1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 #endif 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (const SCEV *Op : AddRec->operands()) 1136 Operands.push_back(getTruncateExpr(Op, Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 auto PreStartFlags = 1272 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1276 1277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1278 // "S+X does not sign/unsign-overflow". 1279 // 1280 1281 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1284 return PreStart; 1285 1286 // 2. Direct overflow check on the step operation's expression. 1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1289 const SCEV *OperandExtendedStart = 1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1291 (SE->*GetExtendExpr)(Step, WideTy)); 1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1293 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1298 } 1299 return PreStart; 1300 } 1301 1302 // 3. Loop precondition. 1303 ICmpInst::Predicate Pred; 1304 const SCEV *OverflowLimit = 1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1306 1307 if (OverflowLimit && 1308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1309 return PreStart; 1310 1311 return nullptr; 1312 } 1313 1314 // Get the normalized zero or sign extended expression for this AddRec's Start. 1315 template <typename ExtendOpTy> 1316 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1317 ScalarEvolution *SE) { 1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1319 1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1321 if (!PreStart) 1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1323 1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1325 (SE->*GetExtendExpr)(PreStart, Ty)); 1326 } 1327 1328 // Try to prove away overflow by looking at "nearby" add recurrences. A 1329 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1330 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1331 // 1332 // Formally: 1333 // 1334 // {S,+,X} == {S-T,+,X} + T 1335 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1336 // 1337 // If ({S-T,+,X} + T) does not overflow ... (1) 1338 // 1339 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1340 // 1341 // If {S-T,+,X} does not overflow ... (2) 1342 // 1343 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1344 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1345 // 1346 // If (S-T)+T does not overflow ... (3) 1347 // 1348 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1349 // == {Ext(S),+,Ext(X)} == LHS 1350 // 1351 // Thus, if (1), (2) and (3) are true for some T, then 1352 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1353 // 1354 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1355 // does not overflow" restricted to the 0th iteration. Therefore we only need 1356 // to check for (1) and (2). 1357 // 1358 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1359 // is `Delta` (defined below). 1360 // 1361 template <typename ExtendOpTy> 1362 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1363 const SCEV *Step, 1364 const Loop *L) { 1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1366 1367 // We restrict `Start` to a constant to prevent SCEV from spending too much 1368 // time here. It is correct (but more expensive) to continue with a 1369 // non-constant `Start` and do a general SCEV subtraction to compute 1370 // `PreStart` below. 1371 // 1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1373 if (!StartC) 1374 return false; 1375 1376 APInt StartAI = StartC->getValue()->getValue(); 1377 1378 for (unsigned Delta : {-2, -1, 1, 2}) { 1379 const SCEV *PreStart = getConstant(StartAI - Delta); 1380 1381 FoldingSetNodeID ID; 1382 ID.AddInteger(scAddRecExpr); 1383 ID.AddPointer(PreStart); 1384 ID.AddPointer(Step); 1385 ID.AddPointer(L); 1386 void *IP = nullptr; 1387 const auto *PreAR = 1388 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1389 1390 // Give up if we don't already have the add recurrence we need because 1391 // actually constructing an add recurrence is relatively expensive. 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1563 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1564 if (SA->getNoWrapFlags(SCEV::FlagNUW)) { 1565 // If the addition does not unsign overflow then we can, by definition, 1566 // commute the zero extension with the addition operation. 1567 SmallVector<const SCEV *, 4> Ops; 1568 for (const auto *Op : SA->operands()) 1569 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1570 return getAddExpr(Ops, SCEV::FlagNUW); 1571 } 1572 } 1573 1574 // The cast wasn't folded; create an explicit cast node. 1575 // Recompute the insert position, as it may have been invalidated. 1576 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1577 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1578 Op, Ty); 1579 UniqueSCEVs.InsertNode(S, IP); 1580 return S; 1581 } 1582 1583 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1584 Type *Ty) { 1585 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1586 "This is not an extending conversion!"); 1587 assert(isSCEVable(Ty) && 1588 "This is not a conversion to a SCEVable type!"); 1589 Ty = getEffectiveSCEVType(Ty); 1590 1591 // Fold if the operand is constant. 1592 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1593 return getConstant( 1594 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1595 1596 // sext(sext(x)) --> sext(x) 1597 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1598 return getSignExtendExpr(SS->getOperand(), Ty); 1599 1600 // sext(zext(x)) --> zext(x) 1601 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1602 return getZeroExtendExpr(SZ->getOperand(), Ty); 1603 1604 // Before doing any expensive analysis, check to see if we've already 1605 // computed a SCEV for this Op and Ty. 1606 FoldingSetNodeID ID; 1607 ID.AddInteger(scSignExtend); 1608 ID.AddPointer(Op); 1609 ID.AddPointer(Ty); 1610 void *IP = nullptr; 1611 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1612 1613 // If the input value is provably positive, build a zext instead. 1614 if (isKnownNonNegative(Op)) 1615 return getZeroExtendExpr(Op, Ty); 1616 1617 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1618 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1619 // It's possible the bits taken off by the truncate were all sign bits. If 1620 // so, we should be able to simplify this further. 1621 const SCEV *X = ST->getOperand(); 1622 ConstantRange CR = getSignedRange(X); 1623 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1624 unsigned NewBits = getTypeSizeInBits(Ty); 1625 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1626 CR.sextOrTrunc(NewBits))) 1627 return getTruncateOrSignExtend(X, Ty); 1628 } 1629 1630 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1631 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1632 if (SA->getNumOperands() == 2) { 1633 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1634 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1635 if (SMul && SC1) { 1636 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1637 const APInt &C1 = SC1->getValue()->getValue(); 1638 const APInt &C2 = SC2->getValue()->getValue(); 1639 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1640 C2.ugt(C1) && C2.isPowerOf2()) 1641 return getAddExpr(getSignExtendExpr(SC1, Ty), 1642 getSignExtendExpr(SMul, Ty)); 1643 } 1644 } 1645 } 1646 1647 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1648 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1649 // If the addition does not sign overflow then we can, by definition, 1650 // commute the sign extension with the addition operation. 1651 SmallVector<const SCEV *, 4> Ops; 1652 for (const auto *Op : SA->operands()) 1653 Ops.push_back(getSignExtendExpr(Op, Ty)); 1654 return getAddExpr(Ops, SCEV::FlagNSW); 1655 } 1656 } 1657 // If the input value is a chrec scev, and we can prove that the value 1658 // did not overflow the old, smaller, value, we can sign extend all of the 1659 // operands (often constants). This allows analysis of something like 1660 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1662 if (AR->isAffine()) { 1663 const SCEV *Start = AR->getStart(); 1664 const SCEV *Step = AR->getStepRecurrence(*this); 1665 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1666 const Loop *L = AR->getLoop(); 1667 1668 // If we have special knowledge that this addrec won't overflow, 1669 // we don't need to do any further analysis. 1670 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1671 return getAddRecExpr( 1672 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1673 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1674 1675 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1676 // Note that this serves two purposes: It filters out loops that are 1677 // simply not analyzable, and it covers the case where this code is 1678 // being called from within backedge-taken count analysis, such that 1679 // attempting to ask for the backedge-taken count would likely result 1680 // in infinite recursion. In the later case, the analysis code will 1681 // cope with a conservative value, and it will take care to purge 1682 // that value once it has finished. 1683 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1684 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1685 // Manually compute the final value for AR, checking for 1686 // overflow. 1687 1688 // Check whether the backedge-taken count can be losslessly casted to 1689 // the addrec's type. The count is always unsigned. 1690 const SCEV *CastedMaxBECount = 1691 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1692 const SCEV *RecastedMaxBECount = 1693 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1694 if (MaxBECount == RecastedMaxBECount) { 1695 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1696 // Check whether Start+Step*MaxBECount has no signed overflow. 1697 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1698 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1699 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1700 const SCEV *WideMaxBECount = 1701 getZeroExtendExpr(CastedMaxBECount, WideTy); 1702 const SCEV *OperandExtendedAdd = 1703 getAddExpr(WideStart, 1704 getMulExpr(WideMaxBECount, 1705 getSignExtendExpr(Step, WideTy))); 1706 if (SAdd == OperandExtendedAdd) { 1707 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1708 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1712 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1713 } 1714 // Similar to above, only this time treat the step value as unsigned. 1715 // This covers loops that count up with an unsigned step. 1716 OperandExtendedAdd = 1717 getAddExpr(WideStart, 1718 getMulExpr(WideMaxBECount, 1719 getZeroExtendExpr(Step, WideTy))); 1720 if (SAdd == OperandExtendedAdd) { 1721 // If AR wraps around then 1722 // 1723 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1724 // => SAdd != OperandExtendedAdd 1725 // 1726 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1727 // (SAdd == OperandExtendedAdd => AR is NW) 1728 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1730 1731 // Return the expression with the addrec on the outside. 1732 return getAddRecExpr( 1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1734 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1735 } 1736 } 1737 1738 // If the backedge is guarded by a comparison with the pre-inc value 1739 // the addrec is safe. Also, if the entry is guarded by a comparison 1740 // with the start value and the backedge is guarded by a comparison 1741 // with the post-inc value, the addrec is safe. 1742 ICmpInst::Predicate Pred; 1743 const SCEV *OverflowLimit = 1744 getSignedOverflowLimitForStep(Step, &Pred, this); 1745 if (OverflowLimit && 1746 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1747 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1748 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1749 OverflowLimit)))) { 1750 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1751 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1752 return getAddRecExpr( 1753 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1754 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1755 } 1756 } 1757 // If Start and Step are constants, check if we can apply this 1758 // transformation: 1759 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1760 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1761 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1762 if (SC1 && SC2) { 1763 const APInt &C1 = SC1->getValue()->getValue(); 1764 const APInt &C2 = SC2->getValue()->getValue(); 1765 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1766 C2.isPowerOf2()) { 1767 Start = getSignExtendExpr(Start, Ty); 1768 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1769 AR->getNoWrapFlags()); 1770 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1771 } 1772 } 1773 1774 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1775 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1776 return getAddRecExpr( 1777 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1778 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1779 } 1780 } 1781 1782 // The cast wasn't folded; create an explicit cast node. 1783 // Recompute the insert position, as it may have been invalidated. 1784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1785 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1786 Op, Ty); 1787 UniqueSCEVs.InsertNode(S, IP); 1788 return S; 1789 } 1790 1791 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1792 /// unspecified bits out to the given type. 1793 /// 1794 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1795 Type *Ty) { 1796 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1797 "This is not an extending conversion!"); 1798 assert(isSCEVable(Ty) && 1799 "This is not a conversion to a SCEVable type!"); 1800 Ty = getEffectiveSCEVType(Ty); 1801 1802 // Sign-extend negative constants. 1803 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1804 if (SC->getValue()->getValue().isNegative()) 1805 return getSignExtendExpr(Op, Ty); 1806 1807 // Peel off a truncate cast. 1808 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1809 const SCEV *NewOp = T->getOperand(); 1810 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1811 return getAnyExtendExpr(NewOp, Ty); 1812 return getTruncateOrNoop(NewOp, Ty); 1813 } 1814 1815 // Next try a zext cast. If the cast is folded, use it. 1816 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1817 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1818 return ZExt; 1819 1820 // Next try a sext cast. If the cast is folded, use it. 1821 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1822 if (!isa<SCEVSignExtendExpr>(SExt)) 1823 return SExt; 1824 1825 // Force the cast to be folded into the operands of an addrec. 1826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1827 SmallVector<const SCEV *, 4> Ops; 1828 for (const SCEV *Op : AR->operands()) 1829 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1830 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1831 } 1832 1833 // If the expression is obviously signed, use the sext cast value. 1834 if (isa<SCEVSMaxExpr>(Op)) 1835 return SExt; 1836 1837 // Absent any other information, use the zext cast value. 1838 return ZExt; 1839 } 1840 1841 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1842 /// a list of operands to be added under the given scale, update the given 1843 /// map. This is a helper function for getAddRecExpr. As an example of 1844 /// what it does, given a sequence of operands that would form an add 1845 /// expression like this: 1846 /// 1847 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1848 /// 1849 /// where A and B are constants, update the map with these values: 1850 /// 1851 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1852 /// 1853 /// and add 13 + A*B*29 to AccumulatedConstant. 1854 /// This will allow getAddRecExpr to produce this: 1855 /// 1856 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1857 /// 1858 /// This form often exposes folding opportunities that are hidden in 1859 /// the original operand list. 1860 /// 1861 /// Return true iff it appears that any interesting folding opportunities 1862 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1863 /// the common case where no interesting opportunities are present, and 1864 /// is also used as a check to avoid infinite recursion. 1865 /// 1866 static bool 1867 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1868 SmallVectorImpl<const SCEV *> &NewOps, 1869 APInt &AccumulatedConstant, 1870 const SCEV *const *Ops, size_t NumOperands, 1871 const APInt &Scale, 1872 ScalarEvolution &SE) { 1873 bool Interesting = false; 1874 1875 // Iterate over the add operands. They are sorted, with constants first. 1876 unsigned i = 0; 1877 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1878 ++i; 1879 // Pull a buried constant out to the outside. 1880 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1881 Interesting = true; 1882 AccumulatedConstant += Scale * C->getValue()->getValue(); 1883 } 1884 1885 // Next comes everything else. We're especially interested in multiplies 1886 // here, but they're in the middle, so just visit the rest with one loop. 1887 for (; i != NumOperands; ++i) { 1888 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1889 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1890 APInt NewScale = 1891 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1892 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1893 // A multiplication of a constant with another add; recurse. 1894 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1895 Interesting |= 1896 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1897 Add->op_begin(), Add->getNumOperands(), 1898 NewScale, SE); 1899 } else { 1900 // A multiplication of a constant with some other value. Update 1901 // the map. 1902 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1903 const SCEV *Key = SE.getMulExpr(MulOps); 1904 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1905 if (Pair.second) { 1906 NewOps.push_back(Pair.first->first); 1907 } else { 1908 Pair.first->second += NewScale; 1909 // The map already had an entry for this value, which may indicate 1910 // a folding opportunity. 1911 Interesting = true; 1912 } 1913 } 1914 } else { 1915 // An ordinary operand. Update the map. 1916 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1917 M.insert(std::make_pair(Ops[i], Scale)); 1918 if (Pair.second) { 1919 NewOps.push_back(Pair.first->first); 1920 } else { 1921 Pair.first->second += Scale; 1922 // The map already had an entry for this value, which may indicate 1923 // a folding opportunity. 1924 Interesting = true; 1925 } 1926 } 1927 } 1928 1929 return Interesting; 1930 } 1931 1932 namespace { 1933 struct APIntCompare { 1934 bool operator()(const APInt &LHS, const APInt &RHS) const { 1935 return LHS.ult(RHS); 1936 } 1937 }; 1938 } 1939 1940 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1941 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1942 // can't-overflow flags for the operation if possible. 1943 static SCEV::NoWrapFlags 1944 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1945 const SmallVectorImpl<const SCEV *> &Ops, 1946 SCEV::NoWrapFlags Flags) { 1947 using namespace std::placeholders; 1948 typedef OverflowingBinaryOperator OBO; 1949 1950 bool CanAnalyze = 1951 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1952 (void)CanAnalyze; 1953 assert(CanAnalyze && "don't call from other places!"); 1954 1955 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1956 SCEV::NoWrapFlags SignOrUnsignWrap = 1957 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1958 1959 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1960 auto IsKnownNonNegative = 1961 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1962 1963 if (SignOrUnsignWrap == SCEV::FlagNSW && 1964 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1965 Flags = 1966 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1967 1968 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1969 1970 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1971 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1972 1973 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1974 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1975 1976 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue(); 1977 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1978 auto NSWRegion = 1979 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1980 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1981 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1982 } 1983 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1984 auto NUWRegion = 1985 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1986 OBO::NoUnsignedWrap); 1987 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1988 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1989 } 1990 } 1991 1992 return Flags; 1993 } 1994 1995 /// getAddExpr - Get a canonical add expression, or something simpler if 1996 /// possible. 1997 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1998 SCEV::NoWrapFlags Flags) { 1999 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2000 "only nuw or nsw allowed"); 2001 assert(!Ops.empty() && "Cannot get empty add!"); 2002 if (Ops.size() == 1) return Ops[0]; 2003 #ifndef NDEBUG 2004 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2005 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2006 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2007 "SCEVAddExpr operand types don't match!"); 2008 #endif 2009 2010 // Sort by complexity, this groups all similar expression types together. 2011 GroupByComplexity(Ops, &LI); 2012 2013 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2014 2015 // If there are any constants, fold them together. 2016 unsigned Idx = 0; 2017 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2018 ++Idx; 2019 assert(Idx < Ops.size()); 2020 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2021 // We found two constants, fold them together! 2022 Ops[0] = getConstant(LHSC->getValue()->getValue() + 2023 RHSC->getValue()->getValue()); 2024 if (Ops.size() == 2) return Ops[0]; 2025 Ops.erase(Ops.begin()+1); // Erase the folded element 2026 LHSC = cast<SCEVConstant>(Ops[0]); 2027 } 2028 2029 // If we are left with a constant zero being added, strip it off. 2030 if (LHSC->getValue()->isZero()) { 2031 Ops.erase(Ops.begin()); 2032 --Idx; 2033 } 2034 2035 if (Ops.size() == 1) return Ops[0]; 2036 } 2037 2038 // Okay, check to see if the same value occurs in the operand list more than 2039 // once. If so, merge them together into an multiply expression. Since we 2040 // sorted the list, these values are required to be adjacent. 2041 Type *Ty = Ops[0]->getType(); 2042 bool FoundMatch = false; 2043 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2044 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2045 // Scan ahead to count how many equal operands there are. 2046 unsigned Count = 2; 2047 while (i+Count != e && Ops[i+Count] == Ops[i]) 2048 ++Count; 2049 // Merge the values into a multiply. 2050 const SCEV *Scale = getConstant(Ty, Count); 2051 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2052 if (Ops.size() == Count) 2053 return Mul; 2054 Ops[i] = Mul; 2055 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2056 --i; e -= Count - 1; 2057 FoundMatch = true; 2058 } 2059 if (FoundMatch) 2060 return getAddExpr(Ops, Flags); 2061 2062 // Check for truncates. If all the operands are truncated from the same 2063 // type, see if factoring out the truncate would permit the result to be 2064 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2065 // if the contents of the resulting outer trunc fold to something simple. 2066 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2067 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2068 Type *DstType = Trunc->getType(); 2069 Type *SrcType = Trunc->getOperand()->getType(); 2070 SmallVector<const SCEV *, 8> LargeOps; 2071 bool Ok = true; 2072 // Check all the operands to see if they can be represented in the 2073 // source type of the truncate. 2074 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2075 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2076 if (T->getOperand()->getType() != SrcType) { 2077 Ok = false; 2078 break; 2079 } 2080 LargeOps.push_back(T->getOperand()); 2081 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2082 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2083 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2084 SmallVector<const SCEV *, 8> LargeMulOps; 2085 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2086 if (const SCEVTruncateExpr *T = 2087 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2088 if (T->getOperand()->getType() != SrcType) { 2089 Ok = false; 2090 break; 2091 } 2092 LargeMulOps.push_back(T->getOperand()); 2093 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2094 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2095 } else { 2096 Ok = false; 2097 break; 2098 } 2099 } 2100 if (Ok) 2101 LargeOps.push_back(getMulExpr(LargeMulOps)); 2102 } else { 2103 Ok = false; 2104 break; 2105 } 2106 } 2107 if (Ok) { 2108 // Evaluate the expression in the larger type. 2109 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2110 // If it folds to something simple, use it. Otherwise, don't. 2111 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2112 return getTruncateExpr(Fold, DstType); 2113 } 2114 } 2115 2116 // Skip past any other cast SCEVs. 2117 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2118 ++Idx; 2119 2120 // If there are add operands they would be next. 2121 if (Idx < Ops.size()) { 2122 bool DeletedAdd = false; 2123 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2124 // If we have an add, expand the add operands onto the end of the operands 2125 // list. 2126 Ops.erase(Ops.begin()+Idx); 2127 Ops.append(Add->op_begin(), Add->op_end()); 2128 DeletedAdd = true; 2129 } 2130 2131 // If we deleted at least one add, we added operands to the end of the list, 2132 // and they are not necessarily sorted. Recurse to resort and resimplify 2133 // any operands we just acquired. 2134 if (DeletedAdd) 2135 return getAddExpr(Ops); 2136 } 2137 2138 // Skip over the add expression until we get to a multiply. 2139 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2140 ++Idx; 2141 2142 // Check to see if there are any folding opportunities present with 2143 // operands multiplied by constant values. 2144 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2145 uint64_t BitWidth = getTypeSizeInBits(Ty); 2146 DenseMap<const SCEV *, APInt> M; 2147 SmallVector<const SCEV *, 8> NewOps; 2148 APInt AccumulatedConstant(BitWidth, 0); 2149 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2150 Ops.data(), Ops.size(), 2151 APInt(BitWidth, 1), *this)) { 2152 // Some interesting folding opportunity is present, so its worthwhile to 2153 // re-generate the operands list. Group the operands by constant scale, 2154 // to avoid multiplying by the same constant scale multiple times. 2155 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2156 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2157 E = NewOps.end(); I != E; ++I) 2158 MulOpLists[M.find(*I)->second].push_back(*I); 2159 // Re-generate the operands list. 2160 Ops.clear(); 2161 if (AccumulatedConstant != 0) 2162 Ops.push_back(getConstant(AccumulatedConstant)); 2163 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2164 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2165 if (I->first != 0) 2166 Ops.push_back(getMulExpr(getConstant(I->first), 2167 getAddExpr(I->second))); 2168 if (Ops.empty()) 2169 return getZero(Ty); 2170 if (Ops.size() == 1) 2171 return Ops[0]; 2172 return getAddExpr(Ops); 2173 } 2174 } 2175 2176 // If we are adding something to a multiply expression, make sure the 2177 // something is not already an operand of the multiply. If so, merge it into 2178 // the multiply. 2179 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2180 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2181 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2182 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2183 if (isa<SCEVConstant>(MulOpSCEV)) 2184 continue; 2185 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2186 if (MulOpSCEV == Ops[AddOp]) { 2187 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2188 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2189 if (Mul->getNumOperands() != 2) { 2190 // If the multiply has more than two operands, we must get the 2191 // Y*Z term. 2192 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2193 Mul->op_begin()+MulOp); 2194 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2195 InnerMul = getMulExpr(MulOps); 2196 } 2197 const SCEV *One = getOne(Ty); 2198 const SCEV *AddOne = getAddExpr(One, InnerMul); 2199 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2200 if (Ops.size() == 2) return OuterMul; 2201 if (AddOp < Idx) { 2202 Ops.erase(Ops.begin()+AddOp); 2203 Ops.erase(Ops.begin()+Idx-1); 2204 } else { 2205 Ops.erase(Ops.begin()+Idx); 2206 Ops.erase(Ops.begin()+AddOp-1); 2207 } 2208 Ops.push_back(OuterMul); 2209 return getAddExpr(Ops); 2210 } 2211 2212 // Check this multiply against other multiplies being added together. 2213 for (unsigned OtherMulIdx = Idx+1; 2214 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2215 ++OtherMulIdx) { 2216 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2217 // If MulOp occurs in OtherMul, we can fold the two multiplies 2218 // together. 2219 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2220 OMulOp != e; ++OMulOp) 2221 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2222 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2223 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2224 if (Mul->getNumOperands() != 2) { 2225 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2226 Mul->op_begin()+MulOp); 2227 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2228 InnerMul1 = getMulExpr(MulOps); 2229 } 2230 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2231 if (OtherMul->getNumOperands() != 2) { 2232 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2233 OtherMul->op_begin()+OMulOp); 2234 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2235 InnerMul2 = getMulExpr(MulOps); 2236 } 2237 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2238 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2239 if (Ops.size() == 2) return OuterMul; 2240 Ops.erase(Ops.begin()+Idx); 2241 Ops.erase(Ops.begin()+OtherMulIdx-1); 2242 Ops.push_back(OuterMul); 2243 return getAddExpr(Ops); 2244 } 2245 } 2246 } 2247 } 2248 2249 // If there are any add recurrences in the operands list, see if any other 2250 // added values are loop invariant. If so, we can fold them into the 2251 // recurrence. 2252 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2253 ++Idx; 2254 2255 // Scan over all recurrences, trying to fold loop invariants into them. 2256 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2257 // Scan all of the other operands to this add and add them to the vector if 2258 // they are loop invariant w.r.t. the recurrence. 2259 SmallVector<const SCEV *, 8> LIOps; 2260 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2261 const Loop *AddRecLoop = AddRec->getLoop(); 2262 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2263 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2264 LIOps.push_back(Ops[i]); 2265 Ops.erase(Ops.begin()+i); 2266 --i; --e; 2267 } 2268 2269 // If we found some loop invariants, fold them into the recurrence. 2270 if (!LIOps.empty()) { 2271 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2272 LIOps.push_back(AddRec->getStart()); 2273 2274 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2275 AddRec->op_end()); 2276 AddRecOps[0] = getAddExpr(LIOps); 2277 2278 // Build the new addrec. Propagate the NUW and NSW flags if both the 2279 // outer add and the inner addrec are guaranteed to have no overflow. 2280 // Always propagate NW. 2281 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2282 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2283 2284 // If all of the other operands were loop invariant, we are done. 2285 if (Ops.size() == 1) return NewRec; 2286 2287 // Otherwise, add the folded AddRec by the non-invariant parts. 2288 for (unsigned i = 0;; ++i) 2289 if (Ops[i] == AddRec) { 2290 Ops[i] = NewRec; 2291 break; 2292 } 2293 return getAddExpr(Ops); 2294 } 2295 2296 // Okay, if there weren't any loop invariants to be folded, check to see if 2297 // there are multiple AddRec's with the same loop induction variable being 2298 // added together. If so, we can fold them. 2299 for (unsigned OtherIdx = Idx+1; 2300 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2301 ++OtherIdx) 2302 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2303 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2304 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2305 AddRec->op_end()); 2306 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2307 ++OtherIdx) 2308 if (const SCEVAddRecExpr *OtherAddRec = 2309 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2310 if (OtherAddRec->getLoop() == AddRecLoop) { 2311 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2312 i != e; ++i) { 2313 if (i >= AddRecOps.size()) { 2314 AddRecOps.append(OtherAddRec->op_begin()+i, 2315 OtherAddRec->op_end()); 2316 break; 2317 } 2318 AddRecOps[i] = getAddExpr(AddRecOps[i], 2319 OtherAddRec->getOperand(i)); 2320 } 2321 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2322 } 2323 // Step size has changed, so we cannot guarantee no self-wraparound. 2324 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2325 return getAddExpr(Ops); 2326 } 2327 2328 // Otherwise couldn't fold anything into this recurrence. Move onto the 2329 // next one. 2330 } 2331 2332 // Okay, it looks like we really DO need an add expr. Check to see if we 2333 // already have one, otherwise create a new one. 2334 FoldingSetNodeID ID; 2335 ID.AddInteger(scAddExpr); 2336 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2337 ID.AddPointer(Ops[i]); 2338 void *IP = nullptr; 2339 SCEVAddExpr *S = 2340 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2341 if (!S) { 2342 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2343 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2344 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2345 O, Ops.size()); 2346 UniqueSCEVs.InsertNode(S, IP); 2347 } 2348 S->setNoWrapFlags(Flags); 2349 return S; 2350 } 2351 2352 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2353 uint64_t k = i*j; 2354 if (j > 1 && k / j != i) Overflow = true; 2355 return k; 2356 } 2357 2358 /// Compute the result of "n choose k", the binomial coefficient. If an 2359 /// intermediate computation overflows, Overflow will be set and the return will 2360 /// be garbage. Overflow is not cleared on absence of overflow. 2361 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2362 // We use the multiplicative formula: 2363 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2364 // At each iteration, we take the n-th term of the numeral and divide by the 2365 // (k-n)th term of the denominator. This division will always produce an 2366 // integral result, and helps reduce the chance of overflow in the 2367 // intermediate computations. However, we can still overflow even when the 2368 // final result would fit. 2369 2370 if (n == 0 || n == k) return 1; 2371 if (k > n) return 0; 2372 2373 if (k > n/2) 2374 k = n-k; 2375 2376 uint64_t r = 1; 2377 for (uint64_t i = 1; i <= k; ++i) { 2378 r = umul_ov(r, n-(i-1), Overflow); 2379 r /= i; 2380 } 2381 return r; 2382 } 2383 2384 /// Determine if any of the operands in this SCEV are a constant or if 2385 /// any of the add or multiply expressions in this SCEV contain a constant. 2386 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2387 SmallVector<const SCEV *, 4> Ops; 2388 Ops.push_back(StartExpr); 2389 while (!Ops.empty()) { 2390 const SCEV *CurrentExpr = Ops.pop_back_val(); 2391 if (isa<SCEVConstant>(*CurrentExpr)) 2392 return true; 2393 2394 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2395 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2396 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2397 } 2398 } 2399 return false; 2400 } 2401 2402 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2403 /// possible. 2404 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2405 SCEV::NoWrapFlags Flags) { 2406 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2407 "only nuw or nsw allowed"); 2408 assert(!Ops.empty() && "Cannot get empty mul!"); 2409 if (Ops.size() == 1) return Ops[0]; 2410 #ifndef NDEBUG 2411 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2412 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2413 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2414 "SCEVMulExpr operand types don't match!"); 2415 #endif 2416 2417 // Sort by complexity, this groups all similar expression types together. 2418 GroupByComplexity(Ops, &LI); 2419 2420 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2421 2422 // If there are any constants, fold them together. 2423 unsigned Idx = 0; 2424 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2425 2426 // C1*(C2+V) -> C1*C2 + C1*V 2427 if (Ops.size() == 2) 2428 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2429 // If any of Add's ops are Adds or Muls with a constant, 2430 // apply this transformation as well. 2431 if (Add->getNumOperands() == 2) 2432 if (containsConstantSomewhere(Add)) 2433 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2434 getMulExpr(LHSC, Add->getOperand(1))); 2435 2436 ++Idx; 2437 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2438 // We found two constants, fold them together! 2439 ConstantInt *Fold = ConstantInt::get(getContext(), 2440 LHSC->getValue()->getValue() * 2441 RHSC->getValue()->getValue()); 2442 Ops[0] = getConstant(Fold); 2443 Ops.erase(Ops.begin()+1); // Erase the folded element 2444 if (Ops.size() == 1) return Ops[0]; 2445 LHSC = cast<SCEVConstant>(Ops[0]); 2446 } 2447 2448 // If we are left with a constant one being multiplied, strip it off. 2449 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2450 Ops.erase(Ops.begin()); 2451 --Idx; 2452 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2453 // If we have a multiply of zero, it will always be zero. 2454 return Ops[0]; 2455 } else if (Ops[0]->isAllOnesValue()) { 2456 // If we have a mul by -1 of an add, try distributing the -1 among the 2457 // add operands. 2458 if (Ops.size() == 2) { 2459 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2460 SmallVector<const SCEV *, 4> NewOps; 2461 bool AnyFolded = false; 2462 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2463 E = Add->op_end(); I != E; ++I) { 2464 const SCEV *Mul = getMulExpr(Ops[0], *I); 2465 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2466 NewOps.push_back(Mul); 2467 } 2468 if (AnyFolded) 2469 return getAddExpr(NewOps); 2470 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2471 // Negation preserves a recurrence's no self-wrap property. 2472 SmallVector<const SCEV *, 4> Operands; 2473 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2474 E = AddRec->op_end(); I != E; ++I) { 2475 Operands.push_back(getMulExpr(Ops[0], *I)); 2476 } 2477 return getAddRecExpr(Operands, AddRec->getLoop(), 2478 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2479 } 2480 } 2481 } 2482 2483 if (Ops.size() == 1) 2484 return Ops[0]; 2485 } 2486 2487 // Skip over the add expression until we get to a multiply. 2488 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2489 ++Idx; 2490 2491 // If there are mul operands inline them all into this expression. 2492 if (Idx < Ops.size()) { 2493 bool DeletedMul = false; 2494 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2495 // If we have an mul, expand the mul operands onto the end of the operands 2496 // list. 2497 Ops.erase(Ops.begin()+Idx); 2498 Ops.append(Mul->op_begin(), Mul->op_end()); 2499 DeletedMul = true; 2500 } 2501 2502 // If we deleted at least one mul, we added operands to the end of the list, 2503 // and they are not necessarily sorted. Recurse to resort and resimplify 2504 // any operands we just acquired. 2505 if (DeletedMul) 2506 return getMulExpr(Ops); 2507 } 2508 2509 // If there are any add recurrences in the operands list, see if any other 2510 // added values are loop invariant. If so, we can fold them into the 2511 // recurrence. 2512 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2513 ++Idx; 2514 2515 // Scan over all recurrences, trying to fold loop invariants into them. 2516 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2517 // Scan all of the other operands to this mul and add them to the vector if 2518 // they are loop invariant w.r.t. the recurrence. 2519 SmallVector<const SCEV *, 8> LIOps; 2520 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2521 const Loop *AddRecLoop = AddRec->getLoop(); 2522 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2523 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2524 LIOps.push_back(Ops[i]); 2525 Ops.erase(Ops.begin()+i); 2526 --i; --e; 2527 } 2528 2529 // If we found some loop invariants, fold them into the recurrence. 2530 if (!LIOps.empty()) { 2531 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2532 SmallVector<const SCEV *, 4> NewOps; 2533 NewOps.reserve(AddRec->getNumOperands()); 2534 const SCEV *Scale = getMulExpr(LIOps); 2535 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2536 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2537 2538 // Build the new addrec. Propagate the NUW and NSW flags if both the 2539 // outer mul and the inner addrec are guaranteed to have no overflow. 2540 // 2541 // No self-wrap cannot be guaranteed after changing the step size, but 2542 // will be inferred if either NUW or NSW is true. 2543 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2544 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2545 2546 // If all of the other operands were loop invariant, we are done. 2547 if (Ops.size() == 1) return NewRec; 2548 2549 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2550 for (unsigned i = 0;; ++i) 2551 if (Ops[i] == AddRec) { 2552 Ops[i] = NewRec; 2553 break; 2554 } 2555 return getMulExpr(Ops); 2556 } 2557 2558 // Okay, if there weren't any loop invariants to be folded, check to see if 2559 // there are multiple AddRec's with the same loop induction variable being 2560 // multiplied together. If so, we can fold them. 2561 2562 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2563 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2564 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2565 // ]]],+,...up to x=2n}. 2566 // Note that the arguments to choose() are always integers with values 2567 // known at compile time, never SCEV objects. 2568 // 2569 // The implementation avoids pointless extra computations when the two 2570 // addrec's are of different length (mathematically, it's equivalent to 2571 // an infinite stream of zeros on the right). 2572 bool OpsModified = false; 2573 for (unsigned OtherIdx = Idx+1; 2574 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2575 ++OtherIdx) { 2576 const SCEVAddRecExpr *OtherAddRec = 2577 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2578 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2579 continue; 2580 2581 bool Overflow = false; 2582 Type *Ty = AddRec->getType(); 2583 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2584 SmallVector<const SCEV*, 7> AddRecOps; 2585 for (int x = 0, xe = AddRec->getNumOperands() + 2586 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2587 const SCEV *Term = getZero(Ty); 2588 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2589 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2590 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2591 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2592 z < ze && !Overflow; ++z) { 2593 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2594 uint64_t Coeff; 2595 if (LargerThan64Bits) 2596 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2597 else 2598 Coeff = Coeff1*Coeff2; 2599 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2600 const SCEV *Term1 = AddRec->getOperand(y-z); 2601 const SCEV *Term2 = OtherAddRec->getOperand(z); 2602 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2603 } 2604 } 2605 AddRecOps.push_back(Term); 2606 } 2607 if (!Overflow) { 2608 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2609 SCEV::FlagAnyWrap); 2610 if (Ops.size() == 2) return NewAddRec; 2611 Ops[Idx] = NewAddRec; 2612 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2613 OpsModified = true; 2614 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2615 if (!AddRec) 2616 break; 2617 } 2618 } 2619 if (OpsModified) 2620 return getMulExpr(Ops); 2621 2622 // Otherwise couldn't fold anything into this recurrence. Move onto the 2623 // next one. 2624 } 2625 2626 // Okay, it looks like we really DO need an mul expr. Check to see if we 2627 // already have one, otherwise create a new one. 2628 FoldingSetNodeID ID; 2629 ID.AddInteger(scMulExpr); 2630 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2631 ID.AddPointer(Ops[i]); 2632 void *IP = nullptr; 2633 SCEVMulExpr *S = 2634 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2635 if (!S) { 2636 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2637 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2638 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2639 O, Ops.size()); 2640 UniqueSCEVs.InsertNode(S, IP); 2641 } 2642 S->setNoWrapFlags(Flags); 2643 return S; 2644 } 2645 2646 /// getUDivExpr - Get a canonical unsigned division expression, or something 2647 /// simpler if possible. 2648 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2649 const SCEV *RHS) { 2650 assert(getEffectiveSCEVType(LHS->getType()) == 2651 getEffectiveSCEVType(RHS->getType()) && 2652 "SCEVUDivExpr operand types don't match!"); 2653 2654 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2655 if (RHSC->getValue()->equalsInt(1)) 2656 return LHS; // X udiv 1 --> x 2657 // If the denominator is zero, the result of the udiv is undefined. Don't 2658 // try to analyze it, because the resolution chosen here may differ from 2659 // the resolution chosen in other parts of the compiler. 2660 if (!RHSC->getValue()->isZero()) { 2661 // Determine if the division can be folded into the operands of 2662 // its operands. 2663 // TODO: Generalize this to non-constants by using known-bits information. 2664 Type *Ty = LHS->getType(); 2665 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2666 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2667 // For non-power-of-two values, effectively round the value up to the 2668 // nearest power of two. 2669 if (!RHSC->getValue()->getValue().isPowerOf2()) 2670 ++MaxShiftAmt; 2671 IntegerType *ExtTy = 2672 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2673 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2674 if (const SCEVConstant *Step = 2675 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2676 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2677 const APInt &StepInt = Step->getValue()->getValue(); 2678 const APInt &DivInt = RHSC->getValue()->getValue(); 2679 if (!StepInt.urem(DivInt) && 2680 getZeroExtendExpr(AR, ExtTy) == 2681 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2682 getZeroExtendExpr(Step, ExtTy), 2683 AR->getLoop(), SCEV::FlagAnyWrap)) { 2684 SmallVector<const SCEV *, 4> Operands; 2685 for (const SCEV *Op : AR->operands()) 2686 Operands.push_back(getUDivExpr(Op, RHS)); 2687 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2688 } 2689 /// Get a canonical UDivExpr for a recurrence. 2690 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2691 // We can currently only fold X%N if X is constant. 2692 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2693 if (StartC && !DivInt.urem(StepInt) && 2694 getZeroExtendExpr(AR, ExtTy) == 2695 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2696 getZeroExtendExpr(Step, ExtTy), 2697 AR->getLoop(), SCEV::FlagAnyWrap)) { 2698 const APInt &StartInt = StartC->getValue()->getValue(); 2699 const APInt &StartRem = StartInt.urem(StepInt); 2700 if (StartRem != 0) 2701 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2702 AR->getLoop(), SCEV::FlagNW); 2703 } 2704 } 2705 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2706 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2707 SmallVector<const SCEV *, 4> Operands; 2708 for (const SCEV *Op : M->operands()) 2709 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2710 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2711 // Find an operand that's safely divisible. 2712 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2713 const SCEV *Op = M->getOperand(i); 2714 const SCEV *Div = getUDivExpr(Op, RHSC); 2715 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2716 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2717 M->op_end()); 2718 Operands[i] = Div; 2719 return getMulExpr(Operands); 2720 } 2721 } 2722 } 2723 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2724 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2725 SmallVector<const SCEV *, 4> Operands; 2726 for (const SCEV *Op : A->operands()) 2727 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2728 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2729 Operands.clear(); 2730 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2731 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2732 if (isa<SCEVUDivExpr>(Op) || 2733 getMulExpr(Op, RHS) != A->getOperand(i)) 2734 break; 2735 Operands.push_back(Op); 2736 } 2737 if (Operands.size() == A->getNumOperands()) 2738 return getAddExpr(Operands); 2739 } 2740 } 2741 2742 // Fold if both operands are constant. 2743 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2744 Constant *LHSCV = LHSC->getValue(); 2745 Constant *RHSCV = RHSC->getValue(); 2746 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2747 RHSCV))); 2748 } 2749 } 2750 } 2751 2752 FoldingSetNodeID ID; 2753 ID.AddInteger(scUDivExpr); 2754 ID.AddPointer(LHS); 2755 ID.AddPointer(RHS); 2756 void *IP = nullptr; 2757 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2758 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2759 LHS, RHS); 2760 UniqueSCEVs.InsertNode(S, IP); 2761 return S; 2762 } 2763 2764 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2765 APInt A = C1->getValue()->getValue().abs(); 2766 APInt B = C2->getValue()->getValue().abs(); 2767 uint32_t ABW = A.getBitWidth(); 2768 uint32_t BBW = B.getBitWidth(); 2769 2770 if (ABW > BBW) 2771 B = B.zext(ABW); 2772 else if (ABW < BBW) 2773 A = A.zext(BBW); 2774 2775 return APIntOps::GreatestCommonDivisor(A, B); 2776 } 2777 2778 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2779 /// something simpler if possible. There is no representation for an exact udiv 2780 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2781 /// We can't do this when it's not exact because the udiv may be clearing bits. 2782 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2783 const SCEV *RHS) { 2784 // TODO: we could try to find factors in all sorts of things, but for now we 2785 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2786 // end of this file for inspiration. 2787 2788 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2789 if (!Mul) 2790 return getUDivExpr(LHS, RHS); 2791 2792 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2793 // If the mulexpr multiplies by a constant, then that constant must be the 2794 // first element of the mulexpr. 2795 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2796 if (LHSCst == RHSCst) { 2797 SmallVector<const SCEV *, 2> Operands; 2798 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2799 return getMulExpr(Operands); 2800 } 2801 2802 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2803 // that there's a factor provided by one of the other terms. We need to 2804 // check. 2805 APInt Factor = gcd(LHSCst, RHSCst); 2806 if (!Factor.isIntN(1)) { 2807 LHSCst = cast<SCEVConstant>( 2808 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2809 RHSCst = cast<SCEVConstant>( 2810 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2811 SmallVector<const SCEV *, 2> Operands; 2812 Operands.push_back(LHSCst); 2813 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2814 LHS = getMulExpr(Operands); 2815 RHS = RHSCst; 2816 Mul = dyn_cast<SCEVMulExpr>(LHS); 2817 if (!Mul) 2818 return getUDivExactExpr(LHS, RHS); 2819 } 2820 } 2821 } 2822 2823 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2824 if (Mul->getOperand(i) == RHS) { 2825 SmallVector<const SCEV *, 2> Operands; 2826 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2827 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2828 return getMulExpr(Operands); 2829 } 2830 } 2831 2832 return getUDivExpr(LHS, RHS); 2833 } 2834 2835 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2836 /// Simplify the expression as much as possible. 2837 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2838 const Loop *L, 2839 SCEV::NoWrapFlags Flags) { 2840 SmallVector<const SCEV *, 4> Operands; 2841 Operands.push_back(Start); 2842 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2843 if (StepChrec->getLoop() == L) { 2844 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2845 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2846 } 2847 2848 Operands.push_back(Step); 2849 return getAddRecExpr(Operands, L, Flags); 2850 } 2851 2852 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2853 /// Simplify the expression as much as possible. 2854 const SCEV * 2855 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2856 const Loop *L, SCEV::NoWrapFlags Flags) { 2857 if (Operands.size() == 1) return Operands[0]; 2858 #ifndef NDEBUG 2859 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2860 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2861 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2862 "SCEVAddRecExpr operand types don't match!"); 2863 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2864 assert(isLoopInvariant(Operands[i], L) && 2865 "SCEVAddRecExpr operand is not loop-invariant!"); 2866 #endif 2867 2868 if (Operands.back()->isZero()) { 2869 Operands.pop_back(); 2870 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2871 } 2872 2873 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2874 // use that information to infer NUW and NSW flags. However, computing a 2875 // BE count requires calling getAddRecExpr, so we may not yet have a 2876 // meaningful BE count at this point (and if we don't, we'd be stuck 2877 // with a SCEVCouldNotCompute as the cached BE count). 2878 2879 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2880 2881 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2882 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2883 const Loop *NestedLoop = NestedAR->getLoop(); 2884 if (L->contains(NestedLoop) 2885 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2886 : (!NestedLoop->contains(L) && 2887 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2888 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2889 NestedAR->op_end()); 2890 Operands[0] = NestedAR->getStart(); 2891 // AddRecs require their operands be loop-invariant with respect to their 2892 // loops. Don't perform this transformation if it would break this 2893 // requirement. 2894 bool AllInvariant = 2895 std::all_of(Operands.begin(), Operands.end(), 2896 [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2897 2898 if (AllInvariant) { 2899 // Create a recurrence for the outer loop with the same step size. 2900 // 2901 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2902 // inner recurrence has the same property. 2903 SCEV::NoWrapFlags OuterFlags = 2904 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2905 2906 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2907 AllInvariant = std::all_of( 2908 NestedOperands.begin(), NestedOperands.end(), 2909 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); }); 2910 2911 if (AllInvariant) { 2912 // Ok, both add recurrences are valid after the transformation. 2913 // 2914 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2915 // the outer recurrence has the same property. 2916 SCEV::NoWrapFlags InnerFlags = 2917 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2918 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2919 } 2920 } 2921 // Reset Operands to its original state. 2922 Operands[0] = NestedAR; 2923 } 2924 } 2925 2926 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2927 // already have one, otherwise create a new one. 2928 FoldingSetNodeID ID; 2929 ID.AddInteger(scAddRecExpr); 2930 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2931 ID.AddPointer(Operands[i]); 2932 ID.AddPointer(L); 2933 void *IP = nullptr; 2934 SCEVAddRecExpr *S = 2935 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2936 if (!S) { 2937 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2938 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2939 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2940 O, Operands.size(), L); 2941 UniqueSCEVs.InsertNode(S, IP); 2942 } 2943 S->setNoWrapFlags(Flags); 2944 return S; 2945 } 2946 2947 const SCEV * 2948 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2949 const SmallVectorImpl<const SCEV *> &IndexExprs, 2950 bool InBounds) { 2951 // getSCEV(Base)->getType() has the same address space as Base->getType() 2952 // because SCEV::getType() preserves the address space. 2953 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2954 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2955 // instruction to its SCEV, because the Instruction may be guarded by control 2956 // flow and the no-overflow bits may not be valid for the expression in any 2957 // context. This can be fixed similarly to how these flags are handled for 2958 // adds. 2959 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2960 2961 const SCEV *TotalOffset = getZero(IntPtrTy); 2962 // The address space is unimportant. The first thing we do on CurTy is getting 2963 // its element type. 2964 Type *CurTy = PointerType::getUnqual(PointeeType); 2965 for (const SCEV *IndexExpr : IndexExprs) { 2966 // Compute the (potentially symbolic) offset in bytes for this index. 2967 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2968 // For a struct, add the member offset. 2969 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2970 unsigned FieldNo = Index->getZExtValue(); 2971 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2972 2973 // Add the field offset to the running total offset. 2974 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2975 2976 // Update CurTy to the type of the field at Index. 2977 CurTy = STy->getTypeAtIndex(Index); 2978 } else { 2979 // Update CurTy to its element type. 2980 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2981 // For an array, add the element offset, explicitly scaled. 2982 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2983 // Getelementptr indices are signed. 2984 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2985 2986 // Multiply the index by the element size to compute the element offset. 2987 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2988 2989 // Add the element offset to the running total offset. 2990 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2991 } 2992 } 2993 2994 // Add the total offset from all the GEP indices to the base. 2995 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2996 } 2997 2998 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2999 const SCEV *RHS) { 3000 SmallVector<const SCEV *, 2> Ops; 3001 Ops.push_back(LHS); 3002 Ops.push_back(RHS); 3003 return getSMaxExpr(Ops); 3004 } 3005 3006 const SCEV * 3007 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3008 assert(!Ops.empty() && "Cannot get empty smax!"); 3009 if (Ops.size() == 1) return Ops[0]; 3010 #ifndef NDEBUG 3011 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3012 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3013 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3014 "SCEVSMaxExpr operand types don't match!"); 3015 #endif 3016 3017 // Sort by complexity, this groups all similar expression types together. 3018 GroupByComplexity(Ops, &LI); 3019 3020 // If there are any constants, fold them together. 3021 unsigned Idx = 0; 3022 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3023 ++Idx; 3024 assert(Idx < Ops.size()); 3025 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3026 // We found two constants, fold them together! 3027 ConstantInt *Fold = ConstantInt::get(getContext(), 3028 APIntOps::smax(LHSC->getValue()->getValue(), 3029 RHSC->getValue()->getValue())); 3030 Ops[0] = getConstant(Fold); 3031 Ops.erase(Ops.begin()+1); // Erase the folded element 3032 if (Ops.size() == 1) return Ops[0]; 3033 LHSC = cast<SCEVConstant>(Ops[0]); 3034 } 3035 3036 // If we are left with a constant minimum-int, strip it off. 3037 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3038 Ops.erase(Ops.begin()); 3039 --Idx; 3040 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3041 // If we have an smax with a constant maximum-int, it will always be 3042 // maximum-int. 3043 return Ops[0]; 3044 } 3045 3046 if (Ops.size() == 1) return Ops[0]; 3047 } 3048 3049 // Find the first SMax 3050 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3051 ++Idx; 3052 3053 // Check to see if one of the operands is an SMax. If so, expand its operands 3054 // onto our operand list, and recurse to simplify. 3055 if (Idx < Ops.size()) { 3056 bool DeletedSMax = false; 3057 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3058 Ops.erase(Ops.begin()+Idx); 3059 Ops.append(SMax->op_begin(), SMax->op_end()); 3060 DeletedSMax = true; 3061 } 3062 3063 if (DeletedSMax) 3064 return getSMaxExpr(Ops); 3065 } 3066 3067 // Okay, check to see if the same value occurs in the operand list twice. If 3068 // so, delete one. Since we sorted the list, these values are required to 3069 // be adjacent. 3070 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3071 // X smax Y smax Y --> X smax Y 3072 // X smax Y --> X, if X is always greater than Y 3073 if (Ops[i] == Ops[i+1] || 3074 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3075 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3076 --i; --e; 3077 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3078 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3079 --i; --e; 3080 } 3081 3082 if (Ops.size() == 1) return Ops[0]; 3083 3084 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3085 3086 // Okay, it looks like we really DO need an smax expr. Check to see if we 3087 // already have one, otherwise create a new one. 3088 FoldingSetNodeID ID; 3089 ID.AddInteger(scSMaxExpr); 3090 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3091 ID.AddPointer(Ops[i]); 3092 void *IP = nullptr; 3093 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3094 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3095 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3096 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3097 O, Ops.size()); 3098 UniqueSCEVs.InsertNode(S, IP); 3099 return S; 3100 } 3101 3102 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3103 const SCEV *RHS) { 3104 SmallVector<const SCEV *, 2> Ops; 3105 Ops.push_back(LHS); 3106 Ops.push_back(RHS); 3107 return getUMaxExpr(Ops); 3108 } 3109 3110 const SCEV * 3111 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3112 assert(!Ops.empty() && "Cannot get empty umax!"); 3113 if (Ops.size() == 1) return Ops[0]; 3114 #ifndef NDEBUG 3115 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3116 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3117 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3118 "SCEVUMaxExpr operand types don't match!"); 3119 #endif 3120 3121 // Sort by complexity, this groups all similar expression types together. 3122 GroupByComplexity(Ops, &LI); 3123 3124 // If there are any constants, fold them together. 3125 unsigned Idx = 0; 3126 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3127 ++Idx; 3128 assert(Idx < Ops.size()); 3129 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3130 // We found two constants, fold them together! 3131 ConstantInt *Fold = ConstantInt::get(getContext(), 3132 APIntOps::umax(LHSC->getValue()->getValue(), 3133 RHSC->getValue()->getValue())); 3134 Ops[0] = getConstant(Fold); 3135 Ops.erase(Ops.begin()+1); // Erase the folded element 3136 if (Ops.size() == 1) return Ops[0]; 3137 LHSC = cast<SCEVConstant>(Ops[0]); 3138 } 3139 3140 // If we are left with a constant minimum-int, strip it off. 3141 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3142 Ops.erase(Ops.begin()); 3143 --Idx; 3144 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3145 // If we have an umax with a constant maximum-int, it will always be 3146 // maximum-int. 3147 return Ops[0]; 3148 } 3149 3150 if (Ops.size() == 1) return Ops[0]; 3151 } 3152 3153 // Find the first UMax 3154 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3155 ++Idx; 3156 3157 // Check to see if one of the operands is a UMax. If so, expand its operands 3158 // onto our operand list, and recurse to simplify. 3159 if (Idx < Ops.size()) { 3160 bool DeletedUMax = false; 3161 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3162 Ops.erase(Ops.begin()+Idx); 3163 Ops.append(UMax->op_begin(), UMax->op_end()); 3164 DeletedUMax = true; 3165 } 3166 3167 if (DeletedUMax) 3168 return getUMaxExpr(Ops); 3169 } 3170 3171 // Okay, check to see if the same value occurs in the operand list twice. If 3172 // so, delete one. Since we sorted the list, these values are required to 3173 // be adjacent. 3174 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3175 // X umax Y umax Y --> X umax Y 3176 // X umax Y --> X, if X is always greater than Y 3177 if (Ops[i] == Ops[i+1] || 3178 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3179 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3180 --i; --e; 3181 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3182 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3183 --i; --e; 3184 } 3185 3186 if (Ops.size() == 1) return Ops[0]; 3187 3188 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3189 3190 // Okay, it looks like we really DO need a umax expr. Check to see if we 3191 // already have one, otherwise create a new one. 3192 FoldingSetNodeID ID; 3193 ID.AddInteger(scUMaxExpr); 3194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3195 ID.AddPointer(Ops[i]); 3196 void *IP = nullptr; 3197 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3198 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3199 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3200 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3201 O, Ops.size()); 3202 UniqueSCEVs.InsertNode(S, IP); 3203 return S; 3204 } 3205 3206 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3207 const SCEV *RHS) { 3208 // ~smax(~x, ~y) == smin(x, y). 3209 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3210 } 3211 3212 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3213 const SCEV *RHS) { 3214 // ~umax(~x, ~y) == umin(x, y) 3215 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3216 } 3217 3218 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3219 // We can bypass creating a target-independent 3220 // constant expression and then folding it back into a ConstantInt. 3221 // This is just a compile-time optimization. 3222 return getConstant(IntTy, 3223 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3224 } 3225 3226 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3227 StructType *STy, 3228 unsigned FieldNo) { 3229 // We can bypass creating a target-independent 3230 // constant expression and then folding it back into a ConstantInt. 3231 // This is just a compile-time optimization. 3232 return getConstant( 3233 IntTy, 3234 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3235 FieldNo)); 3236 } 3237 3238 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3239 // Don't attempt to do anything other than create a SCEVUnknown object 3240 // here. createSCEV only calls getUnknown after checking for all other 3241 // interesting possibilities, and any other code that calls getUnknown 3242 // is doing so in order to hide a value from SCEV canonicalization. 3243 3244 FoldingSetNodeID ID; 3245 ID.AddInteger(scUnknown); 3246 ID.AddPointer(V); 3247 void *IP = nullptr; 3248 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3249 assert(cast<SCEVUnknown>(S)->getValue() == V && 3250 "Stale SCEVUnknown in uniquing map!"); 3251 return S; 3252 } 3253 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3254 FirstUnknown); 3255 FirstUnknown = cast<SCEVUnknown>(S); 3256 UniqueSCEVs.InsertNode(S, IP); 3257 return S; 3258 } 3259 3260 //===----------------------------------------------------------------------===// 3261 // Basic SCEV Analysis and PHI Idiom Recognition Code 3262 // 3263 3264 /// isSCEVable - Test if values of the given type are analyzable within 3265 /// the SCEV framework. This primarily includes integer types, and it 3266 /// can optionally include pointer types if the ScalarEvolution class 3267 /// has access to target-specific information. 3268 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3269 // Integers and pointers are always SCEVable. 3270 return Ty->isIntegerTy() || Ty->isPointerTy(); 3271 } 3272 3273 /// getTypeSizeInBits - Return the size in bits of the specified type, 3274 /// for which isSCEVable must return true. 3275 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3276 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3277 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3278 } 3279 3280 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3281 /// the given type and which represents how SCEV will treat the given 3282 /// type, for which isSCEVable must return true. For pointer types, 3283 /// this is the pointer-sized integer type. 3284 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3285 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3286 3287 if (Ty->isIntegerTy()) 3288 return Ty; 3289 3290 // The only other support type is pointer. 3291 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3292 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3293 } 3294 3295 const SCEV *ScalarEvolution::getCouldNotCompute() { 3296 return CouldNotCompute.get(); 3297 } 3298 3299 namespace { 3300 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3301 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3302 // is set iff if find such SCEVUnknown. 3303 // 3304 struct FindInvalidSCEVUnknown { 3305 bool FindOne; 3306 FindInvalidSCEVUnknown() { FindOne = false; } 3307 bool follow(const SCEV *S) { 3308 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3309 case scConstant: 3310 return false; 3311 case scUnknown: 3312 if (!cast<SCEVUnknown>(S)->getValue()) 3313 FindOne = true; 3314 return false; 3315 default: 3316 return true; 3317 } 3318 } 3319 bool isDone() const { return FindOne; } 3320 }; 3321 } 3322 3323 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3324 FindInvalidSCEVUnknown F; 3325 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3326 ST.visitAll(S); 3327 3328 return !F.FindOne; 3329 } 3330 3331 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3332 /// expression and create a new one. 3333 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3334 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3335 3336 const SCEV *S = getExistingSCEV(V); 3337 if (S == nullptr) { 3338 S = createSCEV(V); 3339 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3340 } 3341 return S; 3342 } 3343 3344 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3345 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3346 3347 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3348 if (I != ValueExprMap.end()) { 3349 const SCEV *S = I->second; 3350 if (checkValidity(S)) 3351 return S; 3352 ValueExprMap.erase(I); 3353 } 3354 return nullptr; 3355 } 3356 3357 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3358 /// 3359 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3360 SCEV::NoWrapFlags Flags) { 3361 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3362 return getConstant( 3363 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3364 3365 Type *Ty = V->getType(); 3366 Ty = getEffectiveSCEVType(Ty); 3367 return getMulExpr( 3368 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3369 } 3370 3371 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3372 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3373 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3374 return getConstant( 3375 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3376 3377 Type *Ty = V->getType(); 3378 Ty = getEffectiveSCEVType(Ty); 3379 const SCEV *AllOnes = 3380 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3381 return getMinusSCEV(AllOnes, V); 3382 } 3383 3384 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3385 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3386 SCEV::NoWrapFlags Flags) { 3387 // Fast path: X - X --> 0. 3388 if (LHS == RHS) 3389 return getZero(LHS->getType()); 3390 3391 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3392 // makes it so that we cannot make much use of NUW. 3393 auto AddFlags = SCEV::FlagAnyWrap; 3394 const bool RHSIsNotMinSigned = 3395 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3396 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3397 // Let M be the minimum representable signed value. Then (-1)*RHS 3398 // signed-wraps if and only if RHS is M. That can happen even for 3399 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3400 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3401 // (-1)*RHS, we need to prove that RHS != M. 3402 // 3403 // If LHS is non-negative and we know that LHS - RHS does not 3404 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3405 // either by proving that RHS > M or that LHS >= 0. 3406 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3407 AddFlags = SCEV::FlagNSW; 3408 } 3409 } 3410 3411 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3412 // RHS is NSW and LHS >= 0. 3413 // 3414 // The difficulty here is that the NSW flag may have been proven 3415 // relative to a loop that is to be found in a recurrence in LHS and 3416 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3417 // larger scope than intended. 3418 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3419 3420 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3421 } 3422 3423 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3424 /// input value to the specified type. If the type must be extended, it is zero 3425 /// extended. 3426 const SCEV * 3427 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3428 Type *SrcTy = V->getType(); 3429 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3430 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3431 "Cannot truncate or zero extend with non-integer arguments!"); 3432 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3433 return V; // No conversion 3434 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3435 return getTruncateExpr(V, Ty); 3436 return getZeroExtendExpr(V, Ty); 3437 } 3438 3439 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3440 /// input value to the specified type. If the type must be extended, it is sign 3441 /// extended. 3442 const SCEV * 3443 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3444 Type *Ty) { 3445 Type *SrcTy = V->getType(); 3446 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3447 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3448 "Cannot truncate or zero extend with non-integer arguments!"); 3449 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3450 return V; // No conversion 3451 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3452 return getTruncateExpr(V, Ty); 3453 return getSignExtendExpr(V, Ty); 3454 } 3455 3456 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3457 /// input value to the specified type. If the type must be extended, it is zero 3458 /// extended. The conversion must not be narrowing. 3459 const SCEV * 3460 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3461 Type *SrcTy = V->getType(); 3462 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3463 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3464 "Cannot noop or zero extend with non-integer arguments!"); 3465 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3466 "getNoopOrZeroExtend cannot truncate!"); 3467 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3468 return V; // No conversion 3469 return getZeroExtendExpr(V, Ty); 3470 } 3471 3472 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3473 /// input value to the specified type. If the type must be extended, it is sign 3474 /// extended. The conversion must not be narrowing. 3475 const SCEV * 3476 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3477 Type *SrcTy = V->getType(); 3478 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3479 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3480 "Cannot noop or sign extend with non-integer arguments!"); 3481 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3482 "getNoopOrSignExtend cannot truncate!"); 3483 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3484 return V; // No conversion 3485 return getSignExtendExpr(V, Ty); 3486 } 3487 3488 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3489 /// the input value to the specified type. If the type must be extended, 3490 /// it is extended with unspecified bits. The conversion must not be 3491 /// narrowing. 3492 const SCEV * 3493 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3494 Type *SrcTy = V->getType(); 3495 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3496 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3497 "Cannot noop or any extend with non-integer arguments!"); 3498 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3499 "getNoopOrAnyExtend cannot truncate!"); 3500 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3501 return V; // No conversion 3502 return getAnyExtendExpr(V, Ty); 3503 } 3504 3505 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3506 /// input value to the specified type. The conversion must not be widening. 3507 const SCEV * 3508 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3509 Type *SrcTy = V->getType(); 3510 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3511 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3512 "Cannot truncate or noop with non-integer arguments!"); 3513 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3514 "getTruncateOrNoop cannot extend!"); 3515 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3516 return V; // No conversion 3517 return getTruncateExpr(V, Ty); 3518 } 3519 3520 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3521 /// the types using zero-extension, and then perform a umax operation 3522 /// with them. 3523 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3524 const SCEV *RHS) { 3525 const SCEV *PromotedLHS = LHS; 3526 const SCEV *PromotedRHS = RHS; 3527 3528 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3529 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3530 else 3531 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3532 3533 return getUMaxExpr(PromotedLHS, PromotedRHS); 3534 } 3535 3536 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3537 /// the types using zero-extension, and then perform a umin operation 3538 /// with them. 3539 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3540 const SCEV *RHS) { 3541 const SCEV *PromotedLHS = LHS; 3542 const SCEV *PromotedRHS = RHS; 3543 3544 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3545 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3546 else 3547 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3548 3549 return getUMinExpr(PromotedLHS, PromotedRHS); 3550 } 3551 3552 /// getPointerBase - Transitively follow the chain of pointer-type operands 3553 /// until reaching a SCEV that does not have a single pointer operand. This 3554 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3555 /// but corner cases do exist. 3556 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3557 // A pointer operand may evaluate to a nonpointer expression, such as null. 3558 if (!V->getType()->isPointerTy()) 3559 return V; 3560 3561 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3562 return getPointerBase(Cast->getOperand()); 3563 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3564 const SCEV *PtrOp = nullptr; 3565 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3566 I != E; ++I) { 3567 if ((*I)->getType()->isPointerTy()) { 3568 // Cannot find the base of an expression with multiple pointer operands. 3569 if (PtrOp) 3570 return V; 3571 PtrOp = *I; 3572 } 3573 } 3574 if (!PtrOp) 3575 return V; 3576 return getPointerBase(PtrOp); 3577 } 3578 return V; 3579 } 3580 3581 /// PushDefUseChildren - Push users of the given Instruction 3582 /// onto the given Worklist. 3583 static void 3584 PushDefUseChildren(Instruction *I, 3585 SmallVectorImpl<Instruction *> &Worklist) { 3586 // Push the def-use children onto the Worklist stack. 3587 for (User *U : I->users()) 3588 Worklist.push_back(cast<Instruction>(U)); 3589 } 3590 3591 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3592 /// instructions that depend on the given instruction and removes them from 3593 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3594 /// resolution. 3595 void 3596 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3597 SmallVector<Instruction *, 16> Worklist; 3598 PushDefUseChildren(PN, Worklist); 3599 3600 SmallPtrSet<Instruction *, 8> Visited; 3601 Visited.insert(PN); 3602 while (!Worklist.empty()) { 3603 Instruction *I = Worklist.pop_back_val(); 3604 if (!Visited.insert(I).second) 3605 continue; 3606 3607 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3608 if (It != ValueExprMap.end()) { 3609 const SCEV *Old = It->second; 3610 3611 // Short-circuit the def-use traversal if the symbolic name 3612 // ceases to appear in expressions. 3613 if (Old != SymName && !hasOperand(Old, SymName)) 3614 continue; 3615 3616 // SCEVUnknown for a PHI either means that it has an unrecognized 3617 // structure, it's a PHI that's in the progress of being computed 3618 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3619 // additional loop trip count information isn't going to change anything. 3620 // In the second case, createNodeForPHI will perform the necessary 3621 // updates on its own when it gets to that point. In the third, we do 3622 // want to forget the SCEVUnknown. 3623 if (!isa<PHINode>(I) || 3624 !isa<SCEVUnknown>(Old) || 3625 (I != PN && Old == SymName)) { 3626 forgetMemoizedResults(Old); 3627 ValueExprMap.erase(It); 3628 } 3629 } 3630 3631 PushDefUseChildren(I, Worklist); 3632 } 3633 } 3634 3635 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3636 const Loop *L = LI.getLoopFor(PN->getParent()); 3637 if (!L || L->getHeader() != PN->getParent()) 3638 return nullptr; 3639 3640 // The loop may have multiple entrances or multiple exits; we can analyze 3641 // this phi as an addrec if it has a unique entry value and a unique 3642 // backedge value. 3643 Value *BEValueV = nullptr, *StartValueV = nullptr; 3644 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3645 Value *V = PN->getIncomingValue(i); 3646 if (L->contains(PN->getIncomingBlock(i))) { 3647 if (!BEValueV) { 3648 BEValueV = V; 3649 } else if (BEValueV != V) { 3650 BEValueV = nullptr; 3651 break; 3652 } 3653 } else if (!StartValueV) { 3654 StartValueV = V; 3655 } else if (StartValueV != V) { 3656 StartValueV = nullptr; 3657 break; 3658 } 3659 } 3660 if (BEValueV && StartValueV) { 3661 // While we are analyzing this PHI node, handle its value symbolically. 3662 const SCEV *SymbolicName = getUnknown(PN); 3663 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3664 "PHI node already processed?"); 3665 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3666 3667 // Using this symbolic name for the PHI, analyze the value coming around 3668 // the back-edge. 3669 const SCEV *BEValue = getSCEV(BEValueV); 3670 3671 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3672 // has a special value for the first iteration of the loop. 3673 3674 // If the value coming around the backedge is an add with the symbolic 3675 // value we just inserted, then we found a simple induction variable! 3676 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3677 // If there is a single occurrence of the symbolic value, replace it 3678 // with a recurrence. 3679 unsigned FoundIndex = Add->getNumOperands(); 3680 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3681 if (Add->getOperand(i) == SymbolicName) 3682 if (FoundIndex == e) { 3683 FoundIndex = i; 3684 break; 3685 } 3686 3687 if (FoundIndex != Add->getNumOperands()) { 3688 // Create an add with everything but the specified operand. 3689 SmallVector<const SCEV *, 8> Ops; 3690 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3691 if (i != FoundIndex) 3692 Ops.push_back(Add->getOperand(i)); 3693 const SCEV *Accum = getAddExpr(Ops); 3694 3695 // This is not a valid addrec if the step amount is varying each 3696 // loop iteration, but is not itself an addrec in this loop. 3697 if (isLoopInvariant(Accum, L) || 3698 (isa<SCEVAddRecExpr>(Accum) && 3699 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3700 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3701 3702 // If the increment doesn't overflow, then neither the addrec nor 3703 // the post-increment will overflow. 3704 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3705 if (OBO->getOperand(0) == PN) { 3706 if (OBO->hasNoUnsignedWrap()) 3707 Flags = setFlags(Flags, SCEV::FlagNUW); 3708 if (OBO->hasNoSignedWrap()) 3709 Flags = setFlags(Flags, SCEV::FlagNSW); 3710 } 3711 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3712 // If the increment is an inbounds GEP, then we know the address 3713 // space cannot be wrapped around. We cannot make any guarantee 3714 // about signed or unsigned overflow because pointers are 3715 // unsigned but we may have a negative index from the base 3716 // pointer. We can guarantee that no unsigned wrap occurs if the 3717 // indices form a positive value. 3718 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3719 Flags = setFlags(Flags, SCEV::FlagNW); 3720 3721 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3722 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3723 Flags = setFlags(Flags, SCEV::FlagNUW); 3724 } 3725 3726 // We cannot transfer nuw and nsw flags from subtraction 3727 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3728 // for instance. 3729 } 3730 3731 const SCEV *StartVal = getSCEV(StartValueV); 3732 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3733 3734 // Since the no-wrap flags are on the increment, they apply to the 3735 // post-incremented value as well. 3736 if (isLoopInvariant(Accum, L)) 3737 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3738 3739 // Okay, for the entire analysis of this edge we assumed the PHI 3740 // to be symbolic. We now need to go back and purge all of the 3741 // entries for the scalars that use the symbolic expression. 3742 ForgetSymbolicName(PN, SymbolicName); 3743 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3744 return PHISCEV; 3745 } 3746 } 3747 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 3748 // Otherwise, this could be a loop like this: 3749 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3750 // In this case, j = {1,+,1} and BEValue is j. 3751 // Because the other in-value of i (0) fits the evolution of BEValue 3752 // i really is an addrec evolution. 3753 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3754 const SCEV *StartVal = getSCEV(StartValueV); 3755 3756 // If StartVal = j.start - j.stride, we can use StartVal as the 3757 // initial step of the addrec evolution. 3758 if (StartVal == 3759 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { 3760 // FIXME: For constant StartVal, we should be able to infer 3761 // no-wrap flags. 3762 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), 3763 L, SCEV::FlagAnyWrap); 3764 3765 // Okay, for the entire analysis of this edge we assumed the PHI 3766 // to be symbolic. We now need to go back and purge all of the 3767 // entries for the scalars that use the symbolic expression. 3768 ForgetSymbolicName(PN, SymbolicName); 3769 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3770 return PHISCEV; 3771 } 3772 } 3773 } 3774 } 3775 3776 return nullptr; 3777 } 3778 3779 // Checks if the SCEV S is available at BB. S is considered available at BB 3780 // if S can be materialized at BB without introducing a fault. 3781 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3782 BasicBlock *BB) { 3783 struct CheckAvailable { 3784 bool TraversalDone = false; 3785 bool Available = true; 3786 3787 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3788 BasicBlock *BB = nullptr; 3789 DominatorTree &DT; 3790 3791 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3792 : L(L), BB(BB), DT(DT) {} 3793 3794 bool setUnavailable() { 3795 TraversalDone = true; 3796 Available = false; 3797 return false; 3798 } 3799 3800 bool follow(const SCEV *S) { 3801 switch (S->getSCEVType()) { 3802 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3803 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3804 // These expressions are available if their operand(s) is/are. 3805 return true; 3806 3807 case scAddRecExpr: { 3808 // We allow add recurrences that are on the loop BB is in, or some 3809 // outer loop. This guarantees availability because the value of the 3810 // add recurrence at BB is simply the "current" value of the induction 3811 // variable. We can relax this in the future; for instance an add 3812 // recurrence on a sibling dominating loop is also available at BB. 3813 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3814 if (L && (ARLoop == L || ARLoop->contains(L))) 3815 return true; 3816 3817 return setUnavailable(); 3818 } 3819 3820 case scUnknown: { 3821 // For SCEVUnknown, we check for simple dominance. 3822 const auto *SU = cast<SCEVUnknown>(S); 3823 Value *V = SU->getValue(); 3824 3825 if (isa<Argument>(V)) 3826 return false; 3827 3828 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3829 return false; 3830 3831 return setUnavailable(); 3832 } 3833 3834 case scUDivExpr: 3835 case scCouldNotCompute: 3836 // We do not try to smart about these at all. 3837 return setUnavailable(); 3838 } 3839 llvm_unreachable("switch should be fully covered!"); 3840 } 3841 3842 bool isDone() { return TraversalDone; } 3843 }; 3844 3845 CheckAvailable CA(L, BB, DT); 3846 SCEVTraversal<CheckAvailable> ST(CA); 3847 3848 ST.visitAll(S); 3849 return CA.Available; 3850 } 3851 3852 // Try to match a control flow sequence that branches out at BI and merges back 3853 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3854 // match. 3855 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3856 Value *&C, Value *&LHS, Value *&RHS) { 3857 C = BI->getCondition(); 3858 3859 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3860 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3861 3862 if (!LeftEdge.isSingleEdge()) 3863 return false; 3864 3865 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3866 3867 Use &LeftUse = Merge->getOperandUse(0); 3868 Use &RightUse = Merge->getOperandUse(1); 3869 3870 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3871 LHS = LeftUse; 3872 RHS = RightUse; 3873 return true; 3874 } 3875 3876 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3877 LHS = RightUse; 3878 RHS = LeftUse; 3879 return true; 3880 } 3881 3882 return false; 3883 } 3884 3885 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3886 if (PN->getNumIncomingValues() == 2) { 3887 const Loop *L = LI.getLoopFor(PN->getParent()); 3888 3889 // Try to match 3890 // 3891 // br %cond, label %left, label %right 3892 // left: 3893 // br label %merge 3894 // right: 3895 // br label %merge 3896 // merge: 3897 // V = phi [ %x, %left ], [ %y, %right ] 3898 // 3899 // as "select %cond, %x, %y" 3900 3901 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3902 assert(IDom && "At least the entry block should dominate PN"); 3903 3904 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3905 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3906 3907 if (BI && BI->isConditional() && 3908 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3909 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3910 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3911 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3912 } 3913 3914 return nullptr; 3915 } 3916 3917 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3918 if (const SCEV *S = createAddRecFromPHI(PN)) 3919 return S; 3920 3921 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3922 return S; 3923 3924 // If the PHI has a single incoming value, follow that value, unless the 3925 // PHI's incoming blocks are in a different loop, in which case doing so 3926 // risks breaking LCSSA form. Instcombine would normally zap these, but 3927 // it doesn't have DominatorTree information, so it may miss cases. 3928 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3929 &DT, &AC)) 3930 if (LI.replacementPreservesLCSSAForm(PN, V)) 3931 return getSCEV(V); 3932 3933 // If it's not a loop phi, we can't handle it yet. 3934 return getUnknown(PN); 3935 } 3936 3937 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3938 Value *Cond, 3939 Value *TrueVal, 3940 Value *FalseVal) { 3941 // Handle "constant" branch or select. This can occur for instance when a 3942 // loop pass transforms an inner loop and moves on to process the outer loop. 3943 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 3944 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 3945 3946 // Try to match some simple smax or umax patterns. 3947 auto *ICI = dyn_cast<ICmpInst>(Cond); 3948 if (!ICI) 3949 return getUnknown(I); 3950 3951 Value *LHS = ICI->getOperand(0); 3952 Value *RHS = ICI->getOperand(1); 3953 3954 switch (ICI->getPredicate()) { 3955 case ICmpInst::ICMP_SLT: 3956 case ICmpInst::ICMP_SLE: 3957 std::swap(LHS, RHS); 3958 // fall through 3959 case ICmpInst::ICMP_SGT: 3960 case ICmpInst::ICMP_SGE: 3961 // a >s b ? a+x : b+x -> smax(a, b)+x 3962 // a >s b ? b+x : a+x -> smin(a, b)+x 3963 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3964 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 3965 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 3966 const SCEV *LA = getSCEV(TrueVal); 3967 const SCEV *RA = getSCEV(FalseVal); 3968 const SCEV *LDiff = getMinusSCEV(LA, LS); 3969 const SCEV *RDiff = getMinusSCEV(RA, RS); 3970 if (LDiff == RDiff) 3971 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3972 LDiff = getMinusSCEV(LA, RS); 3973 RDiff = getMinusSCEV(RA, LS); 3974 if (LDiff == RDiff) 3975 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3976 } 3977 break; 3978 case ICmpInst::ICMP_ULT: 3979 case ICmpInst::ICMP_ULE: 3980 std::swap(LHS, RHS); 3981 // fall through 3982 case ICmpInst::ICMP_UGT: 3983 case ICmpInst::ICMP_UGE: 3984 // a >u b ? a+x : b+x -> umax(a, b)+x 3985 // a >u b ? b+x : a+x -> umin(a, b)+x 3986 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3987 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3988 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 3989 const SCEV *LA = getSCEV(TrueVal); 3990 const SCEV *RA = getSCEV(FalseVal); 3991 const SCEV *LDiff = getMinusSCEV(LA, LS); 3992 const SCEV *RDiff = getMinusSCEV(RA, RS); 3993 if (LDiff == RDiff) 3994 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3995 LDiff = getMinusSCEV(LA, RS); 3996 RDiff = getMinusSCEV(RA, LS); 3997 if (LDiff == RDiff) 3998 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3999 } 4000 break; 4001 case ICmpInst::ICMP_NE: 4002 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4003 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4004 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4005 const SCEV *One = getOne(I->getType()); 4006 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4007 const SCEV *LA = getSCEV(TrueVal); 4008 const SCEV *RA = getSCEV(FalseVal); 4009 const SCEV *LDiff = getMinusSCEV(LA, LS); 4010 const SCEV *RDiff = getMinusSCEV(RA, One); 4011 if (LDiff == RDiff) 4012 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4013 } 4014 break; 4015 case ICmpInst::ICMP_EQ: 4016 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4017 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4018 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4019 const SCEV *One = getOne(I->getType()); 4020 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4021 const SCEV *LA = getSCEV(TrueVal); 4022 const SCEV *RA = getSCEV(FalseVal); 4023 const SCEV *LDiff = getMinusSCEV(LA, One); 4024 const SCEV *RDiff = getMinusSCEV(RA, LS); 4025 if (LDiff == RDiff) 4026 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4027 } 4028 break; 4029 default: 4030 break; 4031 } 4032 4033 return getUnknown(I); 4034 } 4035 4036 /// createNodeForGEP - Expand GEP instructions into add and multiply 4037 /// operations. This allows them to be analyzed by regular SCEV code. 4038 /// 4039 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4040 Value *Base = GEP->getOperand(0); 4041 // Don't attempt to analyze GEPs over unsized objects. 4042 if (!Base->getType()->getPointerElementType()->isSized()) 4043 return getUnknown(GEP); 4044 4045 SmallVector<const SCEV *, 4> IndexExprs; 4046 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4047 IndexExprs.push_back(getSCEV(*Index)); 4048 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4049 GEP->isInBounds()); 4050 } 4051 4052 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4053 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4054 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4055 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4056 uint32_t 4057 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4058 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4059 return C->getValue()->getValue().countTrailingZeros(); 4060 4061 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4062 return std::min(GetMinTrailingZeros(T->getOperand()), 4063 (uint32_t)getTypeSizeInBits(T->getType())); 4064 4065 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4066 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4067 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4068 getTypeSizeInBits(E->getType()) : OpRes; 4069 } 4070 4071 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4072 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4073 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4074 getTypeSizeInBits(E->getType()) : OpRes; 4075 } 4076 4077 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4078 // The result is the min of all operands results. 4079 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4080 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4081 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4082 return MinOpRes; 4083 } 4084 4085 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4086 // The result is the sum of all operands results. 4087 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4088 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4089 for (unsigned i = 1, e = M->getNumOperands(); 4090 SumOpRes != BitWidth && i != e; ++i) 4091 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4092 BitWidth); 4093 return SumOpRes; 4094 } 4095 4096 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4097 // The result is the min of all operands results. 4098 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4099 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4100 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4101 return MinOpRes; 4102 } 4103 4104 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4105 // The result is the min of all operands results. 4106 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4107 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4108 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4109 return MinOpRes; 4110 } 4111 4112 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4113 // The result is the min of all operands results. 4114 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4115 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4116 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4117 return MinOpRes; 4118 } 4119 4120 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4121 // For a SCEVUnknown, ask ValueTracking. 4122 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4123 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4124 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 4125 0, &AC, nullptr, &DT); 4126 return Zeros.countTrailingOnes(); 4127 } 4128 4129 // SCEVUDivExpr 4130 return 0; 4131 } 4132 4133 /// GetRangeFromMetadata - Helper method to assign a range to V from 4134 /// metadata present in the IR. 4135 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4136 if (Instruction *I = dyn_cast<Instruction>(V)) { 4137 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 4138 ConstantRange TotalRange( 4139 cast<IntegerType>(I->getType())->getBitWidth(), false); 4140 4141 unsigned NumRanges = MD->getNumOperands() / 2; 4142 assert(NumRanges >= 1); 4143 4144 for (unsigned i = 0; i < NumRanges; ++i) { 4145 ConstantInt *Lower = 4146 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 4147 ConstantInt *Upper = 4148 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 4149 ConstantRange Range(Lower->getValue(), Upper->getValue()); 4150 TotalRange = TotalRange.unionWith(Range); 4151 } 4152 4153 return TotalRange; 4154 } 4155 } 4156 4157 return None; 4158 } 4159 4160 /// getRange - Determine the range for a particular SCEV. If SignHint is 4161 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4162 /// with a "cleaner" unsigned (resp. signed) representation. 4163 /// 4164 ConstantRange 4165 ScalarEvolution::getRange(const SCEV *S, 4166 ScalarEvolution::RangeSignHint SignHint) { 4167 DenseMap<const SCEV *, ConstantRange> &Cache = 4168 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4169 : SignedRanges; 4170 4171 // See if we've computed this range already. 4172 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4173 if (I != Cache.end()) 4174 return I->second; 4175 4176 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4177 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4178 4179 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4180 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4181 4182 // If the value has known zeros, the maximum value will have those known zeros 4183 // as well. 4184 uint32_t TZ = GetMinTrailingZeros(S); 4185 if (TZ != 0) { 4186 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4187 ConservativeResult = 4188 ConstantRange(APInt::getMinValue(BitWidth), 4189 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4190 else 4191 ConservativeResult = ConstantRange( 4192 APInt::getSignedMinValue(BitWidth), 4193 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4194 } 4195 4196 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4197 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4198 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4199 X = X.add(getRange(Add->getOperand(i), SignHint)); 4200 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4201 } 4202 4203 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4204 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4205 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4206 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4207 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4208 } 4209 4210 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4211 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4212 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4213 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4214 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4215 } 4216 4217 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4218 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4219 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4220 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4221 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4222 } 4223 4224 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4225 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4226 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4227 return setRange(UDiv, SignHint, 4228 ConservativeResult.intersectWith(X.udiv(Y))); 4229 } 4230 4231 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4232 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4233 return setRange(ZExt, SignHint, 4234 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4235 } 4236 4237 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4238 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4239 return setRange(SExt, SignHint, 4240 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4241 } 4242 4243 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4244 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4245 return setRange(Trunc, SignHint, 4246 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4247 } 4248 4249 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4250 // If there's no unsigned wrap, the value will never be less than its 4251 // initial value. 4252 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4253 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4254 if (!C->getValue()->isZero()) 4255 ConservativeResult = 4256 ConservativeResult.intersectWith( 4257 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4258 4259 // If there's no signed wrap, and all the operands have the same sign or 4260 // zero, the value won't ever change sign. 4261 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4262 bool AllNonNeg = true; 4263 bool AllNonPos = true; 4264 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4265 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4266 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4267 } 4268 if (AllNonNeg) 4269 ConservativeResult = ConservativeResult.intersectWith( 4270 ConstantRange(APInt(BitWidth, 0), 4271 APInt::getSignedMinValue(BitWidth))); 4272 else if (AllNonPos) 4273 ConservativeResult = ConservativeResult.intersectWith( 4274 ConstantRange(APInt::getSignedMinValue(BitWidth), 4275 APInt(BitWidth, 1))); 4276 } 4277 4278 // TODO: non-affine addrec 4279 if (AddRec->isAffine()) { 4280 Type *Ty = AddRec->getType(); 4281 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4282 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4283 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4284 4285 // Check for overflow. This must be done with ConstantRange arithmetic 4286 // because we could be called from within the ScalarEvolution overflow 4287 // checking code. 4288 4289 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4290 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4291 ConstantRange ZExtMaxBECountRange = 4292 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4293 4294 const SCEV *Start = AddRec->getStart(); 4295 const SCEV *Step = AddRec->getStepRecurrence(*this); 4296 ConstantRange StepSRange = getSignedRange(Step); 4297 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4298 4299 ConstantRange StartURange = getUnsignedRange(Start); 4300 ConstantRange EndURange = 4301 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4302 4303 // Check for unsigned overflow. 4304 ConstantRange ZExtStartURange = 4305 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4306 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4307 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4308 ZExtEndURange) { 4309 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4310 EndURange.getUnsignedMin()); 4311 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4312 EndURange.getUnsignedMax()); 4313 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4314 if (!IsFullRange) 4315 ConservativeResult = 4316 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4317 } 4318 4319 ConstantRange StartSRange = getSignedRange(Start); 4320 ConstantRange EndSRange = 4321 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4322 4323 // Check for signed overflow. This must be done with ConstantRange 4324 // arithmetic because we could be called from within the ScalarEvolution 4325 // overflow checking code. 4326 ConstantRange SExtStartSRange = 4327 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4328 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4329 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4330 SExtEndSRange) { 4331 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4332 EndSRange.getSignedMin()); 4333 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4334 EndSRange.getSignedMax()); 4335 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4336 if (!IsFullRange) 4337 ConservativeResult = 4338 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4339 } 4340 } 4341 } 4342 4343 return setRange(AddRec, SignHint, ConservativeResult); 4344 } 4345 4346 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4347 // Check if the IR explicitly contains !range metadata. 4348 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4349 if (MDRange.hasValue()) 4350 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4351 4352 // Split here to avoid paying the compile-time cost of calling both 4353 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4354 // if needed. 4355 const DataLayout &DL = F.getParent()->getDataLayout(); 4356 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4357 // For a SCEVUnknown, ask ValueTracking. 4358 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4359 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4360 if (Ones != ~Zeros + 1) 4361 ConservativeResult = 4362 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4363 } else { 4364 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4365 "generalize as needed!"); 4366 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4367 if (NS > 1) 4368 ConservativeResult = ConservativeResult.intersectWith( 4369 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4370 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4371 } 4372 4373 return setRange(U, SignHint, ConservativeResult); 4374 } 4375 4376 return setRange(S, SignHint, ConservativeResult); 4377 } 4378 4379 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4380 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4381 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4382 4383 // Return early if there are no flags to propagate to the SCEV. 4384 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4385 if (BinOp->hasNoUnsignedWrap()) 4386 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4387 if (BinOp->hasNoSignedWrap()) 4388 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4389 if (Flags == SCEV::FlagAnyWrap) { 4390 return SCEV::FlagAnyWrap; 4391 } 4392 4393 // Here we check that BinOp is in the header of the innermost loop 4394 // containing BinOp, since we only deal with instructions in the loop 4395 // header. The actual loop we need to check later will come from an add 4396 // recurrence, but getting that requires computing the SCEV of the operands, 4397 // which can be expensive. This check we can do cheaply to rule out some 4398 // cases early. 4399 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4400 if (innermostContainingLoop == nullptr || 4401 innermostContainingLoop->getHeader() != BinOp->getParent()) 4402 return SCEV::FlagAnyWrap; 4403 4404 // Only proceed if we can prove that BinOp does not yield poison. 4405 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4406 4407 // At this point we know that if V is executed, then it does not wrap 4408 // according to at least one of NSW or NUW. If V is not executed, then we do 4409 // not know if the calculation that V represents would wrap. Multiple 4410 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4411 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4412 // derived from other instructions that map to the same SCEV. We cannot make 4413 // that guarantee for cases where V is not executed. So we need to find the 4414 // loop that V is considered in relation to and prove that V is executed for 4415 // every iteration of that loop. That implies that the value that V 4416 // calculates does not wrap anywhere in the loop, so then we can apply the 4417 // flags to the SCEV. 4418 // 4419 // We check isLoopInvariant to disambiguate in case we are adding two 4420 // recurrences from different loops, so that we know which loop to prove 4421 // that V is executed in. 4422 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4423 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4424 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4425 const int OtherOpIndex = 1 - OpIndex; 4426 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4427 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4428 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4429 return Flags; 4430 } 4431 } 4432 return SCEV::FlagAnyWrap; 4433 } 4434 4435 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4436 /// the expression. 4437 /// 4438 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4439 if (!isSCEVable(V->getType())) 4440 return getUnknown(V); 4441 4442 unsigned Opcode = Instruction::UserOp1; 4443 if (Instruction *I = dyn_cast<Instruction>(V)) { 4444 Opcode = I->getOpcode(); 4445 4446 // Don't attempt to analyze instructions in blocks that aren't 4447 // reachable. Such instructions don't matter, and they aren't required 4448 // to obey basic rules for definitions dominating uses which this 4449 // analysis depends on. 4450 if (!DT.isReachableFromEntry(I->getParent())) 4451 return getUnknown(V); 4452 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4453 Opcode = CE->getOpcode(); 4454 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4455 return getConstant(CI); 4456 else if (isa<ConstantPointerNull>(V)) 4457 return getZero(V->getType()); 4458 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4459 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4460 else 4461 return getUnknown(V); 4462 4463 Operator *U = cast<Operator>(V); 4464 switch (Opcode) { 4465 case Instruction::Add: { 4466 // The simple thing to do would be to just call getSCEV on both operands 4467 // and call getAddExpr with the result. However if we're looking at a 4468 // bunch of things all added together, this can be quite inefficient, 4469 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4470 // Instead, gather up all the operands and make a single getAddExpr call. 4471 // LLVM IR canonical form means we need only traverse the left operands. 4472 SmallVector<const SCEV *, 4> AddOps; 4473 for (Value *Op = U;; Op = U->getOperand(0)) { 4474 U = dyn_cast<Operator>(Op); 4475 unsigned Opcode = U ? U->getOpcode() : 0; 4476 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4477 assert(Op != V && "V should be an add"); 4478 AddOps.push_back(getSCEV(Op)); 4479 break; 4480 } 4481 4482 if (auto *OpSCEV = getExistingSCEV(U)) { 4483 AddOps.push_back(OpSCEV); 4484 break; 4485 } 4486 4487 // If a NUW or NSW flag can be applied to the SCEV for this 4488 // addition, then compute the SCEV for this addition by itself 4489 // with a separate call to getAddExpr. We need to do that 4490 // instead of pushing the operands of the addition onto AddOps, 4491 // since the flags are only known to apply to this particular 4492 // addition - they may not apply to other additions that can be 4493 // formed with operands from AddOps. 4494 const SCEV *RHS = getSCEV(U->getOperand(1)); 4495 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4496 if (Flags != SCEV::FlagAnyWrap) { 4497 const SCEV *LHS = getSCEV(U->getOperand(0)); 4498 if (Opcode == Instruction::Sub) 4499 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4500 else 4501 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4502 break; 4503 } 4504 4505 if (Opcode == Instruction::Sub) 4506 AddOps.push_back(getNegativeSCEV(RHS)); 4507 else 4508 AddOps.push_back(RHS); 4509 } 4510 return getAddExpr(AddOps); 4511 } 4512 4513 case Instruction::Mul: { 4514 SmallVector<const SCEV *, 4> MulOps; 4515 for (Value *Op = U;; Op = U->getOperand(0)) { 4516 U = dyn_cast<Operator>(Op); 4517 if (!U || U->getOpcode() != Instruction::Mul) { 4518 assert(Op != V && "V should be a mul"); 4519 MulOps.push_back(getSCEV(Op)); 4520 break; 4521 } 4522 4523 if (auto *OpSCEV = getExistingSCEV(U)) { 4524 MulOps.push_back(OpSCEV); 4525 break; 4526 } 4527 4528 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4529 if (Flags != SCEV::FlagAnyWrap) { 4530 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4531 getSCEV(U->getOperand(1)), Flags)); 4532 break; 4533 } 4534 4535 MulOps.push_back(getSCEV(U->getOperand(1))); 4536 } 4537 return getMulExpr(MulOps); 4538 } 4539 case Instruction::UDiv: 4540 return getUDivExpr(getSCEV(U->getOperand(0)), 4541 getSCEV(U->getOperand(1))); 4542 case Instruction::Sub: 4543 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4544 getNoWrapFlagsFromUB(U)); 4545 case Instruction::And: 4546 // For an expression like x&255 that merely masks off the high bits, 4547 // use zext(trunc(x)) as the SCEV expression. 4548 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4549 if (CI->isNullValue()) 4550 return getSCEV(U->getOperand(1)); 4551 if (CI->isAllOnesValue()) 4552 return getSCEV(U->getOperand(0)); 4553 const APInt &A = CI->getValue(); 4554 4555 // Instcombine's ShrinkDemandedConstant may strip bits out of 4556 // constants, obscuring what would otherwise be a low-bits mask. 4557 // Use computeKnownBits to compute what ShrinkDemandedConstant 4558 // knew about to reconstruct a low-bits mask value. 4559 unsigned LZ = A.countLeadingZeros(); 4560 unsigned TZ = A.countTrailingZeros(); 4561 unsigned BitWidth = A.getBitWidth(); 4562 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4563 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4564 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4565 4566 APInt EffectiveMask = 4567 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4568 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4569 const SCEV *MulCount = getConstant( 4570 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4571 return getMulExpr( 4572 getZeroExtendExpr( 4573 getTruncateExpr( 4574 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4575 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4576 U->getType()), 4577 MulCount); 4578 } 4579 } 4580 break; 4581 4582 case Instruction::Or: 4583 // If the RHS of the Or is a constant, we may have something like: 4584 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4585 // optimizations will transparently handle this case. 4586 // 4587 // In order for this transformation to be safe, the LHS must be of the 4588 // form X*(2^n) and the Or constant must be less than 2^n. 4589 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4590 const SCEV *LHS = getSCEV(U->getOperand(0)); 4591 const APInt &CIVal = CI->getValue(); 4592 if (GetMinTrailingZeros(LHS) >= 4593 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4594 // Build a plain add SCEV. 4595 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4596 // If the LHS of the add was an addrec and it has no-wrap flags, 4597 // transfer the no-wrap flags, since an or won't introduce a wrap. 4598 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4599 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4600 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4601 OldAR->getNoWrapFlags()); 4602 } 4603 return S; 4604 } 4605 } 4606 break; 4607 case Instruction::Xor: 4608 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4609 // If the RHS of the xor is a signbit, then this is just an add. 4610 // Instcombine turns add of signbit into xor as a strength reduction step. 4611 if (CI->getValue().isSignBit()) 4612 return getAddExpr(getSCEV(U->getOperand(0)), 4613 getSCEV(U->getOperand(1))); 4614 4615 // If the RHS of xor is -1, then this is a not operation. 4616 if (CI->isAllOnesValue()) 4617 return getNotSCEV(getSCEV(U->getOperand(0))); 4618 4619 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4620 // This is a variant of the check for xor with -1, and it handles 4621 // the case where instcombine has trimmed non-demanded bits out 4622 // of an xor with -1. 4623 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4624 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4625 if (BO->getOpcode() == Instruction::And && 4626 LCI->getValue() == CI->getValue()) 4627 if (const SCEVZeroExtendExpr *Z = 4628 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4629 Type *UTy = U->getType(); 4630 const SCEV *Z0 = Z->getOperand(); 4631 Type *Z0Ty = Z0->getType(); 4632 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4633 4634 // If C is a low-bits mask, the zero extend is serving to 4635 // mask off the high bits. Complement the operand and 4636 // re-apply the zext. 4637 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4638 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4639 4640 // If C is a single bit, it may be in the sign-bit position 4641 // before the zero-extend. In this case, represent the xor 4642 // using an add, which is equivalent, and re-apply the zext. 4643 APInt Trunc = CI->getValue().trunc(Z0TySize); 4644 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4645 Trunc.isSignBit()) 4646 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4647 UTy); 4648 } 4649 } 4650 break; 4651 4652 case Instruction::Shl: 4653 // Turn shift left of a constant amount into a multiply. 4654 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4655 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4656 4657 // If the shift count is not less than the bitwidth, the result of 4658 // the shift is undefined. Don't try to analyze it, because the 4659 // resolution chosen here may differ from the resolution chosen in 4660 // other parts of the compiler. 4661 if (SA->getValue().uge(BitWidth)) 4662 break; 4663 4664 // It is currently not resolved how to interpret NSW for left 4665 // shift by BitWidth - 1, so we avoid applying flags in that 4666 // case. Remove this check (or this comment) once the situation 4667 // is resolved. See 4668 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4669 // and http://reviews.llvm.org/D8890 . 4670 auto Flags = SCEV::FlagAnyWrap; 4671 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4672 4673 Constant *X = ConstantInt::get(getContext(), 4674 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4675 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4676 } 4677 break; 4678 4679 case Instruction::LShr: 4680 // Turn logical shift right of a constant into a unsigned divide. 4681 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4682 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4683 4684 // If the shift count is not less than the bitwidth, the result of 4685 // the shift is undefined. Don't try to analyze it, because the 4686 // resolution chosen here may differ from the resolution chosen in 4687 // other parts of the compiler. 4688 if (SA->getValue().uge(BitWidth)) 4689 break; 4690 4691 Constant *X = ConstantInt::get(getContext(), 4692 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4693 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4694 } 4695 break; 4696 4697 case Instruction::AShr: 4698 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4699 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4700 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4701 if (L->getOpcode() == Instruction::Shl && 4702 L->getOperand(1) == U->getOperand(1)) { 4703 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4704 4705 // If the shift count is not less than the bitwidth, the result of 4706 // the shift is undefined. Don't try to analyze it, because the 4707 // resolution chosen here may differ from the resolution chosen in 4708 // other parts of the compiler. 4709 if (CI->getValue().uge(BitWidth)) 4710 break; 4711 4712 uint64_t Amt = BitWidth - CI->getZExtValue(); 4713 if (Amt == BitWidth) 4714 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4715 return 4716 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4717 IntegerType::get(getContext(), 4718 Amt)), 4719 U->getType()); 4720 } 4721 break; 4722 4723 case Instruction::Trunc: 4724 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4725 4726 case Instruction::ZExt: 4727 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4728 4729 case Instruction::SExt: 4730 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4731 4732 case Instruction::BitCast: 4733 // BitCasts are no-op casts so we just eliminate the cast. 4734 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4735 return getSCEV(U->getOperand(0)); 4736 break; 4737 4738 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4739 // lead to pointer expressions which cannot safely be expanded to GEPs, 4740 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4741 // simplifying integer expressions. 4742 4743 case Instruction::GetElementPtr: 4744 return createNodeForGEP(cast<GEPOperator>(U)); 4745 4746 case Instruction::PHI: 4747 return createNodeForPHI(cast<PHINode>(U)); 4748 4749 case Instruction::Select: 4750 // U can also be a select constant expr, which let fall through. Since 4751 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4752 // constant expressions cannot have instructions as operands, we'd have 4753 // returned getUnknown for a select constant expressions anyway. 4754 if (isa<Instruction>(U)) 4755 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4756 U->getOperand(1), U->getOperand(2)); 4757 4758 default: // We cannot analyze this expression. 4759 break; 4760 } 4761 4762 return getUnknown(V); 4763 } 4764 4765 4766 4767 //===----------------------------------------------------------------------===// 4768 // Iteration Count Computation Code 4769 // 4770 4771 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4772 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4773 return getSmallConstantTripCount(L, ExitingBB); 4774 4775 // No trip count information for multiple exits. 4776 return 0; 4777 } 4778 4779 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4780 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4781 /// constant. Will also return 0 if the maximum trip count is very large (>= 4782 /// 2^32). 4783 /// 4784 /// This "trip count" assumes that control exits via ExitingBlock. More 4785 /// precisely, it is the number of times that control may reach ExitingBlock 4786 /// before taking the branch. For loops with multiple exits, it may not be the 4787 /// number times that the loop header executes because the loop may exit 4788 /// prematurely via another branch. 4789 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4790 BasicBlock *ExitingBlock) { 4791 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4792 assert(L->isLoopExiting(ExitingBlock) && 4793 "Exiting block must actually branch out of the loop!"); 4794 const SCEVConstant *ExitCount = 4795 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4796 if (!ExitCount) 4797 return 0; 4798 4799 ConstantInt *ExitConst = ExitCount->getValue(); 4800 4801 // Guard against huge trip counts. 4802 if (ExitConst->getValue().getActiveBits() > 32) 4803 return 0; 4804 4805 // In case of integer overflow, this returns 0, which is correct. 4806 return ((unsigned)ExitConst->getZExtValue()) + 1; 4807 } 4808 4809 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4810 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4811 return getSmallConstantTripMultiple(L, ExitingBB); 4812 4813 // No trip multiple information for multiple exits. 4814 return 0; 4815 } 4816 4817 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4818 /// trip count of this loop as a normal unsigned value, if possible. This 4819 /// means that the actual trip count is always a multiple of the returned 4820 /// value (don't forget the trip count could very well be zero as well!). 4821 /// 4822 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4823 /// multiple of a constant (which is also the case if the trip count is simply 4824 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4825 /// if the trip count is very large (>= 2^32). 4826 /// 4827 /// As explained in the comments for getSmallConstantTripCount, this assumes 4828 /// that control exits the loop via ExitingBlock. 4829 unsigned 4830 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4831 BasicBlock *ExitingBlock) { 4832 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4833 assert(L->isLoopExiting(ExitingBlock) && 4834 "Exiting block must actually branch out of the loop!"); 4835 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4836 if (ExitCount == getCouldNotCompute()) 4837 return 1; 4838 4839 // Get the trip count from the BE count by adding 1. 4840 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4841 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4842 // to factor simple cases. 4843 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4844 TCMul = Mul->getOperand(0); 4845 4846 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4847 if (!MulC) 4848 return 1; 4849 4850 ConstantInt *Result = MulC->getValue(); 4851 4852 // Guard against huge trip counts (this requires checking 4853 // for zero to handle the case where the trip count == -1 and the 4854 // addition wraps). 4855 if (!Result || Result->getValue().getActiveBits() > 32 || 4856 Result->getValue().getActiveBits() == 0) 4857 return 1; 4858 4859 return (unsigned)Result->getZExtValue(); 4860 } 4861 4862 // getExitCount - Get the expression for the number of loop iterations for which 4863 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4864 // SCEVCouldNotCompute. 4865 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4866 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4867 } 4868 4869 /// getBackedgeTakenCount - If the specified loop has a predictable 4870 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4871 /// object. The backedge-taken count is the number of times the loop header 4872 /// will be branched to from within the loop. This is one less than the 4873 /// trip count of the loop, since it doesn't count the first iteration, 4874 /// when the header is branched to from outside the loop. 4875 /// 4876 /// Note that it is not valid to call this method on a loop without a 4877 /// loop-invariant backedge-taken count (see 4878 /// hasLoopInvariantBackedgeTakenCount). 4879 /// 4880 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4881 return getBackedgeTakenInfo(L).getExact(this); 4882 } 4883 4884 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4885 /// return the least SCEV value that is known never to be less than the 4886 /// actual backedge taken count. 4887 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4888 return getBackedgeTakenInfo(L).getMax(this); 4889 } 4890 4891 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4892 /// onto the given Worklist. 4893 static void 4894 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4895 BasicBlock *Header = L->getHeader(); 4896 4897 // Push all Loop-header PHIs onto the Worklist stack. 4898 for (BasicBlock::iterator I = Header->begin(); 4899 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4900 Worklist.push_back(PN); 4901 } 4902 4903 const ScalarEvolution::BackedgeTakenInfo & 4904 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4905 // Initially insert an invalid entry for this loop. If the insertion 4906 // succeeds, proceed to actually compute a backedge-taken count and 4907 // update the value. The temporary CouldNotCompute value tells SCEV 4908 // code elsewhere that it shouldn't attempt to request a new 4909 // backedge-taken count, which could result in infinite recursion. 4910 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4911 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4912 if (!Pair.second) 4913 return Pair.first->second; 4914 4915 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4916 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4917 // must be cleared in this scope. 4918 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4919 4920 if (Result.getExact(this) != getCouldNotCompute()) { 4921 assert(isLoopInvariant(Result.getExact(this), L) && 4922 isLoopInvariant(Result.getMax(this), L) && 4923 "Computed backedge-taken count isn't loop invariant for loop!"); 4924 ++NumTripCountsComputed; 4925 } 4926 else if (Result.getMax(this) == getCouldNotCompute() && 4927 isa<PHINode>(L->getHeader()->begin())) { 4928 // Only count loops that have phi nodes as not being computable. 4929 ++NumTripCountsNotComputed; 4930 } 4931 4932 // Now that we know more about the trip count for this loop, forget any 4933 // existing SCEV values for PHI nodes in this loop since they are only 4934 // conservative estimates made without the benefit of trip count 4935 // information. This is similar to the code in forgetLoop, except that 4936 // it handles SCEVUnknown PHI nodes specially. 4937 if (Result.hasAnyInfo()) { 4938 SmallVector<Instruction *, 16> Worklist; 4939 PushLoopPHIs(L, Worklist); 4940 4941 SmallPtrSet<Instruction *, 8> Visited; 4942 while (!Worklist.empty()) { 4943 Instruction *I = Worklist.pop_back_val(); 4944 if (!Visited.insert(I).second) 4945 continue; 4946 4947 ValueExprMapType::iterator It = 4948 ValueExprMap.find_as(static_cast<Value *>(I)); 4949 if (It != ValueExprMap.end()) { 4950 const SCEV *Old = It->second; 4951 4952 // SCEVUnknown for a PHI either means that it has an unrecognized 4953 // structure, or it's a PHI that's in the progress of being computed 4954 // by createNodeForPHI. In the former case, additional loop trip 4955 // count information isn't going to change anything. In the later 4956 // case, createNodeForPHI will perform the necessary updates on its 4957 // own when it gets to that point. 4958 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4959 forgetMemoizedResults(Old); 4960 ValueExprMap.erase(It); 4961 } 4962 if (PHINode *PN = dyn_cast<PHINode>(I)) 4963 ConstantEvolutionLoopExitValue.erase(PN); 4964 } 4965 4966 PushDefUseChildren(I, Worklist); 4967 } 4968 } 4969 4970 // Re-lookup the insert position, since the call to 4971 // computeBackedgeTakenCount above could result in a 4972 // recusive call to getBackedgeTakenInfo (on a different 4973 // loop), which would invalidate the iterator computed 4974 // earlier. 4975 return BackedgeTakenCounts.find(L)->second = Result; 4976 } 4977 4978 /// forgetLoop - This method should be called by the client when it has 4979 /// changed a loop in a way that may effect ScalarEvolution's ability to 4980 /// compute a trip count, or if the loop is deleted. 4981 void ScalarEvolution::forgetLoop(const Loop *L) { 4982 // Drop any stored trip count value. 4983 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4984 BackedgeTakenCounts.find(L); 4985 if (BTCPos != BackedgeTakenCounts.end()) { 4986 BTCPos->second.clear(); 4987 BackedgeTakenCounts.erase(BTCPos); 4988 } 4989 4990 // Drop information about expressions based on loop-header PHIs. 4991 SmallVector<Instruction *, 16> Worklist; 4992 PushLoopPHIs(L, Worklist); 4993 4994 SmallPtrSet<Instruction *, 8> Visited; 4995 while (!Worklist.empty()) { 4996 Instruction *I = Worklist.pop_back_val(); 4997 if (!Visited.insert(I).second) 4998 continue; 4999 5000 ValueExprMapType::iterator It = 5001 ValueExprMap.find_as(static_cast<Value *>(I)); 5002 if (It != ValueExprMap.end()) { 5003 forgetMemoizedResults(It->second); 5004 ValueExprMap.erase(It); 5005 if (PHINode *PN = dyn_cast<PHINode>(I)) 5006 ConstantEvolutionLoopExitValue.erase(PN); 5007 } 5008 5009 PushDefUseChildren(I, Worklist); 5010 } 5011 5012 // Forget all contained loops too, to avoid dangling entries in the 5013 // ValuesAtScopes map. 5014 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5015 forgetLoop(*I); 5016 } 5017 5018 /// forgetValue - This method should be called by the client when it has 5019 /// changed a value in a way that may effect its value, or which may 5020 /// disconnect it from a def-use chain linking it to a loop. 5021 void ScalarEvolution::forgetValue(Value *V) { 5022 Instruction *I = dyn_cast<Instruction>(V); 5023 if (!I) return; 5024 5025 // Drop information about expressions based on loop-header PHIs. 5026 SmallVector<Instruction *, 16> Worklist; 5027 Worklist.push_back(I); 5028 5029 SmallPtrSet<Instruction *, 8> Visited; 5030 while (!Worklist.empty()) { 5031 I = Worklist.pop_back_val(); 5032 if (!Visited.insert(I).second) 5033 continue; 5034 5035 ValueExprMapType::iterator It = 5036 ValueExprMap.find_as(static_cast<Value *>(I)); 5037 if (It != ValueExprMap.end()) { 5038 forgetMemoizedResults(It->second); 5039 ValueExprMap.erase(It); 5040 if (PHINode *PN = dyn_cast<PHINode>(I)) 5041 ConstantEvolutionLoopExitValue.erase(PN); 5042 } 5043 5044 PushDefUseChildren(I, Worklist); 5045 } 5046 } 5047 5048 /// getExact - Get the exact loop backedge taken count considering all loop 5049 /// exits. A computable result can only be returned for loops with a single 5050 /// exit. Returning the minimum taken count among all exits is incorrect 5051 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5052 /// assumes that the limit of each loop test is never skipped. This is a valid 5053 /// assumption as long as the loop exits via that test. For precise results, it 5054 /// is the caller's responsibility to specify the relevant loop exit using 5055 /// getExact(ExitingBlock, SE). 5056 const SCEV * 5057 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5058 // If any exits were not computable, the loop is not computable. 5059 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5060 5061 // We need exactly one computable exit. 5062 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5063 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5064 5065 const SCEV *BECount = nullptr; 5066 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5067 ENT != nullptr; ENT = ENT->getNextExit()) { 5068 5069 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5070 5071 if (!BECount) 5072 BECount = ENT->ExactNotTaken; 5073 else if (BECount != ENT->ExactNotTaken) 5074 return SE->getCouldNotCompute(); 5075 } 5076 assert(BECount && "Invalid not taken count for loop exit"); 5077 return BECount; 5078 } 5079 5080 /// getExact - Get the exact not taken count for this loop exit. 5081 const SCEV * 5082 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5083 ScalarEvolution *SE) const { 5084 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5085 ENT != nullptr; ENT = ENT->getNextExit()) { 5086 5087 if (ENT->ExitingBlock == ExitingBlock) 5088 return ENT->ExactNotTaken; 5089 } 5090 return SE->getCouldNotCompute(); 5091 } 5092 5093 /// getMax - Get the max backedge taken count for the loop. 5094 const SCEV * 5095 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5096 return Max ? Max : SE->getCouldNotCompute(); 5097 } 5098 5099 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5100 ScalarEvolution *SE) const { 5101 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5102 return true; 5103 5104 if (!ExitNotTaken.ExitingBlock) 5105 return false; 5106 5107 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5108 ENT != nullptr; ENT = ENT->getNextExit()) { 5109 5110 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5111 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5112 return true; 5113 } 5114 } 5115 return false; 5116 } 5117 5118 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5119 /// computable exit into a persistent ExitNotTakenInfo array. 5120 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5121 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5122 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5123 5124 if (!Complete) 5125 ExitNotTaken.setIncomplete(); 5126 5127 unsigned NumExits = ExitCounts.size(); 5128 if (NumExits == 0) return; 5129 5130 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5131 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5132 if (NumExits == 1) return; 5133 5134 // Handle the rare case of multiple computable exits. 5135 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5136 5137 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5138 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5139 PrevENT->setNextExit(ENT); 5140 ENT->ExitingBlock = ExitCounts[i].first; 5141 ENT->ExactNotTaken = ExitCounts[i].second; 5142 } 5143 } 5144 5145 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5146 void ScalarEvolution::BackedgeTakenInfo::clear() { 5147 ExitNotTaken.ExitingBlock = nullptr; 5148 ExitNotTaken.ExactNotTaken = nullptr; 5149 delete[] ExitNotTaken.getNextExit(); 5150 } 5151 5152 /// computeBackedgeTakenCount - Compute the number of times the backedge 5153 /// of the specified loop will execute. 5154 ScalarEvolution::BackedgeTakenInfo 5155 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5156 SmallVector<BasicBlock *, 8> ExitingBlocks; 5157 L->getExitingBlocks(ExitingBlocks); 5158 5159 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5160 bool CouldComputeBECount = true; 5161 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5162 const SCEV *MustExitMaxBECount = nullptr; 5163 const SCEV *MayExitMaxBECount = nullptr; 5164 5165 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5166 // and compute maxBECount. 5167 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5168 BasicBlock *ExitBB = ExitingBlocks[i]; 5169 ExitLimit EL = computeExitLimit(L, ExitBB); 5170 5171 // 1. For each exit that can be computed, add an entry to ExitCounts. 5172 // CouldComputeBECount is true only if all exits can be computed. 5173 if (EL.Exact == getCouldNotCompute()) 5174 // We couldn't compute an exact value for this exit, so 5175 // we won't be able to compute an exact value for the loop. 5176 CouldComputeBECount = false; 5177 else 5178 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5179 5180 // 2. Derive the loop's MaxBECount from each exit's max number of 5181 // non-exiting iterations. Partition the loop exits into two kinds: 5182 // LoopMustExits and LoopMayExits. 5183 // 5184 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5185 // is a LoopMayExit. If any computable LoopMustExit is found, then 5186 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5187 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5188 // considered greater than any computable EL.Max. 5189 if (EL.Max != getCouldNotCompute() && Latch && 5190 DT.dominates(ExitBB, Latch)) { 5191 if (!MustExitMaxBECount) 5192 MustExitMaxBECount = EL.Max; 5193 else { 5194 MustExitMaxBECount = 5195 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5196 } 5197 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5198 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5199 MayExitMaxBECount = EL.Max; 5200 else { 5201 MayExitMaxBECount = 5202 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5203 } 5204 } 5205 } 5206 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5207 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5208 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5209 } 5210 5211 ScalarEvolution::ExitLimit 5212 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5213 5214 // Okay, we've chosen an exiting block. See what condition causes us to exit 5215 // at this block and remember the exit block and whether all other targets 5216 // lead to the loop header. 5217 bool MustExecuteLoopHeader = true; 5218 BasicBlock *Exit = nullptr; 5219 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5220 SI != SE; ++SI) 5221 if (!L->contains(*SI)) { 5222 if (Exit) // Multiple exit successors. 5223 return getCouldNotCompute(); 5224 Exit = *SI; 5225 } else if (*SI != L->getHeader()) { 5226 MustExecuteLoopHeader = false; 5227 } 5228 5229 // At this point, we know we have a conditional branch that determines whether 5230 // the loop is exited. However, we don't know if the branch is executed each 5231 // time through the loop. If not, then the execution count of the branch will 5232 // not be equal to the trip count of the loop. 5233 // 5234 // Currently we check for this by checking to see if the Exit branch goes to 5235 // the loop header. If so, we know it will always execute the same number of 5236 // times as the loop. We also handle the case where the exit block *is* the 5237 // loop header. This is common for un-rotated loops. 5238 // 5239 // If both of those tests fail, walk up the unique predecessor chain to the 5240 // header, stopping if there is an edge that doesn't exit the loop. If the 5241 // header is reached, the execution count of the branch will be equal to the 5242 // trip count of the loop. 5243 // 5244 // More extensive analysis could be done to handle more cases here. 5245 // 5246 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5247 // The simple checks failed, try climbing the unique predecessor chain 5248 // up to the header. 5249 bool Ok = false; 5250 for (BasicBlock *BB = ExitingBlock; BB; ) { 5251 BasicBlock *Pred = BB->getUniquePredecessor(); 5252 if (!Pred) 5253 return getCouldNotCompute(); 5254 TerminatorInst *PredTerm = Pred->getTerminator(); 5255 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5256 if (PredSucc == BB) 5257 continue; 5258 // If the predecessor has a successor that isn't BB and isn't 5259 // outside the loop, assume the worst. 5260 if (L->contains(PredSucc)) 5261 return getCouldNotCompute(); 5262 } 5263 if (Pred == L->getHeader()) { 5264 Ok = true; 5265 break; 5266 } 5267 BB = Pred; 5268 } 5269 if (!Ok) 5270 return getCouldNotCompute(); 5271 } 5272 5273 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5274 TerminatorInst *Term = ExitingBlock->getTerminator(); 5275 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5276 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5277 // Proceed to the next level to examine the exit condition expression. 5278 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5279 BI->getSuccessor(1), 5280 /*ControlsExit=*/IsOnlyExit); 5281 } 5282 5283 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5284 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5285 /*ControlsExit=*/IsOnlyExit); 5286 5287 return getCouldNotCompute(); 5288 } 5289 5290 /// computeExitLimitFromCond - Compute the number of times the 5291 /// backedge of the specified loop will execute if its exit condition 5292 /// were a conditional branch of ExitCond, TBB, and FBB. 5293 /// 5294 /// @param ControlsExit is true if ExitCond directly controls the exit 5295 /// branch. In this case, we can assume that the loop exits only if the 5296 /// condition is true and can infer that failing to meet the condition prior to 5297 /// integer wraparound results in undefined behavior. 5298 ScalarEvolution::ExitLimit 5299 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5300 Value *ExitCond, 5301 BasicBlock *TBB, 5302 BasicBlock *FBB, 5303 bool ControlsExit) { 5304 // Check if the controlling expression for this loop is an And or Or. 5305 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5306 if (BO->getOpcode() == Instruction::And) { 5307 // Recurse on the operands of the and. 5308 bool EitherMayExit = L->contains(TBB); 5309 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5310 ControlsExit && !EitherMayExit); 5311 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5312 ControlsExit && !EitherMayExit); 5313 const SCEV *BECount = getCouldNotCompute(); 5314 const SCEV *MaxBECount = getCouldNotCompute(); 5315 if (EitherMayExit) { 5316 // Both conditions must be true for the loop to continue executing. 5317 // Choose the less conservative count. 5318 if (EL0.Exact == getCouldNotCompute() || 5319 EL1.Exact == getCouldNotCompute()) 5320 BECount = getCouldNotCompute(); 5321 else 5322 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5323 if (EL0.Max == getCouldNotCompute()) 5324 MaxBECount = EL1.Max; 5325 else if (EL1.Max == getCouldNotCompute()) 5326 MaxBECount = EL0.Max; 5327 else 5328 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5329 } else { 5330 // Both conditions must be true at the same time for the loop to exit. 5331 // For now, be conservative. 5332 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5333 if (EL0.Max == EL1.Max) 5334 MaxBECount = EL0.Max; 5335 if (EL0.Exact == EL1.Exact) 5336 BECount = EL0.Exact; 5337 } 5338 5339 return ExitLimit(BECount, MaxBECount); 5340 } 5341 if (BO->getOpcode() == Instruction::Or) { 5342 // Recurse on the operands of the or. 5343 bool EitherMayExit = L->contains(FBB); 5344 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5345 ControlsExit && !EitherMayExit); 5346 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5347 ControlsExit && !EitherMayExit); 5348 const SCEV *BECount = getCouldNotCompute(); 5349 const SCEV *MaxBECount = getCouldNotCompute(); 5350 if (EitherMayExit) { 5351 // Both conditions must be false for the loop to continue executing. 5352 // Choose the less conservative count. 5353 if (EL0.Exact == getCouldNotCompute() || 5354 EL1.Exact == getCouldNotCompute()) 5355 BECount = getCouldNotCompute(); 5356 else 5357 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5358 if (EL0.Max == getCouldNotCompute()) 5359 MaxBECount = EL1.Max; 5360 else if (EL1.Max == getCouldNotCompute()) 5361 MaxBECount = EL0.Max; 5362 else 5363 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5364 } else { 5365 // Both conditions must be false at the same time for the loop to exit. 5366 // For now, be conservative. 5367 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5368 if (EL0.Max == EL1.Max) 5369 MaxBECount = EL0.Max; 5370 if (EL0.Exact == EL1.Exact) 5371 BECount = EL0.Exact; 5372 } 5373 5374 return ExitLimit(BECount, MaxBECount); 5375 } 5376 } 5377 5378 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5379 // Proceed to the next level to examine the icmp. 5380 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5381 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5382 5383 // Check for a constant condition. These are normally stripped out by 5384 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5385 // preserve the CFG and is temporarily leaving constant conditions 5386 // in place. 5387 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5388 if (L->contains(FBB) == !CI->getZExtValue()) 5389 // The backedge is always taken. 5390 return getCouldNotCompute(); 5391 else 5392 // The backedge is never taken. 5393 return getZero(CI->getType()); 5394 } 5395 5396 // If it's not an integer or pointer comparison then compute it the hard way. 5397 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5398 } 5399 5400 ScalarEvolution::ExitLimit 5401 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5402 ICmpInst *ExitCond, 5403 BasicBlock *TBB, 5404 BasicBlock *FBB, 5405 bool ControlsExit) { 5406 5407 // If the condition was exit on true, convert the condition to exit on false 5408 ICmpInst::Predicate Cond; 5409 if (!L->contains(FBB)) 5410 Cond = ExitCond->getPredicate(); 5411 else 5412 Cond = ExitCond->getInversePredicate(); 5413 5414 // Handle common loops like: for (X = "string"; *X; ++X) 5415 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5416 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5417 ExitLimit ItCnt = 5418 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5419 if (ItCnt.hasAnyInfo()) 5420 return ItCnt; 5421 } 5422 5423 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5424 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5425 5426 // Try to evaluate any dependencies out of the loop. 5427 LHS = getSCEVAtScope(LHS, L); 5428 RHS = getSCEVAtScope(RHS, L); 5429 5430 // At this point, we would like to compute how many iterations of the 5431 // loop the predicate will return true for these inputs. 5432 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5433 // If there is a loop-invariant, force it into the RHS. 5434 std::swap(LHS, RHS); 5435 Cond = ICmpInst::getSwappedPredicate(Cond); 5436 } 5437 5438 // Simplify the operands before analyzing them. 5439 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5440 5441 // If we have a comparison of a chrec against a constant, try to use value 5442 // ranges to answer this query. 5443 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5444 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5445 if (AddRec->getLoop() == L) { 5446 // Form the constant range. 5447 ConstantRange CompRange( 5448 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5449 5450 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5451 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5452 } 5453 5454 switch (Cond) { 5455 case ICmpInst::ICMP_NE: { // while (X != Y) 5456 // Convert to: while (X-Y != 0) 5457 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5458 if (EL.hasAnyInfo()) return EL; 5459 break; 5460 } 5461 case ICmpInst::ICMP_EQ: { // while (X == Y) 5462 // Convert to: while (X-Y == 0) 5463 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5464 if (EL.hasAnyInfo()) return EL; 5465 break; 5466 } 5467 case ICmpInst::ICMP_SLT: 5468 case ICmpInst::ICMP_ULT: { // while (X < Y) 5469 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5470 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5471 if (EL.hasAnyInfo()) return EL; 5472 break; 5473 } 5474 case ICmpInst::ICMP_SGT: 5475 case ICmpInst::ICMP_UGT: { // while (X > Y) 5476 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5477 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5478 if (EL.hasAnyInfo()) return EL; 5479 break; 5480 } 5481 default: 5482 #if 0 5483 dbgs() << "computeBackedgeTakenCount "; 5484 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5485 dbgs() << "[unsigned] "; 5486 dbgs() << *LHS << " " 5487 << Instruction::getOpcodeName(Instruction::ICmp) 5488 << " " << *RHS << "\n"; 5489 #endif 5490 break; 5491 } 5492 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5493 } 5494 5495 ScalarEvolution::ExitLimit 5496 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5497 SwitchInst *Switch, 5498 BasicBlock *ExitingBlock, 5499 bool ControlsExit) { 5500 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5501 5502 // Give up if the exit is the default dest of a switch. 5503 if (Switch->getDefaultDest() == ExitingBlock) 5504 return getCouldNotCompute(); 5505 5506 assert(L->contains(Switch->getDefaultDest()) && 5507 "Default case must not exit the loop!"); 5508 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5509 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5510 5511 // while (X != Y) --> while (X-Y != 0) 5512 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5513 if (EL.hasAnyInfo()) 5514 return EL; 5515 5516 return getCouldNotCompute(); 5517 } 5518 5519 static ConstantInt * 5520 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5521 ScalarEvolution &SE) { 5522 const SCEV *InVal = SE.getConstant(C); 5523 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5524 assert(isa<SCEVConstant>(Val) && 5525 "Evaluation of SCEV at constant didn't fold correctly?"); 5526 return cast<SCEVConstant>(Val)->getValue(); 5527 } 5528 5529 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5530 /// 'icmp op load X, cst', try to see if we can compute the backedge 5531 /// execution count. 5532 ScalarEvolution::ExitLimit 5533 ScalarEvolution::computeLoadConstantCompareExitLimit( 5534 LoadInst *LI, 5535 Constant *RHS, 5536 const Loop *L, 5537 ICmpInst::Predicate predicate) { 5538 5539 if (LI->isVolatile()) return getCouldNotCompute(); 5540 5541 // Check to see if the loaded pointer is a getelementptr of a global. 5542 // TODO: Use SCEV instead of manually grubbing with GEPs. 5543 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5544 if (!GEP) return getCouldNotCompute(); 5545 5546 // Make sure that it is really a constant global we are gepping, with an 5547 // initializer, and make sure the first IDX is really 0. 5548 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5549 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5550 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5551 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5552 return getCouldNotCompute(); 5553 5554 // Okay, we allow one non-constant index into the GEP instruction. 5555 Value *VarIdx = nullptr; 5556 std::vector<Constant*> Indexes; 5557 unsigned VarIdxNum = 0; 5558 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5559 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5560 Indexes.push_back(CI); 5561 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5562 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5563 VarIdx = GEP->getOperand(i); 5564 VarIdxNum = i-2; 5565 Indexes.push_back(nullptr); 5566 } 5567 5568 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5569 if (!VarIdx) 5570 return getCouldNotCompute(); 5571 5572 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5573 // Check to see if X is a loop variant variable value now. 5574 const SCEV *Idx = getSCEV(VarIdx); 5575 Idx = getSCEVAtScope(Idx, L); 5576 5577 // We can only recognize very limited forms of loop index expressions, in 5578 // particular, only affine AddRec's like {C1,+,C2}. 5579 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5580 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5581 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5582 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5583 return getCouldNotCompute(); 5584 5585 unsigned MaxSteps = MaxBruteForceIterations; 5586 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5587 ConstantInt *ItCst = ConstantInt::get( 5588 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5589 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5590 5591 // Form the GEP offset. 5592 Indexes[VarIdxNum] = Val; 5593 5594 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5595 Indexes); 5596 if (!Result) break; // Cannot compute! 5597 5598 // Evaluate the condition for this iteration. 5599 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5600 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5601 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5602 #if 0 5603 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5604 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5605 << "***\n"; 5606 #endif 5607 ++NumArrayLenItCounts; 5608 return getConstant(ItCst); // Found terminating iteration! 5609 } 5610 } 5611 return getCouldNotCompute(); 5612 } 5613 5614 5615 /// CanConstantFold - Return true if we can constant fold an instruction of the 5616 /// specified type, assuming that all operands were constants. 5617 static bool CanConstantFold(const Instruction *I) { 5618 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5619 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5620 isa<LoadInst>(I)) 5621 return true; 5622 5623 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5624 if (const Function *F = CI->getCalledFunction()) 5625 return canConstantFoldCallTo(F); 5626 return false; 5627 } 5628 5629 /// Determine whether this instruction can constant evolve within this loop 5630 /// assuming its operands can all constant evolve. 5631 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5632 // An instruction outside of the loop can't be derived from a loop PHI. 5633 if (!L->contains(I)) return false; 5634 5635 if (isa<PHINode>(I)) { 5636 // We don't currently keep track of the control flow needed to evaluate 5637 // PHIs, so we cannot handle PHIs inside of loops. 5638 return L->getHeader() == I->getParent(); 5639 } 5640 5641 // If we won't be able to constant fold this expression even if the operands 5642 // are constants, bail early. 5643 return CanConstantFold(I); 5644 } 5645 5646 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5647 /// recursing through each instruction operand until reaching a loop header phi. 5648 static PHINode * 5649 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5650 DenseMap<Instruction *, PHINode *> &PHIMap) { 5651 5652 // Otherwise, we can evaluate this instruction if all of its operands are 5653 // constant or derived from a PHI node themselves. 5654 PHINode *PHI = nullptr; 5655 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5656 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5657 5658 if (isa<Constant>(*OpI)) continue; 5659 5660 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5661 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5662 5663 PHINode *P = dyn_cast<PHINode>(OpInst); 5664 if (!P) 5665 // If this operand is already visited, reuse the prior result. 5666 // We may have P != PHI if this is the deepest point at which the 5667 // inconsistent paths meet. 5668 P = PHIMap.lookup(OpInst); 5669 if (!P) { 5670 // Recurse and memoize the results, whether a phi is found or not. 5671 // This recursive call invalidates pointers into PHIMap. 5672 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5673 PHIMap[OpInst] = P; 5674 } 5675 if (!P) 5676 return nullptr; // Not evolving from PHI 5677 if (PHI && PHI != P) 5678 return nullptr; // Evolving from multiple different PHIs. 5679 PHI = P; 5680 } 5681 // This is a expression evolving from a constant PHI! 5682 return PHI; 5683 } 5684 5685 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5686 /// in the loop that V is derived from. We allow arbitrary operations along the 5687 /// way, but the operands of an operation must either be constants or a value 5688 /// derived from a constant PHI. If this expression does not fit with these 5689 /// constraints, return null. 5690 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5691 Instruction *I = dyn_cast<Instruction>(V); 5692 if (!I || !canConstantEvolve(I, L)) return nullptr; 5693 5694 if (PHINode *PN = dyn_cast<PHINode>(I)) 5695 return PN; 5696 5697 // Record non-constant instructions contained by the loop. 5698 DenseMap<Instruction *, PHINode *> PHIMap; 5699 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5700 } 5701 5702 /// EvaluateExpression - Given an expression that passes the 5703 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5704 /// in the loop has the value PHIVal. If we can't fold this expression for some 5705 /// reason, return null. 5706 static Constant *EvaluateExpression(Value *V, const Loop *L, 5707 DenseMap<Instruction *, Constant *> &Vals, 5708 const DataLayout &DL, 5709 const TargetLibraryInfo *TLI) { 5710 // Convenient constant check, but redundant for recursive calls. 5711 if (Constant *C = dyn_cast<Constant>(V)) return C; 5712 Instruction *I = dyn_cast<Instruction>(V); 5713 if (!I) return nullptr; 5714 5715 if (Constant *C = Vals.lookup(I)) return C; 5716 5717 // An instruction inside the loop depends on a value outside the loop that we 5718 // weren't given a mapping for, or a value such as a call inside the loop. 5719 if (!canConstantEvolve(I, L)) return nullptr; 5720 5721 // An unmapped PHI can be due to a branch or another loop inside this loop, 5722 // or due to this not being the initial iteration through a loop where we 5723 // couldn't compute the evolution of this particular PHI last time. 5724 if (isa<PHINode>(I)) return nullptr; 5725 5726 std::vector<Constant*> Operands(I->getNumOperands()); 5727 5728 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5729 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5730 if (!Operand) { 5731 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5732 if (!Operands[i]) return nullptr; 5733 continue; 5734 } 5735 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5736 Vals[Operand] = C; 5737 if (!C) return nullptr; 5738 Operands[i] = C; 5739 } 5740 5741 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5742 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5743 Operands[1], DL, TLI); 5744 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5745 if (!LI->isVolatile()) 5746 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5747 } 5748 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5749 TLI); 5750 } 5751 5752 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5753 /// in the header of its containing loop, we know the loop executes a 5754 /// constant number of times, and the PHI node is just a recurrence 5755 /// involving constants, fold it. 5756 Constant * 5757 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5758 const APInt &BEs, 5759 const Loop *L) { 5760 auto I = ConstantEvolutionLoopExitValue.find(PN); 5761 if (I != ConstantEvolutionLoopExitValue.end()) 5762 return I->second; 5763 5764 if (BEs.ugt(MaxBruteForceIterations)) 5765 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5766 5767 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5768 5769 DenseMap<Instruction *, Constant *> CurrentIterVals; 5770 BasicBlock *Header = L->getHeader(); 5771 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5772 5773 BasicBlock *Latch = L->getLoopLatch(); 5774 if (!Latch) 5775 return nullptr; 5776 5777 // Since the loop has one latch, the PHI node must have two entries. One 5778 // entry must be a constant (coming in from outside of the loop), and the 5779 // second must be derived from the same PHI. 5780 5781 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5782 ? PN->getIncomingBlock(1) 5783 : PN->getIncomingBlock(0); 5784 5785 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!"); 5786 5787 // Note: not all PHI nodes in the same block have to have their incoming 5788 // values in the same order, so we use the basic block to look up the incoming 5789 // value, not an index. 5790 5791 for (auto &I : *Header) { 5792 PHINode *PHI = dyn_cast<PHINode>(&I); 5793 if (!PHI) break; 5794 auto *StartCST = 5795 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5796 if (!StartCST) continue; 5797 CurrentIterVals[PHI] = StartCST; 5798 } 5799 if (!CurrentIterVals.count(PN)) 5800 return RetVal = nullptr; 5801 5802 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5803 5804 // Execute the loop symbolically to determine the exit value. 5805 if (BEs.getActiveBits() >= 32) 5806 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5807 5808 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5809 unsigned IterationNum = 0; 5810 const DataLayout &DL = F.getParent()->getDataLayout(); 5811 for (; ; ++IterationNum) { 5812 if (IterationNum == NumIterations) 5813 return RetVal = CurrentIterVals[PN]; // Got exit value! 5814 5815 // Compute the value of the PHIs for the next iteration. 5816 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5817 DenseMap<Instruction *, Constant *> NextIterVals; 5818 Constant *NextPHI = 5819 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5820 if (!NextPHI) 5821 return nullptr; // Couldn't evaluate! 5822 NextIterVals[PN] = NextPHI; 5823 5824 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5825 5826 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5827 // cease to be able to evaluate one of them or if they stop evolving, 5828 // because that doesn't necessarily prevent us from computing PN. 5829 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5830 for (const auto &I : CurrentIterVals) { 5831 PHINode *PHI = dyn_cast<PHINode>(I.first); 5832 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5833 PHIsToCompute.emplace_back(PHI, I.second); 5834 } 5835 // We use two distinct loops because EvaluateExpression may invalidate any 5836 // iterators into CurrentIterVals. 5837 for (const auto &I : PHIsToCompute) { 5838 PHINode *PHI = I.first; 5839 Constant *&NextPHI = NextIterVals[PHI]; 5840 if (!NextPHI) { // Not already computed. 5841 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5842 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5843 } 5844 if (NextPHI != I.second) 5845 StoppedEvolving = false; 5846 } 5847 5848 // If all entries in CurrentIterVals == NextIterVals then we can stop 5849 // iterating, the loop can't continue to change. 5850 if (StoppedEvolving) 5851 return RetVal = CurrentIterVals[PN]; 5852 5853 CurrentIterVals.swap(NextIterVals); 5854 } 5855 } 5856 5857 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 5858 Value *Cond, 5859 bool ExitWhen) { 5860 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5861 if (!PN) return getCouldNotCompute(); 5862 5863 // If the loop is canonicalized, the PHI will have exactly two entries. 5864 // That's the only form we support here. 5865 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5866 5867 DenseMap<Instruction *, Constant *> CurrentIterVals; 5868 BasicBlock *Header = L->getHeader(); 5869 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5870 5871 BasicBlock *Latch = L->getLoopLatch(); 5872 assert(Latch && "Should follow from NumIncomingValues == 2!"); 5873 5874 // NonLatch is the preheader, or something equivalent. 5875 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5876 ? PN->getIncomingBlock(1) 5877 : PN->getIncomingBlock(0); 5878 5879 // Note: not all PHI nodes in the same block have to have their incoming 5880 // values in the same order, so we use the basic block to look up the incoming 5881 // value, not an index. 5882 5883 for (auto &I : *Header) { 5884 PHINode *PHI = dyn_cast<PHINode>(&I); 5885 if (!PHI) 5886 break; 5887 auto *StartCST = 5888 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5889 if (!StartCST) continue; 5890 CurrentIterVals[PHI] = StartCST; 5891 } 5892 if (!CurrentIterVals.count(PN)) 5893 return getCouldNotCompute(); 5894 5895 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5896 // the loop symbolically to determine when the condition gets a value of 5897 // "ExitWhen". 5898 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5899 const DataLayout &DL = F.getParent()->getDataLayout(); 5900 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5901 auto *CondVal = dyn_cast_or_null<ConstantInt>( 5902 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5903 5904 // Couldn't symbolically evaluate. 5905 if (!CondVal) return getCouldNotCompute(); 5906 5907 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5908 ++NumBruteForceTripCountsComputed; 5909 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5910 } 5911 5912 // Update all the PHI nodes for the next iteration. 5913 DenseMap<Instruction *, Constant *> NextIterVals; 5914 5915 // Create a list of which PHIs we need to compute. We want to do this before 5916 // calling EvaluateExpression on them because that may invalidate iterators 5917 // into CurrentIterVals. 5918 SmallVector<PHINode *, 8> PHIsToCompute; 5919 for (const auto &I : CurrentIterVals) { 5920 PHINode *PHI = dyn_cast<PHINode>(I.first); 5921 if (!PHI || PHI->getParent() != Header) continue; 5922 PHIsToCompute.push_back(PHI); 5923 } 5924 for (PHINode *PHI : PHIsToCompute) { 5925 Constant *&NextPHI = NextIterVals[PHI]; 5926 if (NextPHI) continue; // Already computed! 5927 5928 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5929 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5930 } 5931 CurrentIterVals.swap(NextIterVals); 5932 } 5933 5934 // Too many iterations were needed to evaluate. 5935 return getCouldNotCompute(); 5936 } 5937 5938 /// getSCEVAtScope - Return a SCEV expression for the specified value 5939 /// at the specified scope in the program. The L value specifies a loop 5940 /// nest to evaluate the expression at, where null is the top-level or a 5941 /// specified loop is immediately inside of the loop. 5942 /// 5943 /// This method can be used to compute the exit value for a variable defined 5944 /// in a loop by querying what the value will hold in the parent loop. 5945 /// 5946 /// In the case that a relevant loop exit value cannot be computed, the 5947 /// original value V is returned. 5948 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5949 // Check to see if we've folded this expression at this loop before. 5950 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5951 for (unsigned u = 0; u < Values.size(); u++) { 5952 if (Values[u].first == L) 5953 return Values[u].second ? Values[u].second : V; 5954 } 5955 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5956 // Otherwise compute it. 5957 const SCEV *C = computeSCEVAtScope(V, L); 5958 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5959 for (unsigned u = Values2.size(); u > 0; u--) { 5960 if (Values2[u - 1].first == L) { 5961 Values2[u - 1].second = C; 5962 break; 5963 } 5964 } 5965 return C; 5966 } 5967 5968 /// This builds up a Constant using the ConstantExpr interface. That way, we 5969 /// will return Constants for objects which aren't represented by a 5970 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5971 /// Returns NULL if the SCEV isn't representable as a Constant. 5972 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5973 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5974 case scCouldNotCompute: 5975 case scAddRecExpr: 5976 break; 5977 case scConstant: 5978 return cast<SCEVConstant>(V)->getValue(); 5979 case scUnknown: 5980 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5981 case scSignExtend: { 5982 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5983 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5984 return ConstantExpr::getSExt(CastOp, SS->getType()); 5985 break; 5986 } 5987 case scZeroExtend: { 5988 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5989 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5990 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5991 break; 5992 } 5993 case scTruncate: { 5994 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5995 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5996 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5997 break; 5998 } 5999 case scAddExpr: { 6000 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6001 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6002 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6003 unsigned AS = PTy->getAddressSpace(); 6004 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6005 C = ConstantExpr::getBitCast(C, DestPtrTy); 6006 } 6007 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6008 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6009 if (!C2) return nullptr; 6010 6011 // First pointer! 6012 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6013 unsigned AS = C2->getType()->getPointerAddressSpace(); 6014 std::swap(C, C2); 6015 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6016 // The offsets have been converted to bytes. We can add bytes to an 6017 // i8* by GEP with the byte count in the first index. 6018 C = ConstantExpr::getBitCast(C, DestPtrTy); 6019 } 6020 6021 // Don't bother trying to sum two pointers. We probably can't 6022 // statically compute a load that results from it anyway. 6023 if (C2->getType()->isPointerTy()) 6024 return nullptr; 6025 6026 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6027 if (PTy->getElementType()->isStructTy()) 6028 C2 = ConstantExpr::getIntegerCast( 6029 C2, Type::getInt32Ty(C->getContext()), true); 6030 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6031 } else 6032 C = ConstantExpr::getAdd(C, C2); 6033 } 6034 return C; 6035 } 6036 break; 6037 } 6038 case scMulExpr: { 6039 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6040 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6041 // Don't bother with pointers at all. 6042 if (C->getType()->isPointerTy()) return nullptr; 6043 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6044 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6045 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6046 C = ConstantExpr::getMul(C, C2); 6047 } 6048 return C; 6049 } 6050 break; 6051 } 6052 case scUDivExpr: { 6053 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6054 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6055 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6056 if (LHS->getType() == RHS->getType()) 6057 return ConstantExpr::getUDiv(LHS, RHS); 6058 break; 6059 } 6060 case scSMaxExpr: 6061 case scUMaxExpr: 6062 break; // TODO: smax, umax. 6063 } 6064 return nullptr; 6065 } 6066 6067 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6068 if (isa<SCEVConstant>(V)) return V; 6069 6070 // If this instruction is evolved from a constant-evolving PHI, compute the 6071 // exit value from the loop without using SCEVs. 6072 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6073 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6074 const Loop *LI = this->LI[I->getParent()]; 6075 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6076 if (PHINode *PN = dyn_cast<PHINode>(I)) 6077 if (PN->getParent() == LI->getHeader()) { 6078 // Okay, there is no closed form solution for the PHI node. Check 6079 // to see if the loop that contains it has a known backedge-taken 6080 // count. If so, we may be able to force computation of the exit 6081 // value. 6082 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6083 if (const SCEVConstant *BTCC = 6084 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6085 // Okay, we know how many times the containing loop executes. If 6086 // this is a constant evolving PHI node, get the final value at 6087 // the specified iteration number. 6088 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6089 BTCC->getValue()->getValue(), 6090 LI); 6091 if (RV) return getSCEV(RV); 6092 } 6093 } 6094 6095 // Okay, this is an expression that we cannot symbolically evaluate 6096 // into a SCEV. Check to see if it's possible to symbolically evaluate 6097 // the arguments into constants, and if so, try to constant propagate the 6098 // result. This is particularly useful for computing loop exit values. 6099 if (CanConstantFold(I)) { 6100 SmallVector<Constant *, 4> Operands; 6101 bool MadeImprovement = false; 6102 for (Value *Op : I->operands()) { 6103 if (Constant *C = dyn_cast<Constant>(Op)) { 6104 Operands.push_back(C); 6105 continue; 6106 } 6107 6108 // If any of the operands is non-constant and if they are 6109 // non-integer and non-pointer, don't even try to analyze them 6110 // with scev techniques. 6111 if (!isSCEVable(Op->getType())) 6112 return V; 6113 6114 const SCEV *OrigV = getSCEV(Op); 6115 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6116 MadeImprovement |= OrigV != OpV; 6117 6118 Constant *C = BuildConstantFromSCEV(OpV); 6119 if (!C) return V; 6120 if (C->getType() != Op->getType()) 6121 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6122 Op->getType(), 6123 false), 6124 C, Op->getType()); 6125 Operands.push_back(C); 6126 } 6127 6128 // Check to see if getSCEVAtScope actually made an improvement. 6129 if (MadeImprovement) { 6130 Constant *C = nullptr; 6131 const DataLayout &DL = F.getParent()->getDataLayout(); 6132 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6133 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6134 Operands[1], DL, &TLI); 6135 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6136 if (!LI->isVolatile()) 6137 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6138 } else 6139 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6140 DL, &TLI); 6141 if (!C) return V; 6142 return getSCEV(C); 6143 } 6144 } 6145 } 6146 6147 // This is some other type of SCEVUnknown, just return it. 6148 return V; 6149 } 6150 6151 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6152 // Avoid performing the look-up in the common case where the specified 6153 // expression has no loop-variant portions. 6154 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6155 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6156 if (OpAtScope != Comm->getOperand(i)) { 6157 // Okay, at least one of these operands is loop variant but might be 6158 // foldable. Build a new instance of the folded commutative expression. 6159 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6160 Comm->op_begin()+i); 6161 NewOps.push_back(OpAtScope); 6162 6163 for (++i; i != e; ++i) { 6164 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6165 NewOps.push_back(OpAtScope); 6166 } 6167 if (isa<SCEVAddExpr>(Comm)) 6168 return getAddExpr(NewOps); 6169 if (isa<SCEVMulExpr>(Comm)) 6170 return getMulExpr(NewOps); 6171 if (isa<SCEVSMaxExpr>(Comm)) 6172 return getSMaxExpr(NewOps); 6173 if (isa<SCEVUMaxExpr>(Comm)) 6174 return getUMaxExpr(NewOps); 6175 llvm_unreachable("Unknown commutative SCEV type!"); 6176 } 6177 } 6178 // If we got here, all operands are loop invariant. 6179 return Comm; 6180 } 6181 6182 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6183 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6184 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6185 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6186 return Div; // must be loop invariant 6187 return getUDivExpr(LHS, RHS); 6188 } 6189 6190 // If this is a loop recurrence for a loop that does not contain L, then we 6191 // are dealing with the final value computed by the loop. 6192 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6193 // First, attempt to evaluate each operand. 6194 // Avoid performing the look-up in the common case where the specified 6195 // expression has no loop-variant portions. 6196 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6197 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6198 if (OpAtScope == AddRec->getOperand(i)) 6199 continue; 6200 6201 // Okay, at least one of these operands is loop variant but might be 6202 // foldable. Build a new instance of the folded commutative expression. 6203 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6204 AddRec->op_begin()+i); 6205 NewOps.push_back(OpAtScope); 6206 for (++i; i != e; ++i) 6207 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6208 6209 const SCEV *FoldedRec = 6210 getAddRecExpr(NewOps, AddRec->getLoop(), 6211 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6212 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6213 // The addrec may be folded to a nonrecurrence, for example, if the 6214 // induction variable is multiplied by zero after constant folding. Go 6215 // ahead and return the folded value. 6216 if (!AddRec) 6217 return FoldedRec; 6218 break; 6219 } 6220 6221 // If the scope is outside the addrec's loop, evaluate it by using the 6222 // loop exit value of the addrec. 6223 if (!AddRec->getLoop()->contains(L)) { 6224 // To evaluate this recurrence, we need to know how many times the AddRec 6225 // loop iterates. Compute this now. 6226 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6227 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6228 6229 // Then, evaluate the AddRec. 6230 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6231 } 6232 6233 return AddRec; 6234 } 6235 6236 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6237 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6238 if (Op == Cast->getOperand()) 6239 return Cast; // must be loop invariant 6240 return getZeroExtendExpr(Op, Cast->getType()); 6241 } 6242 6243 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6244 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6245 if (Op == Cast->getOperand()) 6246 return Cast; // must be loop invariant 6247 return getSignExtendExpr(Op, Cast->getType()); 6248 } 6249 6250 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6251 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6252 if (Op == Cast->getOperand()) 6253 return Cast; // must be loop invariant 6254 return getTruncateExpr(Op, Cast->getType()); 6255 } 6256 6257 llvm_unreachable("Unknown SCEV type!"); 6258 } 6259 6260 /// getSCEVAtScope - This is a convenience function which does 6261 /// getSCEVAtScope(getSCEV(V), L). 6262 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6263 return getSCEVAtScope(getSCEV(V), L); 6264 } 6265 6266 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6267 /// following equation: 6268 /// 6269 /// A * X = B (mod N) 6270 /// 6271 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6272 /// A and B isn't important. 6273 /// 6274 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6275 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6276 ScalarEvolution &SE) { 6277 uint32_t BW = A.getBitWidth(); 6278 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6279 assert(A != 0 && "A must be non-zero."); 6280 6281 // 1. D = gcd(A, N) 6282 // 6283 // The gcd of A and N may have only one prime factor: 2. The number of 6284 // trailing zeros in A is its multiplicity 6285 uint32_t Mult2 = A.countTrailingZeros(); 6286 // D = 2^Mult2 6287 6288 // 2. Check if B is divisible by D. 6289 // 6290 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6291 // is not less than multiplicity of this prime factor for D. 6292 if (B.countTrailingZeros() < Mult2) 6293 return SE.getCouldNotCompute(); 6294 6295 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6296 // modulo (N / D). 6297 // 6298 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6299 // bit width during computations. 6300 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6301 APInt Mod(BW + 1, 0); 6302 Mod.setBit(BW - Mult2); // Mod = N / D 6303 APInt I = AD.multiplicativeInverse(Mod); 6304 6305 // 4. Compute the minimum unsigned root of the equation: 6306 // I * (B / D) mod (N / D) 6307 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6308 6309 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6310 // bits. 6311 return SE.getConstant(Result.trunc(BW)); 6312 } 6313 6314 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6315 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6316 /// might be the same) or two SCEVCouldNotCompute objects. 6317 /// 6318 static std::pair<const SCEV *,const SCEV *> 6319 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6320 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6321 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6322 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6323 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6324 6325 // We currently can only solve this if the coefficients are constants. 6326 if (!LC || !MC || !NC) { 6327 const SCEV *CNC = SE.getCouldNotCompute(); 6328 return std::make_pair(CNC, CNC); 6329 } 6330 6331 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6332 const APInt &L = LC->getValue()->getValue(); 6333 const APInt &M = MC->getValue()->getValue(); 6334 const APInt &N = NC->getValue()->getValue(); 6335 APInt Two(BitWidth, 2); 6336 APInt Four(BitWidth, 4); 6337 6338 { 6339 using namespace APIntOps; 6340 const APInt& C = L; 6341 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6342 // The B coefficient is M-N/2 6343 APInt B(M); 6344 B -= sdiv(N,Two); 6345 6346 // The A coefficient is N/2 6347 APInt A(N.sdiv(Two)); 6348 6349 // Compute the B^2-4ac term. 6350 APInt SqrtTerm(B); 6351 SqrtTerm *= B; 6352 SqrtTerm -= Four * (A * C); 6353 6354 if (SqrtTerm.isNegative()) { 6355 // The loop is provably infinite. 6356 const SCEV *CNC = SE.getCouldNotCompute(); 6357 return std::make_pair(CNC, CNC); 6358 } 6359 6360 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6361 // integer value or else APInt::sqrt() will assert. 6362 APInt SqrtVal(SqrtTerm.sqrt()); 6363 6364 // Compute the two solutions for the quadratic formula. 6365 // The divisions must be performed as signed divisions. 6366 APInt NegB(-B); 6367 APInt TwoA(A << 1); 6368 if (TwoA.isMinValue()) { 6369 const SCEV *CNC = SE.getCouldNotCompute(); 6370 return std::make_pair(CNC, CNC); 6371 } 6372 6373 LLVMContext &Context = SE.getContext(); 6374 6375 ConstantInt *Solution1 = 6376 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6377 ConstantInt *Solution2 = 6378 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6379 6380 return std::make_pair(SE.getConstant(Solution1), 6381 SE.getConstant(Solution2)); 6382 } // end APIntOps namespace 6383 } 6384 6385 /// HowFarToZero - Return the number of times a backedge comparing the specified 6386 /// value to zero will execute. If not computable, return CouldNotCompute. 6387 /// 6388 /// This is only used for loops with a "x != y" exit test. The exit condition is 6389 /// now expressed as a single expression, V = x-y. So the exit test is 6390 /// effectively V != 0. We know and take advantage of the fact that this 6391 /// expression only being used in a comparison by zero context. 6392 ScalarEvolution::ExitLimit 6393 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6394 // If the value is a constant 6395 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6396 // If the value is already zero, the branch will execute zero times. 6397 if (C->getValue()->isZero()) return C; 6398 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6399 } 6400 6401 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6402 if (!AddRec || AddRec->getLoop() != L) 6403 return getCouldNotCompute(); 6404 6405 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6406 // the quadratic equation to solve it. 6407 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6408 std::pair<const SCEV *,const SCEV *> Roots = 6409 SolveQuadraticEquation(AddRec, *this); 6410 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6411 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6412 if (R1 && R2) { 6413 #if 0 6414 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6415 << " sol#2: " << *R2 << "\n"; 6416 #endif 6417 // Pick the smallest positive root value. 6418 if (ConstantInt *CB = 6419 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6420 R1->getValue(), 6421 R2->getValue()))) { 6422 if (!CB->getZExtValue()) 6423 std::swap(R1, R2); // R1 is the minimum root now. 6424 6425 // We can only use this value if the chrec ends up with an exact zero 6426 // value at this index. When solving for "X*X != 5", for example, we 6427 // should not accept a root of 2. 6428 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6429 if (Val->isZero()) 6430 return R1; // We found a quadratic root! 6431 } 6432 } 6433 return getCouldNotCompute(); 6434 } 6435 6436 // Otherwise we can only handle this if it is affine. 6437 if (!AddRec->isAffine()) 6438 return getCouldNotCompute(); 6439 6440 // If this is an affine expression, the execution count of this branch is 6441 // the minimum unsigned root of the following equation: 6442 // 6443 // Start + Step*N = 0 (mod 2^BW) 6444 // 6445 // equivalent to: 6446 // 6447 // Step*N = -Start (mod 2^BW) 6448 // 6449 // where BW is the common bit width of Start and Step. 6450 6451 // Get the initial value for the loop. 6452 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6453 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6454 6455 // For now we handle only constant steps. 6456 // 6457 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6458 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6459 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6460 // We have not yet seen any such cases. 6461 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6462 if (!StepC || StepC->getValue()->equalsInt(0)) 6463 return getCouldNotCompute(); 6464 6465 // For positive steps (counting up until unsigned overflow): 6466 // N = -Start/Step (as unsigned) 6467 // For negative steps (counting down to zero): 6468 // N = Start/-Step 6469 // First compute the unsigned distance from zero in the direction of Step. 6470 bool CountDown = StepC->getValue()->getValue().isNegative(); 6471 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6472 6473 // Handle unitary steps, which cannot wraparound. 6474 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6475 // N = Distance (as unsigned) 6476 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6477 ConstantRange CR = getUnsignedRange(Start); 6478 const SCEV *MaxBECount; 6479 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6480 // When counting up, the worst starting value is 1, not 0. 6481 MaxBECount = CR.getUnsignedMax().isMinValue() 6482 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6483 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6484 else 6485 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6486 : -CR.getUnsignedMin()); 6487 return ExitLimit(Distance, MaxBECount); 6488 } 6489 6490 // As a special case, handle the instance where Step is a positive power of 6491 // two. In this case, determining whether Step divides Distance evenly can be 6492 // done by counting and comparing the number of trailing zeros of Step and 6493 // Distance. 6494 if (!CountDown) { 6495 const APInt &StepV = StepC->getValue()->getValue(); 6496 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6497 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6498 // case is not handled as this code is guarded by !CountDown. 6499 if (StepV.isPowerOf2() && 6500 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6501 // Here we've constrained the equation to be of the form 6502 // 6503 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6504 // 6505 // where we're operating on a W bit wide integer domain and k is 6506 // non-negative. The smallest unsigned solution for X is the trip count. 6507 // 6508 // (0) is equivalent to: 6509 // 6510 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6511 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6512 // <=> 2^k * Distance' - X = L * 2^(W - N) 6513 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6514 // 6515 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6516 // by 2^(W - N). 6517 // 6518 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6519 // 6520 // E.g. say we're solving 6521 // 6522 // 2 * Val = 2 * X (in i8) ... (3) 6523 // 6524 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6525 // 6526 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6527 // necessarily the smallest unsigned value of X that satisfies (3). 6528 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6529 // is i8 1, not i8 -127 6530 6531 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6532 6533 // Since SCEV does not have a URem node, we construct one using a truncate 6534 // and a zero extend. 6535 6536 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6537 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6538 auto *WideTy = Distance->getType(); 6539 6540 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6541 } 6542 } 6543 6544 // If the condition controls loop exit (the loop exits only if the expression 6545 // is true) and the addition is no-wrap we can use unsigned divide to 6546 // compute the backedge count. In this case, the step may not divide the 6547 // distance, but we don't care because if the condition is "missed" the loop 6548 // will have undefined behavior due to wrapping. 6549 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6550 const SCEV *Exact = 6551 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6552 return ExitLimit(Exact, Exact); 6553 } 6554 6555 // Then, try to solve the above equation provided that Start is constant. 6556 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6557 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6558 -StartC->getValue()->getValue(), 6559 *this); 6560 return getCouldNotCompute(); 6561 } 6562 6563 /// HowFarToNonZero - Return the number of times a backedge checking the 6564 /// specified value for nonzero will execute. If not computable, return 6565 /// CouldNotCompute 6566 ScalarEvolution::ExitLimit 6567 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6568 // Loops that look like: while (X == 0) are very strange indeed. We don't 6569 // handle them yet except for the trivial case. This could be expanded in the 6570 // future as needed. 6571 6572 // If the value is a constant, check to see if it is known to be non-zero 6573 // already. If so, the backedge will execute zero times. 6574 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6575 if (!C->getValue()->isNullValue()) 6576 return getZero(C->getType()); 6577 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6578 } 6579 6580 // We could implement others, but I really doubt anyone writes loops like 6581 // this, and if they did, they would already be constant folded. 6582 return getCouldNotCompute(); 6583 } 6584 6585 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6586 /// (which may not be an immediate predecessor) which has exactly one 6587 /// successor from which BB is reachable, or null if no such block is 6588 /// found. 6589 /// 6590 std::pair<BasicBlock *, BasicBlock *> 6591 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6592 // If the block has a unique predecessor, then there is no path from the 6593 // predecessor to the block that does not go through the direct edge 6594 // from the predecessor to the block. 6595 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6596 return std::make_pair(Pred, BB); 6597 6598 // A loop's header is defined to be a block that dominates the loop. 6599 // If the header has a unique predecessor outside the loop, it must be 6600 // a block that has exactly one successor that can reach the loop. 6601 if (Loop *L = LI.getLoopFor(BB)) 6602 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6603 6604 return std::pair<BasicBlock *, BasicBlock *>(); 6605 } 6606 6607 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6608 /// testing whether two expressions are equal, however for the purposes of 6609 /// looking for a condition guarding a loop, it can be useful to be a little 6610 /// more general, since a front-end may have replicated the controlling 6611 /// expression. 6612 /// 6613 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6614 // Quick check to see if they are the same SCEV. 6615 if (A == B) return true; 6616 6617 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6618 // Not all instructions that are "identical" compute the same value. For 6619 // instance, two distinct alloca instructions allocating the same type are 6620 // identical and do not read memory; but compute distinct values. 6621 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6622 }; 6623 6624 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6625 // two different instructions with the same value. Check for this case. 6626 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6627 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6628 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6629 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6630 if (ComputesEqualValues(AI, BI)) 6631 return true; 6632 6633 // Otherwise assume they may have a different value. 6634 return false; 6635 } 6636 6637 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6638 /// predicate Pred. Return true iff any changes were made. 6639 /// 6640 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6641 const SCEV *&LHS, const SCEV *&RHS, 6642 unsigned Depth) { 6643 bool Changed = false; 6644 6645 // If we hit the max recursion limit bail out. 6646 if (Depth >= 3) 6647 return false; 6648 6649 // Canonicalize a constant to the right side. 6650 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6651 // Check for both operands constant. 6652 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6653 if (ConstantExpr::getICmp(Pred, 6654 LHSC->getValue(), 6655 RHSC->getValue())->isNullValue()) 6656 goto trivially_false; 6657 else 6658 goto trivially_true; 6659 } 6660 // Otherwise swap the operands to put the constant on the right. 6661 std::swap(LHS, RHS); 6662 Pred = ICmpInst::getSwappedPredicate(Pred); 6663 Changed = true; 6664 } 6665 6666 // If we're comparing an addrec with a value which is loop-invariant in the 6667 // addrec's loop, put the addrec on the left. Also make a dominance check, 6668 // as both operands could be addrecs loop-invariant in each other's loop. 6669 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6670 const Loop *L = AR->getLoop(); 6671 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6672 std::swap(LHS, RHS); 6673 Pred = ICmpInst::getSwappedPredicate(Pred); 6674 Changed = true; 6675 } 6676 } 6677 6678 // If there's a constant operand, canonicalize comparisons with boundary 6679 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6680 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6681 const APInt &RA = RC->getValue()->getValue(); 6682 switch (Pred) { 6683 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6684 case ICmpInst::ICMP_EQ: 6685 case ICmpInst::ICMP_NE: 6686 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6687 if (!RA) 6688 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6689 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6690 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6691 ME->getOperand(0)->isAllOnesValue()) { 6692 RHS = AE->getOperand(1); 6693 LHS = ME->getOperand(1); 6694 Changed = true; 6695 } 6696 break; 6697 case ICmpInst::ICMP_UGE: 6698 if ((RA - 1).isMinValue()) { 6699 Pred = ICmpInst::ICMP_NE; 6700 RHS = getConstant(RA - 1); 6701 Changed = true; 6702 break; 6703 } 6704 if (RA.isMaxValue()) { 6705 Pred = ICmpInst::ICMP_EQ; 6706 Changed = true; 6707 break; 6708 } 6709 if (RA.isMinValue()) goto trivially_true; 6710 6711 Pred = ICmpInst::ICMP_UGT; 6712 RHS = getConstant(RA - 1); 6713 Changed = true; 6714 break; 6715 case ICmpInst::ICMP_ULE: 6716 if ((RA + 1).isMaxValue()) { 6717 Pred = ICmpInst::ICMP_NE; 6718 RHS = getConstant(RA + 1); 6719 Changed = true; 6720 break; 6721 } 6722 if (RA.isMinValue()) { 6723 Pred = ICmpInst::ICMP_EQ; 6724 Changed = true; 6725 break; 6726 } 6727 if (RA.isMaxValue()) goto trivially_true; 6728 6729 Pred = ICmpInst::ICMP_ULT; 6730 RHS = getConstant(RA + 1); 6731 Changed = true; 6732 break; 6733 case ICmpInst::ICMP_SGE: 6734 if ((RA - 1).isMinSignedValue()) { 6735 Pred = ICmpInst::ICMP_NE; 6736 RHS = getConstant(RA - 1); 6737 Changed = true; 6738 break; 6739 } 6740 if (RA.isMaxSignedValue()) { 6741 Pred = ICmpInst::ICMP_EQ; 6742 Changed = true; 6743 break; 6744 } 6745 if (RA.isMinSignedValue()) goto trivially_true; 6746 6747 Pred = ICmpInst::ICMP_SGT; 6748 RHS = getConstant(RA - 1); 6749 Changed = true; 6750 break; 6751 case ICmpInst::ICMP_SLE: 6752 if ((RA + 1).isMaxSignedValue()) { 6753 Pred = ICmpInst::ICMP_NE; 6754 RHS = getConstant(RA + 1); 6755 Changed = true; 6756 break; 6757 } 6758 if (RA.isMinSignedValue()) { 6759 Pred = ICmpInst::ICMP_EQ; 6760 Changed = true; 6761 break; 6762 } 6763 if (RA.isMaxSignedValue()) goto trivially_true; 6764 6765 Pred = ICmpInst::ICMP_SLT; 6766 RHS = getConstant(RA + 1); 6767 Changed = true; 6768 break; 6769 case ICmpInst::ICMP_UGT: 6770 if (RA.isMinValue()) { 6771 Pred = ICmpInst::ICMP_NE; 6772 Changed = true; 6773 break; 6774 } 6775 if ((RA + 1).isMaxValue()) { 6776 Pred = ICmpInst::ICMP_EQ; 6777 RHS = getConstant(RA + 1); 6778 Changed = true; 6779 break; 6780 } 6781 if (RA.isMaxValue()) goto trivially_false; 6782 break; 6783 case ICmpInst::ICMP_ULT: 6784 if (RA.isMaxValue()) { 6785 Pred = ICmpInst::ICMP_NE; 6786 Changed = true; 6787 break; 6788 } 6789 if ((RA - 1).isMinValue()) { 6790 Pred = ICmpInst::ICMP_EQ; 6791 RHS = getConstant(RA - 1); 6792 Changed = true; 6793 break; 6794 } 6795 if (RA.isMinValue()) goto trivially_false; 6796 break; 6797 case ICmpInst::ICMP_SGT: 6798 if (RA.isMinSignedValue()) { 6799 Pred = ICmpInst::ICMP_NE; 6800 Changed = true; 6801 break; 6802 } 6803 if ((RA + 1).isMaxSignedValue()) { 6804 Pred = ICmpInst::ICMP_EQ; 6805 RHS = getConstant(RA + 1); 6806 Changed = true; 6807 break; 6808 } 6809 if (RA.isMaxSignedValue()) goto trivially_false; 6810 break; 6811 case ICmpInst::ICMP_SLT: 6812 if (RA.isMaxSignedValue()) { 6813 Pred = ICmpInst::ICMP_NE; 6814 Changed = true; 6815 break; 6816 } 6817 if ((RA - 1).isMinSignedValue()) { 6818 Pred = ICmpInst::ICMP_EQ; 6819 RHS = getConstant(RA - 1); 6820 Changed = true; 6821 break; 6822 } 6823 if (RA.isMinSignedValue()) goto trivially_false; 6824 break; 6825 } 6826 } 6827 6828 // Check for obvious equality. 6829 if (HasSameValue(LHS, RHS)) { 6830 if (ICmpInst::isTrueWhenEqual(Pred)) 6831 goto trivially_true; 6832 if (ICmpInst::isFalseWhenEqual(Pred)) 6833 goto trivially_false; 6834 } 6835 6836 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6837 // adding or subtracting 1 from one of the operands. 6838 switch (Pred) { 6839 case ICmpInst::ICMP_SLE: 6840 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6841 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6842 SCEV::FlagNSW); 6843 Pred = ICmpInst::ICMP_SLT; 6844 Changed = true; 6845 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6846 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6847 SCEV::FlagNSW); 6848 Pred = ICmpInst::ICMP_SLT; 6849 Changed = true; 6850 } 6851 break; 6852 case ICmpInst::ICMP_SGE: 6853 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6854 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6855 SCEV::FlagNSW); 6856 Pred = ICmpInst::ICMP_SGT; 6857 Changed = true; 6858 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6859 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6860 SCEV::FlagNSW); 6861 Pred = ICmpInst::ICMP_SGT; 6862 Changed = true; 6863 } 6864 break; 6865 case ICmpInst::ICMP_ULE: 6866 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6867 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6868 SCEV::FlagNUW); 6869 Pred = ICmpInst::ICMP_ULT; 6870 Changed = true; 6871 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6872 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6873 SCEV::FlagNUW); 6874 Pred = ICmpInst::ICMP_ULT; 6875 Changed = true; 6876 } 6877 break; 6878 case ICmpInst::ICMP_UGE: 6879 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6880 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6881 SCEV::FlagNUW); 6882 Pred = ICmpInst::ICMP_UGT; 6883 Changed = true; 6884 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6885 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6886 SCEV::FlagNUW); 6887 Pred = ICmpInst::ICMP_UGT; 6888 Changed = true; 6889 } 6890 break; 6891 default: 6892 break; 6893 } 6894 6895 // TODO: More simplifications are possible here. 6896 6897 // Recursively simplify until we either hit a recursion limit or nothing 6898 // changes. 6899 if (Changed) 6900 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6901 6902 return Changed; 6903 6904 trivially_true: 6905 // Return 0 == 0. 6906 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6907 Pred = ICmpInst::ICMP_EQ; 6908 return true; 6909 6910 trivially_false: 6911 // Return 0 != 0. 6912 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6913 Pred = ICmpInst::ICMP_NE; 6914 return true; 6915 } 6916 6917 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6918 return getSignedRange(S).getSignedMax().isNegative(); 6919 } 6920 6921 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6922 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6923 } 6924 6925 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6926 return !getSignedRange(S).getSignedMin().isNegative(); 6927 } 6928 6929 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6930 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6931 } 6932 6933 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6934 return isKnownNegative(S) || isKnownPositive(S); 6935 } 6936 6937 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6938 const SCEV *LHS, const SCEV *RHS) { 6939 // Canonicalize the inputs first. 6940 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6941 6942 // If LHS or RHS is an addrec, check to see if the condition is true in 6943 // every iteration of the loop. 6944 // If LHS and RHS are both addrec, both conditions must be true in 6945 // every iteration of the loop. 6946 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6947 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6948 bool LeftGuarded = false; 6949 bool RightGuarded = false; 6950 if (LAR) { 6951 const Loop *L = LAR->getLoop(); 6952 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6953 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6954 if (!RAR) return true; 6955 LeftGuarded = true; 6956 } 6957 } 6958 if (RAR) { 6959 const Loop *L = RAR->getLoop(); 6960 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6961 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6962 if (!LAR) return true; 6963 RightGuarded = true; 6964 } 6965 } 6966 if (LeftGuarded && RightGuarded) 6967 return true; 6968 6969 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 6970 return true; 6971 6972 // Otherwise see what can be done with known constant ranges. 6973 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6974 } 6975 6976 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6977 ICmpInst::Predicate Pred, 6978 bool &Increasing) { 6979 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6980 6981 #ifndef NDEBUG 6982 // Verify an invariant: inverting the predicate should turn a monotonically 6983 // increasing change to a monotonically decreasing one, and vice versa. 6984 bool IncreasingSwapped; 6985 bool ResultSwapped = isMonotonicPredicateImpl( 6986 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6987 6988 assert(Result == ResultSwapped && "should be able to analyze both!"); 6989 if (ResultSwapped) 6990 assert(Increasing == !IncreasingSwapped && 6991 "monotonicity should flip as we flip the predicate"); 6992 #endif 6993 6994 return Result; 6995 } 6996 6997 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6998 ICmpInst::Predicate Pred, 6999 bool &Increasing) { 7000 7001 // A zero step value for LHS means the induction variable is essentially a 7002 // loop invariant value. We don't really depend on the predicate actually 7003 // flipping from false to true (for increasing predicates, and the other way 7004 // around for decreasing predicates), all we care about is that *if* the 7005 // predicate changes then it only changes from false to true. 7006 // 7007 // A zero step value in itself is not very useful, but there may be places 7008 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7009 // as general as possible. 7010 7011 switch (Pred) { 7012 default: 7013 return false; // Conservative answer 7014 7015 case ICmpInst::ICMP_UGT: 7016 case ICmpInst::ICMP_UGE: 7017 case ICmpInst::ICMP_ULT: 7018 case ICmpInst::ICMP_ULE: 7019 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 7020 return false; 7021 7022 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7023 return true; 7024 7025 case ICmpInst::ICMP_SGT: 7026 case ICmpInst::ICMP_SGE: 7027 case ICmpInst::ICMP_SLT: 7028 case ICmpInst::ICMP_SLE: { 7029 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 7030 return false; 7031 7032 const SCEV *Step = LHS->getStepRecurrence(*this); 7033 7034 if (isKnownNonNegative(Step)) { 7035 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7036 return true; 7037 } 7038 7039 if (isKnownNonPositive(Step)) { 7040 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7041 return true; 7042 } 7043 7044 return false; 7045 } 7046 7047 } 7048 7049 llvm_unreachable("switch has default clause!"); 7050 } 7051 7052 bool ScalarEvolution::isLoopInvariantPredicate( 7053 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7054 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7055 const SCEV *&InvariantRHS) { 7056 7057 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7058 if (!isLoopInvariant(RHS, L)) { 7059 if (!isLoopInvariant(LHS, L)) 7060 return false; 7061 7062 std::swap(LHS, RHS); 7063 Pred = ICmpInst::getSwappedPredicate(Pred); 7064 } 7065 7066 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7067 if (!ArLHS || ArLHS->getLoop() != L) 7068 return false; 7069 7070 bool Increasing; 7071 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7072 return false; 7073 7074 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7075 // true as the loop iterates, and the backedge is control dependent on 7076 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7077 // 7078 // * if the predicate was false in the first iteration then the predicate 7079 // is never evaluated again, since the loop exits without taking the 7080 // backedge. 7081 // * if the predicate was true in the first iteration then it will 7082 // continue to be true for all future iterations since it is 7083 // monotonically increasing. 7084 // 7085 // For both the above possibilities, we can replace the loop varying 7086 // predicate with its value on the first iteration of the loop (which is 7087 // loop invariant). 7088 // 7089 // A similar reasoning applies for a monotonically decreasing predicate, by 7090 // replacing true with false and false with true in the above two bullets. 7091 7092 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7093 7094 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7095 return false; 7096 7097 InvariantPred = Pred; 7098 InvariantLHS = ArLHS->getStart(); 7099 InvariantRHS = RHS; 7100 return true; 7101 } 7102 7103 bool 7104 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7105 const SCEV *LHS, const SCEV *RHS) { 7106 if (HasSameValue(LHS, RHS)) 7107 return ICmpInst::isTrueWhenEqual(Pred); 7108 7109 // This code is split out from isKnownPredicate because it is called from 7110 // within isLoopEntryGuardedByCond. 7111 switch (Pred) { 7112 default: 7113 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7114 case ICmpInst::ICMP_SGT: 7115 std::swap(LHS, RHS); 7116 case ICmpInst::ICMP_SLT: { 7117 ConstantRange LHSRange = getSignedRange(LHS); 7118 ConstantRange RHSRange = getSignedRange(RHS); 7119 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7120 return true; 7121 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7122 return false; 7123 break; 7124 } 7125 case ICmpInst::ICMP_SGE: 7126 std::swap(LHS, RHS); 7127 case ICmpInst::ICMP_SLE: { 7128 ConstantRange LHSRange = getSignedRange(LHS); 7129 ConstantRange RHSRange = getSignedRange(RHS); 7130 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7131 return true; 7132 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7133 return false; 7134 break; 7135 } 7136 case ICmpInst::ICMP_UGT: 7137 std::swap(LHS, RHS); 7138 case ICmpInst::ICMP_ULT: { 7139 ConstantRange LHSRange = getUnsignedRange(LHS); 7140 ConstantRange RHSRange = getUnsignedRange(RHS); 7141 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7142 return true; 7143 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7144 return false; 7145 break; 7146 } 7147 case ICmpInst::ICMP_UGE: 7148 std::swap(LHS, RHS); 7149 case ICmpInst::ICMP_ULE: { 7150 ConstantRange LHSRange = getUnsignedRange(LHS); 7151 ConstantRange RHSRange = getUnsignedRange(RHS); 7152 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7153 return true; 7154 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7155 return false; 7156 break; 7157 } 7158 case ICmpInst::ICMP_NE: { 7159 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7160 return true; 7161 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7162 return true; 7163 7164 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7165 if (isKnownNonZero(Diff)) 7166 return true; 7167 break; 7168 } 7169 case ICmpInst::ICMP_EQ: 7170 // The check at the top of the function catches the case where 7171 // the values are known to be equal. 7172 break; 7173 } 7174 return false; 7175 } 7176 7177 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7178 const SCEV *LHS, 7179 const SCEV *RHS) { 7180 7181 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7182 // Return Y via OutY. 7183 auto MatchBinaryAddToConst = 7184 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7185 SCEV::NoWrapFlags ExpectedFlags) { 7186 const SCEV *NonConstOp, *ConstOp; 7187 SCEV::NoWrapFlags FlagsPresent; 7188 7189 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7190 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7191 return false; 7192 7193 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue(); 7194 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7195 }; 7196 7197 APInt C; 7198 7199 switch (Pred) { 7200 default: 7201 break; 7202 7203 case ICmpInst::ICMP_SGE: 7204 std::swap(LHS, RHS); 7205 case ICmpInst::ICMP_SLE: 7206 // X s<= (X + C)<nsw> if C >= 0 7207 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7208 return true; 7209 7210 // (X + C)<nsw> s<= X if C <= 0 7211 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7212 !C.isStrictlyPositive()) 7213 return true; 7214 7215 case ICmpInst::ICMP_SGT: 7216 std::swap(LHS, RHS); 7217 case ICmpInst::ICMP_SLT: 7218 // X s< (X + C)<nsw> if C > 0 7219 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7220 C.isStrictlyPositive()) 7221 return true; 7222 7223 // (X + C)<nsw> s< X if C < 0 7224 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7225 return true; 7226 } 7227 7228 return false; 7229 } 7230 7231 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7232 const SCEV *LHS, 7233 const SCEV *RHS) { 7234 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7235 return false; 7236 7237 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7238 // the stack can result in exponential time complexity. 7239 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7240 7241 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7242 // 7243 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7244 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7245 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7246 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7247 // use isKnownPredicate later if needed. 7248 if (isKnownNonNegative(RHS) && 7249 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7250 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7251 return true; 7252 7253 return false; 7254 } 7255 7256 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7257 /// protected by a conditional between LHS and RHS. This is used to 7258 /// to eliminate casts. 7259 bool 7260 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7261 ICmpInst::Predicate Pred, 7262 const SCEV *LHS, const SCEV *RHS) { 7263 // Interpret a null as meaning no loop, where there is obviously no guard 7264 // (interprocedural conditions notwithstanding). 7265 if (!L) return true; 7266 7267 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7268 7269 BasicBlock *Latch = L->getLoopLatch(); 7270 if (!Latch) 7271 return false; 7272 7273 BranchInst *LoopContinuePredicate = 7274 dyn_cast<BranchInst>(Latch->getTerminator()); 7275 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7276 isImpliedCond(Pred, LHS, RHS, 7277 LoopContinuePredicate->getCondition(), 7278 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7279 return true; 7280 7281 // We don't want more than one activation of the following loops on the stack 7282 // -- that can lead to O(n!) time complexity. 7283 if (WalkingBEDominatingConds) 7284 return false; 7285 7286 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7287 7288 // See if we can exploit a trip count to prove the predicate. 7289 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7290 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7291 if (LatchBECount != getCouldNotCompute()) { 7292 // We know that Latch branches back to the loop header exactly 7293 // LatchBECount times. This means the backdege condition at Latch is 7294 // equivalent to "{0,+,1} u< LatchBECount". 7295 Type *Ty = LatchBECount->getType(); 7296 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7297 const SCEV *LoopCounter = 7298 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7299 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7300 LatchBECount)) 7301 return true; 7302 } 7303 7304 // Check conditions due to any @llvm.assume intrinsics. 7305 for (auto &AssumeVH : AC.assumptions()) { 7306 if (!AssumeVH) 7307 continue; 7308 auto *CI = cast<CallInst>(AssumeVH); 7309 if (!DT.dominates(CI, Latch->getTerminator())) 7310 continue; 7311 7312 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7313 return true; 7314 } 7315 7316 // If the loop is not reachable from the entry block, we risk running into an 7317 // infinite loop as we walk up into the dom tree. These loops do not matter 7318 // anyway, so we just return a conservative answer when we see them. 7319 if (!DT.isReachableFromEntry(L->getHeader())) 7320 return false; 7321 7322 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7323 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7324 7325 assert(DTN && "should reach the loop header before reaching the root!"); 7326 7327 BasicBlock *BB = DTN->getBlock(); 7328 BasicBlock *PBB = BB->getSinglePredecessor(); 7329 if (!PBB) 7330 continue; 7331 7332 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7333 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7334 continue; 7335 7336 Value *Condition = ContinuePredicate->getCondition(); 7337 7338 // If we have an edge `E` within the loop body that dominates the only 7339 // latch, the condition guarding `E` also guards the backedge. This 7340 // reasoning works only for loops with a single latch. 7341 7342 BasicBlockEdge DominatingEdge(PBB, BB); 7343 if (DominatingEdge.isSingleEdge()) { 7344 // We're constructively (and conservatively) enumerating edges within the 7345 // loop body that dominate the latch. The dominator tree better agree 7346 // with us on this: 7347 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7348 7349 if (isImpliedCond(Pred, LHS, RHS, Condition, 7350 BB != ContinuePredicate->getSuccessor(0))) 7351 return true; 7352 } 7353 } 7354 7355 return false; 7356 } 7357 7358 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7359 /// by a conditional between LHS and RHS. This is used to help avoid max 7360 /// expressions in loop trip counts, and to eliminate casts. 7361 bool 7362 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7363 ICmpInst::Predicate Pred, 7364 const SCEV *LHS, const SCEV *RHS) { 7365 // Interpret a null as meaning no loop, where there is obviously no guard 7366 // (interprocedural conditions notwithstanding). 7367 if (!L) return false; 7368 7369 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7370 7371 // Starting at the loop predecessor, climb up the predecessor chain, as long 7372 // as there are predecessors that can be found that have unique successors 7373 // leading to the original header. 7374 for (std::pair<BasicBlock *, BasicBlock *> 7375 Pair(L->getLoopPredecessor(), L->getHeader()); 7376 Pair.first; 7377 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7378 7379 BranchInst *LoopEntryPredicate = 7380 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7381 if (!LoopEntryPredicate || 7382 LoopEntryPredicate->isUnconditional()) 7383 continue; 7384 7385 if (isImpliedCond(Pred, LHS, RHS, 7386 LoopEntryPredicate->getCondition(), 7387 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7388 return true; 7389 } 7390 7391 // Check conditions due to any @llvm.assume intrinsics. 7392 for (auto &AssumeVH : AC.assumptions()) { 7393 if (!AssumeVH) 7394 continue; 7395 auto *CI = cast<CallInst>(AssumeVH); 7396 if (!DT.dominates(CI, L->getHeader())) 7397 continue; 7398 7399 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7400 return true; 7401 } 7402 7403 return false; 7404 } 7405 7406 /// RAII wrapper to prevent recursive application of isImpliedCond. 7407 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7408 /// currently evaluating isImpliedCond. 7409 struct MarkPendingLoopPredicate { 7410 Value *Cond; 7411 DenseSet<Value*> &LoopPreds; 7412 bool Pending; 7413 7414 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7415 : Cond(C), LoopPreds(LP) { 7416 Pending = !LoopPreds.insert(Cond).second; 7417 } 7418 ~MarkPendingLoopPredicate() { 7419 if (!Pending) 7420 LoopPreds.erase(Cond); 7421 } 7422 }; 7423 7424 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7425 /// and RHS is true whenever the given Cond value evaluates to true. 7426 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7427 const SCEV *LHS, const SCEV *RHS, 7428 Value *FoundCondValue, 7429 bool Inverse) { 7430 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7431 if (Mark.Pending) 7432 return false; 7433 7434 // Recursively handle And and Or conditions. 7435 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7436 if (BO->getOpcode() == Instruction::And) { 7437 if (!Inverse) 7438 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7439 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7440 } else if (BO->getOpcode() == Instruction::Or) { 7441 if (Inverse) 7442 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7443 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7444 } 7445 } 7446 7447 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7448 if (!ICI) return false; 7449 7450 // Now that we found a conditional branch that dominates the loop or controls 7451 // the loop latch. Check to see if it is the comparison we are looking for. 7452 ICmpInst::Predicate FoundPred; 7453 if (Inverse) 7454 FoundPred = ICI->getInversePredicate(); 7455 else 7456 FoundPred = ICI->getPredicate(); 7457 7458 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7459 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7460 7461 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7462 } 7463 7464 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7465 const SCEV *RHS, 7466 ICmpInst::Predicate FoundPred, 7467 const SCEV *FoundLHS, 7468 const SCEV *FoundRHS) { 7469 // Balance the types. 7470 if (getTypeSizeInBits(LHS->getType()) < 7471 getTypeSizeInBits(FoundLHS->getType())) { 7472 if (CmpInst::isSigned(Pred)) { 7473 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7474 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7475 } else { 7476 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7477 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7478 } 7479 } else if (getTypeSizeInBits(LHS->getType()) > 7480 getTypeSizeInBits(FoundLHS->getType())) { 7481 if (CmpInst::isSigned(FoundPred)) { 7482 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7483 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7484 } else { 7485 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7486 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7487 } 7488 } 7489 7490 // Canonicalize the query to match the way instcombine will have 7491 // canonicalized the comparison. 7492 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7493 if (LHS == RHS) 7494 return CmpInst::isTrueWhenEqual(Pred); 7495 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7496 if (FoundLHS == FoundRHS) 7497 return CmpInst::isFalseWhenEqual(FoundPred); 7498 7499 // Check to see if we can make the LHS or RHS match. 7500 if (LHS == FoundRHS || RHS == FoundLHS) { 7501 if (isa<SCEVConstant>(RHS)) { 7502 std::swap(FoundLHS, FoundRHS); 7503 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7504 } else { 7505 std::swap(LHS, RHS); 7506 Pred = ICmpInst::getSwappedPredicate(Pred); 7507 } 7508 } 7509 7510 // Check whether the found predicate is the same as the desired predicate. 7511 if (FoundPred == Pred) 7512 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7513 7514 // Check whether swapping the found predicate makes it the same as the 7515 // desired predicate. 7516 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7517 if (isa<SCEVConstant>(RHS)) 7518 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7519 else 7520 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7521 RHS, LHS, FoundLHS, FoundRHS); 7522 } 7523 7524 // Unsigned comparison is the same as signed comparison when both the operands 7525 // are non-negative. 7526 if (CmpInst::isUnsigned(FoundPred) && 7527 CmpInst::getSignedPredicate(FoundPred) == Pred && 7528 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7529 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7530 7531 // Check if we can make progress by sharpening ranges. 7532 if (FoundPred == ICmpInst::ICMP_NE && 7533 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7534 7535 const SCEVConstant *C = nullptr; 7536 const SCEV *V = nullptr; 7537 7538 if (isa<SCEVConstant>(FoundLHS)) { 7539 C = cast<SCEVConstant>(FoundLHS); 7540 V = FoundRHS; 7541 } else { 7542 C = cast<SCEVConstant>(FoundRHS); 7543 V = FoundLHS; 7544 } 7545 7546 // The guarding predicate tells us that C != V. If the known range 7547 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7548 // range we consider has to correspond to same signedness as the 7549 // predicate we're interested in folding. 7550 7551 APInt Min = ICmpInst::isSigned(Pred) ? 7552 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7553 7554 if (Min == C->getValue()->getValue()) { 7555 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7556 // This is true even if (Min + 1) wraps around -- in case of 7557 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7558 7559 APInt SharperMin = Min + 1; 7560 7561 switch (Pred) { 7562 case ICmpInst::ICMP_SGE: 7563 case ICmpInst::ICMP_UGE: 7564 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7565 // RHS, we're done. 7566 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7567 getConstant(SharperMin))) 7568 return true; 7569 7570 case ICmpInst::ICMP_SGT: 7571 case ICmpInst::ICMP_UGT: 7572 // We know from the range information that (V `Pred` Min || 7573 // V == Min). We know from the guarding condition that !(V 7574 // == Min). This gives us 7575 // 7576 // V `Pred` Min || V == Min && !(V == Min) 7577 // => V `Pred` Min 7578 // 7579 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7580 7581 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7582 return true; 7583 7584 default: 7585 // No change 7586 break; 7587 } 7588 } 7589 } 7590 7591 // Check whether the actual condition is beyond sufficient. 7592 if (FoundPred == ICmpInst::ICMP_EQ) 7593 if (ICmpInst::isTrueWhenEqual(Pred)) 7594 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7595 return true; 7596 if (Pred == ICmpInst::ICMP_NE) 7597 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7598 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7599 return true; 7600 7601 // Otherwise assume the worst. 7602 return false; 7603 } 7604 7605 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7606 const SCEV *&L, const SCEV *&R, 7607 SCEV::NoWrapFlags &Flags) { 7608 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7609 if (!AE || AE->getNumOperands() != 2) 7610 return false; 7611 7612 L = AE->getOperand(0); 7613 R = AE->getOperand(1); 7614 Flags = AE->getNoWrapFlags(); 7615 return true; 7616 } 7617 7618 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7619 const SCEV *More, 7620 APInt &C) { 7621 // We avoid subtracting expressions here because this function is usually 7622 // fairly deep in the call stack (i.e. is called many times). 7623 7624 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7625 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7626 const auto *MAR = cast<SCEVAddRecExpr>(More); 7627 7628 if (LAR->getLoop() != MAR->getLoop()) 7629 return false; 7630 7631 // We look at affine expressions only; not for correctness but to keep 7632 // getStepRecurrence cheap. 7633 if (!LAR->isAffine() || !MAR->isAffine()) 7634 return false; 7635 7636 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7637 return false; 7638 7639 Less = LAR->getStart(); 7640 More = MAR->getStart(); 7641 7642 // fall through 7643 } 7644 7645 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7646 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7647 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7648 C = M - L; 7649 return true; 7650 } 7651 7652 const SCEV *L, *R; 7653 SCEV::NoWrapFlags Flags; 7654 if (splitBinaryAdd(Less, L, R, Flags)) 7655 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7656 if (R == More) { 7657 C = -(LC->getValue()->getValue()); 7658 return true; 7659 } 7660 7661 if (splitBinaryAdd(More, L, R, Flags)) 7662 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7663 if (R == Less) { 7664 C = LC->getValue()->getValue(); 7665 return true; 7666 } 7667 7668 return false; 7669 } 7670 7671 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7672 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7673 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7674 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7675 return false; 7676 7677 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7678 if (!AddRecLHS) 7679 return false; 7680 7681 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7682 if (!AddRecFoundLHS) 7683 return false; 7684 7685 // We'd like to let SCEV reason about control dependencies, so we constrain 7686 // both the inequalities to be about add recurrences on the same loop. This 7687 // way we can use isLoopEntryGuardedByCond later. 7688 7689 const Loop *L = AddRecFoundLHS->getLoop(); 7690 if (L != AddRecLHS->getLoop()) 7691 return false; 7692 7693 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7694 // 7695 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7696 // ... (2) 7697 // 7698 // Informal proof for (2), assuming (1) [*]: 7699 // 7700 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7701 // 7702 // Then 7703 // 7704 // FoundLHS s< FoundRHS s< INT_MIN - C 7705 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7706 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7707 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7708 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7709 // <=> FoundLHS + C s< FoundRHS + C 7710 // 7711 // [*]: (1) can be proved by ruling out overflow. 7712 // 7713 // [**]: This can be proved by analyzing all the four possibilities: 7714 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7715 // (A s>= 0, B s>= 0). 7716 // 7717 // Note: 7718 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7719 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7720 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7721 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7722 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7723 // C)". 7724 7725 APInt LDiff, RDiff; 7726 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7727 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7728 LDiff != RDiff) 7729 return false; 7730 7731 if (LDiff == 0) 7732 return true; 7733 7734 APInt FoundRHSLimit; 7735 7736 if (Pred == CmpInst::ICMP_ULT) { 7737 FoundRHSLimit = -RDiff; 7738 } else { 7739 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7740 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7741 } 7742 7743 // Try to prove (1) or (2), as needed. 7744 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7745 getConstant(FoundRHSLimit)); 7746 } 7747 7748 /// isImpliedCondOperands - Test whether the condition described by Pred, 7749 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7750 /// and FoundRHS is true. 7751 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7752 const SCEV *LHS, const SCEV *RHS, 7753 const SCEV *FoundLHS, 7754 const SCEV *FoundRHS) { 7755 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7756 return true; 7757 7758 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7759 return true; 7760 7761 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7762 FoundLHS, FoundRHS) || 7763 // ~x < ~y --> x > y 7764 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7765 getNotSCEV(FoundRHS), 7766 getNotSCEV(FoundLHS)); 7767 } 7768 7769 7770 /// If Expr computes ~A, return A else return nullptr 7771 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7772 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7773 if (!Add || Add->getNumOperands() != 2 || 7774 !Add->getOperand(0)->isAllOnesValue()) 7775 return nullptr; 7776 7777 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7778 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7779 !AddRHS->getOperand(0)->isAllOnesValue()) 7780 return nullptr; 7781 7782 return AddRHS->getOperand(1); 7783 } 7784 7785 7786 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7787 template<typename MaxExprType> 7788 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7789 const SCEV *Candidate) { 7790 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7791 if (!MaxExpr) return false; 7792 7793 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7794 return It != MaxExpr->op_end(); 7795 } 7796 7797 7798 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7799 template<typename MaxExprType> 7800 static bool IsMinConsistingOf(ScalarEvolution &SE, 7801 const SCEV *MaybeMinExpr, 7802 const SCEV *Candidate) { 7803 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7804 if (!MaybeMaxExpr) 7805 return false; 7806 7807 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7808 } 7809 7810 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7811 ICmpInst::Predicate Pred, 7812 const SCEV *LHS, const SCEV *RHS) { 7813 7814 // If both sides are affine addrecs for the same loop, with equal 7815 // steps, and we know the recurrences don't wrap, then we only 7816 // need to check the predicate on the starting values. 7817 7818 if (!ICmpInst::isRelational(Pred)) 7819 return false; 7820 7821 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7822 if (!LAR) 7823 return false; 7824 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7825 if (!RAR) 7826 return false; 7827 if (LAR->getLoop() != RAR->getLoop()) 7828 return false; 7829 if (!LAR->isAffine() || !RAR->isAffine()) 7830 return false; 7831 7832 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7833 return false; 7834 7835 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7836 SCEV::FlagNSW : SCEV::FlagNUW; 7837 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7838 return false; 7839 7840 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7841 } 7842 7843 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7844 /// expression? 7845 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7846 ICmpInst::Predicate Pred, 7847 const SCEV *LHS, const SCEV *RHS) { 7848 switch (Pred) { 7849 default: 7850 return false; 7851 7852 case ICmpInst::ICMP_SGE: 7853 std::swap(LHS, RHS); 7854 // fall through 7855 case ICmpInst::ICMP_SLE: 7856 return 7857 // min(A, ...) <= A 7858 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7859 // A <= max(A, ...) 7860 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7861 7862 case ICmpInst::ICMP_UGE: 7863 std::swap(LHS, RHS); 7864 // fall through 7865 case ICmpInst::ICMP_ULE: 7866 return 7867 // min(A, ...) <= A 7868 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7869 // A <= max(A, ...) 7870 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7871 } 7872 7873 llvm_unreachable("covered switch fell through?!"); 7874 } 7875 7876 /// isImpliedCondOperandsHelper - Test whether the condition described by 7877 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7878 /// FoundLHS, and FoundRHS is true. 7879 bool 7880 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7881 const SCEV *LHS, const SCEV *RHS, 7882 const SCEV *FoundLHS, 7883 const SCEV *FoundRHS) { 7884 auto IsKnownPredicateFull = 7885 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7886 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7887 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7888 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 7889 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 7890 }; 7891 7892 switch (Pred) { 7893 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7894 case ICmpInst::ICMP_EQ: 7895 case ICmpInst::ICMP_NE: 7896 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7897 return true; 7898 break; 7899 case ICmpInst::ICMP_SLT: 7900 case ICmpInst::ICMP_SLE: 7901 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7902 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7903 return true; 7904 break; 7905 case ICmpInst::ICMP_SGT: 7906 case ICmpInst::ICMP_SGE: 7907 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7908 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7909 return true; 7910 break; 7911 case ICmpInst::ICMP_ULT: 7912 case ICmpInst::ICMP_ULE: 7913 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7914 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7915 return true; 7916 break; 7917 case ICmpInst::ICMP_UGT: 7918 case ICmpInst::ICMP_UGE: 7919 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7920 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7921 return true; 7922 break; 7923 } 7924 7925 return false; 7926 } 7927 7928 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7929 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7930 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7931 const SCEV *LHS, 7932 const SCEV *RHS, 7933 const SCEV *FoundLHS, 7934 const SCEV *FoundRHS) { 7935 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7936 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7937 // reduce the compile time impact of this optimization. 7938 return false; 7939 7940 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7941 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7942 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7943 return false; 7944 7945 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7946 7947 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7948 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7949 ConstantRange FoundLHSRange = 7950 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7951 7952 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7953 // for `LHS`: 7954 APInt Addend = 7955 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7956 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7957 7958 // We can also compute the range of values for `LHS` that satisfy the 7959 // consequent, "`LHS` `Pred` `RHS`": 7960 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7961 ConstantRange SatisfyingLHSRange = 7962 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7963 7964 // The antecedent implies the consequent if every value of `LHS` that 7965 // satisfies the antecedent also satisfies the consequent. 7966 return SatisfyingLHSRange.contains(LHSRange); 7967 } 7968 7969 // Verify if an linear IV with positive stride can overflow when in a 7970 // less-than comparison, knowing the invariant term of the comparison, the 7971 // stride and the knowledge of NSW/NUW flags on the recurrence. 7972 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7973 bool IsSigned, bool NoWrap) { 7974 if (NoWrap) return false; 7975 7976 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7977 const SCEV *One = getOne(Stride->getType()); 7978 7979 if (IsSigned) { 7980 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7981 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7982 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7983 .getSignedMax(); 7984 7985 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7986 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7987 } 7988 7989 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7990 APInt MaxValue = APInt::getMaxValue(BitWidth); 7991 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7992 .getUnsignedMax(); 7993 7994 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7995 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7996 } 7997 7998 // Verify if an linear IV with negative stride can overflow when in a 7999 // greater-than comparison, knowing the invariant term of the comparison, 8000 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8001 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8002 bool IsSigned, bool NoWrap) { 8003 if (NoWrap) return false; 8004 8005 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8006 const SCEV *One = getOne(Stride->getType()); 8007 8008 if (IsSigned) { 8009 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8010 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8011 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8012 .getSignedMax(); 8013 8014 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8015 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8016 } 8017 8018 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8019 APInt MinValue = APInt::getMinValue(BitWidth); 8020 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8021 .getUnsignedMax(); 8022 8023 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8024 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8025 } 8026 8027 // Compute the backedge taken count knowing the interval difference, the 8028 // stride and presence of the equality in the comparison. 8029 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8030 bool Equality) { 8031 const SCEV *One = getOne(Step->getType()); 8032 Delta = Equality ? getAddExpr(Delta, Step) 8033 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8034 return getUDivExpr(Delta, Step); 8035 } 8036 8037 /// HowManyLessThans - Return the number of times a backedge containing the 8038 /// specified less-than comparison will execute. If not computable, return 8039 /// CouldNotCompute. 8040 /// 8041 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8042 /// the branch (loops exits only if condition is true). In this case, we can use 8043 /// NoWrapFlags to skip overflow checks. 8044 ScalarEvolution::ExitLimit 8045 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8046 const Loop *L, bool IsSigned, 8047 bool ControlsExit) { 8048 // We handle only IV < Invariant 8049 if (!isLoopInvariant(RHS, L)) 8050 return getCouldNotCompute(); 8051 8052 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8053 8054 // Avoid weird loops 8055 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8056 return getCouldNotCompute(); 8057 8058 bool NoWrap = ControlsExit && 8059 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8060 8061 const SCEV *Stride = IV->getStepRecurrence(*this); 8062 8063 // Avoid negative or zero stride values 8064 if (!isKnownPositive(Stride)) 8065 return getCouldNotCompute(); 8066 8067 // Avoid proven overflow cases: this will ensure that the backedge taken count 8068 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8069 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8070 // behaviors like the case of C language. 8071 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8072 return getCouldNotCompute(); 8073 8074 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8075 : ICmpInst::ICMP_ULT; 8076 const SCEV *Start = IV->getStart(); 8077 const SCEV *End = RHS; 8078 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8079 const SCEV *Diff = getMinusSCEV(RHS, Start); 8080 // If we have NoWrap set, then we can assume that the increment won't 8081 // overflow, in which case if RHS - Start is a constant, we don't need to 8082 // do a max operation since we can just figure it out statically 8083 if (NoWrap && isa<SCEVConstant>(Diff)) { 8084 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8085 if (D.isNegative()) 8086 End = Start; 8087 } else 8088 End = IsSigned ? getSMaxExpr(RHS, Start) 8089 : getUMaxExpr(RHS, Start); 8090 } 8091 8092 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8093 8094 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8095 : getUnsignedRange(Start).getUnsignedMin(); 8096 8097 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8098 : getUnsignedRange(Stride).getUnsignedMin(); 8099 8100 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8101 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8102 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8103 8104 // Although End can be a MAX expression we estimate MaxEnd considering only 8105 // the case End = RHS. This is safe because in the other case (End - Start) 8106 // is zero, leading to a zero maximum backedge taken count. 8107 APInt MaxEnd = 8108 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8109 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8110 8111 const SCEV *MaxBECount; 8112 if (isa<SCEVConstant>(BECount)) 8113 MaxBECount = BECount; 8114 else 8115 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8116 getConstant(MinStride), false); 8117 8118 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8119 MaxBECount = BECount; 8120 8121 return ExitLimit(BECount, MaxBECount); 8122 } 8123 8124 ScalarEvolution::ExitLimit 8125 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8126 const Loop *L, bool IsSigned, 8127 bool ControlsExit) { 8128 // We handle only IV > Invariant 8129 if (!isLoopInvariant(RHS, L)) 8130 return getCouldNotCompute(); 8131 8132 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8133 8134 // Avoid weird loops 8135 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8136 return getCouldNotCompute(); 8137 8138 bool NoWrap = ControlsExit && 8139 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8140 8141 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8142 8143 // Avoid negative or zero stride values 8144 if (!isKnownPositive(Stride)) 8145 return getCouldNotCompute(); 8146 8147 // Avoid proven overflow cases: this will ensure that the backedge taken count 8148 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8149 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8150 // behaviors like the case of C language. 8151 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8152 return getCouldNotCompute(); 8153 8154 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8155 : ICmpInst::ICMP_UGT; 8156 8157 const SCEV *Start = IV->getStart(); 8158 const SCEV *End = RHS; 8159 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8160 const SCEV *Diff = getMinusSCEV(RHS, Start); 8161 // If we have NoWrap set, then we can assume that the increment won't 8162 // overflow, in which case if RHS - Start is a constant, we don't need to 8163 // do a max operation since we can just figure it out statically 8164 if (NoWrap && isa<SCEVConstant>(Diff)) { 8165 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8166 if (!D.isNegative()) 8167 End = Start; 8168 } else 8169 End = IsSigned ? getSMinExpr(RHS, Start) 8170 : getUMinExpr(RHS, Start); 8171 } 8172 8173 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8174 8175 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8176 : getUnsignedRange(Start).getUnsignedMax(); 8177 8178 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8179 : getUnsignedRange(Stride).getUnsignedMin(); 8180 8181 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8182 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8183 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8184 8185 // Although End can be a MIN expression we estimate MinEnd considering only 8186 // the case End = RHS. This is safe because in the other case (Start - End) 8187 // is zero, leading to a zero maximum backedge taken count. 8188 APInt MinEnd = 8189 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8190 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8191 8192 8193 const SCEV *MaxBECount = getCouldNotCompute(); 8194 if (isa<SCEVConstant>(BECount)) 8195 MaxBECount = BECount; 8196 else 8197 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8198 getConstant(MinStride), false); 8199 8200 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8201 MaxBECount = BECount; 8202 8203 return ExitLimit(BECount, MaxBECount); 8204 } 8205 8206 /// getNumIterationsInRange - Return the number of iterations of this loop that 8207 /// produce values in the specified constant range. Another way of looking at 8208 /// this is that it returns the first iteration number where the value is not in 8209 /// the condition, thus computing the exit count. If the iteration count can't 8210 /// be computed, an instance of SCEVCouldNotCompute is returned. 8211 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8212 ScalarEvolution &SE) const { 8213 if (Range.isFullSet()) // Infinite loop. 8214 return SE.getCouldNotCompute(); 8215 8216 // If the start is a non-zero constant, shift the range to simplify things. 8217 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8218 if (!SC->getValue()->isZero()) { 8219 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8220 Operands[0] = SE.getZero(SC->getType()); 8221 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8222 getNoWrapFlags(FlagNW)); 8223 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8224 return ShiftedAddRec->getNumIterationsInRange( 8225 Range.subtract(SC->getValue()->getValue()), SE); 8226 // This is strange and shouldn't happen. 8227 return SE.getCouldNotCompute(); 8228 } 8229 8230 // The only time we can solve this is when we have all constant indices. 8231 // Otherwise, we cannot determine the overflow conditions. 8232 if (std::any_of(op_begin(), op_end(), 8233 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);})) 8234 return SE.getCouldNotCompute(); 8235 8236 // Okay at this point we know that all elements of the chrec are constants and 8237 // that the start element is zero. 8238 8239 // First check to see if the range contains zero. If not, the first 8240 // iteration exits. 8241 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8242 if (!Range.contains(APInt(BitWidth, 0))) 8243 return SE.getZero(getType()); 8244 8245 if (isAffine()) { 8246 // If this is an affine expression then we have this situation: 8247 // Solve {0,+,A} in Range === Ax in Range 8248 8249 // We know that zero is in the range. If A is positive then we know that 8250 // the upper value of the range must be the first possible exit value. 8251 // If A is negative then the lower of the range is the last possible loop 8252 // value. Also note that we already checked for a full range. 8253 APInt One(BitWidth,1); 8254 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8255 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8256 8257 // The exit value should be (End+A)/A. 8258 APInt ExitVal = (End + A).udiv(A); 8259 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8260 8261 // Evaluate at the exit value. If we really did fall out of the valid 8262 // range, then we computed our trip count, otherwise wrap around or other 8263 // things must have happened. 8264 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8265 if (Range.contains(Val->getValue())) 8266 return SE.getCouldNotCompute(); // Something strange happened 8267 8268 // Ensure that the previous value is in the range. This is a sanity check. 8269 assert(Range.contains( 8270 EvaluateConstantChrecAtConstant(this, 8271 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8272 "Linear scev computation is off in a bad way!"); 8273 return SE.getConstant(ExitValue); 8274 } else if (isQuadratic()) { 8275 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8276 // quadratic equation to solve it. To do this, we must frame our problem in 8277 // terms of figuring out when zero is crossed, instead of when 8278 // Range.getUpper() is crossed. 8279 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8280 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8281 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8282 // getNoWrapFlags(FlagNW) 8283 FlagAnyWrap); 8284 8285 // Next, solve the constructed addrec 8286 std::pair<const SCEV *,const SCEV *> Roots = 8287 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8288 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8289 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8290 if (R1) { 8291 // Pick the smallest positive root value. 8292 if (ConstantInt *CB = 8293 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8294 R1->getValue(), R2->getValue()))) { 8295 if (!CB->getZExtValue()) 8296 std::swap(R1, R2); // R1 is the minimum root now. 8297 8298 // Make sure the root is not off by one. The returned iteration should 8299 // not be in the range, but the previous one should be. When solving 8300 // for "X*X < 5", for example, we should not return a root of 2. 8301 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8302 R1->getValue(), 8303 SE); 8304 if (Range.contains(R1Val->getValue())) { 8305 // The next iteration must be out of the range... 8306 ConstantInt *NextVal = 8307 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8308 8309 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8310 if (!Range.contains(R1Val->getValue())) 8311 return SE.getConstant(NextVal); 8312 return SE.getCouldNotCompute(); // Something strange happened 8313 } 8314 8315 // If R1 was not in the range, then it is a good return value. Make 8316 // sure that R1-1 WAS in the range though, just in case. 8317 ConstantInt *NextVal = 8318 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8319 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8320 if (Range.contains(R1Val->getValue())) 8321 return R1; 8322 return SE.getCouldNotCompute(); // Something strange happened 8323 } 8324 } 8325 } 8326 8327 return SE.getCouldNotCompute(); 8328 } 8329 8330 namespace { 8331 struct FindUndefs { 8332 bool Found; 8333 FindUndefs() : Found(false) {} 8334 8335 bool follow(const SCEV *S) { 8336 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8337 if (isa<UndefValue>(C->getValue())) 8338 Found = true; 8339 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8340 if (isa<UndefValue>(C->getValue())) 8341 Found = true; 8342 } 8343 8344 // Keep looking if we haven't found it yet. 8345 return !Found; 8346 } 8347 bool isDone() const { 8348 // Stop recursion if we have found an undef. 8349 return Found; 8350 } 8351 }; 8352 } 8353 8354 // Return true when S contains at least an undef value. 8355 static inline bool 8356 containsUndefs(const SCEV *S) { 8357 FindUndefs F; 8358 SCEVTraversal<FindUndefs> ST(F); 8359 ST.visitAll(S); 8360 8361 return F.Found; 8362 } 8363 8364 namespace { 8365 // Collect all steps of SCEV expressions. 8366 struct SCEVCollectStrides { 8367 ScalarEvolution &SE; 8368 SmallVectorImpl<const SCEV *> &Strides; 8369 8370 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8371 : SE(SE), Strides(S) {} 8372 8373 bool follow(const SCEV *S) { 8374 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8375 Strides.push_back(AR->getStepRecurrence(SE)); 8376 return true; 8377 } 8378 bool isDone() const { return false; } 8379 }; 8380 8381 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8382 struct SCEVCollectTerms { 8383 SmallVectorImpl<const SCEV *> &Terms; 8384 8385 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8386 : Terms(T) {} 8387 8388 bool follow(const SCEV *S) { 8389 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8390 if (!containsUndefs(S)) 8391 Terms.push_back(S); 8392 8393 // Stop recursion: once we collected a term, do not walk its operands. 8394 return false; 8395 } 8396 8397 // Keep looking. 8398 return true; 8399 } 8400 bool isDone() const { return false; } 8401 }; 8402 8403 // Check if a SCEV contains an AddRecExpr. 8404 struct SCEVHasAddRec { 8405 bool &ContainsAddRec; 8406 8407 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8408 ContainsAddRec = false; 8409 } 8410 8411 bool follow(const SCEV *S) { 8412 if (isa<SCEVAddRecExpr>(S)) { 8413 ContainsAddRec = true; 8414 8415 // Stop recursion: once we collected a term, do not walk its operands. 8416 return false; 8417 } 8418 8419 // Keep looking. 8420 return true; 8421 } 8422 bool isDone() const { return false; } 8423 }; 8424 8425 // Find factors that are multiplied with an expression that (possibly as a 8426 // subexpression) contains an AddRecExpr. In the expression: 8427 // 8428 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8429 // 8430 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8431 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8432 // parameters as they form a product with an induction variable. 8433 // 8434 // This collector expects all array size parameters to be in the same MulExpr. 8435 // It might be necessary to later add support for collecting parameters that are 8436 // spread over different nested MulExpr. 8437 struct SCEVCollectAddRecMultiplies { 8438 SmallVectorImpl<const SCEV *> &Terms; 8439 ScalarEvolution &SE; 8440 8441 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8442 : Terms(T), SE(SE) {} 8443 8444 bool follow(const SCEV *S) { 8445 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8446 bool HasAddRec = false; 8447 SmallVector<const SCEV *, 0> Operands; 8448 for (auto Op : Mul->operands()) { 8449 if (isa<SCEVUnknown>(Op)) { 8450 Operands.push_back(Op); 8451 } else { 8452 bool ContainsAddRec; 8453 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8454 visitAll(Op, ContiansAddRec); 8455 HasAddRec |= ContainsAddRec; 8456 } 8457 } 8458 if (Operands.size() == 0) 8459 return true; 8460 8461 if (!HasAddRec) 8462 return false; 8463 8464 Terms.push_back(SE.getMulExpr(Operands)); 8465 // Stop recursion: once we collected a term, do not walk its operands. 8466 return false; 8467 } 8468 8469 // Keep looking. 8470 return true; 8471 } 8472 bool isDone() const { return false; } 8473 }; 8474 } 8475 8476 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8477 /// two places: 8478 /// 1) The strides of AddRec expressions. 8479 /// 2) Unknowns that are multiplied with AddRec expressions. 8480 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8481 SmallVectorImpl<const SCEV *> &Terms) { 8482 SmallVector<const SCEV *, 4> Strides; 8483 SCEVCollectStrides StrideCollector(*this, Strides); 8484 visitAll(Expr, StrideCollector); 8485 8486 DEBUG({ 8487 dbgs() << "Strides:\n"; 8488 for (const SCEV *S : Strides) 8489 dbgs() << *S << "\n"; 8490 }); 8491 8492 for (const SCEV *S : Strides) { 8493 SCEVCollectTerms TermCollector(Terms); 8494 visitAll(S, TermCollector); 8495 } 8496 8497 DEBUG({ 8498 dbgs() << "Terms:\n"; 8499 for (const SCEV *T : Terms) 8500 dbgs() << *T << "\n"; 8501 }); 8502 8503 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8504 visitAll(Expr, MulCollector); 8505 } 8506 8507 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8508 SmallVectorImpl<const SCEV *> &Terms, 8509 SmallVectorImpl<const SCEV *> &Sizes) { 8510 int Last = Terms.size() - 1; 8511 const SCEV *Step = Terms[Last]; 8512 8513 // End of recursion. 8514 if (Last == 0) { 8515 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8516 SmallVector<const SCEV *, 2> Qs; 8517 for (const SCEV *Op : M->operands()) 8518 if (!isa<SCEVConstant>(Op)) 8519 Qs.push_back(Op); 8520 8521 Step = SE.getMulExpr(Qs); 8522 } 8523 8524 Sizes.push_back(Step); 8525 return true; 8526 } 8527 8528 for (const SCEV *&Term : Terms) { 8529 // Normalize the terms before the next call to findArrayDimensionsRec. 8530 const SCEV *Q, *R; 8531 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8532 8533 // Bail out when GCD does not evenly divide one of the terms. 8534 if (!R->isZero()) 8535 return false; 8536 8537 Term = Q; 8538 } 8539 8540 // Remove all SCEVConstants. 8541 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8542 return isa<SCEVConstant>(E); 8543 }), 8544 Terms.end()); 8545 8546 if (Terms.size() > 0) 8547 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8548 return false; 8549 8550 Sizes.push_back(Step); 8551 return true; 8552 } 8553 8554 namespace { 8555 struct FindParameter { 8556 bool FoundParameter; 8557 FindParameter() : FoundParameter(false) {} 8558 8559 bool follow(const SCEV *S) { 8560 if (isa<SCEVUnknown>(S)) { 8561 FoundParameter = true; 8562 // Stop recursion: we found a parameter. 8563 return false; 8564 } 8565 // Keep looking. 8566 return true; 8567 } 8568 bool isDone() const { 8569 // Stop recursion if we have found a parameter. 8570 return FoundParameter; 8571 } 8572 }; 8573 } 8574 8575 // Returns true when S contains at least a SCEVUnknown parameter. 8576 static inline bool 8577 containsParameters(const SCEV *S) { 8578 FindParameter F; 8579 SCEVTraversal<FindParameter> ST(F); 8580 ST.visitAll(S); 8581 8582 return F.FoundParameter; 8583 } 8584 8585 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8586 static inline bool 8587 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8588 for (const SCEV *T : Terms) 8589 if (containsParameters(T)) 8590 return true; 8591 return false; 8592 } 8593 8594 // Return the number of product terms in S. 8595 static inline int numberOfTerms(const SCEV *S) { 8596 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8597 return Expr->getNumOperands(); 8598 return 1; 8599 } 8600 8601 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8602 if (isa<SCEVConstant>(T)) 8603 return nullptr; 8604 8605 if (isa<SCEVUnknown>(T)) 8606 return T; 8607 8608 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8609 SmallVector<const SCEV *, 2> Factors; 8610 for (const SCEV *Op : M->operands()) 8611 if (!isa<SCEVConstant>(Op)) 8612 Factors.push_back(Op); 8613 8614 return SE.getMulExpr(Factors); 8615 } 8616 8617 return T; 8618 } 8619 8620 /// Return the size of an element read or written by Inst. 8621 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8622 Type *Ty; 8623 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8624 Ty = Store->getValueOperand()->getType(); 8625 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8626 Ty = Load->getType(); 8627 else 8628 return nullptr; 8629 8630 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8631 return getSizeOfExpr(ETy, Ty); 8632 } 8633 8634 /// Second step of delinearization: compute the array dimensions Sizes from the 8635 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8636 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8637 SmallVectorImpl<const SCEV *> &Sizes, 8638 const SCEV *ElementSize) const { 8639 8640 if (Terms.size() < 1 || !ElementSize) 8641 return; 8642 8643 // Early return when Terms do not contain parameters: we do not delinearize 8644 // non parametric SCEVs. 8645 if (!containsParameters(Terms)) 8646 return; 8647 8648 DEBUG({ 8649 dbgs() << "Terms:\n"; 8650 for (const SCEV *T : Terms) 8651 dbgs() << *T << "\n"; 8652 }); 8653 8654 // Remove duplicates. 8655 std::sort(Terms.begin(), Terms.end()); 8656 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8657 8658 // Put larger terms first. 8659 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8660 return numberOfTerms(LHS) > numberOfTerms(RHS); 8661 }); 8662 8663 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8664 8665 // Try to divide all terms by the element size. If term is not divisible by 8666 // element size, proceed with the original term. 8667 for (const SCEV *&Term : Terms) { 8668 const SCEV *Q, *R; 8669 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8670 if (!Q->isZero()) 8671 Term = Q; 8672 } 8673 8674 SmallVector<const SCEV *, 4> NewTerms; 8675 8676 // Remove constant factors. 8677 for (const SCEV *T : Terms) 8678 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8679 NewTerms.push_back(NewT); 8680 8681 DEBUG({ 8682 dbgs() << "Terms after sorting:\n"; 8683 for (const SCEV *T : NewTerms) 8684 dbgs() << *T << "\n"; 8685 }); 8686 8687 if (NewTerms.empty() || 8688 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8689 Sizes.clear(); 8690 return; 8691 } 8692 8693 // The last element to be pushed into Sizes is the size of an element. 8694 Sizes.push_back(ElementSize); 8695 8696 DEBUG({ 8697 dbgs() << "Sizes:\n"; 8698 for (const SCEV *S : Sizes) 8699 dbgs() << *S << "\n"; 8700 }); 8701 } 8702 8703 /// Third step of delinearization: compute the access functions for the 8704 /// Subscripts based on the dimensions in Sizes. 8705 void ScalarEvolution::computeAccessFunctions( 8706 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8707 SmallVectorImpl<const SCEV *> &Sizes) { 8708 8709 // Early exit in case this SCEV is not an affine multivariate function. 8710 if (Sizes.empty()) 8711 return; 8712 8713 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8714 if (!AR->isAffine()) 8715 return; 8716 8717 const SCEV *Res = Expr; 8718 int Last = Sizes.size() - 1; 8719 for (int i = Last; i >= 0; i--) { 8720 const SCEV *Q, *R; 8721 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8722 8723 DEBUG({ 8724 dbgs() << "Res: " << *Res << "\n"; 8725 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8726 dbgs() << "Res divided by Sizes[i]:\n"; 8727 dbgs() << "Quotient: " << *Q << "\n"; 8728 dbgs() << "Remainder: " << *R << "\n"; 8729 }); 8730 8731 Res = Q; 8732 8733 // Do not record the last subscript corresponding to the size of elements in 8734 // the array. 8735 if (i == Last) { 8736 8737 // Bail out if the remainder is too complex. 8738 if (isa<SCEVAddRecExpr>(R)) { 8739 Subscripts.clear(); 8740 Sizes.clear(); 8741 return; 8742 } 8743 8744 continue; 8745 } 8746 8747 // Record the access function for the current subscript. 8748 Subscripts.push_back(R); 8749 } 8750 8751 // Also push in last position the remainder of the last division: it will be 8752 // the access function of the innermost dimension. 8753 Subscripts.push_back(Res); 8754 8755 std::reverse(Subscripts.begin(), Subscripts.end()); 8756 8757 DEBUG({ 8758 dbgs() << "Subscripts:\n"; 8759 for (const SCEV *S : Subscripts) 8760 dbgs() << *S << "\n"; 8761 }); 8762 } 8763 8764 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8765 /// sizes of an array access. Returns the remainder of the delinearization that 8766 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8767 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8768 /// expressions in the stride and base of a SCEV corresponding to the 8769 /// computation of a GCD (greatest common divisor) of base and stride. When 8770 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8771 /// 8772 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8773 /// 8774 /// void foo(long n, long m, long o, double A[n][m][o]) { 8775 /// 8776 /// for (long i = 0; i < n; i++) 8777 /// for (long j = 0; j < m; j++) 8778 /// for (long k = 0; k < o; k++) 8779 /// A[i][j][k] = 1.0; 8780 /// } 8781 /// 8782 /// the delinearization input is the following AddRec SCEV: 8783 /// 8784 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8785 /// 8786 /// From this SCEV, we are able to say that the base offset of the access is %A 8787 /// because it appears as an offset that does not divide any of the strides in 8788 /// the loops: 8789 /// 8790 /// CHECK: Base offset: %A 8791 /// 8792 /// and then SCEV->delinearize determines the size of some of the dimensions of 8793 /// the array as these are the multiples by which the strides are happening: 8794 /// 8795 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8796 /// 8797 /// Note that the outermost dimension remains of UnknownSize because there are 8798 /// no strides that would help identifying the size of the last dimension: when 8799 /// the array has been statically allocated, one could compute the size of that 8800 /// dimension by dividing the overall size of the array by the size of the known 8801 /// dimensions: %m * %o * 8. 8802 /// 8803 /// Finally delinearize provides the access functions for the array reference 8804 /// that does correspond to A[i][j][k] of the above C testcase: 8805 /// 8806 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8807 /// 8808 /// The testcases are checking the output of a function pass: 8809 /// DelinearizationPass that walks through all loads and stores of a function 8810 /// asking for the SCEV of the memory access with respect to all enclosing 8811 /// loops, calling SCEV->delinearize on that and printing the results. 8812 8813 void ScalarEvolution::delinearize(const SCEV *Expr, 8814 SmallVectorImpl<const SCEV *> &Subscripts, 8815 SmallVectorImpl<const SCEV *> &Sizes, 8816 const SCEV *ElementSize) { 8817 // First step: collect parametric terms. 8818 SmallVector<const SCEV *, 4> Terms; 8819 collectParametricTerms(Expr, Terms); 8820 8821 if (Terms.empty()) 8822 return; 8823 8824 // Second step: find subscript sizes. 8825 findArrayDimensions(Terms, Sizes, ElementSize); 8826 8827 if (Sizes.empty()) 8828 return; 8829 8830 // Third step: compute the access functions for each subscript. 8831 computeAccessFunctions(Expr, Subscripts, Sizes); 8832 8833 if (Subscripts.empty()) 8834 return; 8835 8836 DEBUG({ 8837 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8838 dbgs() << "ArrayDecl[UnknownSize]"; 8839 for (const SCEV *S : Sizes) 8840 dbgs() << "[" << *S << "]"; 8841 8842 dbgs() << "\nArrayRef"; 8843 for (const SCEV *S : Subscripts) 8844 dbgs() << "[" << *S << "]"; 8845 dbgs() << "\n"; 8846 }); 8847 } 8848 8849 //===----------------------------------------------------------------------===// 8850 // SCEVCallbackVH Class Implementation 8851 //===----------------------------------------------------------------------===// 8852 8853 void ScalarEvolution::SCEVCallbackVH::deleted() { 8854 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8855 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8856 SE->ConstantEvolutionLoopExitValue.erase(PN); 8857 SE->ValueExprMap.erase(getValPtr()); 8858 // this now dangles! 8859 } 8860 8861 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8862 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8863 8864 // Forget all the expressions associated with users of the old value, 8865 // so that future queries will recompute the expressions using the new 8866 // value. 8867 Value *Old = getValPtr(); 8868 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8869 SmallPtrSet<User *, 8> Visited; 8870 while (!Worklist.empty()) { 8871 User *U = Worklist.pop_back_val(); 8872 // Deleting the Old value will cause this to dangle. Postpone 8873 // that until everything else is done. 8874 if (U == Old) 8875 continue; 8876 if (!Visited.insert(U).second) 8877 continue; 8878 if (PHINode *PN = dyn_cast<PHINode>(U)) 8879 SE->ConstantEvolutionLoopExitValue.erase(PN); 8880 SE->ValueExprMap.erase(U); 8881 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8882 } 8883 // Delete the Old value. 8884 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8885 SE->ConstantEvolutionLoopExitValue.erase(PN); 8886 SE->ValueExprMap.erase(Old); 8887 // this now dangles! 8888 } 8889 8890 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8891 : CallbackVH(V), SE(se) {} 8892 8893 //===----------------------------------------------------------------------===// 8894 // ScalarEvolution Class Implementation 8895 //===----------------------------------------------------------------------===// 8896 8897 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8898 AssumptionCache &AC, DominatorTree &DT, 8899 LoopInfo &LI) 8900 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8901 CouldNotCompute(new SCEVCouldNotCompute()), 8902 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8903 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 8904 FirstUnknown(nullptr) {} 8905 8906 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8907 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8908 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8909 ValueExprMap(std::move(Arg.ValueExprMap)), 8910 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8911 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8912 ConstantEvolutionLoopExitValue( 8913 std::move(Arg.ConstantEvolutionLoopExitValue)), 8914 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8915 LoopDispositions(std::move(Arg.LoopDispositions)), 8916 BlockDispositions(std::move(Arg.BlockDispositions)), 8917 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8918 SignedRanges(std::move(Arg.SignedRanges)), 8919 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8920 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8921 FirstUnknown(Arg.FirstUnknown) { 8922 Arg.FirstUnknown = nullptr; 8923 } 8924 8925 ScalarEvolution::~ScalarEvolution() { 8926 // Iterate through all the SCEVUnknown instances and call their 8927 // destructors, so that they release their references to their values. 8928 for (SCEVUnknown *U = FirstUnknown; U;) { 8929 SCEVUnknown *Tmp = U; 8930 U = U->Next; 8931 Tmp->~SCEVUnknown(); 8932 } 8933 FirstUnknown = nullptr; 8934 8935 ValueExprMap.clear(); 8936 8937 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8938 // that a loop had multiple computable exits. 8939 for (auto &BTCI : BackedgeTakenCounts) 8940 BTCI.second.clear(); 8941 8942 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8943 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8944 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 8945 } 8946 8947 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8948 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8949 } 8950 8951 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8952 const Loop *L) { 8953 // Print all inner loops first 8954 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8955 PrintLoopInfo(OS, SE, *I); 8956 8957 OS << "Loop "; 8958 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8959 OS << ": "; 8960 8961 SmallVector<BasicBlock *, 8> ExitBlocks; 8962 L->getExitBlocks(ExitBlocks); 8963 if (ExitBlocks.size() != 1) 8964 OS << "<multiple exits> "; 8965 8966 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8967 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8968 } else { 8969 OS << "Unpredictable backedge-taken count. "; 8970 } 8971 8972 OS << "\n" 8973 "Loop "; 8974 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8975 OS << ": "; 8976 8977 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8978 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8979 } else { 8980 OS << "Unpredictable max backedge-taken count. "; 8981 } 8982 8983 OS << "\n"; 8984 } 8985 8986 void ScalarEvolution::print(raw_ostream &OS) const { 8987 // ScalarEvolution's implementation of the print method is to print 8988 // out SCEV values of all instructions that are interesting. Doing 8989 // this potentially causes it to create new SCEV objects though, 8990 // which technically conflicts with the const qualifier. This isn't 8991 // observable from outside the class though, so casting away the 8992 // const isn't dangerous. 8993 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8994 8995 OS << "Classifying expressions for: "; 8996 F.printAsOperand(OS, /*PrintType=*/false); 8997 OS << "\n"; 8998 for (Instruction &I : instructions(F)) 8999 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9000 OS << I << '\n'; 9001 OS << " --> "; 9002 const SCEV *SV = SE.getSCEV(&I); 9003 SV->print(OS); 9004 if (!isa<SCEVCouldNotCompute>(SV)) { 9005 OS << " U: "; 9006 SE.getUnsignedRange(SV).print(OS); 9007 OS << " S: "; 9008 SE.getSignedRange(SV).print(OS); 9009 } 9010 9011 const Loop *L = LI.getLoopFor(I.getParent()); 9012 9013 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9014 if (AtUse != SV) { 9015 OS << " --> "; 9016 AtUse->print(OS); 9017 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9018 OS << " U: "; 9019 SE.getUnsignedRange(AtUse).print(OS); 9020 OS << " S: "; 9021 SE.getSignedRange(AtUse).print(OS); 9022 } 9023 } 9024 9025 if (L) { 9026 OS << "\t\t" "Exits: "; 9027 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9028 if (!SE.isLoopInvariant(ExitValue, L)) { 9029 OS << "<<Unknown>>"; 9030 } else { 9031 OS << *ExitValue; 9032 } 9033 } 9034 9035 OS << "\n"; 9036 } 9037 9038 OS << "Determining loop execution counts for: "; 9039 F.printAsOperand(OS, /*PrintType=*/false); 9040 OS << "\n"; 9041 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9042 PrintLoopInfo(OS, &SE, *I); 9043 } 9044 9045 ScalarEvolution::LoopDisposition 9046 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9047 auto &Values = LoopDispositions[S]; 9048 for (auto &V : Values) { 9049 if (V.getPointer() == L) 9050 return V.getInt(); 9051 } 9052 Values.emplace_back(L, LoopVariant); 9053 LoopDisposition D = computeLoopDisposition(S, L); 9054 auto &Values2 = LoopDispositions[S]; 9055 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9056 if (V.getPointer() == L) { 9057 V.setInt(D); 9058 break; 9059 } 9060 } 9061 return D; 9062 } 9063 9064 ScalarEvolution::LoopDisposition 9065 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9066 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9067 case scConstant: 9068 return LoopInvariant; 9069 case scTruncate: 9070 case scZeroExtend: 9071 case scSignExtend: 9072 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9073 case scAddRecExpr: { 9074 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9075 9076 // If L is the addrec's loop, it's computable. 9077 if (AR->getLoop() == L) 9078 return LoopComputable; 9079 9080 // Add recurrences are never invariant in the function-body (null loop). 9081 if (!L) 9082 return LoopVariant; 9083 9084 // This recurrence is variant w.r.t. L if L contains AR's loop. 9085 if (L->contains(AR->getLoop())) 9086 return LoopVariant; 9087 9088 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9089 if (AR->getLoop()->contains(L)) 9090 return LoopInvariant; 9091 9092 // This recurrence is variant w.r.t. L if any of its operands 9093 // are variant. 9094 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 9095 I != E; ++I) 9096 if (!isLoopInvariant(*I, L)) 9097 return LoopVariant; 9098 9099 // Otherwise it's loop-invariant. 9100 return LoopInvariant; 9101 } 9102 case scAddExpr: 9103 case scMulExpr: 9104 case scUMaxExpr: 9105 case scSMaxExpr: { 9106 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9107 bool HasVarying = false; 9108 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9109 I != E; ++I) { 9110 LoopDisposition D = getLoopDisposition(*I, L); 9111 if (D == LoopVariant) 9112 return LoopVariant; 9113 if (D == LoopComputable) 9114 HasVarying = true; 9115 } 9116 return HasVarying ? LoopComputable : LoopInvariant; 9117 } 9118 case scUDivExpr: { 9119 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9120 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9121 if (LD == LoopVariant) 9122 return LoopVariant; 9123 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9124 if (RD == LoopVariant) 9125 return LoopVariant; 9126 return (LD == LoopInvariant && RD == LoopInvariant) ? 9127 LoopInvariant : LoopComputable; 9128 } 9129 case scUnknown: 9130 // All non-instruction values are loop invariant. All instructions are loop 9131 // invariant if they are not contained in the specified loop. 9132 // Instructions are never considered invariant in the function body 9133 // (null loop) because they are defined within the "loop". 9134 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9135 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9136 return LoopInvariant; 9137 case scCouldNotCompute: 9138 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9139 } 9140 llvm_unreachable("Unknown SCEV kind!"); 9141 } 9142 9143 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9144 return getLoopDisposition(S, L) == LoopInvariant; 9145 } 9146 9147 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9148 return getLoopDisposition(S, L) == LoopComputable; 9149 } 9150 9151 ScalarEvolution::BlockDisposition 9152 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9153 auto &Values = BlockDispositions[S]; 9154 for (auto &V : Values) { 9155 if (V.getPointer() == BB) 9156 return V.getInt(); 9157 } 9158 Values.emplace_back(BB, DoesNotDominateBlock); 9159 BlockDisposition D = computeBlockDisposition(S, BB); 9160 auto &Values2 = BlockDispositions[S]; 9161 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9162 if (V.getPointer() == BB) { 9163 V.setInt(D); 9164 break; 9165 } 9166 } 9167 return D; 9168 } 9169 9170 ScalarEvolution::BlockDisposition 9171 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9172 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9173 case scConstant: 9174 return ProperlyDominatesBlock; 9175 case scTruncate: 9176 case scZeroExtend: 9177 case scSignExtend: 9178 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9179 case scAddRecExpr: { 9180 // This uses a "dominates" query instead of "properly dominates" query 9181 // to test for proper dominance too, because the instruction which 9182 // produces the addrec's value is a PHI, and a PHI effectively properly 9183 // dominates its entire containing block. 9184 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9185 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9186 return DoesNotDominateBlock; 9187 } 9188 // FALL THROUGH into SCEVNAryExpr handling. 9189 case scAddExpr: 9190 case scMulExpr: 9191 case scUMaxExpr: 9192 case scSMaxExpr: { 9193 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9194 bool Proper = true; 9195 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9196 I != E; ++I) { 9197 BlockDisposition D = getBlockDisposition(*I, BB); 9198 if (D == DoesNotDominateBlock) 9199 return DoesNotDominateBlock; 9200 if (D == DominatesBlock) 9201 Proper = false; 9202 } 9203 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9204 } 9205 case scUDivExpr: { 9206 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9207 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9208 BlockDisposition LD = getBlockDisposition(LHS, BB); 9209 if (LD == DoesNotDominateBlock) 9210 return DoesNotDominateBlock; 9211 BlockDisposition RD = getBlockDisposition(RHS, BB); 9212 if (RD == DoesNotDominateBlock) 9213 return DoesNotDominateBlock; 9214 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9215 ProperlyDominatesBlock : DominatesBlock; 9216 } 9217 case scUnknown: 9218 if (Instruction *I = 9219 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9220 if (I->getParent() == BB) 9221 return DominatesBlock; 9222 if (DT.properlyDominates(I->getParent(), BB)) 9223 return ProperlyDominatesBlock; 9224 return DoesNotDominateBlock; 9225 } 9226 return ProperlyDominatesBlock; 9227 case scCouldNotCompute: 9228 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9229 } 9230 llvm_unreachable("Unknown SCEV kind!"); 9231 } 9232 9233 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9234 return getBlockDisposition(S, BB) >= DominatesBlock; 9235 } 9236 9237 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9238 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9239 } 9240 9241 namespace { 9242 // Search for a SCEV expression node within an expression tree. 9243 // Implements SCEVTraversal::Visitor. 9244 struct SCEVSearch { 9245 const SCEV *Node; 9246 bool IsFound; 9247 9248 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9249 9250 bool follow(const SCEV *S) { 9251 IsFound |= (S == Node); 9252 return !IsFound; 9253 } 9254 bool isDone() const { return IsFound; } 9255 }; 9256 } 9257 9258 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9259 SCEVSearch Search(Op); 9260 visitAll(S, Search); 9261 return Search.IsFound; 9262 } 9263 9264 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9265 ValuesAtScopes.erase(S); 9266 LoopDispositions.erase(S); 9267 BlockDispositions.erase(S); 9268 UnsignedRanges.erase(S); 9269 SignedRanges.erase(S); 9270 9271 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9272 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9273 BackedgeTakenInfo &BEInfo = I->second; 9274 if (BEInfo.hasOperand(S, this)) { 9275 BEInfo.clear(); 9276 BackedgeTakenCounts.erase(I++); 9277 } 9278 else 9279 ++I; 9280 } 9281 } 9282 9283 typedef DenseMap<const Loop *, std::string> VerifyMap; 9284 9285 /// replaceSubString - Replaces all occurrences of From in Str with To. 9286 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9287 size_t Pos = 0; 9288 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9289 Str.replace(Pos, From.size(), To.data(), To.size()); 9290 Pos += To.size(); 9291 } 9292 } 9293 9294 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9295 static void 9296 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9297 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9298 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9299 9300 std::string &S = Map[L]; 9301 if (S.empty()) { 9302 raw_string_ostream OS(S); 9303 SE.getBackedgeTakenCount(L)->print(OS); 9304 9305 // false and 0 are semantically equivalent. This can happen in dead loops. 9306 replaceSubString(OS.str(), "false", "0"); 9307 // Remove wrap flags, their use in SCEV is highly fragile. 9308 // FIXME: Remove this when SCEV gets smarter about them. 9309 replaceSubString(OS.str(), "<nw>", ""); 9310 replaceSubString(OS.str(), "<nsw>", ""); 9311 replaceSubString(OS.str(), "<nuw>", ""); 9312 } 9313 } 9314 } 9315 9316 void ScalarEvolution::verify() const { 9317 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9318 9319 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9320 // FIXME: It would be much better to store actual values instead of strings, 9321 // but SCEV pointers will change if we drop the caches. 9322 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9323 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9324 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9325 9326 // Gather stringified backedge taken counts for all loops using a fresh 9327 // ScalarEvolution object. 9328 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9329 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9330 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9331 9332 // Now compare whether they're the same with and without caches. This allows 9333 // verifying that no pass changed the cache. 9334 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9335 "New loops suddenly appeared!"); 9336 9337 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9338 OldE = BackedgeDumpsOld.end(), 9339 NewI = BackedgeDumpsNew.begin(); 9340 OldI != OldE; ++OldI, ++NewI) { 9341 assert(OldI->first == NewI->first && "Loop order changed!"); 9342 9343 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9344 // changes. 9345 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9346 // means that a pass is buggy or SCEV has to learn a new pattern but is 9347 // usually not harmful. 9348 if (OldI->second != NewI->second && 9349 OldI->second.find("undef") == std::string::npos && 9350 NewI->second.find("undef") == std::string::npos && 9351 OldI->second != "***COULDNOTCOMPUTE***" && 9352 NewI->second != "***COULDNOTCOMPUTE***") { 9353 dbgs() << "SCEVValidator: SCEV for loop '" 9354 << OldI->first->getHeader()->getName() 9355 << "' changed from '" << OldI->second 9356 << "' to '" << NewI->second << "'!\n"; 9357 std::abort(); 9358 } 9359 } 9360 9361 // TODO: Verify more things. 9362 } 9363 9364 char ScalarEvolutionAnalysis::PassID; 9365 9366 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9367 AnalysisManager<Function> *AM) { 9368 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9369 AM->getResult<AssumptionAnalysis>(F), 9370 AM->getResult<DominatorTreeAnalysis>(F), 9371 AM->getResult<LoopAnalysis>(F)); 9372 } 9373 9374 PreservedAnalyses 9375 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9376 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9377 return PreservedAnalyses::all(); 9378 } 9379 9380 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9381 "Scalar Evolution Analysis", false, true) 9382 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9383 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9384 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9385 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9386 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9387 "Scalar Evolution Analysis", false, true) 9388 char ScalarEvolutionWrapperPass::ID = 0; 9389 9390 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9391 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9392 } 9393 9394 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9395 SE.reset(new ScalarEvolution( 9396 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9397 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9398 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9399 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9400 return false; 9401 } 9402 9403 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9404 9405 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9406 SE->print(OS); 9407 } 9408 9409 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9410 if (!VerifySCEV) 9411 return; 9412 9413 SE->verify(); 9414 } 9415 9416 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9417 AU.setPreservesAll(); 9418 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9419 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9420 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9421 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9422 } 9423