xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision b99b709068ab351e6ee7630137b6bac6313f76c8)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "scalar-evolution"
97 
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106 
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113 
114 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119     VerifySCEVMap("verify-scev-maps",
120                   cl::desc("Verify no dangling value in ScalarEvolution's "
121                            "ExprValueMap (slow)"));
122 
123 //===----------------------------------------------------------------------===//
124 //                           SCEV class definitions
125 //===----------------------------------------------------------------------===//
126 
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130 
131 LLVM_DUMP_METHOD
132 void SCEV::dump() const {
133   print(dbgs());
134   dbgs() << '\n';
135 }
136 
137 void SCEV::print(raw_ostream &OS) const {
138   switch (static_cast<SCEVTypes>(getSCEVType())) {
139   case scConstant:
140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141     return;
142   case scTruncate: {
143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144     const SCEV *Op = Trunc->getOperand();
145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146        << *Trunc->getType() << ")";
147     return;
148   }
149   case scZeroExtend: {
150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151     const SCEV *Op = ZExt->getOperand();
152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
153        << *ZExt->getType() << ")";
154     return;
155   }
156   case scSignExtend: {
157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158     const SCEV *Op = SExt->getOperand();
159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
160        << *SExt->getType() << ")";
161     return;
162   }
163   case scAddRecExpr: {
164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165     OS << "{" << *AR->getOperand(0);
166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167       OS << ",+," << *AR->getOperand(i);
168     OS << "}<";
169     if (AR->hasNoUnsignedWrap())
170       OS << "nuw><";
171     if (AR->hasNoSignedWrap())
172       OS << "nsw><";
173     if (AR->hasNoSelfWrap() &&
174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175       OS << "nw><";
176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177     OS << ">";
178     return;
179   }
180   case scAddExpr:
181   case scMulExpr:
182   case scUMaxExpr:
183   case scSMaxExpr: {
184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185     const char *OpStr = nullptr;
186     switch (NAry->getSCEVType()) {
187     case scAddExpr: OpStr = " + "; break;
188     case scMulExpr: OpStr = " * "; break;
189     case scUMaxExpr: OpStr = " umax "; break;
190     case scSMaxExpr: OpStr = " smax "; break;
191     }
192     OS << "(";
193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194          I != E; ++I) {
195       OS << **I;
196       if (std::next(I) != E)
197         OS << OpStr;
198     }
199     OS << ")";
200     switch (NAry->getSCEVType()) {
201     case scAddExpr:
202     case scMulExpr:
203       if (NAry->hasNoUnsignedWrap())
204         OS << "<nuw>";
205       if (NAry->hasNoSignedWrap())
206         OS << "<nsw>";
207     }
208     return;
209   }
210   case scUDivExpr: {
211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213     return;
214   }
215   case scUnknown: {
216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
217     Type *AllocTy;
218     if (U->isSizeOf(AllocTy)) {
219       OS << "sizeof(" << *AllocTy << ")";
220       return;
221     }
222     if (U->isAlignOf(AllocTy)) {
223       OS << "alignof(" << *AllocTy << ")";
224       return;
225     }
226 
227     Type *CTy;
228     Constant *FieldNo;
229     if (U->isOffsetOf(CTy, FieldNo)) {
230       OS << "offsetof(" << *CTy << ", ";
231       FieldNo->printAsOperand(OS, false);
232       OS << ")";
233       return;
234     }
235 
236     // Otherwise just print it normally.
237     U->getValue()->printAsOperand(OS, false);
238     return;
239   }
240   case scCouldNotCompute:
241     OS << "***COULDNOTCOMPUTE***";
242     return;
243   }
244   llvm_unreachable("Unknown SCEV kind!");
245 }
246 
247 Type *SCEV::getType() const {
248   switch (static_cast<SCEVTypes>(getSCEVType())) {
249   case scConstant:
250     return cast<SCEVConstant>(this)->getType();
251   case scTruncate:
252   case scZeroExtend:
253   case scSignExtend:
254     return cast<SCEVCastExpr>(this)->getType();
255   case scAddRecExpr:
256   case scMulExpr:
257   case scUMaxExpr:
258   case scSMaxExpr:
259     return cast<SCEVNAryExpr>(this)->getType();
260   case scAddExpr:
261     return cast<SCEVAddExpr>(this)->getType();
262   case scUDivExpr:
263     return cast<SCEVUDivExpr>(this)->getType();
264   case scUnknown:
265     return cast<SCEVUnknown>(this)->getType();
266   case scCouldNotCompute:
267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268   }
269   llvm_unreachable("Unknown SCEV kind!");
270 }
271 
272 bool SCEV::isZero() const {
273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274     return SC->getValue()->isZero();
275   return false;
276 }
277 
278 bool SCEV::isOne() const {
279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280     return SC->getValue()->isOne();
281   return false;
282 }
283 
284 bool SCEV::isAllOnesValue() const {
285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286     return SC->getValue()->isAllOnesValue();
287   return false;
288 }
289 
290 bool SCEV::isNonConstantNegative() const {
291   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
292   if (!Mul) return false;
293 
294   // If there is a constant factor, it will be first.
295   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
296   if (!SC) return false;
297 
298   // Return true if the value is negative, this matches things like (-42 * V).
299   return SC->getAPInt().isNegative();
300 }
301 
302 SCEVCouldNotCompute::SCEVCouldNotCompute() :
303   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
304 
305 bool SCEVCouldNotCompute::classof(const SCEV *S) {
306   return S->getSCEVType() == scCouldNotCompute;
307 }
308 
309 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
310   FoldingSetNodeID ID;
311   ID.AddInteger(scConstant);
312   ID.AddPointer(V);
313   void *IP = nullptr;
314   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
315   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
316   UniqueSCEVs.InsertNode(S, IP);
317   return S;
318 }
319 
320 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
321   return getConstant(ConstantInt::get(getContext(), Val));
322 }
323 
324 const SCEV *
325 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
326   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
327   return getConstant(ConstantInt::get(ITy, V, isSigned));
328 }
329 
330 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
331                            unsigned SCEVTy, const SCEV *op, Type *ty)
332   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
333 
334 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
335                                    const SCEV *op, Type *ty)
336   : SCEVCastExpr(ID, scTruncate, op, ty) {
337   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
338          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
339          "Cannot truncate non-integer value!");
340 }
341 
342 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
343                                        const SCEV *op, Type *ty)
344   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
345   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
346          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
347          "Cannot zero extend non-integer value!");
348 }
349 
350 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
351                                        const SCEV *op, Type *ty)
352   : SCEVCastExpr(ID, scSignExtend, op, ty) {
353   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
354          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
355          "Cannot sign extend non-integer value!");
356 }
357 
358 void SCEVUnknown::deleted() {
359   // Clear this SCEVUnknown from various maps.
360   SE->forgetMemoizedResults(this);
361 
362   // Remove this SCEVUnknown from the uniquing map.
363   SE->UniqueSCEVs.RemoveNode(this);
364 
365   // Release the value.
366   setValPtr(nullptr);
367 }
368 
369 void SCEVUnknown::allUsesReplacedWith(Value *New) {
370   // Clear this SCEVUnknown from various maps.
371   SE->forgetMemoizedResults(this);
372 
373   // Remove this SCEVUnknown from the uniquing map.
374   SE->UniqueSCEVs.RemoveNode(this);
375 
376   // Update this SCEVUnknown to point to the new value. This is needed
377   // because there may still be outstanding SCEVs which still point to
378   // this SCEVUnknown.
379   setValPtr(New);
380 }
381 
382 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
383   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
384     if (VCE->getOpcode() == Instruction::PtrToInt)
385       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
386         if (CE->getOpcode() == Instruction::GetElementPtr &&
387             CE->getOperand(0)->isNullValue() &&
388             CE->getNumOperands() == 2)
389           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
390             if (CI->isOne()) {
391               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
392                                  ->getElementType();
393               return true;
394             }
395 
396   return false;
397 }
398 
399 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
400   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401     if (VCE->getOpcode() == Instruction::PtrToInt)
402       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403         if (CE->getOpcode() == Instruction::GetElementPtr &&
404             CE->getOperand(0)->isNullValue()) {
405           Type *Ty =
406             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
407           if (StructType *STy = dyn_cast<StructType>(Ty))
408             if (!STy->isPacked() &&
409                 CE->getNumOperands() == 3 &&
410                 CE->getOperand(1)->isNullValue()) {
411               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
412                 if (CI->isOne() &&
413                     STy->getNumElements() == 2 &&
414                     STy->getElementType(0)->isIntegerTy(1)) {
415                   AllocTy = STy->getElementType(1);
416                   return true;
417                 }
418             }
419         }
420 
421   return false;
422 }
423 
424 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
425   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
426     if (VCE->getOpcode() == Instruction::PtrToInt)
427       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
428         if (CE->getOpcode() == Instruction::GetElementPtr &&
429             CE->getNumOperands() == 3 &&
430             CE->getOperand(0)->isNullValue() &&
431             CE->getOperand(1)->isNullValue()) {
432           Type *Ty =
433             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
434           // Ignore vector types here so that ScalarEvolutionExpander doesn't
435           // emit getelementptrs that index into vectors.
436           if (Ty->isStructTy() || Ty->isArrayTy()) {
437             CTy = Ty;
438             FieldNo = CE->getOperand(2);
439             return true;
440           }
441         }
442 
443   return false;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                               SCEV Utilities
448 //===----------------------------------------------------------------------===//
449 
450 namespace {
451 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
452 /// than the complexity of the RHS.  This comparator is used to canonicalize
453 /// expressions.
454 class SCEVComplexityCompare {
455   const LoopInfo *const LI;
456 public:
457   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
458 
459   // Return true or false if LHS is less than, or at least RHS, respectively.
460   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
461     return compare(LHS, RHS) < 0;
462   }
463 
464   // Return negative, zero, or positive, if LHS is less than, equal to, or
465   // greater than RHS, respectively. A three-way result allows recursive
466   // comparisons to be more efficient.
467   int compare(const SCEV *LHS, const SCEV *RHS) const {
468     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
469     if (LHS == RHS)
470       return 0;
471 
472     // Primarily, sort the SCEVs by their getSCEVType().
473     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
474     if (LType != RType)
475       return (int)LType - (int)RType;
476 
477     // Aside from the getSCEVType() ordering, the particular ordering
478     // isn't very important except that it's beneficial to be consistent,
479     // so that (a + b) and (b + a) don't end up as different expressions.
480     switch (static_cast<SCEVTypes>(LType)) {
481     case scUnknown: {
482       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
483       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
484 
485       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
486       // not as complete as it could be.
487       const Value *LV = LU->getValue(), *RV = RU->getValue();
488 
489       // Order pointer values after integer values. This helps SCEVExpander
490       // form GEPs.
491       bool LIsPointer = LV->getType()->isPointerTy(),
492         RIsPointer = RV->getType()->isPointerTy();
493       if (LIsPointer != RIsPointer)
494         return (int)LIsPointer - (int)RIsPointer;
495 
496       // Compare getValueID values.
497       unsigned LID = LV->getValueID(),
498         RID = RV->getValueID();
499       if (LID != RID)
500         return (int)LID - (int)RID;
501 
502       // Sort arguments by their position.
503       if (const Argument *LA = dyn_cast<Argument>(LV)) {
504         const Argument *RA = cast<Argument>(RV);
505         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
506         return (int)LArgNo - (int)RArgNo;
507       }
508 
509       // For instructions, compare their loop depth, and their operand
510       // count.  This is pretty loose.
511       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
512         const Instruction *RInst = cast<Instruction>(RV);
513 
514         // Compare loop depths.
515         const BasicBlock *LParent = LInst->getParent(),
516           *RParent = RInst->getParent();
517         if (LParent != RParent) {
518           unsigned LDepth = LI->getLoopDepth(LParent),
519             RDepth = LI->getLoopDepth(RParent);
520           if (LDepth != RDepth)
521             return (int)LDepth - (int)RDepth;
522         }
523 
524         // Compare the number of operands.
525         unsigned LNumOps = LInst->getNumOperands(),
526           RNumOps = RInst->getNumOperands();
527         return (int)LNumOps - (int)RNumOps;
528       }
529 
530       return 0;
531     }
532 
533     case scConstant: {
534       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
535       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
536 
537       // Compare constant values.
538       const APInt &LA = LC->getAPInt();
539       const APInt &RA = RC->getAPInt();
540       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
541       if (LBitWidth != RBitWidth)
542         return (int)LBitWidth - (int)RBitWidth;
543       return LA.ult(RA) ? -1 : 1;
544     }
545 
546     case scAddRecExpr: {
547       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
548       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
549 
550       // Compare addrec loop depths.
551       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
552       if (LLoop != RLoop) {
553         unsigned LDepth = LLoop->getLoopDepth(),
554           RDepth = RLoop->getLoopDepth();
555         if (LDepth != RDepth)
556           return (int)LDepth - (int)RDepth;
557       }
558 
559       // Addrec complexity grows with operand count.
560       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
561       if (LNumOps != RNumOps)
562         return (int)LNumOps - (int)RNumOps;
563 
564       // Lexicographically compare.
565       for (unsigned i = 0; i != LNumOps; ++i) {
566         long X = compare(LA->getOperand(i), RA->getOperand(i));
567         if (X != 0)
568           return X;
569       }
570 
571       return 0;
572     }
573 
574     case scAddExpr:
575     case scMulExpr:
576     case scSMaxExpr:
577     case scUMaxExpr: {
578       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
579       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
580 
581       // Lexicographically compare n-ary expressions.
582       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
583       if (LNumOps != RNumOps)
584         return (int)LNumOps - (int)RNumOps;
585 
586       for (unsigned i = 0; i != LNumOps; ++i) {
587         if (i >= RNumOps)
588           return 1;
589         long X = compare(LC->getOperand(i), RC->getOperand(i));
590         if (X != 0)
591           return X;
592       }
593       return (int)LNumOps - (int)RNumOps;
594     }
595 
596     case scUDivExpr: {
597       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
598       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
599 
600       // Lexicographically compare udiv expressions.
601       long X = compare(LC->getLHS(), RC->getLHS());
602       if (X != 0)
603         return X;
604       return compare(LC->getRHS(), RC->getRHS());
605     }
606 
607     case scTruncate:
608     case scZeroExtend:
609     case scSignExtend: {
610       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
611       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
612 
613       // Compare cast expressions by operand.
614       return compare(LC->getOperand(), RC->getOperand());
615     }
616 
617     case scCouldNotCompute:
618       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
619     }
620     llvm_unreachable("Unknown SCEV kind!");
621   }
622 };
623 }  // end anonymous namespace
624 
625 /// Given a list of SCEV objects, order them by their complexity, and group
626 /// objects of the same complexity together by value.  When this routine is
627 /// finished, we know that any duplicates in the vector are consecutive and that
628 /// complexity is monotonically increasing.
629 ///
630 /// Note that we go take special precautions to ensure that we get deterministic
631 /// results from this routine.  In other words, we don't want the results of
632 /// this to depend on where the addresses of various SCEV objects happened to
633 /// land in memory.
634 ///
635 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
636                               LoopInfo *LI) {
637   if (Ops.size() < 2) return;  // Noop
638   if (Ops.size() == 2) {
639     // This is the common case, which also happens to be trivially simple.
640     // Special case it.
641     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
642     if (SCEVComplexityCompare(LI)(RHS, LHS))
643       std::swap(LHS, RHS);
644     return;
645   }
646 
647   // Do the rough sort by complexity.
648   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
649 
650   // Now that we are sorted by complexity, group elements of the same
651   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
652   // be extremely short in practice.  Note that we take this approach because we
653   // do not want to depend on the addresses of the objects we are grouping.
654   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
655     const SCEV *S = Ops[i];
656     unsigned Complexity = S->getSCEVType();
657 
658     // If there are any objects of the same complexity and same value as this
659     // one, group them.
660     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
661       if (Ops[j] == S) { // Found a duplicate.
662         // Move it to immediately after i'th element.
663         std::swap(Ops[i+1], Ops[j]);
664         ++i;   // no need to rescan it.
665         if (i == e-2) return;  // Done!
666       }
667     }
668   }
669 }
670 
671 // Returns the size of the SCEV S.
672 static inline int sizeOfSCEV(const SCEV *S) {
673   struct FindSCEVSize {
674     int Size;
675     FindSCEVSize() : Size(0) {}
676 
677     bool follow(const SCEV *S) {
678       ++Size;
679       // Keep looking at all operands of S.
680       return true;
681     }
682     bool isDone() const {
683       return false;
684     }
685   };
686 
687   FindSCEVSize F;
688   SCEVTraversal<FindSCEVSize> ST(F);
689   ST.visitAll(S);
690   return F.Size;
691 }
692 
693 namespace {
694 
695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
696 public:
697   // Computes the Quotient and Remainder of the division of Numerator by
698   // Denominator.
699   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700                      const SCEV *Denominator, const SCEV **Quotient,
701                      const SCEV **Remainder) {
702     assert(Numerator && Denominator && "Uninitialized SCEV");
703 
704     SCEVDivision D(SE, Numerator, Denominator);
705 
706     // Check for the trivial case here to avoid having to check for it in the
707     // rest of the code.
708     if (Numerator == Denominator) {
709       *Quotient = D.One;
710       *Remainder = D.Zero;
711       return;
712     }
713 
714     if (Numerator->isZero()) {
715       *Quotient = D.Zero;
716       *Remainder = D.Zero;
717       return;
718     }
719 
720     // A simple case when N/1. The quotient is N.
721     if (Denominator->isOne()) {
722       *Quotient = Numerator;
723       *Remainder = D.Zero;
724       return;
725     }
726 
727     // Split the Denominator when it is a product.
728     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
729       const SCEV *Q, *R;
730       *Quotient = Numerator;
731       for (const SCEV *Op : T->operands()) {
732         divide(SE, *Quotient, Op, &Q, &R);
733         *Quotient = Q;
734 
735         // Bail out when the Numerator is not divisible by one of the terms of
736         // the Denominator.
737         if (!R->isZero()) {
738           *Quotient = D.Zero;
739           *Remainder = Numerator;
740           return;
741         }
742       }
743       *Remainder = D.Zero;
744       return;
745     }
746 
747     D.visit(Numerator);
748     *Quotient = D.Quotient;
749     *Remainder = D.Remainder;
750   }
751 
752   // Except in the trivial case described above, we do not know how to divide
753   // Expr by Denominator for the following functions with empty implementation.
754   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760   void visitUnknown(const SCEVUnknown *Numerator) {}
761   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762 
763   void visitConstant(const SCEVConstant *Numerator) {
764     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765       APInt NumeratorVal = Numerator->getAPInt();
766       APInt DenominatorVal = D->getAPInt();
767       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769 
770       if (NumeratorBW > DenominatorBW)
771         DenominatorVal = DenominatorVal.sext(NumeratorBW);
772       else if (NumeratorBW < DenominatorBW)
773         NumeratorVal = NumeratorVal.sext(DenominatorBW);
774 
775       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778       Quotient = SE.getConstant(QuotientVal);
779       Remainder = SE.getConstant(RemainderVal);
780       return;
781     }
782   }
783 
784   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785     const SCEV *StartQ, *StartR, *StepQ, *StepR;
786     if (!Numerator->isAffine())
787       return cannotDivide(Numerator);
788     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
790     // Bail out if the types do not match.
791     Type *Ty = Denominator->getType();
792     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
793         Ty != StepQ->getType() || Ty != StepR->getType())
794       return cannotDivide(Numerator);
795     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796                                 Numerator->getNoWrapFlags());
797     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798                                  Numerator->getNoWrapFlags());
799   }
800 
801   void visitAddExpr(const SCEVAddExpr *Numerator) {
802     SmallVector<const SCEV *, 2> Qs, Rs;
803     Type *Ty = Denominator->getType();
804 
805     for (const SCEV *Op : Numerator->operands()) {
806       const SCEV *Q, *R;
807       divide(SE, Op, Denominator, &Q, &R);
808 
809       // Bail out if types do not match.
810       if (Ty != Q->getType() || Ty != R->getType())
811         return cannotDivide(Numerator);
812 
813       Qs.push_back(Q);
814       Rs.push_back(R);
815     }
816 
817     if (Qs.size() == 1) {
818       Quotient = Qs[0];
819       Remainder = Rs[0];
820       return;
821     }
822 
823     Quotient = SE.getAddExpr(Qs);
824     Remainder = SE.getAddExpr(Rs);
825   }
826 
827   void visitMulExpr(const SCEVMulExpr *Numerator) {
828     SmallVector<const SCEV *, 2> Qs;
829     Type *Ty = Denominator->getType();
830 
831     bool FoundDenominatorTerm = false;
832     for (const SCEV *Op : Numerator->operands()) {
833       // Bail out if types do not match.
834       if (Ty != Op->getType())
835         return cannotDivide(Numerator);
836 
837       if (FoundDenominatorTerm) {
838         Qs.push_back(Op);
839         continue;
840       }
841 
842       // Check whether Denominator divides one of the product operands.
843       const SCEV *Q, *R;
844       divide(SE, Op, Denominator, &Q, &R);
845       if (!R->isZero()) {
846         Qs.push_back(Op);
847         continue;
848       }
849 
850       // Bail out if types do not match.
851       if (Ty != Q->getType())
852         return cannotDivide(Numerator);
853 
854       FoundDenominatorTerm = true;
855       Qs.push_back(Q);
856     }
857 
858     if (FoundDenominatorTerm) {
859       Remainder = Zero;
860       if (Qs.size() == 1)
861         Quotient = Qs[0];
862       else
863         Quotient = SE.getMulExpr(Qs);
864       return;
865     }
866 
867     if (!isa<SCEVUnknown>(Denominator))
868       return cannotDivide(Numerator);
869 
870     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871     ValueToValueMap RewriteMap;
872     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873         cast<SCEVConstant>(Zero)->getValue();
874     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875 
876     if (Remainder->isZero()) {
877       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879           cast<SCEVConstant>(One)->getValue();
880       Quotient =
881           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882       return;
883     }
884 
885     // Quotient is (Numerator - Remainder) divided by Denominator.
886     const SCEV *Q, *R;
887     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
888     // This SCEV does not seem to simplify: fail the division here.
889     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890       return cannotDivide(Numerator);
891     divide(SE, Diff, Denominator, &Q, &R);
892     if (R != Zero)
893       return cannotDivide(Numerator);
894     Quotient = Q;
895   }
896 
897 private:
898   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899                const SCEV *Denominator)
900       : SE(S), Denominator(Denominator) {
901     Zero = SE.getZero(Denominator->getType());
902     One = SE.getOne(Denominator->getType());
903 
904     // We generally do not know how to divide Expr by Denominator. We
905     // initialize the division to a "cannot divide" state to simplify the rest
906     // of the code.
907     cannotDivide(Numerator);
908   }
909 
910   // Convenience function for giving up on the division. We set the quotient to
911   // be equal to zero and the remainder to be equal to the numerator.
912   void cannotDivide(const SCEV *Numerator) {
913     Quotient = Zero;
914     Remainder = Numerator;
915   }
916 
917   ScalarEvolution &SE;
918   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
919 };
920 
921 }
922 
923 //===----------------------------------------------------------------------===//
924 //                      Simple SCEV method implementations
925 //===----------------------------------------------------------------------===//
926 
927 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
928 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
929                                        ScalarEvolution &SE,
930                                        Type *ResultTy) {
931   // Handle the simplest case efficiently.
932   if (K == 1)
933     return SE.getTruncateOrZeroExtend(It, ResultTy);
934 
935   // We are using the following formula for BC(It, K):
936   //
937   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
938   //
939   // Suppose, W is the bitwidth of the return value.  We must be prepared for
940   // overflow.  Hence, we must assure that the result of our computation is
941   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
942   // safe in modular arithmetic.
943   //
944   // However, this code doesn't use exactly that formula; the formula it uses
945   // is something like the following, where T is the number of factors of 2 in
946   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
947   // exponentiation:
948   //
949   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
950   //
951   // This formula is trivially equivalent to the previous formula.  However,
952   // this formula can be implemented much more efficiently.  The trick is that
953   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
954   // arithmetic.  To do exact division in modular arithmetic, all we have
955   // to do is multiply by the inverse.  Therefore, this step can be done at
956   // width W.
957   //
958   // The next issue is how to safely do the division by 2^T.  The way this
959   // is done is by doing the multiplication step at a width of at least W + T
960   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
961   // when we perform the division by 2^T (which is equivalent to a right shift
962   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
963   // truncated out after the division by 2^T.
964   //
965   // In comparison to just directly using the first formula, this technique
966   // is much more efficient; using the first formula requires W * K bits,
967   // but this formula less than W + K bits. Also, the first formula requires
968   // a division step, whereas this formula only requires multiplies and shifts.
969   //
970   // It doesn't matter whether the subtraction step is done in the calculation
971   // width or the input iteration count's width; if the subtraction overflows,
972   // the result must be zero anyway.  We prefer here to do it in the width of
973   // the induction variable because it helps a lot for certain cases; CodeGen
974   // isn't smart enough to ignore the overflow, which leads to much less
975   // efficient code if the width of the subtraction is wider than the native
976   // register width.
977   //
978   // (It's possible to not widen at all by pulling out factors of 2 before
979   // the multiplication; for example, K=2 can be calculated as
980   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
981   // extra arithmetic, so it's not an obvious win, and it gets
982   // much more complicated for K > 3.)
983 
984   // Protection from insane SCEVs; this bound is conservative,
985   // but it probably doesn't matter.
986   if (K > 1000)
987     return SE.getCouldNotCompute();
988 
989   unsigned W = SE.getTypeSizeInBits(ResultTy);
990 
991   // Calculate K! / 2^T and T; we divide out the factors of two before
992   // multiplying for calculating K! / 2^T to avoid overflow.
993   // Other overflow doesn't matter because we only care about the bottom
994   // W bits of the result.
995   APInt OddFactorial(W, 1);
996   unsigned T = 1;
997   for (unsigned i = 3; i <= K; ++i) {
998     APInt Mult(W, i);
999     unsigned TwoFactors = Mult.countTrailingZeros();
1000     T += TwoFactors;
1001     Mult = Mult.lshr(TwoFactors);
1002     OddFactorial *= Mult;
1003   }
1004 
1005   // We need at least W + T bits for the multiplication step
1006   unsigned CalculationBits = W + T;
1007 
1008   // Calculate 2^T, at width T+W.
1009   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1010 
1011   // Calculate the multiplicative inverse of K! / 2^T;
1012   // this multiplication factor will perform the exact division by
1013   // K! / 2^T.
1014   APInt Mod = APInt::getSignedMinValue(W+1);
1015   APInt MultiplyFactor = OddFactorial.zext(W+1);
1016   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1017   MultiplyFactor = MultiplyFactor.trunc(W);
1018 
1019   // Calculate the product, at width T+W
1020   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1021                                                       CalculationBits);
1022   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1023   for (unsigned i = 1; i != K; ++i) {
1024     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1025     Dividend = SE.getMulExpr(Dividend,
1026                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1027   }
1028 
1029   // Divide by 2^T
1030   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1031 
1032   // Truncate the result, and divide by K! / 2^T.
1033 
1034   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1035                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1036 }
1037 
1038 /// Return the value of this chain of recurrences at the specified iteration
1039 /// number.  We can evaluate this recurrence by multiplying each element in the
1040 /// chain by the binomial coefficient corresponding to it.  In other words, we
1041 /// can evaluate {A,+,B,+,C,+,D} as:
1042 ///
1043 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1044 ///
1045 /// where BC(It, k) stands for binomial coefficient.
1046 ///
1047 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1048                                                 ScalarEvolution &SE) const {
1049   const SCEV *Result = getStart();
1050   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1051     // The computation is correct in the face of overflow provided that the
1052     // multiplication is performed _after_ the evaluation of the binomial
1053     // coefficient.
1054     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1055     if (isa<SCEVCouldNotCompute>(Coeff))
1056       return Coeff;
1057 
1058     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1059   }
1060   return Result;
1061 }
1062 
1063 //===----------------------------------------------------------------------===//
1064 //                    SCEV Expression folder implementations
1065 //===----------------------------------------------------------------------===//
1066 
1067 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1068                                              Type *Ty) {
1069   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1070          "This is not a truncating conversion!");
1071   assert(isSCEVable(Ty) &&
1072          "This is not a conversion to a SCEVable type!");
1073   Ty = getEffectiveSCEVType(Ty);
1074 
1075   FoldingSetNodeID ID;
1076   ID.AddInteger(scTruncate);
1077   ID.AddPointer(Op);
1078   ID.AddPointer(Ty);
1079   void *IP = nullptr;
1080   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1081 
1082   // Fold if the operand is constant.
1083   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084     return getConstant(
1085       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1086 
1087   // trunc(trunc(x)) --> trunc(x)
1088   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1089     return getTruncateExpr(ST->getOperand(), Ty);
1090 
1091   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1092   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1093     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1094 
1095   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1096   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1097     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1098 
1099   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1100   // eliminate all the truncates, or we replace other casts with truncates.
1101   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1102     SmallVector<const SCEV *, 4> Operands;
1103     bool hasTrunc = false;
1104     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1105       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1106       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1107         hasTrunc = isa<SCEVTruncateExpr>(S);
1108       Operands.push_back(S);
1109     }
1110     if (!hasTrunc)
1111       return getAddExpr(Operands);
1112     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1113   }
1114 
1115   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1116   // eliminate all the truncates, or we replace other casts with truncates.
1117   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1118     SmallVector<const SCEV *, 4> Operands;
1119     bool hasTrunc = false;
1120     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1121       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1122       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1123         hasTrunc = isa<SCEVTruncateExpr>(S);
1124       Operands.push_back(S);
1125     }
1126     if (!hasTrunc)
1127       return getMulExpr(Operands);
1128     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1129   }
1130 
1131   // If the input value is a chrec scev, truncate the chrec's operands.
1132   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1133     SmallVector<const SCEV *, 4> Operands;
1134     for (const SCEV *Op : AddRec->operands())
1135       Operands.push_back(getTruncateExpr(Op, Ty));
1136     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1137   }
1138 
1139   // The cast wasn't folded; create an explicit cast node. We can reuse
1140   // the existing insert position since if we get here, we won't have
1141   // made any changes which would invalidate it.
1142   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1143                                                  Op, Ty);
1144   UniqueSCEVs.InsertNode(S, IP);
1145   return S;
1146 }
1147 
1148 // Get the limit of a recurrence such that incrementing by Step cannot cause
1149 // signed overflow as long as the value of the recurrence within the
1150 // loop does not exceed this limit before incrementing.
1151 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1152                                                  ICmpInst::Predicate *Pred,
1153                                                  ScalarEvolution *SE) {
1154   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1155   if (SE->isKnownPositive(Step)) {
1156     *Pred = ICmpInst::ICMP_SLT;
1157     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1158                            SE->getSignedRange(Step).getSignedMax());
1159   }
1160   if (SE->isKnownNegative(Step)) {
1161     *Pred = ICmpInst::ICMP_SGT;
1162     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1163                            SE->getSignedRange(Step).getSignedMin());
1164   }
1165   return nullptr;
1166 }
1167 
1168 // Get the limit of a recurrence such that incrementing by Step cannot cause
1169 // unsigned overflow as long as the value of the recurrence within the loop does
1170 // not exceed this limit before incrementing.
1171 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1172                                                    ICmpInst::Predicate *Pred,
1173                                                    ScalarEvolution *SE) {
1174   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1175   *Pred = ICmpInst::ICMP_ULT;
1176 
1177   return SE->getConstant(APInt::getMinValue(BitWidth) -
1178                          SE->getUnsignedRange(Step).getUnsignedMax());
1179 }
1180 
1181 namespace {
1182 
1183 struct ExtendOpTraitsBase {
1184   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1185 };
1186 
1187 // Used to make code generic over signed and unsigned overflow.
1188 template <typename ExtendOp> struct ExtendOpTraits {
1189   // Members present:
1190   //
1191   // static const SCEV::NoWrapFlags WrapType;
1192   //
1193   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1194   //
1195   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1196   //                                           ICmpInst::Predicate *Pred,
1197   //                                           ScalarEvolution *SE);
1198 };
1199 
1200 template <>
1201 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1202   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1203 
1204   static const GetExtendExprTy GetExtendExpr;
1205 
1206   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1207                                              ICmpInst::Predicate *Pred,
1208                                              ScalarEvolution *SE) {
1209     return getSignedOverflowLimitForStep(Step, Pred, SE);
1210   }
1211 };
1212 
1213 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1214     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1215 
1216 template <>
1217 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1218   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1219 
1220   static const GetExtendExprTy GetExtendExpr;
1221 
1222   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1223                                              ICmpInst::Predicate *Pred,
1224                                              ScalarEvolution *SE) {
1225     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1226   }
1227 };
1228 
1229 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1230     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1231 }
1232 
1233 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1234 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1235 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1236 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1237 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1238 // expression "Step + sext/zext(PreIncAR)" is congruent with
1239 // "sext/zext(PostIncAR)"
1240 template <typename ExtendOpTy>
1241 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1242                                         ScalarEvolution *SE) {
1243   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1244   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1245 
1246   const Loop *L = AR->getLoop();
1247   const SCEV *Start = AR->getStart();
1248   const SCEV *Step = AR->getStepRecurrence(*SE);
1249 
1250   // Check for a simple looking step prior to loop entry.
1251   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1252   if (!SA)
1253     return nullptr;
1254 
1255   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1256   // subtraction is expensive. For this purpose, perform a quick and dirty
1257   // difference, by checking for Step in the operand list.
1258   SmallVector<const SCEV *, 4> DiffOps;
1259   for (const SCEV *Op : SA->operands())
1260     if (Op != Step)
1261       DiffOps.push_back(Op);
1262 
1263   if (DiffOps.size() == SA->getNumOperands())
1264     return nullptr;
1265 
1266   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1267   // `Step`:
1268 
1269   // 1. NSW/NUW flags on the step increment.
1270   auto PreStartFlags =
1271     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1272   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1273   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1274       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1275 
1276   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1277   // "S+X does not sign/unsign-overflow".
1278   //
1279 
1280   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1281   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1282       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1283     return PreStart;
1284 
1285   // 2. Direct overflow check on the step operation's expression.
1286   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1287   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1288   const SCEV *OperandExtendedStart =
1289       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1290                      (SE->*GetExtendExpr)(Step, WideTy));
1291   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1292     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1293       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1294       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1295       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1296       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1297     }
1298     return PreStart;
1299   }
1300 
1301   // 3. Loop precondition.
1302   ICmpInst::Predicate Pred;
1303   const SCEV *OverflowLimit =
1304       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1305 
1306   if (OverflowLimit &&
1307       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1308     return PreStart;
1309 
1310   return nullptr;
1311 }
1312 
1313 // Get the normalized zero or sign extended expression for this AddRec's Start.
1314 template <typename ExtendOpTy>
1315 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1316                                         ScalarEvolution *SE) {
1317   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1318 
1319   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1320   if (!PreStart)
1321     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1322 
1323   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1324                         (SE->*GetExtendExpr)(PreStart, Ty));
1325 }
1326 
1327 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1328 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1329 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1330 //
1331 // Formally:
1332 //
1333 //     {S,+,X} == {S-T,+,X} + T
1334 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1335 //
1336 // If ({S-T,+,X} + T) does not overflow  ... (1)
1337 //
1338 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1339 //
1340 // If {S-T,+,X} does not overflow  ... (2)
1341 //
1342 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1343 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1344 //
1345 // If (S-T)+T does not overflow  ... (3)
1346 //
1347 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1348 //      == {Ext(S),+,Ext(X)} == LHS
1349 //
1350 // Thus, if (1), (2) and (3) are true for some T, then
1351 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1352 //
1353 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1354 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1355 // to check for (1) and (2).
1356 //
1357 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1358 // is `Delta` (defined below).
1359 //
1360 template <typename ExtendOpTy>
1361 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1362                                                 const SCEV *Step,
1363                                                 const Loop *L) {
1364   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1365 
1366   // We restrict `Start` to a constant to prevent SCEV from spending too much
1367   // time here.  It is correct (but more expensive) to continue with a
1368   // non-constant `Start` and do a general SCEV subtraction to compute
1369   // `PreStart` below.
1370   //
1371   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1372   if (!StartC)
1373     return false;
1374 
1375   APInt StartAI = StartC->getAPInt();
1376 
1377   for (unsigned Delta : {-2, -1, 1, 2}) {
1378     const SCEV *PreStart = getConstant(StartAI - Delta);
1379 
1380     FoldingSetNodeID ID;
1381     ID.AddInteger(scAddRecExpr);
1382     ID.AddPointer(PreStart);
1383     ID.AddPointer(Step);
1384     ID.AddPointer(L);
1385     void *IP = nullptr;
1386     const auto *PreAR =
1387       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1388 
1389     // Give up if we don't already have the add recurrence we need because
1390     // actually constructing an add recurrence is relatively expensive.
1391     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1392       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1393       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1394       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1395           DeltaS, &Pred, this);
1396       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1397         return true;
1398     }
1399   }
1400 
1401   return false;
1402 }
1403 
1404 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1405                                                Type *Ty) {
1406   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1407          "This is not an extending conversion!");
1408   assert(isSCEVable(Ty) &&
1409          "This is not a conversion to a SCEVable type!");
1410   Ty = getEffectiveSCEVType(Ty);
1411 
1412   // Fold if the operand is constant.
1413   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1414     return getConstant(
1415       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1416 
1417   // zext(zext(x)) --> zext(x)
1418   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1419     return getZeroExtendExpr(SZ->getOperand(), Ty);
1420 
1421   // Before doing any expensive analysis, check to see if we've already
1422   // computed a SCEV for this Op and Ty.
1423   FoldingSetNodeID ID;
1424   ID.AddInteger(scZeroExtend);
1425   ID.AddPointer(Op);
1426   ID.AddPointer(Ty);
1427   void *IP = nullptr;
1428   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1429 
1430   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1431   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1432     // It's possible the bits taken off by the truncate were all zero bits. If
1433     // so, we should be able to simplify this further.
1434     const SCEV *X = ST->getOperand();
1435     ConstantRange CR = getUnsignedRange(X);
1436     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1437     unsigned NewBits = getTypeSizeInBits(Ty);
1438     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1439             CR.zextOrTrunc(NewBits)))
1440       return getTruncateOrZeroExtend(X, Ty);
1441   }
1442 
1443   // If the input value is a chrec scev, and we can prove that the value
1444   // did not overflow the old, smaller, value, we can zero extend all of the
1445   // operands (often constants).  This allows analysis of something like
1446   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1447   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1448     if (AR->isAffine()) {
1449       const SCEV *Start = AR->getStart();
1450       const SCEV *Step = AR->getStepRecurrence(*this);
1451       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1452       const Loop *L = AR->getLoop();
1453 
1454       if (!AR->hasNoUnsignedWrap()) {
1455         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1456         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1457       }
1458 
1459       // If we have special knowledge that this addrec won't overflow,
1460       // we don't need to do any further analysis.
1461       if (AR->hasNoUnsignedWrap())
1462         return getAddRecExpr(
1463             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1464             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1465 
1466       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1467       // Note that this serves two purposes: It filters out loops that are
1468       // simply not analyzable, and it covers the case where this code is
1469       // being called from within backedge-taken count analysis, such that
1470       // attempting to ask for the backedge-taken count would likely result
1471       // in infinite recursion. In the later case, the analysis code will
1472       // cope with a conservative value, and it will take care to purge
1473       // that value once it has finished.
1474       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1475       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1476         // Manually compute the final value for AR, checking for
1477         // overflow.
1478 
1479         // Check whether the backedge-taken count can be losslessly casted to
1480         // the addrec's type. The count is always unsigned.
1481         const SCEV *CastedMaxBECount =
1482           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1483         const SCEV *RecastedMaxBECount =
1484           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1485         if (MaxBECount == RecastedMaxBECount) {
1486           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1487           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1488           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1489           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1490           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1491           const SCEV *WideMaxBECount =
1492             getZeroExtendExpr(CastedMaxBECount, WideTy);
1493           const SCEV *OperandExtendedAdd =
1494             getAddExpr(WideStart,
1495                        getMulExpr(WideMaxBECount,
1496                                   getZeroExtendExpr(Step, WideTy)));
1497           if (ZAdd == OperandExtendedAdd) {
1498             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1499             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1500             // Return the expression with the addrec on the outside.
1501             return getAddRecExpr(
1502                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1503                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1504           }
1505           // Similar to above, only this time treat the step value as signed.
1506           // This covers loops that count down.
1507           OperandExtendedAdd =
1508             getAddExpr(WideStart,
1509                        getMulExpr(WideMaxBECount,
1510                                   getSignExtendExpr(Step, WideTy)));
1511           if (ZAdd == OperandExtendedAdd) {
1512             // Cache knowledge of AR NW, which is propagated to this AddRec.
1513             // Negative step causes unsigned wrap, but it still can't self-wrap.
1514             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1515             // Return the expression with the addrec on the outside.
1516             return getAddRecExpr(
1517                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1519           }
1520         }
1521       }
1522 
1523       // Normally, in the cases we can prove no-overflow via a
1524       // backedge guarding condition, we can also compute a backedge
1525       // taken count for the loop.  The exceptions are assumptions and
1526       // guards present in the loop -- SCEV is not great at exploiting
1527       // these to compute max backedge taken counts, but can still use
1528       // these to prove lack of overflow.  Use this fact to avoid
1529       // doing extra work that may not pay off.
1530       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1531           !AC.assumptions().empty()) {
1532         // If the backedge is guarded by a comparison with the pre-inc
1533         // value the addrec is safe. Also, if the entry is guarded by
1534         // a comparison with the start value and the backedge is
1535         // guarded by a comparison with the post-inc value, the addrec
1536         // is safe.
1537         if (isKnownPositive(Step)) {
1538           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1539                                       getUnsignedRange(Step).getUnsignedMax());
1540           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1541               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1542                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1543                                            AR->getPostIncExpr(*this), N))) {
1544             // Cache knowledge of AR NUW, which is propagated to this
1545             // AddRec.
1546             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1547             // Return the expression with the addrec on the outside.
1548             return getAddRecExpr(
1549                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1550                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1551           }
1552         } else if (isKnownNegative(Step)) {
1553           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1554                                       getSignedRange(Step).getSignedMin());
1555           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1556               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1557                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1558                                            AR->getPostIncExpr(*this), N))) {
1559             // Cache knowledge of AR NW, which is propagated to this
1560             // AddRec.  Negative step causes unsigned wrap, but it
1561             // still can't self-wrap.
1562             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1563             // Return the expression with the addrec on the outside.
1564             return getAddRecExpr(
1565                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1566                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1567           }
1568         }
1569       }
1570 
1571       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1572         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1573         return getAddRecExpr(
1574             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1575             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1576       }
1577     }
1578 
1579   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1580     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1581     if (SA->hasNoUnsignedWrap()) {
1582       // If the addition does not unsign overflow then we can, by definition,
1583       // commute the zero extension with the addition operation.
1584       SmallVector<const SCEV *, 4> Ops;
1585       for (const auto *Op : SA->operands())
1586         Ops.push_back(getZeroExtendExpr(Op, Ty));
1587       return getAddExpr(Ops, SCEV::FlagNUW);
1588     }
1589   }
1590 
1591   // The cast wasn't folded; create an explicit cast node.
1592   // Recompute the insert position, as it may have been invalidated.
1593   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1594   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1595                                                    Op, Ty);
1596   UniqueSCEVs.InsertNode(S, IP);
1597   return S;
1598 }
1599 
1600 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1601                                                Type *Ty) {
1602   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1603          "This is not an extending conversion!");
1604   assert(isSCEVable(Ty) &&
1605          "This is not a conversion to a SCEVable type!");
1606   Ty = getEffectiveSCEVType(Ty);
1607 
1608   // Fold if the operand is constant.
1609   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1610     return getConstant(
1611       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1612 
1613   // sext(sext(x)) --> sext(x)
1614   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1615     return getSignExtendExpr(SS->getOperand(), Ty);
1616 
1617   // sext(zext(x)) --> zext(x)
1618   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1619     return getZeroExtendExpr(SZ->getOperand(), Ty);
1620 
1621   // Before doing any expensive analysis, check to see if we've already
1622   // computed a SCEV for this Op and Ty.
1623   FoldingSetNodeID ID;
1624   ID.AddInteger(scSignExtend);
1625   ID.AddPointer(Op);
1626   ID.AddPointer(Ty);
1627   void *IP = nullptr;
1628   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1629 
1630   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1631   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1632     // It's possible the bits taken off by the truncate were all sign bits. If
1633     // so, we should be able to simplify this further.
1634     const SCEV *X = ST->getOperand();
1635     ConstantRange CR = getSignedRange(X);
1636     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1637     unsigned NewBits = getTypeSizeInBits(Ty);
1638     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1639             CR.sextOrTrunc(NewBits)))
1640       return getTruncateOrSignExtend(X, Ty);
1641   }
1642 
1643   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1644   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1645     if (SA->getNumOperands() == 2) {
1646       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1647       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1648       if (SMul && SC1) {
1649         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1650           const APInt &C1 = SC1->getAPInt();
1651           const APInt &C2 = SC2->getAPInt();
1652           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1653               C2.ugt(C1) && C2.isPowerOf2())
1654             return getAddExpr(getSignExtendExpr(SC1, Ty),
1655                               getSignExtendExpr(SMul, Ty));
1656         }
1657       }
1658     }
1659 
1660     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1661     if (SA->hasNoSignedWrap()) {
1662       // If the addition does not sign overflow then we can, by definition,
1663       // commute the sign extension with the addition operation.
1664       SmallVector<const SCEV *, 4> Ops;
1665       for (const auto *Op : SA->operands())
1666         Ops.push_back(getSignExtendExpr(Op, Ty));
1667       return getAddExpr(Ops, SCEV::FlagNSW);
1668     }
1669   }
1670   // If the input value is a chrec scev, and we can prove that the value
1671   // did not overflow the old, smaller, value, we can sign extend all of the
1672   // operands (often constants).  This allows analysis of something like
1673   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1674   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1675     if (AR->isAffine()) {
1676       const SCEV *Start = AR->getStart();
1677       const SCEV *Step = AR->getStepRecurrence(*this);
1678       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1679       const Loop *L = AR->getLoop();
1680 
1681       if (!AR->hasNoSignedWrap()) {
1682         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1683         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1684       }
1685 
1686       // If we have special knowledge that this addrec won't overflow,
1687       // we don't need to do any further analysis.
1688       if (AR->hasNoSignedWrap())
1689         return getAddRecExpr(
1690             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1691             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1692 
1693       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1694       // Note that this serves two purposes: It filters out loops that are
1695       // simply not analyzable, and it covers the case where this code is
1696       // being called from within backedge-taken count analysis, such that
1697       // attempting to ask for the backedge-taken count would likely result
1698       // in infinite recursion. In the later case, the analysis code will
1699       // cope with a conservative value, and it will take care to purge
1700       // that value once it has finished.
1701       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1702       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1703         // Manually compute the final value for AR, checking for
1704         // overflow.
1705 
1706         // Check whether the backedge-taken count can be losslessly casted to
1707         // the addrec's type. The count is always unsigned.
1708         const SCEV *CastedMaxBECount =
1709           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1710         const SCEV *RecastedMaxBECount =
1711           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1712         if (MaxBECount == RecastedMaxBECount) {
1713           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1714           // Check whether Start+Step*MaxBECount has no signed overflow.
1715           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1716           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1717           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1718           const SCEV *WideMaxBECount =
1719             getZeroExtendExpr(CastedMaxBECount, WideTy);
1720           const SCEV *OperandExtendedAdd =
1721             getAddExpr(WideStart,
1722                        getMulExpr(WideMaxBECount,
1723                                   getSignExtendExpr(Step, WideTy)));
1724           if (SAdd == OperandExtendedAdd) {
1725             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1726             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1727             // Return the expression with the addrec on the outside.
1728             return getAddRecExpr(
1729                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1730                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1731           }
1732           // Similar to above, only this time treat the step value as unsigned.
1733           // This covers loops that count up with an unsigned step.
1734           OperandExtendedAdd =
1735             getAddExpr(WideStart,
1736                        getMulExpr(WideMaxBECount,
1737                                   getZeroExtendExpr(Step, WideTy)));
1738           if (SAdd == OperandExtendedAdd) {
1739             // If AR wraps around then
1740             //
1741             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1742             // => SAdd != OperandExtendedAdd
1743             //
1744             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1745             // (SAdd == OperandExtendedAdd => AR is NW)
1746 
1747             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748 
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1753           }
1754         }
1755       }
1756 
1757       // Normally, in the cases we can prove no-overflow via a
1758       // backedge guarding condition, we can also compute a backedge
1759       // taken count for the loop.  The exceptions are assumptions and
1760       // guards present in the loop -- SCEV is not great at exploiting
1761       // these to compute max backedge taken counts, but can still use
1762       // these to prove lack of overflow.  Use this fact to avoid
1763       // doing extra work that may not pay off.
1764 
1765       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766           !AC.assumptions().empty()) {
1767         // If the backedge is guarded by a comparison with the pre-inc
1768         // value the addrec is safe. Also, if the entry is guarded by
1769         // a comparison with the start value and the backedge is
1770         // guarded by a comparison with the post-inc value, the addrec
1771         // is safe.
1772         ICmpInst::Predicate Pred;
1773         const SCEV *OverflowLimit =
1774             getSignedOverflowLimitForStep(Step, &Pred, this);
1775         if (OverflowLimit &&
1776             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1777              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1778               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1779                                           OverflowLimit)))) {
1780           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1781           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1782           return getAddRecExpr(
1783               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1784               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1785         }
1786       }
1787 
1788       // If Start and Step are constants, check if we can apply this
1789       // transformation:
1790       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1791       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1792       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1793       if (SC1 && SC2) {
1794         const APInt &C1 = SC1->getAPInt();
1795         const APInt &C2 = SC2->getAPInt();
1796         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1797             C2.isPowerOf2()) {
1798           Start = getSignExtendExpr(Start, Ty);
1799           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1800                                             AR->getNoWrapFlags());
1801           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1802         }
1803       }
1804 
1805       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1806         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1807         return getAddRecExpr(
1808             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1809             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1810       }
1811     }
1812 
1813   // If the input value is provably positive and we could not simplify
1814   // away the sext build a zext instead.
1815   if (isKnownNonNegative(Op))
1816     return getZeroExtendExpr(Op, Ty);
1817 
1818   // The cast wasn't folded; create an explicit cast node.
1819   // Recompute the insert position, as it may have been invalidated.
1820   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1821   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1822                                                    Op, Ty);
1823   UniqueSCEVs.InsertNode(S, IP);
1824   return S;
1825 }
1826 
1827 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1828 /// unspecified bits out to the given type.
1829 ///
1830 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1831                                               Type *Ty) {
1832   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1833          "This is not an extending conversion!");
1834   assert(isSCEVable(Ty) &&
1835          "This is not a conversion to a SCEVable type!");
1836   Ty = getEffectiveSCEVType(Ty);
1837 
1838   // Sign-extend negative constants.
1839   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1840     if (SC->getAPInt().isNegative())
1841       return getSignExtendExpr(Op, Ty);
1842 
1843   // Peel off a truncate cast.
1844   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1845     const SCEV *NewOp = T->getOperand();
1846     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1847       return getAnyExtendExpr(NewOp, Ty);
1848     return getTruncateOrNoop(NewOp, Ty);
1849   }
1850 
1851   // Next try a zext cast. If the cast is folded, use it.
1852   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1853   if (!isa<SCEVZeroExtendExpr>(ZExt))
1854     return ZExt;
1855 
1856   // Next try a sext cast. If the cast is folded, use it.
1857   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1858   if (!isa<SCEVSignExtendExpr>(SExt))
1859     return SExt;
1860 
1861   // Force the cast to be folded into the operands of an addrec.
1862   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1863     SmallVector<const SCEV *, 4> Ops;
1864     for (const SCEV *Op : AR->operands())
1865       Ops.push_back(getAnyExtendExpr(Op, Ty));
1866     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1867   }
1868 
1869   // If the expression is obviously signed, use the sext cast value.
1870   if (isa<SCEVSMaxExpr>(Op))
1871     return SExt;
1872 
1873   // Absent any other information, use the zext cast value.
1874   return ZExt;
1875 }
1876 
1877 /// Process the given Ops list, which is a list of operands to be added under
1878 /// the given scale, update the given map. This is a helper function for
1879 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1880 /// that would form an add expression like this:
1881 ///
1882 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1883 ///
1884 /// where A and B are constants, update the map with these values:
1885 ///
1886 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1887 ///
1888 /// and add 13 + A*B*29 to AccumulatedConstant.
1889 /// This will allow getAddRecExpr to produce this:
1890 ///
1891 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1892 ///
1893 /// This form often exposes folding opportunities that are hidden in
1894 /// the original operand list.
1895 ///
1896 /// Return true iff it appears that any interesting folding opportunities
1897 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1898 /// the common case where no interesting opportunities are present, and
1899 /// is also used as a check to avoid infinite recursion.
1900 ///
1901 static bool
1902 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1903                              SmallVectorImpl<const SCEV *> &NewOps,
1904                              APInt &AccumulatedConstant,
1905                              const SCEV *const *Ops, size_t NumOperands,
1906                              const APInt &Scale,
1907                              ScalarEvolution &SE) {
1908   bool Interesting = false;
1909 
1910   // Iterate over the add operands. They are sorted, with constants first.
1911   unsigned i = 0;
1912   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1913     ++i;
1914     // Pull a buried constant out to the outside.
1915     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1916       Interesting = true;
1917     AccumulatedConstant += Scale * C->getAPInt();
1918   }
1919 
1920   // Next comes everything else. We're especially interested in multiplies
1921   // here, but they're in the middle, so just visit the rest with one loop.
1922   for (; i != NumOperands; ++i) {
1923     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1924     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1925       APInt NewScale =
1926           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1927       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1928         // A multiplication of a constant with another add; recurse.
1929         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1930         Interesting |=
1931           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1932                                        Add->op_begin(), Add->getNumOperands(),
1933                                        NewScale, SE);
1934       } else {
1935         // A multiplication of a constant with some other value. Update
1936         // the map.
1937         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1938         const SCEV *Key = SE.getMulExpr(MulOps);
1939         auto Pair = M.insert({Key, NewScale});
1940         if (Pair.second) {
1941           NewOps.push_back(Pair.first->first);
1942         } else {
1943           Pair.first->second += NewScale;
1944           // The map already had an entry for this value, which may indicate
1945           // a folding opportunity.
1946           Interesting = true;
1947         }
1948       }
1949     } else {
1950       // An ordinary operand. Update the map.
1951       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1952           M.insert({Ops[i], Scale});
1953       if (Pair.second) {
1954         NewOps.push_back(Pair.first->first);
1955       } else {
1956         Pair.first->second += Scale;
1957         // The map already had an entry for this value, which may indicate
1958         // a folding opportunity.
1959         Interesting = true;
1960       }
1961     }
1962   }
1963 
1964   return Interesting;
1965 }
1966 
1967 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1968 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1969 // can't-overflow flags for the operation if possible.
1970 static SCEV::NoWrapFlags
1971 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1972                       const SmallVectorImpl<const SCEV *> &Ops,
1973                       SCEV::NoWrapFlags Flags) {
1974   using namespace std::placeholders;
1975   typedef OverflowingBinaryOperator OBO;
1976 
1977   bool CanAnalyze =
1978       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1979   (void)CanAnalyze;
1980   assert(CanAnalyze && "don't call from other places!");
1981 
1982   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1983   SCEV::NoWrapFlags SignOrUnsignWrap =
1984       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1985 
1986   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1987   auto IsKnownNonNegative = [&](const SCEV *S) {
1988     return SE->isKnownNonNegative(S);
1989   };
1990 
1991   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1992     Flags =
1993         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1994 
1995   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1996 
1997   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1998       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1999 
2000     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2001     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2002 
2003     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2004     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2005       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2006           Instruction::Add, C, OBO::NoSignedWrap);
2007       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2008         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2009     }
2010     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2011       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2012           Instruction::Add, C, OBO::NoUnsignedWrap);
2013       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2014         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2015     }
2016   }
2017 
2018   return Flags;
2019 }
2020 
2021 /// Get a canonical add expression, or something simpler if possible.
2022 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2023                                         SCEV::NoWrapFlags Flags) {
2024   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2025          "only nuw or nsw allowed");
2026   assert(!Ops.empty() && "Cannot get empty add!");
2027   if (Ops.size() == 1) return Ops[0];
2028 #ifndef NDEBUG
2029   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2030   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2031     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2032            "SCEVAddExpr operand types don't match!");
2033 #endif
2034 
2035   // Sort by complexity, this groups all similar expression types together.
2036   GroupByComplexity(Ops, &LI);
2037 
2038   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2039 
2040   // If there are any constants, fold them together.
2041   unsigned Idx = 0;
2042   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2043     ++Idx;
2044     assert(Idx < Ops.size());
2045     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2046       // We found two constants, fold them together!
2047       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2048       if (Ops.size() == 2) return Ops[0];
2049       Ops.erase(Ops.begin()+1);  // Erase the folded element
2050       LHSC = cast<SCEVConstant>(Ops[0]);
2051     }
2052 
2053     // If we are left with a constant zero being added, strip it off.
2054     if (LHSC->getValue()->isZero()) {
2055       Ops.erase(Ops.begin());
2056       --Idx;
2057     }
2058 
2059     if (Ops.size() == 1) return Ops[0];
2060   }
2061 
2062   // Okay, check to see if the same value occurs in the operand list more than
2063   // once.  If so, merge them together into an multiply expression.  Since we
2064   // sorted the list, these values are required to be adjacent.
2065   Type *Ty = Ops[0]->getType();
2066   bool FoundMatch = false;
2067   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2068     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2069       // Scan ahead to count how many equal operands there are.
2070       unsigned Count = 2;
2071       while (i+Count != e && Ops[i+Count] == Ops[i])
2072         ++Count;
2073       // Merge the values into a multiply.
2074       const SCEV *Scale = getConstant(Ty, Count);
2075       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2076       if (Ops.size() == Count)
2077         return Mul;
2078       Ops[i] = Mul;
2079       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2080       --i; e -= Count - 1;
2081       FoundMatch = true;
2082     }
2083   if (FoundMatch)
2084     return getAddExpr(Ops, Flags);
2085 
2086   // Check for truncates. If all the operands are truncated from the same
2087   // type, see if factoring out the truncate would permit the result to be
2088   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2089   // if the contents of the resulting outer trunc fold to something simple.
2090   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2091     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2092     Type *DstType = Trunc->getType();
2093     Type *SrcType = Trunc->getOperand()->getType();
2094     SmallVector<const SCEV *, 8> LargeOps;
2095     bool Ok = true;
2096     // Check all the operands to see if they can be represented in the
2097     // source type of the truncate.
2098     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2099       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2100         if (T->getOperand()->getType() != SrcType) {
2101           Ok = false;
2102           break;
2103         }
2104         LargeOps.push_back(T->getOperand());
2105       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2106         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2107       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2108         SmallVector<const SCEV *, 8> LargeMulOps;
2109         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2110           if (const SCEVTruncateExpr *T =
2111                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2112             if (T->getOperand()->getType() != SrcType) {
2113               Ok = false;
2114               break;
2115             }
2116             LargeMulOps.push_back(T->getOperand());
2117           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2118             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2119           } else {
2120             Ok = false;
2121             break;
2122           }
2123         }
2124         if (Ok)
2125           LargeOps.push_back(getMulExpr(LargeMulOps));
2126       } else {
2127         Ok = false;
2128         break;
2129       }
2130     }
2131     if (Ok) {
2132       // Evaluate the expression in the larger type.
2133       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2134       // If it folds to something simple, use it. Otherwise, don't.
2135       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2136         return getTruncateExpr(Fold, DstType);
2137     }
2138   }
2139 
2140   // Skip past any other cast SCEVs.
2141   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2142     ++Idx;
2143 
2144   // If there are add operands they would be next.
2145   if (Idx < Ops.size()) {
2146     bool DeletedAdd = false;
2147     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2148       // If we have an add, expand the add operands onto the end of the operands
2149       // list.
2150       Ops.erase(Ops.begin()+Idx);
2151       Ops.append(Add->op_begin(), Add->op_end());
2152       DeletedAdd = true;
2153     }
2154 
2155     // If we deleted at least one add, we added operands to the end of the list,
2156     // and they are not necessarily sorted.  Recurse to resort and resimplify
2157     // any operands we just acquired.
2158     if (DeletedAdd)
2159       return getAddExpr(Ops);
2160   }
2161 
2162   // Skip over the add expression until we get to a multiply.
2163   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2164     ++Idx;
2165 
2166   // Check to see if there are any folding opportunities present with
2167   // operands multiplied by constant values.
2168   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2169     uint64_t BitWidth = getTypeSizeInBits(Ty);
2170     DenseMap<const SCEV *, APInt> M;
2171     SmallVector<const SCEV *, 8> NewOps;
2172     APInt AccumulatedConstant(BitWidth, 0);
2173     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2174                                      Ops.data(), Ops.size(),
2175                                      APInt(BitWidth, 1), *this)) {
2176       struct APIntCompare {
2177         bool operator()(const APInt &LHS, const APInt &RHS) const {
2178           return LHS.ult(RHS);
2179         }
2180       };
2181 
2182       // Some interesting folding opportunity is present, so its worthwhile to
2183       // re-generate the operands list. Group the operands by constant scale,
2184       // to avoid multiplying by the same constant scale multiple times.
2185       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2186       for (const SCEV *NewOp : NewOps)
2187         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2188       // Re-generate the operands list.
2189       Ops.clear();
2190       if (AccumulatedConstant != 0)
2191         Ops.push_back(getConstant(AccumulatedConstant));
2192       for (auto &MulOp : MulOpLists)
2193         if (MulOp.first != 0)
2194           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2195                                    getAddExpr(MulOp.second)));
2196       if (Ops.empty())
2197         return getZero(Ty);
2198       if (Ops.size() == 1)
2199         return Ops[0];
2200       return getAddExpr(Ops);
2201     }
2202   }
2203 
2204   // If we are adding something to a multiply expression, make sure the
2205   // something is not already an operand of the multiply.  If so, merge it into
2206   // the multiply.
2207   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2208     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2209     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2210       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2211       if (isa<SCEVConstant>(MulOpSCEV))
2212         continue;
2213       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2214         if (MulOpSCEV == Ops[AddOp]) {
2215           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2216           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2217           if (Mul->getNumOperands() != 2) {
2218             // If the multiply has more than two operands, we must get the
2219             // Y*Z term.
2220             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2221                                                 Mul->op_begin()+MulOp);
2222             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2223             InnerMul = getMulExpr(MulOps);
2224           }
2225           const SCEV *One = getOne(Ty);
2226           const SCEV *AddOne = getAddExpr(One, InnerMul);
2227           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2228           if (Ops.size() == 2) return OuterMul;
2229           if (AddOp < Idx) {
2230             Ops.erase(Ops.begin()+AddOp);
2231             Ops.erase(Ops.begin()+Idx-1);
2232           } else {
2233             Ops.erase(Ops.begin()+Idx);
2234             Ops.erase(Ops.begin()+AddOp-1);
2235           }
2236           Ops.push_back(OuterMul);
2237           return getAddExpr(Ops);
2238         }
2239 
2240       // Check this multiply against other multiplies being added together.
2241       for (unsigned OtherMulIdx = Idx+1;
2242            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2243            ++OtherMulIdx) {
2244         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2245         // If MulOp occurs in OtherMul, we can fold the two multiplies
2246         // together.
2247         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2248              OMulOp != e; ++OMulOp)
2249           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2250             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2251             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2252             if (Mul->getNumOperands() != 2) {
2253               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2254                                                   Mul->op_begin()+MulOp);
2255               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2256               InnerMul1 = getMulExpr(MulOps);
2257             }
2258             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2259             if (OtherMul->getNumOperands() != 2) {
2260               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2261                                                   OtherMul->op_begin()+OMulOp);
2262               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2263               InnerMul2 = getMulExpr(MulOps);
2264             }
2265             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2266             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2267             if (Ops.size() == 2) return OuterMul;
2268             Ops.erase(Ops.begin()+Idx);
2269             Ops.erase(Ops.begin()+OtherMulIdx-1);
2270             Ops.push_back(OuterMul);
2271             return getAddExpr(Ops);
2272           }
2273       }
2274     }
2275   }
2276 
2277   // If there are any add recurrences in the operands list, see if any other
2278   // added values are loop invariant.  If so, we can fold them into the
2279   // recurrence.
2280   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2281     ++Idx;
2282 
2283   // Scan over all recurrences, trying to fold loop invariants into them.
2284   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2285     // Scan all of the other operands to this add and add them to the vector if
2286     // they are loop invariant w.r.t. the recurrence.
2287     SmallVector<const SCEV *, 8> LIOps;
2288     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2289     const Loop *AddRecLoop = AddRec->getLoop();
2290     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2291       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2292         LIOps.push_back(Ops[i]);
2293         Ops.erase(Ops.begin()+i);
2294         --i; --e;
2295       }
2296 
2297     // If we found some loop invariants, fold them into the recurrence.
2298     if (!LIOps.empty()) {
2299       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2300       LIOps.push_back(AddRec->getStart());
2301 
2302       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2303                                              AddRec->op_end());
2304       // This follows from the fact that the no-wrap flags on the outer add
2305       // expression are applicable on the 0th iteration, when the add recurrence
2306       // will be equal to its start value.
2307       AddRecOps[0] = getAddExpr(LIOps, Flags);
2308 
2309       // Build the new addrec. Propagate the NUW and NSW flags if both the
2310       // outer add and the inner addrec are guaranteed to have no overflow.
2311       // Always propagate NW.
2312       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2313       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2314 
2315       // If all of the other operands were loop invariant, we are done.
2316       if (Ops.size() == 1) return NewRec;
2317 
2318       // Otherwise, add the folded AddRec by the non-invariant parts.
2319       for (unsigned i = 0;; ++i)
2320         if (Ops[i] == AddRec) {
2321           Ops[i] = NewRec;
2322           break;
2323         }
2324       return getAddExpr(Ops);
2325     }
2326 
2327     // Okay, if there weren't any loop invariants to be folded, check to see if
2328     // there are multiple AddRec's with the same loop induction variable being
2329     // added together.  If so, we can fold them.
2330     for (unsigned OtherIdx = Idx+1;
2331          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2332          ++OtherIdx)
2333       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2334         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2335         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2336                                                AddRec->op_end());
2337         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2338              ++OtherIdx)
2339           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2340             if (OtherAddRec->getLoop() == AddRecLoop) {
2341               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2342                    i != e; ++i) {
2343                 if (i >= AddRecOps.size()) {
2344                   AddRecOps.append(OtherAddRec->op_begin()+i,
2345                                    OtherAddRec->op_end());
2346                   break;
2347                 }
2348                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2349                                           OtherAddRec->getOperand(i));
2350               }
2351               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2352             }
2353         // Step size has changed, so we cannot guarantee no self-wraparound.
2354         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2355         return getAddExpr(Ops);
2356       }
2357 
2358     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2359     // next one.
2360   }
2361 
2362   // Okay, it looks like we really DO need an add expr.  Check to see if we
2363   // already have one, otherwise create a new one.
2364   FoldingSetNodeID ID;
2365   ID.AddInteger(scAddExpr);
2366   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2367     ID.AddPointer(Ops[i]);
2368   void *IP = nullptr;
2369   SCEVAddExpr *S =
2370     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2371   if (!S) {
2372     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2373     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2374     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2375                                         O, Ops.size());
2376     UniqueSCEVs.InsertNode(S, IP);
2377   }
2378   S->setNoWrapFlags(Flags);
2379   return S;
2380 }
2381 
2382 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2383   uint64_t k = i*j;
2384   if (j > 1 && k / j != i) Overflow = true;
2385   return k;
2386 }
2387 
2388 /// Compute the result of "n choose k", the binomial coefficient.  If an
2389 /// intermediate computation overflows, Overflow will be set and the return will
2390 /// be garbage. Overflow is not cleared on absence of overflow.
2391 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2392   // We use the multiplicative formula:
2393   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2394   // At each iteration, we take the n-th term of the numeral and divide by the
2395   // (k-n)th term of the denominator.  This division will always produce an
2396   // integral result, and helps reduce the chance of overflow in the
2397   // intermediate computations. However, we can still overflow even when the
2398   // final result would fit.
2399 
2400   if (n == 0 || n == k) return 1;
2401   if (k > n) return 0;
2402 
2403   if (k > n/2)
2404     k = n-k;
2405 
2406   uint64_t r = 1;
2407   for (uint64_t i = 1; i <= k; ++i) {
2408     r = umul_ov(r, n-(i-1), Overflow);
2409     r /= i;
2410   }
2411   return r;
2412 }
2413 
2414 /// Determine if any of the operands in this SCEV are a constant or if
2415 /// any of the add or multiply expressions in this SCEV contain a constant.
2416 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2417   SmallVector<const SCEV *, 4> Ops;
2418   Ops.push_back(StartExpr);
2419   while (!Ops.empty()) {
2420     const SCEV *CurrentExpr = Ops.pop_back_val();
2421     if (isa<SCEVConstant>(*CurrentExpr))
2422       return true;
2423 
2424     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2425       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2426       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2427     }
2428   }
2429   return false;
2430 }
2431 
2432 /// Get a canonical multiply expression, or something simpler if possible.
2433 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2434                                         SCEV::NoWrapFlags Flags) {
2435   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2436          "only nuw or nsw allowed");
2437   assert(!Ops.empty() && "Cannot get empty mul!");
2438   if (Ops.size() == 1) return Ops[0];
2439 #ifndef NDEBUG
2440   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2441   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2442     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2443            "SCEVMulExpr operand types don't match!");
2444 #endif
2445 
2446   // Sort by complexity, this groups all similar expression types together.
2447   GroupByComplexity(Ops, &LI);
2448 
2449   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2450 
2451   // If there are any constants, fold them together.
2452   unsigned Idx = 0;
2453   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2454 
2455     // C1*(C2+V) -> C1*C2 + C1*V
2456     if (Ops.size() == 2)
2457         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2458           // If any of Add's ops are Adds or Muls with a constant,
2459           // apply this transformation as well.
2460           if (Add->getNumOperands() == 2)
2461             if (containsConstantSomewhere(Add))
2462               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2463                                 getMulExpr(LHSC, Add->getOperand(1)));
2464 
2465     ++Idx;
2466     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2467       // We found two constants, fold them together!
2468       ConstantInt *Fold =
2469           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2470       Ops[0] = getConstant(Fold);
2471       Ops.erase(Ops.begin()+1);  // Erase the folded element
2472       if (Ops.size() == 1) return Ops[0];
2473       LHSC = cast<SCEVConstant>(Ops[0]);
2474     }
2475 
2476     // If we are left with a constant one being multiplied, strip it off.
2477     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2478       Ops.erase(Ops.begin());
2479       --Idx;
2480     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2481       // If we have a multiply of zero, it will always be zero.
2482       return Ops[0];
2483     } else if (Ops[0]->isAllOnesValue()) {
2484       // If we have a mul by -1 of an add, try distributing the -1 among the
2485       // add operands.
2486       if (Ops.size() == 2) {
2487         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2488           SmallVector<const SCEV *, 4> NewOps;
2489           bool AnyFolded = false;
2490           for (const SCEV *AddOp : Add->operands()) {
2491             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2492             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2493             NewOps.push_back(Mul);
2494           }
2495           if (AnyFolded)
2496             return getAddExpr(NewOps);
2497         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2498           // Negation preserves a recurrence's no self-wrap property.
2499           SmallVector<const SCEV *, 4> Operands;
2500           for (const SCEV *AddRecOp : AddRec->operands())
2501             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2502 
2503           return getAddRecExpr(Operands, AddRec->getLoop(),
2504                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2505         }
2506       }
2507     }
2508 
2509     if (Ops.size() == 1)
2510       return Ops[0];
2511   }
2512 
2513   // Skip over the add expression until we get to a multiply.
2514   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2515     ++Idx;
2516 
2517   // If there are mul operands inline them all into this expression.
2518   if (Idx < Ops.size()) {
2519     bool DeletedMul = false;
2520     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2521       // If we have an mul, expand the mul operands onto the end of the operands
2522       // list.
2523       Ops.erase(Ops.begin()+Idx);
2524       Ops.append(Mul->op_begin(), Mul->op_end());
2525       DeletedMul = true;
2526     }
2527 
2528     // If we deleted at least one mul, we added operands to the end of the list,
2529     // and they are not necessarily sorted.  Recurse to resort and resimplify
2530     // any operands we just acquired.
2531     if (DeletedMul)
2532       return getMulExpr(Ops);
2533   }
2534 
2535   // If there are any add recurrences in the operands list, see if any other
2536   // added values are loop invariant.  If so, we can fold them into the
2537   // recurrence.
2538   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2539     ++Idx;
2540 
2541   // Scan over all recurrences, trying to fold loop invariants into them.
2542   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2543     // Scan all of the other operands to this mul and add them to the vector if
2544     // they are loop invariant w.r.t. the recurrence.
2545     SmallVector<const SCEV *, 8> LIOps;
2546     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2547     const Loop *AddRecLoop = AddRec->getLoop();
2548     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2549       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2550         LIOps.push_back(Ops[i]);
2551         Ops.erase(Ops.begin()+i);
2552         --i; --e;
2553       }
2554 
2555     // If we found some loop invariants, fold them into the recurrence.
2556     if (!LIOps.empty()) {
2557       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2558       SmallVector<const SCEV *, 4> NewOps;
2559       NewOps.reserve(AddRec->getNumOperands());
2560       const SCEV *Scale = getMulExpr(LIOps);
2561       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2562         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2563 
2564       // Build the new addrec. Propagate the NUW and NSW flags if both the
2565       // outer mul and the inner addrec are guaranteed to have no overflow.
2566       //
2567       // No self-wrap cannot be guaranteed after changing the step size, but
2568       // will be inferred if either NUW or NSW is true.
2569       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2570       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2571 
2572       // If all of the other operands were loop invariant, we are done.
2573       if (Ops.size() == 1) return NewRec;
2574 
2575       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2576       for (unsigned i = 0;; ++i)
2577         if (Ops[i] == AddRec) {
2578           Ops[i] = NewRec;
2579           break;
2580         }
2581       return getMulExpr(Ops);
2582     }
2583 
2584     // Okay, if there weren't any loop invariants to be folded, check to see if
2585     // there are multiple AddRec's with the same loop induction variable being
2586     // multiplied together.  If so, we can fold them.
2587 
2588     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2589     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2590     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2591     //   ]]],+,...up to x=2n}.
2592     // Note that the arguments to choose() are always integers with values
2593     // known at compile time, never SCEV objects.
2594     //
2595     // The implementation avoids pointless extra computations when the two
2596     // addrec's are of different length (mathematically, it's equivalent to
2597     // an infinite stream of zeros on the right).
2598     bool OpsModified = false;
2599     for (unsigned OtherIdx = Idx+1;
2600          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2601          ++OtherIdx) {
2602       const SCEVAddRecExpr *OtherAddRec =
2603         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2604       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2605         continue;
2606 
2607       bool Overflow = false;
2608       Type *Ty = AddRec->getType();
2609       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2610       SmallVector<const SCEV*, 7> AddRecOps;
2611       for (int x = 0, xe = AddRec->getNumOperands() +
2612              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2613         const SCEV *Term = getZero(Ty);
2614         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2615           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2616           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2617                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2618                z < ze && !Overflow; ++z) {
2619             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2620             uint64_t Coeff;
2621             if (LargerThan64Bits)
2622               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2623             else
2624               Coeff = Coeff1*Coeff2;
2625             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2626             const SCEV *Term1 = AddRec->getOperand(y-z);
2627             const SCEV *Term2 = OtherAddRec->getOperand(z);
2628             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2629           }
2630         }
2631         AddRecOps.push_back(Term);
2632       }
2633       if (!Overflow) {
2634         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2635                                               SCEV::FlagAnyWrap);
2636         if (Ops.size() == 2) return NewAddRec;
2637         Ops[Idx] = NewAddRec;
2638         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2639         OpsModified = true;
2640         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2641         if (!AddRec)
2642           break;
2643       }
2644     }
2645     if (OpsModified)
2646       return getMulExpr(Ops);
2647 
2648     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2649     // next one.
2650   }
2651 
2652   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2653   // already have one, otherwise create a new one.
2654   FoldingSetNodeID ID;
2655   ID.AddInteger(scMulExpr);
2656   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2657     ID.AddPointer(Ops[i]);
2658   void *IP = nullptr;
2659   SCEVMulExpr *S =
2660     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2661   if (!S) {
2662     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2663     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2664     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2665                                         O, Ops.size());
2666     UniqueSCEVs.InsertNode(S, IP);
2667   }
2668   S->setNoWrapFlags(Flags);
2669   return S;
2670 }
2671 
2672 /// Get a canonical unsigned division expression, or something simpler if
2673 /// possible.
2674 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2675                                          const SCEV *RHS) {
2676   assert(getEffectiveSCEVType(LHS->getType()) ==
2677          getEffectiveSCEVType(RHS->getType()) &&
2678          "SCEVUDivExpr operand types don't match!");
2679 
2680   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2681     if (RHSC->getValue()->equalsInt(1))
2682       return LHS;                               // X udiv 1 --> x
2683     // If the denominator is zero, the result of the udiv is undefined. Don't
2684     // try to analyze it, because the resolution chosen here may differ from
2685     // the resolution chosen in other parts of the compiler.
2686     if (!RHSC->getValue()->isZero()) {
2687       // Determine if the division can be folded into the operands of
2688       // its operands.
2689       // TODO: Generalize this to non-constants by using known-bits information.
2690       Type *Ty = LHS->getType();
2691       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2692       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2693       // For non-power-of-two values, effectively round the value up to the
2694       // nearest power of two.
2695       if (!RHSC->getAPInt().isPowerOf2())
2696         ++MaxShiftAmt;
2697       IntegerType *ExtTy =
2698         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2699       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2700         if (const SCEVConstant *Step =
2701             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2702           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2703           const APInt &StepInt = Step->getAPInt();
2704           const APInt &DivInt = RHSC->getAPInt();
2705           if (!StepInt.urem(DivInt) &&
2706               getZeroExtendExpr(AR, ExtTy) ==
2707               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2708                             getZeroExtendExpr(Step, ExtTy),
2709                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2710             SmallVector<const SCEV *, 4> Operands;
2711             for (const SCEV *Op : AR->operands())
2712               Operands.push_back(getUDivExpr(Op, RHS));
2713             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2714           }
2715           /// Get a canonical UDivExpr for a recurrence.
2716           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2717           // We can currently only fold X%N if X is constant.
2718           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2719           if (StartC && !DivInt.urem(StepInt) &&
2720               getZeroExtendExpr(AR, ExtTy) ==
2721               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2722                             getZeroExtendExpr(Step, ExtTy),
2723                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2724             const APInt &StartInt = StartC->getAPInt();
2725             const APInt &StartRem = StartInt.urem(StepInt);
2726             if (StartRem != 0)
2727               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2728                                   AR->getLoop(), SCEV::FlagNW);
2729           }
2730         }
2731       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2732       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2733         SmallVector<const SCEV *, 4> Operands;
2734         for (const SCEV *Op : M->operands())
2735           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2736         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2737           // Find an operand that's safely divisible.
2738           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2739             const SCEV *Op = M->getOperand(i);
2740             const SCEV *Div = getUDivExpr(Op, RHSC);
2741             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2742               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2743                                                       M->op_end());
2744               Operands[i] = Div;
2745               return getMulExpr(Operands);
2746             }
2747           }
2748       }
2749       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2750       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2751         SmallVector<const SCEV *, 4> Operands;
2752         for (const SCEV *Op : A->operands())
2753           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2754         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2755           Operands.clear();
2756           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2757             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2758             if (isa<SCEVUDivExpr>(Op) ||
2759                 getMulExpr(Op, RHS) != A->getOperand(i))
2760               break;
2761             Operands.push_back(Op);
2762           }
2763           if (Operands.size() == A->getNumOperands())
2764             return getAddExpr(Operands);
2765         }
2766       }
2767 
2768       // Fold if both operands are constant.
2769       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2770         Constant *LHSCV = LHSC->getValue();
2771         Constant *RHSCV = RHSC->getValue();
2772         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2773                                                                    RHSCV)));
2774       }
2775     }
2776   }
2777 
2778   FoldingSetNodeID ID;
2779   ID.AddInteger(scUDivExpr);
2780   ID.AddPointer(LHS);
2781   ID.AddPointer(RHS);
2782   void *IP = nullptr;
2783   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2784   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2785                                              LHS, RHS);
2786   UniqueSCEVs.InsertNode(S, IP);
2787   return S;
2788 }
2789 
2790 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2791   APInt A = C1->getAPInt().abs();
2792   APInt B = C2->getAPInt().abs();
2793   uint32_t ABW = A.getBitWidth();
2794   uint32_t BBW = B.getBitWidth();
2795 
2796   if (ABW > BBW)
2797     B = B.zext(ABW);
2798   else if (ABW < BBW)
2799     A = A.zext(BBW);
2800 
2801   return APIntOps::GreatestCommonDivisor(A, B);
2802 }
2803 
2804 /// Get a canonical unsigned division expression, or something simpler if
2805 /// possible. There is no representation for an exact udiv in SCEV IR, but we
2806 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
2807 /// it's not exact because the udiv may be clearing bits.
2808 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2809                                               const SCEV *RHS) {
2810   // TODO: we could try to find factors in all sorts of things, but for now we
2811   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2812   // end of this file for inspiration.
2813 
2814   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2815   if (!Mul)
2816     return getUDivExpr(LHS, RHS);
2817 
2818   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2819     // If the mulexpr multiplies by a constant, then that constant must be the
2820     // first element of the mulexpr.
2821     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2822       if (LHSCst == RHSCst) {
2823         SmallVector<const SCEV *, 2> Operands;
2824         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2825         return getMulExpr(Operands);
2826       }
2827 
2828       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2829       // that there's a factor provided by one of the other terms. We need to
2830       // check.
2831       APInt Factor = gcd(LHSCst, RHSCst);
2832       if (!Factor.isIntN(1)) {
2833         LHSCst =
2834             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2835         RHSCst =
2836             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2837         SmallVector<const SCEV *, 2> Operands;
2838         Operands.push_back(LHSCst);
2839         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2840         LHS = getMulExpr(Operands);
2841         RHS = RHSCst;
2842         Mul = dyn_cast<SCEVMulExpr>(LHS);
2843         if (!Mul)
2844           return getUDivExactExpr(LHS, RHS);
2845       }
2846     }
2847   }
2848 
2849   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2850     if (Mul->getOperand(i) == RHS) {
2851       SmallVector<const SCEV *, 2> Operands;
2852       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2853       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2854       return getMulExpr(Operands);
2855     }
2856   }
2857 
2858   return getUDivExpr(LHS, RHS);
2859 }
2860 
2861 /// Get an add recurrence expression for the specified loop.  Simplify the
2862 /// expression as much as possible.
2863 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2864                                            const Loop *L,
2865                                            SCEV::NoWrapFlags Flags) {
2866   SmallVector<const SCEV *, 4> Operands;
2867   Operands.push_back(Start);
2868   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2869     if (StepChrec->getLoop() == L) {
2870       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2871       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2872     }
2873 
2874   Operands.push_back(Step);
2875   return getAddRecExpr(Operands, L, Flags);
2876 }
2877 
2878 /// Get an add recurrence expression for the specified loop.  Simplify the
2879 /// expression as much as possible.
2880 const SCEV *
2881 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2882                                const Loop *L, SCEV::NoWrapFlags Flags) {
2883   if (Operands.size() == 1) return Operands[0];
2884 #ifndef NDEBUG
2885   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2886   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2887     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2888            "SCEVAddRecExpr operand types don't match!");
2889   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2890     assert(isLoopInvariant(Operands[i], L) &&
2891            "SCEVAddRecExpr operand is not loop-invariant!");
2892 #endif
2893 
2894   if (Operands.back()->isZero()) {
2895     Operands.pop_back();
2896     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2897   }
2898 
2899   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2900   // use that information to infer NUW and NSW flags. However, computing a
2901   // BE count requires calling getAddRecExpr, so we may not yet have a
2902   // meaningful BE count at this point (and if we don't, we'd be stuck
2903   // with a SCEVCouldNotCompute as the cached BE count).
2904 
2905   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2906 
2907   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2908   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2909     const Loop *NestedLoop = NestedAR->getLoop();
2910     if (L->contains(NestedLoop)
2911             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2912             : (!NestedLoop->contains(L) &&
2913                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2914       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2915                                                   NestedAR->op_end());
2916       Operands[0] = NestedAR->getStart();
2917       // AddRecs require their operands be loop-invariant with respect to their
2918       // loops. Don't perform this transformation if it would break this
2919       // requirement.
2920       bool AllInvariant = all_of(
2921           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2922 
2923       if (AllInvariant) {
2924         // Create a recurrence for the outer loop with the same step size.
2925         //
2926         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2927         // inner recurrence has the same property.
2928         SCEV::NoWrapFlags OuterFlags =
2929           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2930 
2931         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2932         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2933           return isLoopInvariant(Op, NestedLoop);
2934         });
2935 
2936         if (AllInvariant) {
2937           // Ok, both add recurrences are valid after the transformation.
2938           //
2939           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2940           // the outer recurrence has the same property.
2941           SCEV::NoWrapFlags InnerFlags =
2942             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2943           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2944         }
2945       }
2946       // Reset Operands to its original state.
2947       Operands[0] = NestedAR;
2948     }
2949   }
2950 
2951   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2952   // already have one, otherwise create a new one.
2953   FoldingSetNodeID ID;
2954   ID.AddInteger(scAddRecExpr);
2955   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2956     ID.AddPointer(Operands[i]);
2957   ID.AddPointer(L);
2958   void *IP = nullptr;
2959   SCEVAddRecExpr *S =
2960     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2961   if (!S) {
2962     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2963     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2964     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2965                                            O, Operands.size(), L);
2966     UniqueSCEVs.InsertNode(S, IP);
2967   }
2968   S->setNoWrapFlags(Flags);
2969   return S;
2970 }
2971 
2972 const SCEV *
2973 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2974                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2975                             bool InBounds) {
2976   // getSCEV(Base)->getType() has the same address space as Base->getType()
2977   // because SCEV::getType() preserves the address space.
2978   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2979   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2980   // instruction to its SCEV, because the Instruction may be guarded by control
2981   // flow and the no-overflow bits may not be valid for the expression in any
2982   // context. This can be fixed similarly to how these flags are handled for
2983   // adds.
2984   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2985 
2986   const SCEV *TotalOffset = getZero(IntPtrTy);
2987   // The address space is unimportant. The first thing we do on CurTy is getting
2988   // its element type.
2989   Type *CurTy = PointerType::getUnqual(PointeeType);
2990   for (const SCEV *IndexExpr : IndexExprs) {
2991     // Compute the (potentially symbolic) offset in bytes for this index.
2992     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2993       // For a struct, add the member offset.
2994       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2995       unsigned FieldNo = Index->getZExtValue();
2996       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2997 
2998       // Add the field offset to the running total offset.
2999       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3000 
3001       // Update CurTy to the type of the field at Index.
3002       CurTy = STy->getTypeAtIndex(Index);
3003     } else {
3004       // Update CurTy to its element type.
3005       CurTy = cast<SequentialType>(CurTy)->getElementType();
3006       // For an array, add the element offset, explicitly scaled.
3007       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3008       // Getelementptr indices are signed.
3009       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3010 
3011       // Multiply the index by the element size to compute the element offset.
3012       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3013 
3014       // Add the element offset to the running total offset.
3015       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3016     }
3017   }
3018 
3019   // Add the total offset from all the GEP indices to the base.
3020   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3021 }
3022 
3023 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3024                                          const SCEV *RHS) {
3025   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3026   return getSMaxExpr(Ops);
3027 }
3028 
3029 const SCEV *
3030 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3031   assert(!Ops.empty() && "Cannot get empty smax!");
3032   if (Ops.size() == 1) return Ops[0];
3033 #ifndef NDEBUG
3034   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3035   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3036     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3037            "SCEVSMaxExpr operand types don't match!");
3038 #endif
3039 
3040   // Sort by complexity, this groups all similar expression types together.
3041   GroupByComplexity(Ops, &LI);
3042 
3043   // If there are any constants, fold them together.
3044   unsigned Idx = 0;
3045   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3046     ++Idx;
3047     assert(Idx < Ops.size());
3048     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3049       // We found two constants, fold them together!
3050       ConstantInt *Fold = ConstantInt::get(
3051           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3052       Ops[0] = getConstant(Fold);
3053       Ops.erase(Ops.begin()+1);  // Erase the folded element
3054       if (Ops.size() == 1) return Ops[0];
3055       LHSC = cast<SCEVConstant>(Ops[0]);
3056     }
3057 
3058     // If we are left with a constant minimum-int, strip it off.
3059     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3060       Ops.erase(Ops.begin());
3061       --Idx;
3062     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3063       // If we have an smax with a constant maximum-int, it will always be
3064       // maximum-int.
3065       return Ops[0];
3066     }
3067 
3068     if (Ops.size() == 1) return Ops[0];
3069   }
3070 
3071   // Find the first SMax
3072   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3073     ++Idx;
3074 
3075   // Check to see if one of the operands is an SMax. If so, expand its operands
3076   // onto our operand list, and recurse to simplify.
3077   if (Idx < Ops.size()) {
3078     bool DeletedSMax = false;
3079     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3080       Ops.erase(Ops.begin()+Idx);
3081       Ops.append(SMax->op_begin(), SMax->op_end());
3082       DeletedSMax = true;
3083     }
3084 
3085     if (DeletedSMax)
3086       return getSMaxExpr(Ops);
3087   }
3088 
3089   // Okay, check to see if the same value occurs in the operand list twice.  If
3090   // so, delete one.  Since we sorted the list, these values are required to
3091   // be adjacent.
3092   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3093     //  X smax Y smax Y  -->  X smax Y
3094     //  X smax Y         -->  X, if X is always greater than Y
3095     if (Ops[i] == Ops[i+1] ||
3096         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3097       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3098       --i; --e;
3099     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3100       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3101       --i; --e;
3102     }
3103 
3104   if (Ops.size() == 1) return Ops[0];
3105 
3106   assert(!Ops.empty() && "Reduced smax down to nothing!");
3107 
3108   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3109   // already have one, otherwise create a new one.
3110   FoldingSetNodeID ID;
3111   ID.AddInteger(scSMaxExpr);
3112   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3113     ID.AddPointer(Ops[i]);
3114   void *IP = nullptr;
3115   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3116   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3117   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3118   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3119                                              O, Ops.size());
3120   UniqueSCEVs.InsertNode(S, IP);
3121   return S;
3122 }
3123 
3124 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3125                                          const SCEV *RHS) {
3126   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3127   return getUMaxExpr(Ops);
3128 }
3129 
3130 const SCEV *
3131 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3132   assert(!Ops.empty() && "Cannot get empty umax!");
3133   if (Ops.size() == 1) return Ops[0];
3134 #ifndef NDEBUG
3135   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3136   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3137     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3138            "SCEVUMaxExpr operand types don't match!");
3139 #endif
3140 
3141   // Sort by complexity, this groups all similar expression types together.
3142   GroupByComplexity(Ops, &LI);
3143 
3144   // If there are any constants, fold them together.
3145   unsigned Idx = 0;
3146   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3147     ++Idx;
3148     assert(Idx < Ops.size());
3149     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3150       // We found two constants, fold them together!
3151       ConstantInt *Fold = ConstantInt::get(
3152           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3153       Ops[0] = getConstant(Fold);
3154       Ops.erase(Ops.begin()+1);  // Erase the folded element
3155       if (Ops.size() == 1) return Ops[0];
3156       LHSC = cast<SCEVConstant>(Ops[0]);
3157     }
3158 
3159     // If we are left with a constant minimum-int, strip it off.
3160     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3161       Ops.erase(Ops.begin());
3162       --Idx;
3163     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3164       // If we have an umax with a constant maximum-int, it will always be
3165       // maximum-int.
3166       return Ops[0];
3167     }
3168 
3169     if (Ops.size() == 1) return Ops[0];
3170   }
3171 
3172   // Find the first UMax
3173   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3174     ++Idx;
3175 
3176   // Check to see if one of the operands is a UMax. If so, expand its operands
3177   // onto our operand list, and recurse to simplify.
3178   if (Idx < Ops.size()) {
3179     bool DeletedUMax = false;
3180     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3181       Ops.erase(Ops.begin()+Idx);
3182       Ops.append(UMax->op_begin(), UMax->op_end());
3183       DeletedUMax = true;
3184     }
3185 
3186     if (DeletedUMax)
3187       return getUMaxExpr(Ops);
3188   }
3189 
3190   // Okay, check to see if the same value occurs in the operand list twice.  If
3191   // so, delete one.  Since we sorted the list, these values are required to
3192   // be adjacent.
3193   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3194     //  X umax Y umax Y  -->  X umax Y
3195     //  X umax Y         -->  X, if X is always greater than Y
3196     if (Ops[i] == Ops[i+1] ||
3197         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3198       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3199       --i; --e;
3200     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3201       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3202       --i; --e;
3203     }
3204 
3205   if (Ops.size() == 1) return Ops[0];
3206 
3207   assert(!Ops.empty() && "Reduced umax down to nothing!");
3208 
3209   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3210   // already have one, otherwise create a new one.
3211   FoldingSetNodeID ID;
3212   ID.AddInteger(scUMaxExpr);
3213   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3214     ID.AddPointer(Ops[i]);
3215   void *IP = nullptr;
3216   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3217   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3218   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3219   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3220                                              O, Ops.size());
3221   UniqueSCEVs.InsertNode(S, IP);
3222   return S;
3223 }
3224 
3225 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3226                                          const SCEV *RHS) {
3227   // ~smax(~x, ~y) == smin(x, y).
3228   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3229 }
3230 
3231 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3232                                          const SCEV *RHS) {
3233   // ~umax(~x, ~y) == umin(x, y)
3234   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3235 }
3236 
3237 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3238   // We can bypass creating a target-independent
3239   // constant expression and then folding it back into a ConstantInt.
3240   // This is just a compile-time optimization.
3241   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3242 }
3243 
3244 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3245                                              StructType *STy,
3246                                              unsigned FieldNo) {
3247   // We can bypass creating a target-independent
3248   // constant expression and then folding it back into a ConstantInt.
3249   // This is just a compile-time optimization.
3250   return getConstant(
3251       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3252 }
3253 
3254 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3255   // Don't attempt to do anything other than create a SCEVUnknown object
3256   // here.  createSCEV only calls getUnknown after checking for all other
3257   // interesting possibilities, and any other code that calls getUnknown
3258   // is doing so in order to hide a value from SCEV canonicalization.
3259 
3260   FoldingSetNodeID ID;
3261   ID.AddInteger(scUnknown);
3262   ID.AddPointer(V);
3263   void *IP = nullptr;
3264   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3265     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3266            "Stale SCEVUnknown in uniquing map!");
3267     return S;
3268   }
3269   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3270                                             FirstUnknown);
3271   FirstUnknown = cast<SCEVUnknown>(S);
3272   UniqueSCEVs.InsertNode(S, IP);
3273   return S;
3274 }
3275 
3276 //===----------------------------------------------------------------------===//
3277 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3278 //
3279 
3280 /// Test if values of the given type are analyzable within the SCEV
3281 /// framework. This primarily includes integer types, and it can optionally
3282 /// include pointer types if the ScalarEvolution class has access to
3283 /// target-specific information.
3284 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3285   // Integers and pointers are always SCEVable.
3286   return Ty->isIntegerTy() || Ty->isPointerTy();
3287 }
3288 
3289 /// Return the size in bits of the specified type, for which isSCEVable must
3290 /// return true.
3291 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3292   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3293   return getDataLayout().getTypeSizeInBits(Ty);
3294 }
3295 
3296 /// Return a type with the same bitwidth as the given type and which represents
3297 /// how SCEV will treat the given type, for which isSCEVable must return
3298 /// true. For pointer types, this is the pointer-sized integer type.
3299 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3300   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3301 
3302   if (Ty->isIntegerTy())
3303     return Ty;
3304 
3305   // The only other support type is pointer.
3306   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3307   return getDataLayout().getIntPtrType(Ty);
3308 }
3309 
3310 const SCEV *ScalarEvolution::getCouldNotCompute() {
3311   return CouldNotCompute.get();
3312 }
3313 
3314 
3315 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3316   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3317   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3318   // is set iff if find such SCEVUnknown.
3319   //
3320   struct FindInvalidSCEVUnknown {
3321     bool FindOne;
3322     FindInvalidSCEVUnknown() { FindOne = false; }
3323     bool follow(const SCEV *S) {
3324       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3325       case scConstant:
3326         return false;
3327       case scUnknown:
3328         if (!cast<SCEVUnknown>(S)->getValue())
3329           FindOne = true;
3330         return false;
3331       default:
3332         return true;
3333       }
3334     }
3335     bool isDone() const { return FindOne; }
3336   };
3337 
3338   FindInvalidSCEVUnknown F;
3339   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3340   ST.visitAll(S);
3341 
3342   return !F.FindOne;
3343 }
3344 
3345 namespace {
3346 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3347 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
3348 // iff if such sub scAddRecExpr type SCEV is found.
3349 struct FindAddRecurrence {
3350   bool FoundOne;
3351   FindAddRecurrence() : FoundOne(false) {}
3352 
3353   bool follow(const SCEV *S) {
3354     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3355     case scAddRecExpr:
3356       FoundOne = true;
3357     case scConstant:
3358     case scUnknown:
3359     case scCouldNotCompute:
3360       return false;
3361     default:
3362       return true;
3363     }
3364   }
3365   bool isDone() const { return FoundOne; }
3366 };
3367 }
3368 
3369 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3370   HasRecMapType::iterator I = HasRecMap.find_as(S);
3371   if (I != HasRecMap.end())
3372     return I->second;
3373 
3374   FindAddRecurrence F;
3375   SCEVTraversal<FindAddRecurrence> ST(F);
3376   ST.visitAll(S);
3377   HasRecMap.insert({S, F.FoundOne});
3378   return F.FoundOne;
3379 }
3380 
3381 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3382 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3383 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3384 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3385   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3386   if (!Add)
3387     return {S, nullptr};
3388 
3389   if (Add->getNumOperands() != 2)
3390     return {S, nullptr};
3391 
3392   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3393   if (!ConstOp)
3394     return {S, nullptr};
3395 
3396   return {Add->getOperand(1), ConstOp->getValue()};
3397 }
3398 
3399 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3400 /// by the value and offset from any ValueOffsetPair in the set.
3401 SetVector<ScalarEvolution::ValueOffsetPair> *
3402 ScalarEvolution::getSCEVValues(const SCEV *S) {
3403   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3404   if (SI == ExprValueMap.end())
3405     return nullptr;
3406 #ifndef NDEBUG
3407   if (VerifySCEVMap) {
3408     // Check there is no dangling Value in the set returned.
3409     for (const auto &VE : SI->second)
3410       assert(ValueExprMap.count(VE.first));
3411   }
3412 #endif
3413   return &SI->second;
3414 }
3415 
3416 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3417 /// cannot be used separately. eraseValueFromMap should be used to remove
3418 /// V from ValueExprMap and ExprValueMap at the same time.
3419 void ScalarEvolution::eraseValueFromMap(Value *V) {
3420   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3421   if (I != ValueExprMap.end()) {
3422     const SCEV *S = I->second;
3423     // Remove {V, 0} from the set of ExprValueMap[S]
3424     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3425       SV->remove({V, nullptr});
3426 
3427     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3428     const SCEV *Stripped;
3429     ConstantInt *Offset;
3430     std::tie(Stripped, Offset) = splitAddExpr(S);
3431     if (Offset != nullptr) {
3432       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3433         SV->remove({V, Offset});
3434     }
3435     ValueExprMap.erase(V);
3436   }
3437 }
3438 
3439 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3440 /// create a new one.
3441 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3442   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3443 
3444   const SCEV *S = getExistingSCEV(V);
3445   if (S == nullptr) {
3446     S = createSCEV(V);
3447     // During PHI resolution, it is possible to create two SCEVs for the same
3448     // V, so it is needed to double check whether V->S is inserted into
3449     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3450     std::pair<ValueExprMapType::iterator, bool> Pair =
3451         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3452     if (Pair.second) {
3453       ExprValueMap[S].insert({V, nullptr});
3454 
3455       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3456       // ExprValueMap.
3457       const SCEV *Stripped = S;
3458       ConstantInt *Offset = nullptr;
3459       std::tie(Stripped, Offset) = splitAddExpr(S);
3460       // If stripped is SCEVUnknown, don't bother to save
3461       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3462       // increase the complexity of the expansion code.
3463       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3464       // because it may generate add/sub instead of GEP in SCEV expansion.
3465       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3466           !isa<GetElementPtrInst>(V))
3467         ExprValueMap[Stripped].insert({V, Offset});
3468     }
3469   }
3470   return S;
3471 }
3472 
3473 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3474   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3475 
3476   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3477   if (I != ValueExprMap.end()) {
3478     const SCEV *S = I->second;
3479     if (checkValidity(S))
3480       return S;
3481     eraseValueFromMap(V);
3482     forgetMemoizedResults(S);
3483   }
3484   return nullptr;
3485 }
3486 
3487 /// Return a SCEV corresponding to -V = -1*V
3488 ///
3489 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3490                                              SCEV::NoWrapFlags Flags) {
3491   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3492     return getConstant(
3493                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3494 
3495   Type *Ty = V->getType();
3496   Ty = getEffectiveSCEVType(Ty);
3497   return getMulExpr(
3498       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3499 }
3500 
3501 /// Return a SCEV corresponding to ~V = -1-V
3502 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3503   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3504     return getConstant(
3505                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3506 
3507   Type *Ty = V->getType();
3508   Ty = getEffectiveSCEVType(Ty);
3509   const SCEV *AllOnes =
3510                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3511   return getMinusSCEV(AllOnes, V);
3512 }
3513 
3514 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3515                                           SCEV::NoWrapFlags Flags) {
3516   // Fast path: X - X --> 0.
3517   if (LHS == RHS)
3518     return getZero(LHS->getType());
3519 
3520   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3521   // makes it so that we cannot make much use of NUW.
3522   auto AddFlags = SCEV::FlagAnyWrap;
3523   const bool RHSIsNotMinSigned =
3524       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3525   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3526     // Let M be the minimum representable signed value. Then (-1)*RHS
3527     // signed-wraps if and only if RHS is M. That can happen even for
3528     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3529     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3530     // (-1)*RHS, we need to prove that RHS != M.
3531     //
3532     // If LHS is non-negative and we know that LHS - RHS does not
3533     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3534     // either by proving that RHS > M or that LHS >= 0.
3535     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3536       AddFlags = SCEV::FlagNSW;
3537     }
3538   }
3539 
3540   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3541   // RHS is NSW and LHS >= 0.
3542   //
3543   // The difficulty here is that the NSW flag may have been proven
3544   // relative to a loop that is to be found in a recurrence in LHS and
3545   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3546   // larger scope than intended.
3547   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3548 
3549   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3550 }
3551 
3552 const SCEV *
3553 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3554   Type *SrcTy = V->getType();
3555   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3556          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3557          "Cannot truncate or zero extend with non-integer arguments!");
3558   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3559     return V;  // No conversion
3560   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3561     return getTruncateExpr(V, Ty);
3562   return getZeroExtendExpr(V, Ty);
3563 }
3564 
3565 const SCEV *
3566 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3567                                          Type *Ty) {
3568   Type *SrcTy = V->getType();
3569   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3570          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3571          "Cannot truncate or zero extend with non-integer arguments!");
3572   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3573     return V;  // No conversion
3574   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3575     return getTruncateExpr(V, Ty);
3576   return getSignExtendExpr(V, Ty);
3577 }
3578 
3579 const SCEV *
3580 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3581   Type *SrcTy = V->getType();
3582   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3583          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3584          "Cannot noop or zero extend with non-integer arguments!");
3585   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3586          "getNoopOrZeroExtend cannot truncate!");
3587   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3588     return V;  // No conversion
3589   return getZeroExtendExpr(V, Ty);
3590 }
3591 
3592 const SCEV *
3593 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3594   Type *SrcTy = V->getType();
3595   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3596          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3597          "Cannot noop or sign extend with non-integer arguments!");
3598   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3599          "getNoopOrSignExtend cannot truncate!");
3600   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3601     return V;  // No conversion
3602   return getSignExtendExpr(V, Ty);
3603 }
3604 
3605 const SCEV *
3606 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3607   Type *SrcTy = V->getType();
3608   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3609          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3610          "Cannot noop or any extend with non-integer arguments!");
3611   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3612          "getNoopOrAnyExtend cannot truncate!");
3613   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3614     return V;  // No conversion
3615   return getAnyExtendExpr(V, Ty);
3616 }
3617 
3618 const SCEV *
3619 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3620   Type *SrcTy = V->getType();
3621   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3622          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3623          "Cannot truncate or noop with non-integer arguments!");
3624   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3625          "getTruncateOrNoop cannot extend!");
3626   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3627     return V;  // No conversion
3628   return getTruncateExpr(V, Ty);
3629 }
3630 
3631 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3632                                                         const SCEV *RHS) {
3633   const SCEV *PromotedLHS = LHS;
3634   const SCEV *PromotedRHS = RHS;
3635 
3636   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3637     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3638   else
3639     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3640 
3641   return getUMaxExpr(PromotedLHS, PromotedRHS);
3642 }
3643 
3644 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3645                                                         const SCEV *RHS) {
3646   const SCEV *PromotedLHS = LHS;
3647   const SCEV *PromotedRHS = RHS;
3648 
3649   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3650     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3651   else
3652     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3653 
3654   return getUMinExpr(PromotedLHS, PromotedRHS);
3655 }
3656 
3657 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3658   // A pointer operand may evaluate to a nonpointer expression, such as null.
3659   if (!V->getType()->isPointerTy())
3660     return V;
3661 
3662   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3663     return getPointerBase(Cast->getOperand());
3664   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3665     const SCEV *PtrOp = nullptr;
3666     for (const SCEV *NAryOp : NAry->operands()) {
3667       if (NAryOp->getType()->isPointerTy()) {
3668         // Cannot find the base of an expression with multiple pointer operands.
3669         if (PtrOp)
3670           return V;
3671         PtrOp = NAryOp;
3672       }
3673     }
3674     if (!PtrOp)
3675       return V;
3676     return getPointerBase(PtrOp);
3677   }
3678   return V;
3679 }
3680 
3681 /// Push users of the given Instruction onto the given Worklist.
3682 static void
3683 PushDefUseChildren(Instruction *I,
3684                    SmallVectorImpl<Instruction *> &Worklist) {
3685   // Push the def-use children onto the Worklist stack.
3686   for (User *U : I->users())
3687     Worklist.push_back(cast<Instruction>(U));
3688 }
3689 
3690 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3691   SmallVector<Instruction *, 16> Worklist;
3692   PushDefUseChildren(PN, Worklist);
3693 
3694   SmallPtrSet<Instruction *, 8> Visited;
3695   Visited.insert(PN);
3696   while (!Worklist.empty()) {
3697     Instruction *I = Worklist.pop_back_val();
3698     if (!Visited.insert(I).second)
3699       continue;
3700 
3701     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3702     if (It != ValueExprMap.end()) {
3703       const SCEV *Old = It->second;
3704 
3705       // Short-circuit the def-use traversal if the symbolic name
3706       // ceases to appear in expressions.
3707       if (Old != SymName && !hasOperand(Old, SymName))
3708         continue;
3709 
3710       // SCEVUnknown for a PHI either means that it has an unrecognized
3711       // structure, it's a PHI that's in the progress of being computed
3712       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3713       // additional loop trip count information isn't going to change anything.
3714       // In the second case, createNodeForPHI will perform the necessary
3715       // updates on its own when it gets to that point. In the third, we do
3716       // want to forget the SCEVUnknown.
3717       if (!isa<PHINode>(I) ||
3718           !isa<SCEVUnknown>(Old) ||
3719           (I != PN && Old == SymName)) {
3720         eraseValueFromMap(It->first);
3721         forgetMemoizedResults(Old);
3722       }
3723     }
3724 
3725     PushDefUseChildren(I, Worklist);
3726   }
3727 }
3728 
3729 namespace {
3730 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3731 public:
3732   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3733                              ScalarEvolution &SE) {
3734     SCEVInitRewriter Rewriter(L, SE);
3735     const SCEV *Result = Rewriter.visit(S);
3736     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3737   }
3738 
3739   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3740       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3741 
3742   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3743     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3744       Valid = false;
3745     return Expr;
3746   }
3747 
3748   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3749     // Only allow AddRecExprs for this loop.
3750     if (Expr->getLoop() == L)
3751       return Expr->getStart();
3752     Valid = false;
3753     return Expr;
3754   }
3755 
3756   bool isValid() { return Valid; }
3757 
3758 private:
3759   const Loop *L;
3760   bool Valid;
3761 };
3762 
3763 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3764 public:
3765   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3766                              ScalarEvolution &SE) {
3767     SCEVShiftRewriter Rewriter(L, SE);
3768     const SCEV *Result = Rewriter.visit(S);
3769     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3770   }
3771 
3772   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3773       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3774 
3775   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3776     // Only allow AddRecExprs for this loop.
3777     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3778       Valid = false;
3779     return Expr;
3780   }
3781 
3782   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3783     if (Expr->getLoop() == L && Expr->isAffine())
3784       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3785     Valid = false;
3786     return Expr;
3787   }
3788   bool isValid() { return Valid; }
3789 
3790 private:
3791   const Loop *L;
3792   bool Valid;
3793 };
3794 } // end anonymous namespace
3795 
3796 SCEV::NoWrapFlags
3797 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3798   if (!AR->isAffine())
3799     return SCEV::FlagAnyWrap;
3800 
3801   typedef OverflowingBinaryOperator OBO;
3802   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3803 
3804   if (!AR->hasNoSignedWrap()) {
3805     ConstantRange AddRecRange = getSignedRange(AR);
3806     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3807 
3808     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3809         Instruction::Add, IncRange, OBO::NoSignedWrap);
3810     if (NSWRegion.contains(AddRecRange))
3811       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3812   }
3813 
3814   if (!AR->hasNoUnsignedWrap()) {
3815     ConstantRange AddRecRange = getUnsignedRange(AR);
3816     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3817 
3818     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3819         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3820     if (NUWRegion.contains(AddRecRange))
3821       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3822   }
3823 
3824   return Result;
3825 }
3826 
3827 namespace {
3828 /// Represents an abstract binary operation.  This may exist as a
3829 /// normal instruction or constant expression, or may have been
3830 /// derived from an expression tree.
3831 struct BinaryOp {
3832   unsigned Opcode;
3833   Value *LHS;
3834   Value *RHS;
3835   bool IsNSW;
3836   bool IsNUW;
3837 
3838   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3839   /// constant expression.
3840   Operator *Op;
3841 
3842   explicit BinaryOp(Operator *Op)
3843       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3844         IsNSW(false), IsNUW(false), Op(Op) {
3845     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3846       IsNSW = OBO->hasNoSignedWrap();
3847       IsNUW = OBO->hasNoUnsignedWrap();
3848     }
3849   }
3850 
3851   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3852                     bool IsNUW = false)
3853       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3854         Op(nullptr) {}
3855 };
3856 }
3857 
3858 
3859 /// Try to map \p V into a BinaryOp, and return \c None on failure.
3860 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
3861   auto *Op = dyn_cast<Operator>(V);
3862   if (!Op)
3863     return None;
3864 
3865   // Implementation detail: all the cleverness here should happen without
3866   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3867   // SCEV expressions when possible, and we should not break that.
3868 
3869   switch (Op->getOpcode()) {
3870   case Instruction::Add:
3871   case Instruction::Sub:
3872   case Instruction::Mul:
3873   case Instruction::UDiv:
3874   case Instruction::And:
3875   case Instruction::Or:
3876   case Instruction::AShr:
3877   case Instruction::Shl:
3878     return BinaryOp(Op);
3879 
3880   case Instruction::Xor:
3881     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3882       // If the RHS of the xor is a signbit, then this is just an add.
3883       // Instcombine turns add of signbit into xor as a strength reduction step.
3884       if (RHSC->getValue().isSignBit())
3885         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3886     return BinaryOp(Op);
3887 
3888   case Instruction::LShr:
3889     // Turn logical shift right of a constant into a unsigned divide.
3890     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3891       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3892 
3893       // If the shift count is not less than the bitwidth, the result of
3894       // the shift is undefined. Don't try to analyze it, because the
3895       // resolution chosen here may differ from the resolution chosen in
3896       // other parts of the compiler.
3897       if (SA->getValue().ult(BitWidth)) {
3898         Constant *X =
3899             ConstantInt::get(SA->getContext(),
3900                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3901         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3902       }
3903     }
3904     return BinaryOp(Op);
3905 
3906   case Instruction::ExtractValue: {
3907     auto *EVI = cast<ExtractValueInst>(Op);
3908     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3909       break;
3910 
3911     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3912     if (!CI)
3913       break;
3914 
3915     if (auto *F = CI->getCalledFunction())
3916       switch (F->getIntrinsicID()) {
3917       case Intrinsic::sadd_with_overflow:
3918       case Intrinsic::uadd_with_overflow: {
3919         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3920           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3921                           CI->getArgOperand(1));
3922 
3923         // Now that we know that all uses of the arithmetic-result component of
3924         // CI are guarded by the overflow check, we can go ahead and pretend
3925         // that the arithmetic is non-overflowing.
3926         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3927           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3928                           CI->getArgOperand(1), /* IsNSW = */ true,
3929                           /* IsNUW = */ false);
3930         else
3931           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3932                           CI->getArgOperand(1), /* IsNSW = */ false,
3933                           /* IsNUW*/ true);
3934       }
3935 
3936       case Intrinsic::ssub_with_overflow:
3937       case Intrinsic::usub_with_overflow:
3938         return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3939                         CI->getArgOperand(1));
3940 
3941       case Intrinsic::smul_with_overflow:
3942       case Intrinsic::umul_with_overflow:
3943         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3944                         CI->getArgOperand(1));
3945       default:
3946         break;
3947       }
3948   }
3949 
3950   default:
3951     break;
3952   }
3953 
3954   return None;
3955 }
3956 
3957 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3958   const Loop *L = LI.getLoopFor(PN->getParent());
3959   if (!L || L->getHeader() != PN->getParent())
3960     return nullptr;
3961 
3962   // The loop may have multiple entrances or multiple exits; we can analyze
3963   // this phi as an addrec if it has a unique entry value and a unique
3964   // backedge value.
3965   Value *BEValueV = nullptr, *StartValueV = nullptr;
3966   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3967     Value *V = PN->getIncomingValue(i);
3968     if (L->contains(PN->getIncomingBlock(i))) {
3969       if (!BEValueV) {
3970         BEValueV = V;
3971       } else if (BEValueV != V) {
3972         BEValueV = nullptr;
3973         break;
3974       }
3975     } else if (!StartValueV) {
3976       StartValueV = V;
3977     } else if (StartValueV != V) {
3978       StartValueV = nullptr;
3979       break;
3980     }
3981   }
3982   if (BEValueV && StartValueV) {
3983     // While we are analyzing this PHI node, handle its value symbolically.
3984     const SCEV *SymbolicName = getUnknown(PN);
3985     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3986            "PHI node already processed?");
3987     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3988 
3989     // Using this symbolic name for the PHI, analyze the value coming around
3990     // the back-edge.
3991     const SCEV *BEValue = getSCEV(BEValueV);
3992 
3993     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3994     // has a special value for the first iteration of the loop.
3995 
3996     // If the value coming around the backedge is an add with the symbolic
3997     // value we just inserted, then we found a simple induction variable!
3998     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3999       // If there is a single occurrence of the symbolic value, replace it
4000       // with a recurrence.
4001       unsigned FoundIndex = Add->getNumOperands();
4002       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4003         if (Add->getOperand(i) == SymbolicName)
4004           if (FoundIndex == e) {
4005             FoundIndex = i;
4006             break;
4007           }
4008 
4009       if (FoundIndex != Add->getNumOperands()) {
4010         // Create an add with everything but the specified operand.
4011         SmallVector<const SCEV *, 8> Ops;
4012         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4013           if (i != FoundIndex)
4014             Ops.push_back(Add->getOperand(i));
4015         const SCEV *Accum = getAddExpr(Ops);
4016 
4017         // This is not a valid addrec if the step amount is varying each
4018         // loop iteration, but is not itself an addrec in this loop.
4019         if (isLoopInvariant(Accum, L) ||
4020             (isa<SCEVAddRecExpr>(Accum) &&
4021              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4022           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4023 
4024           if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4025             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4026               if (BO->IsNUW)
4027                 Flags = setFlags(Flags, SCEV::FlagNUW);
4028               if (BO->IsNSW)
4029                 Flags = setFlags(Flags, SCEV::FlagNSW);
4030             }
4031           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4032             // If the increment is an inbounds GEP, then we know the address
4033             // space cannot be wrapped around. We cannot make any guarantee
4034             // about signed or unsigned overflow because pointers are
4035             // unsigned but we may have a negative index from the base
4036             // pointer. We can guarantee that no unsigned wrap occurs if the
4037             // indices form a positive value.
4038             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4039               Flags = setFlags(Flags, SCEV::FlagNW);
4040 
4041               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4042               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4043                 Flags = setFlags(Flags, SCEV::FlagNUW);
4044             }
4045 
4046             // We cannot transfer nuw and nsw flags from subtraction
4047             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4048             // for instance.
4049           }
4050 
4051           const SCEV *StartVal = getSCEV(StartValueV);
4052           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4053 
4054           // Okay, for the entire analysis of this edge we assumed the PHI
4055           // to be symbolic.  We now need to go back and purge all of the
4056           // entries for the scalars that use the symbolic expression.
4057           forgetSymbolicName(PN, SymbolicName);
4058           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4059 
4060           // We can add Flags to the post-inc expression only if we
4061           // know that it us *undefined behavior* for BEValueV to
4062           // overflow.
4063           if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4064             if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4065               (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4066 
4067           return PHISCEV;
4068         }
4069       }
4070     } else {
4071       // Otherwise, this could be a loop like this:
4072       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4073       // In this case, j = {1,+,1}  and BEValue is j.
4074       // Because the other in-value of i (0) fits the evolution of BEValue
4075       // i really is an addrec evolution.
4076       //
4077       // We can generalize this saying that i is the shifted value of BEValue
4078       // by one iteration:
4079       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4080       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4081       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4082       if (Shifted != getCouldNotCompute() &&
4083           Start != getCouldNotCompute()) {
4084         const SCEV *StartVal = getSCEV(StartValueV);
4085         if (Start == StartVal) {
4086           // Okay, for the entire analysis of this edge we assumed the PHI
4087           // to be symbolic.  We now need to go back and purge all of the
4088           // entries for the scalars that use the symbolic expression.
4089           forgetSymbolicName(PN, SymbolicName);
4090           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4091           return Shifted;
4092         }
4093       }
4094     }
4095 
4096     // Remove the temporary PHI node SCEV that has been inserted while intending
4097     // to create an AddRecExpr for this PHI node. We can not keep this temporary
4098     // as it will prevent later (possibly simpler) SCEV expressions to be added
4099     // to the ValueExprMap.
4100     eraseValueFromMap(PN);
4101   }
4102 
4103   return nullptr;
4104 }
4105 
4106 // Checks if the SCEV S is available at BB.  S is considered available at BB
4107 // if S can be materialized at BB without introducing a fault.
4108 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4109                                BasicBlock *BB) {
4110   struct CheckAvailable {
4111     bool TraversalDone = false;
4112     bool Available = true;
4113 
4114     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4115     BasicBlock *BB = nullptr;
4116     DominatorTree &DT;
4117 
4118     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4119       : L(L), BB(BB), DT(DT) {}
4120 
4121     bool setUnavailable() {
4122       TraversalDone = true;
4123       Available = false;
4124       return false;
4125     }
4126 
4127     bool follow(const SCEV *S) {
4128       switch (S->getSCEVType()) {
4129       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4130       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4131         // These expressions are available if their operand(s) is/are.
4132         return true;
4133 
4134       case scAddRecExpr: {
4135         // We allow add recurrences that are on the loop BB is in, or some
4136         // outer loop.  This guarantees availability because the value of the
4137         // add recurrence at BB is simply the "current" value of the induction
4138         // variable.  We can relax this in the future; for instance an add
4139         // recurrence on a sibling dominating loop is also available at BB.
4140         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4141         if (L && (ARLoop == L || ARLoop->contains(L)))
4142           return true;
4143 
4144         return setUnavailable();
4145       }
4146 
4147       case scUnknown: {
4148         // For SCEVUnknown, we check for simple dominance.
4149         const auto *SU = cast<SCEVUnknown>(S);
4150         Value *V = SU->getValue();
4151 
4152         if (isa<Argument>(V))
4153           return false;
4154 
4155         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4156           return false;
4157 
4158         return setUnavailable();
4159       }
4160 
4161       case scUDivExpr:
4162       case scCouldNotCompute:
4163         // We do not try to smart about these at all.
4164         return setUnavailable();
4165       }
4166       llvm_unreachable("switch should be fully covered!");
4167     }
4168 
4169     bool isDone() { return TraversalDone; }
4170   };
4171 
4172   CheckAvailable CA(L, BB, DT);
4173   SCEVTraversal<CheckAvailable> ST(CA);
4174 
4175   ST.visitAll(S);
4176   return CA.Available;
4177 }
4178 
4179 // Try to match a control flow sequence that branches out at BI and merges back
4180 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4181 // match.
4182 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4183                           Value *&C, Value *&LHS, Value *&RHS) {
4184   C = BI->getCondition();
4185 
4186   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4187   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4188 
4189   if (!LeftEdge.isSingleEdge())
4190     return false;
4191 
4192   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4193 
4194   Use &LeftUse = Merge->getOperandUse(0);
4195   Use &RightUse = Merge->getOperandUse(1);
4196 
4197   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4198     LHS = LeftUse;
4199     RHS = RightUse;
4200     return true;
4201   }
4202 
4203   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4204     LHS = RightUse;
4205     RHS = LeftUse;
4206     return true;
4207   }
4208 
4209   return false;
4210 }
4211 
4212 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4213   auto IsReachable =
4214       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
4215   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
4216     const Loop *L = LI.getLoopFor(PN->getParent());
4217 
4218     // We don't want to break LCSSA, even in a SCEV expression tree.
4219     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4220       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4221         return nullptr;
4222 
4223     // Try to match
4224     //
4225     //  br %cond, label %left, label %right
4226     // left:
4227     //  br label %merge
4228     // right:
4229     //  br label %merge
4230     // merge:
4231     //  V = phi [ %x, %left ], [ %y, %right ]
4232     //
4233     // as "select %cond, %x, %y"
4234 
4235     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4236     assert(IDom && "At least the entry block should dominate PN");
4237 
4238     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4239     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4240 
4241     if (BI && BI->isConditional() &&
4242         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4243         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4244         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4245       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4246   }
4247 
4248   return nullptr;
4249 }
4250 
4251 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4252   if (const SCEV *S = createAddRecFromPHI(PN))
4253     return S;
4254 
4255   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4256     return S;
4257 
4258   // If the PHI has a single incoming value, follow that value, unless the
4259   // PHI's incoming blocks are in a different loop, in which case doing so
4260   // risks breaking LCSSA form. Instcombine would normally zap these, but
4261   // it doesn't have DominatorTree information, so it may miss cases.
4262   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4263     if (LI.replacementPreservesLCSSAForm(PN, V))
4264       return getSCEV(V);
4265 
4266   // If it's not a loop phi, we can't handle it yet.
4267   return getUnknown(PN);
4268 }
4269 
4270 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4271                                                       Value *Cond,
4272                                                       Value *TrueVal,
4273                                                       Value *FalseVal) {
4274   // Handle "constant" branch or select. This can occur for instance when a
4275   // loop pass transforms an inner loop and moves on to process the outer loop.
4276   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4277     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4278 
4279   // Try to match some simple smax or umax patterns.
4280   auto *ICI = dyn_cast<ICmpInst>(Cond);
4281   if (!ICI)
4282     return getUnknown(I);
4283 
4284   Value *LHS = ICI->getOperand(0);
4285   Value *RHS = ICI->getOperand(1);
4286 
4287   switch (ICI->getPredicate()) {
4288   case ICmpInst::ICMP_SLT:
4289   case ICmpInst::ICMP_SLE:
4290     std::swap(LHS, RHS);
4291   // fall through
4292   case ICmpInst::ICMP_SGT:
4293   case ICmpInst::ICMP_SGE:
4294     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4295     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4296     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4297       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4298       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4299       const SCEV *LA = getSCEV(TrueVal);
4300       const SCEV *RA = getSCEV(FalseVal);
4301       const SCEV *LDiff = getMinusSCEV(LA, LS);
4302       const SCEV *RDiff = getMinusSCEV(RA, RS);
4303       if (LDiff == RDiff)
4304         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4305       LDiff = getMinusSCEV(LA, RS);
4306       RDiff = getMinusSCEV(RA, LS);
4307       if (LDiff == RDiff)
4308         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4309     }
4310     break;
4311   case ICmpInst::ICMP_ULT:
4312   case ICmpInst::ICMP_ULE:
4313     std::swap(LHS, RHS);
4314   // fall through
4315   case ICmpInst::ICMP_UGT:
4316   case ICmpInst::ICMP_UGE:
4317     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4318     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4319     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4320       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4321       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4322       const SCEV *LA = getSCEV(TrueVal);
4323       const SCEV *RA = getSCEV(FalseVal);
4324       const SCEV *LDiff = getMinusSCEV(LA, LS);
4325       const SCEV *RDiff = getMinusSCEV(RA, RS);
4326       if (LDiff == RDiff)
4327         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4328       LDiff = getMinusSCEV(LA, RS);
4329       RDiff = getMinusSCEV(RA, LS);
4330       if (LDiff == RDiff)
4331         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4332     }
4333     break;
4334   case ICmpInst::ICMP_NE:
4335     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4336     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4337         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4338       const SCEV *One = getOne(I->getType());
4339       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4340       const SCEV *LA = getSCEV(TrueVal);
4341       const SCEV *RA = getSCEV(FalseVal);
4342       const SCEV *LDiff = getMinusSCEV(LA, LS);
4343       const SCEV *RDiff = getMinusSCEV(RA, One);
4344       if (LDiff == RDiff)
4345         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4346     }
4347     break;
4348   case ICmpInst::ICMP_EQ:
4349     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4350     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4351         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4352       const SCEV *One = getOne(I->getType());
4353       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4354       const SCEV *LA = getSCEV(TrueVal);
4355       const SCEV *RA = getSCEV(FalseVal);
4356       const SCEV *LDiff = getMinusSCEV(LA, One);
4357       const SCEV *RDiff = getMinusSCEV(RA, LS);
4358       if (LDiff == RDiff)
4359         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4360     }
4361     break;
4362   default:
4363     break;
4364   }
4365 
4366   return getUnknown(I);
4367 }
4368 
4369 /// Expand GEP instructions into add and multiply operations. This allows them
4370 /// to be analyzed by regular SCEV code.
4371 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4372   // Don't attempt to analyze GEPs over unsized objects.
4373   if (!GEP->getSourceElementType()->isSized())
4374     return getUnknown(GEP);
4375 
4376   SmallVector<const SCEV *, 4> IndexExprs;
4377   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4378     IndexExprs.push_back(getSCEV(*Index));
4379   return getGEPExpr(GEP->getSourceElementType(),
4380                     getSCEV(GEP->getPointerOperand()),
4381                     IndexExprs, GEP->isInBounds());
4382 }
4383 
4384 uint32_t
4385 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4386   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4387     return C->getAPInt().countTrailingZeros();
4388 
4389   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4390     return std::min(GetMinTrailingZeros(T->getOperand()),
4391                     (uint32_t)getTypeSizeInBits(T->getType()));
4392 
4393   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4394     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4395     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4396              getTypeSizeInBits(E->getType()) : OpRes;
4397   }
4398 
4399   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4400     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4401     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4402              getTypeSizeInBits(E->getType()) : OpRes;
4403   }
4404 
4405   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4406     // The result is the min of all operands results.
4407     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4408     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4409       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4410     return MinOpRes;
4411   }
4412 
4413   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4414     // The result is the sum of all operands results.
4415     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4416     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4417     for (unsigned i = 1, e = M->getNumOperands();
4418          SumOpRes != BitWidth && i != e; ++i)
4419       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4420                           BitWidth);
4421     return SumOpRes;
4422   }
4423 
4424   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4425     // The result is the min of all operands results.
4426     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4427     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4428       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4429     return MinOpRes;
4430   }
4431 
4432   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4433     // The result is the min of all operands results.
4434     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4435     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4436       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4437     return MinOpRes;
4438   }
4439 
4440   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4441     // The result is the min of all operands results.
4442     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4443     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4444       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4445     return MinOpRes;
4446   }
4447 
4448   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4449     // For a SCEVUnknown, ask ValueTracking.
4450     unsigned BitWidth = getTypeSizeInBits(U->getType());
4451     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4452     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4453                      nullptr, &DT);
4454     return Zeros.countTrailingOnes();
4455   }
4456 
4457   // SCEVUDivExpr
4458   return 0;
4459 }
4460 
4461 /// Helper method to assign a range to V from metadata present in the IR.
4462 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4463   if (Instruction *I = dyn_cast<Instruction>(V))
4464     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4465       return getConstantRangeFromMetadata(*MD);
4466 
4467   return None;
4468 }
4469 
4470 /// Determine the range for a particular SCEV.  If SignHint is
4471 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4472 /// with a "cleaner" unsigned (resp. signed) representation.
4473 ConstantRange
4474 ScalarEvolution::getRange(const SCEV *S,
4475                           ScalarEvolution::RangeSignHint SignHint) {
4476   DenseMap<const SCEV *, ConstantRange> &Cache =
4477       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4478                                                        : SignedRanges;
4479 
4480   // See if we've computed this range already.
4481   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4482   if (I != Cache.end())
4483     return I->second;
4484 
4485   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4486     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4487 
4488   unsigned BitWidth = getTypeSizeInBits(S->getType());
4489   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4490 
4491   // If the value has known zeros, the maximum value will have those known zeros
4492   // as well.
4493   uint32_t TZ = GetMinTrailingZeros(S);
4494   if (TZ != 0) {
4495     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4496       ConservativeResult =
4497           ConstantRange(APInt::getMinValue(BitWidth),
4498                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4499     else
4500       ConservativeResult = ConstantRange(
4501           APInt::getSignedMinValue(BitWidth),
4502           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4503   }
4504 
4505   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4506     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4507     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4508       X = X.add(getRange(Add->getOperand(i), SignHint));
4509     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4510   }
4511 
4512   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4513     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4514     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4515       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4516     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4517   }
4518 
4519   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4520     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4521     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4522       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4523     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4524   }
4525 
4526   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4527     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4528     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4529       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4530     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4531   }
4532 
4533   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4534     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4535     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4536     return setRange(UDiv, SignHint,
4537                     ConservativeResult.intersectWith(X.udiv(Y)));
4538   }
4539 
4540   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4541     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4542     return setRange(ZExt, SignHint,
4543                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4544   }
4545 
4546   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4547     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4548     return setRange(SExt, SignHint,
4549                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4550   }
4551 
4552   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4553     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4554     return setRange(Trunc, SignHint,
4555                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4556   }
4557 
4558   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4559     // If there's no unsigned wrap, the value will never be less than its
4560     // initial value.
4561     if (AddRec->hasNoUnsignedWrap())
4562       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4563         if (!C->getValue()->isZero())
4564           ConservativeResult = ConservativeResult.intersectWith(
4565               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4566 
4567     // If there's no signed wrap, and all the operands have the same sign or
4568     // zero, the value won't ever change sign.
4569     if (AddRec->hasNoSignedWrap()) {
4570       bool AllNonNeg = true;
4571       bool AllNonPos = true;
4572       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4573         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4574         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4575       }
4576       if (AllNonNeg)
4577         ConservativeResult = ConservativeResult.intersectWith(
4578           ConstantRange(APInt(BitWidth, 0),
4579                         APInt::getSignedMinValue(BitWidth)));
4580       else if (AllNonPos)
4581         ConservativeResult = ConservativeResult.intersectWith(
4582           ConstantRange(APInt::getSignedMinValue(BitWidth),
4583                         APInt(BitWidth, 1)));
4584     }
4585 
4586     // TODO: non-affine addrec
4587     if (AddRec->isAffine()) {
4588       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4589       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4590           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4591         auto RangeFromAffine = getRangeForAffineAR(
4592             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4593             BitWidth);
4594         if (!RangeFromAffine.isFullSet())
4595           ConservativeResult =
4596               ConservativeResult.intersectWith(RangeFromAffine);
4597 
4598         auto RangeFromFactoring = getRangeViaFactoring(
4599             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4600             BitWidth);
4601         if (!RangeFromFactoring.isFullSet())
4602           ConservativeResult =
4603               ConservativeResult.intersectWith(RangeFromFactoring);
4604       }
4605     }
4606 
4607     return setRange(AddRec, SignHint, ConservativeResult);
4608   }
4609 
4610   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4611     // Check if the IR explicitly contains !range metadata.
4612     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4613     if (MDRange.hasValue())
4614       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4615 
4616     // Split here to avoid paying the compile-time cost of calling both
4617     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4618     // if needed.
4619     const DataLayout &DL = getDataLayout();
4620     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4621       // For a SCEVUnknown, ask ValueTracking.
4622       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4623       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4624       if (Ones != ~Zeros + 1)
4625         ConservativeResult =
4626             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4627     } else {
4628       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4629              "generalize as needed!");
4630       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4631       if (NS > 1)
4632         ConservativeResult = ConservativeResult.intersectWith(
4633             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4634                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4635     }
4636 
4637     return setRange(U, SignHint, ConservativeResult);
4638   }
4639 
4640   return setRange(S, SignHint, ConservativeResult);
4641 }
4642 
4643 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4644                                                    const SCEV *Step,
4645                                                    const SCEV *MaxBECount,
4646                                                    unsigned BitWidth) {
4647   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4648          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4649          "Precondition!");
4650 
4651   ConstantRange Result(BitWidth, /* isFullSet = */ true);
4652 
4653   // Check for overflow.  This must be done with ConstantRange arithmetic
4654   // because we could be called from within the ScalarEvolution overflow
4655   // checking code.
4656 
4657   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4658   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4659   ConstantRange ZExtMaxBECountRange =
4660       MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4661 
4662   ConstantRange StepSRange = getSignedRange(Step);
4663   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4664 
4665   ConstantRange StartURange = getUnsignedRange(Start);
4666   ConstantRange EndURange =
4667       StartURange.add(MaxBECountRange.multiply(StepSRange));
4668 
4669   // Check for unsigned overflow.
4670   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4671   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4672   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4673       ZExtEndURange) {
4674     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4675                                EndURange.getUnsignedMin());
4676     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4677                                EndURange.getUnsignedMax());
4678     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4679     if (!IsFullRange)
4680       Result =
4681           Result.intersectWith(ConstantRange(Min, Max + 1));
4682   }
4683 
4684   ConstantRange StartSRange = getSignedRange(Start);
4685   ConstantRange EndSRange =
4686       StartSRange.add(MaxBECountRange.multiply(StepSRange));
4687 
4688   // Check for signed overflow. This must be done with ConstantRange
4689   // arithmetic because we could be called from within the ScalarEvolution
4690   // overflow checking code.
4691   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4692   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4693   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4694       SExtEndSRange) {
4695     APInt Min =
4696         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4697     APInt Max =
4698         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4699     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4700     if (!IsFullRange)
4701       Result =
4702           Result.intersectWith(ConstantRange(Min, Max + 1));
4703   }
4704 
4705   return Result;
4706 }
4707 
4708 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4709                                                     const SCEV *Step,
4710                                                     const SCEV *MaxBECount,
4711                                                     unsigned BitWidth) {
4712   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4713   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4714 
4715   struct SelectPattern {
4716     Value *Condition = nullptr;
4717     APInt TrueValue;
4718     APInt FalseValue;
4719 
4720     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4721                            const SCEV *S) {
4722       Optional<unsigned> CastOp;
4723       APInt Offset(BitWidth, 0);
4724 
4725       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4726              "Should be!");
4727 
4728       // Peel off a constant offset:
4729       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4730         // In the future we could consider being smarter here and handle
4731         // {Start+Step,+,Step} too.
4732         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4733           return;
4734 
4735         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4736         S = SA->getOperand(1);
4737       }
4738 
4739       // Peel off a cast operation
4740       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4741         CastOp = SCast->getSCEVType();
4742         S = SCast->getOperand();
4743       }
4744 
4745       using namespace llvm::PatternMatch;
4746 
4747       auto *SU = dyn_cast<SCEVUnknown>(S);
4748       const APInt *TrueVal, *FalseVal;
4749       if (!SU ||
4750           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4751                                           m_APInt(FalseVal)))) {
4752         Condition = nullptr;
4753         return;
4754       }
4755 
4756       TrueValue = *TrueVal;
4757       FalseValue = *FalseVal;
4758 
4759       // Re-apply the cast we peeled off earlier
4760       if (CastOp.hasValue())
4761         switch (*CastOp) {
4762         default:
4763           llvm_unreachable("Unknown SCEV cast type!");
4764 
4765         case scTruncate:
4766           TrueValue = TrueValue.trunc(BitWidth);
4767           FalseValue = FalseValue.trunc(BitWidth);
4768           break;
4769         case scZeroExtend:
4770           TrueValue = TrueValue.zext(BitWidth);
4771           FalseValue = FalseValue.zext(BitWidth);
4772           break;
4773         case scSignExtend:
4774           TrueValue = TrueValue.sext(BitWidth);
4775           FalseValue = FalseValue.sext(BitWidth);
4776           break;
4777         }
4778 
4779       // Re-apply the constant offset we peeled off earlier
4780       TrueValue += Offset;
4781       FalseValue += Offset;
4782     }
4783 
4784     bool isRecognized() { return Condition != nullptr; }
4785   };
4786 
4787   SelectPattern StartPattern(*this, BitWidth, Start);
4788   if (!StartPattern.isRecognized())
4789     return ConstantRange(BitWidth, /* isFullSet = */ true);
4790 
4791   SelectPattern StepPattern(*this, BitWidth, Step);
4792   if (!StepPattern.isRecognized())
4793     return ConstantRange(BitWidth, /* isFullSet = */ true);
4794 
4795   if (StartPattern.Condition != StepPattern.Condition) {
4796     // We don't handle this case today; but we could, by considering four
4797     // possibilities below instead of two. I'm not sure if there are cases where
4798     // that will help over what getRange already does, though.
4799     return ConstantRange(BitWidth, /* isFullSet = */ true);
4800   }
4801 
4802   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4803   // construct arbitrary general SCEV expressions here.  This function is called
4804   // from deep in the call stack, and calling getSCEV (on a sext instruction,
4805   // say) can end up caching a suboptimal value.
4806 
4807   // FIXME: without the explicit `this` receiver below, MSVC errors out with
4808   // C2352 and C2512 (otherwise it isn't needed).
4809 
4810   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4811   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4812   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4813   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4814 
4815   ConstantRange TrueRange =
4816       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4817   ConstantRange FalseRange =
4818       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4819 
4820   return TrueRange.unionWith(FalseRange);
4821 }
4822 
4823 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4824   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4825   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4826 
4827   // Return early if there are no flags to propagate to the SCEV.
4828   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4829   if (BinOp->hasNoUnsignedWrap())
4830     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4831   if (BinOp->hasNoSignedWrap())
4832     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4833   if (Flags == SCEV::FlagAnyWrap)
4834     return SCEV::FlagAnyWrap;
4835 
4836   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4837 }
4838 
4839 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4840   // Here we check that I is in the header of the innermost loop containing I,
4841   // since we only deal with instructions in the loop header. The actual loop we
4842   // need to check later will come from an add recurrence, but getting that
4843   // requires computing the SCEV of the operands, which can be expensive. This
4844   // check we can do cheaply to rule out some cases early.
4845   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4846   if (InnermostContainingLoop == nullptr ||
4847       InnermostContainingLoop->getHeader() != I->getParent())
4848     return false;
4849 
4850   // Only proceed if we can prove that I does not yield poison.
4851   if (!isKnownNotFullPoison(I)) return false;
4852 
4853   // At this point we know that if I is executed, then it does not wrap
4854   // according to at least one of NSW or NUW. If I is not executed, then we do
4855   // not know if the calculation that I represents would wrap. Multiple
4856   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4857   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4858   // derived from other instructions that map to the same SCEV. We cannot make
4859   // that guarantee for cases where I is not executed. So we need to find the
4860   // loop that I is considered in relation to and prove that I is executed for
4861   // every iteration of that loop. That implies that the value that I
4862   // calculates does not wrap anywhere in the loop, so then we can apply the
4863   // flags to the SCEV.
4864   //
4865   // We check isLoopInvariant to disambiguate in case we are adding recurrences
4866   // from different loops, so that we know which loop to prove that I is
4867   // executed in.
4868   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4869     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4870     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4871       bool AllOtherOpsLoopInvariant = true;
4872       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4873            ++OtherOpIndex) {
4874         if (OtherOpIndex != OpIndex) {
4875           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4876           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4877             AllOtherOpsLoopInvariant = false;
4878             break;
4879           }
4880         }
4881       }
4882       if (AllOtherOpsLoopInvariant &&
4883           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4884         return true;
4885     }
4886   }
4887   return false;
4888 }
4889 
4890 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4891   // If we know that \c I can never be poison period, then that's enough.
4892   if (isSCEVExprNeverPoison(I))
4893     return true;
4894 
4895   // For an add recurrence specifically, we assume that infinite loops without
4896   // side effects are undefined behavior, and then reason as follows:
4897   //
4898   // If the add recurrence is poison in any iteration, it is poison on all
4899   // future iterations (since incrementing poison yields poison). If the result
4900   // of the add recurrence is fed into the loop latch condition and the loop
4901   // does not contain any throws or exiting blocks other than the latch, we now
4902   // have the ability to "choose" whether the backedge is taken or not (by
4903   // choosing a sufficiently evil value for the poison feeding into the branch)
4904   // for every iteration including and after the one in which \p I first became
4905   // poison.  There are two possibilities (let's call the iteration in which \p
4906   // I first became poison as K):
4907   //
4908   //  1. In the set of iterations including and after K, the loop body executes
4909   //     no side effects.  In this case executing the backege an infinte number
4910   //     of times will yield undefined behavior.
4911   //
4912   //  2. In the set of iterations including and after K, the loop body executes
4913   //     at least one side effect.  In this case, that specific instance of side
4914   //     effect is control dependent on poison, which also yields undefined
4915   //     behavior.
4916 
4917   auto *ExitingBB = L->getExitingBlock();
4918   auto *LatchBB = L->getLoopLatch();
4919   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4920     return false;
4921 
4922   SmallPtrSet<const Instruction *, 16> Pushed;
4923   SmallVector<const Instruction *, 8> PoisonStack;
4924 
4925   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
4926   // things that are known to be fully poison under that assumption go on the
4927   // PoisonStack.
4928   Pushed.insert(I);
4929   PoisonStack.push_back(I);
4930 
4931   bool LatchControlDependentOnPoison = false;
4932   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
4933     const Instruction *Poison = PoisonStack.pop_back_val();
4934 
4935     for (auto *PoisonUser : Poison->users()) {
4936       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
4937         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
4938           PoisonStack.push_back(cast<Instruction>(PoisonUser));
4939       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
4940         assert(BI->isConditional() && "Only possibility!");
4941         if (BI->getParent() == LatchBB) {
4942           LatchControlDependentOnPoison = true;
4943           break;
4944         }
4945       }
4946     }
4947   }
4948 
4949   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
4950 }
4951 
4952 bool ScalarEvolution::loopHasNoAbnormalExits(const Loop *L) {
4953   auto Itr = LoopHasNoAbnormalExits.find(L);
4954   if (Itr == LoopHasNoAbnormalExits.end()) {
4955     auto NoAbnormalExitInBB = [&](BasicBlock *BB) {
4956       return all_of(*BB, [](Instruction &I) {
4957         return isGuaranteedToTransferExecutionToSuccessor(&I);
4958       });
4959     };
4960 
4961     auto InsertPair = LoopHasNoAbnormalExits.insert(
4962         {L, all_of(L->getBlocks(), NoAbnormalExitInBB)});
4963     assert(InsertPair.second && "We just checked!");
4964     Itr = InsertPair.first;
4965   }
4966 
4967   return Itr->second;
4968 }
4969 
4970 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4971   if (!isSCEVable(V->getType()))
4972     return getUnknown(V);
4973 
4974   if (Instruction *I = dyn_cast<Instruction>(V)) {
4975     // Don't attempt to analyze instructions in blocks that aren't
4976     // reachable. Such instructions don't matter, and they aren't required
4977     // to obey basic rules for definitions dominating uses which this
4978     // analysis depends on.
4979     if (!DT.isReachableFromEntry(I->getParent()))
4980       return getUnknown(V);
4981   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4982     return getConstant(CI);
4983   else if (isa<ConstantPointerNull>(V))
4984     return getZero(V->getType());
4985   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4986     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
4987   else if (!isa<ConstantExpr>(V))
4988     return getUnknown(V);
4989 
4990   Operator *U = cast<Operator>(V);
4991   if (auto BO = MatchBinaryOp(U, DT)) {
4992     switch (BO->Opcode) {
4993     case Instruction::Add: {
4994       // The simple thing to do would be to just call getSCEV on both operands
4995       // and call getAddExpr with the result. However if we're looking at a
4996       // bunch of things all added together, this can be quite inefficient,
4997       // because it leads to N-1 getAddExpr calls for N ultimate operands.
4998       // Instead, gather up all the operands and make a single getAddExpr call.
4999       // LLVM IR canonical form means we need only traverse the left operands.
5000       SmallVector<const SCEV *, 4> AddOps;
5001       do {
5002         if (BO->Op) {
5003           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5004             AddOps.push_back(OpSCEV);
5005             break;
5006           }
5007 
5008           // If a NUW or NSW flag can be applied to the SCEV for this
5009           // addition, then compute the SCEV for this addition by itself
5010           // with a separate call to getAddExpr. We need to do that
5011           // instead of pushing the operands of the addition onto AddOps,
5012           // since the flags are only known to apply to this particular
5013           // addition - they may not apply to other additions that can be
5014           // formed with operands from AddOps.
5015           const SCEV *RHS = getSCEV(BO->RHS);
5016           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5017           if (Flags != SCEV::FlagAnyWrap) {
5018             const SCEV *LHS = getSCEV(BO->LHS);
5019             if (BO->Opcode == Instruction::Sub)
5020               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5021             else
5022               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5023             break;
5024           }
5025         }
5026 
5027         if (BO->Opcode == Instruction::Sub)
5028           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5029         else
5030           AddOps.push_back(getSCEV(BO->RHS));
5031 
5032         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5033         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5034                        NewBO->Opcode != Instruction::Sub)) {
5035           AddOps.push_back(getSCEV(BO->LHS));
5036           break;
5037         }
5038         BO = NewBO;
5039       } while (true);
5040 
5041       return getAddExpr(AddOps);
5042     }
5043 
5044     case Instruction::Mul: {
5045       SmallVector<const SCEV *, 4> MulOps;
5046       do {
5047         if (BO->Op) {
5048           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5049             MulOps.push_back(OpSCEV);
5050             break;
5051           }
5052 
5053           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5054           if (Flags != SCEV::FlagAnyWrap) {
5055             MulOps.push_back(
5056                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5057             break;
5058           }
5059         }
5060 
5061         MulOps.push_back(getSCEV(BO->RHS));
5062         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5063         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5064           MulOps.push_back(getSCEV(BO->LHS));
5065           break;
5066         }
5067         BO = NewBO;
5068       } while (true);
5069 
5070       return getMulExpr(MulOps);
5071     }
5072     case Instruction::UDiv:
5073       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5074     case Instruction::Sub: {
5075       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5076       if (BO->Op)
5077         Flags = getNoWrapFlagsFromUB(BO->Op);
5078       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5079     }
5080     case Instruction::And:
5081       // For an expression like x&255 that merely masks off the high bits,
5082       // use zext(trunc(x)) as the SCEV expression.
5083       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5084         if (CI->isNullValue())
5085           return getSCEV(BO->RHS);
5086         if (CI->isAllOnesValue())
5087           return getSCEV(BO->LHS);
5088         const APInt &A = CI->getValue();
5089 
5090         // Instcombine's ShrinkDemandedConstant may strip bits out of
5091         // constants, obscuring what would otherwise be a low-bits mask.
5092         // Use computeKnownBits to compute what ShrinkDemandedConstant
5093         // knew about to reconstruct a low-bits mask value.
5094         unsigned LZ = A.countLeadingZeros();
5095         unsigned TZ = A.countTrailingZeros();
5096         unsigned BitWidth = A.getBitWidth();
5097         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5098         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5099                          0, &AC, nullptr, &DT);
5100 
5101         APInt EffectiveMask =
5102             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5103         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5104           const SCEV *MulCount = getConstant(ConstantInt::get(
5105               getContext(), APInt::getOneBitSet(BitWidth, TZ)));
5106           return getMulExpr(
5107               getZeroExtendExpr(
5108                   getTruncateExpr(
5109                       getUDivExactExpr(getSCEV(BO->LHS), MulCount),
5110                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5111                   BO->LHS->getType()),
5112               MulCount);
5113         }
5114       }
5115       break;
5116 
5117     case Instruction::Or:
5118       // If the RHS of the Or is a constant, we may have something like:
5119       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5120       // optimizations will transparently handle this case.
5121       //
5122       // In order for this transformation to be safe, the LHS must be of the
5123       // form X*(2^n) and the Or constant must be less than 2^n.
5124       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5125         const SCEV *LHS = getSCEV(BO->LHS);
5126         const APInt &CIVal = CI->getValue();
5127         if (GetMinTrailingZeros(LHS) >=
5128             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5129           // Build a plain add SCEV.
5130           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5131           // If the LHS of the add was an addrec and it has no-wrap flags,
5132           // transfer the no-wrap flags, since an or won't introduce a wrap.
5133           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5134             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5135             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5136                 OldAR->getNoWrapFlags());
5137           }
5138           return S;
5139         }
5140       }
5141       break;
5142 
5143     case Instruction::Xor:
5144       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5145         // If the RHS of xor is -1, then this is a not operation.
5146         if (CI->isAllOnesValue())
5147           return getNotSCEV(getSCEV(BO->LHS));
5148 
5149         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5150         // This is a variant of the check for xor with -1, and it handles
5151         // the case where instcombine has trimmed non-demanded bits out
5152         // of an xor with -1.
5153         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5154           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5155             if (LBO->getOpcode() == Instruction::And &&
5156                 LCI->getValue() == CI->getValue())
5157               if (const SCEVZeroExtendExpr *Z =
5158                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5159                 Type *UTy = BO->LHS->getType();
5160                 const SCEV *Z0 = Z->getOperand();
5161                 Type *Z0Ty = Z0->getType();
5162                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5163 
5164                 // If C is a low-bits mask, the zero extend is serving to
5165                 // mask off the high bits. Complement the operand and
5166                 // re-apply the zext.
5167                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5168                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5169 
5170                 // If C is a single bit, it may be in the sign-bit position
5171                 // before the zero-extend. In this case, represent the xor
5172                 // using an add, which is equivalent, and re-apply the zext.
5173                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5174                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5175                     Trunc.isSignBit())
5176                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5177                                            UTy);
5178               }
5179       }
5180       break;
5181 
5182   case Instruction::Shl:
5183     // Turn shift left of a constant amount into a multiply.
5184     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5185       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5186 
5187       // If the shift count is not less than the bitwidth, the result of
5188       // the shift is undefined. Don't try to analyze it, because the
5189       // resolution chosen here may differ from the resolution chosen in
5190       // other parts of the compiler.
5191       if (SA->getValue().uge(BitWidth))
5192         break;
5193 
5194       // It is currently not resolved how to interpret NSW for left
5195       // shift by BitWidth - 1, so we avoid applying flags in that
5196       // case. Remove this check (or this comment) once the situation
5197       // is resolved. See
5198       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5199       // and http://reviews.llvm.org/D8890 .
5200       auto Flags = SCEV::FlagAnyWrap;
5201       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5202         Flags = getNoWrapFlagsFromUB(BO->Op);
5203 
5204       Constant *X = ConstantInt::get(getContext(),
5205         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5206       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5207     }
5208     break;
5209 
5210     case Instruction::AShr:
5211       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5212       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5213         if (Operator *L = dyn_cast<Operator>(BO->LHS))
5214           if (L->getOpcode() == Instruction::Shl &&
5215               L->getOperand(1) == BO->RHS) {
5216             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5217 
5218             // If the shift count is not less than the bitwidth, the result of
5219             // the shift is undefined. Don't try to analyze it, because the
5220             // resolution chosen here may differ from the resolution chosen in
5221             // other parts of the compiler.
5222             if (CI->getValue().uge(BitWidth))
5223               break;
5224 
5225             uint64_t Amt = BitWidth - CI->getZExtValue();
5226             if (Amt == BitWidth)
5227               return getSCEV(L->getOperand(0)); // shift by zero --> noop
5228             return getSignExtendExpr(
5229                 getTruncateExpr(getSCEV(L->getOperand(0)),
5230                                 IntegerType::get(getContext(), Amt)),
5231                 BO->LHS->getType());
5232           }
5233       break;
5234     }
5235   }
5236 
5237   switch (U->getOpcode()) {
5238   case Instruction::Trunc:
5239     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5240 
5241   case Instruction::ZExt:
5242     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5243 
5244   case Instruction::SExt:
5245     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5246 
5247   case Instruction::BitCast:
5248     // BitCasts are no-op casts so we just eliminate the cast.
5249     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5250       return getSCEV(U->getOperand(0));
5251     break;
5252 
5253   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5254   // lead to pointer expressions which cannot safely be expanded to GEPs,
5255   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5256   // simplifying integer expressions.
5257 
5258   case Instruction::GetElementPtr:
5259     return createNodeForGEP(cast<GEPOperator>(U));
5260 
5261   case Instruction::PHI:
5262     return createNodeForPHI(cast<PHINode>(U));
5263 
5264   case Instruction::Select:
5265     // U can also be a select constant expr, which let fall through.  Since
5266     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5267     // constant expressions cannot have instructions as operands, we'd have
5268     // returned getUnknown for a select constant expressions anyway.
5269     if (isa<Instruction>(U))
5270       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5271                                       U->getOperand(1), U->getOperand(2));
5272     break;
5273 
5274   case Instruction::Call:
5275   case Instruction::Invoke:
5276     if (Value *RV = CallSite(U).getReturnedArgOperand())
5277       return getSCEV(RV);
5278     break;
5279   }
5280 
5281   return getUnknown(V);
5282 }
5283 
5284 
5285 
5286 //===----------------------------------------------------------------------===//
5287 //                   Iteration Count Computation Code
5288 //
5289 
5290 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5291   if (BasicBlock *ExitingBB = L->getExitingBlock())
5292     return getSmallConstantTripCount(L, ExitingBB);
5293 
5294   // No trip count information for multiple exits.
5295   return 0;
5296 }
5297 
5298 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5299                                                     BasicBlock *ExitingBlock) {
5300   assert(ExitingBlock && "Must pass a non-null exiting block!");
5301   assert(L->isLoopExiting(ExitingBlock) &&
5302          "Exiting block must actually branch out of the loop!");
5303   const SCEVConstant *ExitCount =
5304       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5305   if (!ExitCount)
5306     return 0;
5307 
5308   ConstantInt *ExitConst = ExitCount->getValue();
5309 
5310   // Guard against huge trip counts.
5311   if (ExitConst->getValue().getActiveBits() > 32)
5312     return 0;
5313 
5314   // In case of integer overflow, this returns 0, which is correct.
5315   return ((unsigned)ExitConst->getZExtValue()) + 1;
5316 }
5317 
5318 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5319   if (BasicBlock *ExitingBB = L->getExitingBlock())
5320     return getSmallConstantTripMultiple(L, ExitingBB);
5321 
5322   // No trip multiple information for multiple exits.
5323   return 0;
5324 }
5325 
5326 /// Returns the largest constant divisor of the trip count of this loop as a
5327 /// normal unsigned value, if possible. This means that the actual trip count is
5328 /// always a multiple of the returned value (don't forget the trip count could
5329 /// very well be zero as well!).
5330 ///
5331 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5332 /// multiple of a constant (which is also the case if the trip count is simply
5333 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5334 /// if the trip count is very large (>= 2^32).
5335 ///
5336 /// As explained in the comments for getSmallConstantTripCount, this assumes
5337 /// that control exits the loop via ExitingBlock.
5338 unsigned
5339 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5340                                               BasicBlock *ExitingBlock) {
5341   assert(ExitingBlock && "Must pass a non-null exiting block!");
5342   assert(L->isLoopExiting(ExitingBlock) &&
5343          "Exiting block must actually branch out of the loop!");
5344   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5345   if (ExitCount == getCouldNotCompute())
5346     return 1;
5347 
5348   // Get the trip count from the BE count by adding 1.
5349   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5350   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5351   // to factor simple cases.
5352   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5353     TCMul = Mul->getOperand(0);
5354 
5355   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5356   if (!MulC)
5357     return 1;
5358 
5359   ConstantInt *Result = MulC->getValue();
5360 
5361   // Guard against huge trip counts (this requires checking
5362   // for zero to handle the case where the trip count == -1 and the
5363   // addition wraps).
5364   if (!Result || Result->getValue().getActiveBits() > 32 ||
5365       Result->getValue().getActiveBits() == 0)
5366     return 1;
5367 
5368   return (unsigned)Result->getZExtValue();
5369 }
5370 
5371 /// Get the expression for the number of loop iterations for which this loop is
5372 /// guaranteed not to exit via ExitingBlock. Otherwise return
5373 /// SCEVCouldNotCompute.
5374 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5375   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5376 }
5377 
5378 const SCEV *
5379 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5380                                                  SCEVUnionPredicate &Preds) {
5381   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5382 }
5383 
5384 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5385   return getBackedgeTakenInfo(L).getExact(this);
5386 }
5387 
5388 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5389 /// known never to be less than the actual backedge taken count.
5390 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5391   return getBackedgeTakenInfo(L).getMax(this);
5392 }
5393 
5394 /// Push PHI nodes in the header of the given loop onto the given Worklist.
5395 static void
5396 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5397   BasicBlock *Header = L->getHeader();
5398 
5399   // Push all Loop-header PHIs onto the Worklist stack.
5400   for (BasicBlock::iterator I = Header->begin();
5401        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5402     Worklist.push_back(PN);
5403 }
5404 
5405 const ScalarEvolution::BackedgeTakenInfo &
5406 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5407   auto &BTI = getBackedgeTakenInfo(L);
5408   if (BTI.hasFullInfo())
5409     return BTI;
5410 
5411   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5412 
5413   if (!Pair.second)
5414     return Pair.first->second;
5415 
5416   BackedgeTakenInfo Result =
5417       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5418 
5419   return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5420 }
5421 
5422 const ScalarEvolution::BackedgeTakenInfo &
5423 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5424   // Initially insert an invalid entry for this loop. If the insertion
5425   // succeeds, proceed to actually compute a backedge-taken count and
5426   // update the value. The temporary CouldNotCompute value tells SCEV
5427   // code elsewhere that it shouldn't attempt to request a new
5428   // backedge-taken count, which could result in infinite recursion.
5429   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5430       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5431   if (!Pair.second)
5432     return Pair.first->second;
5433 
5434   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5435   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5436   // must be cleared in this scope.
5437   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5438 
5439   if (Result.getExact(this) != getCouldNotCompute()) {
5440     assert(isLoopInvariant(Result.getExact(this), L) &&
5441            isLoopInvariant(Result.getMax(this), L) &&
5442            "Computed backedge-taken count isn't loop invariant for loop!");
5443     ++NumTripCountsComputed;
5444   }
5445   else if (Result.getMax(this) == getCouldNotCompute() &&
5446            isa<PHINode>(L->getHeader()->begin())) {
5447     // Only count loops that have phi nodes as not being computable.
5448     ++NumTripCountsNotComputed;
5449   }
5450 
5451   // Now that we know more about the trip count for this loop, forget any
5452   // existing SCEV values for PHI nodes in this loop since they are only
5453   // conservative estimates made without the benefit of trip count
5454   // information. This is similar to the code in forgetLoop, except that
5455   // it handles SCEVUnknown PHI nodes specially.
5456   if (Result.hasAnyInfo()) {
5457     SmallVector<Instruction *, 16> Worklist;
5458     PushLoopPHIs(L, Worklist);
5459 
5460     SmallPtrSet<Instruction *, 8> Visited;
5461     while (!Worklist.empty()) {
5462       Instruction *I = Worklist.pop_back_val();
5463       if (!Visited.insert(I).second)
5464         continue;
5465 
5466       ValueExprMapType::iterator It =
5467         ValueExprMap.find_as(static_cast<Value *>(I));
5468       if (It != ValueExprMap.end()) {
5469         const SCEV *Old = It->second;
5470 
5471         // SCEVUnknown for a PHI either means that it has an unrecognized
5472         // structure, or it's a PHI that's in the progress of being computed
5473         // by createNodeForPHI.  In the former case, additional loop trip
5474         // count information isn't going to change anything. In the later
5475         // case, createNodeForPHI will perform the necessary updates on its
5476         // own when it gets to that point.
5477         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5478           eraseValueFromMap(It->first);
5479           forgetMemoizedResults(Old);
5480         }
5481         if (PHINode *PN = dyn_cast<PHINode>(I))
5482           ConstantEvolutionLoopExitValue.erase(PN);
5483       }
5484 
5485       PushDefUseChildren(I, Worklist);
5486     }
5487   }
5488 
5489   // Re-lookup the insert position, since the call to
5490   // computeBackedgeTakenCount above could result in a
5491   // recusive call to getBackedgeTakenInfo (on a different
5492   // loop), which would invalidate the iterator computed
5493   // earlier.
5494   return BackedgeTakenCounts.find(L)->second = Result;
5495 }
5496 
5497 void ScalarEvolution::forgetLoop(const Loop *L) {
5498   // Drop any stored trip count value.
5499   auto RemoveLoopFromBackedgeMap =
5500       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5501         auto BTCPos = Map.find(L);
5502         if (BTCPos != Map.end()) {
5503           BTCPos->second.clear();
5504           Map.erase(BTCPos);
5505         }
5506       };
5507 
5508   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5509   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5510 
5511   // Drop information about expressions based on loop-header PHIs.
5512   SmallVector<Instruction *, 16> Worklist;
5513   PushLoopPHIs(L, Worklist);
5514 
5515   SmallPtrSet<Instruction *, 8> Visited;
5516   while (!Worklist.empty()) {
5517     Instruction *I = Worklist.pop_back_val();
5518     if (!Visited.insert(I).second)
5519       continue;
5520 
5521     ValueExprMapType::iterator It =
5522       ValueExprMap.find_as(static_cast<Value *>(I));
5523     if (It != ValueExprMap.end()) {
5524       eraseValueFromMap(It->first);
5525       forgetMemoizedResults(It->second);
5526       if (PHINode *PN = dyn_cast<PHINode>(I))
5527         ConstantEvolutionLoopExitValue.erase(PN);
5528     }
5529 
5530     PushDefUseChildren(I, Worklist);
5531   }
5532 
5533   // Forget all contained loops too, to avoid dangling entries in the
5534   // ValuesAtScopes map.
5535   for (Loop *I : *L)
5536     forgetLoop(I);
5537 
5538   LoopHasNoAbnormalExits.erase(L);
5539 }
5540 
5541 void ScalarEvolution::forgetValue(Value *V) {
5542   Instruction *I = dyn_cast<Instruction>(V);
5543   if (!I) return;
5544 
5545   // Drop information about expressions based on loop-header PHIs.
5546   SmallVector<Instruction *, 16> Worklist;
5547   Worklist.push_back(I);
5548 
5549   SmallPtrSet<Instruction *, 8> Visited;
5550   while (!Worklist.empty()) {
5551     I = Worklist.pop_back_val();
5552     if (!Visited.insert(I).second)
5553       continue;
5554 
5555     ValueExprMapType::iterator It =
5556       ValueExprMap.find_as(static_cast<Value *>(I));
5557     if (It != ValueExprMap.end()) {
5558       eraseValueFromMap(It->first);
5559       forgetMemoizedResults(It->second);
5560       if (PHINode *PN = dyn_cast<PHINode>(I))
5561         ConstantEvolutionLoopExitValue.erase(PN);
5562     }
5563 
5564     PushDefUseChildren(I, Worklist);
5565   }
5566 }
5567 
5568 /// Get the exact loop backedge taken count considering all loop exits. A
5569 /// computable result can only be returned for loops with a single exit.
5570 /// Returning the minimum taken count among all exits is incorrect because one
5571 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5572 /// the limit of each loop test is never skipped. This is a valid assumption as
5573 /// long as the loop exits via that test. For precise results, it is the
5574 /// caller's responsibility to specify the relevant loop exit using
5575 /// getExact(ExitingBlock, SE).
5576 const SCEV *
5577 ScalarEvolution::BackedgeTakenInfo::getExact(
5578     ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
5579   // If any exits were not computable, the loop is not computable.
5580   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5581 
5582   // We need exactly one computable exit.
5583   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5584   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5585 
5586   const SCEV *BECount = nullptr;
5587   for (auto &ENT : ExitNotTaken) {
5588     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5589 
5590     if (!BECount)
5591       BECount = ENT.ExactNotTaken;
5592     else if (BECount != ENT.ExactNotTaken)
5593       return SE->getCouldNotCompute();
5594     if (Preds && ENT.getPred())
5595       Preds->add(ENT.getPred());
5596 
5597     assert((Preds || ENT.hasAlwaysTruePred()) &&
5598            "Predicate should be always true!");
5599   }
5600 
5601   assert(BECount && "Invalid not taken count for loop exit");
5602   return BECount;
5603 }
5604 
5605 /// Get the exact not taken count for this loop exit.
5606 const SCEV *
5607 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5608                                              ScalarEvolution *SE) const {
5609   for (auto &ENT : ExitNotTaken)
5610     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5611       return ENT.ExactNotTaken;
5612 
5613   return SE->getCouldNotCompute();
5614 }
5615 
5616 /// getMax - Get the max backedge taken count for the loop.
5617 const SCEV *
5618 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5619   for (auto &ENT : ExitNotTaken)
5620     if (!ENT.hasAlwaysTruePred())
5621       return SE->getCouldNotCompute();
5622 
5623   return Max ? Max : SE->getCouldNotCompute();
5624 }
5625 
5626 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5627                                                     ScalarEvolution *SE) const {
5628   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5629     return true;
5630 
5631   if (!ExitNotTaken.ExitingBlock)
5632     return false;
5633 
5634   for (auto &ENT : ExitNotTaken)
5635     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5636         SE->hasOperand(ENT.ExactNotTaken, S))
5637       return true;
5638 
5639   return false;
5640 }
5641 
5642 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5643 /// computable exit into a persistent ExitNotTakenInfo array.
5644 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5645     SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
5646     : Max(MaxCount) {
5647 
5648   if (!Complete)
5649     ExitNotTaken.setIncomplete();
5650 
5651   unsigned NumExits = ExitCounts.size();
5652   if (NumExits == 0) return;
5653 
5654   ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
5655   ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
5656 
5657   // Determine the number of ExitNotTakenExtras structures that we need.
5658   unsigned ExtraInfoSize = 0;
5659   if (NumExits > 1)
5660     ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5661                                       ExitCounts.end(), [](EdgeInfo &Entry) {
5662                                         return !Entry.Pred.isAlwaysTrue();
5663                                       });
5664   else if (!ExitCounts[0].Pred.isAlwaysTrue())
5665     ExtraInfoSize = 1;
5666 
5667   ExitNotTakenExtras *ENT = nullptr;
5668 
5669   // Allocate the ExitNotTakenExtras structures and initialize the first
5670   // element (ExitNotTaken).
5671   if (ExtraInfoSize > 0) {
5672     ENT = new ExitNotTakenExtras[ExtraInfoSize];
5673     ExitNotTaken.ExtraInfo = &ENT[0];
5674     *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
5675   }
5676 
5677   if (NumExits == 1)
5678     return;
5679 
5680   assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit");
5681 
5682   auto &Exits = ExitNotTaken.ExtraInfo->Exits;
5683 
5684   // Handle the rare case of multiple computable exits.
5685   for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5686     ExitNotTakenExtras *Ptr = nullptr;
5687     if (!ExitCounts[i].Pred.isAlwaysTrue()) {
5688       Ptr = &ENT[PredPos++];
5689       Ptr->Pred = std::move(ExitCounts[i].Pred);
5690     }
5691 
5692     Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
5693   }
5694 }
5695 
5696 /// Invalidate this result and free the ExitNotTakenInfo array.
5697 void ScalarEvolution::BackedgeTakenInfo::clear() {
5698   ExitNotTaken.ExitingBlock = nullptr;
5699   ExitNotTaken.ExactNotTaken = nullptr;
5700   delete[] ExitNotTaken.ExtraInfo;
5701 }
5702 
5703 /// Compute the number of times the backedge of the specified loop will execute.
5704 ScalarEvolution::BackedgeTakenInfo
5705 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5706                                            bool AllowPredicates) {
5707   SmallVector<BasicBlock *, 8> ExitingBlocks;
5708   L->getExitingBlocks(ExitingBlocks);
5709 
5710   SmallVector<EdgeInfo, 4> ExitCounts;
5711   bool CouldComputeBECount = true;
5712   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5713   const SCEV *MustExitMaxBECount = nullptr;
5714   const SCEV *MayExitMaxBECount = nullptr;
5715 
5716   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5717   // and compute maxBECount.
5718   // Do a union of all the predicates here.
5719   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5720     BasicBlock *ExitBB = ExitingBlocks[i];
5721     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5722 
5723     assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
5724            "Predicated exit limit when predicates are not allowed!");
5725 
5726     // 1. For each exit that can be computed, add an entry to ExitCounts.
5727     // CouldComputeBECount is true only if all exits can be computed.
5728     if (EL.Exact == getCouldNotCompute())
5729       // We couldn't compute an exact value for this exit, so
5730       // we won't be able to compute an exact value for the loop.
5731       CouldComputeBECount = false;
5732     else
5733       ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
5734 
5735     // 2. Derive the loop's MaxBECount from each exit's max number of
5736     // non-exiting iterations. Partition the loop exits into two kinds:
5737     // LoopMustExits and LoopMayExits.
5738     //
5739     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5740     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5741     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5742     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5743     // considered greater than any computable EL.Max.
5744     if (EL.Max != getCouldNotCompute() && Latch &&
5745         DT.dominates(ExitBB, Latch)) {
5746       if (!MustExitMaxBECount)
5747         MustExitMaxBECount = EL.Max;
5748       else {
5749         MustExitMaxBECount =
5750           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5751       }
5752     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5753       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5754         MayExitMaxBECount = EL.Max;
5755       else {
5756         MayExitMaxBECount =
5757           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5758       }
5759     }
5760   }
5761   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5762     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5763   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5764 }
5765 
5766 ScalarEvolution::ExitLimit
5767 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5768                                   bool AllowPredicates) {
5769 
5770   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5771   // at this block and remember the exit block and whether all other targets
5772   // lead to the loop header.
5773   bool MustExecuteLoopHeader = true;
5774   BasicBlock *Exit = nullptr;
5775   for (auto *SBB : successors(ExitingBlock))
5776     if (!L->contains(SBB)) {
5777       if (Exit) // Multiple exit successors.
5778         return getCouldNotCompute();
5779       Exit = SBB;
5780     } else if (SBB != L->getHeader()) {
5781       MustExecuteLoopHeader = false;
5782     }
5783 
5784   // At this point, we know we have a conditional branch that determines whether
5785   // the loop is exited.  However, we don't know if the branch is executed each
5786   // time through the loop.  If not, then the execution count of the branch will
5787   // not be equal to the trip count of the loop.
5788   //
5789   // Currently we check for this by checking to see if the Exit branch goes to
5790   // the loop header.  If so, we know it will always execute the same number of
5791   // times as the loop.  We also handle the case where the exit block *is* the
5792   // loop header.  This is common for un-rotated loops.
5793   //
5794   // If both of those tests fail, walk up the unique predecessor chain to the
5795   // header, stopping if there is an edge that doesn't exit the loop. If the
5796   // header is reached, the execution count of the branch will be equal to the
5797   // trip count of the loop.
5798   //
5799   //  More extensive analysis could be done to handle more cases here.
5800   //
5801   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5802     // The simple checks failed, try climbing the unique predecessor chain
5803     // up to the header.
5804     bool Ok = false;
5805     for (BasicBlock *BB = ExitingBlock; BB; ) {
5806       BasicBlock *Pred = BB->getUniquePredecessor();
5807       if (!Pred)
5808         return getCouldNotCompute();
5809       TerminatorInst *PredTerm = Pred->getTerminator();
5810       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5811         if (PredSucc == BB)
5812           continue;
5813         // If the predecessor has a successor that isn't BB and isn't
5814         // outside the loop, assume the worst.
5815         if (L->contains(PredSucc))
5816           return getCouldNotCompute();
5817       }
5818       if (Pred == L->getHeader()) {
5819         Ok = true;
5820         break;
5821       }
5822       BB = Pred;
5823     }
5824     if (!Ok)
5825       return getCouldNotCompute();
5826   }
5827 
5828   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5829   TerminatorInst *Term = ExitingBlock->getTerminator();
5830   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5831     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5832     // Proceed to the next level to examine the exit condition expression.
5833     return computeExitLimitFromCond(
5834         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5835         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5836   }
5837 
5838   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5839     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5840                                                 /*ControlsExit=*/IsOnlyExit);
5841 
5842   return getCouldNotCompute();
5843 }
5844 
5845 ScalarEvolution::ExitLimit
5846 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5847                                           Value *ExitCond,
5848                                           BasicBlock *TBB,
5849                                           BasicBlock *FBB,
5850                                           bool ControlsExit,
5851                                           bool AllowPredicates) {
5852   // Check if the controlling expression for this loop is an And or Or.
5853   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5854     if (BO->getOpcode() == Instruction::And) {
5855       // Recurse on the operands of the and.
5856       bool EitherMayExit = L->contains(TBB);
5857       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5858                                                ControlsExit && !EitherMayExit,
5859                                                AllowPredicates);
5860       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5861                                                ControlsExit && !EitherMayExit,
5862                                                AllowPredicates);
5863       const SCEV *BECount = getCouldNotCompute();
5864       const SCEV *MaxBECount = getCouldNotCompute();
5865       if (EitherMayExit) {
5866         // Both conditions must be true for the loop to continue executing.
5867         // Choose the less conservative count.
5868         if (EL0.Exact == getCouldNotCompute() ||
5869             EL1.Exact == getCouldNotCompute())
5870           BECount = getCouldNotCompute();
5871         else
5872           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5873         if (EL0.Max == getCouldNotCompute())
5874           MaxBECount = EL1.Max;
5875         else if (EL1.Max == getCouldNotCompute())
5876           MaxBECount = EL0.Max;
5877         else
5878           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5879       } else {
5880         // Both conditions must be true at the same time for the loop to exit.
5881         // For now, be conservative.
5882         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5883         if (EL0.Max == EL1.Max)
5884           MaxBECount = EL0.Max;
5885         if (EL0.Exact == EL1.Exact)
5886           BECount = EL0.Exact;
5887       }
5888 
5889       SCEVUnionPredicate NP;
5890       NP.add(&EL0.Pred);
5891       NP.add(&EL1.Pred);
5892       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5893       // to be more aggressive when computing BECount than when computing
5894       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
5895       // to match, but for EL0.Max and EL1.Max to not.
5896       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5897           !isa<SCEVCouldNotCompute>(BECount))
5898         MaxBECount = BECount;
5899 
5900       return ExitLimit(BECount, MaxBECount, NP);
5901     }
5902     if (BO->getOpcode() == Instruction::Or) {
5903       // Recurse on the operands of the or.
5904       bool EitherMayExit = L->contains(FBB);
5905       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5906                                                ControlsExit && !EitherMayExit,
5907                                                AllowPredicates);
5908       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5909                                                ControlsExit && !EitherMayExit,
5910                                                AllowPredicates);
5911       const SCEV *BECount = getCouldNotCompute();
5912       const SCEV *MaxBECount = getCouldNotCompute();
5913       if (EitherMayExit) {
5914         // Both conditions must be false for the loop to continue executing.
5915         // Choose the less conservative count.
5916         if (EL0.Exact == getCouldNotCompute() ||
5917             EL1.Exact == getCouldNotCompute())
5918           BECount = getCouldNotCompute();
5919         else
5920           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5921         if (EL0.Max == getCouldNotCompute())
5922           MaxBECount = EL1.Max;
5923         else if (EL1.Max == getCouldNotCompute())
5924           MaxBECount = EL0.Max;
5925         else
5926           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5927       } else {
5928         // Both conditions must be false at the same time for the loop to exit.
5929         // For now, be conservative.
5930         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5931         if (EL0.Max == EL1.Max)
5932           MaxBECount = EL0.Max;
5933         if (EL0.Exact == EL1.Exact)
5934           BECount = EL0.Exact;
5935       }
5936 
5937       SCEVUnionPredicate NP;
5938       NP.add(&EL0.Pred);
5939       NP.add(&EL1.Pred);
5940       return ExitLimit(BECount, MaxBECount, NP);
5941     }
5942   }
5943 
5944   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5945   // Proceed to the next level to examine the icmp.
5946   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5947     ExitLimit EL =
5948         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5949     if (EL.hasFullInfo() || !AllowPredicates)
5950       return EL;
5951 
5952     // Try again, but use SCEV predicates this time.
5953     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5954                                     /*AllowPredicates=*/true);
5955   }
5956 
5957   // Check for a constant condition. These are normally stripped out by
5958   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5959   // preserve the CFG and is temporarily leaving constant conditions
5960   // in place.
5961   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5962     if (L->contains(FBB) == !CI->getZExtValue())
5963       // The backedge is always taken.
5964       return getCouldNotCompute();
5965     else
5966       // The backedge is never taken.
5967       return getZero(CI->getType());
5968   }
5969 
5970   // If it's not an integer or pointer comparison then compute it the hard way.
5971   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5972 }
5973 
5974 ScalarEvolution::ExitLimit
5975 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5976                                           ICmpInst *ExitCond,
5977                                           BasicBlock *TBB,
5978                                           BasicBlock *FBB,
5979                                           bool ControlsExit,
5980                                           bool AllowPredicates) {
5981 
5982   // If the condition was exit on true, convert the condition to exit on false
5983   ICmpInst::Predicate Cond;
5984   if (!L->contains(FBB))
5985     Cond = ExitCond->getPredicate();
5986   else
5987     Cond = ExitCond->getInversePredicate();
5988 
5989   // Handle common loops like: for (X = "string"; *X; ++X)
5990   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5991     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5992       ExitLimit ItCnt =
5993         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5994       if (ItCnt.hasAnyInfo())
5995         return ItCnt;
5996     }
5997 
5998   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5999   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
6000 
6001   // Try to evaluate any dependencies out of the loop.
6002   LHS = getSCEVAtScope(LHS, L);
6003   RHS = getSCEVAtScope(RHS, L);
6004 
6005   // At this point, we would like to compute how many iterations of the
6006   // loop the predicate will return true for these inputs.
6007   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
6008     // If there is a loop-invariant, force it into the RHS.
6009     std::swap(LHS, RHS);
6010     Cond = ICmpInst::getSwappedPredicate(Cond);
6011   }
6012 
6013   // Simplify the operands before analyzing them.
6014   (void)SimplifyICmpOperands(Cond, LHS, RHS);
6015 
6016   // If we have a comparison of a chrec against a constant, try to use value
6017   // ranges to answer this query.
6018   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
6019     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
6020       if (AddRec->getLoop() == L) {
6021         // Form the constant range.
6022         ConstantRange CompRange(
6023             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
6024 
6025         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
6026         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
6027       }
6028 
6029   switch (Cond) {
6030   case ICmpInst::ICMP_NE: {                     // while (X != Y)
6031     // Convert to: while (X-Y != 0)
6032     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
6033                                 AllowPredicates);
6034     if (EL.hasAnyInfo()) return EL;
6035     break;
6036   }
6037   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
6038     // Convert to: while (X-Y == 0)
6039     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
6040     if (EL.hasAnyInfo()) return EL;
6041     break;
6042   }
6043   case ICmpInst::ICMP_SLT:
6044   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
6045     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6046     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6047                                     AllowPredicates);
6048     if (EL.hasAnyInfo()) return EL;
6049     break;
6050   }
6051   case ICmpInst::ICMP_SGT:
6052   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
6053     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6054     ExitLimit EL =
6055         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6056                             AllowPredicates);
6057     if (EL.hasAnyInfo()) return EL;
6058     break;
6059   }
6060   default:
6061     break;
6062   }
6063 
6064   auto *ExhaustiveCount =
6065       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6066 
6067   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
6068     return ExhaustiveCount;
6069 
6070   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
6071                                       ExitCond->getOperand(1), L, Cond);
6072 }
6073 
6074 ScalarEvolution::ExitLimit
6075 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6076                                                       SwitchInst *Switch,
6077                                                       BasicBlock *ExitingBlock,
6078                                                       bool ControlsExit) {
6079   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6080 
6081   // Give up if the exit is the default dest of a switch.
6082   if (Switch->getDefaultDest() == ExitingBlock)
6083     return getCouldNotCompute();
6084 
6085   assert(L->contains(Switch->getDefaultDest()) &&
6086          "Default case must not exit the loop!");
6087   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6088   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6089 
6090   // while (X != Y) --> while (X-Y != 0)
6091   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6092   if (EL.hasAnyInfo())
6093     return EL;
6094 
6095   return getCouldNotCompute();
6096 }
6097 
6098 static ConstantInt *
6099 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6100                                 ScalarEvolution &SE) {
6101   const SCEV *InVal = SE.getConstant(C);
6102   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6103   assert(isa<SCEVConstant>(Val) &&
6104          "Evaluation of SCEV at constant didn't fold correctly?");
6105   return cast<SCEVConstant>(Val)->getValue();
6106 }
6107 
6108 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
6109 /// compute the backedge execution count.
6110 ScalarEvolution::ExitLimit
6111 ScalarEvolution::computeLoadConstantCompareExitLimit(
6112   LoadInst *LI,
6113   Constant *RHS,
6114   const Loop *L,
6115   ICmpInst::Predicate predicate) {
6116 
6117   if (LI->isVolatile()) return getCouldNotCompute();
6118 
6119   // Check to see if the loaded pointer is a getelementptr of a global.
6120   // TODO: Use SCEV instead of manually grubbing with GEPs.
6121   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6122   if (!GEP) return getCouldNotCompute();
6123 
6124   // Make sure that it is really a constant global we are gepping, with an
6125   // initializer, and make sure the first IDX is really 0.
6126   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6127   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6128       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6129       !cast<Constant>(GEP->getOperand(1))->isNullValue())
6130     return getCouldNotCompute();
6131 
6132   // Okay, we allow one non-constant index into the GEP instruction.
6133   Value *VarIdx = nullptr;
6134   std::vector<Constant*> Indexes;
6135   unsigned VarIdxNum = 0;
6136   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6137     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6138       Indexes.push_back(CI);
6139     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6140       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
6141       VarIdx = GEP->getOperand(i);
6142       VarIdxNum = i-2;
6143       Indexes.push_back(nullptr);
6144     }
6145 
6146   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6147   if (!VarIdx)
6148     return getCouldNotCompute();
6149 
6150   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6151   // Check to see if X is a loop variant variable value now.
6152   const SCEV *Idx = getSCEV(VarIdx);
6153   Idx = getSCEVAtScope(Idx, L);
6154 
6155   // We can only recognize very limited forms of loop index expressions, in
6156   // particular, only affine AddRec's like {C1,+,C2}.
6157   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6158   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6159       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6160       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6161     return getCouldNotCompute();
6162 
6163   unsigned MaxSteps = MaxBruteForceIterations;
6164   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6165     ConstantInt *ItCst = ConstantInt::get(
6166                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
6167     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6168 
6169     // Form the GEP offset.
6170     Indexes[VarIdxNum] = Val;
6171 
6172     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6173                                                          Indexes);
6174     if (!Result) break;  // Cannot compute!
6175 
6176     // Evaluate the condition for this iteration.
6177     Result = ConstantExpr::getICmp(predicate, Result, RHS);
6178     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
6179     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6180       ++NumArrayLenItCounts;
6181       return getConstant(ItCst);   // Found terminating iteration!
6182     }
6183   }
6184   return getCouldNotCompute();
6185 }
6186 
6187 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6188     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6189   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6190   if (!RHS)
6191     return getCouldNotCompute();
6192 
6193   const BasicBlock *Latch = L->getLoopLatch();
6194   if (!Latch)
6195     return getCouldNotCompute();
6196 
6197   const BasicBlock *Predecessor = L->getLoopPredecessor();
6198   if (!Predecessor)
6199     return getCouldNotCompute();
6200 
6201   // Return true if V is of the form "LHS `shift_op` <positive constant>".
6202   // Return LHS in OutLHS and shift_opt in OutOpCode.
6203   auto MatchPositiveShift =
6204       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6205 
6206     using namespace PatternMatch;
6207 
6208     ConstantInt *ShiftAmt;
6209     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6210       OutOpCode = Instruction::LShr;
6211     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6212       OutOpCode = Instruction::AShr;
6213     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6214       OutOpCode = Instruction::Shl;
6215     else
6216       return false;
6217 
6218     return ShiftAmt->getValue().isStrictlyPositive();
6219   };
6220 
6221   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6222   //
6223   // loop:
6224   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6225   //   %iv.shifted = lshr i32 %iv, <positive constant>
6226   //
6227   // Return true on a succesful match.  Return the corresponding PHI node (%iv
6228   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6229   auto MatchShiftRecurrence =
6230       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6231     Optional<Instruction::BinaryOps> PostShiftOpCode;
6232 
6233     {
6234       Instruction::BinaryOps OpC;
6235       Value *V;
6236 
6237       // If we encounter a shift instruction, "peel off" the shift operation,
6238       // and remember that we did so.  Later when we inspect %iv's backedge
6239       // value, we will make sure that the backedge value uses the same
6240       // operation.
6241       //
6242       // Note: the peeled shift operation does not have to be the same
6243       // instruction as the one feeding into the PHI's backedge value.  We only
6244       // really care about it being the same *kind* of shift instruction --
6245       // that's all that is required for our later inferences to hold.
6246       if (MatchPositiveShift(LHS, V, OpC)) {
6247         PostShiftOpCode = OpC;
6248         LHS = V;
6249       }
6250     }
6251 
6252     PNOut = dyn_cast<PHINode>(LHS);
6253     if (!PNOut || PNOut->getParent() != L->getHeader())
6254       return false;
6255 
6256     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6257     Value *OpLHS;
6258 
6259     return
6260         // The backedge value for the PHI node must be a shift by a positive
6261         // amount
6262         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6263 
6264         // of the PHI node itself
6265         OpLHS == PNOut &&
6266 
6267         // and the kind of shift should be match the kind of shift we peeled
6268         // off, if any.
6269         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6270   };
6271 
6272   PHINode *PN;
6273   Instruction::BinaryOps OpCode;
6274   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6275     return getCouldNotCompute();
6276 
6277   const DataLayout &DL = getDataLayout();
6278 
6279   // The key rationale for this optimization is that for some kinds of shift
6280   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6281   // within a finite number of iterations.  If the condition guarding the
6282   // backedge (in the sense that the backedge is taken if the condition is true)
6283   // is false for the value the shift recurrence stabilizes to, then we know
6284   // that the backedge is taken only a finite number of times.
6285 
6286   ConstantInt *StableValue = nullptr;
6287   switch (OpCode) {
6288   default:
6289     llvm_unreachable("Impossible case!");
6290 
6291   case Instruction::AShr: {
6292     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6293     // bitwidth(K) iterations.
6294     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6295     bool KnownZero, KnownOne;
6296     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6297                    Predecessor->getTerminator(), &DT);
6298     auto *Ty = cast<IntegerType>(RHS->getType());
6299     if (KnownZero)
6300       StableValue = ConstantInt::get(Ty, 0);
6301     else if (KnownOne)
6302       StableValue = ConstantInt::get(Ty, -1, true);
6303     else
6304       return getCouldNotCompute();
6305 
6306     break;
6307   }
6308   case Instruction::LShr:
6309   case Instruction::Shl:
6310     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6311     // stabilize to 0 in at most bitwidth(K) iterations.
6312     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6313     break;
6314   }
6315 
6316   auto *Result =
6317       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6318   assert(Result->getType()->isIntegerTy(1) &&
6319          "Otherwise cannot be an operand to a branch instruction");
6320 
6321   if (Result->isZeroValue()) {
6322     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6323     const SCEV *UpperBound =
6324         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6325     SCEVUnionPredicate P;
6326     return ExitLimit(getCouldNotCompute(), UpperBound, P);
6327   }
6328 
6329   return getCouldNotCompute();
6330 }
6331 
6332 /// Return true if we can constant fold an instruction of the specified type,
6333 /// assuming that all operands were constants.
6334 static bool CanConstantFold(const Instruction *I) {
6335   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6336       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6337       isa<LoadInst>(I))
6338     return true;
6339 
6340   if (const CallInst *CI = dyn_cast<CallInst>(I))
6341     if (const Function *F = CI->getCalledFunction())
6342       return canConstantFoldCallTo(F);
6343   return false;
6344 }
6345 
6346 /// Determine whether this instruction can constant evolve within this loop
6347 /// assuming its operands can all constant evolve.
6348 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6349   // An instruction outside of the loop can't be derived from a loop PHI.
6350   if (!L->contains(I)) return false;
6351 
6352   if (isa<PHINode>(I)) {
6353     // We don't currently keep track of the control flow needed to evaluate
6354     // PHIs, so we cannot handle PHIs inside of loops.
6355     return L->getHeader() == I->getParent();
6356   }
6357 
6358   // If we won't be able to constant fold this expression even if the operands
6359   // are constants, bail early.
6360   return CanConstantFold(I);
6361 }
6362 
6363 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6364 /// recursing through each instruction operand until reaching a loop header phi.
6365 static PHINode *
6366 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6367                                DenseMap<Instruction *, PHINode *> &PHIMap) {
6368 
6369   // Otherwise, we can evaluate this instruction if all of its operands are
6370   // constant or derived from a PHI node themselves.
6371   PHINode *PHI = nullptr;
6372   for (Value *Op : UseInst->operands()) {
6373     if (isa<Constant>(Op)) continue;
6374 
6375     Instruction *OpInst = dyn_cast<Instruction>(Op);
6376     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6377 
6378     PHINode *P = dyn_cast<PHINode>(OpInst);
6379     if (!P)
6380       // If this operand is already visited, reuse the prior result.
6381       // We may have P != PHI if this is the deepest point at which the
6382       // inconsistent paths meet.
6383       P = PHIMap.lookup(OpInst);
6384     if (!P) {
6385       // Recurse and memoize the results, whether a phi is found or not.
6386       // This recursive call invalidates pointers into PHIMap.
6387       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6388       PHIMap[OpInst] = P;
6389     }
6390     if (!P)
6391       return nullptr;  // Not evolving from PHI
6392     if (PHI && PHI != P)
6393       return nullptr;  // Evolving from multiple different PHIs.
6394     PHI = P;
6395   }
6396   // This is a expression evolving from a constant PHI!
6397   return PHI;
6398 }
6399 
6400 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6401 /// in the loop that V is derived from.  We allow arbitrary operations along the
6402 /// way, but the operands of an operation must either be constants or a value
6403 /// derived from a constant PHI.  If this expression does not fit with these
6404 /// constraints, return null.
6405 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6406   Instruction *I = dyn_cast<Instruction>(V);
6407   if (!I || !canConstantEvolve(I, L)) return nullptr;
6408 
6409   if (PHINode *PN = dyn_cast<PHINode>(I))
6410     return PN;
6411 
6412   // Record non-constant instructions contained by the loop.
6413   DenseMap<Instruction *, PHINode *> PHIMap;
6414   return getConstantEvolvingPHIOperands(I, L, PHIMap);
6415 }
6416 
6417 /// EvaluateExpression - Given an expression that passes the
6418 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6419 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6420 /// reason, return null.
6421 static Constant *EvaluateExpression(Value *V, const Loop *L,
6422                                     DenseMap<Instruction *, Constant *> &Vals,
6423                                     const DataLayout &DL,
6424                                     const TargetLibraryInfo *TLI) {
6425   // Convenient constant check, but redundant for recursive calls.
6426   if (Constant *C = dyn_cast<Constant>(V)) return C;
6427   Instruction *I = dyn_cast<Instruction>(V);
6428   if (!I) return nullptr;
6429 
6430   if (Constant *C = Vals.lookup(I)) return C;
6431 
6432   // An instruction inside the loop depends on a value outside the loop that we
6433   // weren't given a mapping for, or a value such as a call inside the loop.
6434   if (!canConstantEvolve(I, L)) return nullptr;
6435 
6436   // An unmapped PHI can be due to a branch or another loop inside this loop,
6437   // or due to this not being the initial iteration through a loop where we
6438   // couldn't compute the evolution of this particular PHI last time.
6439   if (isa<PHINode>(I)) return nullptr;
6440 
6441   std::vector<Constant*> Operands(I->getNumOperands());
6442 
6443   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6444     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6445     if (!Operand) {
6446       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6447       if (!Operands[i]) return nullptr;
6448       continue;
6449     }
6450     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6451     Vals[Operand] = C;
6452     if (!C) return nullptr;
6453     Operands[i] = C;
6454   }
6455 
6456   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6457     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6458                                            Operands[1], DL, TLI);
6459   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6460     if (!LI->isVolatile())
6461       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6462   }
6463   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6464 }
6465 
6466 
6467 // If every incoming value to PN except the one for BB is a specific Constant,
6468 // return that, else return nullptr.
6469 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6470   Constant *IncomingVal = nullptr;
6471 
6472   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6473     if (PN->getIncomingBlock(i) == BB)
6474       continue;
6475 
6476     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6477     if (!CurrentVal)
6478       return nullptr;
6479 
6480     if (IncomingVal != CurrentVal) {
6481       if (IncomingVal)
6482         return nullptr;
6483       IncomingVal = CurrentVal;
6484     }
6485   }
6486 
6487   return IncomingVal;
6488 }
6489 
6490 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6491 /// in the header of its containing loop, we know the loop executes a
6492 /// constant number of times, and the PHI node is just a recurrence
6493 /// involving constants, fold it.
6494 Constant *
6495 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6496                                                    const APInt &BEs,
6497                                                    const Loop *L) {
6498   auto I = ConstantEvolutionLoopExitValue.find(PN);
6499   if (I != ConstantEvolutionLoopExitValue.end())
6500     return I->second;
6501 
6502   if (BEs.ugt(MaxBruteForceIterations))
6503     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6504 
6505   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6506 
6507   DenseMap<Instruction *, Constant *> CurrentIterVals;
6508   BasicBlock *Header = L->getHeader();
6509   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6510 
6511   BasicBlock *Latch = L->getLoopLatch();
6512   if (!Latch)
6513     return nullptr;
6514 
6515   for (auto &I : *Header) {
6516     PHINode *PHI = dyn_cast<PHINode>(&I);
6517     if (!PHI) break;
6518     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6519     if (!StartCST) continue;
6520     CurrentIterVals[PHI] = StartCST;
6521   }
6522   if (!CurrentIterVals.count(PN))
6523     return RetVal = nullptr;
6524 
6525   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6526 
6527   // Execute the loop symbolically to determine the exit value.
6528   if (BEs.getActiveBits() >= 32)
6529     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6530 
6531   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6532   unsigned IterationNum = 0;
6533   const DataLayout &DL = getDataLayout();
6534   for (; ; ++IterationNum) {
6535     if (IterationNum == NumIterations)
6536       return RetVal = CurrentIterVals[PN];  // Got exit value!
6537 
6538     // Compute the value of the PHIs for the next iteration.
6539     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6540     DenseMap<Instruction *, Constant *> NextIterVals;
6541     Constant *NextPHI =
6542         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6543     if (!NextPHI)
6544       return nullptr;        // Couldn't evaluate!
6545     NextIterVals[PN] = NextPHI;
6546 
6547     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6548 
6549     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6550     // cease to be able to evaluate one of them or if they stop evolving,
6551     // because that doesn't necessarily prevent us from computing PN.
6552     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6553     for (const auto &I : CurrentIterVals) {
6554       PHINode *PHI = dyn_cast<PHINode>(I.first);
6555       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6556       PHIsToCompute.emplace_back(PHI, I.second);
6557     }
6558     // We use two distinct loops because EvaluateExpression may invalidate any
6559     // iterators into CurrentIterVals.
6560     for (const auto &I : PHIsToCompute) {
6561       PHINode *PHI = I.first;
6562       Constant *&NextPHI = NextIterVals[PHI];
6563       if (!NextPHI) {   // Not already computed.
6564         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6565         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6566       }
6567       if (NextPHI != I.second)
6568         StoppedEvolving = false;
6569     }
6570 
6571     // If all entries in CurrentIterVals == NextIterVals then we can stop
6572     // iterating, the loop can't continue to change.
6573     if (StoppedEvolving)
6574       return RetVal = CurrentIterVals[PN];
6575 
6576     CurrentIterVals.swap(NextIterVals);
6577   }
6578 }
6579 
6580 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6581                                                           Value *Cond,
6582                                                           bool ExitWhen) {
6583   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6584   if (!PN) return getCouldNotCompute();
6585 
6586   // If the loop is canonicalized, the PHI will have exactly two entries.
6587   // That's the only form we support here.
6588   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6589 
6590   DenseMap<Instruction *, Constant *> CurrentIterVals;
6591   BasicBlock *Header = L->getHeader();
6592   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6593 
6594   BasicBlock *Latch = L->getLoopLatch();
6595   assert(Latch && "Should follow from NumIncomingValues == 2!");
6596 
6597   for (auto &I : *Header) {
6598     PHINode *PHI = dyn_cast<PHINode>(&I);
6599     if (!PHI)
6600       break;
6601     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6602     if (!StartCST) continue;
6603     CurrentIterVals[PHI] = StartCST;
6604   }
6605   if (!CurrentIterVals.count(PN))
6606     return getCouldNotCompute();
6607 
6608   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6609   // the loop symbolically to determine when the condition gets a value of
6610   // "ExitWhen".
6611   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6612   const DataLayout &DL = getDataLayout();
6613   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6614     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6615         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6616 
6617     // Couldn't symbolically evaluate.
6618     if (!CondVal) return getCouldNotCompute();
6619 
6620     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6621       ++NumBruteForceTripCountsComputed;
6622       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6623     }
6624 
6625     // Update all the PHI nodes for the next iteration.
6626     DenseMap<Instruction *, Constant *> NextIterVals;
6627 
6628     // Create a list of which PHIs we need to compute. We want to do this before
6629     // calling EvaluateExpression on them because that may invalidate iterators
6630     // into CurrentIterVals.
6631     SmallVector<PHINode *, 8> PHIsToCompute;
6632     for (const auto &I : CurrentIterVals) {
6633       PHINode *PHI = dyn_cast<PHINode>(I.first);
6634       if (!PHI || PHI->getParent() != Header) continue;
6635       PHIsToCompute.push_back(PHI);
6636     }
6637     for (PHINode *PHI : PHIsToCompute) {
6638       Constant *&NextPHI = NextIterVals[PHI];
6639       if (NextPHI) continue;    // Already computed!
6640 
6641       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6642       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6643     }
6644     CurrentIterVals.swap(NextIterVals);
6645   }
6646 
6647   // Too many iterations were needed to evaluate.
6648   return getCouldNotCompute();
6649 }
6650 
6651 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6652   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6653       ValuesAtScopes[V];
6654   // Check to see if we've folded this expression at this loop before.
6655   for (auto &LS : Values)
6656     if (LS.first == L)
6657       return LS.second ? LS.second : V;
6658 
6659   Values.emplace_back(L, nullptr);
6660 
6661   // Otherwise compute it.
6662   const SCEV *C = computeSCEVAtScope(V, L);
6663   for (auto &LS : reverse(ValuesAtScopes[V]))
6664     if (LS.first == L) {
6665       LS.second = C;
6666       break;
6667     }
6668   return C;
6669 }
6670 
6671 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6672 /// will return Constants for objects which aren't represented by a
6673 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6674 /// Returns NULL if the SCEV isn't representable as a Constant.
6675 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6676   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6677     case scCouldNotCompute:
6678     case scAddRecExpr:
6679       break;
6680     case scConstant:
6681       return cast<SCEVConstant>(V)->getValue();
6682     case scUnknown:
6683       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6684     case scSignExtend: {
6685       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6686       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6687         return ConstantExpr::getSExt(CastOp, SS->getType());
6688       break;
6689     }
6690     case scZeroExtend: {
6691       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6692       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6693         return ConstantExpr::getZExt(CastOp, SZ->getType());
6694       break;
6695     }
6696     case scTruncate: {
6697       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6698       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6699         return ConstantExpr::getTrunc(CastOp, ST->getType());
6700       break;
6701     }
6702     case scAddExpr: {
6703       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6704       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6705         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6706           unsigned AS = PTy->getAddressSpace();
6707           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6708           C = ConstantExpr::getBitCast(C, DestPtrTy);
6709         }
6710         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6711           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6712           if (!C2) return nullptr;
6713 
6714           // First pointer!
6715           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6716             unsigned AS = C2->getType()->getPointerAddressSpace();
6717             std::swap(C, C2);
6718             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6719             // The offsets have been converted to bytes.  We can add bytes to an
6720             // i8* by GEP with the byte count in the first index.
6721             C = ConstantExpr::getBitCast(C, DestPtrTy);
6722           }
6723 
6724           // Don't bother trying to sum two pointers. We probably can't
6725           // statically compute a load that results from it anyway.
6726           if (C2->getType()->isPointerTy())
6727             return nullptr;
6728 
6729           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6730             if (PTy->getElementType()->isStructTy())
6731               C2 = ConstantExpr::getIntegerCast(
6732                   C2, Type::getInt32Ty(C->getContext()), true);
6733             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6734           } else
6735             C = ConstantExpr::getAdd(C, C2);
6736         }
6737         return C;
6738       }
6739       break;
6740     }
6741     case scMulExpr: {
6742       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6743       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6744         // Don't bother with pointers at all.
6745         if (C->getType()->isPointerTy()) return nullptr;
6746         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6747           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6748           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6749           C = ConstantExpr::getMul(C, C2);
6750         }
6751         return C;
6752       }
6753       break;
6754     }
6755     case scUDivExpr: {
6756       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6757       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6758         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6759           if (LHS->getType() == RHS->getType())
6760             return ConstantExpr::getUDiv(LHS, RHS);
6761       break;
6762     }
6763     case scSMaxExpr:
6764     case scUMaxExpr:
6765       break; // TODO: smax, umax.
6766   }
6767   return nullptr;
6768 }
6769 
6770 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6771   if (isa<SCEVConstant>(V)) return V;
6772 
6773   // If this instruction is evolved from a constant-evolving PHI, compute the
6774   // exit value from the loop without using SCEVs.
6775   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6776     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6777       const Loop *LI = this->LI[I->getParent()];
6778       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6779         if (PHINode *PN = dyn_cast<PHINode>(I))
6780           if (PN->getParent() == LI->getHeader()) {
6781             // Okay, there is no closed form solution for the PHI node.  Check
6782             // to see if the loop that contains it has a known backedge-taken
6783             // count.  If so, we may be able to force computation of the exit
6784             // value.
6785             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6786             if (const SCEVConstant *BTCC =
6787                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6788               // Okay, we know how many times the containing loop executes.  If
6789               // this is a constant evolving PHI node, get the final value at
6790               // the specified iteration number.
6791               Constant *RV =
6792                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6793               if (RV) return getSCEV(RV);
6794             }
6795           }
6796 
6797       // Okay, this is an expression that we cannot symbolically evaluate
6798       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6799       // the arguments into constants, and if so, try to constant propagate the
6800       // result.  This is particularly useful for computing loop exit values.
6801       if (CanConstantFold(I)) {
6802         SmallVector<Constant *, 4> Operands;
6803         bool MadeImprovement = false;
6804         for (Value *Op : I->operands()) {
6805           if (Constant *C = dyn_cast<Constant>(Op)) {
6806             Operands.push_back(C);
6807             continue;
6808           }
6809 
6810           // If any of the operands is non-constant and if they are
6811           // non-integer and non-pointer, don't even try to analyze them
6812           // with scev techniques.
6813           if (!isSCEVable(Op->getType()))
6814             return V;
6815 
6816           const SCEV *OrigV = getSCEV(Op);
6817           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6818           MadeImprovement |= OrigV != OpV;
6819 
6820           Constant *C = BuildConstantFromSCEV(OpV);
6821           if (!C) return V;
6822           if (C->getType() != Op->getType())
6823             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6824                                                               Op->getType(),
6825                                                               false),
6826                                       C, Op->getType());
6827           Operands.push_back(C);
6828         }
6829 
6830         // Check to see if getSCEVAtScope actually made an improvement.
6831         if (MadeImprovement) {
6832           Constant *C = nullptr;
6833           const DataLayout &DL = getDataLayout();
6834           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6835             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6836                                                 Operands[1], DL, &TLI);
6837           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6838             if (!LI->isVolatile())
6839               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6840           } else
6841             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6842           if (!C) return V;
6843           return getSCEV(C);
6844         }
6845       }
6846     }
6847 
6848     // This is some other type of SCEVUnknown, just return it.
6849     return V;
6850   }
6851 
6852   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6853     // Avoid performing the look-up in the common case where the specified
6854     // expression has no loop-variant portions.
6855     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6856       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6857       if (OpAtScope != Comm->getOperand(i)) {
6858         // Okay, at least one of these operands is loop variant but might be
6859         // foldable.  Build a new instance of the folded commutative expression.
6860         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6861                                             Comm->op_begin()+i);
6862         NewOps.push_back(OpAtScope);
6863 
6864         for (++i; i != e; ++i) {
6865           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6866           NewOps.push_back(OpAtScope);
6867         }
6868         if (isa<SCEVAddExpr>(Comm))
6869           return getAddExpr(NewOps);
6870         if (isa<SCEVMulExpr>(Comm))
6871           return getMulExpr(NewOps);
6872         if (isa<SCEVSMaxExpr>(Comm))
6873           return getSMaxExpr(NewOps);
6874         if (isa<SCEVUMaxExpr>(Comm))
6875           return getUMaxExpr(NewOps);
6876         llvm_unreachable("Unknown commutative SCEV type!");
6877       }
6878     }
6879     // If we got here, all operands are loop invariant.
6880     return Comm;
6881   }
6882 
6883   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6884     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6885     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6886     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6887       return Div;   // must be loop invariant
6888     return getUDivExpr(LHS, RHS);
6889   }
6890 
6891   // If this is a loop recurrence for a loop that does not contain L, then we
6892   // are dealing with the final value computed by the loop.
6893   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6894     // First, attempt to evaluate each operand.
6895     // Avoid performing the look-up in the common case where the specified
6896     // expression has no loop-variant portions.
6897     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6898       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6899       if (OpAtScope == AddRec->getOperand(i))
6900         continue;
6901 
6902       // Okay, at least one of these operands is loop variant but might be
6903       // foldable.  Build a new instance of the folded commutative expression.
6904       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6905                                           AddRec->op_begin()+i);
6906       NewOps.push_back(OpAtScope);
6907       for (++i; i != e; ++i)
6908         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6909 
6910       const SCEV *FoldedRec =
6911         getAddRecExpr(NewOps, AddRec->getLoop(),
6912                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6913       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6914       // The addrec may be folded to a nonrecurrence, for example, if the
6915       // induction variable is multiplied by zero after constant folding. Go
6916       // ahead and return the folded value.
6917       if (!AddRec)
6918         return FoldedRec;
6919       break;
6920     }
6921 
6922     // If the scope is outside the addrec's loop, evaluate it by using the
6923     // loop exit value of the addrec.
6924     if (!AddRec->getLoop()->contains(L)) {
6925       // To evaluate this recurrence, we need to know how many times the AddRec
6926       // loop iterates.  Compute this now.
6927       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6928       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6929 
6930       // Then, evaluate the AddRec.
6931       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6932     }
6933 
6934     return AddRec;
6935   }
6936 
6937   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6938     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6939     if (Op == Cast->getOperand())
6940       return Cast;  // must be loop invariant
6941     return getZeroExtendExpr(Op, Cast->getType());
6942   }
6943 
6944   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6945     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6946     if (Op == Cast->getOperand())
6947       return Cast;  // must be loop invariant
6948     return getSignExtendExpr(Op, Cast->getType());
6949   }
6950 
6951   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6952     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6953     if (Op == Cast->getOperand())
6954       return Cast;  // must be loop invariant
6955     return getTruncateExpr(Op, Cast->getType());
6956   }
6957 
6958   llvm_unreachable("Unknown SCEV type!");
6959 }
6960 
6961 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6962   return getSCEVAtScope(getSCEV(V), L);
6963 }
6964 
6965 /// Finds the minimum unsigned root of the following equation:
6966 ///
6967 ///     A * X = B (mod N)
6968 ///
6969 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6970 /// A and B isn't important.
6971 ///
6972 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6973 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6974                                                ScalarEvolution &SE) {
6975   uint32_t BW = A.getBitWidth();
6976   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6977   assert(A != 0 && "A must be non-zero.");
6978 
6979   // 1. D = gcd(A, N)
6980   //
6981   // The gcd of A and N may have only one prime factor: 2. The number of
6982   // trailing zeros in A is its multiplicity
6983   uint32_t Mult2 = A.countTrailingZeros();
6984   // D = 2^Mult2
6985 
6986   // 2. Check if B is divisible by D.
6987   //
6988   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6989   // is not less than multiplicity of this prime factor for D.
6990   if (B.countTrailingZeros() < Mult2)
6991     return SE.getCouldNotCompute();
6992 
6993   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6994   // modulo (N / D).
6995   //
6996   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6997   // bit width during computations.
6998   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6999   APInt Mod(BW + 1, 0);
7000   Mod.setBit(BW - Mult2);  // Mod = N / D
7001   APInt I = AD.multiplicativeInverse(Mod);
7002 
7003   // 4. Compute the minimum unsigned root of the equation:
7004   // I * (B / D) mod (N / D)
7005   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
7006 
7007   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
7008   // bits.
7009   return SE.getConstant(Result.trunc(BW));
7010 }
7011 
7012 /// Find the roots of the quadratic equation for the given quadratic chrec
7013 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
7014 /// two SCEVCouldNotCompute objects.
7015 ///
7016 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
7017 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
7018   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
7019   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
7020   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
7021   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
7022 
7023   // We currently can only solve this if the coefficients are constants.
7024   if (!LC || !MC || !NC)
7025     return None;
7026 
7027   uint32_t BitWidth = LC->getAPInt().getBitWidth();
7028   const APInt &L = LC->getAPInt();
7029   const APInt &M = MC->getAPInt();
7030   const APInt &N = NC->getAPInt();
7031   APInt Two(BitWidth, 2);
7032   APInt Four(BitWidth, 4);
7033 
7034   {
7035     using namespace APIntOps;
7036     const APInt& C = L;
7037     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
7038     // The B coefficient is M-N/2
7039     APInt B(M);
7040     B -= sdiv(N,Two);
7041 
7042     // The A coefficient is N/2
7043     APInt A(N.sdiv(Two));
7044 
7045     // Compute the B^2-4ac term.
7046     APInt SqrtTerm(B);
7047     SqrtTerm *= B;
7048     SqrtTerm -= Four * (A * C);
7049 
7050     if (SqrtTerm.isNegative()) {
7051       // The loop is provably infinite.
7052       return None;
7053     }
7054 
7055     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7056     // integer value or else APInt::sqrt() will assert.
7057     APInt SqrtVal(SqrtTerm.sqrt());
7058 
7059     // Compute the two solutions for the quadratic formula.
7060     // The divisions must be performed as signed divisions.
7061     APInt NegB(-B);
7062     APInt TwoA(A << 1);
7063     if (TwoA.isMinValue())
7064       return None;
7065 
7066     LLVMContext &Context = SE.getContext();
7067 
7068     ConstantInt *Solution1 =
7069       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7070     ConstantInt *Solution2 =
7071       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7072 
7073     return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7074                           cast<SCEVConstant>(SE.getConstant(Solution2)));
7075   } // end APIntOps namespace
7076 }
7077 
7078 ScalarEvolution::ExitLimit
7079 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7080                               bool AllowPredicates) {
7081 
7082   // This is only used for loops with a "x != y" exit test. The exit condition
7083   // is now expressed as a single expression, V = x-y. So the exit test is
7084   // effectively V != 0.  We know and take advantage of the fact that this
7085   // expression only being used in a comparison by zero context.
7086 
7087   SCEVUnionPredicate P;
7088   // If the value is a constant
7089   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7090     // If the value is already zero, the branch will execute zero times.
7091     if (C->getValue()->isZero()) return C;
7092     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7093   }
7094 
7095   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7096   if (!AddRec && AllowPredicates)
7097     // Try to make this an AddRec using runtime tests, in the first X
7098     // iterations of this loop, where X is the SCEV expression found by the
7099     // algorithm below.
7100     AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7101 
7102   if (!AddRec || AddRec->getLoop() != L)
7103     return getCouldNotCompute();
7104 
7105   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7106   // the quadratic equation to solve it.
7107   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7108     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
7109       const SCEVConstant *R1 = Roots->first;
7110       const SCEVConstant *R2 = Roots->second;
7111       // Pick the smallest positive root value.
7112       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
7113               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
7114         if (!CB->getZExtValue())
7115           std::swap(R1, R2); // R1 is the minimum root now.
7116 
7117         // We can only use this value if the chrec ends up with an exact zero
7118         // value at this index.  When solving for "X*X != 5", for example, we
7119         // should not accept a root of 2.
7120         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7121         if (Val->isZero())
7122           return ExitLimit(R1, R1, P); // We found a quadratic root!
7123       }
7124     }
7125     return getCouldNotCompute();
7126   }
7127 
7128   // Otherwise we can only handle this if it is affine.
7129   if (!AddRec->isAffine())
7130     return getCouldNotCompute();
7131 
7132   // If this is an affine expression, the execution count of this branch is
7133   // the minimum unsigned root of the following equation:
7134   //
7135   //     Start + Step*N = 0 (mod 2^BW)
7136   //
7137   // equivalent to:
7138   //
7139   //             Step*N = -Start (mod 2^BW)
7140   //
7141   // where BW is the common bit width of Start and Step.
7142 
7143   // Get the initial value for the loop.
7144   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7145   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7146 
7147   // For now we handle only constant steps.
7148   //
7149   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7150   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7151   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7152   // We have not yet seen any such cases.
7153   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7154   if (!StepC || StepC->getValue()->equalsInt(0))
7155     return getCouldNotCompute();
7156 
7157   // For positive steps (counting up until unsigned overflow):
7158   //   N = -Start/Step (as unsigned)
7159   // For negative steps (counting down to zero):
7160   //   N = Start/-Step
7161   // First compute the unsigned distance from zero in the direction of Step.
7162   bool CountDown = StepC->getAPInt().isNegative();
7163   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7164 
7165   // Handle unitary steps, which cannot wraparound.
7166   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7167   //   N = Distance (as unsigned)
7168   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7169     ConstantRange CR = getUnsignedRange(Start);
7170     const SCEV *MaxBECount;
7171     if (!CountDown && CR.getUnsignedMin().isMinValue())
7172       // When counting up, the worst starting value is 1, not 0.
7173       MaxBECount = CR.getUnsignedMax().isMinValue()
7174         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7175         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7176     else
7177       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7178                                          : -CR.getUnsignedMin());
7179     return ExitLimit(Distance, MaxBECount, P);
7180   }
7181 
7182   // As a special case, handle the instance where Step is a positive power of
7183   // two. In this case, determining whether Step divides Distance evenly can be
7184   // done by counting and comparing the number of trailing zeros of Step and
7185   // Distance.
7186   if (!CountDown) {
7187     const APInt &StepV = StepC->getAPInt();
7188     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
7189     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7190     // case is not handled as this code is guarded by !CountDown.
7191     if (StepV.isPowerOf2() &&
7192         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7193       // Here we've constrained the equation to be of the form
7194       //
7195       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
7196       //
7197       // where we're operating on a W bit wide integer domain and k is
7198       // non-negative.  The smallest unsigned solution for X is the trip count.
7199       //
7200       // (0) is equivalent to:
7201       //
7202       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
7203       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7204       // <=>  2^k * Distance' - X = L * 2^(W - N)
7205       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
7206       //
7207       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7208       // by 2^(W - N).
7209       //
7210       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
7211       //
7212       // E.g. say we're solving
7213       //
7214       //   2 * Val = 2 * X  (in i8)   ... (3)
7215       //
7216       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7217       //
7218       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7219       // necessarily the smallest unsigned value of X that satisfies (3).
7220       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7221       // is i8 1, not i8 -127
7222 
7223       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7224 
7225       // Since SCEV does not have a URem node, we construct one using a truncate
7226       // and a zero extend.
7227 
7228       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7229       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7230       auto *WideTy = Distance->getType();
7231 
7232       const SCEV *Limit =
7233           getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7234       return ExitLimit(Limit, Limit, P);
7235     }
7236   }
7237 
7238   // If the condition controls loop exit (the loop exits only if the expression
7239   // is true) and the addition is no-wrap we can use unsigned divide to
7240   // compute the backedge count.  In this case, the step may not divide the
7241   // distance, but we don't care because if the condition is "missed" the loop
7242   // will have undefined behavior due to wrapping.
7243   if (ControlsExit && AddRec->hasNoSelfWrap() &&
7244       loopHasNoAbnormalExits(AddRec->getLoop())) {
7245     const SCEV *Exact =
7246         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7247     return ExitLimit(Exact, Exact, P);
7248   }
7249 
7250   // Then, try to solve the above equation provided that Start is constant.
7251   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7252     const SCEV *E = SolveLinEquationWithOverflow(
7253         StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7254     return ExitLimit(E, E, P);
7255   }
7256   return getCouldNotCompute();
7257 }
7258 
7259 ScalarEvolution::ExitLimit
7260 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
7261   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7262   // handle them yet except for the trivial case.  This could be expanded in the
7263   // future as needed.
7264 
7265   // If the value is a constant, check to see if it is known to be non-zero
7266   // already.  If so, the backedge will execute zero times.
7267   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7268     if (!C->getValue()->isNullValue())
7269       return getZero(C->getType());
7270     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7271   }
7272 
7273   // We could implement others, but I really doubt anyone writes loops like
7274   // this, and if they did, they would already be constant folded.
7275   return getCouldNotCompute();
7276 }
7277 
7278 std::pair<BasicBlock *, BasicBlock *>
7279 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7280   // If the block has a unique predecessor, then there is no path from the
7281   // predecessor to the block that does not go through the direct edge
7282   // from the predecessor to the block.
7283   if (BasicBlock *Pred = BB->getSinglePredecessor())
7284     return {Pred, BB};
7285 
7286   // A loop's header is defined to be a block that dominates the loop.
7287   // If the header has a unique predecessor outside the loop, it must be
7288   // a block that has exactly one successor that can reach the loop.
7289   if (Loop *L = LI.getLoopFor(BB))
7290     return {L->getLoopPredecessor(), L->getHeader()};
7291 
7292   return {nullptr, nullptr};
7293 }
7294 
7295 /// SCEV structural equivalence is usually sufficient for testing whether two
7296 /// expressions are equal, however for the purposes of looking for a condition
7297 /// guarding a loop, it can be useful to be a little more general, since a
7298 /// front-end may have replicated the controlling expression.
7299 ///
7300 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7301   // Quick check to see if they are the same SCEV.
7302   if (A == B) return true;
7303 
7304   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7305     // Not all instructions that are "identical" compute the same value.  For
7306     // instance, two distinct alloca instructions allocating the same type are
7307     // identical and do not read memory; but compute distinct values.
7308     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7309   };
7310 
7311   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7312   // two different instructions with the same value. Check for this case.
7313   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7314     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7315       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7316         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7317           if (ComputesEqualValues(AI, BI))
7318             return true;
7319 
7320   // Otherwise assume they may have a different value.
7321   return false;
7322 }
7323 
7324 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7325                                            const SCEV *&LHS, const SCEV *&RHS,
7326                                            unsigned Depth) {
7327   bool Changed = false;
7328 
7329   // If we hit the max recursion limit bail out.
7330   if (Depth >= 3)
7331     return false;
7332 
7333   // Canonicalize a constant to the right side.
7334   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7335     // Check for both operands constant.
7336     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7337       if (ConstantExpr::getICmp(Pred,
7338                                 LHSC->getValue(),
7339                                 RHSC->getValue())->isNullValue())
7340         goto trivially_false;
7341       else
7342         goto trivially_true;
7343     }
7344     // Otherwise swap the operands to put the constant on the right.
7345     std::swap(LHS, RHS);
7346     Pred = ICmpInst::getSwappedPredicate(Pred);
7347     Changed = true;
7348   }
7349 
7350   // If we're comparing an addrec with a value which is loop-invariant in the
7351   // addrec's loop, put the addrec on the left. Also make a dominance check,
7352   // as both operands could be addrecs loop-invariant in each other's loop.
7353   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7354     const Loop *L = AR->getLoop();
7355     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7356       std::swap(LHS, RHS);
7357       Pred = ICmpInst::getSwappedPredicate(Pred);
7358       Changed = true;
7359     }
7360   }
7361 
7362   // If there's a constant operand, canonicalize comparisons with boundary
7363   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7364   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7365     const APInt &RA = RC->getAPInt();
7366     switch (Pred) {
7367     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7368     case ICmpInst::ICMP_EQ:
7369     case ICmpInst::ICMP_NE:
7370       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7371       if (!RA)
7372         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7373           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7374             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7375                 ME->getOperand(0)->isAllOnesValue()) {
7376               RHS = AE->getOperand(1);
7377               LHS = ME->getOperand(1);
7378               Changed = true;
7379             }
7380       break;
7381     case ICmpInst::ICMP_UGE:
7382       if ((RA - 1).isMinValue()) {
7383         Pred = ICmpInst::ICMP_NE;
7384         RHS = getConstant(RA - 1);
7385         Changed = true;
7386         break;
7387       }
7388       if (RA.isMaxValue()) {
7389         Pred = ICmpInst::ICMP_EQ;
7390         Changed = true;
7391         break;
7392       }
7393       if (RA.isMinValue()) goto trivially_true;
7394 
7395       Pred = ICmpInst::ICMP_UGT;
7396       RHS = getConstant(RA - 1);
7397       Changed = true;
7398       break;
7399     case ICmpInst::ICMP_ULE:
7400       if ((RA + 1).isMaxValue()) {
7401         Pred = ICmpInst::ICMP_NE;
7402         RHS = getConstant(RA + 1);
7403         Changed = true;
7404         break;
7405       }
7406       if (RA.isMinValue()) {
7407         Pred = ICmpInst::ICMP_EQ;
7408         Changed = true;
7409         break;
7410       }
7411       if (RA.isMaxValue()) goto trivially_true;
7412 
7413       Pred = ICmpInst::ICMP_ULT;
7414       RHS = getConstant(RA + 1);
7415       Changed = true;
7416       break;
7417     case ICmpInst::ICMP_SGE:
7418       if ((RA - 1).isMinSignedValue()) {
7419         Pred = ICmpInst::ICMP_NE;
7420         RHS = getConstant(RA - 1);
7421         Changed = true;
7422         break;
7423       }
7424       if (RA.isMaxSignedValue()) {
7425         Pred = ICmpInst::ICMP_EQ;
7426         Changed = true;
7427         break;
7428       }
7429       if (RA.isMinSignedValue()) goto trivially_true;
7430 
7431       Pred = ICmpInst::ICMP_SGT;
7432       RHS = getConstant(RA - 1);
7433       Changed = true;
7434       break;
7435     case ICmpInst::ICMP_SLE:
7436       if ((RA + 1).isMaxSignedValue()) {
7437         Pred = ICmpInst::ICMP_NE;
7438         RHS = getConstant(RA + 1);
7439         Changed = true;
7440         break;
7441       }
7442       if (RA.isMinSignedValue()) {
7443         Pred = ICmpInst::ICMP_EQ;
7444         Changed = true;
7445         break;
7446       }
7447       if (RA.isMaxSignedValue()) goto trivially_true;
7448 
7449       Pred = ICmpInst::ICMP_SLT;
7450       RHS = getConstant(RA + 1);
7451       Changed = true;
7452       break;
7453     case ICmpInst::ICMP_UGT:
7454       if (RA.isMinValue()) {
7455         Pred = ICmpInst::ICMP_NE;
7456         Changed = true;
7457         break;
7458       }
7459       if ((RA + 1).isMaxValue()) {
7460         Pred = ICmpInst::ICMP_EQ;
7461         RHS = getConstant(RA + 1);
7462         Changed = true;
7463         break;
7464       }
7465       if (RA.isMaxValue()) goto trivially_false;
7466       break;
7467     case ICmpInst::ICMP_ULT:
7468       if (RA.isMaxValue()) {
7469         Pred = ICmpInst::ICMP_NE;
7470         Changed = true;
7471         break;
7472       }
7473       if ((RA - 1).isMinValue()) {
7474         Pred = ICmpInst::ICMP_EQ;
7475         RHS = getConstant(RA - 1);
7476         Changed = true;
7477         break;
7478       }
7479       if (RA.isMinValue()) goto trivially_false;
7480       break;
7481     case ICmpInst::ICMP_SGT:
7482       if (RA.isMinSignedValue()) {
7483         Pred = ICmpInst::ICMP_NE;
7484         Changed = true;
7485         break;
7486       }
7487       if ((RA + 1).isMaxSignedValue()) {
7488         Pred = ICmpInst::ICMP_EQ;
7489         RHS = getConstant(RA + 1);
7490         Changed = true;
7491         break;
7492       }
7493       if (RA.isMaxSignedValue()) goto trivially_false;
7494       break;
7495     case ICmpInst::ICMP_SLT:
7496       if (RA.isMaxSignedValue()) {
7497         Pred = ICmpInst::ICMP_NE;
7498         Changed = true;
7499         break;
7500       }
7501       if ((RA - 1).isMinSignedValue()) {
7502        Pred = ICmpInst::ICMP_EQ;
7503        RHS = getConstant(RA - 1);
7504         Changed = true;
7505        break;
7506       }
7507       if (RA.isMinSignedValue()) goto trivially_false;
7508       break;
7509     }
7510   }
7511 
7512   // Check for obvious equality.
7513   if (HasSameValue(LHS, RHS)) {
7514     if (ICmpInst::isTrueWhenEqual(Pred))
7515       goto trivially_true;
7516     if (ICmpInst::isFalseWhenEqual(Pred))
7517       goto trivially_false;
7518   }
7519 
7520   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7521   // adding or subtracting 1 from one of the operands.
7522   switch (Pred) {
7523   case ICmpInst::ICMP_SLE:
7524     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7525       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7526                        SCEV::FlagNSW);
7527       Pred = ICmpInst::ICMP_SLT;
7528       Changed = true;
7529     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7530       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7531                        SCEV::FlagNSW);
7532       Pred = ICmpInst::ICMP_SLT;
7533       Changed = true;
7534     }
7535     break;
7536   case ICmpInst::ICMP_SGE:
7537     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7538       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7539                        SCEV::FlagNSW);
7540       Pred = ICmpInst::ICMP_SGT;
7541       Changed = true;
7542     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7543       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7544                        SCEV::FlagNSW);
7545       Pred = ICmpInst::ICMP_SGT;
7546       Changed = true;
7547     }
7548     break;
7549   case ICmpInst::ICMP_ULE:
7550     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7551       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7552                        SCEV::FlagNUW);
7553       Pred = ICmpInst::ICMP_ULT;
7554       Changed = true;
7555     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7556       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7557       Pred = ICmpInst::ICMP_ULT;
7558       Changed = true;
7559     }
7560     break;
7561   case ICmpInst::ICMP_UGE:
7562     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7563       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7564       Pred = ICmpInst::ICMP_UGT;
7565       Changed = true;
7566     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7567       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7568                        SCEV::FlagNUW);
7569       Pred = ICmpInst::ICMP_UGT;
7570       Changed = true;
7571     }
7572     break;
7573   default:
7574     break;
7575   }
7576 
7577   // TODO: More simplifications are possible here.
7578 
7579   // Recursively simplify until we either hit a recursion limit or nothing
7580   // changes.
7581   if (Changed)
7582     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7583 
7584   return Changed;
7585 
7586 trivially_true:
7587   // Return 0 == 0.
7588   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7589   Pred = ICmpInst::ICMP_EQ;
7590   return true;
7591 
7592 trivially_false:
7593   // Return 0 != 0.
7594   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7595   Pred = ICmpInst::ICMP_NE;
7596   return true;
7597 }
7598 
7599 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7600   return getSignedRange(S).getSignedMax().isNegative();
7601 }
7602 
7603 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7604   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7605 }
7606 
7607 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7608   return !getSignedRange(S).getSignedMin().isNegative();
7609 }
7610 
7611 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7612   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7613 }
7614 
7615 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7616   return isKnownNegative(S) || isKnownPositive(S);
7617 }
7618 
7619 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7620                                        const SCEV *LHS, const SCEV *RHS) {
7621   // Canonicalize the inputs first.
7622   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7623 
7624   // If LHS or RHS is an addrec, check to see if the condition is true in
7625   // every iteration of the loop.
7626   // If LHS and RHS are both addrec, both conditions must be true in
7627   // every iteration of the loop.
7628   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7629   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7630   bool LeftGuarded = false;
7631   bool RightGuarded = false;
7632   if (LAR) {
7633     const Loop *L = LAR->getLoop();
7634     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7635         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7636       if (!RAR) return true;
7637       LeftGuarded = true;
7638     }
7639   }
7640   if (RAR) {
7641     const Loop *L = RAR->getLoop();
7642     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7643         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7644       if (!LAR) return true;
7645       RightGuarded = true;
7646     }
7647   }
7648   if (LeftGuarded && RightGuarded)
7649     return true;
7650 
7651   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7652     return true;
7653 
7654   // Otherwise see what can be done with known constant ranges.
7655   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7656 }
7657 
7658 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7659                                            ICmpInst::Predicate Pred,
7660                                            bool &Increasing) {
7661   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7662 
7663 #ifndef NDEBUG
7664   // Verify an invariant: inverting the predicate should turn a monotonically
7665   // increasing change to a monotonically decreasing one, and vice versa.
7666   bool IncreasingSwapped;
7667   bool ResultSwapped = isMonotonicPredicateImpl(
7668       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7669 
7670   assert(Result == ResultSwapped && "should be able to analyze both!");
7671   if (ResultSwapped)
7672     assert(Increasing == !IncreasingSwapped &&
7673            "monotonicity should flip as we flip the predicate");
7674 #endif
7675 
7676   return Result;
7677 }
7678 
7679 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7680                                                ICmpInst::Predicate Pred,
7681                                                bool &Increasing) {
7682 
7683   // A zero step value for LHS means the induction variable is essentially a
7684   // loop invariant value. We don't really depend on the predicate actually
7685   // flipping from false to true (for increasing predicates, and the other way
7686   // around for decreasing predicates), all we care about is that *if* the
7687   // predicate changes then it only changes from false to true.
7688   //
7689   // A zero step value in itself is not very useful, but there may be places
7690   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7691   // as general as possible.
7692 
7693   switch (Pred) {
7694   default:
7695     return false; // Conservative answer
7696 
7697   case ICmpInst::ICMP_UGT:
7698   case ICmpInst::ICMP_UGE:
7699   case ICmpInst::ICMP_ULT:
7700   case ICmpInst::ICMP_ULE:
7701     if (!LHS->hasNoUnsignedWrap())
7702       return false;
7703 
7704     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7705     return true;
7706 
7707   case ICmpInst::ICMP_SGT:
7708   case ICmpInst::ICMP_SGE:
7709   case ICmpInst::ICMP_SLT:
7710   case ICmpInst::ICMP_SLE: {
7711     if (!LHS->hasNoSignedWrap())
7712       return false;
7713 
7714     const SCEV *Step = LHS->getStepRecurrence(*this);
7715 
7716     if (isKnownNonNegative(Step)) {
7717       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7718       return true;
7719     }
7720 
7721     if (isKnownNonPositive(Step)) {
7722       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7723       return true;
7724     }
7725 
7726     return false;
7727   }
7728 
7729   }
7730 
7731   llvm_unreachable("switch has default clause!");
7732 }
7733 
7734 bool ScalarEvolution::isLoopInvariantPredicate(
7735     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7736     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7737     const SCEV *&InvariantRHS) {
7738 
7739   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7740   if (!isLoopInvariant(RHS, L)) {
7741     if (!isLoopInvariant(LHS, L))
7742       return false;
7743 
7744     std::swap(LHS, RHS);
7745     Pred = ICmpInst::getSwappedPredicate(Pred);
7746   }
7747 
7748   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7749   if (!ArLHS || ArLHS->getLoop() != L)
7750     return false;
7751 
7752   bool Increasing;
7753   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7754     return false;
7755 
7756   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7757   // true as the loop iterates, and the backedge is control dependent on
7758   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7759   //
7760   //   * if the predicate was false in the first iteration then the predicate
7761   //     is never evaluated again, since the loop exits without taking the
7762   //     backedge.
7763   //   * if the predicate was true in the first iteration then it will
7764   //     continue to be true for all future iterations since it is
7765   //     monotonically increasing.
7766   //
7767   // For both the above possibilities, we can replace the loop varying
7768   // predicate with its value on the first iteration of the loop (which is
7769   // loop invariant).
7770   //
7771   // A similar reasoning applies for a monotonically decreasing predicate, by
7772   // replacing true with false and false with true in the above two bullets.
7773 
7774   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7775 
7776   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7777     return false;
7778 
7779   InvariantPred = Pred;
7780   InvariantLHS = ArLHS->getStart();
7781   InvariantRHS = RHS;
7782   return true;
7783 }
7784 
7785 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7786     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7787   if (HasSameValue(LHS, RHS))
7788     return ICmpInst::isTrueWhenEqual(Pred);
7789 
7790   // This code is split out from isKnownPredicate because it is called from
7791   // within isLoopEntryGuardedByCond.
7792 
7793   auto CheckRanges =
7794       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7795     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7796         .contains(RangeLHS);
7797   };
7798 
7799   // The check at the top of the function catches the case where the values are
7800   // known to be equal.
7801   if (Pred == CmpInst::ICMP_EQ)
7802     return false;
7803 
7804   if (Pred == CmpInst::ICMP_NE)
7805     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7806            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7807            isKnownNonZero(getMinusSCEV(LHS, RHS));
7808 
7809   if (CmpInst::isSigned(Pred))
7810     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7811 
7812   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7813 }
7814 
7815 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7816                                                     const SCEV *LHS,
7817                                                     const SCEV *RHS) {
7818 
7819   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7820   // Return Y via OutY.
7821   auto MatchBinaryAddToConst =
7822       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7823              SCEV::NoWrapFlags ExpectedFlags) {
7824     const SCEV *NonConstOp, *ConstOp;
7825     SCEV::NoWrapFlags FlagsPresent;
7826 
7827     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7828         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7829       return false;
7830 
7831     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7832     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7833   };
7834 
7835   APInt C;
7836 
7837   switch (Pred) {
7838   default:
7839     break;
7840 
7841   case ICmpInst::ICMP_SGE:
7842     std::swap(LHS, RHS);
7843   case ICmpInst::ICMP_SLE:
7844     // X s<= (X + C)<nsw> if C >= 0
7845     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7846       return true;
7847 
7848     // (X + C)<nsw> s<= X if C <= 0
7849     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7850         !C.isStrictlyPositive())
7851       return true;
7852     break;
7853 
7854   case ICmpInst::ICMP_SGT:
7855     std::swap(LHS, RHS);
7856   case ICmpInst::ICMP_SLT:
7857     // X s< (X + C)<nsw> if C > 0
7858     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7859         C.isStrictlyPositive())
7860       return true;
7861 
7862     // (X + C)<nsw> s< X if C < 0
7863     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7864       return true;
7865     break;
7866   }
7867 
7868   return false;
7869 }
7870 
7871 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7872                                                    const SCEV *LHS,
7873                                                    const SCEV *RHS) {
7874   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7875     return false;
7876 
7877   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7878   // the stack can result in exponential time complexity.
7879   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7880 
7881   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7882   //
7883   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7884   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7885   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7886   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7887   // use isKnownPredicate later if needed.
7888   return isKnownNonNegative(RHS) &&
7889          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7890          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7891 }
7892 
7893 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7894                                         ICmpInst::Predicate Pred,
7895                                         const SCEV *LHS, const SCEV *RHS) {
7896   // No need to even try if we know the module has no guards.
7897   if (!HasGuards)
7898     return false;
7899 
7900   return any_of(*BB, [&](Instruction &I) {
7901     using namespace llvm::PatternMatch;
7902 
7903     Value *Condition;
7904     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7905                          m_Value(Condition))) &&
7906            isImpliedCond(Pred, LHS, RHS, Condition, false);
7907   });
7908 }
7909 
7910 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7911 /// protected by a conditional between LHS and RHS.  This is used to
7912 /// to eliminate casts.
7913 bool
7914 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7915                                              ICmpInst::Predicate Pred,
7916                                              const SCEV *LHS, const SCEV *RHS) {
7917   // Interpret a null as meaning no loop, where there is obviously no guard
7918   // (interprocedural conditions notwithstanding).
7919   if (!L) return true;
7920 
7921   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7922     return true;
7923 
7924   BasicBlock *Latch = L->getLoopLatch();
7925   if (!Latch)
7926     return false;
7927 
7928   BranchInst *LoopContinuePredicate =
7929     dyn_cast<BranchInst>(Latch->getTerminator());
7930   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7931       isImpliedCond(Pred, LHS, RHS,
7932                     LoopContinuePredicate->getCondition(),
7933                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7934     return true;
7935 
7936   // We don't want more than one activation of the following loops on the stack
7937   // -- that can lead to O(n!) time complexity.
7938   if (WalkingBEDominatingConds)
7939     return false;
7940 
7941   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7942 
7943   // See if we can exploit a trip count to prove the predicate.
7944   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7945   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7946   if (LatchBECount != getCouldNotCompute()) {
7947     // We know that Latch branches back to the loop header exactly
7948     // LatchBECount times.  This means the backdege condition at Latch is
7949     // equivalent to  "{0,+,1} u< LatchBECount".
7950     Type *Ty = LatchBECount->getType();
7951     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7952     const SCEV *LoopCounter =
7953       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7954     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7955                       LatchBECount))
7956       return true;
7957   }
7958 
7959   // Check conditions due to any @llvm.assume intrinsics.
7960   for (auto &AssumeVH : AC.assumptions()) {
7961     if (!AssumeVH)
7962       continue;
7963     auto *CI = cast<CallInst>(AssumeVH);
7964     if (!DT.dominates(CI, Latch->getTerminator()))
7965       continue;
7966 
7967     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7968       return true;
7969   }
7970 
7971   // If the loop is not reachable from the entry block, we risk running into an
7972   // infinite loop as we walk up into the dom tree.  These loops do not matter
7973   // anyway, so we just return a conservative answer when we see them.
7974   if (!DT.isReachableFromEntry(L->getHeader()))
7975     return false;
7976 
7977   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7978     return true;
7979 
7980   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7981        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7982 
7983     assert(DTN && "should reach the loop header before reaching the root!");
7984 
7985     BasicBlock *BB = DTN->getBlock();
7986     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7987       return true;
7988 
7989     BasicBlock *PBB = BB->getSinglePredecessor();
7990     if (!PBB)
7991       continue;
7992 
7993     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7994     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7995       continue;
7996 
7997     Value *Condition = ContinuePredicate->getCondition();
7998 
7999     // If we have an edge `E` within the loop body that dominates the only
8000     // latch, the condition guarding `E` also guards the backedge.  This
8001     // reasoning works only for loops with a single latch.
8002 
8003     BasicBlockEdge DominatingEdge(PBB, BB);
8004     if (DominatingEdge.isSingleEdge()) {
8005       // We're constructively (and conservatively) enumerating edges within the
8006       // loop body that dominate the latch.  The dominator tree better agree
8007       // with us on this:
8008       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
8009 
8010       if (isImpliedCond(Pred, LHS, RHS, Condition,
8011                         BB != ContinuePredicate->getSuccessor(0)))
8012         return true;
8013     }
8014   }
8015 
8016   return false;
8017 }
8018 
8019 bool
8020 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
8021                                           ICmpInst::Predicate Pred,
8022                                           const SCEV *LHS, const SCEV *RHS) {
8023   // Interpret a null as meaning no loop, where there is obviously no guard
8024   // (interprocedural conditions notwithstanding).
8025   if (!L) return false;
8026 
8027   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8028     return true;
8029 
8030   // Starting at the loop predecessor, climb up the predecessor chain, as long
8031   // as there are predecessors that can be found that have unique successors
8032   // leading to the original header.
8033   for (std::pair<BasicBlock *, BasicBlock *>
8034          Pair(L->getLoopPredecessor(), L->getHeader());
8035        Pair.first;
8036        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
8037 
8038     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
8039       return true;
8040 
8041     BranchInst *LoopEntryPredicate =
8042       dyn_cast<BranchInst>(Pair.first->getTerminator());
8043     if (!LoopEntryPredicate ||
8044         LoopEntryPredicate->isUnconditional())
8045       continue;
8046 
8047     if (isImpliedCond(Pred, LHS, RHS,
8048                       LoopEntryPredicate->getCondition(),
8049                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
8050       return true;
8051   }
8052 
8053   // Check conditions due to any @llvm.assume intrinsics.
8054   for (auto &AssumeVH : AC.assumptions()) {
8055     if (!AssumeVH)
8056       continue;
8057     auto *CI = cast<CallInst>(AssumeVH);
8058     if (!DT.dominates(CI, L->getHeader()))
8059       continue;
8060 
8061     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8062       return true;
8063   }
8064 
8065   return false;
8066 }
8067 
8068 namespace {
8069 /// RAII wrapper to prevent recursive application of isImpliedCond.
8070 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
8071 /// currently evaluating isImpliedCond.
8072 struct MarkPendingLoopPredicate {
8073   Value *Cond;
8074   DenseSet<Value*> &LoopPreds;
8075   bool Pending;
8076 
8077   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
8078     : Cond(C), LoopPreds(LP) {
8079     Pending = !LoopPreds.insert(Cond).second;
8080   }
8081   ~MarkPendingLoopPredicate() {
8082     if (!Pending)
8083       LoopPreds.erase(Cond);
8084   }
8085 };
8086 } // end anonymous namespace
8087 
8088 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8089                                     const SCEV *LHS, const SCEV *RHS,
8090                                     Value *FoundCondValue,
8091                                     bool Inverse) {
8092   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
8093   if (Mark.Pending)
8094     return false;
8095 
8096   // Recursively handle And and Or conditions.
8097   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8098     if (BO->getOpcode() == Instruction::And) {
8099       if (!Inverse)
8100         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8101                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8102     } else if (BO->getOpcode() == Instruction::Or) {
8103       if (Inverse)
8104         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8105                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8106     }
8107   }
8108 
8109   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8110   if (!ICI) return false;
8111 
8112   // Now that we found a conditional branch that dominates the loop or controls
8113   // the loop latch. Check to see if it is the comparison we are looking for.
8114   ICmpInst::Predicate FoundPred;
8115   if (Inverse)
8116     FoundPred = ICI->getInversePredicate();
8117   else
8118     FoundPred = ICI->getPredicate();
8119 
8120   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8121   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8122 
8123   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8124 }
8125 
8126 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8127                                     const SCEV *RHS,
8128                                     ICmpInst::Predicate FoundPred,
8129                                     const SCEV *FoundLHS,
8130                                     const SCEV *FoundRHS) {
8131   // Balance the types.
8132   if (getTypeSizeInBits(LHS->getType()) <
8133       getTypeSizeInBits(FoundLHS->getType())) {
8134     if (CmpInst::isSigned(Pred)) {
8135       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8136       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8137     } else {
8138       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8139       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8140     }
8141   } else if (getTypeSizeInBits(LHS->getType()) >
8142       getTypeSizeInBits(FoundLHS->getType())) {
8143     if (CmpInst::isSigned(FoundPred)) {
8144       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8145       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8146     } else {
8147       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8148       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8149     }
8150   }
8151 
8152   // Canonicalize the query to match the way instcombine will have
8153   // canonicalized the comparison.
8154   if (SimplifyICmpOperands(Pred, LHS, RHS))
8155     if (LHS == RHS)
8156       return CmpInst::isTrueWhenEqual(Pred);
8157   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8158     if (FoundLHS == FoundRHS)
8159       return CmpInst::isFalseWhenEqual(FoundPred);
8160 
8161   // Check to see if we can make the LHS or RHS match.
8162   if (LHS == FoundRHS || RHS == FoundLHS) {
8163     if (isa<SCEVConstant>(RHS)) {
8164       std::swap(FoundLHS, FoundRHS);
8165       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8166     } else {
8167       std::swap(LHS, RHS);
8168       Pred = ICmpInst::getSwappedPredicate(Pred);
8169     }
8170   }
8171 
8172   // Check whether the found predicate is the same as the desired predicate.
8173   if (FoundPred == Pred)
8174     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8175 
8176   // Check whether swapping the found predicate makes it the same as the
8177   // desired predicate.
8178   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8179     if (isa<SCEVConstant>(RHS))
8180       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8181     else
8182       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8183                                    RHS, LHS, FoundLHS, FoundRHS);
8184   }
8185 
8186   // Unsigned comparison is the same as signed comparison when both the operands
8187   // are non-negative.
8188   if (CmpInst::isUnsigned(FoundPred) &&
8189       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8190       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8191     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8192 
8193   // Check if we can make progress by sharpening ranges.
8194   if (FoundPred == ICmpInst::ICMP_NE &&
8195       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8196 
8197     const SCEVConstant *C = nullptr;
8198     const SCEV *V = nullptr;
8199 
8200     if (isa<SCEVConstant>(FoundLHS)) {
8201       C = cast<SCEVConstant>(FoundLHS);
8202       V = FoundRHS;
8203     } else {
8204       C = cast<SCEVConstant>(FoundRHS);
8205       V = FoundLHS;
8206     }
8207 
8208     // The guarding predicate tells us that C != V. If the known range
8209     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8210     // range we consider has to correspond to same signedness as the
8211     // predicate we're interested in folding.
8212 
8213     APInt Min = ICmpInst::isSigned(Pred) ?
8214         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8215 
8216     if (Min == C->getAPInt()) {
8217       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8218       // This is true even if (Min + 1) wraps around -- in case of
8219       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8220 
8221       APInt SharperMin = Min + 1;
8222 
8223       switch (Pred) {
8224         case ICmpInst::ICMP_SGE:
8225         case ICmpInst::ICMP_UGE:
8226           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8227           // RHS, we're done.
8228           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8229                                     getConstant(SharperMin)))
8230             return true;
8231 
8232         case ICmpInst::ICMP_SGT:
8233         case ICmpInst::ICMP_UGT:
8234           // We know from the range information that (V `Pred` Min ||
8235           // V == Min).  We know from the guarding condition that !(V
8236           // == Min).  This gives us
8237           //
8238           //       V `Pred` Min || V == Min && !(V == Min)
8239           //   =>  V `Pred` Min
8240           //
8241           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8242 
8243           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8244             return true;
8245 
8246         default:
8247           // No change
8248           break;
8249       }
8250     }
8251   }
8252 
8253   // Check whether the actual condition is beyond sufficient.
8254   if (FoundPred == ICmpInst::ICMP_EQ)
8255     if (ICmpInst::isTrueWhenEqual(Pred))
8256       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8257         return true;
8258   if (Pred == ICmpInst::ICMP_NE)
8259     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8260       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8261         return true;
8262 
8263   // Otherwise assume the worst.
8264   return false;
8265 }
8266 
8267 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8268                                      const SCEV *&L, const SCEV *&R,
8269                                      SCEV::NoWrapFlags &Flags) {
8270   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8271   if (!AE || AE->getNumOperands() != 2)
8272     return false;
8273 
8274   L = AE->getOperand(0);
8275   R = AE->getOperand(1);
8276   Flags = AE->getNoWrapFlags();
8277   return true;
8278 }
8279 
8280 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
8281                                                            const SCEV *Less) {
8282   // We avoid subtracting expressions here because this function is usually
8283   // fairly deep in the call stack (i.e. is called many times).
8284 
8285   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8286     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8287     const auto *MAR = cast<SCEVAddRecExpr>(More);
8288 
8289     if (LAR->getLoop() != MAR->getLoop())
8290       return None;
8291 
8292     // We look at affine expressions only; not for correctness but to keep
8293     // getStepRecurrence cheap.
8294     if (!LAR->isAffine() || !MAR->isAffine())
8295       return None;
8296 
8297     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8298       return None;
8299 
8300     Less = LAR->getStart();
8301     More = MAR->getStart();
8302 
8303     // fall through
8304   }
8305 
8306   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8307     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8308     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8309     return M - L;
8310   }
8311 
8312   const SCEV *L, *R;
8313   SCEV::NoWrapFlags Flags;
8314   if (splitBinaryAdd(Less, L, R, Flags))
8315     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8316       if (R == More)
8317         return -(LC->getAPInt());
8318 
8319   if (splitBinaryAdd(More, L, R, Flags))
8320     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8321       if (R == Less)
8322         return LC->getAPInt();
8323 
8324   return None;
8325 }
8326 
8327 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8328     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8329     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8330   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8331     return false;
8332 
8333   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8334   if (!AddRecLHS)
8335     return false;
8336 
8337   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8338   if (!AddRecFoundLHS)
8339     return false;
8340 
8341   // We'd like to let SCEV reason about control dependencies, so we constrain
8342   // both the inequalities to be about add recurrences on the same loop.  This
8343   // way we can use isLoopEntryGuardedByCond later.
8344 
8345   const Loop *L = AddRecFoundLHS->getLoop();
8346   if (L != AddRecLHS->getLoop())
8347     return false;
8348 
8349   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8350   //
8351   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8352   //                                                                  ... (2)
8353   //
8354   // Informal proof for (2), assuming (1) [*]:
8355   //
8356   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8357   //
8358   // Then
8359   //
8360   //       FoundLHS s< FoundRHS s< INT_MIN - C
8361   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8362   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8363   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8364   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8365   // <=>  FoundLHS + C s< FoundRHS + C
8366   //
8367   // [*]: (1) can be proved by ruling out overflow.
8368   //
8369   // [**]: This can be proved by analyzing all the four possibilities:
8370   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8371   //    (A s>= 0, B s>= 0).
8372   //
8373   // Note:
8374   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8375   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8376   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8377   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8378   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8379   // C)".
8380 
8381   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
8382   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
8383   if (!LDiff || !RDiff || *LDiff != *RDiff)
8384     return false;
8385 
8386   if (LDiff->isMinValue())
8387     return true;
8388 
8389   APInt FoundRHSLimit;
8390 
8391   if (Pred == CmpInst::ICMP_ULT) {
8392     FoundRHSLimit = -(*RDiff);
8393   } else {
8394     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8395     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
8396   }
8397 
8398   // Try to prove (1) or (2), as needed.
8399   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8400                                   getConstant(FoundRHSLimit));
8401 }
8402 
8403 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8404                                             const SCEV *LHS, const SCEV *RHS,
8405                                             const SCEV *FoundLHS,
8406                                             const SCEV *FoundRHS) {
8407   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8408     return true;
8409 
8410   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8411     return true;
8412 
8413   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8414                                      FoundLHS, FoundRHS) ||
8415          // ~x < ~y --> x > y
8416          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8417                                      getNotSCEV(FoundRHS),
8418                                      getNotSCEV(FoundLHS));
8419 }
8420 
8421 
8422 /// If Expr computes ~A, return A else return nullptr
8423 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8424   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8425   if (!Add || Add->getNumOperands() != 2 ||
8426       !Add->getOperand(0)->isAllOnesValue())
8427     return nullptr;
8428 
8429   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8430   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8431       !AddRHS->getOperand(0)->isAllOnesValue())
8432     return nullptr;
8433 
8434   return AddRHS->getOperand(1);
8435 }
8436 
8437 
8438 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8439 template<typename MaxExprType>
8440 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8441                               const SCEV *Candidate) {
8442   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8443   if (!MaxExpr) return false;
8444 
8445   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8446 }
8447 
8448 
8449 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8450 template<typename MaxExprType>
8451 static bool IsMinConsistingOf(ScalarEvolution &SE,
8452                               const SCEV *MaybeMinExpr,
8453                               const SCEV *Candidate) {
8454   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8455   if (!MaybeMaxExpr)
8456     return false;
8457 
8458   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8459 }
8460 
8461 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8462                                            ICmpInst::Predicate Pred,
8463                                            const SCEV *LHS, const SCEV *RHS) {
8464 
8465   // If both sides are affine addrecs for the same loop, with equal
8466   // steps, and we know the recurrences don't wrap, then we only
8467   // need to check the predicate on the starting values.
8468 
8469   if (!ICmpInst::isRelational(Pred))
8470     return false;
8471 
8472   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8473   if (!LAR)
8474     return false;
8475   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8476   if (!RAR)
8477     return false;
8478   if (LAR->getLoop() != RAR->getLoop())
8479     return false;
8480   if (!LAR->isAffine() || !RAR->isAffine())
8481     return false;
8482 
8483   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8484     return false;
8485 
8486   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8487                          SCEV::FlagNSW : SCEV::FlagNUW;
8488   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8489     return false;
8490 
8491   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8492 }
8493 
8494 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8495 /// expression?
8496 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8497                                         ICmpInst::Predicate Pred,
8498                                         const SCEV *LHS, const SCEV *RHS) {
8499   switch (Pred) {
8500   default:
8501     return false;
8502 
8503   case ICmpInst::ICMP_SGE:
8504     std::swap(LHS, RHS);
8505     // fall through
8506   case ICmpInst::ICMP_SLE:
8507     return
8508       // min(A, ...) <= A
8509       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8510       // A <= max(A, ...)
8511       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8512 
8513   case ICmpInst::ICMP_UGE:
8514     std::swap(LHS, RHS);
8515     // fall through
8516   case ICmpInst::ICMP_ULE:
8517     return
8518       // min(A, ...) <= A
8519       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8520       // A <= max(A, ...)
8521       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8522   }
8523 
8524   llvm_unreachable("covered switch fell through?!");
8525 }
8526 
8527 bool
8528 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8529                                              const SCEV *LHS, const SCEV *RHS,
8530                                              const SCEV *FoundLHS,
8531                                              const SCEV *FoundRHS) {
8532   auto IsKnownPredicateFull =
8533       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8534     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8535            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8536            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8537            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8538   };
8539 
8540   switch (Pred) {
8541   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8542   case ICmpInst::ICMP_EQ:
8543   case ICmpInst::ICMP_NE:
8544     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8545       return true;
8546     break;
8547   case ICmpInst::ICMP_SLT:
8548   case ICmpInst::ICMP_SLE:
8549     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8550         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8551       return true;
8552     break;
8553   case ICmpInst::ICMP_SGT:
8554   case ICmpInst::ICMP_SGE:
8555     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8556         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8557       return true;
8558     break;
8559   case ICmpInst::ICMP_ULT:
8560   case ICmpInst::ICMP_ULE:
8561     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8562         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8563       return true;
8564     break;
8565   case ICmpInst::ICMP_UGT:
8566   case ICmpInst::ICMP_UGE:
8567     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8568         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8569       return true;
8570     break;
8571   }
8572 
8573   return false;
8574 }
8575 
8576 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8577                                                      const SCEV *LHS,
8578                                                      const SCEV *RHS,
8579                                                      const SCEV *FoundLHS,
8580                                                      const SCEV *FoundRHS) {
8581   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8582     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8583     // reduce the compile time impact of this optimization.
8584     return false;
8585 
8586   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
8587   if (!Addend)
8588     return false;
8589 
8590   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8591 
8592   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8593   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8594   ConstantRange FoundLHSRange =
8595       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8596 
8597   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
8598   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
8599 
8600   // We can also compute the range of values for `LHS` that satisfy the
8601   // consequent, "`LHS` `Pred` `RHS`":
8602   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8603   ConstantRange SatisfyingLHSRange =
8604       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8605 
8606   // The antecedent implies the consequent if every value of `LHS` that
8607   // satisfies the antecedent also satisfies the consequent.
8608   return SatisfyingLHSRange.contains(LHSRange);
8609 }
8610 
8611 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8612                                          bool IsSigned, bool NoWrap) {
8613   if (NoWrap) return false;
8614 
8615   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8616   const SCEV *One = getOne(Stride->getType());
8617 
8618   if (IsSigned) {
8619     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8620     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8621     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8622                                 .getSignedMax();
8623 
8624     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8625     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8626   }
8627 
8628   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8629   APInt MaxValue = APInt::getMaxValue(BitWidth);
8630   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8631                               .getUnsignedMax();
8632 
8633   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8634   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8635 }
8636 
8637 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8638                                          bool IsSigned, bool NoWrap) {
8639   if (NoWrap) return false;
8640 
8641   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8642   const SCEV *One = getOne(Stride->getType());
8643 
8644   if (IsSigned) {
8645     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8646     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8647     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8648                                .getSignedMax();
8649 
8650     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8651     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8652   }
8653 
8654   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8655   APInt MinValue = APInt::getMinValue(BitWidth);
8656   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8657                             .getUnsignedMax();
8658 
8659   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8660   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8661 }
8662 
8663 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8664                                             bool Equality) {
8665   const SCEV *One = getOne(Step->getType());
8666   Delta = Equality ? getAddExpr(Delta, Step)
8667                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8668   return getUDivExpr(Delta, Step);
8669 }
8670 
8671 ScalarEvolution::ExitLimit
8672 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
8673                                   const Loop *L, bool IsSigned,
8674                                   bool ControlsExit, bool AllowPredicates) {
8675   SCEVUnionPredicate P;
8676   // We handle only IV < Invariant
8677   if (!isLoopInvariant(RHS, L))
8678     return getCouldNotCompute();
8679 
8680   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8681   if (!IV && AllowPredicates)
8682     // Try to make this an AddRec using runtime tests, in the first X
8683     // iterations of this loop, where X is the SCEV expression found by the
8684     // algorithm below.
8685     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8686 
8687   // Avoid weird loops
8688   if (!IV || IV->getLoop() != L || !IV->isAffine())
8689     return getCouldNotCompute();
8690 
8691   bool NoWrap = ControlsExit &&
8692                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8693 
8694   const SCEV *Stride = IV->getStepRecurrence(*this);
8695 
8696   // Avoid negative or zero stride values
8697   if (!isKnownPositive(Stride))
8698     return getCouldNotCompute();
8699 
8700   // Avoid proven overflow cases: this will ensure that the backedge taken count
8701   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8702   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8703   // behaviors like the case of C language.
8704   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8705     return getCouldNotCompute();
8706 
8707   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8708                                       : ICmpInst::ICMP_ULT;
8709   const SCEV *Start = IV->getStart();
8710   const SCEV *End = RHS;
8711   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
8712     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
8713 
8714   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8715 
8716   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8717                             : getUnsignedRange(Start).getUnsignedMin();
8718 
8719   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8720                              : getUnsignedRange(Stride).getUnsignedMin();
8721 
8722   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8723   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8724                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8725 
8726   // Although End can be a MAX expression we estimate MaxEnd considering only
8727   // the case End = RHS. This is safe because in the other case (End - Start)
8728   // is zero, leading to a zero maximum backedge taken count.
8729   APInt MaxEnd =
8730     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8731              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8732 
8733   const SCEV *MaxBECount;
8734   if (isa<SCEVConstant>(BECount))
8735     MaxBECount = BECount;
8736   else
8737     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8738                                 getConstant(MinStride), false);
8739 
8740   if (isa<SCEVCouldNotCompute>(MaxBECount))
8741     MaxBECount = BECount;
8742 
8743   return ExitLimit(BECount, MaxBECount, P);
8744 }
8745 
8746 ScalarEvolution::ExitLimit
8747 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8748                                      const Loop *L, bool IsSigned,
8749                                      bool ControlsExit, bool AllowPredicates) {
8750   SCEVUnionPredicate P;
8751   // We handle only IV > Invariant
8752   if (!isLoopInvariant(RHS, L))
8753     return getCouldNotCompute();
8754 
8755   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8756   if (!IV && AllowPredicates)
8757     // Try to make this an AddRec using runtime tests, in the first X
8758     // iterations of this loop, where X is the SCEV expression found by the
8759     // algorithm below.
8760     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8761 
8762   // Avoid weird loops
8763   if (!IV || IV->getLoop() != L || !IV->isAffine())
8764     return getCouldNotCompute();
8765 
8766   bool NoWrap = ControlsExit &&
8767                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8768 
8769   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8770 
8771   // Avoid negative or zero stride values
8772   if (!isKnownPositive(Stride))
8773     return getCouldNotCompute();
8774 
8775   // Avoid proven overflow cases: this will ensure that the backedge taken count
8776   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8777   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8778   // behaviors like the case of C language.
8779   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8780     return getCouldNotCompute();
8781 
8782   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8783                                       : ICmpInst::ICMP_UGT;
8784 
8785   const SCEV *Start = IV->getStart();
8786   const SCEV *End = RHS;
8787   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
8788     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
8789 
8790   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8791 
8792   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8793                             : getUnsignedRange(Start).getUnsignedMax();
8794 
8795   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8796                              : getUnsignedRange(Stride).getUnsignedMin();
8797 
8798   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8799   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8800                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8801 
8802   // Although End can be a MIN expression we estimate MinEnd considering only
8803   // the case End = RHS. This is safe because in the other case (Start - End)
8804   // is zero, leading to a zero maximum backedge taken count.
8805   APInt MinEnd =
8806     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8807              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8808 
8809 
8810   const SCEV *MaxBECount = getCouldNotCompute();
8811   if (isa<SCEVConstant>(BECount))
8812     MaxBECount = BECount;
8813   else
8814     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8815                                 getConstant(MinStride), false);
8816 
8817   if (isa<SCEVCouldNotCompute>(MaxBECount))
8818     MaxBECount = BECount;
8819 
8820   return ExitLimit(BECount, MaxBECount, P);
8821 }
8822 
8823 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
8824                                                     ScalarEvolution &SE) const {
8825   if (Range.isFullSet())  // Infinite loop.
8826     return SE.getCouldNotCompute();
8827 
8828   // If the start is a non-zero constant, shift the range to simplify things.
8829   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8830     if (!SC->getValue()->isZero()) {
8831       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8832       Operands[0] = SE.getZero(SC->getType());
8833       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8834                                              getNoWrapFlags(FlagNW));
8835       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8836         return ShiftedAddRec->getNumIterationsInRange(
8837             Range.subtract(SC->getAPInt()), SE);
8838       // This is strange and shouldn't happen.
8839       return SE.getCouldNotCompute();
8840     }
8841 
8842   // The only time we can solve this is when we have all constant indices.
8843   // Otherwise, we cannot determine the overflow conditions.
8844   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8845     return SE.getCouldNotCompute();
8846 
8847   // Okay at this point we know that all elements of the chrec are constants and
8848   // that the start element is zero.
8849 
8850   // First check to see if the range contains zero.  If not, the first
8851   // iteration exits.
8852   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8853   if (!Range.contains(APInt(BitWidth, 0)))
8854     return SE.getZero(getType());
8855 
8856   if (isAffine()) {
8857     // If this is an affine expression then we have this situation:
8858     //   Solve {0,+,A} in Range  ===  Ax in Range
8859 
8860     // We know that zero is in the range.  If A is positive then we know that
8861     // the upper value of the range must be the first possible exit value.
8862     // If A is negative then the lower of the range is the last possible loop
8863     // value.  Also note that we already checked for a full range.
8864     APInt One(BitWidth,1);
8865     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8866     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8867 
8868     // The exit value should be (End+A)/A.
8869     APInt ExitVal = (End + A).udiv(A);
8870     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8871 
8872     // Evaluate at the exit value.  If we really did fall out of the valid
8873     // range, then we computed our trip count, otherwise wrap around or other
8874     // things must have happened.
8875     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8876     if (Range.contains(Val->getValue()))
8877       return SE.getCouldNotCompute();  // Something strange happened
8878 
8879     // Ensure that the previous value is in the range.  This is a sanity check.
8880     assert(Range.contains(
8881            EvaluateConstantChrecAtConstant(this,
8882            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8883            "Linear scev computation is off in a bad way!");
8884     return SE.getConstant(ExitValue);
8885   } else if (isQuadratic()) {
8886     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8887     // quadratic equation to solve it.  To do this, we must frame our problem in
8888     // terms of figuring out when zero is crossed, instead of when
8889     // Range.getUpper() is crossed.
8890     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8891     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8892     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8893                                              // getNoWrapFlags(FlagNW)
8894                                              FlagAnyWrap);
8895 
8896     // Next, solve the constructed addrec
8897     if (auto Roots =
8898             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
8899       const SCEVConstant *R1 = Roots->first;
8900       const SCEVConstant *R2 = Roots->second;
8901       // Pick the smallest positive root value.
8902       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8903               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8904         if (!CB->getZExtValue())
8905           std::swap(R1, R2); // R1 is the minimum root now.
8906 
8907         // Make sure the root is not off by one.  The returned iteration should
8908         // not be in the range, but the previous one should be.  When solving
8909         // for "X*X < 5", for example, we should not return a root of 2.
8910         ConstantInt *R1Val =
8911             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
8912         if (Range.contains(R1Val->getValue())) {
8913           // The next iteration must be out of the range...
8914           ConstantInt *NextVal =
8915               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8916 
8917           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8918           if (!Range.contains(R1Val->getValue()))
8919             return SE.getConstant(NextVal);
8920           return SE.getCouldNotCompute(); // Something strange happened
8921         }
8922 
8923         // If R1 was not in the range, then it is a good return value.  Make
8924         // sure that R1-1 WAS in the range though, just in case.
8925         ConstantInt *NextVal =
8926             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8927         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8928         if (Range.contains(R1Val->getValue()))
8929           return R1;
8930         return SE.getCouldNotCompute(); // Something strange happened
8931       }
8932     }
8933   }
8934 
8935   return SE.getCouldNotCompute();
8936 }
8937 
8938 namespace {
8939 struct FindUndefs {
8940   bool Found;
8941   FindUndefs() : Found(false) {}
8942 
8943   bool follow(const SCEV *S) {
8944     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8945       if (isa<UndefValue>(C->getValue()))
8946         Found = true;
8947     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8948       if (isa<UndefValue>(C->getValue()))
8949         Found = true;
8950     }
8951 
8952     // Keep looking if we haven't found it yet.
8953     return !Found;
8954   }
8955   bool isDone() const {
8956     // Stop recursion if we have found an undef.
8957     return Found;
8958   }
8959 };
8960 }
8961 
8962 // Return true when S contains at least an undef value.
8963 static inline bool
8964 containsUndefs(const SCEV *S) {
8965   FindUndefs F;
8966   SCEVTraversal<FindUndefs> ST(F);
8967   ST.visitAll(S);
8968 
8969   return F.Found;
8970 }
8971 
8972 namespace {
8973 // Collect all steps of SCEV expressions.
8974 struct SCEVCollectStrides {
8975   ScalarEvolution &SE;
8976   SmallVectorImpl<const SCEV *> &Strides;
8977 
8978   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8979       : SE(SE), Strides(S) {}
8980 
8981   bool follow(const SCEV *S) {
8982     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8983       Strides.push_back(AR->getStepRecurrence(SE));
8984     return true;
8985   }
8986   bool isDone() const { return false; }
8987 };
8988 
8989 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8990 struct SCEVCollectTerms {
8991   SmallVectorImpl<const SCEV *> &Terms;
8992 
8993   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8994       : Terms(T) {}
8995 
8996   bool follow(const SCEV *S) {
8997     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8998       if (!containsUndefs(S))
8999         Terms.push_back(S);
9000 
9001       // Stop recursion: once we collected a term, do not walk its operands.
9002       return false;
9003     }
9004 
9005     // Keep looking.
9006     return true;
9007   }
9008   bool isDone() const { return false; }
9009 };
9010 
9011 // Check if a SCEV contains an AddRecExpr.
9012 struct SCEVHasAddRec {
9013   bool &ContainsAddRec;
9014 
9015   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9016    ContainsAddRec = false;
9017   }
9018 
9019   bool follow(const SCEV *S) {
9020     if (isa<SCEVAddRecExpr>(S)) {
9021       ContainsAddRec = true;
9022 
9023       // Stop recursion: once we collected a term, do not walk its operands.
9024       return false;
9025     }
9026 
9027     // Keep looking.
9028     return true;
9029   }
9030   bool isDone() const { return false; }
9031 };
9032 
9033 // Find factors that are multiplied with an expression that (possibly as a
9034 // subexpression) contains an AddRecExpr. In the expression:
9035 //
9036 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
9037 //
9038 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9039 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9040 // parameters as they form a product with an induction variable.
9041 //
9042 // This collector expects all array size parameters to be in the same MulExpr.
9043 // It might be necessary to later add support for collecting parameters that are
9044 // spread over different nested MulExpr.
9045 struct SCEVCollectAddRecMultiplies {
9046   SmallVectorImpl<const SCEV *> &Terms;
9047   ScalarEvolution &SE;
9048 
9049   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9050       : Terms(T), SE(SE) {}
9051 
9052   bool follow(const SCEV *S) {
9053     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9054       bool HasAddRec = false;
9055       SmallVector<const SCEV *, 0> Operands;
9056       for (auto Op : Mul->operands()) {
9057         if (isa<SCEVUnknown>(Op)) {
9058           Operands.push_back(Op);
9059         } else {
9060           bool ContainsAddRec;
9061           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9062           visitAll(Op, ContiansAddRec);
9063           HasAddRec |= ContainsAddRec;
9064         }
9065       }
9066       if (Operands.size() == 0)
9067         return true;
9068 
9069       if (!HasAddRec)
9070         return false;
9071 
9072       Terms.push_back(SE.getMulExpr(Operands));
9073       // Stop recursion: once we collected a term, do not walk its operands.
9074       return false;
9075     }
9076 
9077     // Keep looking.
9078     return true;
9079   }
9080   bool isDone() const { return false; }
9081 };
9082 }
9083 
9084 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9085 /// two places:
9086 ///   1) The strides of AddRec expressions.
9087 ///   2) Unknowns that are multiplied with AddRec expressions.
9088 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9089     SmallVectorImpl<const SCEV *> &Terms) {
9090   SmallVector<const SCEV *, 4> Strides;
9091   SCEVCollectStrides StrideCollector(*this, Strides);
9092   visitAll(Expr, StrideCollector);
9093 
9094   DEBUG({
9095       dbgs() << "Strides:\n";
9096       for (const SCEV *S : Strides)
9097         dbgs() << *S << "\n";
9098     });
9099 
9100   for (const SCEV *S : Strides) {
9101     SCEVCollectTerms TermCollector(Terms);
9102     visitAll(S, TermCollector);
9103   }
9104 
9105   DEBUG({
9106       dbgs() << "Terms:\n";
9107       for (const SCEV *T : Terms)
9108         dbgs() << *T << "\n";
9109     });
9110 
9111   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9112   visitAll(Expr, MulCollector);
9113 }
9114 
9115 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9116                                    SmallVectorImpl<const SCEV *> &Terms,
9117                                    SmallVectorImpl<const SCEV *> &Sizes) {
9118   int Last = Terms.size() - 1;
9119   const SCEV *Step = Terms[Last];
9120 
9121   // End of recursion.
9122   if (Last == 0) {
9123     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9124       SmallVector<const SCEV *, 2> Qs;
9125       for (const SCEV *Op : M->operands())
9126         if (!isa<SCEVConstant>(Op))
9127           Qs.push_back(Op);
9128 
9129       Step = SE.getMulExpr(Qs);
9130     }
9131 
9132     Sizes.push_back(Step);
9133     return true;
9134   }
9135 
9136   for (const SCEV *&Term : Terms) {
9137     // Normalize the terms before the next call to findArrayDimensionsRec.
9138     const SCEV *Q, *R;
9139     SCEVDivision::divide(SE, Term, Step, &Q, &R);
9140 
9141     // Bail out when GCD does not evenly divide one of the terms.
9142     if (!R->isZero())
9143       return false;
9144 
9145     Term = Q;
9146   }
9147 
9148   // Remove all SCEVConstants.
9149   Terms.erase(
9150       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
9151       Terms.end());
9152 
9153   if (Terms.size() > 0)
9154     if (!findArrayDimensionsRec(SE, Terms, Sizes))
9155       return false;
9156 
9157   Sizes.push_back(Step);
9158   return true;
9159 }
9160 
9161 // Returns true when S contains at least a SCEVUnknown parameter.
9162 static inline bool
9163 containsParameters(const SCEV *S) {
9164   struct FindParameter {
9165     bool FoundParameter;
9166     FindParameter() : FoundParameter(false) {}
9167 
9168     bool follow(const SCEV *S) {
9169       if (isa<SCEVUnknown>(S)) {
9170         FoundParameter = true;
9171         // Stop recursion: we found a parameter.
9172         return false;
9173       }
9174       // Keep looking.
9175       return true;
9176     }
9177     bool isDone() const {
9178       // Stop recursion if we have found a parameter.
9179       return FoundParameter;
9180     }
9181   };
9182 
9183   FindParameter F;
9184   SCEVTraversal<FindParameter> ST(F);
9185   ST.visitAll(S);
9186 
9187   return F.FoundParameter;
9188 }
9189 
9190 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9191 static inline bool
9192 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9193   for (const SCEV *T : Terms)
9194     if (containsParameters(T))
9195       return true;
9196   return false;
9197 }
9198 
9199 // Return the number of product terms in S.
9200 static inline int numberOfTerms(const SCEV *S) {
9201   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9202     return Expr->getNumOperands();
9203   return 1;
9204 }
9205 
9206 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9207   if (isa<SCEVConstant>(T))
9208     return nullptr;
9209 
9210   if (isa<SCEVUnknown>(T))
9211     return T;
9212 
9213   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9214     SmallVector<const SCEV *, 2> Factors;
9215     for (const SCEV *Op : M->operands())
9216       if (!isa<SCEVConstant>(Op))
9217         Factors.push_back(Op);
9218 
9219     return SE.getMulExpr(Factors);
9220   }
9221 
9222   return T;
9223 }
9224 
9225 /// Return the size of an element read or written by Inst.
9226 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9227   Type *Ty;
9228   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9229     Ty = Store->getValueOperand()->getType();
9230   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9231     Ty = Load->getType();
9232   else
9233     return nullptr;
9234 
9235   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9236   return getSizeOfExpr(ETy, Ty);
9237 }
9238 
9239 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9240                                           SmallVectorImpl<const SCEV *> &Sizes,
9241                                           const SCEV *ElementSize) const {
9242   if (Terms.size() < 1 || !ElementSize)
9243     return;
9244 
9245   // Early return when Terms do not contain parameters: we do not delinearize
9246   // non parametric SCEVs.
9247   if (!containsParameters(Terms))
9248     return;
9249 
9250   DEBUG({
9251       dbgs() << "Terms:\n";
9252       for (const SCEV *T : Terms)
9253         dbgs() << *T << "\n";
9254     });
9255 
9256   // Remove duplicates.
9257   std::sort(Terms.begin(), Terms.end());
9258   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9259 
9260   // Put larger terms first.
9261   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9262     return numberOfTerms(LHS) > numberOfTerms(RHS);
9263   });
9264 
9265   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9266 
9267   // Try to divide all terms by the element size. If term is not divisible by
9268   // element size, proceed with the original term.
9269   for (const SCEV *&Term : Terms) {
9270     const SCEV *Q, *R;
9271     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9272     if (!Q->isZero())
9273       Term = Q;
9274   }
9275 
9276   SmallVector<const SCEV *, 4> NewTerms;
9277 
9278   // Remove constant factors.
9279   for (const SCEV *T : Terms)
9280     if (const SCEV *NewT = removeConstantFactors(SE, T))
9281       NewTerms.push_back(NewT);
9282 
9283   DEBUG({
9284       dbgs() << "Terms after sorting:\n";
9285       for (const SCEV *T : NewTerms)
9286         dbgs() << *T << "\n";
9287     });
9288 
9289   if (NewTerms.empty() ||
9290       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9291     Sizes.clear();
9292     return;
9293   }
9294 
9295   // The last element to be pushed into Sizes is the size of an element.
9296   Sizes.push_back(ElementSize);
9297 
9298   DEBUG({
9299       dbgs() << "Sizes:\n";
9300       for (const SCEV *S : Sizes)
9301         dbgs() << *S << "\n";
9302     });
9303 }
9304 
9305 void ScalarEvolution::computeAccessFunctions(
9306     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9307     SmallVectorImpl<const SCEV *> &Sizes) {
9308 
9309   // Early exit in case this SCEV is not an affine multivariate function.
9310   if (Sizes.empty())
9311     return;
9312 
9313   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9314     if (!AR->isAffine())
9315       return;
9316 
9317   const SCEV *Res = Expr;
9318   int Last = Sizes.size() - 1;
9319   for (int i = Last; i >= 0; i--) {
9320     const SCEV *Q, *R;
9321     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9322 
9323     DEBUG({
9324         dbgs() << "Res: " << *Res << "\n";
9325         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9326         dbgs() << "Res divided by Sizes[i]:\n";
9327         dbgs() << "Quotient: " << *Q << "\n";
9328         dbgs() << "Remainder: " << *R << "\n";
9329       });
9330 
9331     Res = Q;
9332 
9333     // Do not record the last subscript corresponding to the size of elements in
9334     // the array.
9335     if (i == Last) {
9336 
9337       // Bail out if the remainder is too complex.
9338       if (isa<SCEVAddRecExpr>(R)) {
9339         Subscripts.clear();
9340         Sizes.clear();
9341         return;
9342       }
9343 
9344       continue;
9345     }
9346 
9347     // Record the access function for the current subscript.
9348     Subscripts.push_back(R);
9349   }
9350 
9351   // Also push in last position the remainder of the last division: it will be
9352   // the access function of the innermost dimension.
9353   Subscripts.push_back(Res);
9354 
9355   std::reverse(Subscripts.begin(), Subscripts.end());
9356 
9357   DEBUG({
9358       dbgs() << "Subscripts:\n";
9359       for (const SCEV *S : Subscripts)
9360         dbgs() << *S << "\n";
9361     });
9362 }
9363 
9364 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9365 /// sizes of an array access. Returns the remainder of the delinearization that
9366 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9367 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9368 /// expressions in the stride and base of a SCEV corresponding to the
9369 /// computation of a GCD (greatest common divisor) of base and stride.  When
9370 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9371 ///
9372 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9373 ///
9374 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9375 ///
9376 ///    for (long i = 0; i < n; i++)
9377 ///      for (long j = 0; j < m; j++)
9378 ///        for (long k = 0; k < o; k++)
9379 ///          A[i][j][k] = 1.0;
9380 ///  }
9381 ///
9382 /// the delinearization input is the following AddRec SCEV:
9383 ///
9384 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9385 ///
9386 /// From this SCEV, we are able to say that the base offset of the access is %A
9387 /// because it appears as an offset that does not divide any of the strides in
9388 /// the loops:
9389 ///
9390 ///  CHECK: Base offset: %A
9391 ///
9392 /// and then SCEV->delinearize determines the size of some of the dimensions of
9393 /// the array as these are the multiples by which the strides are happening:
9394 ///
9395 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9396 ///
9397 /// Note that the outermost dimension remains of UnknownSize because there are
9398 /// no strides that would help identifying the size of the last dimension: when
9399 /// the array has been statically allocated, one could compute the size of that
9400 /// dimension by dividing the overall size of the array by the size of the known
9401 /// dimensions: %m * %o * 8.
9402 ///
9403 /// Finally delinearize provides the access functions for the array reference
9404 /// that does correspond to A[i][j][k] of the above C testcase:
9405 ///
9406 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9407 ///
9408 /// The testcases are checking the output of a function pass:
9409 /// DelinearizationPass that walks through all loads and stores of a function
9410 /// asking for the SCEV of the memory access with respect to all enclosing
9411 /// loops, calling SCEV->delinearize on that and printing the results.
9412 
9413 void ScalarEvolution::delinearize(const SCEV *Expr,
9414                                  SmallVectorImpl<const SCEV *> &Subscripts,
9415                                  SmallVectorImpl<const SCEV *> &Sizes,
9416                                  const SCEV *ElementSize) {
9417   // First step: collect parametric terms.
9418   SmallVector<const SCEV *, 4> Terms;
9419   collectParametricTerms(Expr, Terms);
9420 
9421   if (Terms.empty())
9422     return;
9423 
9424   // Second step: find subscript sizes.
9425   findArrayDimensions(Terms, Sizes, ElementSize);
9426 
9427   if (Sizes.empty())
9428     return;
9429 
9430   // Third step: compute the access functions for each subscript.
9431   computeAccessFunctions(Expr, Subscripts, Sizes);
9432 
9433   if (Subscripts.empty())
9434     return;
9435 
9436   DEBUG({
9437       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9438       dbgs() << "ArrayDecl[UnknownSize]";
9439       for (const SCEV *S : Sizes)
9440         dbgs() << "[" << *S << "]";
9441 
9442       dbgs() << "\nArrayRef";
9443       for (const SCEV *S : Subscripts)
9444         dbgs() << "[" << *S << "]";
9445       dbgs() << "\n";
9446     });
9447 }
9448 
9449 //===----------------------------------------------------------------------===//
9450 //                   SCEVCallbackVH Class Implementation
9451 //===----------------------------------------------------------------------===//
9452 
9453 void ScalarEvolution::SCEVCallbackVH::deleted() {
9454   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9455   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9456     SE->ConstantEvolutionLoopExitValue.erase(PN);
9457   SE->eraseValueFromMap(getValPtr());
9458   // this now dangles!
9459 }
9460 
9461 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9462   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9463 
9464   // Forget all the expressions associated with users of the old value,
9465   // so that future queries will recompute the expressions using the new
9466   // value.
9467   Value *Old = getValPtr();
9468   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9469   SmallPtrSet<User *, 8> Visited;
9470   while (!Worklist.empty()) {
9471     User *U = Worklist.pop_back_val();
9472     // Deleting the Old value will cause this to dangle. Postpone
9473     // that until everything else is done.
9474     if (U == Old)
9475       continue;
9476     if (!Visited.insert(U).second)
9477       continue;
9478     if (PHINode *PN = dyn_cast<PHINode>(U))
9479       SE->ConstantEvolutionLoopExitValue.erase(PN);
9480     SE->eraseValueFromMap(U);
9481     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9482   }
9483   // Delete the Old value.
9484   if (PHINode *PN = dyn_cast<PHINode>(Old))
9485     SE->ConstantEvolutionLoopExitValue.erase(PN);
9486   SE->eraseValueFromMap(Old);
9487   // this now dangles!
9488 }
9489 
9490 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9491   : CallbackVH(V), SE(se) {}
9492 
9493 //===----------------------------------------------------------------------===//
9494 //                   ScalarEvolution Class Implementation
9495 //===----------------------------------------------------------------------===//
9496 
9497 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9498                                  AssumptionCache &AC, DominatorTree &DT,
9499                                  LoopInfo &LI)
9500     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9501       CouldNotCompute(new SCEVCouldNotCompute()),
9502       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9503       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9504       FirstUnknown(nullptr) {
9505 
9506   // To use guards for proving predicates, we need to scan every instruction in
9507   // relevant basic blocks, and not just terminators.  Doing this is a waste of
9508   // time if the IR does not actually contain any calls to
9509   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9510   //
9511   // This pessimizes the case where a pass that preserves ScalarEvolution wants
9512   // to _add_ guards to the module when there weren't any before, and wants
9513   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
9514   // efficient in lieu of being smart in that rather obscure case.
9515 
9516   auto *GuardDecl = F.getParent()->getFunction(
9517       Intrinsic::getName(Intrinsic::experimental_guard));
9518   HasGuards = GuardDecl && !GuardDecl->use_empty();
9519 }
9520 
9521 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9522     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9523       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9524       ValueExprMap(std::move(Arg.ValueExprMap)),
9525       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9526       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9527       PredicatedBackedgeTakenCounts(
9528           std::move(Arg.PredicatedBackedgeTakenCounts)),
9529       ConstantEvolutionLoopExitValue(
9530           std::move(Arg.ConstantEvolutionLoopExitValue)),
9531       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9532       LoopDispositions(std::move(Arg.LoopDispositions)),
9533       BlockDispositions(std::move(Arg.BlockDispositions)),
9534       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9535       SignedRanges(std::move(Arg.SignedRanges)),
9536       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9537       UniquePreds(std::move(Arg.UniquePreds)),
9538       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9539       FirstUnknown(Arg.FirstUnknown) {
9540   Arg.FirstUnknown = nullptr;
9541 }
9542 
9543 ScalarEvolution::~ScalarEvolution() {
9544   // Iterate through all the SCEVUnknown instances and call their
9545   // destructors, so that they release their references to their values.
9546   for (SCEVUnknown *U = FirstUnknown; U;) {
9547     SCEVUnknown *Tmp = U;
9548     U = U->Next;
9549     Tmp->~SCEVUnknown();
9550   }
9551   FirstUnknown = nullptr;
9552 
9553   ExprValueMap.clear();
9554   ValueExprMap.clear();
9555   HasRecMap.clear();
9556 
9557   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9558   // that a loop had multiple computable exits.
9559   for (auto &BTCI : BackedgeTakenCounts)
9560     BTCI.second.clear();
9561   for (auto &BTCI : PredicatedBackedgeTakenCounts)
9562     BTCI.second.clear();
9563 
9564   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9565   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9566   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9567 }
9568 
9569 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9570   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9571 }
9572 
9573 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9574                           const Loop *L) {
9575   // Print all inner loops first
9576   for (Loop *I : *L)
9577     PrintLoopInfo(OS, SE, I);
9578 
9579   OS << "Loop ";
9580   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9581   OS << ": ";
9582 
9583   SmallVector<BasicBlock *, 8> ExitBlocks;
9584   L->getExitBlocks(ExitBlocks);
9585   if (ExitBlocks.size() != 1)
9586     OS << "<multiple exits> ";
9587 
9588   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9589     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9590   } else {
9591     OS << "Unpredictable backedge-taken count. ";
9592   }
9593 
9594   OS << "\n"
9595         "Loop ";
9596   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9597   OS << ": ";
9598 
9599   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9600     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9601   } else {
9602     OS << "Unpredictable max backedge-taken count. ";
9603   }
9604 
9605   OS << "\n"
9606         "Loop ";
9607   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9608   OS << ": ";
9609 
9610   SCEVUnionPredicate Pred;
9611   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9612   if (!isa<SCEVCouldNotCompute>(PBT)) {
9613     OS << "Predicated backedge-taken count is " << *PBT << "\n";
9614     OS << " Predicates:\n";
9615     Pred.print(OS, 4);
9616   } else {
9617     OS << "Unpredictable predicated backedge-taken count. ";
9618   }
9619   OS << "\n";
9620 }
9621 
9622 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9623   switch (LD) {
9624   case ScalarEvolution::LoopVariant:
9625     return "Variant";
9626   case ScalarEvolution::LoopInvariant:
9627     return "Invariant";
9628   case ScalarEvolution::LoopComputable:
9629     return "Computable";
9630   }
9631   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
9632 }
9633 
9634 void ScalarEvolution::print(raw_ostream &OS) const {
9635   // ScalarEvolution's implementation of the print method is to print
9636   // out SCEV values of all instructions that are interesting. Doing
9637   // this potentially causes it to create new SCEV objects though,
9638   // which technically conflicts with the const qualifier. This isn't
9639   // observable from outside the class though, so casting away the
9640   // const isn't dangerous.
9641   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9642 
9643   OS << "Classifying expressions for: ";
9644   F.printAsOperand(OS, /*PrintType=*/false);
9645   OS << "\n";
9646   for (Instruction &I : instructions(F))
9647     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9648       OS << I << '\n';
9649       OS << "  -->  ";
9650       const SCEV *SV = SE.getSCEV(&I);
9651       SV->print(OS);
9652       if (!isa<SCEVCouldNotCompute>(SV)) {
9653         OS << " U: ";
9654         SE.getUnsignedRange(SV).print(OS);
9655         OS << " S: ";
9656         SE.getSignedRange(SV).print(OS);
9657       }
9658 
9659       const Loop *L = LI.getLoopFor(I.getParent());
9660 
9661       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9662       if (AtUse != SV) {
9663         OS << "  -->  ";
9664         AtUse->print(OS);
9665         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9666           OS << " U: ";
9667           SE.getUnsignedRange(AtUse).print(OS);
9668           OS << " S: ";
9669           SE.getSignedRange(AtUse).print(OS);
9670         }
9671       }
9672 
9673       if (L) {
9674         OS << "\t\t" "Exits: ";
9675         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9676         if (!SE.isLoopInvariant(ExitValue, L)) {
9677           OS << "<<Unknown>>";
9678         } else {
9679           OS << *ExitValue;
9680         }
9681 
9682         bool First = true;
9683         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9684           if (First) {
9685             OS << "\t\t" "LoopDispositions: { ";
9686             First = false;
9687           } else {
9688             OS << ", ";
9689           }
9690 
9691           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9692           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9693         }
9694 
9695         for (auto *InnerL : depth_first(L)) {
9696           if (InnerL == L)
9697             continue;
9698           if (First) {
9699             OS << "\t\t" "LoopDispositions: { ";
9700             First = false;
9701           } else {
9702             OS << ", ";
9703           }
9704 
9705           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9706           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9707         }
9708 
9709         OS << " }";
9710       }
9711 
9712       OS << "\n";
9713     }
9714 
9715   OS << "Determining loop execution counts for: ";
9716   F.printAsOperand(OS, /*PrintType=*/false);
9717   OS << "\n";
9718   for (Loop *I : LI)
9719     PrintLoopInfo(OS, &SE, I);
9720 }
9721 
9722 ScalarEvolution::LoopDisposition
9723 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9724   auto &Values = LoopDispositions[S];
9725   for (auto &V : Values) {
9726     if (V.getPointer() == L)
9727       return V.getInt();
9728   }
9729   Values.emplace_back(L, LoopVariant);
9730   LoopDisposition D = computeLoopDisposition(S, L);
9731   auto &Values2 = LoopDispositions[S];
9732   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9733     if (V.getPointer() == L) {
9734       V.setInt(D);
9735       break;
9736     }
9737   }
9738   return D;
9739 }
9740 
9741 ScalarEvolution::LoopDisposition
9742 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9743   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9744   case scConstant:
9745     return LoopInvariant;
9746   case scTruncate:
9747   case scZeroExtend:
9748   case scSignExtend:
9749     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9750   case scAddRecExpr: {
9751     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9752 
9753     // If L is the addrec's loop, it's computable.
9754     if (AR->getLoop() == L)
9755       return LoopComputable;
9756 
9757     // Add recurrences are never invariant in the function-body (null loop).
9758     if (!L)
9759       return LoopVariant;
9760 
9761     // This recurrence is variant w.r.t. L if L contains AR's loop.
9762     if (L->contains(AR->getLoop()))
9763       return LoopVariant;
9764 
9765     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9766     if (AR->getLoop()->contains(L))
9767       return LoopInvariant;
9768 
9769     // This recurrence is variant w.r.t. L if any of its operands
9770     // are variant.
9771     for (auto *Op : AR->operands())
9772       if (!isLoopInvariant(Op, L))
9773         return LoopVariant;
9774 
9775     // Otherwise it's loop-invariant.
9776     return LoopInvariant;
9777   }
9778   case scAddExpr:
9779   case scMulExpr:
9780   case scUMaxExpr:
9781   case scSMaxExpr: {
9782     bool HasVarying = false;
9783     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9784       LoopDisposition D = getLoopDisposition(Op, L);
9785       if (D == LoopVariant)
9786         return LoopVariant;
9787       if (D == LoopComputable)
9788         HasVarying = true;
9789     }
9790     return HasVarying ? LoopComputable : LoopInvariant;
9791   }
9792   case scUDivExpr: {
9793     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9794     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9795     if (LD == LoopVariant)
9796       return LoopVariant;
9797     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9798     if (RD == LoopVariant)
9799       return LoopVariant;
9800     return (LD == LoopInvariant && RD == LoopInvariant) ?
9801            LoopInvariant : LoopComputable;
9802   }
9803   case scUnknown:
9804     // All non-instruction values are loop invariant.  All instructions are loop
9805     // invariant if they are not contained in the specified loop.
9806     // Instructions are never considered invariant in the function body
9807     // (null loop) because they are defined within the "loop".
9808     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9809       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9810     return LoopInvariant;
9811   case scCouldNotCompute:
9812     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9813   }
9814   llvm_unreachable("Unknown SCEV kind!");
9815 }
9816 
9817 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9818   return getLoopDisposition(S, L) == LoopInvariant;
9819 }
9820 
9821 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9822   return getLoopDisposition(S, L) == LoopComputable;
9823 }
9824 
9825 ScalarEvolution::BlockDisposition
9826 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9827   auto &Values = BlockDispositions[S];
9828   for (auto &V : Values) {
9829     if (V.getPointer() == BB)
9830       return V.getInt();
9831   }
9832   Values.emplace_back(BB, DoesNotDominateBlock);
9833   BlockDisposition D = computeBlockDisposition(S, BB);
9834   auto &Values2 = BlockDispositions[S];
9835   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9836     if (V.getPointer() == BB) {
9837       V.setInt(D);
9838       break;
9839     }
9840   }
9841   return D;
9842 }
9843 
9844 ScalarEvolution::BlockDisposition
9845 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9846   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9847   case scConstant:
9848     return ProperlyDominatesBlock;
9849   case scTruncate:
9850   case scZeroExtend:
9851   case scSignExtend:
9852     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9853   case scAddRecExpr: {
9854     // This uses a "dominates" query instead of "properly dominates" query
9855     // to test for proper dominance too, because the instruction which
9856     // produces the addrec's value is a PHI, and a PHI effectively properly
9857     // dominates its entire containing block.
9858     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9859     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9860       return DoesNotDominateBlock;
9861   }
9862   // FALL THROUGH into SCEVNAryExpr handling.
9863   case scAddExpr:
9864   case scMulExpr:
9865   case scUMaxExpr:
9866   case scSMaxExpr: {
9867     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9868     bool Proper = true;
9869     for (const SCEV *NAryOp : NAry->operands()) {
9870       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9871       if (D == DoesNotDominateBlock)
9872         return DoesNotDominateBlock;
9873       if (D == DominatesBlock)
9874         Proper = false;
9875     }
9876     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9877   }
9878   case scUDivExpr: {
9879     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9880     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9881     BlockDisposition LD = getBlockDisposition(LHS, BB);
9882     if (LD == DoesNotDominateBlock)
9883       return DoesNotDominateBlock;
9884     BlockDisposition RD = getBlockDisposition(RHS, BB);
9885     if (RD == DoesNotDominateBlock)
9886       return DoesNotDominateBlock;
9887     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9888       ProperlyDominatesBlock : DominatesBlock;
9889   }
9890   case scUnknown:
9891     if (Instruction *I =
9892           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9893       if (I->getParent() == BB)
9894         return DominatesBlock;
9895       if (DT.properlyDominates(I->getParent(), BB))
9896         return ProperlyDominatesBlock;
9897       return DoesNotDominateBlock;
9898     }
9899     return ProperlyDominatesBlock;
9900   case scCouldNotCompute:
9901     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9902   }
9903   llvm_unreachable("Unknown SCEV kind!");
9904 }
9905 
9906 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9907   return getBlockDisposition(S, BB) >= DominatesBlock;
9908 }
9909 
9910 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9911   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9912 }
9913 
9914 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9915   // Search for a SCEV expression node within an expression tree.
9916   // Implements SCEVTraversal::Visitor.
9917   struct SCEVSearch {
9918     const SCEV *Node;
9919     bool IsFound;
9920 
9921     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9922 
9923     bool follow(const SCEV *S) {
9924       IsFound |= (S == Node);
9925       return !IsFound;
9926     }
9927     bool isDone() const { return IsFound; }
9928   };
9929 
9930   SCEVSearch Search(Op);
9931   visitAll(S, Search);
9932   return Search.IsFound;
9933 }
9934 
9935 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9936   ValuesAtScopes.erase(S);
9937   LoopDispositions.erase(S);
9938   BlockDispositions.erase(S);
9939   UnsignedRanges.erase(S);
9940   SignedRanges.erase(S);
9941   ExprValueMap.erase(S);
9942   HasRecMap.erase(S);
9943 
9944   auto RemoveSCEVFromBackedgeMap =
9945       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9946         for (auto I = Map.begin(), E = Map.end(); I != E;) {
9947           BackedgeTakenInfo &BEInfo = I->second;
9948           if (BEInfo.hasOperand(S, this)) {
9949             BEInfo.clear();
9950             Map.erase(I++);
9951           } else
9952             ++I;
9953         }
9954       };
9955 
9956   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9957   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
9958 }
9959 
9960 typedef DenseMap<const Loop *, std::string> VerifyMap;
9961 
9962 /// replaceSubString - Replaces all occurrences of From in Str with To.
9963 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9964   size_t Pos = 0;
9965   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9966     Str.replace(Pos, From.size(), To.data(), To.size());
9967     Pos += To.size();
9968   }
9969 }
9970 
9971 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9972 static void
9973 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9974   std::string &S = Map[L];
9975   if (S.empty()) {
9976     raw_string_ostream OS(S);
9977     SE.getBackedgeTakenCount(L)->print(OS);
9978 
9979     // false and 0 are semantically equivalent. This can happen in dead loops.
9980     replaceSubString(OS.str(), "false", "0");
9981     // Remove wrap flags, their use in SCEV is highly fragile.
9982     // FIXME: Remove this when SCEV gets smarter about them.
9983     replaceSubString(OS.str(), "<nw>", "");
9984     replaceSubString(OS.str(), "<nsw>", "");
9985     replaceSubString(OS.str(), "<nuw>", "");
9986   }
9987 
9988   for (auto *R : reverse(*L))
9989     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9990 }
9991 
9992 void ScalarEvolution::verify() const {
9993   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9994 
9995   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9996   // FIXME: It would be much better to store actual values instead of strings,
9997   //        but SCEV pointers will change if we drop the caches.
9998   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9999   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10000     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
10001 
10002   // Gather stringified backedge taken counts for all loops using a fresh
10003   // ScalarEvolution object.
10004   ScalarEvolution SE2(F, TLI, AC, DT, LI);
10005   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10006     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
10007 
10008   // Now compare whether they're the same with and without caches. This allows
10009   // verifying that no pass changed the cache.
10010   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
10011          "New loops suddenly appeared!");
10012 
10013   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
10014                            OldE = BackedgeDumpsOld.end(),
10015                            NewI = BackedgeDumpsNew.begin();
10016        OldI != OldE; ++OldI, ++NewI) {
10017     assert(OldI->first == NewI->first && "Loop order changed!");
10018 
10019     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10020     // changes.
10021     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
10022     // means that a pass is buggy or SCEV has to learn a new pattern but is
10023     // usually not harmful.
10024     if (OldI->second != NewI->second &&
10025         OldI->second.find("undef") == std::string::npos &&
10026         NewI->second.find("undef") == std::string::npos &&
10027         OldI->second != "***COULDNOTCOMPUTE***" &&
10028         NewI->second != "***COULDNOTCOMPUTE***") {
10029       dbgs() << "SCEVValidator: SCEV for loop '"
10030              << OldI->first->getHeader()->getName()
10031              << "' changed from '" << OldI->second
10032              << "' to '" << NewI->second << "'!\n";
10033       std::abort();
10034     }
10035   }
10036 
10037   // TODO: Verify more things.
10038 }
10039 
10040 char ScalarEvolutionAnalysis::PassID;
10041 
10042 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10043                                              FunctionAnalysisManager &AM) {
10044   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10045                          AM.getResult<AssumptionAnalysis>(F),
10046                          AM.getResult<DominatorTreeAnalysis>(F),
10047                          AM.getResult<LoopAnalysis>(F));
10048 }
10049 
10050 PreservedAnalyses
10051 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
10052   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10053   return PreservedAnalyses::all();
10054 }
10055 
10056 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10057                       "Scalar Evolution Analysis", false, true)
10058 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10059 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10060 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10061 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10062 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10063                     "Scalar Evolution Analysis", false, true)
10064 char ScalarEvolutionWrapperPass::ID = 0;
10065 
10066 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10067   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10068 }
10069 
10070 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10071   SE.reset(new ScalarEvolution(
10072       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10073       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10074       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10075       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10076   return false;
10077 }
10078 
10079 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10080 
10081 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10082   SE->print(OS);
10083 }
10084 
10085 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10086   if (!VerifySCEV)
10087     return;
10088 
10089   SE->verify();
10090 }
10091 
10092 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10093   AU.setPreservesAll();
10094   AU.addRequiredTransitive<AssumptionCacheTracker>();
10095   AU.addRequiredTransitive<LoopInfoWrapperPass>();
10096   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10097   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10098 }
10099 
10100 const SCEVPredicate *
10101 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10102                                    const SCEVConstant *RHS) {
10103   FoldingSetNodeID ID;
10104   // Unique this node based on the arguments
10105   ID.AddInteger(SCEVPredicate::P_Equal);
10106   ID.AddPointer(LHS);
10107   ID.AddPointer(RHS);
10108   void *IP = nullptr;
10109   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10110     return S;
10111   SCEVEqualPredicate *Eq = new (SCEVAllocator)
10112       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10113   UniquePreds.InsertNode(Eq, IP);
10114   return Eq;
10115 }
10116 
10117 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10118     const SCEVAddRecExpr *AR,
10119     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10120   FoldingSetNodeID ID;
10121   // Unique this node based on the arguments
10122   ID.AddInteger(SCEVPredicate::P_Wrap);
10123   ID.AddPointer(AR);
10124   ID.AddInteger(AddedFlags);
10125   void *IP = nullptr;
10126   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10127     return S;
10128   auto *OF = new (SCEVAllocator)
10129       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10130   UniquePreds.InsertNode(OF, IP);
10131   return OF;
10132 }
10133 
10134 namespace {
10135 
10136 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10137 public:
10138   // Rewrites \p S in the context of a loop L and the predicate A.
10139   // If Assume is true, rewrite is free to add further predicates to A
10140   // such that the result will be an AddRecExpr.
10141   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10142                              SCEVUnionPredicate &A, bool Assume) {
10143     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
10144     return Rewriter.visit(S);
10145   }
10146 
10147   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10148                         SCEVUnionPredicate &P, bool Assume)
10149       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
10150 
10151   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10152     auto ExprPreds = P.getPredicatesForExpr(Expr);
10153     for (auto *Pred : ExprPreds)
10154       if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
10155         if (IPred->getLHS() == Expr)
10156           return IPred->getRHS();
10157 
10158     return Expr;
10159   }
10160 
10161   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10162     const SCEV *Operand = visit(Expr->getOperand());
10163     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10164     if (AR && AR->getLoop() == L && AR->isAffine()) {
10165       // This couldn't be folded because the operand didn't have the nuw
10166       // flag. Add the nusw flag as an assumption that we could make.
10167       const SCEV *Step = AR->getStepRecurrence(SE);
10168       Type *Ty = Expr->getType();
10169       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10170         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10171                                 SE.getSignExtendExpr(Step, Ty), L,
10172                                 AR->getNoWrapFlags());
10173     }
10174     return SE.getZeroExtendExpr(Operand, Expr->getType());
10175   }
10176 
10177   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10178     const SCEV *Operand = visit(Expr->getOperand());
10179     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10180     if (AR && AR->getLoop() == L && AR->isAffine()) {
10181       // This couldn't be folded because the operand didn't have the nsw
10182       // flag. Add the nssw flag as an assumption that we could make.
10183       const SCEV *Step = AR->getStepRecurrence(SE);
10184       Type *Ty = Expr->getType();
10185       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10186         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10187                                 SE.getSignExtendExpr(Step, Ty), L,
10188                                 AR->getNoWrapFlags());
10189     }
10190     return SE.getSignExtendExpr(Operand, Expr->getType());
10191   }
10192 
10193 private:
10194   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10195                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10196     auto *A = SE.getWrapPredicate(AR, AddedFlags);
10197     if (!Assume) {
10198       // Check if we've already made this assumption.
10199       if (P.implies(A))
10200         return true;
10201       return false;
10202     }
10203     P.add(A);
10204     return true;
10205   }
10206 
10207   SCEVUnionPredicate &P;
10208   const Loop *L;
10209   bool Assume;
10210 };
10211 } // end anonymous namespace
10212 
10213 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10214                                                    SCEVUnionPredicate &Preds) {
10215   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
10216 }
10217 
10218 const SCEVAddRecExpr *
10219 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10220                                                    SCEVUnionPredicate &Preds) {
10221   SCEVUnionPredicate TransformPreds;
10222   S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10223   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10224 
10225   if (!AddRec)
10226     return nullptr;
10227 
10228   // Since the transformation was successful, we can now transfer the SCEV
10229   // predicates.
10230   Preds.add(&TransformPreds);
10231   return AddRec;
10232 }
10233 
10234 /// SCEV predicates
10235 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10236                              SCEVPredicateKind Kind)
10237     : FastID(ID), Kind(Kind) {}
10238 
10239 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10240                                        const SCEVUnknown *LHS,
10241                                        const SCEVConstant *RHS)
10242     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10243 
10244 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10245   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
10246 
10247   if (!Op)
10248     return false;
10249 
10250   return Op->LHS == LHS && Op->RHS == RHS;
10251 }
10252 
10253 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10254 
10255 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10256 
10257 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10258   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10259 }
10260 
10261 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10262                                      const SCEVAddRecExpr *AR,
10263                                      IncrementWrapFlags Flags)
10264     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10265 
10266 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10267 
10268 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10269   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10270 
10271   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10272 }
10273 
10274 bool SCEVWrapPredicate::isAlwaysTrue() const {
10275   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10276   IncrementWrapFlags IFlags = Flags;
10277 
10278   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10279     IFlags = clearFlags(IFlags, IncrementNSSW);
10280 
10281   return IFlags == IncrementAnyWrap;
10282 }
10283 
10284 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10285   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10286   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10287     OS << "<nusw>";
10288   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10289     OS << "<nssw>";
10290   OS << "\n";
10291 }
10292 
10293 SCEVWrapPredicate::IncrementWrapFlags
10294 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10295                                    ScalarEvolution &SE) {
10296   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10297   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10298 
10299   // We can safely transfer the NSW flag as NSSW.
10300   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10301     ImpliedFlags = IncrementNSSW;
10302 
10303   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10304     // If the increment is positive, the SCEV NUW flag will also imply the
10305     // WrapPredicate NUSW flag.
10306     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10307       if (Step->getValue()->getValue().isNonNegative())
10308         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10309   }
10310 
10311   return ImpliedFlags;
10312 }
10313 
10314 /// Union predicates don't get cached so create a dummy set ID for it.
10315 SCEVUnionPredicate::SCEVUnionPredicate()
10316     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10317 
10318 bool SCEVUnionPredicate::isAlwaysTrue() const {
10319   return all_of(Preds,
10320                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10321 }
10322 
10323 ArrayRef<const SCEVPredicate *>
10324 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10325   auto I = SCEVToPreds.find(Expr);
10326   if (I == SCEVToPreds.end())
10327     return ArrayRef<const SCEVPredicate *>();
10328   return I->second;
10329 }
10330 
10331 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10332   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
10333     return all_of(Set->Preds,
10334                   [this](const SCEVPredicate *I) { return this->implies(I); });
10335 
10336   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10337   if (ScevPredsIt == SCEVToPreds.end())
10338     return false;
10339   auto &SCEVPreds = ScevPredsIt->second;
10340 
10341   return any_of(SCEVPreds,
10342                 [N](const SCEVPredicate *I) { return I->implies(N); });
10343 }
10344 
10345 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10346 
10347 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10348   for (auto Pred : Preds)
10349     Pred->print(OS, Depth);
10350 }
10351 
10352 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10353   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
10354     for (auto Pred : Set->Preds)
10355       add(Pred);
10356     return;
10357   }
10358 
10359   if (implies(N))
10360     return;
10361 
10362   const SCEV *Key = N->getExpr();
10363   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10364                 " associated expression!");
10365 
10366   SCEVToPreds[Key].push_back(N);
10367   Preds.push_back(N);
10368 }
10369 
10370 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10371                                                      Loop &L)
10372     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10373 
10374 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10375   const SCEV *Expr = SE.getSCEV(V);
10376   RewriteEntry &Entry = RewriteMap[Expr];
10377 
10378   // If we already have an entry and the version matches, return it.
10379   if (Entry.second && Generation == Entry.first)
10380     return Entry.second;
10381 
10382   // We found an entry but it's stale. Rewrite the stale entry
10383   // acording to the current predicate.
10384   if (Entry.second)
10385     Expr = Entry.second;
10386 
10387   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10388   Entry = {Generation, NewSCEV};
10389 
10390   return NewSCEV;
10391 }
10392 
10393 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10394   if (!BackedgeCount) {
10395     SCEVUnionPredicate BackedgePred;
10396     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10397     addPredicate(BackedgePred);
10398   }
10399   return BackedgeCount;
10400 }
10401 
10402 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10403   if (Preds.implies(&Pred))
10404     return;
10405   Preds.add(&Pred);
10406   updateGeneration();
10407 }
10408 
10409 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10410   return Preds;
10411 }
10412 
10413 void PredicatedScalarEvolution::updateGeneration() {
10414   // If the generation number wrapped recompute everything.
10415   if (++Generation == 0) {
10416     for (auto &II : RewriteMap) {
10417       const SCEV *Rewritten = II.second.second;
10418       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10419     }
10420   }
10421 }
10422 
10423 void PredicatedScalarEvolution::setNoOverflow(
10424     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10425   const SCEV *Expr = getSCEV(V);
10426   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10427 
10428   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10429 
10430   // Clear the statically implied flags.
10431   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10432   addPredicate(*SE.getWrapPredicate(AR, Flags));
10433 
10434   auto II = FlagsMap.insert({V, Flags});
10435   if (!II.second)
10436     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10437 }
10438 
10439 bool PredicatedScalarEvolution::hasNoOverflow(
10440     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10441   const SCEV *Expr = getSCEV(V);
10442   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10443 
10444   Flags = SCEVWrapPredicate::clearFlags(
10445       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10446 
10447   auto II = FlagsMap.find(V);
10448 
10449   if (II != FlagsMap.end())
10450     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10451 
10452   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10453 }
10454 
10455 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10456   const SCEV *Expr = this->getSCEV(V);
10457   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10458 
10459   if (!New)
10460     return nullptr;
10461 
10462   updateGeneration();
10463   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10464   return New;
10465 }
10466 
10467 PredicatedScalarEvolution::PredicatedScalarEvolution(
10468     const PredicatedScalarEvolution &Init)
10469     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10470       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10471   for (const auto &I : Init.FlagsMap)
10472     FlagsMap.insert(I);
10473 }
10474 
10475 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10476   // For each block.
10477   for (auto *BB : L.getBlocks())
10478     for (auto &I : *BB) {
10479       if (!SE.isSCEVable(I.getType()))
10480         continue;
10481 
10482       auto *Expr = SE.getSCEV(&I);
10483       auto II = RewriteMap.find(Expr);
10484 
10485       if (II == RewriteMap.end())
10486         continue;
10487 
10488       // Don't print things that are not interesting.
10489       if (II->second.second == Expr)
10490         continue;
10491 
10492       OS.indent(Depth) << "[PSE]" << I << ":\n";
10493       OS.indent(Depth + 2) << *Expr << "\n";
10494       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10495     }
10496 }
10497