul = false;
2769     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2770       if (Ops.size() > MulOpsInlineThreshold)
2771         break;
2772       // If we have an mul, expand the mul operands onto the end of the
2773       // operands list.
2774       Ops.erase(Ops.begin()+Idx);
2775       Ops.append(Mul->op_begin(), Mul->op_end());
2776       DeletedMul = true;
2777     }
2778 
2779     // If we deleted at least one mul, we added operands to the end of the
2780     // list, and they are not necessarily sorted.  Recurse to resort and
2781     // resimplify any operands we just acquired.
2782     if (DeletedMul)
2783       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2784   }
2785 
2786   // If there are any add recurrences in the operands list, see if any other
2787   // added values are loop invariant.  If so, we can fold them into the
2788   // recurrence.
2789   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2790     ++Idx;
2791 
2792   // Scan over all recurrences, trying to fold loop invariants into them.
2793   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2794     // Scan all of the other operands to this mul and add them to the vector
2795     // if they are loop invariant w.r.t. the recurrence.
2796     SmallVector<const SCEV *, 8> LIOps;
2797     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2798     const Loop *AddRecLoop = AddRec->getLoop();
2799     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2800       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2801         LIOps.push_back(Ops[i]);
2802         Ops.erase(Ops.begin()+i);
2803         --i; --e;
2804       }
2805 
2806     // If we found some loop invariants, fold them into the recurrence.
2807     if (!LIOps.empty()) {
2808       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2809       SmallVector<const SCEV *, 4> NewOps;
2810       NewOps.reserve(AddRec->getNumOperands());
2811       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2812       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2813         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2814                                     SCEV::FlagAnyWrap, Depth + 1));
2815 
2816       // Build the new addrec. Propagate the NUW and NSW flags if both the
2817       // outer mul and the inner addrec are guaranteed to have no overflow.
2818       //
2819       // No self-wrap cannot be guaranteed after changing the step size, but
2820       // will be inferred if either NUW or NSW is true.
2821       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2822       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2823 
2824       // If all of the other operands were loop invariant, we are done.
2825       if (Ops.size() == 1) return NewRec;
2826 
2827       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2828       for (unsigned i = 0;; ++i)
2829         if (Ops[i] == AddRec) {
2830           Ops[i] = NewRec;
2831           break;
2832         }
2833       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2834     }
2835 
2836     // Okay, if there weren't any loop invariants to be folded, check to see
2837     // if there are multiple AddRec's with the same loop induction variable
2838     // being multiplied together.  If so, we can fold them.
2839 
2840     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2841     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2842     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2843     //   ]]],+,...up to x=2n}.
2844     // Note that the arguments to choose() are always integers with values
2845     // known at compile time, never SCEV objects.
2846     //
2847     // The implementation avoids pointless extra computations when the two
2848     // addrec's are of different length (mathematically, it's equivalent to
2849     // an infinite stream of zeros on the right).
2850     bool OpsModified = false;
2851     for (unsigned OtherIdx = Idx+1;
2852          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2853          ++OtherIdx) {
2854       const SCEVAddRecExpr *OtherAddRec =
2855         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2856       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2857         continue;
2858 
2859       // Limit max number of arguments to avoid creation of unreasonably big
2860       // SCEVAddRecs with very complex operands.
2861       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2862           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
2863         continue;
2864 
2865       bool Overflow = false;
2866       Type *Ty = AddRec->getType();
2867       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2868       SmallVector<const SCEV*, 7> AddRecOps;
2869       for (int x = 0, xe = AddRec->getNumOperands() +
2870              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2871         SmallVector <const SCEV *, 7> SumOps;
2872         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2873           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2874           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2875                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2876                z < ze && !Overflow; ++z) {
2877             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2878             uint64_t Coeff;
2879             if (LargerThan64Bits)
2880               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2881             else
2882               Coeff = Coeff1*Coeff2;
2883             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2884             const SCEV *Term1 = AddRec->getOperand(y-z);
2885             const SCEV *Term2 = OtherAddRec->getOperand(z);
2886             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
2887                                         SCEV::FlagAnyWrap, Depth + 1));
2888           }
2889         }
2890         if (SumOps.empty())
2891           SumOps.push_back(getZero(Ty));
2892         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
2893       }
2894       if (!Overflow) {
2895         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
2896                                               SCEV::FlagAnyWrap);
2897         if (Ops.size() == 2) return NewAddRec;
2898         Ops[Idx] = NewAddRec;
2899         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2900         OpsModified = true;
2901         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2902         if (!AddRec)
2903           break;
2904       }
2905     }
2906     if (OpsModified)
2907       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2908 
2909     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2910     // next one.
2911   }
2912 
2913   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2914   // already have one, otherwise create a new one.
2915   return getOrCreateMulExpr(Ops, Flags);
2916 }
2917 
2918 /// Represents an unsigned remainder expression based on unsigned division.
2919 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
2920                                          const SCEV *RHS) {
2921   assert(getEffectiveSCEVType(LHS->getType()) ==
2922          getEffectiveSCEVType(RHS->getType()) &&
2923          "SCEVURemExpr operand types don't match!");
2924 
2925   // Short-circuit easy cases
2926   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2927     // If constant is one, the result is trivial
2928     if (RHSC->getValue()->isOne())
2929       return getZero(LHS->getType()); // X urem 1 --> 0
2930 
2931     // If constant is a power of two, fold into a zext(trunc(LHS)).
2932     if (RHSC->getAPInt().isPowerOf2()) {
2933       Type *FullTy = LHS->getType();
2934       Type *TruncTy =
2935           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
2936       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
2937     }
2938   }
2939 
2940   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
2941   const SCEV *UDiv = getUDivExpr(LHS, RHS);
2942   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
2943   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
2944 }
2945 
2946 /// Get a canonical unsigned division expression, or something simpler if
2947 /// possible.
2948 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2949                                          const SCEV *RHS) {
2950   assert(getEffectiveSCEVType(LHS->getType()) ==
2951          getEffectiveSCEVType(RHS->getType()) &&
2952          "SCEVUDivExpr operand types don't match!");
2953 
2954   FoldingSetNodeID ID;
2955   ID.AddInteger(scUDivExpr);
2956   ID.AddPointer(LHS);
2957   ID.AddPointer(RHS);
2958   void *IP = nullptr;
2959   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
2960     return S;
2961 
2962   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2963     if (RHSC->getValue()->isOne())
2964       return LHS;                               // X udiv 1 --> x
2965     // If the denominator is zero, the result of the udiv is undefined. Don't
2966     // try to analyze it, because the resolution chosen here may differ from
2967     // the resolution chosen in other parts of the compiler.
2968     if (!RHSC->getValue()->isZero()) {
2969       // Determine if the division can be folded into the operands of
2970       // its operands.
2971       // TODO: Generalize this to non-constants by using known-bits information.
2972       Type *Ty = LHS->getType();
2973       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2974       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2975       // For non-power-of-two values, effectively round the value up to the
2976       // nearest power of two.
2977       if (!RHSC->getAPInt().isPowerOf2())
2978         ++MaxShiftAmt;
2979       IntegerType *ExtTy =
2980         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2981       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2982         if (const SCEVConstant *Step =
2983             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2984           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2985           const APInt &StepInt = Step->getAPInt();
2986           const APInt &DivInt = RHSC->getAPInt();
2987           if (!StepInt.urem(DivInt) &&
2988               getZeroExtendExpr(AR, ExtTy) ==
2989               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2990                             getZeroExtendExpr(Step, ExtTy),
2991                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2992             SmallVector<const SCEV *, 4> Operands;
2993             for (const SCEV *Op : AR->operands())
2994               Operands.push_back(getUDivExpr(Op, RHS));
2995             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2996           }
2997           /// Get a canonical UDivExpr for a recurrence.
2998           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2999           // We can currently only fold X%N if X is constant.
3000           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3001           if (StartC && !DivInt.urem(StepInt) &&
3002               getZeroExtendExpr(AR, ExtTy) ==
3003               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3004                             getZeroExtendExpr(Step, ExtTy),
3005                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3006             const APInt &StartInt = StartC->getAPInt();
3007             const APInt &StartRem = StartInt.urem(StepInt);
3008             if (StartRem != 0) {
3009               const SCEV *NewLHS =
3010                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3011                                 AR->getLoop(), SCEV::FlagNW);
3012               if (LHS != NewLHS) {
3013                 LHS = NewLHS;
3014 
3015                 // Reset the ID to include the new LHS, and check if it is
3016                 // already cached.
3017                 ID.clear();
3018                 ID.AddInteger(scUDivExpr);
3019                 ID.AddPointer(LHS);
3020                 ID.AddPointer(RHS);
3021                 IP = nullptr;
3022                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3023                   return S;
3024               }
3025             }
3026           }
3027         }
3028       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3029       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3030         SmallVector<const SCEV *, 4> Operands;
3031         for (const SCEV *Op : M->operands())
3032           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3033         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3034           // Find an operand that's safely divisible.
3035           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3036             const SCEV *Op = M->getOperand(i);
3037             const SCEV *Div = getUDivExpr(Op, RHSC);
3038             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3039               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3040                                                       M->op_end());
3041               Operands[i] = Div;
3042               return getMulExpr(Operands);
3043             }
3044           }
3045       }
3046 
3047       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3048       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3049         if (auto *DivisorConstant =
3050                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3051           bool Overflow = false;
3052           APInt NewRHS =
3053               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3054           if (Overflow) {
3055             return getConstant(RHSC->getType(), 0, false);
3056           }
3057           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3058         }
3059       }
3060 
3061       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3062       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3063         SmallVector<const SCEV *, 4> Operands;
3064         for (const SCEV *Op : A->operands())
3065           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3066         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3067           Operands.clear();
3068           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3069             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3070             if (isa<SCEVUDivExpr>(Op) ||
3071                 getMulExpr(Op, RHS) != A->getOperand(i))
3072               break;
3073             Operands.push_back(Op);
3074           }
3075           if (Operands.size() == A->getNumOperands())
3076             return getAddExpr(Operands);
3077         }
3078       }
3079 
3080       // Fold if both operands are constant.
3081       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3082         Constant *LHSCV = LHSC->getValue();
3083         Constant *RHSCV = RHSC->getValue();
3084         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3085                                                                    RHSCV)));
3086       }
3087     }
3088   }
3089 
3090   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3091   // changes). Make sure we get a new one.
3092   IP = nullptr;
3093   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3094   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3095                                              LHS, RHS);
3096   UniqueSCEVs.InsertNode(S, IP);
3097   addToLoopUseLists(S);
3098   return S;
3099 }
3100 
3101 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3102   APInt A = C1->getAPInt().abs();
3103   APInt B = C2->getAPInt().abs();
3104   uint32_t ABW = A.getBitWidth();
3105   uint32_t BBW = B.getBitWidth();
3106 
3107   if (ABW > BBW)
3108     B = B.zext(ABW);
3109   else if (ABW < BBW)
3110     A = A.zext(BBW);
3111 
3112   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3113 }
3114 
3115 /// Get a canonical unsigned division expression, or something simpler if
3116 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3117 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3118 /// it's not exact because the udiv may be clearing bits.
3119 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3120                                               const SCEV *RHS) {
3121   // TODO: we could try to find factors in all sorts of things, but for now we
3122   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3123   // end of this file for inspiration.
3124 
3125   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3126   if (!Mul || !Mul->hasNoUnsignedWrap())
3127     return getUDivExpr(LHS, RHS);
3128 
3129   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3130     // If the mulexpr multiplies by a constant, then that constant must be the
3131     // first element of the mulexpr.
3132     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3133       if (LHSCst == RHSCst) {
3134         SmallVector<const SCEV *, 2> Operands;
3135         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3136         return getMulExpr(Operands);
3137       }
3138 
3139       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3140       // that there's a factor provided by one of the other terms. We need to
3141       // check.
3142       APInt Factor = gcd(LHSCst, RHSCst);
3143       if (!Factor.isIntN(1)) {
3144         LHSCst =
3145             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3146         RHSCst =
3147             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3148         SmallVector<const SCEV *, 2> Operands;
3149         Operands.push_back(LHSCst);
3150         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3151         LHS = getMulExpr(Operands);
3152         RHS = RHSCst;
3153         Mul = dyn_cast<SCEVMulExpr>(LHS);
3154         if (!Mul)
3155           return getUDivExactExpr(LHS, RHS);
3156       }
3157     }
3158   }
3159 
3160   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3161     if (Mul->getOperand(i) == RHS) {
3162       SmallVector<const SCEV *, 2> Operands;
3163       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3164       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3165       return getMulExpr(Operands);
3166     }
3167   }
3168 
3169   return getUDivExpr(LHS, RHS);
3170 }
3171 
3172 /// Get an add recurrence expression for the specified loop.  Simplify the
3173 /// expression as much as possible.
3174 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3175                                            const Loop *L,
3176                                            SCEV::NoWrapFlags Flags) {
3177   SmallVector<const SCEV *, 4> Operands;
3178   Operands.push_back(Start);
3179   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3180     if (StepChrec->getLoop() == L) {
3181       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3182       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3183     }
3184 
3185   Operands.push_back(Step);
3186   return getAddRecExpr(Operands, L, Flags);
3187 }
3188 
3189 /// Get an add recurrence expression for the specified loop.  Simplify the
3190 /// expression as much as possible.
3191 const SCEV *
3192 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3193                                const Loop *L, SCEV::NoWrapFlags Flags) {
3194   if (Operands.size() == 1) return Operands[0];
3195 #ifndef NDEBUG
3196   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3197   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3198     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3199            "SCEVAddRecExpr operand types don't match!");
3200   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3201     assert(isLoopInvariant(Operands[i], L) &&
3202            "SCEVAddRecExpr operand is not loop-invariant!");
3203 #endif
3204 
3205   if (Operands.back()->isZero()) {
3206     Operands.pop_back();
3207     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3208   }
3209 
3210   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3211   // use that information to infer NUW and NSW flags. However, computing a
3212   // BE count requires calling getAddRecExpr, so we may not yet have a
3213   // meaningful BE count at this point (and if we don't, we'd be stuck
3214   // with a SCEVCouldNotCompute as the cached BE count).
3215 
3216   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3217 
3218   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3219   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3220     const Loop *NestedLoop = NestedAR->getLoop();
3221     if (L->contains(NestedLoop)
3222             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3223             : (!NestedLoop->contains(L) &&
3224                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3225       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3226                                                   NestedAR->op_end());
3227       Operands[0] = NestedAR->getStart();
3228       // AddRecs require their operands be loop-invariant with respect to their
3229       // loops. Don't perform this transformation if it would break this
3230       // requirement.
3231       bool AllInvariant = all_of(
3232           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3233 
3234       if (AllInvariant) {
3235         // Create a recurrence for the outer loop with the same step size.
3236         //
3237         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3238         // inner recurrence has the same property.
3239         SCEV::NoWrapFlags OuterFlags =
3240           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3241 
3242         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3243         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3244           return isLoopInvariant(Op, NestedLoop);
3245         });
3246 
3247         if (AllInvariant) {
3248           // Ok, both add recurrences are valid after the transformation.
3249           //
3250           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3251           // the outer recurrence has the same property.
3252           SCEV::NoWrapFlags InnerFlags =
3253             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3254           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3255         }
3256       }
3257       // Reset Operands to its original state.
3258       Operands[0] = NestedAR;
3259     }
3260   }
3261 
3262   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3263   // already have one, otherwise create a new one.
3264   return getOrCreateAddRecExpr(Operands, L, Flags);
3265 }
3266 
3267 const SCEV *
3268 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3269                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3270   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3271   // getSCEV(Base)->getType() has the same address space as Base->getType()
3272   // because SCEV::getType() preserves the address space.
3273   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3274   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3275   // instruction to its SCEV, because the Instruction may be guarded by control
3276   // flow and the no-overflow bits may not be valid for the expression in any
3277   // context. This can be fixed similarly to how these flags are handled for
3278   // adds.
3279   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3280                                              : SCEV::FlagAnyWrap;
3281 
3282   const SCEV *TotalOffset = getZero(IntIdxTy);
3283   Type *CurTy = GEP->getType();
3284   bool FirstIter = true;
3285   for (const SCEV *IndexExpr : IndexExprs) {
3286     // Compute the (potentially symbolic) offset in bytes for this index.
3287     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3288       // For a struct, add the member offset.
3289       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3290       unsigned FieldNo = Index->getZExtValue();
3291       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3292 
3293       // Add the field offset to the running total offset.
3294       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3295 
3296       // Update CurTy to the type of the field at Index.
3297       CurTy = STy->getTypeAtIndex(Index);
3298     } else {
3299       // Update CurTy to its element type.
3300       if (FirstIter) {
3301         assert(isa<PointerType>(CurTy) &&
3302                "The first index of a GEP indexes a pointer");
3303         CurTy = GEP->getSourceElementType();
3304         FirstIter = false;
3305       } else {
3306         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3307       }
3308       // For an array, add the element offset, explicitly scaled.
3309       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3310       // Getelementptr indices are signed.
3311       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3312 
3313       // Multiply the index by the element size to compute the element offset.
3314       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3315 
3316       // Add the element offset to the running total offset.
3317       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3318     }
3319   }
3320 
3321   // Add the total offset from all the GEP indices to the base.
3322   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3323 }
3324 
3325 std::tuple<SCEV *, FoldingSetNodeID, void *>
3326 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3327                                          ArrayRef<const SCEV *> Ops) {
3328   FoldingSetNodeID ID;
3329   void *IP = nullptr;
3330   ID.AddInteger(SCEVType);
3331   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3332     ID.AddPointer(Ops[i]);
3333   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3334       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3335 }
3336 
3337 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3338                                            SmallVectorImpl<const SCEV *> &Ops) {
3339   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3340   if (Ops.size() == 1) return Ops[0];
3341 #ifndef NDEBUG
3342   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3343   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3344     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3345            "Operand types don't match!");
3346 #endif
3347 
3348   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3349   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3350 
3351   // Sort by complexity, this groups all similar expression types together.
3352   GroupByComplexity(Ops, &LI, DT);
3353 
3354   // Check if we have created the same expression before.
3355   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3356     return S;
3357   }
3358 
3359   // If there are any constants, fold them together.
3360   unsigned Idx = 0;
3361   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3362     ++Idx;
3363     assert(Idx < Ops.size());
3364     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3365       if (Kind == scSMaxExpr)
3366         return APIntOps::smax(LHS, RHS);
3367       else if (Kind == scSMinExpr)
3368         return APIntOps::smin(LHS, RHS);
3369       else if (Kind == scUMaxExpr)
3370         return APIntOps::umax(LHS, RHS);
3371       else if (Kind == scUMinExpr)
3372         return APIntOps::umin(LHS, RHS);
3373       llvm_unreachable("Unknown SCEV min/max opcode");
3374     };
3375 
3376     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3377       // We found two constants, fold them together!
3378       ConstantInt *Fold = ConstantInt::get(
3379           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3380       Ops[0] = getConstant(Fold);
3381       Ops.erase(Ops.begin()+1);  // Erase the folded element
3382       if (Ops.size() == 1) return Ops[0];
3383       LHSC = cast<SCEVConstant>(Ops[0]);
3384     }
3385 
3386     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3387     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3388 
3389     if (IsMax ? IsMinV : IsMaxV) {
3390       // If we are left with a constant minimum(/maximum)-int, strip it off.
3391       Ops.erase(Ops.begin());
3392       --Idx;
3393     } else if (IsMax ? IsMaxV : IsMinV) {
3394       // If we have a max(/min) with a constant maximum(/minimum)-int,
3395       // it will always be the extremum.
3396       return LHSC;
3397     }
3398 
3399     if (Ops.size() == 1) return Ops[0];
3400   }
3401 
3402   // Find the first operation of the same kind
3403   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3404     ++Idx;
3405 
3406   // Check to see if one of the operands is of the same kind. If so, expand its
3407   // operands onto our operand list, and recurse to simplify.
3408   if (Idx < Ops.size()) {
3409     bool DeletedAny = false;
3410     while (Ops[Idx]->getSCEVType() == Kind) {
3411       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3412       Ops.erase(Ops.begin()+Idx);
3413       Ops.append(SMME->op_begin(), SMME->op_end());
3414       DeletedAny = true;
3415     }
3416 
3417     if (DeletedAny)
3418       return getMinMaxExpr(Kind, Ops);
3419   }
3420 
3421   // Okay, check to see if the same value occurs in the operand list twice.  If
3422   // so, delete one.  Since we sorted the list, these values are required to
3423   // be adjacent.
3424   llvm::CmpInst::Predicate GEPred =
3425       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3426   llvm::CmpInst::Predicate LEPred =
3427       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3428   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3429   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3430   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3431     if (Ops[i] == Ops[i + 1] ||
3432         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3433       //  X op Y op Y  -->  X op Y
3434       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3435       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3436       --i;
3437       --e;
3438     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3439                                                Ops[i + 1])) {
3440       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3441       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3442       --i;
3443       --e;
3444     }
3445   }
3446 
3447   if (Ops.size() == 1) return Ops[0];
3448 
3449   assert(!Ops.empty() && "Reduced smax down to nothing!");
3450 
3451   // Okay, it looks like we really DO need an expr.  Check to see if we
3452   // already have one, otherwise create a new one.
3453   const SCEV *ExistingSCEV;
3454   FoldingSetNodeID ID;
3455   void *IP;
3456   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3457   if (ExistingSCEV)
3458     return ExistingSCEV;
3459   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3460   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3461   SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3462       ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3463 
3464   UniqueSCEVs.InsertNode(S, IP);
3465   addToLoopUseLists(S);
3466   return S;
3467 }
3468 
3469 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3470   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3471   return getSMaxExpr(Ops);
3472 }
3473 
3474 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3475   return getMinMaxExpr(scSMaxExpr, Ops);
3476 }
3477 
3478 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3479   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3480   return getUMaxExpr(Ops);
3481 }
3482 
3483 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3484   return getMinMaxExpr(scUMaxExpr, Ops);
3485 }
3486 
3487 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3488                                          const SCEV *RHS) {
3489   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3490   return getSMinExpr(Ops);
3491 }
3492 
3493 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3494   return getMinMaxExpr(scSMinExpr, Ops);
3495 }
3496 
3497 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3498                                          const SCEV *RHS) {
3499   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3500   return getUMinExpr(Ops);
3501 }
3502 
3503 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3504   return getMinMaxExpr(scUMinExpr, Ops);
3505 }
3506 
3507 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3508   // We can bypass creating a target-independent
3509   // constant expression and then folding it back into a ConstantInt.
3510   // This is just a compile-time optimization.
3511   if (isa<ScalableVectorType>(AllocTy)) {
3512     Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3513     Constant *One = ConstantInt::get(IntTy, 1);
3514     Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3515     return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy));
3516   }
3517   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3518 }
3519 
3520 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3521                                              StructType *STy,
3522                                              unsigned FieldNo) {
3523   // We can bypass creating a target-independent
3524   // constant expression and then folding it back into a ConstantInt.
3525   // This is just a compile-time optimization.
3526   return getConstant(
3527       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3528 }
3529 
3530 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3531   // Don't attempt to do anything other than create a SCEVUnknown object
3532   // here.  createSCEV only calls getUnknown after checking for all other
3533   // interesting possibilities, and any other code that calls getUnknown
3534   // is doing so in order to hide a value from SCEV canonicalization.
3535 
3536   FoldingSetNodeID ID;
3537   ID.AddInteger(scUnknown);
3538   ID.AddPointer(V);
3539   void *IP = nullptr;
3540   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3541     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3542            "Stale SCEVUnknown in uniquing map!");
3543     return S;
3544   }
3545   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3546                                             FirstUnknown);
3547   FirstUnknown = cast<SCEVUnknown>(S);
3548   UniqueSCEVs.InsertNode(S, IP);
3549   return S;
3550 }
3551 
3552 //===----------------------------------------------------------------------===//
3553 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3554 //
3555 
3556 /// Test if values of the given type are analyzable within the SCEV
3557 /// framework. This primarily includes integer types, and it can optionally
3558 /// include pointer types if the ScalarEvolution class has access to
3559 /// target-specific information.
3560 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3561   // Integers and pointers are always SCEVable.
3562   return Ty->isIntOrPtrTy();
3563 }
3564 
3565 /// Return the size in bits of the specified type, for which isSCEVable must
3566 /// return true.
3567 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3568   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3569   if (Ty->isPointerTy())
3570     return getDataLayout().getIndexTypeSizeInBits(Ty);
3571   return getDataLayout().getTypeSizeInBits(Ty);
3572 }
3573 
3574 /// Return a type with the same bitwidth as the given type and which represents
3575 /// how SCEV will treat the given type, for which isSCEVable must return
3576 /// true. For pointer types, this is the pointer index sized integer type.
3577 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3578   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3579 
3580   if (Ty->isIntegerTy())
3581     return Ty;
3582 
3583   // The only other support type is pointer.
3584   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3585   return getDataLayout().getIndexType(Ty);
3586 }
3587 
3588 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3589   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3590 }
3591 
3592 const SCEV *ScalarEvolution::getCouldNotCompute() {
3593   return CouldNotCompute.get();
3594 }
3595 
3596 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3597   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3598     auto *SU = dyn_cast<SCEVUnknown>(S);
3599     return SU && SU->getValue() == nullptr;
3600   });
3601 
3602   return !ContainsNulls;
3603 }
3604 
3605 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3606   HasRecMapType::iterator I = HasRecMap.find(S);
3607   if (I != HasRecMap.end())
3608     return I->second;
3609 
3610   bool FoundAddRec =
3611       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3612   HasRecMap.insert({S, FoundAddRec});
3613   return FoundAddRec;
3614 }
3615 
3616 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3617 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3618 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3619 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3620   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3621   if (!Add)
3622     return {S, nullptr};
3623 
3624   if (Add->getNumOperands() != 2)
3625     return {S, nullptr};
3626 
3627   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3628   if (!ConstOp)
3629     return {S, nullptr};
3630 
3631   return {Add->getOperand(1), ConstOp->getValue()};
3632 }
3633 
3634 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3635 /// by the value and offset from any ValueOffsetPair in the set.
3636 SetVector<ScalarEvolution::ValueOffsetPair> *
3637 ScalarEvolution::getSCEVValues(const SCEV *S) {
3638   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3639   if (SI == ExprValueMap.end())
3640     return nullptr;
3641 #ifndef NDEBUG
3642   if (VerifySCEVMap) {
3643     // Check there is no dangling Value in the set returned.
3644     for (const auto &VE : SI->second)
3645       assert(ValueExprMap.count(VE.first));
3646   }
3647 #endif
3648   return &SI->second;
3649 }
3650 
3651 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3652 /// cannot be used separately. eraseValueFromMap should be used to remove
3653 /// V from ValueExprMap and ExprValueMap at the same time.
3654 void ScalarEvolution::eraseValueFromMap(Value *V) {
3655   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3656   if (I != ValueExprMap.end()) {
3657     const SCEV *S = I->second;
3658     // Remove {V, 0} from the set of ExprValueMap[S]
3659     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3660       SV->remove({V, nullptr});
3661 
3662     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3663     const SCEV *Stripped;
3664     ConstantInt *Offset;
3665     std::tie(Stripped, Offset) = splitAddExpr(S);
3666     if (Offset != nullptr) {
3667       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3668         SV->remove({V, Offset});
3669     }
3670     ValueExprMap.erase(V);
3671   }
3672 }
3673 
3674 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3675 /// TODO: In reality it is better to check the poison recursively
3676 /// but this is better than nothing.
3677 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3678   if (auto *I = dyn_cast<Instruction>(V)) {
3679     if (isa<OverflowingBinaryOperator>(I)) {
3680       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3681         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3682           return true;
3683         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3684           return true;
3685       }
3686     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3687       return true;
3688   }
3689   return false;
3690 }
3691 
3692 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3693 /// create a new one.
3694 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3695   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3696 
3697   const SCEV *S = getExistingSCEV(V);
3698   if (S == nullptr) {
3699     S = createSCEV(V);
3700     // During PHI resolution, it is possible to create two SCEVs for the same
3701     // V, so it is needed to double check whether V->S is inserted into
3702     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3703     std::pair<ValueExprMapType::iterator, bool> Pair =
3704         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3705     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3706       ExprValueMap[S].insert({V, nullptr});
3707 
3708       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3709       // ExprValueMap.
3710       const SCEV *Stripped = S;
3711       ConstantInt *Offset = nullptr;
3712       std::tie(Stripped, Offset) = splitAddExpr(S);
3713       // If stripped is SCEVUnknown, don't bother to save
3714       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3715       // increase the complexity of the expansion code.
3716       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3717       // because it may generate add/sub instead of GEP in SCEV expansion.
3718       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3719           !isa<GetElementPtrInst>(V))
3720         ExprValueMap[Stripped].insert({V, Offset});
3721     }
3722   }
3723   return S;
3724 }
3725 
3726 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3727   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3728 
3729   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3730   if (I != ValueExprMap.end()) {
3731     const SCEV *S = I->second;
3732     if (checkValidity(S))
3733       return S;
3734     eraseValueFromMap(V);
3735     forgetMemoizedResults(S);
3736   }
3737   return nullptr;
3738 }
3739 
3740 /// Return a SCEV corresponding to -V = -1*V
3741 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3742                                              SCEV::NoWrapFlags Flags) {
3743   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3744     return getConstant(
3745                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3746 
3747   Type *Ty = V->getType();
3748   Ty = getEffectiveSCEVType(Ty);
3749   return getMulExpr(
3750       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3751 }
3752 
3753 /// If Expr computes ~A, return A else return nullptr
3754 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3755   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3756   if (!Add || Add->getNumOperands() != 2 ||
3757       !Add->getOperand(0)->isAllOnesValue())
3758     return nullptr;
3759 
3760   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3761   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3762       !AddRHS->getOperand(0)->isAllOnesValue())
3763     return nullptr;
3764 
3765   return AddRHS->getOperand(1);
3766 }
3767 
3768 /// Return a SCEV corresponding to ~V = -1-V
3769 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3770   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3771     return getConstant(
3772                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3773 
3774   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3775   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3776     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3777       SmallVector<const SCEV *, 2> MatchedOperands;
3778       for (const SCEV *Operand : MME->operands()) {
3779         const SCEV *Matched = MatchNotExpr(Operand);
3780         if (!Matched)
3781           return (const SCEV *)nullptr;
3782         MatchedOperands.push_back(Matched);
3783       }
3784       return getMinMaxExpr(
3785           SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3786           MatchedOperands);
3787     };
3788     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3789       return Replaced;
3790   }
3791 
3792   Type *Ty = V->getType();
3793   Ty = getEffectiveSCEVType(Ty);
3794   const SCEV *AllOnes =
3795                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3796   return getMinusSCEV(AllOnes, V);
3797 }
3798 
3799 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3800                                           SCEV::NoWrapFlags Flags,
3801                                           unsigned Depth) {
3802   // Fast path: X - X --> 0.
3803   if (LHS == RHS)
3804     return getZero(LHS->getType());
3805 
3806   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3807   // makes it so that we cannot make much use of NUW.
3808   auto AddFlags = SCEV::FlagAnyWrap;
3809   const bool RHSIsNotMinSigned =
3810       !getSignedRangeMin(RHS).isMinSignedValue();
3811   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3812     // Let M be the minimum representable signed value. Then (-1)*RHS
3813     // signed-wraps if and only if RHS is M. That can happen even for
3814     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3815     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3816     // (-1)*RHS, we need to prove that RHS != M.
3817     //
3818     // If LHS is non-negative and we know that LHS - RHS does not
3819     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3820     // either by proving that RHS > M or that LHS >= 0.
3821     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3822       AddFlags = SCEV::FlagNSW;
3823     }
3824   }
3825 
3826   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3827   // RHS is NSW and LHS >= 0.
3828   //
3829   // The difficulty here is that the NSW flag may have been proven
3830   // relative to a loop that is to be found in a recurrence in LHS and
3831   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3832   // larger scope than intended.
3833   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3834 
3835   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3836 }
3837 
3838 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
3839                                                      unsigned Depth) {
3840   Type *SrcTy = V->getType();
3841   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3842          "Cannot truncate or zero extend with non-integer arguments!");
3843   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3844     return V;  // No conversion
3845   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3846     return getTruncateExpr(V, Ty, Depth);
3847   return getZeroExtendExpr(V, Ty, Depth);
3848 }
3849 
3850 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
3851                                                      unsigned Depth) {
3852   Type *SrcTy = V->getType();
3853   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3854          "Cannot truncate or zero extend with non-integer arguments!");
3855   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3856     return V;  // No conversion
3857   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3858     return getTruncateExpr(V, Ty, Depth);
3859   return getSignExtendExpr(V, Ty, Depth);
3860 }
3861 
3862 const SCEV *
3863 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3864   Type *SrcTy = V->getType();
3865   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3866          "Cannot noop or zero extend with non-integer arguments!");
3867   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3868          "getNoopOrZeroExtend cannot truncate!");
3869   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3870     return V;  // No conversion
3871   return getZeroExtendExpr(V, Ty);
3872 }
3873 
3874 const SCEV *
3875 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3876   Type *SrcTy = V->getType();
3877   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3878          "Cannot noop or sign extend with non-integer arguments!");
3879   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3880          "getNoopOrSignExtend cannot truncate!");
3881   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3882     return V;  // No conversion
3883   return getSignExtendExpr(V, Ty);
3884 }
3885 
3886 const SCEV *
3887 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3888   Type *SrcTy = V->getType();
3889   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3890          "Cannot noop or any extend with non-integer arguments!");
3891   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3892          "getNoopOrAnyExtend cannot truncate!");
3893   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3894     return V;  // No conversion
3895   return getAnyExtendExpr(V, Ty);
3896 }
3897 
3898 const SCEV *
3899 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3900   Type *SrcTy = V->getType();
3901   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3902          "Cannot truncate or noop with non-integer arguments!");
3903   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3904          "getTruncateOrNoop cannot extend!");
3905   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3906     return V;  // No conversion
3907   return getTruncateExpr(V, Ty);
3908 }
3909 
3910 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3911                                                         const SCEV *RHS) {
3912   const SCEV *PromotedLHS = LHS;
3913   const SCEV *PromotedRHS = RHS;
3914 
3915   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3916     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3917   else
3918     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3919 
3920   return getUMaxExpr(PromotedLHS, PromotedRHS);
3921 }
3922 
3923 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3924                                                         const SCEV *RHS) {
3925   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3926   return getUMinFromMismatchedTypes(Ops);
3927 }
3928 
3929 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
3930     SmallVectorImpl<const SCEV *> &Ops) {
3931   assert(!Ops.empty() && "At least one operand must be!");
3932   // Trivial case.
3933   if (Ops.size() == 1)
3934     return Ops[0];
3935 
3936   // Find the max type first.
3937   Type *MaxType = nullptr;
3938   for (auto *S : Ops)
3939     if (MaxType)
3940       MaxType = getWiderType(MaxType, S->getType());
3941     else
3942       MaxType = S->getType();
3943 
3944   // Extend all ops to max type.
3945   SmallVector<const SCEV *, 2> PromotedOps;
3946   for (auto *S : Ops)
3947     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
3948 
3949   // Generate umin.
3950   return getUMinExpr(PromotedOps);
3951 }
3952 
3953 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3954   // A pointer operand may evaluate to a nonpointer expression, such as null.
3955   if (!V->getType()->isPointerTy())
3956     return V;
3957 
3958   while (true) {
3959     if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3960       V = Cast->getOperand();
3961     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3962       const SCEV *PtrOp = nullptr;
3963       for (const SCEV *NAryOp : NAry->operands()) {
3964         if (NAryOp->getType()->isPointerTy()) {
3965           // Cannot find the base of an expression with multiple pointer ops.
3966           if (PtrOp)
3967             return V;
3968           PtrOp = NAryOp;
3969         }
3970       }
3971       if (!PtrOp) // All operands were non-pointer.
3972         return V;
3973       V = PtrOp;
3974     } else // Not something we can look further into.
3975       return V;
3976   }
3977 }
3978 
3979 /// Push users of the given Instruction onto the given Worklist.
3980 static void
3981 PushDefUseChildren(Instruction *I,
3982                    SmallVectorImpl<Instruction *> &Worklist) {
3983   // Push the def-use children onto the Worklist stack.
3984   for (User *U : I->users())
3985     Worklist.push_back(cast<Instruction>(U));
3986 }
3987 
3988 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3989   SmallVector<Instruction *, 16> Worklist;
3990   PushDefUseChildren(PN, Worklist);
3991 
3992   SmallPtrSet<Instruction *, 8> Visited;
3993   Visited.insert(PN);
3994   while (!Worklist.empty()) {
3995     Instruction *I = Worklist.pop_back_val();
3996     if (!Visited.insert(I).second)
3997       continue;
3998 
3999     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4000     if (It != ValueExprMap.end()) {
4001       const SCEV *Old = It->second;
4002 
4003       // Short-circuit the def-use traversal if the symbolic name
4004       // ceases to appear in expressions.
4005       if (Old != SymName && !hasOperand(Old, SymName))
4006         continue;
4007 
4008       // SCEVUnknown for a PHI either means that it has an unrecognized
4009       // structure, it's a PHI that's in the progress of being computed
4010       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4011       // additional loop trip count information isn't going to change anything.
4012       // In the second case, createNodeForPHI will perform the necessary
4013       // updates on its own when it gets to that point. In the third, we do
4014       // want to forget the SCEVUnknown.
4015       if (!isa<PHINode>(I) ||
4016           !isa<SCEVUnknown>(Old) ||
4017           (I != PN && Old == SymName)) {
4018         eraseValueFromMap(It->first);
4019         forgetMemoizedResults(Old);
4020       }
4021     }
4022 
4023     PushDefUseChildren(I, Worklist);
4024   }
4025 }
4026 
4027 namespace {
4028 
4029 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4030 /// expression in case its Loop is L. If it is not L then
4031 /// if IgnoreOtherLoops is true then use AddRec itself
4032 /// otherwise rewrite cannot be done.
4033 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4034 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4035 public:
4036   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4037                              bool IgnoreOtherLoops = true) {
4038     SCEVInitRewriter Rewriter(L, SE);
4039     const SCEV *Result = Rewriter.visit(S);
4040     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4041       return SE.getCouldNotCompute();
4042     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4043                ? SE.getCouldNotCompute()
4044                : Result;
4045   }
4046 
4047   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4048     if (!SE.isLoopInvariant(Expr, L))
4049       SeenLoopVariantSCEVUnknown = true;
4050     return Expr;
4051   }
4052 
4053   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4054     // Only re-write AddRecExprs for this loop.
4055     if (Expr->getLoop() == L)
4056       return Expr->getStart();
4057     SeenOtherLoops = true;
4058     return Expr;
4059   }
4060 
4061   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4062 
4063   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4064 
4065 private:
4066   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4067       : SCEVRewriteVisitor(SE), L(L) {}
4068 
4069   const Loop *L;
4070   bool SeenLoopVariantSCEVUnknown = false;
4071   bool SeenOtherLoops = false;
4072 };
4073 
4074 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4075 /// increment expression in case its Loop is L. If it is not L then
4076 /// use AddRec itself.
4077 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4078 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4079 public:
4080   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4081     SCEVPostIncRewriter Rewriter(L, SE);
4082     const SCEV *Result = Rewriter.visit(S);
4083     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4084         ? SE.getCouldNotCompute()
4085         : Result;
4086   }
4087 
4088   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4089     if (!SE.isLoopInvariant(Expr, L))
4090       SeenLoopVariantSCEVUnknown = true;
4091     return Expr;
4092   }
4093 
4094   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4095     // Only re-write AddRecExprs for this loop.
4096     if (Expr->getLoop() == L)
4097       return Expr->getPostIncExpr(SE);
4098     SeenOtherLoops = true;
4099     return Expr;
4100   }
4101 
4102   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4103 
4104   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4105 
4106 private:
4107   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4108       : SCEVRewriteVisitor(SE), L(L) {}
4109 
4110   const Loop *L;
4111   bool SeenLoopVariantSCEVUnknown = false;
4112   bool SeenOtherLoops = false;
4113 };
4114 
4115 /// This class evaluates the compare condition by matching it against the
4116 /// condition of loop latch. If there is a match we assume a true value
4117 /// for the condition while building SCEV nodes.
4118 class SCEVBackedgeConditionFolder
4119     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4120 public:
4121   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4122                              ScalarEvolution &SE) {
4123     bool IsPosBECond = false;
4124     Value *BECond = nullptr;
4125     if (BasicBlock *Latch = L->getLoopLatch()) {
4126       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4127       if (BI && BI->isConditional()) {
4128         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4129                "Both outgoing branches should not target same header!");
4130         BECond = BI->getCondition();
4131         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4132       } else {
4133         return S;
4134       }
4135     }
4136     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4137     return Rewriter.visit(S);
4138   }
4139 
4140   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4141     const SCEV *Result = Expr;
4142     bool InvariantF = SE.isLoopInvariant(Expr, L);
4143 
4144     if (!InvariantF) {
4145       Instruction *I = cast<Instruction>(Expr->getValue());
4146       switch (I->getOpcode()) {
4147       case Instruction::Select: {
4148         SelectInst *SI = cast<SelectInst>(I);
4149         Optional<const SCEV *> Res =
4150             compareWithBackedgeCondition(SI->getCondition());
4151         if (Res.hasValue()) {
4152           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4153           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4154         }
4155         break;
4156       }
4157       default: {
4158         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4159         if (Res.hasValue())
4160           Result = Res.getValue();
4161         break;
4162       }
4163       }
4164     }
4165     return Result;
4166   }
4167 
4168 private:
4169   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4170                                        bool IsPosBECond, ScalarEvolution &SE)
4171       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4172         IsPositiveBECond(IsPosBECond) {}
4173 
4174   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4175 
4176   const Loop *L;
4177   /// Loop back condition.
4178   Value *BackedgeCond = nullptr;
4179   /// Set to true if loop back is on positive branch condition.
4180   bool IsPositiveBECond;
4181 };
4182 
4183 Optional<const SCEV *>
4184 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4185 
4186   // If value matches the backedge condition for loop latch,
4187   // then return a constant evolution node based on loopback
4188   // branch taken.
4189   if (BackedgeCond == IC)
4190     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4191                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4192   return None;
4193 }
4194 
4195 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4196 public:
4197   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4198                              ScalarEvolution &SE) {
4199     SCEVShiftRewriter Rewriter(L, SE);
4200     const SCEV *Result = Rewriter.visit(S);
4201     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4202   }
4203 
4204   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4205     // Only allow AddRecExprs for this loop.
4206     if (!SE.isLoopInvariant(Expr, L))
4207       Valid = false;
4208     return Expr;
4209   }
4210 
4211   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4212     if (Expr->getLoop() == L && Expr->isAffine())
4213       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4214     Valid = false;
4215     return Expr;
4216   }
4217 
4218   bool isValid() { return Valid; }
4219 
4220 private:
4221   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4222       : SCEVRewriteVisitor(SE), L(L) {}
4223 
4224   const Loop *L;
4225   bool Valid = true;
4226 };
4227 
4228 } // end anonymous namespace
4229 
4230 SCEV::NoWrapFlags
4231 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4232   if (!AR->isAffine())
4233     return SCEV::FlagAnyWrap;
4234 
4235   using OBO = OverflowingBinaryOperator;
4236 
4237   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4238 
4239   if (!AR->hasNoSignedWrap()) {
4240     ConstantRange AddRecRange = getSignedRange(AR);
4241     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4242 
4243     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4244         Instruction::Add, IncRange, OBO::NoSignedWrap);
4245     if (NSWRegion.contains(AddRecRange))
4246       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4247   }
4248 
4249   if (!AR->hasNoUnsignedWrap()) {
4250     ConstantRange AddRecRange = getUnsignedRange(AR);
4251     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4252 
4253     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4254         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4255     if (NUWRegion.contains(AddRecRange))
4256       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4257   }
4258 
4259   return Result;
4260 }
4261 
4262 namespace {
4263 
4264 /// Represents an abstract binary operation.  This may exist as a
4265 /// normal instruction or constant expression, or may have been
4266 /// derived from an expression tree.
4267 struct BinaryOp {
4268   unsigned Opcode;
4269   Value *LHS;
4270   Value *RHS;
4271   bool IsNSW = false;
4272   bool IsNUW = false;
4273 
4274   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4275   /// constant expression.
4276   Operator *Op = nullptr;
4277 
4278   explicit BinaryOp(Operator *Op)
4279       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4280         Op(Op) {
4281     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4282       IsNSW = OBO->hasNoSignedWrap();
4283       IsNUW = OBO->hasNoUnsignedWrap();
4284     }
4285   }
4286 
4287   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4288                     bool IsNUW = false)
4289       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4290 };
4291 
4292 } // end anonymous namespace
4293 
4294 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4295 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4296   auto *Op = dyn_cast<Operator>(V);
4297   if (!Op)
4298     return None;
4299 
4300   // Implementation detail: all the cleverness here should happen without
4301   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4302   // SCEV expressions when possible, and we should not break that.
4303 
4304   switch (Op->getOpcode()) {
4305   case Instruction::Add:
4306   case Instruction::Sub:
4307   case Instruction::Mul:
4308   case Instruction::UDiv:
4309   case Instruction::URem:
4310   case Instruction::And:
4311   case Instruction::Or:
4312   case Instruction::AShr:
4313   case Instruction::Shl:
4314     return BinaryOp(Op);
4315 
4316   case Instruction::Xor:
4317     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4318       // If the RHS of the xor is a signmask, then this is just an add.
4319       // Instcombine turns add of signmask into xor as a strength reduction step.
4320       if (RHSC->getValue().isSignMask())
4321         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4322     return BinaryOp(Op);
4323 
4324   case Instruction::LShr:
4325     // Turn logical shift right of a constant into a unsigned divide.
4326     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4327       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4328 
4329       // If the shift count is not less than the bitwidth, the result of
4330       // the shift is undefined. Don't try to analyze it, because the
4331       // resolution chosen here may differ from the resolution chosen in
4332       // other parts of the compiler.
4333       if (SA->getValue().ult(BitWidth)) {
4334         Constant *X =
4335             ConstantInt::get(SA->getContext(),
4336                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4337         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4338       }
4339     }
4340     return BinaryOp(Op);
4341 
4342   case Instruction::ExtractValue: {
4343     auto *EVI = cast<ExtractValueInst>(Op);
4344     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4345       break;
4346 
4347     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4348     if (!WO)
4349       break;
4350 
4351     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4352     bool Signed = WO->isSigned();
4353     // TODO: Should add nuw/nsw flags for mul as well.
4354     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4355       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4356 
4357     // Now that we know that all uses of the arithmetic-result component of
4358     // CI are guarded by the overflow check, we can go ahead and pretend
4359     // that the arithmetic is non-overflowing.
4360     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4361                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4362   }
4363 
4364   default:
4365     break;
4366   }
4367 
4368   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4369   // semantics as a Sub, return a binary sub expression.
4370   if (auto *II = dyn_cast<IntrinsicInst>(V))
4371     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4372       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4373 
4374   return None;
4375 }
4376 
4377 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4378 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4379 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4380 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4381 /// follows one of the following patterns:
4382 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4383 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4384 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4385 /// we return the type of the truncation operation, and indicate whether the
4386 /// truncated type should be treated as signed/unsigned by setting
4387 /// \p Signed to true/false, respectively.
4388 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4389                                bool &Signed, ScalarEvolution &SE) {
4390   // The case where Op == SymbolicPHI (that is, with no type conversions on
4391   // the way) is handled by the regular add recurrence creating logic and
4392   // would have already been triggered in createAddRecForPHI. Reaching it here
4393   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4394   // because one of the other operands of the SCEVAddExpr updating this PHI is
4395   // not invariant).
4396   //
4397   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4398   // this case predicates that allow us to prove that Op == SymbolicPHI will
4399   // be added.
4400   if (Op == SymbolicPHI)
4401     return nullptr;
4402 
4403   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4404   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4405   if (SourceBits != NewBits)
4406     return nullptr;
4407 
4408   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4409   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4410   if (!SExt && !ZExt)
4411     return nullptr;
4412   const SCEVTruncateExpr *Trunc =
4413       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4414            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4415   if (!Trunc)
4416     return nullptr;
4417   const SCEV *X = Trunc->getOperand();
4418   if (X != SymbolicPHI)
4419     return nullptr;
4420   Signed = SExt != nullptr;
4421   return Trunc->getType();
4422 }
4423 
4424 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4425   if (!PN->getType()->isIntegerTy())
4426     return nullptr;
4427   const Loop *L = LI.getLoopFor(PN->getParent());
4428   if (!L || L->getHeader() != PN->getParent())
4429     return nullptr;
4430   return L;
4431 }
4432 
4433 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4434 // computation that updates the phi follows the following pattern:
4435 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4436 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4437 // If so, try to see if it can be rewritten as an AddRecExpr under some
4438 // Predicates. If successful, return them as a pair. Also cache the results
4439 // of the analysis.
4440 //
4441 // Example usage scenario:
4442 //    Say the Rewriter is called for the following SCEV:
4443 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4444 //    where:
4445 //         %X = phi i64 (%Start, %BEValue)
4446 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4447 //    and call this function with %SymbolicPHI = %X.
4448 //
4449 //    The analysis will find that the value coming around the backedge has
4450 //    the following SCEV:
4451 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4452 //    Upon concluding that this matches the desired pattern, the function
4453 //    will return the pair {NewAddRec, SmallPredsVec} where:
4454 //         NewAddRec = {%Start,+,%Step}
4455 //         SmallPredsVec = {P1, P2, P3} as follows:
4456 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4457 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4458 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4459 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4460 //    under the predicates {P1,P2,P3}.
4461 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4462 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4463 //
4464 // TODO's:
4465 //
4466 // 1) Extend the Induction descriptor to also support inductions that involve
4467 //    casts: When needed (namely, when we are called in the context of the
4468 //    vectorizer induction analysis), a Set of cast instructions will be
4469 //    populated by this method, and provided back to isInductionPHI. This is
4470 //    needed to allow the vectorizer to properly record them to be ignored by
4471 //    the cost model and to avoid vectorizing them (otherwise these casts,
4472 //    which are redundant under the runtime overflow checks, will be
4473 //    vectorized, which can be costly).
4474 //
4475 // 2) Support additional induction/PHISCEV patterns: We also want to support
4476 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4477 //    after the induction update operation (the induction increment):
4478 //
4479 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4480 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4481 //
4482 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4483 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4484 //
4485 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4486 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4487 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4488   SmallVector<const SCEVPredicate *, 3> Predicates;
4489 
4490   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4491   // return an AddRec expression under some predicate.
4492 
4493   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4494   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4495   assert(L && "Expecting an integer loop header phi");
4496 
4497   // The loop may have multiple entrances or multiple exits; we can analyze
4498   // this phi as an addrec if it has a unique entry value and a unique
4499   // backedge value.
4500   Value *BEValueV = nullptr, *StartValueV = nullptr;
4501   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4502     Value *V = PN->getIncomingValue(i);
4503     if (L->contains(PN->getIncomingBlock(i))) {
4504       if (!BEValueV) {
4505         BEValueV = V;
4506       } else if (BEValueV != V) {
4507         BEValueV = nullptr;
4508         break;
4509       }
4510     } else if (!StartValueV) {
4511       StartValueV = V;
4512     } else if (StartValueV != V) {
4513       StartValueV = nullptr;
4514       break;
4515     }
4516   }
4517   if (!BEValueV || !StartValueV)
4518     return None;
4519 
4520   const SCEV *BEValue = getSCEV(BEValueV);
4521 
4522   // If the value coming around the backedge is an add with the symbolic
4523   // value we just inserted, possibly with casts that we can ignore under
4524   // an appropriate runtime guard, then we found a simple induction variable!
4525   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4526   if (!Add)
4527     return None;
4528 
4529   // If there is a single occurrence of the symbolic value, possibly
4530   // casted, replace it with a recurrence.
4531   unsigned FoundIndex = Add->getNumOperands();
4532   Type *TruncTy = nullptr;
4533   bool Signed;
4534   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4535     if ((TruncTy =
4536              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4537       if (FoundIndex == e) {
4538         FoundIndex = i;
4539         break;
4540       }
4541 
4542   if (FoundIndex == Add->getNumOperands())
4543     return None;
4544 
4545   // Create an add with everything but the specified operand.
4546   SmallVector<const SCEV *, 8> Ops;
4547   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4548     if (i != FoundIndex)
4549       Ops.push_back(Add->getOperand(i));
4550   const SCEV *Accum = getAddExpr(Ops);
4551 
4552   // The runtime checks will not be valid if the step amount is
4553   // varying inside the loop.
4554   if (!isLoopInvariant(Accum, L))
4555     return None;
4556 
4557   // *** Part2: Create the predicates
4558 
4559   // Analysis was successful: we have a phi-with-cast pattern for which we
4560   // can return an AddRec expression under the following predicates:
4561   //
4562   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4563   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4564   // P2: An Equal predicate that guarantees that
4565   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4566   // P3: An Equal predicate that guarantees that
4567   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4568   //
4569   // As we next prove, the above predicates guarantee that:
4570   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4571   //
4572   //
4573   // More formally, we want to prove that:
4574   //     Expr(i+1) = Start + (i+1) * Accum
4575   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4576   //
4577   // Given that:
4578   // 1) Expr(0) = Start
4579   // 2) Expr(1) = Start + Accum
4580   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4581   // 3) Induction hypothesis (step i):
4582   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4583   //
4584   // Proof:
4585   //  Expr(i+1) =
4586   //   = Start + (i+1)*Accum
4587   //   = (Start + i*Accum) + Accum
4588   //   = Expr(i) + Accum
4589   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4590   //                                                             :: from step i
4591   //
4592   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4593   //
4594   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4595   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4596   //     + Accum                                                     :: from P3
4597   //
4598   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4599   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4600   //
4601   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4602   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4603   //
4604   // By induction, the same applies to all iterations 1<=i<n:
4605   //
4606 
4607   // Create a truncated addrec for which we will add a no overflow check (P1).
4608   const SCEV *StartVal = getSCEV(StartValueV);
4609   const SCEV *PHISCEV =
4610       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4611                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4612 
4613   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4614   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4615   // will be constant.
4616   //
4617   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4618   // add P1.
4619   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4620     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4621         Signed ? SCEVWrapPredicate::IncrementNSSW
4622                : SCEVWrapPredicate::IncrementNUSW;
4623     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4624     Predicates.push_back(AddRecPred);
4625   }
4626 
4627   // Create the Equal Predicates P2,P3:
4628 
4629   // It is possible that the predicates P2 and/or P3 are computable at
4630   // compile time due to StartVal and/or Accum being constants.
4631   // If either one is, then we can check that now and escape if either P2
4632   // or P3 is false.
4633 
4634   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4635   // for each of StartVal and Accum
4636   auto getExtendedExpr = [&](const SCEV *Expr,
4637                              bool CreateSignExtend) -> const SCEV * {
4638     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4639     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4640     const SCEV *ExtendedExpr =
4641         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4642                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4643     return ExtendedExpr;
4644   };
4645 
4646   // Given:
4647   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4648   //               = getExtendedExpr(Expr)
4649   // Determine whether the predicate P: Expr == ExtendedExpr
4650   // is known to be false at compile time
4651   auto PredIsKnownFalse = [&](const SCEV *Expr,
4652                               const SCEV *ExtendedExpr) -> bool {
4653     return Expr != ExtendedExpr &&
4654            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4655   };
4656 
4657   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4658   if (PredIsKnownFalse(StartVal, StartExtended)) {
4659     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4660     return None;
4661   }
4662 
4663   // The Step is always Signed (because the overflow checks are either
4664   // NSSW or NUSW)
4665   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4666   if (PredIsKnownFalse(Accum, AccumExtended)) {
4667     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4668     return None;
4669   }
4670 
4671   auto AppendPredicate = [&](const SCEV *Expr,
4672                              const SCEV *ExtendedExpr) -> void {
4673     if (Expr != ExtendedExpr &&
4674         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4675       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4676       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4677       Predicates.push_back(Pred);
4678     }
4679   };
4680 
4681   AppendPredicate(StartVal, StartExtended);
4682   AppendPredicate(Accum, AccumExtended);
4683 
4684   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4685   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4686   // into NewAR if it will also add the runtime overflow checks specified in
4687   // Predicates.
4688   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4689 
4690   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4691       std::make_pair(NewAR, Predicates);
4692   // Remember the result of the analysis for this SCEV at this locayyytion.
4693   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4694   return PredRewrite;
4695 }
4696 
4697 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4698 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4699   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4700   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4701   if (!L)
4702     return None;
4703 
4704   // Check to see if we already analyzed this PHI.
4705   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4706   if (I != PredicatedSCEVRewrites.end()) {
4707     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4708         I->second;
4709     // Analysis was done before and failed to create an AddRec:
4710     if (Rewrite.first == SymbolicPHI)
4711       return None;
4712     // Analysis was done before and succeeded to create an AddRec under
4713     // a predicate:
4714     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4715     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4716     return Rewrite;
4717   }
4718 
4719   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4720     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4721 
4722   // Record in the cache that the analysis failed
4723   if (!Rewrite) {
4724     SmallVector<const SCEVPredicate *, 3> Predicates;
4725     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4726     return None;
4727   }
4728 
4729   return Rewrite;
4730 }
4731 
4732 // FIXME: This utility is currently required because the Rewriter currently
4733 // does not rewrite this expression:
4734 // {0, +, (sext ix (trunc iy to ix) to iy)}
4735 // into {0, +, %step},
4736 // even when the following Equal predicate exists:
4737 // "%step == (sext ix (trunc iy to ix) to iy)".
4738 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4739     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4740   if (AR1 == AR2)
4741     return true;
4742 
4743   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4744     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4745         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4746       return false;
4747     return true;
4748   };
4749 
4750   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4751       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4752     return false;
4753   return true;
4754 }
4755 
4756 /// A helper function for createAddRecFromPHI to handle simple cases.
4757 ///
4758 /// This function tries to find an AddRec expression for the simplest (yet most
4759 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4760 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4761 /// technique for finding the AddRec expression.
4762 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4763                                                       Value *BEValueV,
4764                                                       Value *StartValueV) {
4765   const Loop *L = LI.getLoopFor(PN->getParent());
4766   assert(L && L->getHeader() == PN->getParent());
4767   assert(BEValueV && StartValueV);
4768 
4769   auto BO = MatchBinaryOp(BEValueV, DT);
4770   if (!BO)
4771     return nullptr;
4772 
4773   if (BO->Opcode != Instruction::Add)
4774     return nullptr;
4775 
4776   const SCEV *Accum = nullptr;
4777   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4778     Accum = getSCEV(BO->RHS);
4779   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4780     Accum = getSCEV(BO->LHS);
4781 
4782   if (!Accum)
4783     return nullptr;
4784 
4785   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4786   if (BO->IsNUW)
4787     Flags = setFlags(Flags, SCEV::FlagNUW);
4788   if (BO->IsNSW)
4789     Flags = setFlags(Flags, SCEV::FlagNSW);
4790 
4791   const SCEV *StartVal = getSCEV(StartValueV);
4792   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4793 
4794   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4795 
4796   // We can add Flags to the post-inc expression only if we
4797   // know that it is *undefined behavior* for BEValueV to
4798   // overflow.
4799   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4800     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4801       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4802 
4803   return PHISCEV;
4804 }
4805 
4806 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4807   const Loop *L = LI.getLoopFor(PN->getParent());
4808   if (!L || L->getHeader() != PN->getParent())
4809     return nullptr;
4810 
4811   // The loop may have multiple entrances or multiple exits; we can analyze
4812   // this phi as an addrec if it has a unique entry value and a unique
4813   // backedge value.
4814   Value *BEValueV = nullptr, *StartValueV = nullptr;
4815   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4816     Value *V = PN->getIncomingValue(i);
4817     if (L->contains(PN->getIncomingBlock(i))) {
4818       if (!BEValueV) {
4819         BEValueV = V;
4820       } else if (BEValueV != V) {
4821         BEValueV = nullptr;
4822         break;
4823       }
4824     } else if (!StartValueV) {
4825       StartValueV = V;
4826     } else if (StartValueV != V) {
4827       StartValueV = nullptr;
4828       break;
4829     }
4830   }
4831   if (!BEValueV || !StartValueV)
4832     return nullptr;
4833 
4834   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4835          "PHI node already processed?");
4836 
4837   // First, try to find AddRec expression without creating a fictituos symbolic
4838   // value for PN.
4839   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4840     return S;
4841 
4842   // Handle PHI node value symbolically.
4843   const SCEV *SymbolicName = getUnknown(PN);
4844   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4845 
4846   // Using this symbolic name for the PHI, analyze the value coming around
4847   // the back-edge.
4848   const SCEV *BEValue = getSCEV(BEValueV);
4849 
4850   // NOTE: If BEValue is loop invariant, we know that the PHI node just
4851   // has a special value for the first iteration of the loop.
4852 
4853   // If the value coming around the backedge is an add with the symbolic
4854   // value we just inserted, then we found a simple induction variable!
4855   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4856     // If there is a single occurrence of the symbolic value, replace it
4857     // with a recurrence.
4858     unsigned FoundIndex = Add->getNumOperands();
4859     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4860       if (Add->getOperand(i) == SymbolicName)
4861         if (FoundIndex == e) {
4862           FoundIndex = i;
4863           break;
4864         }
4865 
4866     if (FoundIndex != Add->getNumOperands()) {
4867       // Create an add with everything but the specified operand.
4868       SmallVector<const SCEV *, 8> Ops;
4869       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4870         if (i != FoundIndex)
4871           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
4872                                                              L, *this));
4873       const SCEV *Accum = getAddExpr(Ops);
4874 
4875       // This is not a valid addrec if the step amount is varying each
4876       // loop iteration, but is not itself an addrec in this loop.
4877       if (isLoopInvariant(Accum, L) ||
4878           (isa<SCEVAddRecExpr>(Accum) &&
4879            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4880         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4881 
4882         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4883           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4884             if (BO->IsNUW)
4885               Flags = setFlags(Flags, SCEV::FlagNUW);
4886             if (BO->IsNSW)
4887               Flags = setFlags(Flags, SCEV::FlagNSW);
4888           }
4889         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4890           // If the increment is an inbounds GEP, then we know the address
4891           // space cannot be wrapped around. We cannot make any guarantee
4892           // about signed or unsigned overflow because pointers are
4893           // unsigned but we may have a negative index from the base
4894           // pointer. We can guarantee that no unsigned wrap occurs if the
4895           // indices form a positive value.
4896           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4897             Flags = setFlags(Flags, SCEV::FlagNW);
4898 
4899             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4900             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4901               Flags = setFlags(Flags, SCEV::FlagNUW);
4902           }
4903 
4904           // We cannot transfer nuw and nsw flags from subtraction
4905           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4906           // for instance.
4907         }
4908 
4909         const SCEV *StartVal = getSCEV(StartValueV);
4910         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4911 
4912         // Okay, for the entire analysis of this edge we assumed the PHI
4913         // to be symbolic.  We now need to go back and purge all of the
4914         // entries for the scalars that use the symbolic expression.
4915         forgetSymbolicName(PN, SymbolicName);
4916         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4917 
4918         // We can add Flags to the post-inc expression only if we
4919         // know that it is *undefined behavior* for BEValueV to
4920         // overflow.
4921         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4922           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4923             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4924 
4925         return PHISCEV;
4926       }
4927     }
4928   } else {
4929     // Otherwise, this could be a loop like this:
4930     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4931     // In this case, j = {1,+,1}  and BEValue is j.
4932     // Because the other in-value of i (0) fits the evolution of BEValue
4933     // i really is an addrec evolution.
4934     //
4935     // We can generalize this saying that i is the shifted value of BEValue
4936     // by one iteration:
4937     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4938     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4939     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
4940     if (Shifted != getCouldNotCompute() &&
4941         Start != getCouldNotCompute()) {
4942       const SCEV *StartVal = getSCEV(StartValueV);
4943       if (Start == StartVal) {
4944         // Okay, for the entire analysis of this edge we assumed the PHI
4945         // to be symbolic.  We now need to go back and purge all of the
4946         // entries for the scalars that use the symbolic expression.
4947         forgetSymbolicName(PN, SymbolicName);
4948         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4949         return Shifted;
4950       }
4951     }
4952   }
4953 
4954   // Remove the temporary PHI node SCEV that has been inserted while intending
4955   // to create an AddRecExpr for this PHI node. We can not keep this temporary
4956   // as it will prevent later (possibly simpler) SCEV expressions to be added
4957   // to the ValueExprMap.
4958   eraseValueFromMap(PN);
4959 
4960   return nullptr;
4961 }
4962 
4963 // Checks if the SCEV S is available at BB.  S is considered available at BB
4964 // if S can be materialized at BB without introducing a fault.
4965 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4966                                BasicBlock *BB) {
4967   struct CheckAvailable {
4968     bool TraversalDone = false;
4969     bool Available = true;
4970 
4971     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4972     BasicBlock *BB = nullptr;
4973     DominatorTree &DT;
4974 
4975     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4976       : L(L), BB(BB), DT(DT) {}
4977 
4978     bool setUnavailable() {
4979       TraversalDone = true;
4980       Available = false;
4981       return false;
4982     }
4983 
4984     bool follow(const SCEV *S) {
4985       switch (S->getSCEVType()) {
4986       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4987       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4988       case scUMinExpr:
4989       case scSMinExpr:
4990         // These expressions are available if their operand(s) is/are.
4991         return true;
4992 
4993       case scAddRecExpr: {
4994         // We allow add recurrences that are on the loop BB is in, or some
4995         // outer loop.  This guarantees availability because the value of the
4996         // add recurrence at BB is simply the "current" value of the induction
4997         // variable.  We can relax this in the future; for instance an add
4998         // recurrence on a sibling dominating loop is also available at BB.
4999         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5000         if (L && (ARLoop == L || ARLoop->contains(L)))
5001           return true;
5002 
5003         return setUnavailable();
5004       }
5005 
5006       case scUnknown: {
5007         // For SCEVUnknown, we check for simple dominance.
5008         const auto *SU = cast<SCEVUnknown>(S);
5009         Value *V = SU->getValue();
5010 
5011         if (isa<Argument>(V))
5012           return false;
5013 
5014         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5015           return false;
5016 
5017         return setUnavailable();
5018       }
5019 
5020       case scUDivExpr:
5021       case scCouldNotCompute:
5022         // We do not try to smart about these at all.
5023         return setUnavailable();
5024       }
5025       llvm_unreachable("switch should be fully covered!");
5026     }
5027 
5028     bool isDone() { return TraversalDone; }
5029   };
5030 
5031   CheckAvailable CA(L, BB, DT);
5032   SCEVTraversal<CheckAvailable> ST(CA);
5033 
5034   ST.visitAll(S);
5035   return CA.Available;
5036 }
5037 
5038 // Try to match a control flow sequence that branches out at BI and merges back
5039 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5040 // match.
5041 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5042                           Value *&C, Value *&LHS, Value *&RHS) {
5043   C = BI->getCondition();
5044 
5045   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5046   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5047 
5048   if (!LeftEdge.isSingleEdge())
5049     return false;
5050 
5051   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5052 
5053   Use &LeftUse = Merge->getOperandUse(0);
5054   Use &RightUse = Merge->getOperandUse(1);
5055 
5056   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5057     LHS = LeftUse;
5058     RHS = RightUse;
5059     return true;
5060   }
5061 
5062   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5063     LHS = RightUse;
5064     RHS = LeftUse;
5065     return true;
5066   }
5067 
5068   return false;
5069 }
5070 
5071 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5072   auto IsReachable =
5073       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5074   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5075     const Loop *L = LI.getLoopFor(PN->getParent());
5076 
5077     // We don't want to break LCSSA, even in a SCEV expression tree.
5078     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5079       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5080         return nullptr;
5081 
5082     // Try to match
5083     //
5084     //  br %cond, label %left, label %right
5085     // left:
5086     //  br label %merge
5087     // right:
5088     //  br label %merge
5089     // merge:
5090     //  V = phi [ %x, %left ], [ %y, %right ]
5091     //
5092     // as "select %cond, %x, %y"
5093 
5094     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5095     assert(IDom && "At least the entry block should dominate PN");
5096 
5097     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5098     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5099 
5100     if (BI && BI->isConditional() &&
5101         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5102         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5103         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5104       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5105   }
5106 
5107   return nullptr;
5108 }
5109 
5110 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5111   if (const SCEV *S = createAddRecFromPHI(PN))
5112     return S;
5113 
5114   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5115     return S;
5116 
5117   // If the PHI has a single incoming value, follow that value, unless the
5118   // PHI's incoming blocks are in a different loop, in which case doing so
5119   // risks breaking LCSSA form. Instcombine would normally zap these, but
5120   // it doesn't have DominatorTree information, so it may miss cases.
5121   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5122     if (LI.replacementPreservesLCSSAForm(PN, V))
5123       return getSCEV(V);
5124 
5125   // If it's not a loop phi, we can't handle it yet.
5126   return getUnknown(PN);
5127 }
5128 
5129 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5130                                                       Value *Cond,
5131                                                       Value *TrueVal,
5132                                                       Value *FalseVal) {
5133   // Handle "constant" branch or select. This can occur for instance when a
5134   // loop pass transforms an inner loop and moves on to process the outer loop.
5135   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5136     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5137 
5138   // Try to match some simple smax or umax patterns.
5139   auto *ICI = dyn_cast<ICmpInst>(Cond);
5140   if (!ICI)
5141     return getUnknown(I);
5142 
5143   Value *LHS = ICI->getOperand(0);
5144   Value *RHS = ICI->getOperand(1);
5145 
5146   switch (ICI->getPredicate()) {
5147   case ICmpInst::ICMP_SLT:
5148   case ICmpInst::ICMP_SLE:
5149     std::swap(LHS, RHS);
5150     LLVM_FALLTHROUGH;
5151   case ICmpInst::ICMP_SGT:
5152   case ICmpInst::ICMP_SGE:
5153     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5154     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5155     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5156       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5157       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5158       const SCEV *LA = getSCEV(TrueVal);
5159       const SCEV *RA = getSCEV(FalseVal);
5160       const SCEV *LDiff = getMinusSCEV(LA, LS);
5161       const SCEV *RDiff = getMinusSCEV(RA, RS);
5162       if (LDiff == RDiff)
5163         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5164       LDiff = getMinusSCEV(LA, RS);
5165       RDiff = getMinusSCEV(RA, LS);
5166       if (LDiff == RDiff)
5167         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5168     }
5169     break;
5170   case ICmpInst::ICMP_ULT:
5171   case ICmpInst::ICMP_ULE:
5172     std::swap(LHS, RHS);
5173     LLVM_FALLTHROUGH;
5174   case ICmpInst::ICMP_UGT:
5175   case ICmpInst::ICMP_UGE:
5176     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5177     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5178     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5179       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5180       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5181       const SCEV *LA = getSCEV(TrueVal);
5182       const SCEV *RA = getSCEV(FalseVal);
5183       const SCEV *LDiff = getMinusSCEV(LA, LS);
5184       const SCEV *RDiff = getMinusSCEV(RA, RS);
5185       if (LDiff == RDiff)
5186         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5187       LDiff = getMinusSCEV(LA, RS);
5188       RDiff = getMinusSCEV(RA, LS);
5189       if (LDiff == RDiff)
5190         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5191     }
5192     break;
5193   case ICmpInst::ICMP_NE:
5194     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5195     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5196         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5197       const SCEV *One = getOne(I->getType());
5198       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5199       const SCEV *LA = getSCEV(TrueVal);
5200       const SCEV *RA = getSCEV(FalseVal);
5201       const SCEV *LDiff = getMinusSCEV(LA, LS);
5202       const SCEV *RDiff = getMinusSCEV(RA, One);
5203       if (LDiff == RDiff)
5204         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5205     }
5206     break;
5207   case ICmpInst::ICMP_EQ:
5208     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5209     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5210         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5211       const SCEV *One = getOne(I->getType());
5212       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5213       const SCEV *LA = getSCEV(TrueVal);
5214       const SCEV *RA = getSCEV(FalseVal);
5215       const SCEV *LDiff = getMinusSCEV(LA, One);
5216       const SCEV *RDiff = getMinusSCEV(RA, LS);
5217       if (LDiff == RDiff)
5218         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5219     }
5220     break;
5221   default:
5222     break;
5223   }
5224 
5225   return getUnknown(I);
5226 }
5227 
5228 /// Expand GEP instructions into add and multiply operations. This allows them
5229 /// to be analyzed by regular SCEV code.
5230 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5231   // Don't attempt to analyze GEPs over unsized objects.
5232   if (!GEP->getSourceElementType()->isSized())
5233     return getUnknown(GEP);
5234 
5235   SmallVector<const SCEV *, 4> IndexExprs;
5236   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5237     IndexExprs.push_back(getSCEV(*Index));
5238   return getGEPExpr(GEP, IndexExprs);
5239 }
5240 
5241 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5242   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5243     return C->getAPInt().countTrailingZeros();
5244 
5245   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5246     return std::min(GetMinTrailingZeros(T->getOperand()),
5247                     (uint32_t)getTypeSizeInBits(T->getType()));
5248 
5249   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5250     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5251     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5252                ? getTypeSizeInBits(E->getType())
5253                : OpRes;
5254   }
5255 
5256   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5257     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5258     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5259                ? getTypeSizeInBits(E->getType())
5260                : OpRes;
5261   }
5262 
5263   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5264     // The result is the min of all operands results.
5265     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5266     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5267       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5268     return MinOpRes;
5269   }
5270 
5271   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5272     // The result is the sum of all operands results.
5273     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5274     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5275     for (unsigned i = 1, e = M->getNumOperands();
5276          SumOpRes != BitWidth && i != e; ++i)
5277       SumOpRes =
5278           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5279     return SumOpRes;
5280   }
5281 
5282   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5283     // The result is the min of all operands results.
5284     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5285     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5286       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5287     return MinOpRes;
5288   }
5289 
5290   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5291     // The result is the min of all operands results.
5292     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5293     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5294       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5295     return MinOpRes;
5296   }
5297 
5298   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5299     // The result is the min of all operands results.
5300     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5301     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5302       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5303     return MinOpRes;
5304   }
5305 
5306   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5307     // For a SCEVUnknown, ask ValueTracking.
5308     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5309     return Known.countMinTrailingZeros();
5310   }
5311 
5312   // SCEVUDivExpr
5313   return 0;
5314 }
5315 
5316 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5317   auto I = MinTrailingZerosCache.find(S);
5318   if (I != MinTrailingZerosCache.end())
5319     return I->second;
5320 
5321   uint32_t Result = GetMinTrailingZerosImpl(S);
5322   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5323   assert(InsertPair.second && "Should insert a new key");
5324   return InsertPair.first->second;
5325 }
5326 
5327 /// Helper method to assign a range to V from metadata present in the IR.
5328 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5329   if (Instruction *I = dyn_cast<Instruction>(V))
5330     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5331       return getConstantRangeFromMetadata(*MD);
5332 
5333   return None;
5334 }
5335 
5336 /// Determine the range for a particular SCEV.  If SignHint is
5337 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5338 /// with a "cleaner" unsigned (resp. signed) representation.
5339 const ConstantRange &
5340 ScalarEvolution::getRangeRef(const SCEV *S,
5341                              ScalarEvolution::RangeSignHint SignHint) {
5342   DenseMap<const SCEV *, ConstantRange> &Cache =
5343       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5344                                                        : SignedRanges;
5345   ConstantRange::PreferredRangeType RangeType =
5346       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5347           ? ConstantRange::Unsigned : ConstantRange::Signed;
5348 
5349   // See if we've computed this range already.
5350   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5351   if (I != Cache.end())
5352     return I->second;
5353 
5354   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5355     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5356 
5357   unsigned BitWidth = getTypeSizeInBits(S->getType());
5358   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5359   using OBO = OverflowingBinaryOperator;
5360 
5361   // If the value has known zeros, the maximum value will have those known zeros
5362   // as well.
5363   uint32_t TZ = GetMinTrailingZeros(S);
5364   if (TZ != 0) {
5365     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5366       ConservativeResult =
5367           ConstantRange(APInt::getMinValue(BitWidth),
5368                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5369     else
5370       ConservativeResult = ConstantRange(
5371           APInt::getSignedMinValue(BitWidth),
5372           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5373   }
5374 
5375   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5376     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5377     unsigned WrapType = OBO::AnyWrap;
5378     if (Add->hasNoSignedWrap())
5379       WrapType |= OBO::NoSignedWrap;
5380     if (Add->hasNoUnsignedWrap())
5381       WrapType |= OBO::NoUnsignedWrap;
5382     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5383       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5384                           WrapType, RangeType);
5385     return setRange(Add, SignHint,
5386                     ConservativeResult.intersectWith(X, RangeType));
5387   }
5388 
5389   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5390     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5391     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5392       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5393     return setRange(Mul, SignHint,
5394                     ConservativeResult.intersectWith(X, RangeType));
5395   }
5396 
5397   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5398     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5399     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5400       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5401     return setRange(SMax, SignHint,
5402                     ConservativeResult.intersectWith(X, RangeType));
5403   }
5404 
5405   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5406     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5407     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5408       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5409     return setRange(UMax, SignHint,
5410                     ConservativeResult.intersectWith(X, RangeType));
5411   }
5412 
5413   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5414     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5415     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5416       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5417     return setRange(SMin, SignHint,
5418                     ConservativeResult.intersectWith(X, RangeType));
5419   }
5420 
5421   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5422     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5423     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5424       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5425     return setRange(UMin, SignHint,
5426                     ConservativeResult.intersectWith(X, RangeType));
5427   }
5428 
5429   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5430     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5431     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5432     return setRange(UDiv, SignHint,
5433                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5434   }
5435 
5436   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5437     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5438     return setRange(ZExt, SignHint,
5439                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5440                                                      RangeType));
5441   }
5442 
5443   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5444     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5445     return setRange(SExt, SignHint,
5446                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5447                                                      RangeType));
5448   }
5449 
5450   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5451     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5452     return setRange(Trunc, SignHint,
5453                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5454                                                      RangeType));
5455   }
5456 
5457   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5458     // If there's no unsigned wrap, the value will never be less than its
5459     // initial value.
5460     if (AddRec->hasNoUnsignedWrap()) {
5461       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5462       if (!UnsignedMinValue.isNullValue())
5463         ConservativeResult = ConservativeResult.intersectWith(
5464             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5465     }
5466 
5467     // If there's no signed wrap, and all the operands except initial value have
5468     // the same sign or zero, the value won't ever be:
5469     // 1: smaller than initial value if operands are non negative,
5470     // 2: bigger than initial value if operands are non positive.
5471     // For both cases, value can not cross signed min/max boundary.
5472     if (AddRec->hasNoSignedWrap()) {
5473       bool AllNonNeg = true;
5474       bool AllNonPos = true;
5475       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5476         if (!isKnownNonNegative(AddRec->getOperand(i)))
5477           AllNonNeg = false;
5478         if (!isKnownNonPositive(AddRec->getOperand(i)))
5479           AllNonPos = false;
5480       }
5481       if (AllNonNeg)
5482         ConservativeResult = ConservativeResult.intersectWith(
5483             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5484                                        APInt::getSignedMinValue(BitWidth)),
5485             RangeType);
5486       else if (AllNonPos)
5487         ConservativeResult = ConservativeResult.intersectWith(
5488             ConstantRange::getNonEmpty(
5489                 APInt::getSignedMinValue(BitWidth),
5490                 getSignedRangeMax(AddRec->getStart()) + 1),
5491             RangeType);
5492     }
5493 
5494     // TODO: non-affine addrec
5495     if (AddRec->isAffine()) {
5496       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5497       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5498           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5499         auto RangeFromAffine = getRangeForAffineAR(
5500             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5501             BitWidth);
5502         if (!RangeFromAffine.isFullSet())
5503           ConservativeResult =
5504               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5505 
5506         auto RangeFromFactoring = getRangeViaFactoring(
5507             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5508             BitWidth);
5509         if (!RangeFromFactoring.isFullSet())
5510           ConservativeResult =
5511               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5512       }
5513     }
5514 
5515     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5516   }
5517 
5518   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5519     // Check if the IR explicitly contains !range metadata.
5520     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5521     if (MDRange.hasValue())
5522       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5523                                                             RangeType);
5524 
5525     // Split here to avoid paying the compile-time cost of calling both
5526     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5527     // if needed.
5528     const DataLayout &DL = getDataLayout();
5529     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5530       // For a SCEVUnknown, ask ValueTracking.
5531       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5532       if (Known.getBitWidth() != BitWidth)
5533         Known = Known.zextOrTrunc(BitWidth);
5534       // If Known does not result in full-set, intersect with it.
5535       if (Known.getMinValue() != Known.getMaxValue() + 1)
5536         ConservativeResult = ConservativeResult.intersectWith(
5537             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5538             RangeType);
5539     } else {
5540       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5541              "generalize as needed!");
5542       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5543       // If the pointer size is larger than the index size type, this can cause
5544       // NS to be larger than BitWidth. So compensate for this.
5545       if (U->getType()->isPointerTy()) {
5546         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5547         int ptrIdxDiff = ptrSize - BitWidth;
5548         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5549           NS -= ptrIdxDiff;
5550       }
5551 
5552       if (NS > 1)
5553         ConservativeResult = ConservativeResult.intersectWith(
5554             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5555                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5556             RangeType);
5557     }
5558 
5559     // A range of Phi is a subset of union of all ranges of its input.
5560     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5561       // Make sure that we do not run over cycled Phis.
5562       if (PendingPhiRanges.insert(Phi).second) {
5563         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5564         for (auto &Op : Phi->operands()) {
5565           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5566           RangeFromOps = RangeFromOps.unionWith(OpRange);
5567           // No point to continue if we already have a full set.
5568           if (RangeFromOps.isFullSet())
5569             break;
5570         }
5571         ConservativeResult =
5572             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5573         bool Erased = PendingPhiRanges.erase(Phi);
5574         assert(Erased && "Failed to erase Phi properly?");
5575         (void) Erased;
5576       }
5577     }
5578 
5579     return setRange(U, SignHint, std::move(ConservativeResult));
5580   }
5581 
5582   return setRange(S, SignHint, std::move(ConservativeResult));
5583 }
5584 
5585 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5586 // values that the expression can take. Initially, the expression has a value
5587 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5588 // argument defines if we treat Step as signed or unsigned.
5589 static ConstantRange getRangeForAffineARHelper(APInt Step,
5590                                                const ConstantRange &StartRange,
5591                                                const APInt &MaxBECount,
5592                                                unsigned BitWidth, bool Signed) {
5593   // If either Step or MaxBECount is 0, then the expression won't change, and we
5594   // just need to return the initial range.
5595   if (Step == 0 || MaxBECount == 0)
5596     return StartRange;
5597 
5598   // If we don't know anything about the initial value (i.e. StartRange is
5599   // FullRange), then we don't know anything about the final range either.
5600   // Return FullRange.
5601   if (StartRange.isFullSet())
5602     return ConstantRange::getFull(BitWidth);
5603 
5604   // If Step is signed and negative, then we use its absolute value, but we also
5605   // note that we're moving in the opposite direction.
5606   bool Descending = Signed && Step.isNegative();
5607 
5608   if (Signed)
5609     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5610     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5611     // This equations hold true due to the well-defined wrap-around behavior of
5612     // APInt.
5613     Step = Step.abs();
5614 
5615   // Check if Offset is more than full span of BitWidth. If it is, the
5616   // expression is guaranteed to overflow.
5617   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5618     return ConstantRange::getFull(BitWidth);
5619 
5620   // Offset is by how much the expression can change. Checks above guarantee no
5621   // overflow here.
5622   APInt Offset = Step * MaxBECount;
5623 
5624   // Minimum value of the final range will match the minimal value of StartRange
5625   // if the expression is increasing and will be decreased by Offset otherwise.
5626   // Maximum value of the final range will match the maximal value of StartRange
5627   // if the expression is decreasing and will be increased by Offset otherwise.
5628   APInt StartLower = StartRange.getLower();
5629   APInt StartUpper = StartRange.getUpper() - 1;
5630   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5631                                    : (StartUpper + std::move(Offset));
5632 
5633   // It's possible that the new minimum/maximum value will fall into the initial
5634   // range (due to wrap around). This means that the expression can take any
5635   // value in this bitwidth, and we have to return full range.
5636   if (StartRange.contains(MovedBoundary))
5637     return ConstantRange::getFull(BitWidth);
5638 
5639   APInt NewLower =
5640       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5641   APInt NewUpper =
5642       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5643   NewUpper += 1;
5644 
5645   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5646   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5647 }
5648 
5649 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5650                                                    const SCEV *Step,
5651                                                    const SCEV *MaxBECount,
5652                                                    unsigned BitWidth) {
5653   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5654          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5655          "Precondition!");
5656 
5657   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5658   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5659 
5660   // First, consider step signed.
5661   ConstantRange StartSRange = getSignedRange(Start);
5662   ConstantRange StepSRange = getSignedRange(Step);
5663 
5664   // If Step can be both positive and negative, we need to find ranges for the
5665   // maximum absolute step values in both directions and union them.
5666   ConstantRange SR =
5667       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5668                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5669   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5670                                               StartSRange, MaxBECountValue,
5671                                               BitWidth, /* Signed = */ true));
5672 
5673   // Next, consider step unsigned.
5674   ConstantRange UR = getRangeForAffineARHelper(
5675       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5676       MaxBECountValue, BitWidth, /* Signed = */ false);
5677 
5678   // Finally, intersect signed and unsigned ranges.
5679   return SR.intersectWith(UR, ConstantRange::Smallest);
5680 }
5681 
5682 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5683                                                     const SCEV *Step,
5684                                                     const SCEV *MaxBECount,
5685                                                     unsigned BitWidth) {
5686   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5687   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5688 
5689   struct SelectPattern {
5690     Value *Condition = nullptr;
5691     APInt TrueValue;
5692     APInt FalseValue;
5693 
5694     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5695                            const SCEV *S) {
5696       Optional<unsigned> CastOp;
5697       APInt Offset(BitWidth, 0);
5698 
5699       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5700              "Should be!");
5701 
5702       // Peel off a constant offset:
5703       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5704         // In the future we could consider being smarter here and handle
5705         // {Start+Step,+,Step} too.
5706         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5707           return;
5708 
5709         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5710         S = SA->getOperand(1);
5711       }
5712 
5713       // Peel off a cast operation
5714       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5715         CastOp = SCast->getSCEVType();
5716         S = SCast->getOperand();
5717       }
5718 
5719       using namespace llvm::PatternMatch;
5720 
5721       auto *SU = dyn_cast<SCEVUnknown>(S);
5722       const APInt *TrueVal, *FalseVal;
5723       if (!SU ||
5724           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5725                                           m_APInt(FalseVal)))) {
5726         Condition = nullptr;
5727         return;
5728       }
5729 
5730       TrueValue = *TrueVal;
5731       FalseValue = *FalseVal;
5732 
5733       // Re-apply the cast we peeled off earlier
5734       if (CastOp.hasValue())
5735         switch (*CastOp) {
5736         default:
5737           llvm_unreachable("Unknown SCEV cast type!");
5738 
5739         case scTruncate:
5740           TrueValue = TrueValue.trunc(BitWidth);
5741           FalseValue = FalseValue.trunc(BitWidth);
5742           break;
5743         case scZeroExtend:
5744           TrueValue = TrueValue.zext(BitWidth);
5745           FalseValue = FalseValue.zext(BitWidth);
5746           break;
5747         case scSignExtend:
5748           TrueValue = TrueValue.sext(BitWidth);
5749           FalseValue = FalseValue.sext(BitWidth);
5750           break;
5751         }
5752 
5753       // Re-apply the constant offset we peeled off earlier
5754       TrueValue += Offset;
5755       FalseValue += Offset;
5756     }
5757 
5758     bool isRecognized() { return Condition != nullptr; }
5759   };
5760 
5761   SelectPattern StartPattern(*this, BitWidth, Start);
5762   if (!StartPattern.isRecognized())
5763     return ConstantRange::getFull(BitWidth);
5764 
5765   SelectPattern StepPattern(*this, BitWidth, Step);
5766   if (!StepPattern.isRecognized())
5767     return ConstantRange::getFull(BitWidth);
5768 
5769   if (StartPattern.Condition != StepPattern.Condition) {
5770     // We don't handle this case today; but we could, by considering four
5771     // possibilities below instead of two. I'm not sure if there are cases where
5772     // that will help over what getRange already does, though.
5773     return ConstantRange::getFull(BitWidth);
5774   }
5775 
5776   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5777   // construct arbitrary general SCEV expressions here.  This function is called
5778   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5779   // say) can end up caching a suboptimal value.
5780 
5781   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5782   // C2352 and C2512 (otherwise it isn't needed).
5783 
5784   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5785   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5786   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5787   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5788 
5789   ConstantRange TrueRange =
5790       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5791   ConstantRange FalseRange =
5792       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5793 
5794   return TrueRange.unionWith(FalseRange);
5795 }
5796 
5797 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5798   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5799   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5800 
5801   // Return early if there are no flags to propagate to the SCEV.
5802   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5803   if (BinOp->hasNoUnsignedWrap())
5804     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5805   if (BinOp->hasNoSignedWrap())
5806     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5807   if (Flags == SCEV::FlagAnyWrap)
5808     return SCEV::FlagAnyWrap;
5809 
5810   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5811 }
5812 
5813 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5814   // Here we check that I is in the header of the innermost loop containing I,
5815   // since we only deal with instructions in the loop header. The actual loop we
5816   // need to check later will come from an add recurrence, but getting that
5817   // requires computing the SCEV of the operands, which can be expensive. This
5818   // check we can do cheaply to rule out some cases early.
5819   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5820   if (InnermostContainingLoop == nullptr ||
5821       InnermostContainingLoop->getHeader() != I->getParent())
5822     return false;
5823 
5824   // Only proceed if we can prove that I does not yield poison.
5825   if (!programUndefinedIfPoison(I))
5826     return false;
5827 
5828   // At this point we know that if I is executed, then it does not wrap
5829   // according to at least one of NSW or NUW. If I is not executed, then we do
5830   // not know if the calculation that I represents would wrap. Multiple
5831   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5832   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5833   // derived from other instructions that map to the same SCEV. We cannot make
5834   // that guarantee for cases where I is not executed. So we need to find the
5835   // loop that I is considered in relation to and prove that I is executed for
5836   // every iteration of that loop. That implies that the value that I
5837   // calculates does not wrap anywhere in the loop, so then we can apply the
5838   // flags to the SCEV.
5839   //
5840   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5841   // from different loops, so that we know which loop to prove that I is
5842   // executed in.
5843   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5844     // I could be an extractvalue from a call to an overflow intrinsic.
5845     // TODO: We can do better here in some cases.
5846     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5847       return false;
5848     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5849     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5850       bool AllOtherOpsLoopInvariant = true;
5851       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5852            ++OtherOpIndex) {
5853         if (OtherOpIndex != OpIndex) {
5854           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5855           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5856             AllOtherOpsLoopInvariant = false;
5857             break;
5858           }
5859         }
5860       }
5861       if (AllOtherOpsLoopInvariant &&
5862           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5863         return true;
5864     }
5865   }
5866   return false;
5867 }
5868 
5869 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5870   // If we know that \c I can never be poison period, then that's enough.
5871   if (isSCEVExprNeverPoison(I))
5872     return true;
5873 
5874   // For an add recurrence specifically, we assume that infinite loops without
5875   // side effects are undefined behavior, and then reason as follows:
5876   //
5877   // If the add recurrence is poison in any iteration, it is poison on all
5878   // future iterations (since incrementing poison yields poison). If the result
5879   // of the add recurrence is fed into the loop latch condition and the loop
5880   // does not contain any throws or exiting blocks other than the latch, we now
5881   // have the ability to "choose" whether the backedge is taken or not (by
5882   // choosing a sufficiently evil value for the poison feeding into the branch)
5883   // for every iteration including and after the one in which \p I first became
5884   // poison.  There are two possibilities (let's call the iteration in which \p
5885   // I first became poison as K):
5886   //
5887   //  1. In the set of iterations including and after K, the loop body executes
5888   //     no side effects.  In this case executing the backege an infinte number
5889   //     of times will yield undefined behavior.
5890   //
5891   //  2. In the set of iterations including and after K, the loop body executes
5892   //     at least one side effect.  In this case, that specific instance of side
5893   //     effect is control dependent on poison, which also yields undefined
5894   //     behavior.
5895 
5896   auto *ExitingBB = L->getExitingBlock();
5897   auto *LatchBB = L->getLoopLatch();
5898   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5899     return false;
5900 
5901   SmallPtrSet<const Instruction *, 16> Pushed;
5902   SmallVector<const Instruction *, 8> PoisonStack;
5903 
5904   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
5905   // things that are known to be poison under that assumption go on the
5906   // PoisonStack.
5907   Pushed.insert(I);
5908   PoisonStack.push_back(I);
5909 
5910   bool LatchControlDependentOnPoison = false;
5911   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5912     const Instruction *Poison = PoisonStack.pop_back_val();
5913 
5914     for (auto *PoisonUser : Poison->users()) {
5915       if (propagatesPoison(cast<Operator>(PoisonUser))) {
5916         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5917           PoisonStack.push_back(cast<Instruction>(PoisonUser));
5918       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5919         assert(BI->isConditional() && "Only possibility!");
5920         if (BI->getParent() == LatchBB) {
5921           LatchControlDependentOnPoison = true;
5922           break;
5923         }
5924       }
5925     }
5926   }
5927 
5928   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5929 }
5930 
5931 ScalarEvolution::LoopProperties
5932 ScalarEvolution::getLoopProperties(const Loop *L) {
5933   using LoopProperties = ScalarEvolution::LoopProperties;
5934 
5935   auto Itr = LoopPropertiesCache.find(L);
5936   if (Itr == LoopPropertiesCache.end()) {
5937     auto HasSideEffects = [](Instruction *I) {
5938       if (auto *SI = dyn_cast<StoreInst>(I))
5939         return !SI->isSimple();
5940 
5941       return I->mayHaveSideEffects();
5942     };
5943 
5944     LoopProperties LP = {/* HasNoAbnormalExits */ true,
5945                          /*HasNoSideEffects*/ true};
5946 
5947     for (auto *BB : L->getBlocks())
5948       for (auto &I : *BB) {
5949         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5950           LP.HasNoAbnormalExits = false;
5951         if (HasSideEffects(&I))
5952           LP.HasNoSideEffects = false;
5953         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5954           break; // We're already as pessimistic as we can get.
5955       }
5956 
5957     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5958     assert(InsertPair.second && "We just checked!");
5959     Itr = InsertPair.first;
5960   }
5961 
5962   return Itr->second;
5963 }
5964 
5965 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5966   if (!isSCEVable(V->getType()))
5967     return getUnknown(V);
5968 
5969   if (Instruction *I = dyn_cast<Instruction>(V)) {
5970     // Don't attempt to analyze instructions in blocks that aren't
5971     // reachable. Such instructions don't matter, and they aren't required
5972     // to obey basic rules for definitions dominating uses which this
5973     // analysis depends on.
5974     if (!DT.isReachableFromEntry(I->getParent()))
5975       return getUnknown(UndefValue::get(V->getType()));
5976   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5977     return getConstant(CI);
5978   else if (isa<ConstantPointerNull>(V))
5979     return getZero(V->getType());
5980   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5981     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5982   else if (!isa<ConstantExpr>(V))
5983     return getUnknown(V);
5984 
5985   Operator *U = cast<Operator>(V);
5986   if (auto BO = MatchBinaryOp(U, DT)) {
5987     switch (BO->Opcode) {
5988     case Instruction::Add: {
5989       // The simple thing to do would be to just call getSCEV on both operands
5990       // and call getAddExpr with the result. However if we're looking at a
5991       // bunch of things all added together, this can be quite inefficient,
5992       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5993       // Instead, gather up all the operands and make a single getAddExpr call.
5994       // LLVM IR canonical form means we need only traverse the left operands.
5995       SmallVector<const SCEV *, 4> AddOps;
5996       do {
5997         if (BO->Op) {
5998           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5999             AddOps.push_back(OpSCEV);
6000             break;
6001           }
6002 
6003           // If a NUW or NSW flag can be applied to the SCEV for this
6004           // addition, then compute the SCEV for this addition by itself
6005           // with a separate call to getAddExpr. We need to do that
6006           // instead of pushing the operands of the addition onto AddOps,
6007           // since the flags are only known to apply to this particular
6008           // addition - they may not apply to other additions that can be
6009           // formed with operands from AddOps.
6010           const SCEV *RHS = getSCEV(BO->RHS);
6011           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6012           if (Flags != SCEV::FlagAnyWrap) {
6013             const SCEV *LHS = getSCEV(BO->LHS);
6014             if (BO->Opcode == Instruction::Sub)
6015               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6016             else
6017               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6018             break;
6019           }
6020         }
6021 
6022         if (BO->Opcode == Instruction::Sub)
6023           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6024         else
6025           AddOps.push_back(getSCEV(BO->RHS));
6026 
6027         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6028         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6029                        NewBO->Opcode != Instruction::Sub)) {
6030           AddOps.push_back(getSCEV(BO->LHS));
6031           break;
6032         }
6033         BO = NewBO;
6034       } while (true);
6035 
6036       return getAddExpr(AddOps);
6037     }
6038 
6039     case Instruction::Mul: {
6040       SmallVector<const SCEV *, 4> MulOps;
6041       do {
6042         if (BO->Op) {
6043           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6044             MulOps.push_back(OpSCEV);
6045             break;
6046           }
6047 
6048           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6049           if (Flags != SCEV::FlagAnyWrap) {
6050             MulOps.push_back(
6051                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6052             break;
6053           }
6054         }
6055 
6056         MulOps.push_back(getSCEV(BO->RHS));
6057         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6058         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6059           MulOps.push_back(getSCEV(BO->LHS));
6060           break;
6061         }
6062         BO = NewBO;
6063       } while (true);
6064 
6065       return getMulExpr(MulOps);
6066     }
6067     case Instruction::UDiv:
6068       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6069     case Instruction::URem:
6070       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6071     case Instruction::Sub: {
6072       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6073       if (BO->Op)
6074         Flags = getNoWrapFlagsFromUB(BO->Op);
6075       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6076     }
6077     case Instruction::And:
6078       // For an expression like x&255 that merely masks off the high bits,
6079       // use zext(trunc(x)) as the SCEV expression.
6080       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6081         if (CI->isZero())
6082           return getSCEV(BO->RHS);
6083         if (CI->isMinusOne())
6084           return getSCEV(BO->LHS);
6085         const APInt &A = CI->getValue();
6086 
6087         // Instcombine's ShrinkDemandedConstant may strip bits out of
6088         // constants, obscuring what would otherwise be a low-bits mask.
6089         // Use computeKnownBits to compute what ShrinkDemandedConstant
6090         // knew about to reconstruct a low-bits mask value.
6091         unsigned LZ = A.countLeadingZeros();
6092         unsigned TZ = A.countTrailingZeros();
6093         unsigned BitWidth = A.getBitWidth();
6094         KnownBits Known(BitWidth);
6095         computeKnownBits(BO->LHS, Known, getDataLayout(),
6096                          0, &AC, nullptr, &DT);
6097 
6098         APInt EffectiveMask =
6099             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6100         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6101           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6102           const SCEV *LHS = getSCEV(BO->LHS);
6103           const SCEV *ShiftedLHS = nullptr;
6104           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6105             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6106               // For an expression like (x * 8) & 8, simplify the multiply.
6107               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6108               unsigned GCD = std::min(MulZeros, TZ);
6109               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6110               SmallVector<const SCEV*, 4> MulOps;
6111               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6112               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6113               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6114               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6115             }
6116           }
6117           if (!ShiftedLHS)
6118             ShiftedLHS = getUDivExpr(LHS, MulCount);
6119           return getMulExpr(
6120               getZeroExtendExpr(
6121                   getTruncateExpr(ShiftedLHS,
6122                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6123                   BO->LHS->getType()),
6124               MulCount);
6125         }
6126       }
6127       break;
6128 
6129     case Instruction::Or:
6130       // If the RHS of the Or is a constant, we may have something like:
6131       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6132       // optimizations will transparently handle this case.
6133       //
6134       // In order for this transformation to be safe, the LHS must be of the
6135       // form X*(2^n) and the Or constant must be less than 2^n.
6136       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6137         const SCEV *LHS = getSCEV(BO->LHS);
6138         const APInt &CIVal = CI->getValue();
6139         if (GetMinTrailingZeros(LHS) >=
6140             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6141           // Build a plain add SCEV.
6142           return getAddExpr(LHS, getSCEV(CI),
6143                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6144         }
6145       }
6146       break;
6147 
6148     case Instruction::Xor:
6149       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6150         // If the RHS of xor is -1, then this is a not operation.
6151         if (CI->isMinusOne())
6152           return getNotSCEV(getSCEV(BO->LHS));
6153 
6154         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6155         // This is a variant of the check for xor with -1, and it handles
6156         // the case where instcombine has trimmed non-demanded bits out
6157         // of an xor with -1.
6158         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6159           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6160             if (LBO->getOpcode() == Instruction::And &&
6161                 LCI->getValue() == CI->getValue())
6162               if (const SCEVZeroExtendExpr *Z =
6163                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6164                 Type *UTy = BO->LHS->getType();
6165                 const SCEV *Z0 = Z->getOperand();
6166                 Type *Z0Ty = Z0->getType();
6167                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6168 
6169                 // If C is a low-bits mask, the zero extend is serving to
6170                 // mask off the high bits. Complement the operand and
6171                 // re-apply the zext.
6172                 if (CI->getValue().isMask(Z0TySize))
6173                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6174 
6175                 // If C is a single bit, it may be in the sign-bit position
6176                 // before the zero-extend. In this case, represent the xor
6177                 // using an add, which is equivalent, and re-apply the zext.
6178                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6179                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6180                     Trunc.isSignMask())
6181                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6182                                            UTy);
6183               }
6184       }
6185       break;
6186 
6187     case Instruction::Shl:
6188       // Turn shift left of a constant amount into a multiply.
6189       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6190         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6191 
6192         // If the shift count is not less than the bitwidth, the result of
6193         // the shift is undefined. Don't try to analyze it, because the
6194         // resolution chosen here may differ from the resolution chosen in
6195         // other parts of the compiler.
6196         if (SA->getValue().uge(BitWidth))
6197           break;
6198 
6199         // We can safely preserve the nuw flag in all cases. It's also safe to
6200         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6201         // requires special handling. It can be preserved as long as we're not
6202         // left shifting by bitwidth - 1.
6203         auto Flags = SCEV::FlagAnyWrap;
6204         if (BO->Op) {
6205           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6206           if ((MulFlags & SCEV::FlagNSW) &&
6207               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6208             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6209           if (MulFlags & SCEV::FlagNUW)
6210             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6211         }
6212 
6213         Constant *X = ConstantInt::get(
6214             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6215         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6216       }
6217       break;
6218 
6219     case Instruction::AShr: {
6220       // AShr X, C, where C is a constant.
6221       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6222       if (!CI)
6223         break;
6224 
6225       Type *OuterTy = BO->LHS->getType();
6226       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6227       // If the shift count is not less than the bitwidth, the result of
6228       // the shift is undefined. Don't try to analyze it, because the
6229       // resolution chosen here may differ from the resolution chosen in
6230       // other parts of the compiler.
6231       if (CI->getValue().uge(BitWidth))
6232         break;
6233 
6234       if (CI->isZero())
6235         return getSCEV(BO->LHS); // shift by zero --> noop
6236 
6237       uint64_t AShrAmt = CI->getZExtValue();
6238       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6239 
6240       Operator *L = dyn_cast<Operator>(BO->LHS);
6241       if (L && L->getOpcode() == Instruction::Shl) {
6242         // X = Shl A, n
6243         // Y = AShr X, m
6244         // Both n and m are constant.
6245 
6246         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6247         if (L->getOperand(1) == BO->RHS)
6248           // For a two-shift sext-inreg, i.e. n = m,
6249           // use sext(trunc(x)) as the SCEV expression.
6250           return getSignExtendExpr(
6251               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6252 
6253         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6254         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6255           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6256           if (ShlAmt > AShrAmt) {
6257             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6258             // expression. We already checked that ShlAmt < BitWidth, so
6259             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6260             // ShlAmt - AShrAmt < Amt.
6261             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6262                                             ShlAmt - AShrAmt);
6263             return getSignExtendExpr(
6264                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6265                 getConstant(Mul)), OuterTy);
6266           }
6267         }
6268       }
6269       break;
6270     }
6271     }
6272   }
6273 
6274   switch (U->getOpcode()) {
6275   case Instruction::Trunc:
6276     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6277 
6278   case Instruction::ZExt:
6279     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6280 
6281   case Instruction::SExt:
6282     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6283       // The NSW flag of a subtract does not always survive the conversion to
6284       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6285       // more likely to preserve NSW and allow later AddRec optimisations.
6286       //
6287       // NOTE: This is effectively duplicating this logic from getSignExtend:
6288       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6289       // but by that point the NSW information has potentially been lost.
6290       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6291         Type *Ty = U->getType();
6292         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6293         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6294         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6295       }
6296     }
6297     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6298 
6299   case Instruction::BitCast:
6300     // BitCasts are no-op casts so we just eliminate the cast.
6301     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6302       return getSCEV(U->getOperand(0));
6303     break;
6304 
6305   case Instruction::SDiv:
6306     // If both operands are non-negative, this is just an udiv.
6307     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6308         isKnownNonNegative(getSCEV(U->getOperand(1))))
6309       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6310     break;
6311 
6312   case Instruction::SRem:
6313     // If both operands are non-negative, this is just an urem.
6314     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6315         isKnownNonNegative(getSCEV(U->getOperand(1))))
6316       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6317     break;
6318 
6319   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6320   // lead to pointer expressions which cannot safely be expanded to GEPs,
6321   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6322   // simplifying integer expressions.
6323 
6324   case Instruction::GetElementPtr:
6325     return createNodeForGEP(cast<GEPOperator>(U));
6326 
6327   case Instruction::PHI:
6328     return createNodeForPHI(cast<PHINode>(U));
6329 
6330   case Instruction::Select:
6331     // U can also be a select constant expr, which let fall through.  Since
6332     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6333     // constant expressions cannot have instructions as operands, we'd have
6334     // returned getUnknown for a select constant expressions anyway.
6335     if (isa<Instruction>(U))
6336       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6337                                       U->getOperand(1), U->getOperand(2));
6338     break;
6339 
6340   case Instruction::Call:
6341   case Instruction::Invoke:
6342     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6343       return getSCEV(RV);
6344 
6345     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6346       switch (II->getIntrinsicID()) {
6347       case Intrinsic::abs: {
6348         const SCEV *Op = getSCEV(II->getArgOperand(0));
6349         SCEV::NoWrapFlags Flags =
6350             cast<ConstantInt>(II->getArgOperand(1))->isOne()
6351                 ? SCEV::FlagNSW
6352                 : SCEV::FlagAnyWrap;
6353         return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
6354       }
6355       case Intrinsic::umax:
6356         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6357                            getSCEV(II->getArgOperand(1)));
6358       case Intrinsic::umin:
6359         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6360                            getSCEV(II->getArgOperand(1)));
6361       case Intrinsic::smax:
6362         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6363                            getSCEV(II->getArgOperand(1)));
6364       case Intrinsic::smin:
6365         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6366                            getSCEV(II->getArgOperand(1)));
6367       case Intrinsic::usub_sat: {
6368         const SCEV *X = getSCEV(II->getArgOperand(0));
6369         const SCEV *Y = getSCEV(II->getArgOperand(1));
6370         const SCEV *ClampedY = getUMinExpr(X, Y);
6371         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6372       }
6373       case Intrinsic::uadd_sat: {
6374         const SCEV *X = getSCEV(II->getArgOperand(0));
6375         const SCEV *Y = getSCEV(II->getArgOperand(1));
6376         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6377         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6378       }
6379       default:
6380         break;
6381       }
6382     }
6383     break;
6384   }
6385 
6386   return getUnknown(V);
6387 }
6388 
6389 //===----------------------------------------------------------------------===//
6390 //                   Iteration Count Computation Code
6391 //
6392 
6393 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6394   if (!ExitCount)
6395     return 0;
6396 
6397   ConstantInt *ExitConst = ExitCount->getValue();
6398 
6399   // Guard against huge trip counts.
6400   if (ExitConst->getValue().getActiveBits() > 32)
6401     return 0;
6402 
6403   // In case of integer overflow, this returns 0, which is correct.
6404   return ((unsigned)ExitConst->getZExtValue()) + 1;
6405 }
6406 
6407 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6408   if (BasicBlock *ExitingBB = L->getExitingBlock())
6409     return getSmallConstantTripCount(L, ExitingBB);
6410 
6411   // No trip count information for multiple exits.
6412   return 0;
6413 }
6414 
6415 unsigned
6416 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6417                                            const BasicBlock *ExitingBlock) {
6418   assert(ExitingBlock && "Must pass a non-null exiting block!");
6419   assert(L->isLoopExiting(ExitingBlock) &&
6420          "Exiting block must actually branch out of the loop!");
6421   const SCEVConstant *ExitCount =
6422       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6423   return getConstantTripCount(ExitCount);
6424 }
6425 
6426 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6427   const auto *MaxExitCount =
6428       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6429   return getConstantTripCount(MaxExitCount);
6430 }
6431 
6432 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6433   if (BasicBlock *ExitingBB = L->getExitingBlock())
6434     return getSmallConstantTripMultiple(L, ExitingBB);
6435 
6436   // No trip multiple information for multiple exits.
6437   return 0;
6438 }
6439 
6440 /// Returns the largest constant divisor of the trip count of this loop as a
6441 /// normal unsigned value, if possible. This means that the actual trip count is
6442 /// always a multiple of the returned value (don't forget the trip count could
6443 /// very well be zero as well!).
6444 ///
6445 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6446 /// multiple of a constant (which is also the case if the trip count is simply
6447 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6448 /// if the trip count is very large (>= 2^32).
6449 ///
6450 /// As explained in the comments for getSmallConstantTripCount, this assumes
6451 /// that control exits the loop via ExitingBlock.
6452 unsigned
6453 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6454                                               const BasicBlock *ExitingBlock) {
6455   assert(ExitingBlock && "Must pass a non-null exiting block!");
6456   assert(L->isLoopExiting(ExitingBlock) &&
6457          "Exiting block must actually branch out of the loop!");
6458   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6459   if (ExitCount == getCouldNotCompute())
6460     return 1;
6461 
6462   // Get the trip count from the BE count by adding 1.
6463   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6464 
6465   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6466   if (!TC)
6467     // Attempt to factor more general cases. Returns the greatest power of
6468     // two divisor. If overflow happens, the trip count expression is still
6469     // divisible by the greatest power of 2 divisor returned.
6470     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6471 
6472   ConstantInt *Result = TC->getValue();
6473 
6474   // Guard against huge trip counts (this requires checking
6475   // for zero to handle the case where the trip count == -1 and the
6476   // addition wraps).
6477   if (!Result || Result->getValue().getActiveBits() > 32 ||
6478       Result->getValue().getActiveBits() == 0)
6479     return 1;
6480 
6481   return (unsigned)Result->getZExtValue();
6482 }
6483 
6484 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6485                                           const BasicBlock *ExitingBlock,
6486                                           ExitCountKind Kind) {
6487   switch (Kind) {
6488   case Exact:
6489     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6490   case ConstantMaximum:
6491     return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6492   };
6493   llvm_unreachable("Invalid ExitCountKind!");
6494 }
6495 
6496 const SCEV *
6497 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6498                                                  SCEVUnionPredicate &Preds) {
6499   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6500 }
6501 
6502 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6503                                                    ExitCountKind Kind) {
6504   switch (Kind) {
6505   case Exact:
6506     return getBackedgeTakenInfo(L).getExact(L, this);
6507   case ConstantMaximum:
6508     return getBackedgeTakenInfo(L).getMax(this);
6509   };
6510   llvm_unreachable("Invalid ExitCountKind!");
6511 }
6512 
6513 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6514   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6515 }
6516 
6517 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6518 static void
6519 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6520   BasicBlock *Header = L->getHeader();
6521 
6522   // Push all Loop-header PHIs onto the Worklist stack.
6523   for (PHINode &PN : Header->phis())
6524     Worklist.push_back(&PN);
6525 }
6526 
6527 const ScalarEvolution::BackedgeTakenInfo &
6528 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6529   auto &BTI = getBackedgeTakenInfo(L);
6530   if (BTI.hasFullInfo())
6531     return BTI;
6532 
6533   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6534 
6535   if (!Pair.second)
6536     return Pair.first->second;
6537 
6538   BackedgeTakenInfo Result =
6539       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6540 
6541   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6542 }
6543 
6544 const ScalarEvolution::BackedgeTakenInfo &
6545 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6546   // Initially insert an invalid entry for this loop. If the insertion
6547   // succeeds, proceed to actually compute a backedge-taken count and
6548   // update the value. The temporary CouldNotCompute value tells SCEV
6549   // code elsewhere that it shouldn't attempt to request a new
6550   // backedge-taken count, which could result in infinite recursion.
6551   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6552       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6553   if (!Pair.second)
6554     return Pair.first->second;
6555 
6556   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6557   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6558   // must be cleared in this scope.
6559   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6560 
6561   // In product build, there are no usage of statistic.
6562   (void)NumTripCountsComputed;
6563   (void)NumTripCountsNotComputed;
6564 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6565   const SCEV *BEExact = Result.getExact(L, this);
6566   if (BEExact != getCouldNotCompute()) {
6567     assert(isLoopInvariant(BEExact, L) &&
6568            isLoopInvariant(Result.getMax(this), L) &&
6569            "Computed backedge-taken count isn't loop invariant for loop!");
6570     ++NumTripCountsComputed;
6571   }
6572   else if (Result.getMax(this) == getCouldNotCompute() &&
6573            isa<PHINode>(L->getHeader()->begin())) {
6574     // Only count loops that have phi nodes as not being computable.
6575     ++NumTripCountsNotComputed;
6576   }
6577 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6578 
6579   // Now that we know more about the trip count for this loop, forget any
6580   // existing SCEV values for PHI nodes in this loop since they are only
6581   // conservative estimates made without the benefit of trip count
6582   // information. This is similar to the code in forgetLoop, except that
6583   // it handles SCEVUnknown PHI nodes specially.
6584   if (Result.hasAnyInfo()) {
6585     SmallVector<Instruction *, 16> Worklist;
6586     PushLoopPHIs(L, Worklist);
6587 
6588     SmallPtrSet<Instruction *, 8> Discovered;
6589     while (!Worklist.empty()) {
6590       Instruction *I = Worklist.pop_back_val();
6591 
6592       ValueExprMapType::iterator It =
6593         ValueExprMap.find_as(static_cast<Value *>(I));
6594       if (It != ValueExprMap.end()) {
6595         const SCEV *Old = It->second;
6596 
6597         // SCEVUnknown for a PHI either means that it has an unrecognized
6598         // structure, or it's a PHI that's in the progress of being computed
6599         // by createNodeForPHI.  In the former case, additional loop trip
6600         // count information isn't going to change anything. In the later
6601         // case, createNodeForPHI will perform the necessary updates on its
6602         // own when it gets to that point.
6603         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6604           eraseValueFromMap(It->first);
6605           forgetMemoizedResults(Old);
6606         }
6607         if (PHINode *PN = dyn_cast<PHINode>(I))
6608           ConstantEvolutionLoopExitValue.erase(PN);
6609       }
6610 
6611       // Since we don't need to invalidate anything for correctness and we're
6612       // only invalidating to make SCEV's results more precise, we get to stop
6613       // early to avoid invalidating too much.  This is especially important in
6614       // cases like:
6615       //
6616       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6617       // loop0:
6618       //   %pn0 = phi
6619       //   ...
6620       // loop1:
6621       //   %pn1 = phi
6622       //   ...
6623       //
6624       // where both loop0 and loop1's backedge taken count uses the SCEV
6625       // expression for %v.  If we don't have the early stop below then in cases
6626       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6627       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6628       // count for loop1, effectively nullifying SCEV's trip count cache.
6629       for (auto *U : I->users())
6630         if (auto *I = dyn_cast<Instruction>(U)) {
6631           auto *LoopForUser = LI.getLoopFor(I->getParent());
6632           if (LoopForUser && L->contains(LoopForUser) &&
6633               Discovered.insert(I).second)
6634             Worklist.push_back(I);
6635         }
6636     }
6637   }
6638 
6639   // Re-lookup the insert position, since the call to
6640   // computeBackedgeTakenCount above could result in a
6641   // recusive call to getBackedgeTakenInfo (on a different
6642   // loop), which would invalidate the iterator computed
6643   // earlier.
6644   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6645 }
6646 
6647 void ScalarEvolution::forgetAllLoops() {
6648   // This method is intended to forget all info about loops. It should
6649   // invalidate caches as if the following happened:
6650   // - The trip counts of all loops have changed arbitrarily
6651   // - Every llvm::Value has been updated in place to produce a different
6652   // result.
6653   BackedgeTakenCounts.clear();
6654   PredicatedBackedgeTakenCounts.clear();
6655   LoopPropertiesCache.clear();
6656   ConstantEvolutionLoopExitValue.clear();
6657   ValueExprMap.clear();
6658   ValuesAtScopes.clear();
6659   LoopDispositions.clear();
6660   BlockDispositions.clear();
6661   UnsignedRanges.clear();
6662   SignedRanges.clear();
6663   ExprValueMap.clear();
6664   HasRecMap.clear();
6665   MinTrailingZerosCache.clear();
6666   PredicatedSCEVRewrites.clear();
6667 }
6668 
6669 void ScalarEvolution::forgetLoop(const Loop *L) {
6670   // Drop any stored trip count value.
6671   auto RemoveLoopFromBackedgeMap =
6672       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6673         auto BTCPos = Map.find(L);
6674         if (BTCPos != Map.end()) {
6675           BTCPos->second.clear();
6676           Map.erase(BTCPos);
6677         }
6678       };
6679 
6680   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6681   SmallVector<Instruction *, 32> Worklist;
6682   SmallPtrSet<Instruction *, 16> Visited;
6683 
6684   // Iterate over all the loops and sub-loops to drop SCEV information.
6685   while (!LoopWorklist.empty()) {
6686     auto *CurrL = LoopWorklist.pop_back_val();
6687 
6688     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6689     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6690 
6691     // Drop information about predicated SCEV rewrites for this loop.
6692     for (auto I = PredicatedSCEVRewrites.begin();
6693          I != PredicatedSCEVRewrites.end();) {
6694       std::pair<const SCEV *, const Loop *> Entry = I->first;
6695       if (Entry.second == CurrL)
6696         PredicatedSCEVRewrites.erase(I++);
6697       else
6698         ++I;
6699     }
6700 
6701     auto LoopUsersItr = LoopUsers.find(CurrL);
6702     if (LoopUsersItr != LoopUsers.end()) {
6703       for (auto *S : LoopUsersItr->second)
6704         forgetMemoizedResults(S);
6705       LoopUsers.erase(LoopUsersItr);
6706     }
6707 
6708     // Drop information about expressions based on loop-header PHIs.
6709     PushLoopPHIs(CurrL, Worklist);
6710 
6711     while (!Worklist.empty()) {
6712       Instruction *I = Worklist.pop_back_val();
6713       if (!Visited.insert(I).second)
6714         continue;
6715 
6716       ValueExprMapType::iterator It =
6717           ValueExprMap.find_as(static_cast<Value *>(I));
6718       if (It != ValueExprMap.end()) {
6719         eraseValueFromMap(It->first);
6720         forgetMemoizedResults(It->second);
6721         if (PHINode *PN = dyn_cast<PHINode>(I))
6722           ConstantEvolutionLoopExitValue.erase(PN);
6723       }
6724 
6725       PushDefUseChildren(I, Worklist);
6726     }
6727 
6728     LoopPropertiesCache.erase(CurrL);
6729     // Forget all contained loops too, to avoid dangling entries in the
6730     // ValuesAtScopes map.
6731     LoopWorklist.append(CurrL->begin(), CurrL->end());
6732   }
6733 }
6734 
6735 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6736   while (Loop *Parent = L->getParentLoop())
6737     L = Parent;
6738   forgetLoop(L);
6739 }
6740 
6741 void ScalarEvolution::forgetValue(Value *V) {
6742   Instruction *I = dyn_cast<Instruction>(V);
6743   if (!I) return;
6744 
6745   // Drop information about expressions based on loop-header PHIs.
6746   SmallVector<Instruction *, 16> Worklist;
6747   Worklist.push_back(I);
6748 
6749   SmallPtrSet<Instruction *, 8> Visited;
6750   while (!Worklist.empty()) {
6751     I = Worklist.pop_back_val();
6752     if (!Visited.insert(I).second)
6753       continue;
6754 
6755     ValueExprMapType::iterator It =
6756       ValueExprMap.find_as(static_cast<Value *>(I));
6757     if (It != ValueExprMap.end()) {
6758       eraseValueFromMap(It->first);
6759       forgetMemoizedResults(It->second);
6760       if (PHINode *PN = dyn_cast<PHINode>(I))
6761         ConstantEvolutionLoopExitValue.erase(PN);
6762     }
6763 
6764     PushDefUseChildren(I, Worklist);
6765   }
6766 }
6767 
6768 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
6769   LoopDispositions.clear();
6770 }
6771 
6772 /// Get the exact loop backedge taken count considering all loop exits. A
6773 /// computable result can only be returned for loops with all exiting blocks
6774 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6775 /// is never skipped. This is a valid assumption as long as the loop exits via
6776 /// that test. For precise results, it is the caller's responsibility to specify
6777 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6778 const SCEV *
6779 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6780                                              SCEVUnionPredicate *Preds) const {
6781   // If any exits were not computable, the loop is not computable.
6782   if (!isComplete() || ExitNotTaken.empty())
6783     return SE->getCouldNotCompute();
6784 
6785   const BasicBlock *Latch = L->getLoopLatch();
6786   // All exiting blocks we have collected must dominate the only backedge.
6787   if (!Latch)
6788     return SE->getCouldNotCompute();
6789 
6790   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6791   // count is simply a minimum out of all these calculated exit counts.
6792   SmallVector<const SCEV *, 2> Ops;
6793   for (auto &ENT : ExitNotTaken) {
6794     const SCEV *BECount = ENT.ExactNotTaken;
6795     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6796     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6797            "We should only have known counts for exiting blocks that dominate "
6798            "latch!");
6799 
6800     Ops.push_back(BECount);
6801 
6802     if (Preds && !ENT.hasAlwaysTruePredicate())
6803       Preds->add(ENT.Predicate.get());
6804 
6805     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6806            "Predicate should be always true!");
6807   }
6808 
6809   return SE->getUMinFromMismatchedTypes(Ops);
6810 }
6811 
6812 /// Get the exact not taken count for this loop exit.
6813 const SCEV *
6814 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
6815                                              ScalarEvolution *SE) const {
6816   for (auto &ENT : ExitNotTaken)
6817     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6818       return ENT.ExactNotTaken;
6819 
6820   return SE->getCouldNotCompute();
6821 }
6822 
6823 const SCEV *
6824 ScalarEvolution::BackedgeTakenInfo::getMax(const BasicBlock *ExitingBlock,
6825                                            ScalarEvolution *SE) const {
6826   for (auto &ENT : ExitNotTaken)
6827     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6828       return ENT.MaxNotTaken;
6829 
6830   return SE->getCouldNotCompute();
6831 }
6832 
6833 /// getMax - Get the max backedge taken count for the loop.
6834 const SCEV *
6835 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6836   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6837     return !ENT.hasAlwaysTruePredicate();
6838   };
6839 
6840   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6841     return SE->getCouldNotCompute();
6842 
6843   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6844          "No point in having a non-constant max backedge taken count!");
6845   return getMax();
6846 }
6847 
6848 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6849   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6850     return !ENT.hasAlwaysTruePredicate();
6851   };
6852   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6853 }
6854 
6855 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6856                                                     ScalarEvolution *SE) const {
6857   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6858       SE->hasOperand(getMax(), S))
6859     return true;
6860 
6861   for (auto &ENT : ExitNotTaken)
6862     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6863         SE->hasOperand(ENT.ExactNotTaken, S))
6864       return true;
6865 
6866   return false;
6867 }
6868 
6869 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6870     : ExactNotTaken(E), MaxNotTaken(E) {
6871   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6872           isa<SCEVConstant>(MaxNotTaken)) &&
6873          "No point in having a non-constant max backedge taken count!");
6874 }
6875 
6876 ScalarEvolution::ExitLimit::ExitLimit(
6877     const SCEV *E, const SCEV *M, bool MaxOrZero,
6878     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6879     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6880   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6881           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6882          "Exact is not allowed to be less precise than Max");
6883   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6884           isa<SCEVConstant>(MaxNotTaken)) &&
6885          "No point in having a non-constant max backedge taken count!");
6886   for (auto *PredSet : PredSetList)
6887     for (auto *P : *PredSet)
6888       addPredicate(P);
6889 }
6890 
6891 ScalarEvolution::ExitLimit::ExitLimit(
6892     const SCEV *E, const SCEV *M, bool MaxOrZero,
6893     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6894     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6895   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6896           isa<SCEVConstant>(MaxNotTaken)) &&
6897          "No point in having a non-constant max backedge taken count!");
6898 }
6899 
6900 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6901                                       bool MaxOrZero)
6902     : ExitLimit(E, M, MaxOrZero, None) {
6903   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6904           isa<SCEVConstant>(MaxNotTaken)) &&
6905          "No point in having a non-constant max backedge taken count!");
6906 }
6907 
6908 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6909 /// computable exit into a persistent ExitNotTakenInfo array.
6910 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6911     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6912         ExitCounts,
6913     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6914     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6915   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6916 
6917   ExitNotTaken.reserve(ExitCounts.size());
6918   std::transform(
6919       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6920       [&](const EdgeExitInfo &EEI) {
6921         BasicBlock *ExitBB = EEI.first;
6922         const ExitLimit &EL = EEI.second;
6923         if (EL.Predicates.empty())
6924           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6925                                   nullptr);
6926 
6927         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6928         for (auto *Pred : EL.Predicates)
6929           Predicate->add(Pred);
6930 
6931         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6932                                 std::move(Predicate));
6933       });
6934   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6935          "No point in having a non-constant max backedge taken count!");
6936 }
6937 
6938 /// Invalidate this result and free the ExitNotTakenInfo array.
6939 void ScalarEvolution::BackedgeTakenInfo::clear() {
6940   ExitNotTaken.clear();
6941 }
6942 
6943 /// Compute the number of times the backedge of the specified loop will execute.
6944 ScalarEvolution::BackedgeTakenInfo
6945 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6946                                            bool AllowPredicates) {
6947   SmallVector<BasicBlock *, 8> ExitingBlocks;
6948   L->getExitingBlocks(ExitingBlocks);
6949 
6950   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6951 
6952   SmallVector<EdgeExitInfo, 4> ExitCounts;
6953   bool CouldComputeBECount = true;
6954   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6955   const SCEV *MustExitMaxBECount = nullptr;
6956   const SCEV *MayExitMaxBECount = nullptr;
6957   bool MustExitMaxOrZero = false;
6958 
6959   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6960   // and compute maxBECount.
6961   // Do a union of all the predicates here.
6962   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6963     BasicBlock *ExitBB = ExitingBlocks[i];
6964 
6965     // We canonicalize untaken exits to br (constant), ignore them so that
6966     // proving an exit untaken doesn't negatively impact our ability to reason
6967     // about the loop as whole.
6968     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
6969       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
6970         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
6971         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
6972           continue;
6973       }
6974 
6975     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
6976 
6977     assert((AllowPredicates || EL.Predicates.empty()) &&
6978            "Predicated exit limit when predicates are not allowed!");
6979 
6980     // 1. For each exit that can be computed, add an entry to ExitCounts.
6981     // CouldComputeBECount is true only if all exits can be computed.
6982     if (EL.ExactNotTaken == getCouldNotCompute())
6983       // We couldn't compute an exact value for this exit, so
6984       // we won't be able to compute an exact value for the loop.
6985       CouldComputeBECount = false;
6986     else
6987       ExitCounts.emplace_back(ExitBB, EL);
6988 
6989     // 2. Derive the loop's MaxBECount from each exit's max number of
6990     // non-exiting iterations. Partition the loop exits into two kinds:
6991     // LoopMustExits and LoopMayExits.
6992     //
6993     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
6994     // is a LoopMayExit.  If any computable LoopMustExit is found, then
6995     // MaxBECount is the minimum EL.MaxNotTaken of computable
6996     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
6997     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
6998     // computable EL.MaxNotTaken.
6999     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7000         DT.dominates(ExitBB, Latch)) {
7001       if (!MustExitMaxBECount) {
7002         MustExitMaxBECount = EL.MaxNotTaken;
7003         MustExitMaxOrZero = EL.MaxOrZero;
7004       } else {
7005         MustExitMaxBECount =
7006             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7007       }
7008     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7009       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7010         MayExitMaxBECount = EL.MaxNotTaken;
7011       else {
7012         MayExitMaxBECount =
7013             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7014       }
7015     }
7016   }
7017   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7018     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7019   // The loop backedge will be taken the maximum or zero times if there's
7020   // a single exit that must be taken the maximum or zero times.
7021   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7022   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7023                            MaxBECount, MaxOrZero);
7024 }
7025 
7026 ScalarEvolution::ExitLimit
7027 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7028                                       bool AllowPredicates) {
7029   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7030   // If our exiting block does not dominate the latch, then its connection with
7031   // loop's exit limit may be far from trivial.
7032   const BasicBlock *Latch = L->getLoopLatch();
7033   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7034     return getCouldNotCompute();
7035 
7036   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7037   Instruction *Term = ExitingBlock->getTerminator();
7038   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7039     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7040     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7041     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7042            "It should have one successor in loop and one exit block!");
7043     // Proceed to the next level to examine the exit condition expression.
7044     return computeExitLimitFromCond(
7045         L, BI->getCondition(), ExitIfTrue,
7046         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7047   }
7048 
7049   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7050     // For switch, make sure that there is a single exit from the loop.
7051     BasicBlock *Exit = nullptr;
7052     for (auto *SBB : successors(ExitingBlock))
7053       if (!L->contains(SBB)) {
7054         if (Exit) // Multiple exit successors.
7055           return getCouldNotCompute();
7056         Exit = SBB;
7057       }
7058     assert(Exit && "Exiting block must have at least one exit");
7059     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7060                                                 /*ControlsExit=*/IsOnlyExit);
7061   }
7062 
7063   return getCouldNotCompute();
7064 }
7065 
7066 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7067     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7068     bool ControlsExit, bool AllowPredicates) {
7069   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7070   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7071                                         ControlsExit, AllowPredicates);
7072 }
7073 
7074 Optional<ScalarEvolution::ExitLimit>
7075 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7076                                       bool ExitIfTrue, bool ControlsExit,
7077                                       bool AllowPredicates) {
7078   (void)this->L;
7079   (void)this->ExitIfTrue;
7080   (void)this->AllowPredicates;
7081 
7082   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7083          this->AllowPredicates == AllowPredicates &&
7084          "Variance in assumed invariant key components!");
7085   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7086   if (Itr == TripCountMap.end())
7087     return None;
7088   return Itr->second;
7089 }
7090 
7091 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7092                                              bool ExitIfTrue,
7093                                              bool ControlsExit,
7094                                              bool AllowPredicates,
7095                                              const ExitLimit &EL) {
7096   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7097          this->AllowPredicates == AllowPredicates &&
7098          "Variance in assumed invariant key components!");
7099 
7100   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7101   assert(InsertResult.second && "Expected successful insertion!");
7102   (void)InsertResult;
7103   (void)ExitIfTrue;
7104 }
7105 
7106 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7107     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7108     bool ControlsExit, bool AllowPredicates) {
7109 
7110   if (auto MaybeEL =
7111           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7112     return *MaybeEL;
7113 
7114   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7115                                               ControlsExit, AllowPredicates);
7116   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7117   return EL;
7118 }
7119 
7120 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7121     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7122     bool ControlsExit, bool AllowPredicates) {
7123   // Check if the controlling expression for this loop is an And or Or.
7124   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7125     if (BO->getOpcode() == Instruction::And) {
7126       // Recurse on the operands of the and.
7127       bool EitherMayExit = !ExitIfTrue;
7128       ExitLimit EL0 = computeExitLimitFromCondCached(
7129           Cache, L, BO->getOperand(0), ExitIfTrue,
7130           ControlsExit && !EitherMayExit, AllowPredicates);
7131       ExitLimit EL1 = computeExitLimitFromCondCached(
7132           Cache, L, BO->getOperand(1), ExitIfTrue,
7133           ControlsExit && !EitherMayExit, AllowPredicates);
7134       // Be robust against unsimplified IR for the form "and i1 X, true"
7135       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7136         return CI->isOne() ? EL0 : EL1;
7137       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7138         return CI->isOne() ? EL1 : EL0;
7139       const SCEV *BECount = getCouldNotCompute();
7140       const SCEV *MaxBECount = getCouldNotCompute();
7141       if (EitherMayExit) {
7142         // Both conditions must be true for the loop to continue executing.
7143         // Choose the less conservative count.
7144         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7145             EL1.ExactNotTaken == getCouldNotCompute())
7146           BECount = getCouldNotCompute();
7147         else
7148           BECount =
7149               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7150         if (EL0.MaxNotTaken == getCouldNotCompute())
7151           MaxBECount = EL1.MaxNotTaken;
7152         else if (EL1.MaxNotTaken == getCouldNotCompute())
7153           MaxBECount = EL0.MaxNotTaken;
7154         else
7155           MaxBECount =
7156               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7157       } else {
7158         // Both conditions must be true at the same time for the loop to exit.
7159         // For now, be conservative.
7160         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7161           MaxBECount = EL0.MaxNotTaken;
7162         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7163           BECount = EL0.ExactNotTaken;
7164       }
7165 
7166       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7167       // to be more aggressive when computing BECount than when computing
7168       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7169       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7170       // to not.
7171       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7172           !isa<SCEVCouldNotCompute>(BECount))
7173         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7174 
7175       return ExitLimit(BECount, MaxBECount, false,
7176                        {&EL0.Predicates, &EL1.Predicates});
7177     }
7178     if (BO->getOpcode() == Instruction::Or) {
7179       // Recurse on the operands of the or.
7180       bool EitherMayExit = ExitIfTrue;
7181       ExitLimit EL0 = computeExitLimitFromCondCached(
7182           Cache, L, BO->getOperand(0), ExitIfTrue,
7183           ControlsExit && !EitherMayExit, AllowPredicates);
7184       ExitLimit EL1 = computeExitLimitFromCondCached(
7185           Cache, L, BO->getOperand(1), ExitIfTrue,
7186           ControlsExit && !EitherMayExit, AllowPredicates);
7187       // Be robust against unsimplified IR for the form "or i1 X, true"
7188       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7189         return CI->isZero() ? EL0 : EL1;
7190       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7191         return CI->isZero() ? EL1 : EL0;
7192       const SCEV *BECount = getCouldNotCompute();
7193       const SCEV *MaxBECount = getCouldNotCompute();
7194       if (EitherMayExit) {
7195         // Both conditions must be false for the loop to continue executing.
7196         // Choose the less conservative count.
7197         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7198             EL1.ExactNotTaken == getCouldNotCompute())
7199           BECount = getCouldNotCompute();
7200         else
7201           BECount =
7202               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7203         if (EL0.MaxNotTaken == getCouldNotCompute())
7204           MaxBECount = EL1.MaxNotTaken;
7205         else if (EL1.MaxNotTaken == getCouldNotCompute())
7206           MaxBECount = EL0.MaxNotTaken;
7207         else
7208           MaxBECount =
7209               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7210       } else {
7211         // Both conditions must be false at the same time for the loop to exit.
7212         // For now, be conservative.
7213         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7214           MaxBECount = EL0.MaxNotTaken;
7215         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7216           BECount = EL0.ExactNotTaken;
7217       }
7218       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7219       // to be more aggressive when computing BECount than when computing
7220       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7221       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7222       // to not.
7223       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7224           !isa<SCEVCouldNotCompute>(BECount))
7225         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7226 
7227       return ExitLimit(BECount, MaxBECount, false,
7228                        {&EL0.Predicates, &EL1.Predicates});
7229     }
7230   }
7231 
7232   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7233   // Proceed to the next level to examine the icmp.
7234   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7235     ExitLimit EL =
7236         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7237     if (EL.hasFullInfo() || !AllowPredicates)
7238       return EL;
7239 
7240     // Try again, but use SCEV predicates this time.
7241     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7242                                     /*AllowPredicates=*/true);
7243   }
7244 
7245   // Check for a constant condition. These are normally stripped out by
7246   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7247   // preserve the CFG and is temporarily leaving constant conditions
7248   // in place.
7249   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7250     if (ExitIfTrue == !CI->getZExtValue())
7251       // The backedge is always taken.
7252       return getCouldNotCompute();
7253     else
7254       // The backedge is never taken.
7255       return getZero(CI->getType());
7256   }
7257 
7258   // If it's not an integer or pointer comparison then compute it the hard way.
7259   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7260 }
7261 
7262 ScalarEvolution::ExitLimit
7263 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7264                                           ICmpInst *ExitCond,
7265                                           bool ExitIfTrue,
7266                                           bool ControlsExit,
7267                                           bool AllowPredicates) {
7268   // If the condition was exit on true, convert the condition to exit on false
7269   ICmpInst::Predicate Pred;
7270   if (!ExitIfTrue)
7271     Pred = ExitCond->getPredicate();
7272   else
7273     Pred = ExitCond->getInversePredicate();
7274   const ICmpInst::Predicate OriginalPred = Pred;
7275 
7276   // Handle common loops like: for (X = "string"; *X; ++X)
7277   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7278     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7279       ExitLimit ItCnt =
7280         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7281       if (ItCnt.hasAnyInfo())
7282         return ItCnt;
7283     }
7284 
7285   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7286   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7287 
7288   // Try to evaluate any dependencies out of the loop.
7289   LHS = getSCEVAtScope(LHS, L);
7290   RHS = getSCEVAtScope(RHS, L);
7291 
7292   // At this point, we would like to compute how many iterations of the
7293   // loop the predicate will return true for these inputs.
7294   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7295     // If there is a loop-invariant, force it into the RHS.
7296     std::swap(LHS, RHS);
7297     Pred = ICmpInst::getSwappedPredicate(Pred);
7298   }
7299 
7300   // Simplify the operands before analyzing them.
7301   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7302 
7303   // If we have a comparison of a chrec against a constant, try to use value
7304   // ranges to answer this query.
7305   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7306     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7307       if (AddRec->getLoop() == L) {
7308         // Form the constant range.
7309         ConstantRange CompRange =
7310             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7311 
7312         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7313         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7314       }
7315 
7316   switch (Pred) {
7317   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7318     // Convert to: while (X-Y != 0)
7319     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7320                                 AllowPredicates);
7321     if (EL.hasAnyInfo()) return EL;
7322     break;
7323   }
7324   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7325     // Convert to: while (X-Y == 0)
7326     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7327     if (EL.hasAnyInfo()) return EL;
7328     break;
7329   }
7330   case ICmpInst::ICMP_SLT:
7331   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7332     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7333     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7334                                     AllowPredicates);
7335     if (EL.hasAnyInfo()) return EL;
7336     break;
7337   }
7338   case ICmpInst::ICMP_SGT:
7339   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7340     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7341     ExitLimit EL =
7342         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7343                             AllowPredicates);
7344     if (EL.hasAnyInfo()) return EL;
7345     break;
7346   }
7347   default:
7348     break;
7349   }
7350 
7351   auto *ExhaustiveCount =
7352       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7353 
7354   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7355     return ExhaustiveCount;
7356 
7357   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7358                                       ExitCond->getOperand(1), L, OriginalPred);
7359 }
7360 
7361 ScalarEvolution::ExitLimit
7362 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7363                                                       SwitchInst *Switch,
7364                                                       BasicBlock *ExitingBlock,
7365                                                       bool ControlsExit) {
7366   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7367 
7368   // Give up if the exit is the default dest of a switch.
7369   if (Switch->getDefaultDest() == ExitingBlock)
7370     return getCouldNotCompute();
7371 
7372   assert(L->contains(Switch->getDefaultDest()) &&
7373          "Default case must not exit the loop!");
7374   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7375   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7376 
7377   // while (X != Y) --> while (X-Y != 0)
7378   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7379   if (EL.hasAnyInfo())
7380     return EL;
7381 
7382   return getCouldNotCompute();
7383 }
7384 
7385 static ConstantInt *
7386 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7387                                 ScalarEvolution &SE) {
7388   const SCEV *InVal = SE.getConstant(C);
7389   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7390   assert(isa<SCEVConstant>(Val) &&
7391          "Evaluation of SCEV at constant didn't fold correctly?");
7392   return cast<SCEVConstant>(Val)->getValue();
7393 }
7394 
7395 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7396 /// compute the backedge execution count.
7397 ScalarEvolution::ExitLimit
7398 ScalarEvolution::computeLoadConstantCompareExitLimit(
7399   LoadInst *LI,
7400   Constant *RHS,
7401   const Loop *L,
7402   ICmpInst::Predicate predicate) {
7403   if (LI->isVolatile()) return getCouldNotCompute();
7404 
7405   // Check to see if the loaded pointer is a getelementptr of a global.
7406   // TODO: Use SCEV instead of manually grubbing with GEPs.
7407   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7408   if (!GEP) return getCouldNotCompute();
7409 
7410   // Make sure that it is really a constant global we are gepping, with an
7411   // initializer, and make sure the first IDX is really 0.
7412   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7413   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7414       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7415       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7416     return getCouldNotCompute();
7417 
7418   // Okay, we allow one non-constant index into the GEP instruction.
7419   Value *VarIdx = nullptr;
7420   std::vector<Constant*> Indexes;
7421   unsigned VarIdxNum = 0;
7422   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7423     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7424       Indexes.push_back(CI);
7425     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7426       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7427       VarIdx = GEP->getOperand(i);
7428       VarIdxNum = i-2;
7429       Indexes.push_back(nullptr);
7430     }
7431 
7432   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7433   if (!VarIdx)
7434     return getCouldNotCompute();
7435 
7436   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7437   // Check to see if X is a loop variant variable value now.
7438   const SCEV *Idx = getSCEV(VarIdx);
7439   Idx = getSCEVAtScope(Idx, L);
7440 
7441   // We can only recognize very limited forms of loop index expressions, in
7442   // particular, only affine AddRec's like {C1,+,C2}.
7443   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7444   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7445       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7446       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7447     return getCouldNotCompute();
7448 
7449   unsigned MaxSteps = MaxBruteForceIterations;
7450   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7451     ConstantInt *ItCst = ConstantInt::get(
7452                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7453     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7454 
7455     // Form the GEP offset.
7456     Indexes[VarIdxNum] = Val;
7457 
7458     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7459                                                          Indexes);
7460     if (!Result) break;  // Cannot compute!
7461 
7462     // Evaluate the condition for this iteration.
7463     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7464     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7465     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7466       ++NumArrayLenItCounts;
7467       return getConstant(ItCst);   // Found terminating iteration!
7468     }
7469   }
7470   return getCouldNotCompute();
7471 }
7472 
7473 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7474     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7475   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7476   if (!RHS)
7477     return getCouldNotCompute();
7478 
7479   const BasicBlock *Latch = L->getLoopLatch();
7480   if (!Latch)
7481     return getCouldNotCompute();
7482 
7483   const BasicBlock *Predecessor = L->getLoopPredecessor();
7484   if (!Predecessor)
7485     return getCouldNotCompute();
7486 
7487   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7488   // Return LHS in OutLHS and shift_opt in OutOpCode.
7489   auto MatchPositiveShift =
7490       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7491 
7492     using namespace PatternMatch;
7493 
7494     ConstantInt *ShiftAmt;
7495     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7496       OutOpCode = Instruction::LShr;
7497     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7498       OutOpCode = Instruction::AShr;
7499     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7500       OutOpCode = Instruction::Shl;
7501     else
7502       return false;
7503 
7504     return ShiftAmt->getValue().isStrictlyPositive();
7505   };
7506 
7507   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7508   //
7509   // loop:
7510   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7511   //   %iv.shifted = lshr i32 %iv, <positive constant>
7512   //
7513   // Return true on a successful match.  Return the corresponding PHI node (%iv
7514   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7515   auto MatchShiftRecurrence =
7516       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7517     Optional<Instruction::BinaryOps> PostShiftOpCode;
7518 
7519     {
7520       Instruction::BinaryOps OpC;
7521       Value *V;
7522 
7523       // If we encounter a shift instruction, "peel off" the shift operation,
7524       // and remember that we did so.  Later when we inspect %iv's backedge
7525       // value, we will make sure that the backedge value uses the same
7526       // operation.
7527       //
7528       // Note: the peeled shift operation does not have to be the same
7529       // instruction as the one feeding into the PHI's backedge value.  We only
7530       // really care about it being the same *kind* of shift instruction --
7531       // that's all that is required for our later inferences to hold.
7532       if (MatchPositiveShift(LHS, V, OpC)) {
7533         PostShiftOpCode = OpC;
7534         LHS = V;
7535       }
7536     }
7537 
7538     PNOut = dyn_cast<PHINode>(LHS);
7539     if (!PNOut || PNOut->getParent() != L->getHeader())
7540       return false;
7541 
7542     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7543     Value *OpLHS;
7544 
7545     return
7546         // The backedge value for the PHI node must be a shift by a positive
7547         // amount
7548         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7549 
7550         // of the PHI node itself
7551         OpLHS == PNOut &&
7552 
7553         // and the kind of shift should be match the kind of shift we peeled
7554         // off, if any.
7555         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7556   };
7557 
7558   PHINode *PN;
7559   Instruction::BinaryOps OpCode;
7560   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7561     return getCouldNotCompute();
7562 
7563   const DataLayout &DL = getDataLayout();
7564 
7565   // The key rationale for this optimization is that for some kinds of shift
7566   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7567   // within a finite number of iterations.  If the condition guarding the
7568   // backedge (in the sense that the backedge is taken if the condition is true)
7569   // is false for the value the shift recurrence stabilizes to, then we know
7570   // that the backedge is taken only a finite number of times.
7571 
7572   ConstantInt *StableValue = nullptr;
7573   switch (OpCode) {
7574   default:
7575     llvm_unreachable("Impossible case!");
7576 
7577   case Instruction::AShr: {
7578     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7579     // bitwidth(K) iterations.
7580     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7581     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7582                                        Predecessor->getTerminator(), &DT);
7583     auto *Ty = cast<IntegerType>(RHS->getType());
7584     if (Known.isNonNegative())
7585       StableValue = ConstantInt::get(Ty, 0);
7586     else if (Known.isNegative())
7587       StableValue = ConstantInt::get(Ty, -1, true);
7588     else
7589       return getCouldNotCompute();
7590 
7591     break;
7592   }
7593   case Instruction::LShr:
7594   case Instruction::Shl:
7595     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7596     // stabilize to 0 in at most bitwidth(K) iterations.
7597     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7598     break;
7599   }
7600 
7601   auto *Result =
7602       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7603   assert(Result->getType()->isIntegerTy(1) &&
7604          "Otherwise cannot be an operand to a branch instruction");
7605 
7606   if (Result->isZeroValue()) {
7607     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7608     const SCEV *UpperBound =
7609         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7610     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7611   }
7612 
7613   return getCouldNotCompute();
7614 }
7615 
7616 /// Return true if we can constant fold an instruction of the specified type,
7617 /// assuming that all operands were constants.
7618 static bool CanConstantFold(const Instruction *I) {
7619   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7620       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7621       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7622     return true;
7623 
7624   if (const CallInst *CI = dyn_cast<CallInst>(I))
7625     if (const Function *F = CI->getCalledFunction())
7626       return canConstantFoldCallTo(CI, F);
7627   return false;
7628 }
7629 
7630 /// Determine whether this instruction can constant evolve within this loop
7631 /// assuming its operands can all constant evolve.
7632 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7633   // An instruction outside of the loop can't be derived from a loop PHI.
7634   if (!L->contains(I)) return false;
7635 
7636   if (isa<PHINode>(I)) {
7637     // We don't currently keep track of the control flow needed to evaluate
7638     // PHIs, so we cannot handle PHIs inside of loops.
7639     return L->getHeader() == I->getParent();
7640   }
7641 
7642   // If we won't be able to constant fold this expression even if the operands
7643   // are constants, bail early.
7644   return CanConstantFold(I);
7645 }
7646 
7647 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7648 /// recursing through each instruction operand until reaching a loop header phi.
7649 static PHINode *
7650 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7651                                DenseMap<Instruction *, PHINode *> &PHIMap,
7652                                unsigned Depth) {
7653   if (Depth > MaxConstantEvolvingDepth)
7654     return nullptr;
7655 
7656   // Otherwise, we can evaluate this instruction if all of its operands are
7657   // constant or derived from a PHI node themselves.
7658   PHINode *PHI = nullptr;
7659   for (Value *Op : UseInst->operands()) {
7660     if (isa<Constant>(Op)) continue;
7661 
7662     Instruction *OpInst = dyn_cast<Instruction>(Op);
7663     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7664 
7665     PHINode *P = dyn_cast<PHINode>(OpInst);
7666     if (!P)
7667       // If this operand is already visited, reuse the prior result.
7668       // We may have P != PHI if this is the deepest point at which the
7669       // inconsistent paths meet.
7670       P = PHIMap.lookup(OpInst);
7671     if (!P) {
7672       // Recurse and memoize the results, whether a phi is found or not.
7673       // This recursive call invalidates pointers into PHIMap.
7674       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7675       PHIMap[OpInst] = P;
7676     }
7677     if (!P)
7678       return nullptr;  // Not evolving from PHI
7679     if (PHI && PHI != P)
7680       return nullptr;  // Evolving from multiple different PHIs.
7681     PHI = P;
7682   }
7683   // This is a expression evolving from a constant PHI!
7684   return PHI;
7685 }
7686 
7687 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7688 /// in the loop that V is derived from.  We allow arbitrary operations along the
7689 /// way, but the operands of an operation must either be constants or a value
7690 /// derived from a constant PHI.  If this expression does not fit with these
7691 /// constraints, return null.
7692 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7693   Instruction *I = dyn_cast<Instruction>(V);
7694   if (!I || !canConstantEvolve(I, L)) return nullptr;
7695 
7696   if (PHINode *PN = dyn_cast<PHINode>(I))
7697     return PN;
7698 
7699   // Record non-constant instructions contained by the loop.
7700   DenseMap<Instruction *, PHINode *> PHIMap;
7701   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7702 }
7703 
7704 /// EvaluateExpression - Given an expression that passes the
7705 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7706 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7707 /// reason, return null.
7708 static Constant *EvaluateExpression(Value *V, const Loop *L,
7709                                     DenseMap<Instruction *, Constant *> &Vals,
7710                                     const DataLayout &DL,
7711                                     const TargetLibraryInfo *TLI) {
7712   // Convenient constant check, but redundant for recursive calls.
7713   if (Constant *C = dyn_cast<Constant>(V)) return C;
7714   Instruction *I = dyn_cast<Instruction>(V);
7715   if (!I) return nullptr;
7716 
7717   if (Constant *C = Vals.lookup(I)) return C;
7718 
7719   // An instruction inside the loop depends on a value outside the loop that we
7720   // weren't given a mapping for, or a value such as a call inside the loop.
7721   if (!canConstantEvolve(I, L)) return nullptr;
7722 
7723   // An unmapped PHI can be due to a branch or another loop inside this loop,
7724   // or due to this not being the initial iteration through a loop where we
7725   // couldn't compute the evolution of this particular PHI last time.
7726   if (isa<PHINode>(I)) return nullptr;
7727 
7728   std::vector<Constant*> Operands(I->getNumOperands());
7729 
7730   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7731     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7732     if (!Operand) {
7733       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7734       if (!Operands[i]) return nullptr;
7735       continue;
7736     }
7737     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7738     Vals[Operand] = C;
7739     if (!C) return nullptr;
7740     Operands[i] = C;
7741   }
7742 
7743   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7744     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7745                                            Operands[1], DL, TLI);
7746   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7747     if (!LI->isVolatile())
7748       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7749   }
7750   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7751 }
7752 
7753 
7754 // If every incoming value to PN except the one for BB is a specific Constant,
7755 // return that, else return nullptr.
7756 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7757   Constant *IncomingVal = nullptr;
7758 
7759   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7760     if (PN->getIncomingBlock(i) == BB)
7761       continue;
7762 
7763     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7764     if (!CurrentVal)
7765       return nullptr;
7766 
7767     if (IncomingVal != CurrentVal) {
7768       if (IncomingVal)
7769         return nullptr;
7770       IncomingVal = CurrentVal;
7771     }
7772   }
7773 
7774   return IncomingVal;
7775 }
7776 
7777 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7778 /// in the header of its containing loop, we know the loop executes a
7779 /// constant number of times, and the PHI node is just a recurrence
7780 /// involving constants, fold it.
7781 Constant *
7782 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7783                                                    const APInt &BEs,
7784                                                    const Loop *L) {
7785   auto I = ConstantEvolutionLoopExitValue.find(PN);
7786   if (I != ConstantEvolutionLoopExitValue.end())
7787     return I->second;
7788 
7789   if (BEs.ugt(MaxBruteForceIterations))
7790     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7791 
7792   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7793 
7794   DenseMap<Instruction *, Constant *> CurrentIterVals;
7795   BasicBlock *Header = L->getHeader();
7796   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7797 
7798   BasicBlock *Latch = L->getLoopLatch();
7799   if (!Latch)
7800     return nullptr;
7801 
7802   for (PHINode &PHI : Header->phis()) {
7803     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7804       CurrentIterVals[&PHI] = StartCST;
7805   }
7806   if (!CurrentIterVals.count(PN))
7807     return RetVal = nullptr;
7808 
7809   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7810 
7811   // Execute the loop symbolically to determine the exit value.
7812   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7813          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7814 
7815   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7816   unsigned IterationNum = 0;
7817   const DataLayout &DL = getDataLayout();
7818   for (; ; ++IterationNum) {
7819     if (IterationNum == NumIterations)
7820       return RetVal = CurrentIterVals[PN];  // Got exit value!
7821 
7822     // Compute the value of the PHIs for the next iteration.
7823     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7824     DenseMap<Instruction *, Constant *> NextIterVals;
7825     Constant *NextPHI =
7826         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7827     if (!NextPHI)
7828       return nullptr;        // Couldn't evaluate!
7829     NextIterVals[PN] = NextPHI;
7830 
7831     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7832 
7833     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7834     // cease to be able to evaluate one of them or if they stop evolving,
7835     // because that doesn't necessarily prevent us from computing PN.
7836     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7837     for (const auto &I : CurrentIterVals) {
7838       PHINode *PHI = dyn_cast<PHINode>(I.first);
7839       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7840       PHIsToCompute.emplace_back(PHI, I.second);
7841     }
7842     // We use two distinct loops because EvaluateExpression may invalidate any
7843     // iterators into CurrentIterVals.
7844     for (const auto &I : PHIsToCompute) {
7845       PHINode *PHI = I.first;
7846       Constant *&NextPHI = NextIterVals[PHI];
7847       if (!NextPHI) {   // Not already computed.
7848         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7849         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7850       }
7851       if (NextPHI != I.second)
7852         StoppedEvolving = false;
7853     }
7854 
7855     // If all entries in CurrentIterVals == NextIterVals then we can stop
7856     // iterating, the loop can't continue to change.
7857     if (StoppedEvolving)
7858       return RetVal = CurrentIterVals[PN];
7859 
7860     CurrentIterVals.swap(NextIterVals);
7861   }
7862 }
7863 
7864 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7865                                                           Value *Cond,
7866                                                           bool ExitWhen) {
7867   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7868   if (!PN) return getCouldNotCompute();
7869 
7870   // If the loop is canonicalized, the PHI will have exactly two entries.
7871   // That's the only form we support here.
7872   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7873 
7874   DenseMap<Instruction *, Constant *> CurrentIterVals;
7875   BasicBlock *Header = L->getHeader();
7876   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7877 
7878   BasicBlock *Latch = L->getLoopLatch();
7879   assert(Latch && "Should follow from NumIncomingValues == 2!");
7880 
7881   for (PHINode &PHI : Header->phis()) {
7882     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7883       CurrentIterVals[&PHI] = StartCST;
7884   }
7885   if (!CurrentIterVals.count(PN))
7886     return getCouldNotCompute();
7887 
7888   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7889   // the loop symbolically to determine when the condition gets a value of
7890   // "ExitWhen".
7891   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7892   const DataLayout &DL = getDataLayout();
7893   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7894     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7895         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7896 
7897     // Couldn't symbolically evaluate.
7898     if (!CondVal) return getCouldNotCompute();
7899 
7900     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7901       ++NumBruteForceTripCountsComputed;
7902       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7903     }
7904 
7905     // Update all the PHI nodes for the next iteration.
7906     DenseMap<Instruction *, Constant *> NextIterVals;
7907 
7908     // Create a list of which PHIs we need to compute. We want to do this before
7909     // calling EvaluateExpression on them because that may invalidate iterators
7910     // into CurrentIterVals.
7911     SmallVector<PHINode *, 8> PHIsToCompute;
7912     for (const auto &I : CurrentIterVals) {
7913       PHINode *PHI = dyn_cast<PHINode>(I.first);
7914       if (!PHI || PHI->getParent() != Header) continue;
7915       PHIsToCompute.push_back(PHI);
7916     }
7917     for (PHINode *PHI : PHIsToCompute) {
7918       Constant *&NextPHI = NextIterVals[PHI];
7919       if (NextPHI) continue;    // Already computed!
7920 
7921       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7922       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7923     }
7924     CurrentIterVals.swap(NextIterVals);
7925   }
7926 
7927   // Too many iterations were needed to evaluate.
7928   return getCouldNotCompute();
7929 }
7930 
7931 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7932   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7933       ValuesAtScopes[V];
7934   // Check to see if we've folded this expression at this loop before.
7935   for (auto &LS : Values)
7936     if (LS.first == L)
7937       return LS.second ? LS.second : V;
7938 
7939   Values.emplace_back(L, nullptr);
7940 
7941   // Otherwise compute it.
7942   const SCEV *C = computeSCEVAtScope(V, L);
7943   for (auto &LS : reverse(ValuesAtScopes[V]))
7944     if (LS.first == L) {
7945       LS.second = C;
7946       break;
7947     }
7948   return C;
7949 }
7950 
7951 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7952 /// will return Constants for objects which aren't represented by a
7953 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7954 /// Returns NULL if the SCEV isn't representable as a Constant.
7955 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7956   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7957     case scCouldNotCompute:
7958     case scAddRecExpr:
7959       break;
7960     case scConstant:
7961       return cast<SCEVConstant>(V)->getValue();
7962     case scUnknown:
7963       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7964     case scSignExtend: {
7965       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7966       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7967         return ConstantExpr::getSExt(CastOp, SS->getType());
7968       break;
7969     }
7970     case scZeroExtend: {
7971       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7972       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7973         return ConstantExpr::getZExt(CastOp, SZ->getType());
7974       break;
7975     }
7976     case scTruncate: {
7977       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
7978       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
7979         return ConstantExpr::getTrunc(CastOp, ST->getType());
7980       break;
7981     }
7982     case scAddExpr: {
7983       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
7984       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
7985         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7986           unsigned AS = PTy->getAddressSpace();
7987           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7988           C = ConstantExpr::getBitCast(C, DestPtrTy);
7989         }
7990         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
7991           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
7992           if (!C2) return nullptr;
7993 
7994           // First pointer!
7995           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
7996             unsigned AS = C2->getType()->getPointerAddressSpace();
7997             std::swap(C, C2);
7998             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7999             // The offsets have been converted to bytes.  We can add bytes to an
8000             // i8* by GEP with the byte count in the first index.
8001             C = ConstantExpr::getBitCast(C, DestPtrTy);
8002           }
8003 
8004           // Don't bother trying to sum two pointers. We probably can't
8005           // statically compute a load that results from it anyway.
8006           if (C2->getType()->isPointerTy())
8007             return nullptr;
8008 
8009           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8010             if (PTy->getElementType()->isStructTy())
8011               C2 = ConstantExpr::getIntegerCast(
8012                   C2, Type::getInt32Ty(C->getContext()), true);
8013             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8014           } else
8015             C = ConstantExpr::getAdd(C, C2);
8016         }
8017         return C;
8018       }
8019       break;
8020     }
8021     case scMulExpr: {
8022       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8023       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8024         // Don't bother with pointers at all.
8025         if (C->getType()->isPointerTy()) return nullptr;
8026         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8027           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8028           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8029           C = ConstantExpr::getMul(C, C2);
8030         }
8031         return C;
8032       }
8033       break;
8034     }
8035     case scUDivExpr: {
8036       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8037       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8038         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8039           if (LHS->getType() == RHS->getType())
8040             return ConstantExpr::getUDiv(LHS, RHS);
8041       break;
8042     }
8043     case scSMaxExpr:
8044     case scUMaxExpr:
8045     case scSMinExpr:
8046     case scUMinExpr:
8047       break; // TODO: smax, umax, smin, umax.
8048   }
8049   return nullptr;
8050 }
8051 
8052 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8053   if (isa<SCEVConstant>(V)) return V;
8054 
8055   // If this instruction is evolved from a constant-evolving PHI, compute the
8056   // exit value from the loop without using SCEVs.
8057   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8058     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8059       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8060         const Loop *CurrLoop = this->LI[I->getParent()];
8061         // Looking for loop exit value.
8062         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8063             PN->getParent() == CurrLoop->getHeader()) {
8064           // Okay, there is no closed form solution for the PHI node.  Check
8065           // to see if the loop that contains it has a known backedge-taken
8066           // count.  If so, we may be able to force computation of the exit
8067           // value.
8068           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8069           // This trivial case can show up in some degenerate cases where
8070           // the incoming IR has not yet been fully simplified.
8071           if (BackedgeTakenCount->isZero()) {
8072             Value *InitValue = nullptr;
8073             bool MultipleInitValues = false;
8074             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8075               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8076                 if (!InitValue)
8077                   InitValue = PN->getIncomingValue(i);
8078                 else if (InitValue != PN->getIncomingValue(i)) {
8079                   MultipleInitValues = true;
8080                   break;
8081                 }
8082               }
8083             }
8084             if (!MultipleInitValues && InitValue)
8085               return getSCEV(InitValue);
8086           }
8087           // Do we have a loop invariant value flowing around the backedge
8088           // for a loop which must execute the backedge?
8089           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8090               isKnownPositive(BackedgeTakenCount) &&
8091               PN->getNumIncomingValues() == 2) {
8092 
8093             unsigned InLoopPred =
8094                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8095             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8096             if (CurrLoop->isLoopInvariant(BackedgeVal))
8097               return getSCEV(BackedgeVal);
8098           }
8099           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8100             // Okay, we know how many times the containing loop executes.  If
8101             // this is a constant evolving PHI node, get the final value at
8102             // the specified iteration number.
8103             Constant *RV = getConstantEvolutionLoopExitValue(
8104                 PN, BTCC->getAPInt(), CurrLoop);
8105             if (RV) return getSCEV(RV);
8106           }
8107         }
8108 
8109         // If there is a single-input Phi, evaluate it at our scope. If we can
8110         // prove that this replacement does not break LCSSA form, use new value.
8111         if (PN->getNumOperands() == 1) {
8112           const SCEV *Input = getSCEV(PN->getOperand(0));
8113           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8114           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8115           // for the simplest case just support constants.
8116           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8117         }
8118       }
8119 
8120       // Okay, this is an expression that we cannot symbolically evaluate
8121       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8122       // the arguments into constants, and if so, try to constant propagate the
8123       // result.  This is particularly useful for computing loop exit values.
8124       if (CanConstantFold(I)) {
8125         SmallVector<Constant *, 4> Operands;
8126         bool MadeImprovement = false;
8127         for (Value *Op : I->operands()) {
8128           if (Constant *C = dyn_cast<Constant>(Op)) {
8129             Operands.push_back(C);
8130             continue;
8131           }
8132 
8133           // If any of the operands is non-constant and if they are
8134           // non-integer and non-pointer, don't even try to analyze them
8135           // with scev techniques.
8136           if (!isSCEVable(Op->getType()))
8137             return V;
8138 
8139           const SCEV *OrigV = getSCEV(Op);
8140           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8141           MadeImprovement |= OrigV != OpV;
8142 
8143           Constant *C = BuildConstantFromSCEV(OpV);
8144           if (!C) return V;
8145           if (C->getType() != Op->getType())
8146             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8147                                                               Op->getType(),
8148                                                               false),
8149                                       C, Op->getType());
8150           Operands.push_back(C);
8151         }
8152 
8153         // Check to see if getSCEVAtScope actually made an improvement.
8154         if (MadeImprovement) {
8155           Constant *C = nullptr;
8156           const DataLayout &DL = getDataLayout();
8157           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8158             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8159                                                 Operands[1], DL, &TLI);
8160           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8161             if (!Load->isVolatile())
8162               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8163                                                DL);
8164           } else
8165             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8166           if (!C) return V;
8167           return getSCEV(C);
8168         }
8169       }
8170     }
8171 
8172     // This is some other type of SCEVUnknown, just return it.
8173     return V;
8174   }
8175 
8176   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8177     // Avoid performing the look-up in the common case where the specified
8178     // expression has no loop-variant portions.
8179     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8180       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8181       if (OpAtScope != Comm->getOperand(i)) {
8182         // Okay, at least one of these operands is loop variant but might be
8183         // foldable.  Build a new instance of the folded commutative expression.
8184         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8185                                             Comm->op_begin()+i);
8186         NewOps.push_back(OpAtScope);
8187 
8188         for (++i; i != e; ++i) {
8189           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8190           NewOps.push_back(OpAtScope);
8191         }
8192         if (isa<SCEVAddExpr>(Comm))
8193           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8194         if (isa<SCEVMulExpr>(Comm))
8195           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8196         if (isa<SCEVMinMaxExpr>(Comm))
8197           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8198         llvm_unreachable("Unknown commutative SCEV type!");
8199       }
8200     }
8201     // If we got here, all operands are loop invariant.
8202     return Comm;
8203   }
8204 
8205   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8206     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8207     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8208     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8209       return Div;   // must be loop invariant
8210     return getUDivExpr(LHS, RHS);
8211   }
8212 
8213   // If this is a loop recurrence for a loop that does not contain L, then we
8214   // are dealing with the final value computed by the loop.
8215   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8216     // First, attempt to evaluate each operand.
8217     // Avoid performing the look-up in the common case where the specified
8218     // expression has no loop-variant portions.
8219     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8220       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8221       if (OpAtScope == AddRec->getOperand(i))
8222         continue;
8223 
8224       // Okay, at least one of these operands is loop variant but might be
8225       // foldable.  Build a new instance of the folded commutative expression.
8226       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8227                                           AddRec->op_begin()+i);
8228       NewOps.push_back(OpAtScope);
8229       for (++i; i != e; ++i)
8230         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8231 
8232       const SCEV *FoldedRec =
8233         getAddRecExpr(NewOps, AddRec->getLoop(),
8234                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8235       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8236       // The addrec may be folded to a nonrecurrence, for example, if the
8237       // induction variable is multiplied by zero after constant folding. Go
8238       // ahead and return the folded value.
8239       if (!AddRec)
8240         return FoldedRec;
8241       break;
8242     }
8243 
8244     // If the scope is outside the addrec's loop, evaluate it by using the
8245     // loop exit value of the addrec.
8246     if (!AddRec->getLoop()->contains(L)) {
8247       // To evaluate this recurrence, we need to know how many times the AddRec
8248       // loop iterates.  Compute this now.
8249       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8250       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8251 
8252       // Then, evaluate the AddRec.
8253       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8254     }
8255 
8256     return AddRec;
8257   }
8258 
8259   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8260     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8261     if (Op == Cast->getOperand())
8262       return Cast;  // must be loop invariant
8263     return getZeroExtendExpr(Op, Cast->getType());
8264   }
8265 
8266   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8267     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8268     if (Op == Cast->getOperand())
8269       return Cast;  // must be loop invariant
8270     return getSignExtendExpr(Op, Cast->getType());
8271   }
8272 
8273   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8274     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8275     if (Op == Cast->getOperand())
8276       return Cast;  // must be loop invariant
8277     return getTruncateExpr(Op, Cast->getType());
8278   }
8279 
8280   llvm_unreachable("Unknown SCEV type!");
8281 }
8282 
8283 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8284   return getSCEVAtScope(getSCEV(V), L);
8285 }
8286 
8287 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8288   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8289     return stripInjectiveFunctions(ZExt->getOperand());
8290   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8291     return stripInjectiveFunctions(SExt->getOperand());
8292   return S;
8293 }
8294 
8295 /// Finds the minimum unsigned root of the following equation:
8296 ///
8297 ///     A * X = B (mod N)
8298 ///
8299 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8300 /// A and B isn't important.
8301 ///
8302 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8303 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8304                                                ScalarEvolution &SE) {
8305   uint32_t BW = A.getBitWidth();
8306   assert(BW == SE.getTypeSizeInBits(B->getType()));
8307   assert(A != 0 && "A must be non-zero.");
8308 
8309   // 1. D = gcd(A, N)
8310   //
8311   // The gcd of A and N may have only one prime factor: 2. The number of
8312   // trailing zeros in A is its multiplicity
8313   uint32_t Mult2 = A.countTrailingZeros();
8314   // D = 2^Mult2
8315 
8316   // 2. Check if B is divisible by D.
8317   //
8318   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8319   // is not less than multiplicity of this prime factor for D.
8320   if (SE.GetMinTrailingZeros(B) < Mult2)
8321     return SE.getCouldNotCompute();
8322 
8323   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8324   // modulo (N / D).
8325   //
8326   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8327   // (N / D) in general. The inverse itself always fits into BW bits, though,
8328   // so we immediately truncate it.
8329   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8330   APInt Mod(BW + 1, 0);
8331   Mod.setBit(BW - Mult2);  // Mod = N / D
8332   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8333 
8334   // 4. Compute the minimum unsigned root of the equation:
8335   // I * (B / D) mod (N / D)
8336   // To simplify the computation, we factor out the divide by D:
8337   // (I * B mod N) / D
8338   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8339   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8340 }
8341 
8342 /// For a given quadratic addrec, generate coefficients of the corresponding
8343 /// quadratic equation, multiplied by a common value to ensure that they are
8344 /// integers.
8345 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8346 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8347 /// were multiplied by, and BitWidth is the bit width of the original addrec
8348 /// coefficients.
8349 /// This function returns None if the addrec coefficients are not compile-
8350 /// time constants.
8351 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8352 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8353   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8354   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8355   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8356   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8357   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8358                     << *AddRec << '\n');
8359 
8360   // We currently can only solve this if the coefficients are constants.
8361   if (!LC || !MC || !NC) {
8362     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8363     return None;
8364   }
8365 
8366   APInt L = LC->getAPInt();
8367   APInt M = MC->getAPInt();
8368   APInt N = NC->getAPInt();
8369   assert(!N.isNullValue() && "This is not a quadratic addrec");
8370 
8371   unsigned BitWidth = LC->getAPInt().getBitWidth();
8372   unsigned NewWidth = BitWidth + 1;
8373   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8374                     << BitWidth << '\n');
8375   // The sign-extension (as opposed to a zero-extension) here matches the
8376   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8377   N = N.sext(NewWidth);
8378   M = M.sext(NewWidth);
8379   L = L.sext(NewWidth);
8380 
8381   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8382   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8383   //   L+M, L+2M+N, L+3M+3N, ...
8384   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8385   //
8386   // The equation Acc = 0 is then
8387   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8388   // In a quadratic form it becomes:
8389   //   N n^2 + (2M-N) n + 2L = 0.
8390 
8391   APInt A = N;
8392   APInt B = 2 * M - A;
8393   APInt C = 2 * L;
8394   APInt T = APInt(NewWidth, 2);
8395   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8396                     << "x + " << C << ", coeff bw: " << NewWidth
8397                     << ", multiplied by " << T << '\n');
8398   return std::make_tuple(A, B, C, T, BitWidth);
8399 }
8400 
8401 /// Helper function to compare optional APInts:
8402 /// (a) if X and Y both exist, return min(X, Y),
8403 /// (b) if neither X nor Y exist, return None,
8404 /// (c) if exactly one of X and Y exists, return that value.
8405 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8406   if (X.hasValue() && Y.hasValue()) {
8407     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8408     APInt XW = X->sextOrSelf(W);
8409     APInt YW = Y->sextOrSelf(W);
8410     return XW.slt(YW) ? *X : *Y;
8411   }
8412   if (!X.hasValue() && !Y.hasValue())
8413     return None;
8414   return X.hasValue() ? *X : *Y;
8415 }
8416 
8417 /// Helper function to truncate an optional APInt to a given BitWidth.
8418 /// When solving addrec-related equations, it is preferable to return a value
8419 /// that has the same bit width as the original addrec's coefficients. If the
8420 /// solution fits in the original bit width, truncate it (except for i1).
8421 /// Returning a value of a different bit width may inhibit some optimizations.
8422 ///
8423 /// In general, a solution to a quadratic equation generated from an addrec
8424 /// may require BW+1 bits, where BW is the bit width of the addrec's
8425 /// coefficients. The reason is that the coefficients of the quadratic
8426 /// equation are BW+1 bits wide (to avoid truncation when converting from
8427 /// the addrec to the equation).
8428 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8429   if (!X.hasValue())
8430     return None;
8431   unsigned W = X->getBitWidth();
8432   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8433     return X->trunc(BitWidth);
8434   return X;
8435 }
8436 
8437 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8438 /// iterations. The values L, M, N are assumed to be signed, and they
8439 /// should all have the same bit widths.
8440 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8441 /// where BW is the bit width of the addrec's coefficients.
8442 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8443 /// returned as such, otherwise the bit width of the returned value may
8444 /// be greater than BW.
8445 ///
8446 /// This function returns None if
8447 /// (a) the addrec coefficients are not constant, or
8448 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8449 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8450 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8451 static Optional<APInt>
8452 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8453   APInt A, B, C, M;
8454   unsigned BitWidth;
8455   auto T = GetQuadraticEquation(AddRec);
8456   if (!T.hasValue())
8457     return None;
8458 
8459   std::tie(A, B, C, M, BitWidth) = *T;
8460   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8461   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8462   if (!X.hasValue())
8463     return None;
8464 
8465   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8466   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8467   if (!V->isZero())
8468     return None;
8469 
8470   return TruncIfPossible(X, BitWidth);
8471 }
8472 
8473 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8474 /// iterations. The values M, N are assumed to be signed, and they
8475 /// should all have the same bit widths.
8476 /// Find the least n such that c(n) does not belong to the given range,
8477 /// while c(n-1) does.
8478 ///
8479 /// This function returns None if
8480 /// (a) the addrec coefficients are not constant, or
8481 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8482 ///     bounds of the range.
8483 static Optional<APInt>
8484 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8485                           const ConstantRange &Range, ScalarEvolution &SE) {
8486   assert(AddRec->getOperand(0)->isZero() &&
8487          "Starting value of addrec should be 0");
8488   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8489                     << Range << ", addrec " << *AddRec << '\n');
8490   // This case is handled in getNumIterationsInRange. Here we can assume that
8491   // we start in the range.
8492   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8493          "Addrec's initial value should be in range");
8494 
8495   APInt A, B, C, M;
8496   unsigned BitWidth;
8497   auto T = GetQuadraticEquation(AddRec);
8498   if (!T.hasValue())
8499     return None;
8500 
8501   // Be careful about the return value: there can be two reasons for not
8502   // returning an actual number. First, if no solutions to the equations
8503   // were found, and second, if the solutions don't leave the given range.
8504   // The first case means that the actual solution is "unknown", the second
8505   // means that it's known, but not valid. If the solution is unknown, we
8506   // cannot make any conclusions.
8507   // Return a pair: the optional solution and a flag indicating if the
8508   // solution was found.
8509   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8510     // Solve for signed overflow and unsigned overflow, pick the lower
8511     // solution.
8512     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8513                       << Bound << " (before multiplying by " << M << ")\n");
8514     Bound *= M; // The quadratic equation multiplier.
8515 
8516     Optional<APInt> SO = None;
8517     if (BitWidth > 1) {
8518       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8519                            "signed overflow\n");
8520       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8521     }
8522     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8523                          "unsigned overflow\n");
8524     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8525                                                               BitWidth+1);
8526 
8527     auto LeavesRange = [&] (const APInt &X) {
8528       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8529       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8530       if (Range.contains(V0->getValue()))
8531         return false;
8532       // X should be at least 1, so X-1 is non-negative.
8533       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8534       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8535       if (Range.contains(V1->getValue()))
8536         return true;
8537       return false;
8538     };
8539 
8540     // If SolveQuadraticEquationWrap returns None, it means that there can
8541     // be a solution, but the function failed to find it. We cannot treat it
8542     // as "no solution".
8543     if (!SO.hasValue() || !UO.hasValue())
8544       return { None, false };
8545 
8546     // Check the smaller value first to see if it leaves the range.
8547     // At this point, both SO and UO must have values.
8548     Optional<APInt> Min = MinOptional(SO, UO);
8549     if (LeavesRange(*Min))
8550       return { Min, true };
8551     Optional<APInt> Max = Min == SO ? UO : SO;
8552     if (LeavesRange(*Max))
8553       return { Max, true };
8554 
8555     // Solutions were found, but were eliminated, hence the "true".
8556     return { None, true };
8557   };
8558 
8559   std::tie(A, B, C, M, BitWidth) = *T;
8560   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8561   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8562   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8563   auto SL = SolveForBoundary(Lower);
8564   auto SU = SolveForBoundary(Upper);
8565   // If any of the solutions was unknown, no meaninigful conclusions can
8566   // be made.
8567   if (!SL.second || !SU.second)
8568     return None;
8569 
8570   // Claim: The correct solution is not some value between Min and Max.
8571   //
8572   // Justification: Assuming that Min and Max are different values, one of
8573   // them is when the first signed overflow happens, the other is when the
8574   // first unsigned overflow happens. Crossing the range boundary is only
8575   // possible via an overflow (treating 0 as a special case of it, modeling
8576   // an overflow as crossing k*2^W for some k).
8577   //
8578   // The interesting case here is when Min was eliminated as an invalid
8579   // solution, but Max was not. The argument is that if there was another
8580   // overflow between Min and Max, it would also have been eliminated if
8581   // it was considered.
8582   //
8583   // For a given boundary, it is possible to have two overflows of the same
8584   // type (signed/unsigned) without having the other type in between: this
8585   // can happen when the vertex of the parabola is between the iterations
8586   // corresponding to the overflows. This is only possible when the two
8587   // overflows cross k*2^W for the same k. In such case, if the second one
8588   // left the range (and was the first one to do so), the first overflow
8589   // would have to enter the range, which would mean that either we had left
8590   // the range before or that we started outside of it. Both of these cases
8591   // are contradictions.
8592   //
8593   // Claim: In the case where SolveForBoundary returns None, the correct
8594   // solution is not some value between the Max for this boundary and the
8595   // Min of the other boundary.
8596   //
8597   // Justification: Assume that we had such Max_A and Min_B corresponding
8598   // to range boundaries A and B and such that Max_A < Min_B. If there was
8599   // a solution between Max_A and Min_B, it would have to be caused by an
8600   // overflow corresponding to either A or B. It cannot correspond to B,
8601   // since Min_B is the first occurrence of such an overflow. If it
8602   // corresponded to A, it would have to be either a signed or an unsigned
8603   // overflow that is larger than both eliminated overflows for A. But
8604   // between the eliminated overflows and this overflow, the values would
8605   // cover the entire value space, thus crossing the other boundary, which
8606   // is a contradiction.
8607 
8608   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8609 }
8610 
8611 ScalarEvolution::ExitLimit
8612 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8613                               bool AllowPredicates) {
8614 
8615   // This is only used for loops with a "x != y" exit test. The exit condition
8616   // is now expressed as a single expression, V = x-y. So the exit test is
8617   // effectively V != 0.  We know and take advantage of the fact that this
8618   // expression only being used in a comparison by zero context.
8619 
8620   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8621   // If the value is a constant
8622   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8623     // If the value is already zero, the branch will execute zero times.
8624     if (C->getValue()->isZero()) return C;
8625     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8626   }
8627 
8628   const SCEVAddRecExpr *AddRec =
8629       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8630 
8631   if (!AddRec && AllowPredicates)
8632     // Try to make this an AddRec using runtime tests, in the first X
8633     // iterations of this loop, where X is the SCEV expression found by the
8634     // algorithm below.
8635     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8636 
8637   if (!AddRec || AddRec->getLoop() != L)
8638     return getCouldNotCompute();
8639 
8640   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8641   // the quadratic equation to solve it.
8642   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8643     // We can only use this value if the chrec ends up with an exact zero
8644     // value at this index.  When solving for "X*X != 5", for example, we
8645     // should not accept a root of 2.
8646     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8647       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8648       return ExitLimit(R, R, false, Predicates);
8649     }
8650     return getCouldNotCompute();
8651   }
8652 
8653   // Otherwise we can only handle this if it is affine.
8654   if (!AddRec->isAffine())
8655     return getCouldNotCompute();
8656 
8657   // If this is an affine expression, the execution count of this branch is
8658   // the minimum unsigned root of the following equation:
8659   //
8660   //     Start + Step*N = 0 (mod 2^BW)
8661   //
8662   // equivalent to:
8663   //
8664   //             Step*N = -Start (mod 2^BW)
8665   //
8666   // where BW is the common bit width of Start and Step.
8667 
8668   // Get the initial value for the loop.
8669   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8670   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8671 
8672   // For now we handle only constant steps.
8673   //
8674   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8675   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8676   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8677   // We have not yet seen any such cases.
8678   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8679   if (!StepC || StepC->getValue()->isZero())
8680     return getCouldNotCompute();
8681 
8682   // For positive steps (counting up until unsigned overflow):
8683   //   N = -Start/Step (as unsigned)
8684   // For negative steps (counting down to zero):
8685   //   N = Start/-Step
8686   // First compute the unsigned distance from zero in the direction of Step.
8687   bool CountDown = StepC->getAPInt().isNegative();
8688   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8689 
8690   // Handle unitary steps, which cannot wraparound.
8691   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8692   //   N = Distance (as unsigned)
8693   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8694     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
8695     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
8696     if (MaxBECountBase.ult(MaxBECount))
8697       MaxBECount = MaxBECountBase;
8698 
8699     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8700     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8701     // case, and see if we can improve the bound.
8702     //
8703     // Explicitly handling this here is necessary because getUnsignedRange
8704     // isn't context-sensitive; it doesn't know that we only care about the
8705     // range inside the loop.
8706     const SCEV *Zero = getZero(Distance->getType());
8707     const SCEV *One = getOne(Distance->getType());
8708     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8709     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8710       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8711       // as "unsigned_max(Distance + 1) - 1".
8712       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8713       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8714     }
8715     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8716   }
8717 
8718   // If the condition controls loop exit (the loop exits only if the expression
8719   // is true) and the addition is no-wrap we can use unsigned divide to
8720   // compute the backedge count.  In this case, the step may not divide the
8721   // distance, but we don't care because if the condition is "missed" the loop
8722   // will have undefined behavior due to wrapping.
8723   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8724       loopHasNoAbnormalExits(AddRec->getLoop())) {
8725     const SCEV *Exact =
8726         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8727     const SCEV *Max =
8728         Exact == getCouldNotCompute()
8729             ? Exact
8730             : getConstant(getUnsignedRangeMax(Exact));
8731     return ExitLimit(Exact, Max, false, Predicates);
8732   }
8733 
8734   // Solve the general equation.
8735   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8736                                                getNegativeSCEV(Start), *this);
8737   const SCEV *M = E == getCouldNotCompute()
8738                       ? E
8739                       : getConstant(getUnsignedRangeMax(E));
8740   return ExitLimit(E, M, false, Predicates);
8741 }
8742 
8743 ScalarEvolution::ExitLimit
8744 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8745   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8746   // handle them yet except for the trivial case.  This could be expanded in the
8747   // future as needed.
8748 
8749   // If the value is a constant, check to see if it is known to be non-zero
8750   // already.  If so, the backedge will execute zero times.
8751   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8752     if (!C->getValue()->isZero())
8753       return getZero(C->getType());
8754     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8755   }
8756 
8757   // We could implement others, but I really doubt anyone writes loops like
8758   // this, and if they did, they would already be constant folded.
8759   return getCouldNotCompute();
8760 }
8761 
8762 std::pair<const BasicBlock *, const BasicBlock *>
8763 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
8764     const {
8765   // If the block has a unique predecessor, then there is no path from the
8766   // predecessor to the block that does not go through the direct edge
8767   // from the predecessor to the block.
8768   if (const BasicBlock *Pred = BB->getSinglePredecessor())
8769     return {Pred, BB};
8770 
8771   // A loop's header is defined to be a block that dominates the loop.
8772   // If the header has a unique predecessor outside the loop, it must be
8773   // a block that has exactly one successor that can reach the loop.
8774   if (const Loop *L = LI.getLoopFor(BB))
8775     return {L->getLoopPredecessor(), L->getHeader()};
8776 
8777   return {nullptr, nullptr};
8778 }
8779 
8780 /// SCEV structural equivalence is usually sufficient for testing whether two
8781 /// expressions are equal, however for the purposes of looking for a condition
8782 /// guarding a loop, it can be useful to be a little more general, since a
8783 /// front-end may have replicated the controlling expression.
8784 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8785   // Quick check to see if they are the same SCEV.
8786   if (A == B) return true;
8787 
8788   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8789     // Not all instructions that are "identical" compute the same value.  For
8790     // instance, two distinct alloca instructions allocating the same type are
8791     // identical and do not read memory; but compute distinct values.
8792     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8793   };
8794 
8795   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8796   // two different instructions with the same value. Check for this case.
8797   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8798     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8799       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8800         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8801           if (ComputesEqualValues(AI, BI))
8802             return true;
8803 
8804   // Otherwise assume they may have a different value.
8805   return false;
8806 }
8807 
8808 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8809                                            const SCEV *&LHS, const SCEV *&RHS,
8810                                            unsigned Depth) {
8811   bool Changed = false;
8812   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8813   // '0 != 0'.
8814   auto TrivialCase = [&](bool TriviallyTrue) {
8815     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8816     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8817     return true;
8818   };
8819   // If we hit the max recursion limit bail out.
8820   if (Depth >= 3)
8821     return false;
8822 
8823   // Canonicalize a constant to the right side.
8824   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8825     // Check for both operands constant.
8826     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8827       if (ConstantExpr::getICmp(Pred,
8828                                 LHSC->getValue(),
8829                                 RHSC->getValue())->isNullValue())
8830         return TrivialCase(false);
8831       else
8832         return TrivialCase(true);
8833     }
8834     // Otherwise swap the operands to put the constant on the right.
8835     std::swap(LHS, RHS);
8836     Pred = ICmpInst::getSwappedPredicate(Pred);
8837     Changed = true;
8838   }
8839 
8840   // If we're comparing an addrec with a value which is loop-invariant in the
8841   // addrec's loop, put the addrec on the left. Also make a dominance check,
8842   // as both operands could be addrecs loop-invariant in each other's loop.
8843   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8844     const Loop *L = AR->getLoop();
8845     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8846       std::swap(LHS, RHS);
8847       Pred = ICmpInst::getSwappedPredicate(Pred);
8848       Changed = true;
8849     }
8850   }
8851 
8852   // If there's a constant operand, canonicalize comparisons with boundary
8853   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8854   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8855     const APInt &RA = RC->getAPInt();
8856 
8857     bool SimplifiedByConstantRange = false;
8858 
8859     if (!ICmpInst::isEquality(Pred)) {
8860       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8861       if (ExactCR.isFullSet())
8862         return TrivialCase(true);
8863       else if (ExactCR.isEmptySet())
8864         return TrivialCase(false);
8865 
8866       APInt NewRHS;
8867       CmpInst::Predicate NewPred;
8868       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8869           ICmpInst::isEquality(NewPred)) {
8870         // We were able to convert an inequality to an equality.
8871         Pred = NewPred;
8872         RHS = getConstant(NewRHS);
8873         Changed = SimplifiedByConstantRange = true;
8874       }
8875     }
8876 
8877     if (!SimplifiedByConstantRange) {
8878       switch (Pred) {
8879       default:
8880         break;
8881       case ICmpInst::ICMP_EQ:
8882       case ICmpInst::ICMP_NE:
8883         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8884         if (!RA)
8885           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8886             if (const SCEVMulExpr *ME =
8887                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8888               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8889                   ME->getOperand(0)->isAllOnesValue()) {
8890                 RHS = AE->getOperand(1);
8891                 LHS = ME->getOperand(1);
8892                 Changed = true;
8893               }
8894         break;
8895 
8896 
8897         // The "Should have been caught earlier!" messages refer to the fact
8898         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8899         // should have fired on the corresponding cases, and canonicalized the
8900         // check to trivial case.
8901 
8902       case ICmpInst::ICMP_UGE:
8903         assert(!RA.isMinValue() && "Should have been caught earlier!");
8904         Pred = ICmpInst::ICMP_UGT;
8905         RHS = getConstant(RA - 1);
8906         Changed = true;
8907         break;
8908       case ICmpInst::ICMP_ULE:
8909         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8910         Pred = ICmpInst::ICMP_ULT;
8911         RHS = getConstant(RA + 1);
8912         Changed = true;
8913         break;
8914       case ICmpInst::ICMP_SGE:
8915         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8916         Pred = ICmpInst::ICMP_SGT;
8917         RHS = getConstant(RA - 1);
8918         Changed = true;
8919         break;
8920       case ICmpInst::ICMP_SLE:
8921         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8922         Pred = ICmpInst::ICMP_SLT;
8923         RHS = getConstant(RA + 1);
8924         Changed = true;
8925         break;
8926       }
8927     }
8928   }
8929 
8930   // Check for obvious equality.
8931   if (HasSameValue(LHS, RHS)) {
8932     if (ICmpInst::isTrueWhenEqual(Pred))
8933       return TrivialCase(true);
8934     if (ICmpInst::isFalseWhenEqual(Pred))
8935       return TrivialCase(false);
8936   }
8937 
8938   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8939   // adding or subtracting 1 from one of the operands.
8940   switch (Pred) {
8941   case ICmpInst::ICMP_SLE:
8942     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8943       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8944                        SCEV::FlagNSW);
8945       Pred = ICmpInst::ICMP_SLT;
8946       Changed = true;
8947     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8948       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8949                        SCEV::FlagNSW);
8950       Pred = ICmpInst::ICMP_SLT;
8951       Changed = true;
8952     }
8953     break;
8954   case ICmpInst::ICMP_SGE:
8955     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8956       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8957                        SCEV::FlagNSW);
8958       Pred = ICmpInst::ICMP_SGT;
8959       Changed = true;
8960     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8961       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8962                        SCEV::FlagNSW);
8963       Pred = ICmpInst::ICMP_SGT;
8964       Changed = true;
8965     }
8966     break;
8967   case ICmpInst::ICMP_ULE:
8968     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8969       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8970                        SCEV::FlagNUW);
8971       Pred = ICmpInst::ICMP_ULT;
8972       Changed = true;
8973     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8974       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8975       Pred = ICmpInst::ICMP_ULT;
8976       Changed = true;
8977     }
8978     break;
8979   case ICmpInst::ICMP_UGE:
8980     if (!getUnsignedRangeMin(RHS).isMinValue()) {
8981       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8982       Pred = ICmpInst::ICMP_UGT;
8983       Changed = true;
8984     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8985       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8986                        SCEV::FlagNUW);
8987       Pred = ICmpInst::ICMP_UGT;
8988       Changed = true;
8989     }
8990     break;
8991   default:
8992     break;
8993   }
8994 
8995   // TODO: More simplifications are possible here.
8996 
8997   // Recursively simplify until we either hit a recursion limit or nothing
8998   // changes.
8999   if (Changed)
9000     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9001 
9002   return Changed;
9003 }
9004 
9005 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9006   return getSignedRangeMax(S).isNegative();
9007 }
9008 
9009 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9010   return getSignedRangeMin(S).isStrictlyPositive();
9011 }
9012 
9013 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9014   return !getSignedRangeMin(S).isNegative();
9015 }
9016 
9017 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9018   return !getSignedRangeMax(S).isStrictlyPositive();
9019 }
9020 
9021 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9022   return isKnownNegative(S) || isKnownPositive(S);
9023 }
9024 
9025 std::pair<const SCEV *, const SCEV *>
9026 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9027   // Compute SCEV on entry of loop L.
9028   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9029   if (Start == getCouldNotCompute())
9030     return { Start, Start };
9031   // Compute post increment SCEV for loop L.
9032   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9033   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9034   return { Start, PostInc };
9035 }
9036 
9037 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9038                                           const SCEV *LHS, const SCEV *RHS) {
9039   // First collect all loops.
9040   SmallPtrSet<const Loop *, 8> LoopsUsed;
9041   getUsedLoops(LHS, LoopsUsed);
9042   getUsedLoops(RHS, LoopsUsed);
9043 
9044   if (LoopsUsed.empty())
9045     return false;
9046 
9047   // Domination relationship must be a linear order on collected loops.
9048 #ifndef NDEBUG
9049   for (auto *L1 : LoopsUsed)
9050     for (auto *L2 : LoopsUsed)
9051       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9052               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9053              "Domination relationship is not a linear order");
9054 #endif
9055 
9056   const Loop *MDL =
9057       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9058                         [&](const Loop *L1, const Loop *L2) {
9059          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9060        });
9061 
9062   // Get init and post increment value for LHS.
9063   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9064   // if LHS contains unknown non-invariant SCEV then bail out.
9065   if (SplitLHS.first == getCouldNotCompute())
9066     return false;
9067   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9068   // Get init and post increment value for RHS.
9069   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9070   // if RHS contains unknown non-invariant SCEV then bail out.
9071   if (SplitRHS.first == getCouldNotCompute())
9072     return false;
9073   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9074   // It is possible that init SCEV contains an invariant load but it does
9075   // not dominate MDL and is not available at MDL loop entry, so we should
9076   // check it here.
9077   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9078       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9079     return false;
9080 
9081   // It seems backedge guard check is faster than entry one so in some cases
9082   // it can speed up whole estimation by short circuit
9083   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9084                                      SplitRHS.second) &&
9085          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9086 }
9087 
9088 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9089                                        const SCEV *LHS, const SCEV *RHS) {
9090   // Canonicalize the inputs first.
9091   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9092 
9093   if (isKnownViaInduction(Pred, LHS, RHS))
9094     return true;
9095 
9096   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9097     return true;
9098 
9099   // Otherwise see what can be done with some simple reasoning.
9100   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9101 }
9102 
9103 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9104                                          const SCEV *LHS, const SCEV *RHS,
9105                                          const Instruction *Context) {
9106   // TODO: Analyze guards and assumes from Context's block.
9107   return isKnownPredicate(Pred, LHS, RHS) ||
9108          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9109 }
9110 
9111 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9112                                               const SCEVAddRecExpr *LHS,
9113                                               const SCEV *RHS) {
9114   const Loop *L = LHS->getLoop();
9115   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9116          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9117 }
9118 
9119 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9120                                            ICmpInst::Predicate Pred,
9121                                            bool &Increasing) {
9122   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9123 
9124 #ifndef NDEBUG
9125   // Verify an invariant: inverting the predicate should turn a monotonically
9126   // increasing change to a monotonically decreasing one, and vice versa.
9127   bool IncreasingSwapped;
9128   bool ResultSwapped = isMonotonicPredicateImpl(
9129       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9130 
9131   assert(Result == ResultSwapped && "should be able to analyze both!");
9132   if (ResultSwapped)
9133     assert(Increasing == !IncreasingSwapped &&
9134            "monotonicity should flip as we flip the predicate");
9135 #endif
9136 
9137   return Result;
9138 }
9139 
9140 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9141                                                ICmpInst::Predicate Pred,
9142                                                bool &Increasing) {
9143 
9144   // A zero step value for LHS means the induction variable is essentially a
9145   // loop invariant value. We don't really depend on the predicate actually
9146   // flipping from false to true (for increasing predicates, and the other way
9147   // around for decreasing predicates), all we care about is that *if* the
9148   // predicate changes then it only changes from false to true.
9149   //
9150   // A zero step value in itself is not very useful, but there may be places
9151   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9152   // as general as possible.
9153 
9154   switch (Pred) {
9155   default:
9156     return false; // Conservative answer
9157 
9158   case ICmpInst::ICMP_UGT:
9159   case ICmpInst::ICMP_UGE:
9160   case ICmpInst::ICMP_ULT:
9161   case ICmpInst::ICMP_ULE:
9162     if (!LHS->hasNoUnsignedWrap())
9163       return false;
9164 
9165     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9166     return true;
9167 
9168   case ICmpInst::ICMP_SGT:
9169   case ICmpInst::ICMP_SGE:
9170   case ICmpInst::ICMP_SLT:
9171   case ICmpInst::ICMP_SLE: {
9172     if (!LHS->hasNoSignedWrap())
9173       return false;
9174 
9175     const SCEV *Step = LHS->getStepRecurrence(*this);
9176 
9177     if (isKnownNonNegative(Step)) {
9178       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9179       return true;
9180     }
9181 
9182     if (isKnownNonPositive(Step)) {
9183       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9184       return true;
9185     }
9186 
9187     return false;
9188   }
9189 
9190   }
9191 
9192   llvm_unreachable("switch has default clause!");
9193 }
9194 
9195 bool ScalarEvolution::isLoopInvariantPredicate(
9196     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9197     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9198     const SCEV *&InvariantRHS) {
9199 
9200   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9201   if (!isLoopInvariant(RHS, L)) {
9202     if (!isLoopInvariant(LHS, L))
9203       return false;
9204 
9205     std::swap(LHS, RHS);
9206     Pred = ICmpInst::getSwappedPredicate(Pred);
9207   }
9208 
9209   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9210   if (!ArLHS || ArLHS->getLoop() != L)
9211     return false;
9212 
9213   bool Increasing;
9214   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9215     return false;
9216 
9217   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9218   // true as the loop iterates, and the backedge is control dependent on
9219   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9220   //
9221   //   * if the predicate was false in the first iteration then the predicate
9222   //     is never evaluated again, since the loop exits without taking the
9223   //     backedge.
9224   //   * if the predicate was true in the first iteration then it will
9225   //     continue to be true for all future iterations since it is
9226   //     monotonically increasing.
9227   //
9228   // For both the above possibilities, we can replace the loop varying
9229   // predicate with its value on the first iteration of the loop (which is
9230   // loop invariant).
9231   //
9232   // A similar reasoning applies for a monotonically decreasing predicate, by
9233   // replacing true with false and false with true in the above two bullets.
9234 
9235   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9236 
9237   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9238     return false;
9239 
9240   InvariantPred = Pred;
9241   InvariantLHS = ArLHS->getStart();
9242   InvariantRHS = RHS;
9243   return true;
9244 }
9245 
9246 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9247     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9248   if (HasSameValue(LHS, RHS))
9249     return ICmpInst::isTrueWhenEqual(Pred);
9250 
9251   // This code is split out from isKnownPredicate because it is called from
9252   // within isLoopEntryGuardedByCond.
9253 
9254   auto CheckRanges =
9255       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9256     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9257         .contains(RangeLHS);
9258   };
9259 
9260   // The check at the top of the function catches the case where the values are
9261   // known to be equal.
9262   if (Pred == CmpInst::ICMP_EQ)
9263     return false;
9264 
9265   if (Pred == CmpInst::ICMP_NE)
9266     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9267            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9268            isKnownNonZero(getMinusSCEV(LHS, RHS));
9269 
9270   if (CmpInst::isSigned(Pred))
9271     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9272 
9273   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9274 }
9275 
9276 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9277                                                     const SCEV *LHS,
9278                                                     const SCEV *RHS) {
9279   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9280   // Return Y via OutY.
9281   auto MatchBinaryAddToConst =
9282       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9283              SCEV::NoWrapFlags ExpectedFlags) {
9284     const SCEV *NonConstOp, *ConstOp;
9285     SCEV::NoWrapFlags FlagsPresent;
9286 
9287     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9288         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9289       return false;
9290 
9291     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9292     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9293   };
9294 
9295   APInt C;
9296 
9297   switch (Pred) {
9298   default:
9299     break;
9300 
9301   case ICmpInst::ICMP_SGE:
9302     std::swap(LHS, RHS);
9303     LLVM_FALLTHROUGH;
9304   case ICmpInst::ICMP_SLE:
9305     // X s<= (X + C)<nsw> if C >= 0
9306     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9307       return true;
9308 
9309     // (X + C)<nsw> s<= X if C <= 0
9310     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9311         !C.isStrictlyPositive())
9312       return true;
9313     break;
9314 
9315   case ICmpInst::ICMP_SGT:
9316     std::swap(LHS, RHS);
9317     LLVM_FALLTHROUGH;
9318   case ICmpInst::ICMP_SLT:
9319     // X s< (X + C)<nsw> if C > 0
9320     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9321         C.isStrictlyPositive())
9322       return true;
9323 
9324     // (X + C)<nsw> s< X if C < 0
9325     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9326       return true;
9327     break;
9328 
9329   case ICmpInst::ICMP_UGE:
9330     std::swap(LHS, RHS);
9331     LLVM_FALLTHROUGH;
9332   case ICmpInst::ICMP_ULE:
9333     // X u<= (X + C)<nuw> for any C
9334     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9335       return true;
9336     break;
9337 
9338   case ICmpInst::ICMP_UGT:
9339     std::swap(LHS, RHS);
9340     LLVM_FALLTHROUGH;
9341   case ICmpInst::ICMP_ULT:
9342     // X u< (X + C)<nuw> if C != 0
9343     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9344       return true;
9345     break;
9346   }
9347 
9348   return false;
9349 }
9350 
9351 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9352                                                    const SCEV *LHS,
9353                                                    const SCEV *RHS) {
9354   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9355     return false;
9356 
9357   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9358   // the stack can result in exponential time complexity.
9359   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9360 
9361   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9362   //
9363   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9364   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9365   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9366   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9367   // use isKnownPredicate later if needed.
9368   return isKnownNonNegative(RHS) &&
9369          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9370          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9371 }
9372 
9373 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9374                                         ICmpInst::Predicate Pred,
9375                                         const SCEV *LHS, const SCEV *RHS) {
9376   // No need to even try if we know the module has no guards.
9377   if (!HasGuards)
9378     return false;
9379 
9380   return any_of(*BB, [&](const Instruction &I) {
9381     using namespace llvm::PatternMatch;
9382 
9383     Value *Condition;
9384     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9385                          m_Value(Condition))) &&
9386            isImpliedCond(Pred, LHS, RHS, Condition, false);
9387   });
9388 }
9389 
9390 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9391 /// protected by a conditional between LHS and RHS.  This is used to
9392 /// to eliminate casts.
9393 bool
9394 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9395                                              ICmpInst::Predicate Pred,
9396                                              const SCEV *LHS, const SCEV *RHS) {
9397   // Interpret a null as meaning no loop, where there is obviously no guard
9398   // (interprocedural conditions notwithstanding).
9399   if (!L) return true;
9400 
9401   if (VerifyIR)
9402     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9403            "This cannot be done on broken IR!");
9404 
9405 
9406   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9407     return true;
9408 
9409   BasicBlock *Latch = L->getLoopLatch();
9410   if (!Latch)
9411     return false;
9412 
9413   BranchInst *LoopContinuePredicate =
9414     dyn_cast<BranchInst>(Latch->getTerminator());
9415   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9416       isImpliedCond(Pred, LHS, RHS,
9417                     LoopContinuePredicate->getCondition(),
9418                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9419     return true;
9420 
9421   // We don't want more than one activation of the following loops on the stack
9422   // -- that can lead to O(n!) time complexity.
9423   if (WalkingBEDominatingConds)
9424     return false;
9425 
9426   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9427 
9428   // See if we can exploit a trip count to prove the predicate.
9429   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9430   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9431   if (LatchBECount != getCouldNotCompute()) {
9432     // We know that Latch branches back to the loop header exactly
9433     // LatchBECount times.  This means the backdege condition at Latch is
9434     // equivalent to  "{0,+,1} u< LatchBECount".
9435     Type *Ty = LatchBECount->getType();
9436     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9437     const SCEV *LoopCounter =
9438       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9439     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9440                       LatchBECount))
9441       return true;
9442   }
9443 
9444   // Check conditions due to any @llvm.assume intrinsics.
9445   for (auto &AssumeVH : AC.assumptions()) {
9446     if (!AssumeVH)
9447       continue;
9448     auto *CI = cast<CallInst>(AssumeVH);
9449     if (!DT.dominates(CI, Latch->getTerminator()))
9450       continue;
9451 
9452     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9453       return true;
9454   }
9455 
9456   // If the loop is not reachable from the entry block, we risk running into an
9457   // infinite loop as we walk up into the dom tree.  These loops do not matter
9458   // anyway, so we just return a conservative answer when we see them.
9459   if (!DT.isReachableFromEntry(L->getHeader()))
9460     return false;
9461 
9462   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9463     return true;
9464 
9465   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9466        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9467     assert(DTN && "should reach the loop header before reaching the root!");
9468 
9469     BasicBlock *BB = DTN->getBlock();
9470     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9471       return true;
9472 
9473     BasicBlock *PBB = BB->getSinglePredecessor();
9474     if (!PBB)
9475       continue;
9476 
9477     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9478     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9479       continue;
9480 
9481     Value *Condition = ContinuePredicate->getCondition();
9482 
9483     // If we have an edge `E` within the loop body that dominates the only
9484     // latch, the condition guarding `E` also guards the backedge.  This
9485     // reasoning works only for loops with a single latch.
9486 
9487     BasicBlockEdge DominatingEdge(PBB, BB);
9488     if (DominatingEdge.isSingleEdge()) {
9489       // We're constructively (and conservatively) enumerating edges within the
9490       // loop body that dominate the latch.  The dominator tree better agree
9491       // with us on this:
9492       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9493 
9494       if (isImpliedCond(Pred, LHS, RHS, Condition,
9495                         BB != ContinuePredicate->getSuccessor(0)))
9496         return true;
9497     }
9498   }
9499 
9500   return false;
9501 }
9502 
9503 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
9504                                                      ICmpInst::Predicate Pred,
9505                                                      const SCEV *LHS,
9506                                                      const SCEV *RHS) {
9507   if (VerifyIR)
9508     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
9509            "This cannot be done on broken IR!");
9510 
9511   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9512     return true;
9513 
9514   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9515   // the facts (a >= b && a != b) separately. A typical situation is when the
9516   // non-strict comparison is known from ranges and non-equality is known from
9517   // dominating predicates. If we are proving strict comparison, we always try
9518   // to prove non-equality and non-strict comparison separately.
9519   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9520   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9521   bool ProvedNonStrictComparison = false;
9522   bool ProvedNonEquality = false;
9523 
9524   if (ProvingStrictComparison) {
9525     ProvedNonStrictComparison =
9526         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9527     ProvedNonEquality =
9528         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9529     if (ProvedNonStrictComparison && ProvedNonEquality)
9530       return true;
9531   }
9532 
9533   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9534   auto ProveViaGuard = [&](const BasicBlock *Block) {
9535     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9536       return true;
9537     if (ProvingStrictComparison) {
9538       if (!ProvedNonStrictComparison)
9539         ProvedNonStrictComparison =
9540             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9541       if (!ProvedNonEquality)
9542         ProvedNonEquality =
9543             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9544       if (ProvedNonStrictComparison && ProvedNonEquality)
9545         return true;
9546     }
9547     return false;
9548   };
9549 
9550   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9551   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
9552     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9553       return true;
9554     if (ProvingStrictComparison) {
9555       if (!ProvedNonStrictComparison)
9556         ProvedNonStrictComparison =
9557             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9558       if (!ProvedNonEquality)
9559         ProvedNonEquality =
9560             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9561       if (ProvedNonStrictComparison && ProvedNonEquality)
9562         return true;
9563     }
9564     return false;
9565   };
9566 
9567   // Starting at the block's predecessor, climb up the predecessor chain, as long
9568   // as there are predecessors that can be found that have unique successors
9569   // leading to the original block.
9570   const Loop *ContainingLoop = LI.getLoopFor(BB);
9571   const BasicBlock *PredBB;
9572   if (ContainingLoop && ContainingLoop->getHeader() == BB)
9573     PredBB = ContainingLoop->getLoopPredecessor();
9574   else
9575     PredBB = BB->getSinglePredecessor();
9576   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
9577        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9578     if (ProveViaGuard(Pair.first))
9579       return true;
9580 
9581     const BranchInst *LoopEntryPredicate =
9582         dyn_cast<BranchInst>(Pair.first->getTerminator());
9583     if (!LoopEntryPredicate ||
9584         LoopEntryPredicate->isUnconditional())
9585       continue;
9586 
9587     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9588                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9589       return true;
9590   }
9591 
9592   // Check conditions due to any @llvm.assume intrinsics.
9593   for (auto &AssumeVH : AC.assumptions()) {
9594     if (!AssumeVH)
9595       continue;
9596     auto *CI = cast<CallInst>(AssumeVH);
9597     if (!DT.dominates(CI, BB))
9598       continue;
9599 
9600     if (ProveViaCond(CI->getArgOperand(0), false))
9601       return true;
9602   }
9603 
9604   return false;
9605 }
9606 
9607 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9608                                                ICmpInst::Predicate Pred,
9609                                                const SCEV *LHS,
9610                                                const SCEV *RHS) {
9611   // Interpret a null as meaning no loop, where there is obviously no guard
9612   // (interprocedural conditions notwithstanding).
9613   if (!L)
9614     return false;
9615 
9616   // Both LHS and RHS must be available at loop entry.
9617   assert(isAvailableAtLoopEntry(LHS, L) &&
9618          "LHS is not available at Loop Entry");
9619   assert(isAvailableAtLoopEntry(RHS, L) &&
9620          "RHS is not available at Loop Entry");
9621   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
9622 }
9623 
9624 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9625                                     const SCEV *RHS,
9626                                     const Value *FoundCondValue, bool Inverse) {
9627   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9628     return false;
9629 
9630   auto ClearOnExit =
9631       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9632 
9633   // Recursively handle And and Or conditions.
9634   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9635     if (BO->getOpcode() == Instruction::And) {
9636       if (!Inverse)
9637         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9638                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9639     } else if (BO->getOpcode() == Instruction::Or) {
9640       if (Inverse)
9641         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9642                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9643     }
9644   }
9645 
9646   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9647   if (!ICI) return false;
9648 
9649   // Now that we found a conditional branch that dominates the loop or controls
9650   // the loop latch. Check to see if it is the comparison we are looking for.
9651   ICmpInst::Predicate FoundPred;
9652   if (Inverse)
9653     FoundPred = ICI->getInversePredicate();
9654   else
9655     FoundPred = ICI->getPredicate();
9656 
9657   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9658   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9659 
9660   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9661 }
9662 
9663 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9664                                     const SCEV *RHS,
9665                                     ICmpInst::Predicate FoundPred,
9666                                     const SCEV *FoundLHS,
9667                                     const SCEV *FoundRHS) {
9668   // Balance the types.
9669   if (getTypeSizeInBits(LHS->getType()) <
9670       getTypeSizeInBits(FoundLHS->getType())) {
9671     if (CmpInst::isSigned(Pred)) {
9672       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9673       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9674     } else {
9675       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9676       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9677     }
9678   } else if (getTypeSizeInBits(LHS->getType()) >
9679       getTypeSizeInBits(FoundLHS->getType())) {
9680     if (CmpInst::isSigned(FoundPred)) {
9681       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9682       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9683     } else {
9684       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9685       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9686     }
9687   }
9688 
9689   // Canonicalize the query to match the way instcombine will have
9690   // canonicalized the comparison.
9691   if (SimplifyICmpOperands(Pred, LHS, RHS))
9692     if (LHS == RHS)
9693       return CmpInst::isTrueWhenEqual(Pred);
9694   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9695     if (FoundLHS == FoundRHS)
9696       return CmpInst::isFalseWhenEqual(FoundPred);
9697 
9698   // Check to see if we can make the LHS or RHS match.
9699   if (LHS == FoundRHS || RHS == FoundLHS) {
9700     if (isa<SCEVConstant>(RHS)) {
9701       std::swap(FoundLHS, FoundRHS);
9702       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9703     } else {
9704       std::swap(LHS, RHS);
9705       Pred = ICmpInst::getSwappedPredicate(Pred);
9706     }
9707   }
9708 
9709   // Check whether the found predicate is the same as the desired predicate.
9710   if (FoundPred == Pred)
9711     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9712 
9713   // Check whether swapping the found predicate makes it the same as the
9714   // desired predicate.
9715   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9716     if (isa<SCEVConstant>(RHS))
9717       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9718     else
9719       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9720                                    RHS, LHS, FoundLHS, FoundRHS);
9721   }
9722 
9723   // Unsigned comparison is the same as signed comparison when both the operands
9724   // are non-negative.
9725   if (CmpInst::isUnsigned(FoundPred) &&
9726       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9727       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9728     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9729 
9730   // Check if we can make progress by sharpening ranges.
9731   if (FoundPred == ICmpInst::ICMP_NE &&
9732       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9733 
9734     const SCEVConstant *C = nullptr;
9735     const SCEV *V = nullptr;
9736 
9737     if (isa<SCEVConstant>(FoundLHS)) {
9738       C = cast<SCEVConstant>(FoundLHS);
9739       V = FoundRHS;
9740     } else {
9741       C = cast<SCEVConstant>(FoundRHS);
9742       V = FoundLHS;
9743     }
9744 
9745     // The guarding predicate tells us that C != V. If the known range
9746     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9747     // range we consider has to correspond to same signedness as the
9748     // predicate we're interested in folding.
9749 
9750     APInt Min = ICmpInst::isSigned(Pred) ?
9751         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9752 
9753     if (Min == C->getAPInt()) {
9754       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9755       // This is true even if (Min + 1) wraps around -- in case of
9756       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9757 
9758       APInt SharperMin = Min + 1;
9759 
9760       switch (Pred) {
9761         case ICmpInst::ICMP_SGE:
9762         case ICmpInst::ICMP_UGE:
9763           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9764           // RHS, we're done.
9765           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9766                                     getConstant(SharperMin)))
9767             return true;
9768           LLVM_FALLTHROUGH;
9769 
9770         case ICmpInst::ICMP_SGT:
9771         case ICmpInst::ICMP_UGT:
9772           // We know from the range information that (V `Pred` Min ||
9773           // V == Min).  We know from the guarding condition that !(V
9774           // == Min).  This gives us
9775           //
9776           //       V `Pred` Min || V == Min && !(V == Min)
9777           //   =>  V `Pred` Min
9778           //
9779           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9780 
9781           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9782             return true;
9783           break;
9784 
9785         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
9786         case ICmpInst::ICMP_SLE:
9787         case ICmpInst::ICMP_ULE:
9788           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
9789                                     LHS, V, getConstant(SharperMin)))
9790             return true;
9791           LLVM_FALLTHROUGH;
9792 
9793         case ICmpInst::ICMP_SLT:
9794         case ICmpInst::ICMP_ULT:
9795           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
9796                                     LHS, V, getConstant(Min)))
9797             return true;
9798           break;
9799 
9800         default:
9801           // No change
9802           break;
9803       }
9804     }
9805   }
9806 
9807   // Check whether the actual condition is beyond sufficient.
9808   if (FoundPred == ICmpInst::ICMP_EQ)
9809     if (ICmpInst::isTrueWhenEqual(Pred))
9810       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9811         return true;
9812   if (Pred == ICmpInst::ICMP_NE)
9813     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9814       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9815         return true;
9816 
9817   // Otherwise assume the worst.
9818   return false;
9819 }
9820 
9821 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9822                                      const SCEV *&L, const SCEV *&R,
9823                                      SCEV::NoWrapFlags &Flags) {
9824   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9825   if (!AE || AE->getNumOperands() != 2)
9826     return false;
9827 
9828   L = AE->getOperand(0);
9829   R = AE->getOperand(1);
9830   Flags = AE->getNoWrapFlags();
9831   return true;
9832 }
9833 
9834 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9835                                                            const SCEV *Less) {
9836   // We avoid subtracting expressions here because this function is usually
9837   // fairly deep in the call stack (i.e. is called many times).
9838 
9839   // X - X = 0.
9840   if (More == Less)
9841     return APInt(getTypeSizeInBits(More->getType()), 0);
9842 
9843   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9844     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9845     const auto *MAR = cast<SCEVAddRecExpr>(More);
9846 
9847     if (LAR->getLoop() != MAR->getLoop())
9848       return None;
9849 
9850     // We look at affine expressions only; not for correctness but to keep
9851     // getStepRecurrence cheap.
9852     if (!LAR->isAffine() || !MAR->isAffine())
9853       return None;
9854 
9855     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9856       return None;
9857 
9858     Less = LAR->getStart();
9859     More = MAR->getStart();
9860 
9861     // fall through
9862   }
9863 
9864   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9865     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9866     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9867     return M - L;
9868   }
9869 
9870   SCEV::NoWrapFlags Flags;
9871   const SCEV *LLess = nullptr, *RLess = nullptr;
9872   const SCEV *LMore = nullptr, *RMore = nullptr;
9873   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9874   // Compare (X + C1) vs X.
9875   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9876     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9877       if (RLess == More)
9878         return -(C1->getAPInt());
9879 
9880   // Compare X vs (X + C2).
9881   if (splitBinaryAdd(More, LMore, RMore, Flags))
9882     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9883       if (RMore == Less)
9884         return C2->getAPInt();
9885 
9886   // Compare (X + C1) vs (X + C2).
9887   if (C1 && C2 && RLess == RMore)
9888     return C2->getAPInt() - C1->getAPInt();
9889 
9890   return None;
9891 }
9892 
9893 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9894     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9895     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9896   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9897     return false;
9898 
9899   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9900   if (!AddRecLHS)
9901     return false;
9902 
9903   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9904   if (!AddRecFoundLHS)
9905     return false;
9906 
9907   // We'd like to let SCEV reason about control dependencies, so we constrain
9908   // both the inequalities to be about add recurrences on the same loop.  This
9909   // way we can use isLoopEntryGuardedByCond later.
9910 
9911   const Loop *L = AddRecFoundLHS->getLoop();
9912   if (L != AddRecLHS->getLoop())
9913     return false;
9914 
9915   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9916   //
9917   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9918   //                                                                  ... (2)
9919   //
9920   // Informal proof for (2), assuming (1) [*]:
9921   //
9922   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9923   //
9924   // Then
9925   //
9926   //       FoundLHS s< FoundRHS s< INT_MIN - C
9927   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9928   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9929   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9930   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9931   // <=>  FoundLHS + C s< FoundRHS + C
9932   //
9933   // [*]: (1) can be proved by ruling out overflow.
9934   //
9935   // [**]: This can be proved by analyzing all the four possibilities:
9936   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9937   //    (A s>= 0, B s>= 0).
9938   //
9939   // Note:
9940   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9941   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9942   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9943   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9944   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9945   // C)".
9946 
9947   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9948   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9949   if (!LDiff || !RDiff || *LDiff != *RDiff)
9950     return false;
9951 
9952   if (LDiff->isMinValue())
9953     return true;
9954 
9955   APInt FoundRHSLimit;
9956 
9957   if (Pred == CmpInst::ICMP_ULT) {
9958     FoundRHSLimit = -(*RDiff);
9959   } else {
9960     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9961     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9962   }
9963 
9964   // Try to prove (1) or (2), as needed.
9965   return isAvailableAtLoopEntry(FoundRHS, L) &&
9966          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9967                                   getConstant(FoundRHSLimit));
9968 }
9969 
9970 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9971                                         const SCEV *LHS, const SCEV *RHS,
9972                                         const SCEV *FoundLHS,
9973                                         const SCEV *FoundRHS, unsigned Depth) {
9974   const PHINode *LPhi = nullptr, *RPhi = nullptr;
9975 
9976   auto ClearOnExit = make_scope_exit([&]() {
9977     if (LPhi) {
9978       bool Erased = PendingMerges.erase(LPhi);
9979       assert(Erased && "Failed to erase LPhi!");
9980       (void)Erased;
9981     }
9982     if (RPhi) {
9983       bool Erased = PendingMerges.erase(RPhi);
9984       assert(Erased && "Failed to erase RPhi!");
9985       (void)Erased;
9986     }
9987   });
9988 
9989   // Find respective Phis and check that they are not being pending.
9990   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9991     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9992       if (!PendingMerges.insert(Phi).second)
9993         return false;
9994       LPhi = Phi;
9995     }
9996   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9997     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9998       // If we detect a loop of Phi nodes being processed by this method, for
9999       // example:
10000       //
10001       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10002       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10003       //
10004       // we don't want to deal with a case that complex, so return conservative
10005       // answer false.
10006       if (!PendingMerges.insert(Phi).second)
10007         return false;
10008       RPhi = Phi;
10009     }
10010 
10011   // If none of LHS, RHS is a Phi, nothing to do here.
10012   if (!LPhi && !RPhi)
10013     return false;
10014 
10015   // If there is a SCEVUnknown Phi we are interested in, make it left.
10016   if (!LPhi) {
10017     std::swap(LHS, RHS);
10018     std::swap(FoundLHS, FoundRHS);
10019     std::swap(LPhi, RPhi);
10020     Pred = ICmpInst::getSwappedPredicate(Pred);
10021   }
10022 
10023   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10024   const BasicBlock *LBB = LPhi->getParent();
10025   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10026 
10027   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10028     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10029            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10030            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10031   };
10032 
10033   if (RPhi && RPhi->getParent() == LBB) {
10034     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10035     // If we compare two Phis from the same block, and for each entry block
10036     // the predicate is true for incoming values from this block, then the
10037     // predicate is also true for the Phis.
10038     for (const BasicBlock *IncBB : predecessors(LBB)) {
10039       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10040       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10041       if (!ProvedEasily(L, R))
10042         return false;
10043     }
10044   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10045     // Case two: RHS is also a Phi from the same basic block, and it is an
10046     // AddRec. It means that there is a loop which has both AddRec and Unknown
10047     // PHIs, for it we can compare incoming values of AddRec from above the loop
10048     // and latch with their respective incoming values of LPhi.
10049     // TODO: Generalize to handle loops with many inputs in a header.
10050     if (LPhi->getNumIncomingValues() != 2) return false;
10051 
10052     auto *RLoop = RAR->getLoop();
10053     auto *Predecessor = RLoop->getLoopPredecessor();
10054     assert(Predecessor && "Loop with AddRec with no predecessor?");
10055     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10056     if (!ProvedEasily(L1, RAR->getStart()))
10057       return false;
10058     auto *Latch = RLoop->getLoopLatch();
10059     assert(Latch && "Loop with AddRec with no latch?");
10060     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10061     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10062       return false;
10063   } else {
10064     // In all other cases go over inputs of LHS and compare each of them to RHS,
10065     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10066     // At this point RHS is either a non-Phi, or it is a Phi from some block
10067     // different from LBB.
10068     for (const BasicBlock *IncBB : predecessors(LBB)) {
10069       // Check that RHS is available in this block.
10070       if (!dominates(RHS, IncBB))
10071         return false;
10072       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10073       if (!ProvedEasily(L, RHS))
10074         return false;
10075     }
10076   }
10077   return true;
10078 }
10079 
10080 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10081                                             const SCEV *LHS, const SCEV *RHS,
10082                                             const SCEV *FoundLHS,
10083                                             const SCEV *FoundRHS) {
10084   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10085     return true;
10086 
10087   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10088     return true;
10089 
10090   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10091                                      FoundLHS, FoundRHS) ||
10092          // ~x < ~y --> x > y
10093          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10094                                      getNotSCEV(FoundRHS),
10095                                      getNotSCEV(FoundLHS));
10096 }
10097 
10098 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10099 template <typename MinMaxExprType>
10100 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10101                                  const SCEV *Candidate) {
10102   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10103   if (!MinMaxExpr)
10104     return false;
10105 
10106   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10107 }
10108 
10109 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10110                                            ICmpInst::Predicate Pred,
10111                                            const SCEV *LHS, const SCEV *RHS) {
10112   // If both sides are affine addrecs for the same loop, with equal
10113   // steps, and we know the recurrences don't wrap, then we only
10114   // need to check the predicate on the starting values.
10115 
10116   if (!ICmpInst::isRelational(Pred))
10117     return false;
10118 
10119   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10120   if (!LAR)
10121     return false;
10122   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10123   if (!RAR)
10124     return false;
10125   if (LAR->getLoop() != RAR->getLoop())
10126     return false;
10127   if (!LAR->isAffine() || !RAR->isAffine())
10128     return false;
10129 
10130   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10131     return false;
10132 
10133   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10134                          SCEV::FlagNSW : SCEV::FlagNUW;
10135   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10136     return false;
10137 
10138   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10139 }
10140 
10141 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10142 /// expression?
10143 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10144                                         ICmpInst::Predicate Pred,
10145                                         const SCEV *LHS, const SCEV *RHS) {
10146   switch (Pred) {
10147   default:
10148     return false;
10149 
10150   case ICmpInst::ICMP_SGE:
10151     std::swap(LHS, RHS);
10152     LLVM_FALLTHROUGH;
10153   case ICmpInst::ICMP_SLE:
10154     return
10155         // min(A, ...) <= A
10156         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10157         // A <= max(A, ...)
10158         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10159 
10160   case ICmpInst::ICMP_UGE:
10161     std::swap(LHS, RHS);
10162     LLVM_FALLTHROUGH;
10163   case ICmpInst::ICMP_ULE:
10164     return
10165         // min(A, ...) <= A
10166         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10167         // A <= max(A, ...)
10168         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10169   }
10170 
10171   llvm_unreachable("covered switch fell through?!");
10172 }
10173 
10174 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10175                                              const SCEV *LHS, const SCEV *RHS,
10176                                              const SCEV *FoundLHS,
10177                                              const SCEV *FoundRHS,
10178                                              unsigned Depth) {
10179   assert(getTypeSizeInBits(LHS->getType()) ==
10180              getTypeSizeInBits(RHS->getType()) &&
10181          "LHS and RHS have different sizes?");
10182   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10183              getTypeSizeInBits(FoundRHS->getType()) &&
10184          "FoundLHS and FoundRHS have different sizes?");
10185   // We want to avoid hurting the compile time with analysis of too big trees.
10186   if (Depth > MaxSCEVOperationsImplicationDepth)
10187     return false;
10188 
10189   // We only want to work with GT comparison so far.
10190   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10191     Pred = CmpInst::getSwappedPredicate(Pred);
10192     std::swap(LHS, RHS);
10193     std::swap(FoundLHS, FoundRHS);
10194   }
10195 
10196   // For unsigned, try to reduce it to corresponding signed comparison.
10197   if (Pred == ICmpInst::ICMP_UGT)
10198     // We can replace unsigned predicate with its signed counterpart if all
10199     // involved values are non-negative.
10200     // TODO: We could have better support for unsigned.
10201     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10202       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10203       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10204       // use this fact to prove that LHS and RHS are non-negative.
10205       const SCEV *MinusOne = getNegativeSCEV(getOne(LHS->getType()));
10206       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10207                                 FoundRHS) &&
10208           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10209                                 FoundRHS))
10210         Pred = ICmpInst::ICMP_SGT;
10211     }
10212 
10213   if (Pred != ICmpInst::ICMP_SGT)
10214     return false;
10215 
10216   auto GetOpFromSExt = [&](const SCEV *S) {
10217     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10218       return Ext->getOperand();
10219     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10220     // the constant in some cases.
10221     return S;
10222   };
10223 
10224   // Acquire values from extensions.
10225   auto *OrigLHS = LHS;
10226   auto *OrigFoundLHS = FoundLHS;
10227   LHS = GetOpFromSExt(LHS);
10228   FoundLHS = GetOpFromSExt(FoundLHS);
10229 
10230   // Is the SGT predicate can be proved trivially or using the found context.
10231   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10232     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10233            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10234                                   FoundRHS, Depth + 1);
10235   };
10236 
10237   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10238     // We want to avoid creation of any new non-constant SCEV. Since we are
10239     // going to compare the operands to RHS, we should be certain that we don't
10240     // need any size extensions for this. So let's decline all cases when the
10241     // sizes of types of LHS and RHS do not match.
10242     // TODO: Maybe try to get RHS from sext to catch more cases?
10243     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10244       return false;
10245 
10246     // Should not overflow.
10247     if (!LHSAddExpr->hasNoSignedWrap())
10248       return false;
10249 
10250     auto *LL = LHSAddExpr->getOperand(0);
10251     auto *LR = LHSAddExpr->getOperand(1);
10252     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10253 
10254     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10255     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10256       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10257     };
10258     // Try to prove the following rule:
10259     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10260     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10261     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10262       return true;
10263   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10264     Value *LL, *LR;
10265     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10266 
10267     using namespace llvm::PatternMatch;
10268 
10269     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10270       // Rules for division.
10271       // We are going to perform some comparisons with Denominator and its
10272       // derivative expressions. In general case, creating a SCEV for it may
10273       // lead to a complex analysis of the entire graph, and in particular it
10274       // can request trip count recalculation for the same loop. This would
10275       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10276       // this, we only want to create SCEVs that are constants in this section.
10277       // So we bail if Denominator is not a constant.
10278       if (!isa<ConstantInt>(LR))
10279         return false;
10280 
10281       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10282 
10283       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10284       // then a SCEV for the numerator already exists and matches with FoundLHS.
10285       auto *Numerator = getExistingSCEV(LL);
10286       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10287         return false;
10288 
10289       // Make sure that the numerator matches with FoundLHS and the denominator
10290       // is positive.
10291       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10292         return false;
10293 
10294       auto *DTy = Denominator->getType();
10295       auto *FRHSTy = FoundRHS->getType();
10296       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10297         // One of types is a pointer and another one is not. We cannot extend
10298         // them properly to a wider type, so let us just reject this case.
10299         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10300         // to avoid this check.
10301         return false;
10302 
10303       // Given that:
10304       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10305       auto *WTy = getWiderType(DTy, FRHSTy);
10306       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10307       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10308 
10309       // Try to prove the following rule:
10310       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10311       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10312       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10313       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10314       if (isKnownNonPositive(RHS) &&
10315           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10316         return true;
10317 
10318       // Try to prove the following rule:
10319       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10320       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10321       // If we divide it by Denominator > 2, then:
10322       // 1. If FoundLHS is negative, then the result is 0.
10323       // 2. If FoundLHS is non-negative, then the result is non-negative.
10324       // Anyways, the result is non-negative.
10325       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10326       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10327       if (isKnownNegative(RHS) &&
10328           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10329         return true;
10330     }
10331   }
10332 
10333   // If our expression contained SCEVUnknown Phis, and we split it down and now
10334   // need to prove something for them, try to prove the predicate for every
10335   // possible incoming values of those Phis.
10336   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10337     return true;
10338 
10339   return false;
10340 }
10341 
10342 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10343                                         const SCEV *LHS, const SCEV *RHS) {
10344   // zext x u<= sext x, sext x s<= zext x
10345   switch (Pred) {
10346   case ICmpInst::ICMP_SGE:
10347     std::swap(LHS, RHS);
10348     LLVM_FALLTHROUGH;
10349   case ICmpInst::ICMP_SLE: {
10350     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10351     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10352     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10353     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10354       return true;
10355     break;
10356   }
10357   case ICmpInst::ICMP_UGE:
10358     std::swap(LHS, RHS);
10359     LLVM_FALLTHROUGH;
10360   case ICmpInst::ICMP_ULE: {
10361     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10362     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10363     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10364     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10365       return true;
10366     break;
10367   }
10368   default:
10369     break;
10370   };
10371   return false;
10372 }
10373 
10374 bool
10375 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10376                                            const SCEV *LHS, const SCEV *RHS) {
10377   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10378          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10379          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10380          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10381          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10382 }
10383 
10384 bool
10385 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10386                                              const SCEV *LHS, const SCEV *RHS,
10387                                              const SCEV *FoundLHS,
10388                                              const SCEV *FoundRHS) {
10389   switch (Pred) {
10390   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10391   case ICmpInst::ICMP_EQ:
10392   case ICmpInst::ICMP_NE:
10393     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10394       return true;
10395     break;
10396   case ICmpInst::ICMP_SLT:
10397   case ICmpInst::ICMP_SLE:
10398     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10399         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10400       return true;
10401     break;
10402   case ICmpInst::ICMP_SGT:
10403   case ICmpInst::ICMP_SGE:
10404     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10405         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10406       return true;
10407     break;
10408   case ICmpInst::ICMP_ULT:
10409   case ICmpInst::ICMP_ULE:
10410     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10411         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10412       return true;
10413     break;
10414   case ICmpInst::ICMP_UGT:
10415   case ICmpInst::ICMP_UGE:
10416     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10417         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10418       return true;
10419     break;
10420   }
10421 
10422   // Maybe it can be proved via operations?
10423   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10424     return true;
10425 
10426   return false;
10427 }
10428 
10429 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10430                                                      const SCEV *LHS,
10431                                                      const SCEV *RHS,
10432                                                      const SCEV *FoundLHS,
10433                                                      const SCEV *FoundRHS) {
10434   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10435     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10436     // reduce the compile time impact of this optimization.
10437     return false;
10438 
10439   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10440   if (!Addend)
10441     return false;
10442 
10443   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10444 
10445   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10446   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10447   ConstantRange FoundLHSRange =
10448       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10449 
10450   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10451   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10452 
10453   // We can also compute the range of values for `LHS` that satisfy the
10454   // consequent, "`LHS` `Pred` `RHS`":
10455   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10456   ConstantRange SatisfyingLHSRange =
10457       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10458 
10459   // The antecedent implies the consequent if every value of `LHS` that
10460   // satisfies the antecedent also satisfies the consequent.
10461   return SatisfyingLHSRange.contains(LHSRange);
10462 }
10463 
10464 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10465                                          bool IsSigned, bool NoWrap) {
10466   assert(isKnownPositive(Stride) && "Positive stride expected!");
10467 
10468   if (NoWrap) return false;
10469 
10470   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10471   const SCEV *One = getOne(Stride->getType());
10472 
10473   if (IsSigned) {
10474     APInt MaxRHS = getSignedRangeMax(RHS);
10475     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10476     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10477 
10478     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10479     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10480   }
10481 
10482   APInt MaxRHS = getUnsignedRangeMax(RHS);
10483   APInt MaxValue = APInt::getMaxValue(BitWidth);
10484   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10485 
10486   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10487   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10488 }
10489 
10490 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10491                                          bool IsSigned, bool NoWrap) {
10492   if (NoWrap) return false;
10493 
10494   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10495   const SCEV *One = getOne(Stride->getType());
10496 
10497   if (IsSigned) {
10498     APInt MinRHS = getSignedRangeMin(RHS);
10499     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10500     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10501 
10502     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10503     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10504   }
10505 
10506   APInt MinRHS = getUnsignedRangeMin(RHS);
10507   APInt MinValue = APInt::getMinValue(BitWidth);
10508   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10509 
10510   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10511   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10512 }
10513 
10514 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10515                                             bool Equality) {
10516   const SCEV *One = getOne(Step->getType());
10517   Delta = Equality ? getAddExpr(Delta, Step)
10518                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10519   return getUDivExpr(Delta, Step);
10520 }
10521 
10522 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10523                                                     const SCEV *Stride,
10524                                                     const SCEV *End,
10525                                                     unsigned BitWidth,
10526                                                     bool IsSigned) {
10527 
10528   assert(!isKnownNonPositive(Stride) &&
10529          "Stride is expected strictly positive!");
10530   // Calculate the maximum backedge count based on the range of values
10531   // permitted by Start, End, and Stride.
10532   const SCEV *MaxBECount;
10533   APInt MinStart =
10534       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10535 
10536   APInt StrideForMaxBECount =
10537       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10538 
10539   // We already know that the stride is positive, so we paper over conservatism
10540   // in our range computation by forcing StrideForMaxBECount to be at least one.
10541   // In theory this is unnecessary, but we expect MaxBECount to be a
10542   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10543   // is nothing to constant fold it to).
10544   APInt One(BitWidth, 1, IsSigned);
10545   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10546 
10547   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10548                             : APInt::getMaxValue(BitWidth);
10549   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10550 
10551   // Although End can be a MAX expression we estimate MaxEnd considering only
10552   // the case End = RHS of the loop termination condition. This is safe because
10553   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10554   // taken count.
10555   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10556                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10557 
10558   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10559                               getConstant(StrideForMaxBECount) /* Step */,
10560                               false /* Equality */);
10561 
10562   return MaxBECount;
10563 }
10564 
10565 ScalarEvolution::ExitLimit
10566 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10567                                   const Loop *L, bool IsSigned,
10568                                   bool ControlsExit, bool AllowPredicates) {
10569   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10570 
10571   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10572   bool PredicatedIV = false;
10573 
10574   if (!IV && AllowPredicates) {
10575     // Try to make this an AddRec using runtime tests, in the first X
10576     // iterations of this loop, where X is the SCEV expression found by the
10577     // algorithm below.
10578     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10579     PredicatedIV = true;
10580   }
10581 
10582   // Avoid weird loops
10583   if (!IV || IV->getLoop() != L || !IV->isAffine())
10584     return getCouldNotCompute();
10585 
10586   bool NoWrap = ControlsExit &&
10587                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10588 
10589   const SCEV *Stride = IV->getStepRecurrence(*this);
10590 
10591   bool PositiveStride = isKnownPositive(Stride);
10592 
10593   // Avoid negative or zero stride values.
10594   if (!PositiveStride) {
10595     // We can compute the correct backedge taken count for loops with unknown
10596     // strides if we can prove that the loop is not an infinite loop with side
10597     // effects. Here's the loop structure we are trying to handle -
10598     //
10599     // i = start
10600     // do {
10601     //   A[i] = i;
10602     //   i += s;
10603     // } while (i < end);
10604     //
10605     // The backedge taken count for such loops is evaluated as -
10606     // (max(end, start + stride) - start - 1) /u stride
10607     //
10608     // The additional preconditions that we need to check to prove correctness
10609     // of the above formula is as follows -
10610     //
10611     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10612     //    NoWrap flag).
10613     // b) loop is single exit with no side effects.
10614     //
10615     //
10616     // Precondition a) implies that if the stride is negative, this is a single
10617     // trip loop. The backedge taken count formula reduces to zero in this case.
10618     //
10619     // Precondition b) implies that the unknown stride cannot be zero otherwise
10620     // we have UB.
10621     //
10622     // The positive stride case is the same as isKnownPositive(Stride) returning
10623     // true (original behavior of the function).
10624     //
10625     // We want to make sure that the stride is truly unknown as there are edge
10626     // cases where ScalarEvolution propagates no wrap flags to the
10627     // post-increment/decrement IV even though the increment/decrement operation
10628     // itself is wrapping. The computed backedge taken count may be wrong in
10629     // such cases. This is prevented by checking that the stride is not known to
10630     // be either positive or non-positive. For example, no wrap flags are
10631     // propagated to the post-increment IV of this loop with a trip count of 2 -
10632     //
10633     // unsigned char i;
10634     // for(i=127; i<128; i+=129)
10635     //   A[i] = i;
10636     //
10637     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10638         !loopHasNoSideEffects(L))
10639       return getCouldNotCompute();
10640   } else if (!Stride->isOne() &&
10641              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10642     // Avoid proven overflow cases: this will ensure that the backedge taken
10643     // count will not generate any unsigned overflow. Relaxed no-overflow
10644     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10645     // undefined behaviors like the case of C language.
10646     return getCouldNotCompute();
10647 
10648   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10649                                       : ICmpInst::ICMP_ULT;
10650   const SCEV *Start = IV->getStart();
10651   const SCEV *End = RHS;
10652   // When the RHS is not invariant, we do not know the end bound of the loop and
10653   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10654   // calculate the MaxBECount, given the start, stride and max value for the end
10655   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10656   // checked above).
10657   if (!isLoopInvariant(RHS, L)) {
10658     const SCEV *MaxBECount = computeMaxBECountForLT(
10659         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10660     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10661                      false /*MaxOrZero*/, Predicates);
10662   }
10663   // If the backedge is taken at least once, then it will be taken
10664   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10665   // is the LHS value of the less-than comparison the first time it is evaluated
10666   // and End is the RHS.
10667   const SCEV *BECountIfBackedgeTaken =
10668     computeBECount(getMinusSCEV(End, Start), Stride, false);
10669   // If the loop entry is guarded by the result of the backedge test of the
10670   // first loop iteration, then we know the backedge will be taken at least
10671   // once and so the backedge taken count is as above. If not then we use the
10672   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10673   // as if the backedge is taken at least once max(End,Start) is End and so the
10674   // result is as above, and if not max(End,Start) is Start so we get a backedge
10675   // count of zero.
10676   const SCEV *BECount;
10677   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10678     BECount = BECountIfBackedgeTaken;
10679   else {
10680     // If we know that RHS >= Start in the context of loop, then we know that
10681     // max(RHS, Start) = RHS at this point.
10682     if (isLoopEntryGuardedByCond(
10683             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
10684       End = RHS;
10685     else
10686       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10687     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10688   }
10689 
10690   const SCEV *MaxBECount;
10691   bool MaxOrZero = false;
10692   if (isa<SCEVConstant>(BECount))
10693     MaxBECount = BECount;
10694   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10695     // If we know exactly how many times the backedge will be taken if it's
10696     // taken at least once, then the backedge count will either be that or
10697     // zero.
10698     MaxBECount = BECountIfBackedgeTaken;
10699     MaxOrZero = true;
10700   } else {
10701     MaxBECount = computeMaxBECountForLT(
10702         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10703   }
10704 
10705   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10706       !isa<SCEVCouldNotCompute>(BECount))
10707     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10708 
10709   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10710 }
10711 
10712 ScalarEvolution::ExitLimit
10713 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10714                                      const Loop *L, bool IsSigned,
10715                                      bool ControlsExit, bool AllowPredicates) {
10716   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10717   // We handle only IV > Invariant
10718   if (!isLoopInvariant(RHS, L))
10719     return getCouldNotCompute();
10720 
10721   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10722   if (!IV && AllowPredicates)
10723     // Try to make this an AddRec using runtime tests, in the first X
10724     // iterations of this loop, where X is the SCEV expression found by the
10725     // algorithm below.
10726     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10727 
10728   // Avoid weird loops
10729   if (!IV || IV->getLoop() != L || !IV->isAffine())
10730     return getCouldNotCompute();
10731 
10732   bool NoWrap = ControlsExit &&
10733                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10734 
10735   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10736 
10737   // Avoid negative or zero stride values
10738   if (!isKnownPositive(Stride))
10739     return getCouldNotCompute();
10740 
10741   // Avoid proven overflow cases: this will ensure that the backedge taken count
10742   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10743   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10744   // behaviors like the case of C language.
10745   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10746     return getCouldNotCompute();
10747 
10748   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10749                                       : ICmpInst::ICMP_UGT;
10750 
10751   const SCEV *Start = IV->getStart();
10752   const SCEV *End = RHS;
10753   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
10754     // If we know that Start >= RHS in the context of loop, then we know that
10755     // min(RHS, Start) = RHS at this point.
10756     if (isLoopEntryGuardedByCond(
10757             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
10758       End = RHS;
10759     else
10760       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10761   }
10762 
10763   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10764 
10765   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10766                             : getUnsignedRangeMax(Start);
10767 
10768   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10769                              : getUnsignedRangeMin(Stride);
10770 
10771   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10772   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10773                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10774 
10775   // Although End can be a MIN expression we estimate MinEnd considering only
10776   // the case End = RHS. This is safe because in the other case (Start - End)
10777   // is zero, leading to a zero maximum backedge taken count.
10778   APInt MinEnd =
10779     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10780              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10781 
10782   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10783                                ? BECount
10784                                : computeBECount(getConstant(MaxStart - MinEnd),
10785                                                 getConstant(MinStride), false);
10786 
10787   if (isa<SCEVCouldNotCompute>(MaxBECount))
10788     MaxBECount = BECount;
10789 
10790   return ExitLimit(BECount, MaxBECount, false, Predicates);
10791 }
10792 
10793 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10794                                                     ScalarEvolution &SE) const {
10795   if (Range.isFullSet())  // Infinite loop.
10796     return SE.getCouldNotCompute();
10797 
10798   // If the start is a non-zero constant, shift the range to simplify things.
10799   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10800     if (!SC->getValue()->isZero()) {
10801       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10802       Operands[0] = SE.getZero(SC->getType());
10803       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10804                                              getNoWrapFlags(FlagNW));
10805       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10806         return ShiftedAddRec->getNumIterationsInRange(
10807             Range.subtract(SC->getAPInt()), SE);
10808       // This is strange and shouldn't happen.
10809       return SE.getCouldNotCompute();
10810     }
10811 
10812   // The only time we can solve this is when we have all constant indices.
10813   // Otherwise, we cannot determine the overflow conditions.
10814   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10815     return SE.getCouldNotCompute();
10816 
10817   // Okay at this point we know that all elements of the chrec are constants and
10818   // that the start element is zero.
10819 
10820   // First check to see if the range contains zero.  If not, the first
10821   // iteration exits.
10822   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10823   if (!Range.contains(APInt(BitWidth, 0)))
10824     return SE.getZero(getType());
10825 
10826   if (isAffine()) {
10827     // If this is an affine expression then we have this situation:
10828     //   Solve {0,+,A} in Range  ===  Ax in Range
10829 
10830     // We know that zero is in the range.  If A is positive then we know that
10831     // the upper value of the range must be the first possible exit value.
10832     // If A is negative then the lower of the range is the last possible loop
10833     // value.  Also note that we already checked for a full range.
10834     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10835     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10836 
10837     // The exit value should be (End+A)/A.
10838     APInt ExitVal = (End + A).udiv(A);
10839     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10840 
10841     // Evaluate at the exit value.  If we really did fall out of the valid
10842     // range, then we computed our trip count, otherwise wrap around or other
10843     // things must have happened.
10844     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10845     if (Range.contains(Val->getValue()))
10846       return SE.getCouldNotCompute();  // Something strange happened
10847 
10848     // Ensure that the previous value is in the range.  This is a sanity check.
10849     assert(Range.contains(
10850            EvaluateConstantChrecAtConstant(this,
10851            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10852            "Linear scev computation is off in a bad way!");
10853     return SE.getConstant(ExitValue);
10854   }
10855 
10856   if (isQuadratic()) {
10857     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10858       return SE.getConstant(S.getValue());
10859   }
10860 
10861   return SE.getCouldNotCompute();
10862 }
10863 
10864 const SCEVAddRecExpr *
10865 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10866   assert(getNumOperands() > 1 && "AddRec with zero step?");
10867   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10868   // but in this case we cannot guarantee that the value returned will be an
10869   // AddRec because SCEV does not have a fixed point where it stops
10870   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10871   // may happen if we reach arithmetic depth limit while simplifying. So we
10872   // construct the returned value explicitly.
10873   SmallVector<const SCEV *, 3> Ops;
10874   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10875   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10876   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10877     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10878   // We know that the last operand is not a constant zero (otherwise it would
10879   // have been popped out earlier). This guarantees us that if the result has
10880   // the same last operand, then it will also not be popped out, meaning that
10881   // the returned value will be an AddRec.
10882   const SCEV *Last = getOperand(getNumOperands() - 1);
10883   assert(!Last->isZero() && "Recurrency with zero step?");
10884   Ops.push_back(Last);
10885   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10886                                                SCEV::FlagAnyWrap));
10887 }
10888 
10889 // Return true when S contains at least an undef value.
10890 static inline bool containsUndefs(const SCEV *S) {
10891   return SCEVExprContains(S, [](const SCEV *S) {
10892     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10893       return isa<UndefValue>(SU->getValue());
10894     return false;
10895   });
10896 }
10897 
10898 namespace {
10899 
10900 // Collect all steps of SCEV expressions.
10901 struct SCEVCollectStrides {
10902   ScalarEvolution &SE;
10903   SmallVectorImpl<const SCEV *> &Strides;
10904 
10905   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10906       : SE(SE), Strides(S) {}
10907 
10908   bool follow(const SCEV *S) {
10909     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10910       Strides.push_back(AR->getStepRecurrence(SE));
10911     return true;
10912   }
10913 
10914   bool isDone() const { return false; }
10915 };
10916 
10917 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10918 struct SCEVCollectTerms {
10919   SmallVectorImpl<const SCEV *> &Terms;
10920 
10921   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10922 
10923   bool follow(const SCEV *S) {
10924     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10925         isa<SCEVSignExtendExpr>(S)) {
10926       if (!containsUndefs(S))
10927         Terms.push_back(S);
10928 
10929       // Stop recursion: once we collected a term, do not walk its operands.
10930       return false;
10931     }
10932 
10933     // Keep looking.
10934     return true;
10935   }
10936 
10937   bool isDone() const { return false; }
10938 };
10939 
10940 // Check if a SCEV contains an AddRecExpr.
10941 struct SCEVHasAddRec {
10942   bool &ContainsAddRec;
10943 
10944   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10945     ContainsAddRec = false;
10946   }
10947 
10948   bool follow(const SCEV *S) {
10949     if (isa<SCEVAddRecExpr>(S)) {
10950       ContainsAddRec = true;
10951 
10952       // Stop recursion: once we collected a term, do not walk its operands.
10953       return false;
10954     }
10955 
10956     // Keep looking.
10957     return true;
10958   }
10959 
10960   bool isDone() const { return false; }
10961 };
10962 
10963 // Find factors that are multiplied with an expression that (possibly as a
10964 // subexpression) contains an AddRecExpr. In the expression:
10965 //
10966 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10967 //
10968 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10969 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10970 // parameters as they form a product with an induction variable.
10971 //
10972 // This collector expects all array size parameters to be in the same MulExpr.
10973 // It might be necessary to later add support for collecting parameters that are
10974 // spread over different nested MulExpr.
10975 struct SCEVCollectAddRecMultiplies {
10976   SmallVectorImpl<const SCEV *> &Terms;
10977   ScalarEvolution &SE;
10978 
10979   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10980       : Terms(T), SE(SE) {}
10981 
10982   bool follow(const SCEV *S) {
10983     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10984       bool HasAddRec = false;
10985       SmallVector<const SCEV *, 0> Operands;
10986       for (auto Op : Mul->operands()) {
10987         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10988         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10989           Operands.push_back(Op);
10990         } else if (Unknown) {
10991           HasAddRec = true;
10992         } else {
10993           bool ContainsAddRec = false;
10994           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10995           visitAll(Op, ContiansAddRec);
10996           HasAddRec |= ContainsAddRec;
10997         }
10998       }
10999       if (Operands.size() == 0)
11000         return true;
11001 
11002       if (!HasAddRec)
11003         return false;
11004 
11005       Terms.push_back(SE.getMulExpr(Operands));
11006       // Stop recursion: once we collected a term, do not walk its operands.
11007       return false;
11008     }
11009 
11010     // Keep looking.
11011     return true;
11012   }
11013 
11014   bool isDone() const { return false; }
11015 };
11016 
11017 } // end anonymous namespace
11018 
11019 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11020 /// two places:
11021 ///   1) The strides of AddRec expressions.
11022 ///   2) Unknowns that are multiplied with AddRec expressions.
11023 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11024     SmallVectorImpl<const SCEV *> &Terms) {
11025   SmallVector<const SCEV *, 4> Strides;
11026   SCEVCollectStrides StrideCollector(*this, Strides);
11027   visitAll(Expr, StrideCollector);
11028 
11029   LLVM_DEBUG({
11030     dbgs() << "Strides:\n";
11031     for (const SCEV *S : Strides)
11032       dbgs() << *S << "\n";
11033   });
11034 
11035   for (const SCEV *S : Strides) {
11036     SCEVCollectTerms TermCollector(Terms);
11037     visitAll(S, TermCollector);
11038   }
11039 
11040   LLVM_DEBUG({
11041     dbgs() << "Terms:\n";
11042     for (const SCEV *T : Terms)
11043       dbgs() << *T << "\n";
11044   });
11045 
11046   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11047   visitAll(Expr, MulCollector);
11048 }
11049 
11050 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11051                                    SmallVectorImpl<const SCEV *> &Terms,
11052                                    SmallVectorImpl<const SCEV *> &Sizes) {
11053   int Last = Terms.size() - 1;
11054   const SCEV *Step = Terms[Last];
11055 
11056   // End of recursion.
11057   if (Last == 0) {
11058     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11059       SmallVector<const SCEV *, 2> Qs;
11060       for (const SCEV *Op : M->operands())
11061         if (!isa<SCEVConstant>(Op))
11062           Qs.push_back(Op);
11063 
11064       Step = SE.getMulExpr(Qs);
11065     }
11066 
11067     Sizes.push_back(Step);
11068     return true;
11069   }
11070 
11071   for (const SCEV *&Term : Terms) {
11072     // Normalize the terms before the next call to findArrayDimensionsRec.
11073     const SCEV *Q, *R;
11074     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11075 
11076     // Bail out when GCD does not evenly divide one of the terms.
11077     if (!R->isZero())
11078       return false;
11079 
11080     Term = Q;
11081   }
11082 
11083   // Remove all SCEVConstants.
11084   Terms.erase(
11085       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11086       Terms.end());
11087 
11088   if (Terms.size() > 0)
11089     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11090       return false;
11091 
11092   Sizes.push_back(Step);
11093   return true;
11094 }
11095 
11096 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11097 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11098   for (const SCEV *T : Terms)
11099     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11100       return true;
11101 
11102   return false;
11103 }
11104 
11105 // Return the number of product terms in S.
11106 static inline int numberOfTerms(const SCEV *S) {
11107   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11108     return Expr->getNumOperands();
11109   return 1;
11110 }
11111 
11112 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11113   if (isa<SCEVConstant>(T))
11114     return nullptr;
11115 
11116   if (isa<SCEVUnknown>(T))
11117     return T;
11118 
11119   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11120     SmallVector<const SCEV *, 2> Factors;
11121     for (const SCEV *Op : M->operands())
11122       if (!isa<SCEVConstant>(Op))
11123         Factors.push_back(Op);
11124 
11125     return SE.getMulExpr(Factors);
11126   }
11127 
11128   return T;
11129 }
11130 
11131 /// Return the size of an element read or written by Inst.
11132 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11133   Type *Ty;
11134   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11135     Ty = Store->getValueOperand()->getType();
11136   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11137     Ty = Load->getType();
11138   else
11139     return nullptr;
11140 
11141   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11142   return getSizeOfExpr(ETy, Ty);
11143 }
11144 
11145 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11146                                           SmallVectorImpl<const SCEV *> &Sizes,
11147                                           const SCEV *ElementSize) {
11148   if (Terms.size() < 1 || !ElementSize)
11149     return;
11150 
11151   // Early return when Terms do not contain parameters: we do not delinearize
11152   // non parametric SCEVs.
11153   if (!containsParameters(Terms))
11154     return;
11155 
11156   LLVM_DEBUG({
11157     dbgs() << "Terms:\n";
11158     for (const SCEV *T : Terms)
11159       dbgs() << *T << "\n";
11160   });
11161 
11162   // Remove duplicates.
11163   array_pod_sort(Terms.begin(), Terms.end());
11164   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11165 
11166   // Put larger terms first.
11167   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11168     return numberOfTerms(LHS) > numberOfTerms(RHS);
11169   });
11170 
11171   // Try to divide all terms by the element size. If term is not divisible by
11172   // element size, proceed with the original term.
11173   for (const SCEV *&Term : Terms) {
11174     const SCEV *Q, *R;
11175     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11176     if (!Q->isZero())
11177       Term = Q;
11178   }
11179 
11180   SmallVector<const SCEV *, 4> NewTerms;
11181 
11182   // Remove constant factors.
11183   for (const SCEV *T : Terms)
11184     if (const SCEV *NewT = removeConstantFactors(*this, T))
11185       NewTerms.push_back(NewT);
11186 
11187   LLVM_DEBUG({
11188     dbgs() << "Terms after sorting:\n";
11189     for (const SCEV *T : NewTerms)
11190       dbgs() << *T << "\n";
11191   });
11192 
11193   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11194     Sizes.clear();
11195     return;
11196   }
11197 
11198   // The last element to be pushed into Sizes is the size of an element.
11199   Sizes.push_back(ElementSize);
11200 
11201   LLVM_DEBUG({
11202     dbgs() << "Sizes:\n";
11203     for (const SCEV *S : Sizes)
11204       dbgs() << *S << "\n";
11205   });
11206 }
11207 
11208 void ScalarEvolution::computeAccessFunctions(
11209     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11210     SmallVectorImpl<const SCEV *> &Sizes) {
11211   // Early exit in case this SCEV is not an affine multivariate function.
11212   if (Sizes.empty())
11213     return;
11214 
11215   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11216     if (!AR->isAffine())
11217       return;
11218 
11219   const SCEV *Res = Expr;
11220   int Last = Sizes.size() - 1;
11221   for (int i = Last; i >= 0; i--) {
11222     const SCEV *Q, *R;
11223     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11224 
11225     LLVM_DEBUG({
11226       dbgs() << "Res: " << *Res << "\n";
11227       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11228       dbgs() << "Res divided by Sizes[i]:\n";
11229       dbgs() << "Quotient: " << *Q << "\n";
11230       dbgs() << "Remainder: " << *R << "\n";
11231     });
11232 
11233     Res = Q;
11234 
11235     // Do not record the last subscript corresponding to the size of elements in
11236     // the array.
11237     if (i == Last) {
11238 
11239       // Bail out if the remainder is too complex.
11240       if (isa<SCEVAddRecExpr>(R)) {
11241         Subscripts.clear();
11242         Sizes.clear();
11243         return;
11244       }
11245 
11246       continue;
11247     }
11248 
11249     // Record the access function for the current subscript.
11250     Subscripts.push_back(R);
11251   }
11252 
11253   // Also push in last position the remainder of the last division: it will be
11254   // the access function of the innermost dimension.
11255   Subscripts.push_back(Res);
11256 
11257   std::reverse(Subscripts.begin(), Subscripts.end());
11258 
11259   LLVM_DEBUG({
11260     dbgs() << "Subscripts:\n";
11261     for (const SCEV *S : Subscripts)
11262       dbgs() << *S << "\n";
11263   });
11264 }
11265 
11266 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11267 /// sizes of an array access. Returns the remainder of the delinearization that
11268 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11269 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11270 /// expressions in the stride and base of a SCEV corresponding to the
11271 /// computation of a GCD (greatest common divisor) of base and stride.  When
11272 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11273 ///
11274 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11275 ///
11276 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11277 ///
11278 ///    for (long i = 0; i < n; i++)
11279 ///      for (long j = 0; j < m; j++)
11280 ///        for (long k = 0; k < o; k++)
11281 ///          A[i][j][k] = 1.0;
11282 ///  }
11283 ///
11284 /// the delinearization input is the following AddRec SCEV:
11285 ///
11286 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11287 ///
11288 /// From this SCEV, we are able to say that the base offset of the access is %A
11289 /// because it appears as an offset that does not divide any of the strides in
11290 /// the loops:
11291 ///
11292 ///  CHECK: Base offset: %A
11293 ///
11294 /// and then SCEV->delinearize determines the size of some of the dimensions of
11295 /// the array as these are the multiples by which the strides are happening:
11296 ///
11297 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11298 ///
11299 /// Note that the outermost dimension remains of UnknownSize because there are
11300 /// no strides that would help identifying the size of the last dimension: when
11301 /// the array has been statically allocated, one could compute the size of that
11302 /// dimension by dividing the overall size of the array by the size of the known
11303 /// dimensions: %m * %o * 8.
11304 ///
11305 /// Finally delinearize provides the access functions for the array reference
11306 /// that does correspond to A[i][j][k] of the above C testcase:
11307 ///
11308 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11309 ///
11310 /// The testcases are checking the output of a function pass:
11311 /// DelinearizationPass that walks through all loads and stores of a function
11312 /// asking for the SCEV of the memory access with respect to all enclosing
11313 /// loops, calling SCEV->delinearize on that and printing the results.
11314 void ScalarEvolution::delinearize(const SCEV *Expr,
11315                                  SmallVectorImpl<const SCEV *> &Subscripts,
11316                                  SmallVectorImpl<const SCEV *> &Sizes,
11317                                  const SCEV *ElementSize) {
11318   // First step: collect parametric terms.
11319   SmallVector<const SCEV *, 4> Terms;
11320   collectParametricTerms(Expr, Terms);
11321 
11322   if (Terms.empty())
11323     return;
11324 
11325   // Second step: find subscript sizes.
11326   findArrayDimensions(Terms, Sizes, ElementSize);
11327 
11328   if (Sizes.empty())
11329     return;
11330 
11331   // Third step: compute the access functions for each subscript.
11332   computeAccessFunctions(Expr, Subscripts, Sizes);
11333 
11334   if (Subscripts.empty())
11335     return;
11336 
11337   LLVM_DEBUG({
11338     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11339     dbgs() << "ArrayDecl[UnknownSize]";
11340     for (const SCEV *S : Sizes)
11341       dbgs() << "[" << *S << "]";
11342 
11343     dbgs() << "\nArrayRef";
11344     for (const SCEV *S : Subscripts)
11345       dbgs() << "[" << *S << "]";
11346     dbgs() << "\n";
11347   });
11348 }
11349 
11350 bool ScalarEvolution::getIndexExpressionsFromGEP(
11351     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11352     SmallVectorImpl<int> &Sizes) {
11353   assert(Subscripts.empty() && Sizes.empty() &&
11354          "Expected output lists to be empty on entry to this function.");
11355   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11356   Type *Ty = GEP->getPointerOperandType();
11357   bool DroppedFirstDim = false;
11358   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11359     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11360     if (i == 1) {
11361       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11362         Ty = PtrTy->getElementType();
11363       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11364         Ty = ArrayTy->getElementType();
11365       } else {
11366         Subscripts.clear();
11367         Sizes.clear();
11368         return false;
11369       }
11370       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11371         if (Const->getValue()->isZero()) {
11372           DroppedFirstDim = true;
11373           continue;
11374         }
11375       Subscripts.push_back(Expr);
11376       continue;
11377     }
11378 
11379     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11380     if (!ArrayTy) {
11381       Subscripts.clear();
11382       Sizes.clear();
11383       return false;
11384     }
11385 
11386     Subscripts.push_back(Expr);
11387     if (!(DroppedFirstDim && i == 2))
11388       Sizes.push_back(ArrayTy->getNumElements());
11389 
11390     Ty = ArrayTy->getElementType();
11391   }
11392   return !Subscripts.empty();
11393 }
11394 
11395 //===----------------------------------------------------------------------===//
11396 //                   SCEVCallbackVH Class Implementation
11397 //===----------------------------------------------------------------------===//
11398 
11399 void ScalarEvolution::SCEVCallbackVH::deleted() {
11400   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11401   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11402     SE->ConstantEvolutionLoopExitValue.erase(PN);
11403   SE->eraseValueFromMap(getValPtr());
11404   // this now dangles!
11405 }
11406 
11407 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11408   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11409 
11410   // Forget all the expressions associated with users of the old value,
11411   // so that future queries will recompute the expressions using the new
11412   // value.
11413   Value *Old = getValPtr();
11414   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11415   SmallPtrSet<User *, 8> Visited;
11416   while (!Worklist.empty()) {
11417     User *U = Worklist.pop_back_val();
11418     // Deleting the Old value will cause this to dangle. Postpone
11419     // that until everything else is done.
11420     if (U == Old)
11421       continue;
11422     if (!Visited.insert(U).second)
11423       continue;
11424     if (PHINode *PN = dyn_cast<PHINode>(U))
11425       SE->ConstantEvolutionLoopExitValue.erase(PN);
11426     SE->eraseValueFromMap(U);
11427     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11428   }
11429   // Delete the Old value.
11430   if (PHINode *PN = dyn_cast<PHINode>(Old))
11431     SE->ConstantEvolutionLoopExitValue.erase(PN);
11432   SE->eraseValueFromMap(Old);
11433   // this now dangles!
11434 }
11435 
11436 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11437   : CallbackVH(V), SE(se) {}
11438 
11439 //===----------------------------------------------------------------------===//
11440 //                   ScalarEvolution Class Implementation
11441 //===----------------------------------------------------------------------===//
11442 
11443 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11444                                  AssumptionCache &AC, DominatorTree &DT,
11445                                  LoopInfo &LI)
11446     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11447       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11448       LoopDispositions(64), BlockDispositions(64) {
11449   // To use guards for proving predicates, we need to scan every instruction in
11450   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11451   // time if the IR does not actually contain any calls to
11452   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11453   //
11454   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11455   // to _add_ guards to the module when there weren't any before, and wants
11456   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11457   // efficient in lieu of being smart in that rather obscure case.
11458 
11459   auto *GuardDecl = F.getParent()->getFunction(
11460       Intrinsic::getName(Intrinsic::experimental_guard));
11461   HasGuards = GuardDecl && !GuardDecl->use_empty();
11462 }
11463 
11464 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11465     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11466       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11467       ValueExprMap(std::move(Arg.ValueExprMap)),
11468       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11469       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11470       PendingMerges(std::move(Arg.PendingMerges)),
11471       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11472       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11473       PredicatedBackedgeTakenCounts(
11474           std::move(Arg.PredicatedBackedgeTakenCounts)),
11475       ConstantEvolutionLoopExitValue(
11476           std::move(Arg.ConstantEvolutionLoopExitValue)),
11477       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11478       LoopDispositions(std::move(Arg.LoopDispositions)),
11479       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11480       BlockDispositions(std::move(Arg.BlockDispositions)),
11481       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11482       SignedRanges(std::move(Arg.SignedRanges)),
11483       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11484       UniquePreds(std::move(Arg.UniquePreds)),
11485       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11486       LoopUsers(std::move(Arg.LoopUsers)),
11487       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11488       FirstUnknown(Arg.FirstUnknown) {
11489   Arg.FirstUnknown = nullptr;
11490 }
11491 
11492 ScalarEvolution::~ScalarEvolution() {
11493   // Iterate through all the SCEVUnknown instances and call their
11494   // destructors, so that they release their references to their values.
11495   for (SCEVUnknown *U = FirstUnknown; U;) {
11496     SCEVUnknown *Tmp = U;
11497     U = U->Next;
11498     Tmp->~SCEVUnknown();
11499   }
11500   FirstUnknown = nullptr;
11501 
11502   ExprValueMap.clear();
11503   ValueExprMap.clear();
11504   HasRecMap.clear();
11505 
11506   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11507   // that a loop had multiple computable exits.
11508   for (auto &BTCI : BackedgeTakenCounts)
11509     BTCI.second.clear();
11510   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11511     BTCI.second.clear();
11512 
11513   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11514   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11515   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11516   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11517   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11518 }
11519 
11520 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11521   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11522 }
11523 
11524 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11525                           const Loop *L) {
11526   // Print all inner loops first
11527   for (Loop *I : *L)
11528     PrintLoopInfo(OS, SE, I);
11529 
11530   OS << "Loop ";
11531   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11532   OS << ": ";
11533 
11534   SmallVector<BasicBlock *, 8> ExitingBlocks;
11535   L->getExitingBlocks(ExitingBlocks);
11536   if (ExitingBlocks.size() != 1)
11537     OS << "<multiple exits> ";
11538 
11539   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11540     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11541   else
11542     OS << "Unpredictable backedge-taken count.\n";
11543 
11544   if (ExitingBlocks.size() > 1)
11545     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11546       OS << "  exit count for " << ExitingBlock->getName() << ": "
11547          << *SE->getExitCount(L, ExitingBlock) << "\n";
11548     }
11549 
11550   OS << "Loop ";
11551   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11552   OS << ": ";
11553 
11554   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11555     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11556     if (SE->isBackedgeTakenCountMaxOrZero(L))
11557       OS << ", actual taken count either this or zero.";
11558   } else {
11559     OS << "Unpredictable max backedge-taken count. ";
11560   }
11561 
11562   OS << "\n"
11563         "Loop ";
11564   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11565   OS << ": ";
11566 
11567   SCEVUnionPredicate Pred;
11568   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11569   if (!isa<SCEVCouldNotCompute>(PBT)) {
11570     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11571     OS << " Predicates:\n";
11572     Pred.print(OS, 4);
11573   } else {
11574     OS << "Unpredictable predicated backedge-taken count. ";
11575   }
11576   OS << "\n";
11577 
11578   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11579     OS << "Loop ";
11580     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11581     OS << ": ";
11582     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11583   }
11584 }
11585 
11586 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11587   switch (LD) {
11588   case ScalarEvolution::LoopVariant:
11589     return "Variant";
11590   case ScalarEvolution::LoopInvariant:
11591     return "Invariant";
11592   case ScalarEvolution::LoopComputable:
11593     return "Computable";
11594   }
11595   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11596 }
11597 
11598 void ScalarEvolution::print(raw_ostream &OS) const {
11599   // ScalarEvolution's implementation of the print method is to print
11600   // out SCEV values of all instructions that are interesting. Doing
11601   // this potentially causes it to create new SCEV objects though,
11602   // which technically conflicts with the const qualifier. This isn't
11603   // observable from outside the class though, so casting away the
11604   // const isn't dangerous.
11605   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11606 
11607   if (ClassifyExpressions) {
11608     OS << "Classifying expressions for: ";
11609     F.printAsOperand(OS, /*PrintType=*/false);
11610     OS << "\n";
11611     for (Instruction &I : instructions(F))
11612       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11613         OS << I << '\n';
11614         OS << "  -->  ";
11615         const SCEV *SV = SE.getSCEV(&I);
11616         SV->print(OS);
11617         if (!isa<SCEVCouldNotCompute>(SV)) {
11618           OS << " U: ";
11619           SE.getUnsignedRange(SV).print(OS);
11620           OS << " S: ";
11621           SE.getSignedRange(SV).print(OS);
11622         }
11623 
11624         const Loop *L = LI.getLoopFor(I.getParent());
11625 
11626         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11627         if (AtUse != SV) {
11628           OS << "  -->  ";
11629           AtUse->print(OS);
11630           if (!isa<SCEVCouldNotCompute>(AtUse)) {
11631             OS << " U: ";
11632             SE.getUnsignedRange(AtUse).print(OS);
11633             OS << " S: ";
11634             SE.getSignedRange(AtUse).print(OS);
11635           }
11636         }
11637 
11638         if (L) {
11639           OS << "\t\t" "Exits: ";
11640           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11641           if (!SE.isLoopInvariant(ExitValue, L)) {
11642             OS << "<<Unknown>>";
11643           } else {
11644             OS << *ExitValue;
11645           }
11646 
11647           bool First = true;
11648           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11649             if (First) {
11650               OS << "\t\t" "LoopDispositions: { ";
11651               First = false;
11652             } else {
11653               OS << ", ";
11654             }
11655 
11656             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11657             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11658           }
11659 
11660           for (auto *InnerL : depth_first(L)) {
11661             if (InnerL == L)
11662               continue;
11663             if (First) {
11664               OS << "\t\t" "LoopDispositions: { ";
11665               First = false;
11666             } else {
11667               OS << ", ";
11668             }
11669 
11670             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11671             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11672           }
11673 
11674           OS << " }";
11675         }
11676 
11677         OS << "\n";
11678       }
11679   }
11680 
11681   OS << "Determining loop execution counts for: ";
11682   F.printAsOperand(OS, /*PrintType=*/false);
11683   OS << "\n";
11684   for (Loop *I : LI)
11685     PrintLoopInfo(OS, &SE, I);
11686 }
11687 
11688 ScalarEvolution::LoopDisposition
11689 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11690   auto &Values = LoopDispositions[S];
11691   for (auto &V : Values) {
11692     if (V.getPointer() == L)
11693       return V.getInt();
11694   }
11695   Values.emplace_back(L, LoopVariant);
11696   LoopDisposition D = computeLoopDisposition(S, L);
11697   auto &Values2 = LoopDispositions[S];
11698   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11699     if (V.getPointer() == L) {
11700       V.setInt(D);
11701       break;
11702     }
11703   }
11704   return D;
11705 }
11706 
11707 ScalarEvolution::LoopDisposition
11708 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11709   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11710   case scConstant:
11711     return LoopInvariant;
11712   case scTruncate:
11713   case scZeroExtend:
11714   case scSignExtend:
11715     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11716   case scAddRecExpr: {
11717     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11718 
11719     // If L is the addrec's loop, it's computable.
11720     if (AR->getLoop() == L)
11721       return LoopComputable;
11722 
11723     // Add recurrences are never invariant in the function-body (null loop).
11724     if (!L)
11725       return LoopVariant;
11726 
11727     // Everything that is not defined at loop entry is variant.
11728     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11729       return LoopVariant;
11730     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11731            " dominate the contained loop's header?");
11732 
11733     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11734     if (AR->getLoop()->contains(L))
11735       return LoopInvariant;
11736 
11737     // This recurrence is variant w.r.t. L if any of its operands
11738     // are variant.
11739     for (auto *Op : AR->operands())
11740       if (!isLoopInvariant(Op, L))
11741         return LoopVariant;
11742 
11743     // Otherwise it's loop-invariant.
11744     return LoopInvariant;
11745   }
11746   case scAddExpr:
11747   case scMulExpr:
11748   case scUMaxExpr:
11749   case scSMaxExpr:
11750   case scUMinExpr:
11751   case scSMinExpr: {
11752     bool HasVarying = false;
11753     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11754       LoopDisposition D = getLoopDisposition(Op, L);
11755       if (D == LoopVariant)
11756         return LoopVariant;
11757       if (D == LoopComputable)
11758         HasVarying = true;
11759     }
11760     return HasVarying ? LoopComputable : LoopInvariant;
11761   }
11762   case scUDivExpr: {
11763     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11764     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11765     if (LD == LoopVariant)
11766       return LoopVariant;
11767     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11768     if (RD == LoopVariant)
11769       return LoopVariant;
11770     return (LD == LoopInvariant && RD == LoopInvariant) ?
11771            LoopInvariant : LoopComputable;
11772   }
11773   case scUnknown:
11774     // All non-instruction values are loop invariant.  All instructions are loop
11775     // invariant if they are not contained in the specified loop.
11776     // Instructions are never considered invariant in the function body
11777     // (null loop) because they are defined within the "loop".
11778     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11779       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11780     return LoopInvariant;
11781   case scCouldNotCompute:
11782     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11783   }
11784   llvm_unreachable("Unknown SCEV kind!");
11785 }
11786 
11787 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11788   return getLoopDisposition(S, L) == LoopInvariant;
11789 }
11790 
11791 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11792   return getLoopDisposition(S, L) == LoopComputable;
11793 }
11794 
11795 ScalarEvolution::BlockDisposition
11796 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11797   auto &Values = BlockDispositions[S];
11798   for (auto &V : Values) {
11799     if (V.getPointer() == BB)
11800       return V.getInt();
11801   }
11802   Values.emplace_back(BB, DoesNotDominateBlock);
11803   BlockDisposition D = computeBlockDisposition(S, BB);
11804   auto &Values2 = BlockDispositions[S];
11805   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11806     if (V.getPointer() == BB) {
11807       V.setInt(D);
11808       break;
11809     }
11810   }
11811   return D;
11812 }
11813 
11814 ScalarEvolution::BlockDisposition
11815 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11816   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11817   case scConstant:
11818     return ProperlyDominatesBlock;
11819   case scTruncate:
11820   case scZeroExtend:
11821   case scSignExtend:
11822     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11823   case scAddRecExpr: {
11824     // This uses a "dominates" query instead of "properly dominates" query
11825     // to test for proper dominance too, because the instruction which
11826     // produces the addrec's value is a PHI, and a PHI effectively properly
11827     // dominates its entire containing block.
11828     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11829     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11830       return DoesNotDominateBlock;
11831 
11832     // Fall through into SCEVNAryExpr handling.
11833     LLVM_FALLTHROUGH;
11834   }
11835   case scAddExpr:
11836   case scMulExpr:
11837   case scUMaxExpr:
11838   case scSMaxExpr:
11839   case scUMinExpr:
11840   case scSMinExpr: {
11841     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11842     bool Proper = true;
11843     for (const SCEV *NAryOp : NAry->operands()) {
11844       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11845       if (D == DoesNotDominateBlock)
11846         return DoesNotDominateBlock;
11847       if (D == DominatesBlock)
11848         Proper = false;
11849     }
11850     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11851   }
11852   case scUDivExpr: {
11853     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11854     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11855     BlockDisposition LD = getBlockDisposition(LHS, BB);
11856     if (LD == DoesNotDominateBlock)
11857       return DoesNotDominateBlock;
11858     BlockDisposition RD = getBlockDisposition(RHS, BB);
11859     if (RD == DoesNotDominateBlock)
11860       return DoesNotDominateBlock;
11861     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11862       ProperlyDominatesBlock : DominatesBlock;
11863   }
11864   case scUnknown:
11865     if (Instruction *I =
11866           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11867       if (I->getParent() == BB)
11868         return DominatesBlock;
11869       if (DT.properlyDominates(I->getParent(), BB))
11870         return ProperlyDominatesBlock;
11871       return DoesNotDominateBlock;
11872     }
11873     return ProperlyDominatesBlock;
11874   case scCouldNotCompute:
11875     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11876   }
11877   llvm_unreachable("Unknown SCEV kind!");
11878 }
11879 
11880 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11881   return getBlockDisposition(S, BB) >= DominatesBlock;
11882 }
11883 
11884 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11885   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11886 }
11887 
11888 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11889   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11890 }
11891 
11892 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11893   auto IsS = [&](const SCEV *X) { return S == X; };
11894   auto ContainsS = [&](const SCEV *X) {
11895     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11896   };
11897   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11898 }
11899 
11900 void
11901 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11902   ValuesAtScopes.erase(S);
11903   LoopDispositions.erase(S);
11904   BlockDispositions.erase(S);
11905   UnsignedRanges.erase(S);
11906   SignedRanges.erase(S);
11907   ExprValueMap.erase(S);
11908   HasRecMap.erase(S);
11909   MinTrailingZerosCache.erase(S);
11910 
11911   for (auto I = PredicatedSCEVRewrites.begin();
11912        I != PredicatedSCEVRewrites.end();) {
11913     std::pair<const SCEV *, const Loop *> Entry = I->first;
11914     if (Entry.first == S)
11915       PredicatedSCEVRewrites.erase(I++);
11916     else
11917       ++I;
11918   }
11919 
11920   auto RemoveSCEVFromBackedgeMap =
11921       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11922         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11923           BackedgeTakenInfo &BEInfo = I->second;
11924           if (BEInfo.hasOperand(S, this)) {
11925             BEInfo.clear();
11926             Map.erase(I++);
11927           } else
11928             ++I;
11929         }
11930       };
11931 
11932   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11933   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11934 }
11935 
11936 void
11937 ScalarEvolution::getUsedLoops(const SCEV *S,
11938                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11939   struct FindUsedLoops {
11940     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11941         : LoopsUsed(LoopsUsed) {}
11942     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11943     bool follow(const SCEV *S) {
11944       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11945         LoopsUsed.insert(AR->getLoop());
11946       return true;
11947     }
11948 
11949     bool isDone() const { return false; }
11950   };
11951 
11952   FindUsedLoops F(LoopsUsed);
11953   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11954 }
11955 
11956 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11957   SmallPtrSet<const Loop *, 8> LoopsUsed;
11958   getUsedLoops(S, LoopsUsed);
11959   for (auto *L : LoopsUsed)
11960     LoopUsers[L].push_back(S);
11961 }
11962 
11963 void ScalarEvolution::verify() const {
11964   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11965   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11966 
11967   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11968 
11969   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11970   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11971     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11972 
11973     const SCEV *visitConstant(const SCEVConstant *Constant) {
11974       return SE.getConstant(Constant->getAPInt());
11975     }
11976 
11977     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11978       return SE.getUnknown(Expr->getValue());
11979     }
11980 
11981     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11982       return SE.getCouldNotCompute();
11983     }
11984   };
11985 
11986   SCEVMapper SCM(SE2);
11987 
11988   while (!LoopStack.empty()) {
11989     auto *L = LoopStack.pop_back_val();
11990     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11991 
11992     auto *CurBECount = SCM.visit(
11993         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11994     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11995 
11996     if (CurBECount == SE2.getCouldNotCompute() ||
11997         NewBECount == SE2.getCouldNotCompute()) {
11998       // NB! This situation is legal, but is very suspicious -- whatever pass
11999       // change the loop to make a trip count go from could not compute to
12000       // computable or vice-versa *should have* invalidated SCEV.  However, we
12001       // choose not to assert here (for now) since we don't want false
12002       // positives.
12003       continue;
12004     }
12005 
12006     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12007       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12008       // not propagate undef aggressively).  This means we can (and do) fail
12009       // verification in cases where a transform makes the trip count of a loop
12010       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12011       // both cases the loop iterates "undef" times, but SCEV thinks we
12012       // increased the trip count of the loop by 1 incorrectly.
12013       continue;
12014     }
12015 
12016     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12017         SE.getTypeSizeInBits(NewBECount->getType()))
12018       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12019     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12020              SE.getTypeSizeInBits(NewBECount->getType()))
12021       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12022 
12023     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12024 
12025     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12026     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12027       dbgs() << "Trip Count for " << *L << " Changed!\n";
12028       dbgs() << "Old: " << *CurBECount << "\n";
12029       dbgs() << "New: " << *NewBECount << "\n";
12030       dbgs() << "Delta: " << *Delta << "\n";
12031       std::abort();
12032     }
12033   }
12034 
12035   // Collect all valid loops currently in LoopInfo.
12036   SmallPtrSet<Loop *, 32> ValidLoops;
12037   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12038   while (!Worklist.empty()) {
12039     Loop *L = Worklist.pop_back_val();
12040     if (ValidLoops.contains(L))
12041       continue;
12042     ValidLoops.insert(L);
12043     Worklist.append(L->begin(), L->end());
12044   }
12045   // Check for SCEV expressions referencing invalid/deleted loops.
12046   for (auto &KV : ValueExprMap) {
12047     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12048     if (!AR)
12049       continue;
12050     assert(ValidLoops.contains(AR->getLoop()) &&
12051            "AddRec references invalid loop");
12052   }
12053 }
12054 
12055 bool ScalarEvolution::invalidate(
12056     Function &F, const PreservedAnalyses &PA,
12057     FunctionAnalysisManager::Invalidator &Inv) {
12058   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12059   // of its dependencies is invalidated.
12060   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12061   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12062          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12063          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12064          Inv.invalidate<LoopAnalysis>(F, PA);
12065 }
12066 
12067 AnalysisKey ScalarEvolutionAnalysis::Key;
12068 
12069 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12070                                              FunctionAnalysisManager &AM) {
12071   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12072                          AM.getResult<AssumptionAnalysis>(F),
12073                          AM.getResult<DominatorTreeAnalysis>(F),
12074                          AM.getResult<LoopAnalysis>(F));
12075 }
12076 
12077 PreservedAnalyses
12078 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12079   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12080   return PreservedAnalyses::all();
12081 }
12082 
12083 PreservedAnalyses
12084 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12085   // For compatibility with opt's -analyze feature under legacy pass manager
12086   // which was not ported to NPM. This keeps tests using
12087   // update_analyze_test_checks.py working.
12088   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12089      << F.getName() << "':\n";
12090   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12091   return PreservedAnalyses::all();
12092 }
12093 
12094 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12095                       "Scalar Evolution Analysis", false, true)
12096 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12097 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12098 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12099 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12100 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12101                     "Scalar Evolution Analysis", false, true)
12102 
12103 char ScalarEvolutionWrapperPass::ID = 0;
12104 
12105 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12106   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12107 }
12108 
12109 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12110   SE.reset(new ScalarEvolution(
12111       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12112       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12113       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12114       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12115   return false;
12116 }
12117 
12118 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12119 
12120 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12121   SE->print(OS);
12122 }
12123 
12124 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12125   if (!VerifySCEV)
12126     return;
12127 
12128   SE->verify();
12129 }
12130 
12131 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12132   AU.setPreservesAll();
12133   AU.addRequiredTransitive<AssumptionCacheTracker>();
12134   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12135   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12136   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12137 }
12138 
12139 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12140                                                         const SCEV *RHS) {
12141   FoldingSetNodeID ID;
12142   assert(LHS->getType() == RHS->getType() &&
12143          "Type mismatch between LHS and RHS");
12144   // Unique this node based on the arguments
12145   ID.AddInteger(SCEVPredicate::P_Equal);
12146   ID.AddPointer(LHS);
12147   ID.AddPointer(RHS);
12148   void *IP = nullptr;
12149   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12150     return S;
12151   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12152       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12153   UniquePreds.InsertNode(Eq, IP);
12154   return Eq;
12155 }
12156 
12157 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12158     const SCEVAddRecExpr *AR,
12159     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12160   FoldingSetNodeID ID;
12161   // Unique this node based on the arguments
12162   ID.AddInteger(SCEVPredicate::P_Wrap);
12163   ID.AddPointer(AR);
12164   ID.AddInteger(AddedFlags);
12165   void *IP = nullptr;
12166   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12167     return S;
12168   auto *OF = new (SCEVAllocator)
12169       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12170   UniquePreds.InsertNode(OF, IP);
12171   return OF;
12172 }
12173 
12174 namespace {
12175 
12176 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12177 public:
12178 
12179   /// Rewrites \p S in the context of a loop L and the SCEV predication
12180   /// infrastructure.
12181   ///
12182   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12183   /// equivalences present in \p Pred.
12184   ///
12185   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12186   /// \p NewPreds such that the result will be an AddRecExpr.
12187   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12188                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12189                              SCEVUnionPredicate *Pred) {
12190     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12191     return Rewriter.visit(S);
12192   }
12193 
12194   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12195     if (Pred) {
12196       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12197       for (auto *Pred : ExprPreds)
12198         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12199           if (IPred->getLHS() == Expr)
12200             return IPred->getRHS();
12201     }
12202     return convertToAddRecWithPreds(Expr);
12203   }
12204 
12205   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12206     const SCEV *Operand = visit(Expr->getOperand());
12207     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12208     if (AR && AR->getLoop() == L && AR->isAffine()) {
12209       // This couldn't be folded because the operand didn't have the nuw
12210       // flag. Add the nusw flag as an assumption that we could make.
12211       const SCEV *Step = AR->getStepRecurrence(SE);
12212       Type *Ty = Expr->getType();
12213       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12214         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12215                                 SE.getSignExtendExpr(Step, Ty), L,
12216                                 AR->getNoWrapFlags());
12217     }
12218     return SE.getZeroExtendExpr(Operand, Expr->getType());
12219   }
12220 
12221   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12222     const SCEV *Operand = visit(Expr->getOperand());
12223     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12224     if (AR && AR->getLoop() == L && AR->isAffine()) {
12225       // This couldn't be folded because the operand didn't have the nsw
12226       // flag. Add the nssw flag as an assumption that we could make.
12227       const SCEV *Step = AR->getStepRecurrence(SE);
12228       Type *Ty = Expr->getType();
12229       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12230         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12231                                 SE.getSignExtendExpr(Step, Ty), L,
12232                                 AR->getNoWrapFlags());
12233     }
12234     return SE.getSignExtendExpr(Operand, Expr->getType());
12235   }
12236 
12237 private:
12238   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12239                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12240                         SCEVUnionPredicate *Pred)
12241       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12242 
12243   bool addOverflowAssumption(const SCEVPredicate *P) {
12244     if (!NewPreds) {
12245       // Check if we've already made this assumption.
12246       return Pred && Pred->implies(P);
12247     }
12248     NewPreds->insert(P);
12249     return true;
12250   }
12251 
12252   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12253                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12254     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12255     return addOverflowAssumption(A);
12256   }
12257 
12258   // If \p Expr represents a PHINode, we try to see if it can be represented
12259   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12260   // to add this predicate as a runtime overflow check, we return the AddRec.
12261   // If \p Expr does not meet these conditions (is not a PHI node, or we
12262   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12263   // return \p Expr.
12264   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12265     if (!isa<PHINode>(Expr->getValue()))
12266       return Expr;
12267     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12268     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12269     if (!PredicatedRewrite)
12270       return Expr;
12271     for (auto *P : PredicatedRewrite->second){
12272       // Wrap predicates from outer loops are not supported.
12273       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12274         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12275         if (L != AR->getLoop())
12276           return Expr;
12277       }
12278       if (!addOverflowAssumption(P))
12279         return Expr;
12280     }
12281     return PredicatedRewrite->first;
12282   }
12283 
12284   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12285   SCEVUnionPredicate *Pred;
12286   const Loop *L;
12287 };
12288 
12289 } // end anonymous namespace
12290 
12291 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12292                                                    SCEVUnionPredicate &Preds) {
12293   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12294 }
12295 
12296 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12297     const SCEV *S, const Loop *L,
12298     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12299   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12300   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12301   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12302 
12303   if (!AddRec)
12304     return nullptr;
12305 
12306   // Since the transformation was successful, we can now transfer the SCEV
12307   // predicates.
12308   for (auto *P : TransformPreds)
12309     Preds.insert(P);
12310 
12311   return AddRec;
12312 }
12313 
12314 /// SCEV predicates
12315 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12316                              SCEVPredicateKind Kind)
12317     : FastID(ID), Kind(Kind) {}
12318 
12319 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12320                                        const SCEV *LHS, const SCEV *RHS)
12321     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12322   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12323   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12324 }
12325 
12326 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12327   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12328 
12329   if (!Op)
12330     return false;
12331 
12332   return Op->LHS == LHS && Op->RHS == RHS;
12333 }
12334 
12335 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12336 
12337 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12338 
12339 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12340   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12341 }
12342 
12343 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12344                                      const SCEVAddRecExpr *AR,
12345                                      IncrementWrapFlags Flags)
12346     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12347 
12348 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12349 
12350 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12351   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12352 
12353   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12354 }
12355 
12356 bool SCEVWrapPredicate::isAlwaysTrue() const {
12357   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12358   IncrementWrapFlags IFlags = Flags;
12359 
12360   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12361     IFlags = clearFlags(IFlags, IncrementNSSW);
12362 
12363   return IFlags == IncrementAnyWrap;
12364 }
12365 
12366 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12367   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12368   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12369     OS << "<nusw>";
12370   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12371     OS << "<nssw>";
12372   OS << "\n";
12373 }
12374 
12375 SCEVWrapPredicate::IncrementWrapFlags
12376 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12377                                    ScalarEvolution &SE) {
12378   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12379   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12380 
12381   // We can safely transfer the NSW flag as NSSW.
12382   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12383     ImpliedFlags = IncrementNSSW;
12384 
12385   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12386     // If the increment is positive, the SCEV NUW flag will also imply the
12387     // WrapPredicate NUSW flag.
12388     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12389       if (Step->getValue()->getValue().isNonNegative())
12390         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12391   }
12392 
12393   return ImpliedFlags;
12394 }
12395 
12396 /// Union predicates don't get cached so create a dummy set ID for it.
12397 SCEVUnionPredicate::SCEVUnionPredicate()
12398     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12399 
12400 bool SCEVUnionPredicate::isAlwaysTrue() const {
12401   return all_of(Preds,
12402                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12403 }
12404 
12405 ArrayRef<const SCEVPredicate *>
12406 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12407   auto I = SCEVToPreds.find(Expr);
12408   if (I == SCEVToPreds.end())
12409     return ArrayRef<const SCEVPredicate *>();
12410   return I->second;
12411 }
12412 
12413 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12414   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12415     return all_of(Set->Preds,
12416                   [this](const SCEVPredicate *I) { return this->implies(I); });
12417 
12418   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12419   if (ScevPredsIt == SCEVToPreds.end())
12420     return false;
12421   auto &SCEVPreds = ScevPredsIt->second;
12422 
12423   return any_of(SCEVPreds,
12424                 [N](const SCEVPredicate *I) { return I->implies(N); });
12425 }
12426 
12427 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12428 
12429 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12430   for (auto Pred : Preds)
12431     Pred->print(OS, Depth);
12432 }
12433 
12434 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12435   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12436     for (auto Pred : Set->Preds)
12437       add(Pred);
12438     return;
12439   }
12440 
12441   if (implies(N))
12442     return;
12443 
12444   const SCEV *Key = N->getExpr();
12445   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12446                 " associated expression!");
12447 
12448   SCEVToPreds[Key].push_back(N);
12449   Preds.push_back(N);
12450 }
12451 
12452 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12453                                                      Loop &L)
12454     : SE(SE), L(L) {}
12455 
12456 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12457   const SCEV *Expr = SE.getSCEV(V);
12458   RewriteEntry &Entry = RewriteMap[Expr];
12459 
12460   // If we already have an entry and the version matches, return it.
12461   if (Entry.second && Generation == Entry.first)
12462     return Entry.second;
12463 
12464   // We found an entry but it's stale. Rewrite the stale entry
12465   // according to the current predicate.
12466   if (Entry.second)
12467     Expr = Entry.second;
12468 
12469   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12470   Entry = {Generation, NewSCEV};
12471 
12472   return NewSCEV;
12473 }
12474 
12475 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12476   if (!BackedgeCount) {
12477     SCEVUnionPredicate BackedgePred;
12478     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12479     addPredicate(BackedgePred);
12480   }
12481   return BackedgeCount;
12482 }
12483 
12484 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12485   if (Preds.implies(&Pred))
12486     return;
12487   Preds.add(&Pred);
12488   updateGeneration();
12489 }
12490 
12491 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12492   return Preds;
12493 }
12494 
12495 void PredicatedScalarEvolution::updateGeneration() {
12496   // If the generation number wrapped recompute everything.
12497   if (++Generation == 0) {
12498     for (auto &II : RewriteMap) {
12499       const SCEV *Rewritten = II.second.second;
12500       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12501     }
12502   }
12503 }
12504 
12505 void PredicatedScalarEvolution::setNoOverflow(
12506     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12507   const SCEV *Expr = getSCEV(V);
12508   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12509 
12510   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12511 
12512   // Clear the statically implied flags.
12513   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12514   addPredicate(*SE.getWrapPredicate(AR, Flags));
12515 
12516   auto II = FlagsMap.insert({V, Flags});
12517   if (!II.second)
12518     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12519 }
12520 
12521 bool PredicatedScalarEvolution::hasNoOverflow(
12522     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12523   const SCEV *Expr = getSCEV(V);
12524   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12525 
12526   Flags = SCEVWrapPredicate::clearFlags(
12527       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12528 
12529   auto II = FlagsMap.find(V);
12530 
12531   if (II != FlagsMap.end())
12532     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12533 
12534   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12535 }
12536 
12537 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12538   const SCEV *Expr = this->getSCEV(V);
12539   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12540   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12541 
12542   if (!New)
12543     return nullptr;
12544 
12545   for (auto *P : NewPreds)
12546     Preds.add(P);
12547 
12548   updateGeneration();
12549   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12550   return New;
12551 }
12552 
12553 PredicatedScalarEvolution::PredicatedScalarEvolution(
12554     const PredicatedScalarEvolution &Init)
12555     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12556       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12557   for (auto I : Init.FlagsMap)
12558     FlagsMap.insert(I);
12559 }
12560 
12561 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12562   // For each block.
12563   for (auto *BB : L.getBlocks())
12564     for (auto &I : *BB) {
12565       if (!SE.isSCEVable(I.getType()))
12566         continue;
12567 
12568       auto *Expr = SE.getSCEV(&I);
12569       auto II = RewriteMap.find(Expr);
12570 
12571       if (II == RewriteMap.end())
12572         continue;
12573 
12574       // Don't print things that are not interesting.
12575       if (II->second.second == Expr)
12576         continue;
12577 
12578       OS.indent(Depth) << "[PSE]" << I << ":\n";
12579       OS.indent(Depth + 2) << *Expr << "\n";
12580       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12581     }
12582 }
12583 
12584 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12585 // arbitrary expressions.
12586 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12587 // 4, A / B becomes X / 8).
12588 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12589                                 const SCEV *&RHS) {
12590   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12591   if (Add == nullptr || Add->getNumOperands() != 2)
12592     return false;
12593 
12594   const SCEV *A = Add->getOperand(1);
12595   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12596 
12597   if (Mul == nullptr)
12598     return false;
12599 
12600   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12601     // (SomeExpr + (-(SomeExpr / B) * B)).
12602     if (Expr == getURemExpr(A, B)) {
12603       LHS = A;
12604       RHS = B;
12605       return true;
12606     }
12607     return false;
12608   };
12609 
12610   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12611   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12612     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12613            MatchURemWithDivisor(Mul->getOperand(2));
12614 
12615   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12616   if (Mul->getNumOperands() == 2)
12617     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12618            MatchURemWithDivisor(Mul->getOperand(0)) ||
12619            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12620            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12621   return false;
12622 }
12623 
12624 const SCEV* ScalarEvolution::computeMaxBackedgeTakenCount(const Loop *L) {
12625   SmallVector<BasicBlock*, 16> ExitingBlocks;
12626   L->getExitingBlocks(ExitingBlocks);
12627 
12628   // Form an expression for the maximum exit count possible for this loop. We
12629   // merge the max and exact information to approximate a version of
12630   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
12631   SmallVector<const SCEV*, 4> ExitCounts;
12632   for (BasicBlock *ExitingBB : ExitingBlocks) {
12633     const SCEV *ExitCount = getExitCount(L, ExitingBB);
12634     if (isa<SCEVCouldNotCompute>(ExitCount))
12635       ExitCount = getExitCount(L, ExitingBB,
12636                                   ScalarEvolution::ConstantMaximum);
12637     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
12638       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
12639              "We should only have known counts for exiting blocks that "
12640              "dominate latch!");
12641       ExitCounts.push_back(ExitCount);
12642     }
12643   }
12644   if (ExitCounts.empty())
12645     return getCouldNotCompute();
12646   return getUMinFromMismatchedTypes(ExitCounts);
12647 }
12648 
12649 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
12650   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
12651                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
12652     if (!isa<SCEVUnknown>(LHS)) {
12653       std::swap(LHS, RHS);
12654       Predicate = CmpInst::getSwappedPredicate(Predicate);
12655     }
12656 
12657     // For now, limit to conditions that provide information about unknown
12658     // expressions.
12659     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
12660     if (!LHSUnknown)
12661       return;
12662 
12663     // TODO: use information from more predicates.
12664     switch (Predicate) {
12665     case CmpInst::ICMP_ULT: {
12666       if (!containsAddRecurrence(RHS)) {
12667         const SCEV *Base = LHS;
12668         auto I = RewriteMap.find(LHSUnknown->getValue());
12669         if (I != RewriteMap.end())
12670           Base = I->second;
12671 
12672         RewriteMap[LHSUnknown->getValue()] =
12673             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
12674       }
12675       break;
12676     }
12677     case CmpInst::ICMP_EQ:
12678       if (isa<SCEVConstant>(RHS))
12679         RewriteMap[LHSUnknown->getValue()] = RHS;
12680       break;
12681     case CmpInst::ICMP_NE:
12682       if (isa<SCEVConstant>(RHS) &&
12683           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
12684         RewriteMap[LHSUnknown->getValue()] =
12685             getUMaxExpr(LHS, getOne(RHS->getType()));
12686       break;
12687     default:
12688       break;
12689     }
12690   };
12691   // Starting at the loop predecessor, climb up the predecessor chain, as long
12692   // as there are predecessors that can be found that have unique successors
12693   // leading to the original header.
12694   // TODO: share this logic with isLoopEntryGuardedByCond.
12695   ValueToSCEVMapTy RewriteMap;
12696   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
12697            L->getLoopPredecessor(), L->getHeader());
12698        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
12699 
12700     const BranchInst *LoopEntryPredicate =
12701         dyn_cast<BranchInst>(Pair.first->getTerminator());
12702     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
12703       continue;
12704 
12705     // TODO: use information from more complex conditions, e.g. AND expressions.
12706     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
12707     if (!Cmp)
12708       continue;
12709 
12710     auto Predicate = Cmp->getPredicate();
12711     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
12712       Predicate = CmpInst::getInversePredicate(Predicate);
12713     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
12714                      getSCEV(Cmp->getOperand(1)), RewriteMap);
12715   }
12716 
12717   // Also collect information from assumptions dominating the loop.
12718   for (auto &AssumeVH : AC.assumptions()) {
12719     if (!AssumeVH)
12720       continue;
12721     auto *AssumeI = cast<CallInst>(AssumeVH);
12722     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
12723     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
12724       continue;
12725     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
12726                      getSCEV(Cmp->getOperand(1)), RewriteMap);
12727   }
12728 
12729   if (RewriteMap.empty())
12730     return Expr;
12731   return SCEVParameterRewriter::rewrite(Expr, *this, RewriteMap);
12732 }
12733