1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 static cl::opt<bool> UseExpensiveRangeSharpening( 230 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 231 cl::init(false), 232 cl::desc("Use more powerful methods of sharpening expression ranges. May " 233 "be costly in terms of compile time")); 234 235 //===----------------------------------------------------------------------===// 236 // SCEV class definitions 237 //===----------------------------------------------------------------------===// 238 239 //===----------------------------------------------------------------------===// 240 // Implementation of the SCEV class. 241 // 242 243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 244 LLVM_DUMP_METHOD void SCEV::dump() const { 245 print(dbgs()); 246 dbgs() << '\n'; 247 } 248 #endif 249 250 void SCEV::print(raw_ostream &OS) const { 251 switch (getSCEVType()) { 252 case scConstant: 253 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 254 return; 255 case scPtrToInt: { 256 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 257 const SCEV *Op = PtrToInt->getOperand(); 258 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 259 << *PtrToInt->getType() << ")"; 260 return; 261 } 262 case scTruncate: { 263 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 264 const SCEV *Op = Trunc->getOperand(); 265 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 266 << *Trunc->getType() << ")"; 267 return; 268 } 269 case scZeroExtend: { 270 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 271 const SCEV *Op = ZExt->getOperand(); 272 OS << "(zext " << *Op->getType() << " " << *Op << " to " 273 << *ZExt->getType() << ")"; 274 return; 275 } 276 case scSignExtend: { 277 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 278 const SCEV *Op = SExt->getOperand(); 279 OS << "(sext " << *Op->getType() << " " << *Op << " to " 280 << *SExt->getType() << ")"; 281 return; 282 } 283 case scAddRecExpr: { 284 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 285 OS << "{" << *AR->getOperand(0); 286 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 287 OS << ",+," << *AR->getOperand(i); 288 OS << "}<"; 289 if (AR->hasNoUnsignedWrap()) 290 OS << "nuw><"; 291 if (AR->hasNoSignedWrap()) 292 OS << "nsw><"; 293 if (AR->hasNoSelfWrap() && 294 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 295 OS << "nw><"; 296 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 297 OS << ">"; 298 return; 299 } 300 case scAddExpr: 301 case scMulExpr: 302 case scUMaxExpr: 303 case scSMaxExpr: 304 case scUMinExpr: 305 case scSMinExpr: { 306 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 307 const char *OpStr = nullptr; 308 switch (NAry->getSCEVType()) { 309 case scAddExpr: OpStr = " + "; break; 310 case scMulExpr: OpStr = " * "; break; 311 case scUMaxExpr: OpStr = " umax "; break; 312 case scSMaxExpr: OpStr = " smax "; break; 313 case scUMinExpr: 314 OpStr = " umin "; 315 break; 316 case scSMinExpr: 317 OpStr = " smin "; 318 break; 319 default: 320 llvm_unreachable("There are no other nary expression types."); 321 } 322 OS << "("; 323 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 324 I != E; ++I) { 325 OS << **I; 326 if (std::next(I) != E) 327 OS << OpStr; 328 } 329 OS << ")"; 330 switch (NAry->getSCEVType()) { 331 case scAddExpr: 332 case scMulExpr: 333 if (NAry->hasNoUnsignedWrap()) 334 OS << "<nuw>"; 335 if (NAry->hasNoSignedWrap()) 336 OS << "<nsw>"; 337 break; 338 default: 339 // Nothing to print for other nary expressions. 340 break; 341 } 342 return; 343 } 344 case scUDivExpr: { 345 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 346 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 347 return; 348 } 349 case scUnknown: { 350 const SCEVUnknown *U = cast<SCEVUnknown>(this); 351 Type *AllocTy; 352 if (U->isSizeOf(AllocTy)) { 353 OS << "sizeof(" << *AllocTy << ")"; 354 return; 355 } 356 if (U->isAlignOf(AllocTy)) { 357 OS << "alignof(" << *AllocTy << ")"; 358 return; 359 } 360 361 Type *CTy; 362 Constant *FieldNo; 363 if (U->isOffsetOf(CTy, FieldNo)) { 364 OS << "offsetof(" << *CTy << ", "; 365 FieldNo->printAsOperand(OS, false); 366 OS << ")"; 367 return; 368 } 369 370 // Otherwise just print it normally. 371 U->getValue()->printAsOperand(OS, false); 372 return; 373 } 374 case scCouldNotCompute: 375 OS << "***COULDNOTCOMPUTE***"; 376 return; 377 } 378 llvm_unreachable("Unknown SCEV kind!"); 379 } 380 381 Type *SCEV::getType() const { 382 switch (getSCEVType()) { 383 case scConstant: 384 return cast<SCEVConstant>(this)->getType(); 385 case scPtrToInt: 386 case scTruncate: 387 case scZeroExtend: 388 case scSignExtend: 389 return cast<SCEVCastExpr>(this)->getType(); 390 case scAddRecExpr: 391 case scMulExpr: 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVNAryExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 537 ->getElementType(); 538 return true; 539 } 540 541 return false; 542 } 543 544 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue()) { 550 Type *Ty = 551 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 552 if (StructType *STy = dyn_cast<StructType>(Ty)) 553 if (!STy->isPacked() && 554 CE->getNumOperands() == 3 && 555 CE->getOperand(1)->isNullValue()) { 556 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 557 if (CI->isOne() && 558 STy->getNumElements() == 2 && 559 STy->getElementType(0)->isIntegerTy(1)) { 560 AllocTy = STy->getElementType(1); 561 return true; 562 } 563 } 564 } 565 566 return false; 567 } 568 569 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 570 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 571 if (VCE->getOpcode() == Instruction::PtrToInt) 572 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 573 if (CE->getOpcode() == Instruction::GetElementPtr && 574 CE->getNumOperands() == 3 && 575 CE->getOperand(0)->isNullValue() && 576 CE->getOperand(1)->isNullValue()) { 577 Type *Ty = 578 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 579 // Ignore vector types here so that ScalarEvolutionExpander doesn't 580 // emit getelementptrs that index into vectors. 581 if (Ty->isStructTy() || Ty->isArrayTy()) { 582 CTy = Ty; 583 FieldNo = CE->getOperand(2); 584 return true; 585 } 586 } 587 588 return false; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SCEV Utilities 593 //===----------------------------------------------------------------------===// 594 595 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 596 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 597 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 598 /// have been previously deemed to be "equally complex" by this routine. It is 599 /// intended to avoid exponential time complexity in cases like: 600 /// 601 /// %a = f(%x, %y) 602 /// %b = f(%a, %a) 603 /// %c = f(%b, %b) 604 /// 605 /// %d = f(%x, %y) 606 /// %e = f(%d, %d) 607 /// %f = f(%e, %e) 608 /// 609 /// CompareValueComplexity(%f, %c) 610 /// 611 /// Since we do not continue running this routine on expression trees once we 612 /// have seen unequal values, there is no need to track them in the cache. 613 static int 614 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 615 const LoopInfo *const LI, Value *LV, Value *RV, 616 unsigned Depth) { 617 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 618 return 0; 619 620 // Order pointer values after integer values. This helps SCEVExpander form 621 // GEPs. 622 bool LIsPointer = LV->getType()->isPointerTy(), 623 RIsPointer = RV->getType()->isPointerTy(); 624 if (LIsPointer != RIsPointer) 625 return (int)LIsPointer - (int)RIsPointer; 626 627 // Compare getValueID values. 628 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 629 if (LID != RID) 630 return (int)LID - (int)RID; 631 632 // Sort arguments by their position. 633 if (const auto *LA = dyn_cast<Argument>(LV)) { 634 const auto *RA = cast<Argument>(RV); 635 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 636 return (int)LArgNo - (int)RArgNo; 637 } 638 639 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 640 const auto *RGV = cast<GlobalValue>(RV); 641 642 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 643 auto LT = GV->getLinkage(); 644 return !(GlobalValue::isPrivateLinkage(LT) || 645 GlobalValue::isInternalLinkage(LT)); 646 }; 647 648 // Use the names to distinguish the two values, but only if the 649 // names are semantically important. 650 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 651 return LGV->getName().compare(RGV->getName()); 652 } 653 654 // For instructions, compare their loop depth, and their operand count. This 655 // is pretty loose. 656 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 657 const auto *RInst = cast<Instruction>(RV); 658 659 // Compare loop depths. 660 const BasicBlock *LParent = LInst->getParent(), 661 *RParent = RInst->getParent(); 662 if (LParent != RParent) { 663 unsigned LDepth = LI->getLoopDepth(LParent), 664 RDepth = LI->getLoopDepth(RParent); 665 if (LDepth != RDepth) 666 return (int)LDepth - (int)RDepth; 667 } 668 669 // Compare the number of operands. 670 unsigned LNumOps = LInst->getNumOperands(), 671 RNumOps = RInst->getNumOperands(); 672 if (LNumOps != RNumOps) 673 return (int)LNumOps - (int)RNumOps; 674 675 for (unsigned Idx : seq(0u, LNumOps)) { 676 int Result = 677 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 678 RInst->getOperand(Idx), Depth + 1); 679 if (Result != 0) 680 return Result; 681 } 682 } 683 684 EqCacheValue.unionSets(LV, RV); 685 return 0; 686 } 687 688 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 689 // than RHS, respectively. A three-way result allows recursive comparisons to be 690 // more efficient. 691 static int CompareSCEVComplexity( 692 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 693 EquivalenceClasses<const Value *> &EqCacheValue, 694 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 695 DominatorTree &DT, unsigned Depth = 0) { 696 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 697 if (LHS == RHS) 698 return 0; 699 700 // Primarily, sort the SCEVs by their getSCEVType(). 701 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 702 if (LType != RType) 703 return (int)LType - (int)RType; 704 705 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 706 return 0; 707 // Aside from the getSCEVType() ordering, the particular ordering 708 // isn't very important except that it's beneficial to be consistent, 709 // so that (a + b) and (b + a) don't end up as different expressions. 710 switch (LType) { 711 case scUnknown: { 712 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 713 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 714 715 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 716 RU->getValue(), Depth + 1); 717 if (X == 0) 718 EqCacheSCEV.unionSets(LHS, RHS); 719 return X; 720 } 721 722 case scConstant: { 723 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 724 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 725 726 // Compare constant values. 727 const APInt &LA = LC->getAPInt(); 728 const APInt &RA = RC->getAPInt(); 729 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 730 if (LBitWidth != RBitWidth) 731 return (int)LBitWidth - (int)RBitWidth; 732 return LA.ult(RA) ? -1 : 1; 733 } 734 735 case scAddRecExpr: { 736 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 737 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 738 739 // There is always a dominance between two recs that are used by one SCEV, 740 // so we can safely sort recs by loop header dominance. We require such 741 // order in getAddExpr. 742 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 743 if (LLoop != RLoop) { 744 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 745 assert(LHead != RHead && "Two loops share the same header?"); 746 if (DT.dominates(LHead, RHead)) 747 return 1; 748 else 749 assert(DT.dominates(RHead, LHead) && 750 "No dominance between recurrences used by one SCEV?"); 751 return -1; 752 } 753 754 // Addrec complexity grows with operand count. 755 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 756 if (LNumOps != RNumOps) 757 return (int)LNumOps - (int)RNumOps; 758 759 // Lexicographically compare. 760 for (unsigned i = 0; i != LNumOps; ++i) { 761 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 762 LA->getOperand(i), RA->getOperand(i), DT, 763 Depth + 1); 764 if (X != 0) 765 return X; 766 } 767 EqCacheSCEV.unionSets(LHS, RHS); 768 return 0; 769 } 770 771 case scAddExpr: 772 case scMulExpr: 773 case scSMaxExpr: 774 case scUMaxExpr: 775 case scSMinExpr: 776 case scUMinExpr: { 777 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 778 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 779 780 // Lexicographically compare n-ary expressions. 781 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 782 if (LNumOps != RNumOps) 783 return (int)LNumOps - (int)RNumOps; 784 785 for (unsigned i = 0; i != LNumOps; ++i) { 786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 787 LC->getOperand(i), RC->getOperand(i), DT, 788 Depth + 1); 789 if (X != 0) 790 return X; 791 } 792 EqCacheSCEV.unionSets(LHS, RHS); 793 return 0; 794 } 795 796 case scUDivExpr: { 797 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 798 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 799 800 // Lexicographically compare udiv expressions. 801 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 802 RC->getLHS(), DT, Depth + 1); 803 if (X != 0) 804 return X; 805 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 806 RC->getRHS(), DT, Depth + 1); 807 if (X == 0) 808 EqCacheSCEV.unionSets(LHS, RHS); 809 return X; 810 } 811 812 case scPtrToInt: 813 case scTruncate: 814 case scZeroExtend: 815 case scSignExtend: { 816 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 817 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 818 819 // Compare cast expressions by operand. 820 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 821 LC->getOperand(), RC->getOperand(), DT, 822 Depth + 1); 823 if (X == 0) 824 EqCacheSCEV.unionSets(LHS, RHS); 825 return X; 826 } 827 828 case scCouldNotCompute: 829 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 830 } 831 llvm_unreachable("Unknown SCEV kind!"); 832 } 833 834 /// Given a list of SCEV objects, order them by their complexity, and group 835 /// objects of the same complexity together by value. When this routine is 836 /// finished, we know that any duplicates in the vector are consecutive and that 837 /// complexity is monotonically increasing. 838 /// 839 /// Note that we go take special precautions to ensure that we get deterministic 840 /// results from this routine. In other words, we don't want the results of 841 /// this to depend on where the addresses of various SCEV objects happened to 842 /// land in memory. 843 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 844 LoopInfo *LI, DominatorTree &DT) { 845 if (Ops.size() < 2) return; // Noop 846 847 EquivalenceClasses<const SCEV *> EqCacheSCEV; 848 EquivalenceClasses<const Value *> EqCacheValue; 849 if (Ops.size() == 2) { 850 // This is the common case, which also happens to be trivially simple. 851 // Special case it. 852 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 853 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 854 std::swap(LHS, RHS); 855 return; 856 } 857 858 // Do the rough sort by complexity. 859 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 860 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 861 0; 862 }); 863 864 // Now that we are sorted by complexity, group elements of the same 865 // complexity. Note that this is, at worst, N^2, but the vector is likely to 866 // be extremely short in practice. Note that we take this approach because we 867 // do not want to depend on the addresses of the objects we are grouping. 868 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 869 const SCEV *S = Ops[i]; 870 unsigned Complexity = S->getSCEVType(); 871 872 // If there are any objects of the same complexity and same value as this 873 // one, group them. 874 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 875 if (Ops[j] == S) { // Found a duplicate. 876 // Move it to immediately after i'th element. 877 std::swap(Ops[i+1], Ops[j]); 878 ++i; // no need to rescan it. 879 if (i == e-2) return; // Done! 880 } 881 } 882 } 883 } 884 885 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 886 /// least HugeExprThreshold nodes). 887 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 888 return any_of(Ops, [](const SCEV *S) { 889 return S->getExpressionSize() >= HugeExprThreshold; 890 }); 891 } 892 893 //===----------------------------------------------------------------------===// 894 // Simple SCEV method implementations 895 //===----------------------------------------------------------------------===// 896 897 /// Compute BC(It, K). The result has width W. Assume, K > 0. 898 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 899 ScalarEvolution &SE, 900 Type *ResultTy) { 901 // Handle the simplest case efficiently. 902 if (K == 1) 903 return SE.getTruncateOrZeroExtend(It, ResultTy); 904 905 // We are using the following formula for BC(It, K): 906 // 907 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 908 // 909 // Suppose, W is the bitwidth of the return value. We must be prepared for 910 // overflow. Hence, we must assure that the result of our computation is 911 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 912 // safe in modular arithmetic. 913 // 914 // However, this code doesn't use exactly that formula; the formula it uses 915 // is something like the following, where T is the number of factors of 2 in 916 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 917 // exponentiation: 918 // 919 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 920 // 921 // This formula is trivially equivalent to the previous formula. However, 922 // this formula can be implemented much more efficiently. The trick is that 923 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 924 // arithmetic. To do exact division in modular arithmetic, all we have 925 // to do is multiply by the inverse. Therefore, this step can be done at 926 // width W. 927 // 928 // The next issue is how to safely do the division by 2^T. The way this 929 // is done is by doing the multiplication step at a width of at least W + T 930 // bits. This way, the bottom W+T bits of the product are accurate. Then, 931 // when we perform the division by 2^T (which is equivalent to a right shift 932 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 933 // truncated out after the division by 2^T. 934 // 935 // In comparison to just directly using the first formula, this technique 936 // is much more efficient; using the first formula requires W * K bits, 937 // but this formula less than W + K bits. Also, the first formula requires 938 // a division step, whereas this formula only requires multiplies and shifts. 939 // 940 // It doesn't matter whether the subtraction step is done in the calculation 941 // width or the input iteration count's width; if the subtraction overflows, 942 // the result must be zero anyway. We prefer here to do it in the width of 943 // the induction variable because it helps a lot for certain cases; CodeGen 944 // isn't smart enough to ignore the overflow, which leads to much less 945 // efficient code if the width of the subtraction is wider than the native 946 // register width. 947 // 948 // (It's possible to not widen at all by pulling out factors of 2 before 949 // the multiplication; for example, K=2 can be calculated as 950 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 951 // extra arithmetic, so it's not an obvious win, and it gets 952 // much more complicated for K > 3.) 953 954 // Protection from insane SCEVs; this bound is conservative, 955 // but it probably doesn't matter. 956 if (K > 1000) 957 return SE.getCouldNotCompute(); 958 959 unsigned W = SE.getTypeSizeInBits(ResultTy); 960 961 // Calculate K! / 2^T and T; we divide out the factors of two before 962 // multiplying for calculating K! / 2^T to avoid overflow. 963 // Other overflow doesn't matter because we only care about the bottom 964 // W bits of the result. 965 APInt OddFactorial(W, 1); 966 unsigned T = 1; 967 for (unsigned i = 3; i <= K; ++i) { 968 APInt Mult(W, i); 969 unsigned TwoFactors = Mult.countTrailingZeros(); 970 T += TwoFactors; 971 Mult.lshrInPlace(TwoFactors); 972 OddFactorial *= Mult; 973 } 974 975 // We need at least W + T bits for the multiplication step 976 unsigned CalculationBits = W + T; 977 978 // Calculate 2^T, at width T+W. 979 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 980 981 // Calculate the multiplicative inverse of K! / 2^T; 982 // this multiplication factor will perform the exact division by 983 // K! / 2^T. 984 APInt Mod = APInt::getSignedMinValue(W+1); 985 APInt MultiplyFactor = OddFactorial.zext(W+1); 986 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 987 MultiplyFactor = MultiplyFactor.trunc(W); 988 989 // Calculate the product, at width T+W 990 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 991 CalculationBits); 992 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 993 for (unsigned i = 1; i != K; ++i) { 994 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 995 Dividend = SE.getMulExpr(Dividend, 996 SE.getTruncateOrZeroExtend(S, CalculationTy)); 997 } 998 999 // Divide by 2^T 1000 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1001 1002 // Truncate the result, and divide by K! / 2^T. 1003 1004 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1005 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1006 } 1007 1008 /// Return the value of this chain of recurrences at the specified iteration 1009 /// number. We can evaluate this recurrence by multiplying each element in the 1010 /// chain by the binomial coefficient corresponding to it. In other words, we 1011 /// can evaluate {A,+,B,+,C,+,D} as: 1012 /// 1013 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1014 /// 1015 /// where BC(It, k) stands for binomial coefficient. 1016 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1017 ScalarEvolution &SE) const { 1018 const SCEV *Result = getStart(); 1019 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1020 // The computation is correct in the face of overflow provided that the 1021 // multiplication is performed _after_ the evaluation of the binomial 1022 // coefficient. 1023 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1024 if (isa<SCEVCouldNotCompute>(Coeff)) 1025 return Coeff; 1026 1027 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1028 } 1029 return Result; 1030 } 1031 1032 //===----------------------------------------------------------------------===// 1033 // SCEV Expression folder implementations 1034 //===----------------------------------------------------------------------===// 1035 1036 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty, 1037 unsigned Depth) { 1038 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1039 1040 // We could be called with an integer-typed operands during SCEV rewrites. 1041 // Since the operand is an integer already, just perform zext/trunc/self cast. 1042 if (!Op->getType()->isPointerTy()) 1043 return getTruncateOrZeroExtend(Op, Ty); 1044 1045 FoldingSetNodeID ID; 1046 ID.AddInteger(scPtrToInt); 1047 ID.AddPointer(Op); 1048 void *IP = nullptr; 1049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1050 return getTruncateOrZeroExtend(S, Ty, Depth); 1051 1052 assert((isa<SCEVNAryExpr>(Op) || isa<SCEVUnknown>(Op)) && 1053 "We can only gen an nary expression, or an unknown here."); 1054 1055 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1056 1057 // If the input operand is not an unknown (and thus is an nary expression), 1058 // sink the cast to operands, so that the operation is performed on integers, 1059 // and we eventually end up with just an ptrtoint(unknown). 1060 if (const SCEVNAryExpr *NaryExpr = dyn_cast<SCEVNAryExpr>(Op)) { 1061 SmallVector<const SCEV *, 2> NewOps; 1062 NewOps.reserve(NaryExpr->getNumOperands()); 1063 for (const SCEV *Op : NaryExpr->operands()) 1064 NewOps.push_back(Op->getType()->isPointerTy() 1065 ? getPtrToIntExpr(Op, IntPtrTy, Depth + 1) 1066 : Op); 1067 const SCEV *NewNaryExpr = nullptr; 1068 switch (SCEVTypes SCEVType = NaryExpr->getSCEVType()) { 1069 case scAddExpr: 1070 NewNaryExpr = getAddExpr(NewOps, NaryExpr->getNoWrapFlags(), Depth + 1); 1071 break; 1072 case scAddRecExpr: 1073 NewNaryExpr = 1074 getAddRecExpr(NewOps, cast<SCEVAddRecExpr>(NaryExpr)->getLoop(), 1075 NaryExpr->getNoWrapFlags()); 1076 break; 1077 case scUMaxExpr: 1078 case scSMaxExpr: 1079 case scUMinExpr: 1080 case scSMinExpr: 1081 NewNaryExpr = getMinMaxExpr(SCEVType, NewOps); 1082 break; 1083 1084 case scMulExpr: 1085 NewNaryExpr = getMulExpr(NewOps, NaryExpr->getNoWrapFlags(), Depth + 1); 1086 break; 1087 case scUDivExpr: 1088 NewNaryExpr = getUDivExpr(NewOps[0], NewOps[1]); 1089 break; 1090 case scConstant: 1091 case scTruncate: 1092 case scZeroExtend: 1093 case scSignExtend: 1094 case scPtrToInt: 1095 case scUnknown: 1096 case scCouldNotCompute: 1097 llvm_unreachable("We can't get these types here."); 1098 } 1099 return getTruncateOrZeroExtend(NewNaryExpr, Ty, Depth); 1100 } 1101 1102 // The cast wasn't folded; create an explicit cast node. We can reuse 1103 // the existing insert position since if we get here, we won't have 1104 // made any changes which would invalidate it. 1105 assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType( 1106 Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) && 1107 "We can only model ptrtoint if SCEV's effective (integer) type is " 1108 "sufficiently wide to represent all possible pointer values."); 1109 SCEV *S = new (SCEVAllocator) 1110 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1111 UniqueSCEVs.InsertNode(S, IP); 1112 addToLoopUseLists(S); 1113 return getTruncateOrZeroExtend(S, Ty, Depth); 1114 } 1115 1116 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1117 unsigned Depth) { 1118 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1119 "This is not a truncating conversion!"); 1120 assert(isSCEVable(Ty) && 1121 "This is not a conversion to a SCEVable type!"); 1122 Ty = getEffectiveSCEVType(Ty); 1123 1124 FoldingSetNodeID ID; 1125 ID.AddInteger(scTruncate); 1126 ID.AddPointer(Op); 1127 ID.AddPointer(Ty); 1128 void *IP = nullptr; 1129 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1130 1131 // Fold if the operand is constant. 1132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1133 return getConstant( 1134 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1135 1136 // trunc(trunc(x)) --> trunc(x) 1137 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1138 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1139 1140 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1141 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1142 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1143 1144 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1145 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1146 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1147 1148 if (Depth > MaxCastDepth) { 1149 SCEV *S = 1150 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1151 UniqueSCEVs.InsertNode(S, IP); 1152 addToLoopUseLists(S); 1153 return S; 1154 } 1155 1156 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1157 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1158 // if after transforming we have at most one truncate, not counting truncates 1159 // that replace other casts. 1160 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1161 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1162 SmallVector<const SCEV *, 4> Operands; 1163 unsigned numTruncs = 0; 1164 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1165 ++i) { 1166 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1167 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1168 isa<SCEVTruncateExpr>(S)) 1169 numTruncs++; 1170 Operands.push_back(S); 1171 } 1172 if (numTruncs < 2) { 1173 if (isa<SCEVAddExpr>(Op)) 1174 return getAddExpr(Operands); 1175 else if (isa<SCEVMulExpr>(Op)) 1176 return getMulExpr(Operands); 1177 else 1178 llvm_unreachable("Unexpected SCEV type for Op."); 1179 } 1180 // Although we checked in the beginning that ID is not in the cache, it is 1181 // possible that during recursion and different modification ID was inserted 1182 // into the cache. So if we find it, just return it. 1183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1184 return S; 1185 } 1186 1187 // If the input value is a chrec scev, truncate the chrec's operands. 1188 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1189 SmallVector<const SCEV *, 4> Operands; 1190 for (const SCEV *Op : AddRec->operands()) 1191 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1192 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1193 } 1194 1195 // The cast wasn't folded; create an explicit cast node. We can reuse 1196 // the existing insert position since if we get here, we won't have 1197 // made any changes which would invalidate it. 1198 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1199 Op, Ty); 1200 UniqueSCEVs.InsertNode(S, IP); 1201 addToLoopUseLists(S); 1202 return S; 1203 } 1204 1205 // Get the limit of a recurrence such that incrementing by Step cannot cause 1206 // signed overflow as long as the value of the recurrence within the 1207 // loop does not exceed this limit before incrementing. 1208 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1209 ICmpInst::Predicate *Pred, 1210 ScalarEvolution *SE) { 1211 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1212 if (SE->isKnownPositive(Step)) { 1213 *Pred = ICmpInst::ICMP_SLT; 1214 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1215 SE->getSignedRangeMax(Step)); 1216 } 1217 if (SE->isKnownNegative(Step)) { 1218 *Pred = ICmpInst::ICMP_SGT; 1219 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1220 SE->getSignedRangeMin(Step)); 1221 } 1222 return nullptr; 1223 } 1224 1225 // Get the limit of a recurrence such that incrementing by Step cannot cause 1226 // unsigned overflow as long as the value of the recurrence within the loop does 1227 // not exceed this limit before incrementing. 1228 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1229 ICmpInst::Predicate *Pred, 1230 ScalarEvolution *SE) { 1231 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1232 *Pred = ICmpInst::ICMP_ULT; 1233 1234 return SE->getConstant(APInt::getMinValue(BitWidth) - 1235 SE->getUnsignedRangeMax(Step)); 1236 } 1237 1238 namespace { 1239 1240 struct ExtendOpTraitsBase { 1241 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1242 unsigned); 1243 }; 1244 1245 // Used to make code generic over signed and unsigned overflow. 1246 template <typename ExtendOp> struct ExtendOpTraits { 1247 // Members present: 1248 // 1249 // static const SCEV::NoWrapFlags WrapType; 1250 // 1251 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1252 // 1253 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1254 // ICmpInst::Predicate *Pred, 1255 // ScalarEvolution *SE); 1256 }; 1257 1258 template <> 1259 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1260 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1261 1262 static const GetExtendExprTy GetExtendExpr; 1263 1264 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1265 ICmpInst::Predicate *Pred, 1266 ScalarEvolution *SE) { 1267 return getSignedOverflowLimitForStep(Step, Pred, SE); 1268 } 1269 }; 1270 1271 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1272 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1273 1274 template <> 1275 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1276 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1277 1278 static const GetExtendExprTy GetExtendExpr; 1279 1280 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1281 ICmpInst::Predicate *Pred, 1282 ScalarEvolution *SE) { 1283 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1284 } 1285 }; 1286 1287 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1288 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1289 1290 } // end anonymous namespace 1291 1292 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1293 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1294 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1295 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1296 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1297 // expression "Step + sext/zext(PreIncAR)" is congruent with 1298 // "sext/zext(PostIncAR)" 1299 template <typename ExtendOpTy> 1300 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1301 ScalarEvolution *SE, unsigned Depth) { 1302 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1303 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1304 1305 const Loop *L = AR->getLoop(); 1306 const SCEV *Start = AR->getStart(); 1307 const SCEV *Step = AR->getStepRecurrence(*SE); 1308 1309 // Check for a simple looking step prior to loop entry. 1310 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1311 if (!SA) 1312 return nullptr; 1313 1314 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1315 // subtraction is expensive. For this purpose, perform a quick and dirty 1316 // difference, by checking for Step in the operand list. 1317 SmallVector<const SCEV *, 4> DiffOps; 1318 for (const SCEV *Op : SA->operands()) 1319 if (Op != Step) 1320 DiffOps.push_back(Op); 1321 1322 if (DiffOps.size() == SA->getNumOperands()) 1323 return nullptr; 1324 1325 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1326 // `Step`: 1327 1328 // 1. NSW/NUW flags on the step increment. 1329 auto PreStartFlags = 1330 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1331 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1332 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1333 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1334 1335 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1336 // "S+X does not sign/unsign-overflow". 1337 // 1338 1339 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1340 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1341 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1342 return PreStart; 1343 1344 // 2. Direct overflow check on the step operation's expression. 1345 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1346 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1347 const SCEV *OperandExtendedStart = 1348 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1349 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1350 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1351 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1352 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1353 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1354 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1355 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1356 } 1357 return PreStart; 1358 } 1359 1360 // 3. Loop precondition. 1361 ICmpInst::Predicate Pred; 1362 const SCEV *OverflowLimit = 1363 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1364 1365 if (OverflowLimit && 1366 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1367 return PreStart; 1368 1369 return nullptr; 1370 } 1371 1372 // Get the normalized zero or sign extended expression for this AddRec's Start. 1373 template <typename ExtendOpTy> 1374 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1375 ScalarEvolution *SE, 1376 unsigned Depth) { 1377 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1378 1379 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1380 if (!PreStart) 1381 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1382 1383 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1384 Depth), 1385 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1386 } 1387 1388 // Try to prove away overflow by looking at "nearby" add recurrences. A 1389 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1390 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1391 // 1392 // Formally: 1393 // 1394 // {S,+,X} == {S-T,+,X} + T 1395 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1396 // 1397 // If ({S-T,+,X} + T) does not overflow ... (1) 1398 // 1399 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1400 // 1401 // If {S-T,+,X} does not overflow ... (2) 1402 // 1403 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1404 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1405 // 1406 // If (S-T)+T does not overflow ... (3) 1407 // 1408 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1409 // == {Ext(S),+,Ext(X)} == LHS 1410 // 1411 // Thus, if (1), (2) and (3) are true for some T, then 1412 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1413 // 1414 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1415 // does not overflow" restricted to the 0th iteration. Therefore we only need 1416 // to check for (1) and (2). 1417 // 1418 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1419 // is `Delta` (defined below). 1420 template <typename ExtendOpTy> 1421 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1422 const SCEV *Step, 1423 const Loop *L) { 1424 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1425 1426 // We restrict `Start` to a constant to prevent SCEV from spending too much 1427 // time here. It is correct (but more expensive) to continue with a 1428 // non-constant `Start` and do a general SCEV subtraction to compute 1429 // `PreStart` below. 1430 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1431 if (!StartC) 1432 return false; 1433 1434 APInt StartAI = StartC->getAPInt(); 1435 1436 for (unsigned Delta : {-2, -1, 1, 2}) { 1437 const SCEV *PreStart = getConstant(StartAI - Delta); 1438 1439 FoldingSetNodeID ID; 1440 ID.AddInteger(scAddRecExpr); 1441 ID.AddPointer(PreStart); 1442 ID.AddPointer(Step); 1443 ID.AddPointer(L); 1444 void *IP = nullptr; 1445 const auto *PreAR = 1446 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1447 1448 // Give up if we don't already have the add recurrence we need because 1449 // actually constructing an add recurrence is relatively expensive. 1450 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1451 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1452 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1453 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1454 DeltaS, &Pred, this); 1455 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1456 return true; 1457 } 1458 } 1459 1460 return false; 1461 } 1462 1463 // Finds an integer D for an expression (C + x + y + ...) such that the top 1464 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1465 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1466 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1467 // the (C + x + y + ...) expression is \p WholeAddExpr. 1468 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1469 const SCEVConstant *ConstantTerm, 1470 const SCEVAddExpr *WholeAddExpr) { 1471 const APInt &C = ConstantTerm->getAPInt(); 1472 const unsigned BitWidth = C.getBitWidth(); 1473 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1474 uint32_t TZ = BitWidth; 1475 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1476 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1477 if (TZ) { 1478 // Set D to be as many least significant bits of C as possible while still 1479 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1480 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1481 } 1482 return APInt(BitWidth, 0); 1483 } 1484 1485 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1486 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1487 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1488 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1489 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1490 const APInt &ConstantStart, 1491 const SCEV *Step) { 1492 const unsigned BitWidth = ConstantStart.getBitWidth(); 1493 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1494 if (TZ) 1495 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1496 : ConstantStart; 1497 return APInt(BitWidth, 0); 1498 } 1499 1500 const SCEV * 1501 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1502 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1503 "This is not an extending conversion!"); 1504 assert(isSCEVable(Ty) && 1505 "This is not a conversion to a SCEVable type!"); 1506 Ty = getEffectiveSCEVType(Ty); 1507 1508 // Fold if the operand is constant. 1509 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1510 return getConstant( 1511 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1512 1513 // zext(zext(x)) --> zext(x) 1514 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1515 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1516 1517 // Before doing any expensive analysis, check to see if we've already 1518 // computed a SCEV for this Op and Ty. 1519 FoldingSetNodeID ID; 1520 ID.AddInteger(scZeroExtend); 1521 ID.AddPointer(Op); 1522 ID.AddPointer(Ty); 1523 void *IP = nullptr; 1524 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1525 if (Depth > MaxCastDepth) { 1526 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1527 Op, Ty); 1528 UniqueSCEVs.InsertNode(S, IP); 1529 addToLoopUseLists(S); 1530 return S; 1531 } 1532 1533 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1534 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1535 // It's possible the bits taken off by the truncate were all zero bits. If 1536 // so, we should be able to simplify this further. 1537 const SCEV *X = ST->getOperand(); 1538 ConstantRange CR = getUnsignedRange(X); 1539 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1540 unsigned NewBits = getTypeSizeInBits(Ty); 1541 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1542 CR.zextOrTrunc(NewBits))) 1543 return getTruncateOrZeroExtend(X, Ty, Depth); 1544 } 1545 1546 // If the input value is a chrec scev, and we can prove that the value 1547 // did not overflow the old, smaller, value, we can zero extend all of the 1548 // operands (often constants). This allows analysis of something like 1549 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1550 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1551 if (AR->isAffine()) { 1552 const SCEV *Start = AR->getStart(); 1553 const SCEV *Step = AR->getStepRecurrence(*this); 1554 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1555 const Loop *L = AR->getLoop(); 1556 1557 if (!AR->hasNoUnsignedWrap()) { 1558 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1559 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1560 } 1561 1562 // If we have special knowledge that this addrec won't overflow, 1563 // we don't need to do any further analysis. 1564 if (AR->hasNoUnsignedWrap()) 1565 return getAddRecExpr( 1566 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1567 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1568 1569 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1570 // Note that this serves two purposes: It filters out loops that are 1571 // simply not analyzable, and it covers the case where this code is 1572 // being called from within backedge-taken count analysis, such that 1573 // attempting to ask for the backedge-taken count would likely result 1574 // in infinite recursion. In the later case, the analysis code will 1575 // cope with a conservative value, and it will take care to purge 1576 // that value once it has finished. 1577 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1578 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1579 // Manually compute the final value for AR, checking for 1580 // overflow. 1581 1582 // Check whether the backedge-taken count can be losslessly casted to 1583 // the addrec's type. The count is always unsigned. 1584 const SCEV *CastedMaxBECount = 1585 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1586 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1587 CastedMaxBECount, MaxBECount->getType(), Depth); 1588 if (MaxBECount == RecastedMaxBECount) { 1589 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1590 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1591 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1592 SCEV::FlagAnyWrap, Depth + 1); 1593 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1594 SCEV::FlagAnyWrap, 1595 Depth + 1), 1596 WideTy, Depth + 1); 1597 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1598 const SCEV *WideMaxBECount = 1599 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1600 const SCEV *OperandExtendedAdd = 1601 getAddExpr(WideStart, 1602 getMulExpr(WideMaxBECount, 1603 getZeroExtendExpr(Step, WideTy, Depth + 1), 1604 SCEV::FlagAnyWrap, Depth + 1), 1605 SCEV::FlagAnyWrap, Depth + 1); 1606 if (ZAdd == OperandExtendedAdd) { 1607 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1608 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1609 // Return the expression with the addrec on the outside. 1610 return getAddRecExpr( 1611 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1612 Depth + 1), 1613 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1614 AR->getNoWrapFlags()); 1615 } 1616 // Similar to above, only this time treat the step value as signed. 1617 // This covers loops that count down. 1618 OperandExtendedAdd = 1619 getAddExpr(WideStart, 1620 getMulExpr(WideMaxBECount, 1621 getSignExtendExpr(Step, WideTy, Depth + 1), 1622 SCEV::FlagAnyWrap, Depth + 1), 1623 SCEV::FlagAnyWrap, Depth + 1); 1624 if (ZAdd == OperandExtendedAdd) { 1625 // Cache knowledge of AR NW, which is propagated to this AddRec. 1626 // Negative step causes unsigned wrap, but it still can't self-wrap. 1627 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1628 // Return the expression with the addrec on the outside. 1629 return getAddRecExpr( 1630 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1631 Depth + 1), 1632 getSignExtendExpr(Step, Ty, Depth + 1), L, 1633 AR->getNoWrapFlags()); 1634 } 1635 } 1636 } 1637 1638 // Normally, in the cases we can prove no-overflow via a 1639 // backedge guarding condition, we can also compute a backedge 1640 // taken count for the loop. The exceptions are assumptions and 1641 // guards present in the loop -- SCEV is not great at exploiting 1642 // these to compute max backedge taken counts, but can still use 1643 // these to prove lack of overflow. Use this fact to avoid 1644 // doing extra work that may not pay off. 1645 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1646 !AC.assumptions().empty()) { 1647 // If the backedge is guarded by a comparison with the pre-inc 1648 // value the addrec is safe. Also, if the entry is guarded by 1649 // a comparison with the start value and the backedge is 1650 // guarded by a comparison with the post-inc value, the addrec 1651 // is safe. 1652 if (isKnownPositive(Step)) { 1653 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1654 getUnsignedRangeMax(Step)); 1655 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1656 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1657 // Cache knowledge of AR NUW, which is propagated to this 1658 // AddRec. 1659 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1660 // Return the expression with the addrec on the outside. 1661 return getAddRecExpr( 1662 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1663 Depth + 1), 1664 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1665 AR->getNoWrapFlags()); 1666 } 1667 } else if (isKnownNegative(Step)) { 1668 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1669 getSignedRangeMin(Step)); 1670 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1671 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1672 // Cache knowledge of AR NW, which is propagated to this 1673 // AddRec. Negative step causes unsigned wrap, but it 1674 // still can't self-wrap. 1675 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1676 // Return the expression with the addrec on the outside. 1677 return getAddRecExpr( 1678 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1679 Depth + 1), 1680 getSignExtendExpr(Step, Ty, Depth + 1), L, 1681 AR->getNoWrapFlags()); 1682 } 1683 } 1684 } 1685 1686 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1687 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1688 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1689 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1690 const APInt &C = SC->getAPInt(); 1691 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1692 if (D != 0) { 1693 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1694 const SCEV *SResidual = 1695 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1696 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1697 return getAddExpr(SZExtD, SZExtR, 1698 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1699 Depth + 1); 1700 } 1701 } 1702 1703 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1704 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1705 return getAddRecExpr( 1706 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1707 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1708 } 1709 } 1710 1711 // zext(A % B) --> zext(A) % zext(B) 1712 { 1713 const SCEV *LHS; 1714 const SCEV *RHS; 1715 if (matchURem(Op, LHS, RHS)) 1716 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1717 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1718 } 1719 1720 // zext(A / B) --> zext(A) / zext(B). 1721 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1722 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1723 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1724 1725 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1726 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1727 if (SA->hasNoUnsignedWrap()) { 1728 // If the addition does not unsign overflow then we can, by definition, 1729 // commute the zero extension with the addition operation. 1730 SmallVector<const SCEV *, 4> Ops; 1731 for (const auto *Op : SA->operands()) 1732 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1733 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1734 } 1735 1736 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1737 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1738 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1739 // 1740 // Often address arithmetics contain expressions like 1741 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1742 // This transformation is useful while proving that such expressions are 1743 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1744 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1745 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1746 if (D != 0) { 1747 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1748 const SCEV *SResidual = 1749 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1750 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1751 return getAddExpr(SZExtD, SZExtR, 1752 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1753 Depth + 1); 1754 } 1755 } 1756 } 1757 1758 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1759 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1760 if (SM->hasNoUnsignedWrap()) { 1761 // If the multiply does not unsign overflow then we can, by definition, 1762 // commute the zero extension with the multiply operation. 1763 SmallVector<const SCEV *, 4> Ops; 1764 for (const auto *Op : SM->operands()) 1765 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1766 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1767 } 1768 1769 // zext(2^K * (trunc X to iN)) to iM -> 1770 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1771 // 1772 // Proof: 1773 // 1774 // zext(2^K * (trunc X to iN)) to iM 1775 // = zext((trunc X to iN) << K) to iM 1776 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1777 // (because shl removes the top K bits) 1778 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1779 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1780 // 1781 if (SM->getNumOperands() == 2) 1782 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1783 if (MulLHS->getAPInt().isPowerOf2()) 1784 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1785 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1786 MulLHS->getAPInt().logBase2(); 1787 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1788 return getMulExpr( 1789 getZeroExtendExpr(MulLHS, Ty), 1790 getZeroExtendExpr( 1791 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1792 SCEV::FlagNUW, Depth + 1); 1793 } 1794 } 1795 1796 // The cast wasn't folded; create an explicit cast node. 1797 // Recompute the insert position, as it may have been invalidated. 1798 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1799 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1800 Op, Ty); 1801 UniqueSCEVs.InsertNode(S, IP); 1802 addToLoopUseLists(S); 1803 return S; 1804 } 1805 1806 const SCEV * 1807 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1808 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1809 "This is not an extending conversion!"); 1810 assert(isSCEVable(Ty) && 1811 "This is not a conversion to a SCEVable type!"); 1812 Ty = getEffectiveSCEVType(Ty); 1813 1814 // Fold if the operand is constant. 1815 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1816 return getConstant( 1817 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1818 1819 // sext(sext(x)) --> sext(x) 1820 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1821 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1822 1823 // sext(zext(x)) --> zext(x) 1824 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1825 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1826 1827 // Before doing any expensive analysis, check to see if we've already 1828 // computed a SCEV for this Op and Ty. 1829 FoldingSetNodeID ID; 1830 ID.AddInteger(scSignExtend); 1831 ID.AddPointer(Op); 1832 ID.AddPointer(Ty); 1833 void *IP = nullptr; 1834 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1835 // Limit recursion depth. 1836 if (Depth > MaxCastDepth) { 1837 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1838 Op, Ty); 1839 UniqueSCEVs.InsertNode(S, IP); 1840 addToLoopUseLists(S); 1841 return S; 1842 } 1843 1844 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1845 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1846 // It's possible the bits taken off by the truncate were all sign bits. If 1847 // so, we should be able to simplify this further. 1848 const SCEV *X = ST->getOperand(); 1849 ConstantRange CR = getSignedRange(X); 1850 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1851 unsigned NewBits = getTypeSizeInBits(Ty); 1852 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1853 CR.sextOrTrunc(NewBits))) 1854 return getTruncateOrSignExtend(X, Ty, Depth); 1855 } 1856 1857 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1858 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1859 if (SA->hasNoSignedWrap()) { 1860 // If the addition does not sign overflow then we can, by definition, 1861 // commute the sign extension with the addition operation. 1862 SmallVector<const SCEV *, 4> Ops; 1863 for (const auto *Op : SA->operands()) 1864 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1865 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1866 } 1867 1868 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1869 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1870 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1871 // 1872 // For instance, this will bring two seemingly different expressions: 1873 // 1 + sext(5 + 20 * %x + 24 * %y) and 1874 // sext(6 + 20 * %x + 24 * %y) 1875 // to the same form: 1876 // 2 + sext(4 + 20 * %x + 24 * %y) 1877 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1878 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1879 if (D != 0) { 1880 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1881 const SCEV *SResidual = 1882 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1883 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1884 return getAddExpr(SSExtD, SSExtR, 1885 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1886 Depth + 1); 1887 } 1888 } 1889 } 1890 // If the input value is a chrec scev, and we can prove that the value 1891 // did not overflow the old, smaller, value, we can sign extend all of the 1892 // operands (often constants). This allows analysis of something like 1893 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1894 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1895 if (AR->isAffine()) { 1896 const SCEV *Start = AR->getStart(); 1897 const SCEV *Step = AR->getStepRecurrence(*this); 1898 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1899 const Loop *L = AR->getLoop(); 1900 1901 if (!AR->hasNoSignedWrap()) { 1902 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1903 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1904 } 1905 1906 // If we have special knowledge that this addrec won't overflow, 1907 // we don't need to do any further analysis. 1908 if (AR->hasNoSignedWrap()) 1909 return getAddRecExpr( 1910 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1911 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1912 1913 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1914 // Note that this serves two purposes: It filters out loops that are 1915 // simply not analyzable, and it covers the case where this code is 1916 // being called from within backedge-taken count analysis, such that 1917 // attempting to ask for the backedge-taken count would likely result 1918 // in infinite recursion. In the later case, the analysis code will 1919 // cope with a conservative value, and it will take care to purge 1920 // that value once it has finished. 1921 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1922 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1923 // Manually compute the final value for AR, checking for 1924 // overflow. 1925 1926 // Check whether the backedge-taken count can be losslessly casted to 1927 // the addrec's type. The count is always unsigned. 1928 const SCEV *CastedMaxBECount = 1929 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1930 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1931 CastedMaxBECount, MaxBECount->getType(), Depth); 1932 if (MaxBECount == RecastedMaxBECount) { 1933 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1934 // Check whether Start+Step*MaxBECount has no signed overflow. 1935 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1936 SCEV::FlagAnyWrap, Depth + 1); 1937 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1938 SCEV::FlagAnyWrap, 1939 Depth + 1), 1940 WideTy, Depth + 1); 1941 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1942 const SCEV *WideMaxBECount = 1943 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1944 const SCEV *OperandExtendedAdd = 1945 getAddExpr(WideStart, 1946 getMulExpr(WideMaxBECount, 1947 getSignExtendExpr(Step, WideTy, Depth + 1), 1948 SCEV::FlagAnyWrap, Depth + 1), 1949 SCEV::FlagAnyWrap, Depth + 1); 1950 if (SAdd == OperandExtendedAdd) { 1951 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1952 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1953 // Return the expression with the addrec on the outside. 1954 return getAddRecExpr( 1955 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1956 Depth + 1), 1957 getSignExtendExpr(Step, Ty, Depth + 1), L, 1958 AR->getNoWrapFlags()); 1959 } 1960 // Similar to above, only this time treat the step value as unsigned. 1961 // This covers loops that count up with an unsigned step. 1962 OperandExtendedAdd = 1963 getAddExpr(WideStart, 1964 getMulExpr(WideMaxBECount, 1965 getZeroExtendExpr(Step, WideTy, Depth + 1), 1966 SCEV::FlagAnyWrap, Depth + 1), 1967 SCEV::FlagAnyWrap, Depth + 1); 1968 if (SAdd == OperandExtendedAdd) { 1969 // If AR wraps around then 1970 // 1971 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1972 // => SAdd != OperandExtendedAdd 1973 // 1974 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1975 // (SAdd == OperandExtendedAdd => AR is NW) 1976 1977 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1978 1979 // Return the expression with the addrec on the outside. 1980 return getAddRecExpr( 1981 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1982 Depth + 1), 1983 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1984 AR->getNoWrapFlags()); 1985 } 1986 } 1987 } 1988 1989 // Normally, in the cases we can prove no-overflow via a 1990 // backedge guarding condition, we can also compute a backedge 1991 // taken count for the loop. The exceptions are assumptions and 1992 // guards present in the loop -- SCEV is not great at exploiting 1993 // these to compute max backedge taken counts, but can still use 1994 // these to prove lack of overflow. Use this fact to avoid 1995 // doing extra work that may not pay off. 1996 1997 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1998 !AC.assumptions().empty()) { 1999 // If the backedge is guarded by a comparison with the pre-inc 2000 // value the addrec is safe. Also, if the entry is guarded by 2001 // a comparison with the start value and the backedge is 2002 // guarded by a comparison with the post-inc value, the addrec 2003 // is safe. 2004 ICmpInst::Predicate Pred; 2005 const SCEV *OverflowLimit = 2006 getSignedOverflowLimitForStep(Step, &Pred, this); 2007 if (OverflowLimit && 2008 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 2009 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 2010 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 2011 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2012 return getAddRecExpr( 2013 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2014 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2015 } 2016 } 2017 2018 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2019 // if D + (C - D + Step * n) could be proven to not signed wrap 2020 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2021 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2022 const APInt &C = SC->getAPInt(); 2023 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2024 if (D != 0) { 2025 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2026 const SCEV *SResidual = 2027 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2028 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2029 return getAddExpr(SSExtD, SSExtR, 2030 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2031 Depth + 1); 2032 } 2033 } 2034 2035 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2036 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2037 return getAddRecExpr( 2038 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2039 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2040 } 2041 } 2042 2043 // If the input value is provably positive and we could not simplify 2044 // away the sext build a zext instead. 2045 if (isKnownNonNegative(Op)) 2046 return getZeroExtendExpr(Op, Ty, Depth + 1); 2047 2048 // The cast wasn't folded; create an explicit cast node. 2049 // Recompute the insert position, as it may have been invalidated. 2050 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2051 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2052 Op, Ty); 2053 UniqueSCEVs.InsertNode(S, IP); 2054 addToLoopUseLists(S); 2055 return S; 2056 } 2057 2058 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2059 /// unspecified bits out to the given type. 2060 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2061 Type *Ty) { 2062 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2063 "This is not an extending conversion!"); 2064 assert(isSCEVable(Ty) && 2065 "This is not a conversion to a SCEVable type!"); 2066 Ty = getEffectiveSCEVType(Ty); 2067 2068 // Sign-extend negative constants. 2069 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2070 if (SC->getAPInt().isNegative()) 2071 return getSignExtendExpr(Op, Ty); 2072 2073 // Peel off a truncate cast. 2074 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2075 const SCEV *NewOp = T->getOperand(); 2076 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2077 return getAnyExtendExpr(NewOp, Ty); 2078 return getTruncateOrNoop(NewOp, Ty); 2079 } 2080 2081 // Next try a zext cast. If the cast is folded, use it. 2082 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2083 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2084 return ZExt; 2085 2086 // Next try a sext cast. If the cast is folded, use it. 2087 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2088 if (!isa<SCEVSignExtendExpr>(SExt)) 2089 return SExt; 2090 2091 // Force the cast to be folded into the operands of an addrec. 2092 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2093 SmallVector<const SCEV *, 4> Ops; 2094 for (const SCEV *Op : AR->operands()) 2095 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2096 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2097 } 2098 2099 // If the expression is obviously signed, use the sext cast value. 2100 if (isa<SCEVSMaxExpr>(Op)) 2101 return SExt; 2102 2103 // Absent any other information, use the zext cast value. 2104 return ZExt; 2105 } 2106 2107 /// Process the given Ops list, which is a list of operands to be added under 2108 /// the given scale, update the given map. This is a helper function for 2109 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2110 /// that would form an add expression like this: 2111 /// 2112 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2113 /// 2114 /// where A and B are constants, update the map with these values: 2115 /// 2116 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2117 /// 2118 /// and add 13 + A*B*29 to AccumulatedConstant. 2119 /// This will allow getAddRecExpr to produce this: 2120 /// 2121 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2122 /// 2123 /// This form often exposes folding opportunities that are hidden in 2124 /// the original operand list. 2125 /// 2126 /// Return true iff it appears that any interesting folding opportunities 2127 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2128 /// the common case where no interesting opportunities are present, and 2129 /// is also used as a check to avoid infinite recursion. 2130 static bool 2131 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2132 SmallVectorImpl<const SCEV *> &NewOps, 2133 APInt &AccumulatedConstant, 2134 const SCEV *const *Ops, size_t NumOperands, 2135 const APInt &Scale, 2136 ScalarEvolution &SE) { 2137 bool Interesting = false; 2138 2139 // Iterate over the add operands. They are sorted, with constants first. 2140 unsigned i = 0; 2141 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2142 ++i; 2143 // Pull a buried constant out to the outside. 2144 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2145 Interesting = true; 2146 AccumulatedConstant += Scale * C->getAPInt(); 2147 } 2148 2149 // Next comes everything else. We're especially interested in multiplies 2150 // here, but they're in the middle, so just visit the rest with one loop. 2151 for (; i != NumOperands; ++i) { 2152 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2153 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2154 APInt NewScale = 2155 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2156 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2157 // A multiplication of a constant with another add; recurse. 2158 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2159 Interesting |= 2160 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2161 Add->op_begin(), Add->getNumOperands(), 2162 NewScale, SE); 2163 } else { 2164 // A multiplication of a constant with some other value. Update 2165 // the map. 2166 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2167 const SCEV *Key = SE.getMulExpr(MulOps); 2168 auto Pair = M.insert({Key, NewScale}); 2169 if (Pair.second) { 2170 NewOps.push_back(Pair.first->first); 2171 } else { 2172 Pair.first->second += NewScale; 2173 // The map already had an entry for this value, which may indicate 2174 // a folding opportunity. 2175 Interesting = true; 2176 } 2177 } 2178 } else { 2179 // An ordinary operand. Update the map. 2180 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2181 M.insert({Ops[i], Scale}); 2182 if (Pair.second) { 2183 NewOps.push_back(Pair.first->first); 2184 } else { 2185 Pair.first->second += Scale; 2186 // The map already had an entry for this value, which may indicate 2187 // a folding opportunity. 2188 Interesting = true; 2189 } 2190 } 2191 } 2192 2193 return Interesting; 2194 } 2195 2196 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2197 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2198 // can't-overflow flags for the operation if possible. 2199 static SCEV::NoWrapFlags 2200 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2201 const ArrayRef<const SCEV *> Ops, 2202 SCEV::NoWrapFlags Flags) { 2203 using namespace std::placeholders; 2204 2205 using OBO = OverflowingBinaryOperator; 2206 2207 bool CanAnalyze = 2208 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2209 (void)CanAnalyze; 2210 assert(CanAnalyze && "don't call from other places!"); 2211 2212 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2213 SCEV::NoWrapFlags SignOrUnsignWrap = 2214 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2215 2216 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2217 auto IsKnownNonNegative = [&](const SCEV *S) { 2218 return SE->isKnownNonNegative(S); 2219 }; 2220 2221 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2222 Flags = 2223 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2224 2225 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2226 2227 if (SignOrUnsignWrap != SignOrUnsignMask && 2228 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2229 isa<SCEVConstant>(Ops[0])) { 2230 2231 auto Opcode = [&] { 2232 switch (Type) { 2233 case scAddExpr: 2234 return Instruction::Add; 2235 case scMulExpr: 2236 return Instruction::Mul; 2237 default: 2238 llvm_unreachable("Unexpected SCEV op."); 2239 } 2240 }(); 2241 2242 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2243 2244 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2245 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2246 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2247 Opcode, C, OBO::NoSignedWrap); 2248 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2249 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2250 } 2251 2252 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2253 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2254 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2255 Opcode, C, OBO::NoUnsignedWrap); 2256 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2257 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2258 } 2259 } 2260 2261 return Flags; 2262 } 2263 2264 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2265 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2266 } 2267 2268 /// Get a canonical add expression, or something simpler if possible. 2269 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2270 SCEV::NoWrapFlags Flags, 2271 unsigned Depth) { 2272 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2273 "only nuw or nsw allowed"); 2274 assert(!Ops.empty() && "Cannot get empty add!"); 2275 if (Ops.size() == 1) return Ops[0]; 2276 #ifndef NDEBUG 2277 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2278 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2279 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2280 "SCEVAddExpr operand types don't match!"); 2281 #endif 2282 2283 // Sort by complexity, this groups all similar expression types together. 2284 GroupByComplexity(Ops, &LI, DT); 2285 2286 // If there are any constants, fold them together. 2287 unsigned Idx = 0; 2288 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2289 ++Idx; 2290 assert(Idx < Ops.size()); 2291 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2292 // We found two constants, fold them together! 2293 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2294 if (Ops.size() == 2) return Ops[0]; 2295 Ops.erase(Ops.begin()+1); // Erase the folded element 2296 LHSC = cast<SCEVConstant>(Ops[0]); 2297 } 2298 2299 // If we are left with a constant zero being added, strip it off. 2300 if (LHSC->getValue()->isZero()) { 2301 Ops.erase(Ops.begin()); 2302 --Idx; 2303 } 2304 2305 if (Ops.size() == 1) return Ops[0]; 2306 } 2307 2308 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2309 2310 // Limit recursion calls depth. 2311 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2312 return getOrCreateAddExpr(Ops, Flags); 2313 2314 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2315 static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags); 2316 return S; 2317 } 2318 2319 // Okay, check to see if the same value occurs in the operand list more than 2320 // once. If so, merge them together into an multiply expression. Since we 2321 // sorted the list, these values are required to be adjacent. 2322 Type *Ty = Ops[0]->getType(); 2323 bool FoundMatch = false; 2324 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2325 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2326 // Scan ahead to count how many equal operands there are. 2327 unsigned Count = 2; 2328 while (i+Count != e && Ops[i+Count] == Ops[i]) 2329 ++Count; 2330 // Merge the values into a multiply. 2331 const SCEV *Scale = getConstant(Ty, Count); 2332 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2333 if (Ops.size() == Count) 2334 return Mul; 2335 Ops[i] = Mul; 2336 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2337 --i; e -= Count - 1; 2338 FoundMatch = true; 2339 } 2340 if (FoundMatch) 2341 return getAddExpr(Ops, Flags, Depth + 1); 2342 2343 // Check for truncates. If all the operands are truncated from the same 2344 // type, see if factoring out the truncate would permit the result to be 2345 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2346 // if the contents of the resulting outer trunc fold to something simple. 2347 auto FindTruncSrcType = [&]() -> Type * { 2348 // We're ultimately looking to fold an addrec of truncs and muls of only 2349 // constants and truncs, so if we find any other types of SCEV 2350 // as operands of the addrec then we bail and return nullptr here. 2351 // Otherwise, we return the type of the operand of a trunc that we find. 2352 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2353 return T->getOperand()->getType(); 2354 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2355 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2356 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2357 return T->getOperand()->getType(); 2358 } 2359 return nullptr; 2360 }; 2361 if (auto *SrcType = FindTruncSrcType()) { 2362 SmallVector<const SCEV *, 8> LargeOps; 2363 bool Ok = true; 2364 // Check all the operands to see if they can be represented in the 2365 // source type of the truncate. 2366 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2367 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2368 if (T->getOperand()->getType() != SrcType) { 2369 Ok = false; 2370 break; 2371 } 2372 LargeOps.push_back(T->getOperand()); 2373 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2374 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2375 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2376 SmallVector<const SCEV *, 8> LargeMulOps; 2377 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2378 if (const SCEVTruncateExpr *T = 2379 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2380 if (T->getOperand()->getType() != SrcType) { 2381 Ok = false; 2382 break; 2383 } 2384 LargeMulOps.push_back(T->getOperand()); 2385 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2386 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2387 } else { 2388 Ok = false; 2389 break; 2390 } 2391 } 2392 if (Ok) 2393 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2394 } else { 2395 Ok = false; 2396 break; 2397 } 2398 } 2399 if (Ok) { 2400 // Evaluate the expression in the larger type. 2401 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2402 // If it folds to something simple, use it. Otherwise, don't. 2403 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2404 return getTruncateExpr(Fold, Ty); 2405 } 2406 } 2407 2408 // Skip past any other cast SCEVs. 2409 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2410 ++Idx; 2411 2412 // If there are add operands they would be next. 2413 if (Idx < Ops.size()) { 2414 bool DeletedAdd = false; 2415 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2416 if (Ops.size() > AddOpsInlineThreshold || 2417 Add->getNumOperands() > AddOpsInlineThreshold) 2418 break; 2419 // If we have an add, expand the add operands onto the end of the operands 2420 // list. 2421 Ops.erase(Ops.begin()+Idx); 2422 Ops.append(Add->op_begin(), Add->op_end()); 2423 DeletedAdd = true; 2424 } 2425 2426 // If we deleted at least one add, we added operands to the end of the list, 2427 // and they are not necessarily sorted. Recurse to resort and resimplify 2428 // any operands we just acquired. 2429 if (DeletedAdd) 2430 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2431 } 2432 2433 // Skip over the add expression until we get to a multiply. 2434 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2435 ++Idx; 2436 2437 // Check to see if there are any folding opportunities present with 2438 // operands multiplied by constant values. 2439 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2440 uint64_t BitWidth = getTypeSizeInBits(Ty); 2441 DenseMap<const SCEV *, APInt> M; 2442 SmallVector<const SCEV *, 8> NewOps; 2443 APInt AccumulatedConstant(BitWidth, 0); 2444 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2445 Ops.data(), Ops.size(), 2446 APInt(BitWidth, 1), *this)) { 2447 struct APIntCompare { 2448 bool operator()(const APInt &LHS, const APInt &RHS) const { 2449 return LHS.ult(RHS); 2450 } 2451 }; 2452 2453 // Some interesting folding opportunity is present, so its worthwhile to 2454 // re-generate the operands list. Group the operands by constant scale, 2455 // to avoid multiplying by the same constant scale multiple times. 2456 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2457 for (const SCEV *NewOp : NewOps) 2458 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2459 // Re-generate the operands list. 2460 Ops.clear(); 2461 if (AccumulatedConstant != 0) 2462 Ops.push_back(getConstant(AccumulatedConstant)); 2463 for (auto &MulOp : MulOpLists) 2464 if (MulOp.first != 0) 2465 Ops.push_back(getMulExpr( 2466 getConstant(MulOp.first), 2467 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2468 SCEV::FlagAnyWrap, Depth + 1)); 2469 if (Ops.empty()) 2470 return getZero(Ty); 2471 if (Ops.size() == 1) 2472 return Ops[0]; 2473 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2474 } 2475 } 2476 2477 // If we are adding something to a multiply expression, make sure the 2478 // something is not already an operand of the multiply. If so, merge it into 2479 // the multiply. 2480 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2481 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2482 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2483 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2484 if (isa<SCEVConstant>(MulOpSCEV)) 2485 continue; 2486 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2487 if (MulOpSCEV == Ops[AddOp]) { 2488 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2489 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2490 if (Mul->getNumOperands() != 2) { 2491 // If the multiply has more than two operands, we must get the 2492 // Y*Z term. 2493 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2494 Mul->op_begin()+MulOp); 2495 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2496 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2497 } 2498 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2499 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2500 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2501 SCEV::FlagAnyWrap, Depth + 1); 2502 if (Ops.size() == 2) return OuterMul; 2503 if (AddOp < Idx) { 2504 Ops.erase(Ops.begin()+AddOp); 2505 Ops.erase(Ops.begin()+Idx-1); 2506 } else { 2507 Ops.erase(Ops.begin()+Idx); 2508 Ops.erase(Ops.begin()+AddOp-1); 2509 } 2510 Ops.push_back(OuterMul); 2511 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2512 } 2513 2514 // Check this multiply against other multiplies being added together. 2515 for (unsigned OtherMulIdx = Idx+1; 2516 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2517 ++OtherMulIdx) { 2518 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2519 // If MulOp occurs in OtherMul, we can fold the two multiplies 2520 // together. 2521 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2522 OMulOp != e; ++OMulOp) 2523 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2524 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2525 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2526 if (Mul->getNumOperands() != 2) { 2527 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2528 Mul->op_begin()+MulOp); 2529 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2530 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2531 } 2532 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2533 if (OtherMul->getNumOperands() != 2) { 2534 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2535 OtherMul->op_begin()+OMulOp); 2536 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2537 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2538 } 2539 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2540 const SCEV *InnerMulSum = 2541 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2542 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2543 SCEV::FlagAnyWrap, Depth + 1); 2544 if (Ops.size() == 2) return OuterMul; 2545 Ops.erase(Ops.begin()+Idx); 2546 Ops.erase(Ops.begin()+OtherMulIdx-1); 2547 Ops.push_back(OuterMul); 2548 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2549 } 2550 } 2551 } 2552 } 2553 2554 // If there are any add recurrences in the operands list, see if any other 2555 // added values are loop invariant. If so, we can fold them into the 2556 // recurrence. 2557 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2558 ++Idx; 2559 2560 // Scan over all recurrences, trying to fold loop invariants into them. 2561 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2562 // Scan all of the other operands to this add and add them to the vector if 2563 // they are loop invariant w.r.t. the recurrence. 2564 SmallVector<const SCEV *, 8> LIOps; 2565 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2566 const Loop *AddRecLoop = AddRec->getLoop(); 2567 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2568 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2569 LIOps.push_back(Ops[i]); 2570 Ops.erase(Ops.begin()+i); 2571 --i; --e; 2572 } 2573 2574 // If we found some loop invariants, fold them into the recurrence. 2575 if (!LIOps.empty()) { 2576 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2577 LIOps.push_back(AddRec->getStart()); 2578 2579 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2580 AddRec->op_end()); 2581 // This follows from the fact that the no-wrap flags on the outer add 2582 // expression are applicable on the 0th iteration, when the add recurrence 2583 // will be equal to its start value. 2584 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2585 2586 // Build the new addrec. Propagate the NUW and NSW flags if both the 2587 // outer add and the inner addrec are guaranteed to have no overflow. 2588 // Always propagate NW. 2589 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2590 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2591 2592 // If all of the other operands were loop invariant, we are done. 2593 if (Ops.size() == 1) return NewRec; 2594 2595 // Otherwise, add the folded AddRec by the non-invariant parts. 2596 for (unsigned i = 0;; ++i) 2597 if (Ops[i] == AddRec) { 2598 Ops[i] = NewRec; 2599 break; 2600 } 2601 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2602 } 2603 2604 // Okay, if there weren't any loop invariants to be folded, check to see if 2605 // there are multiple AddRec's with the same loop induction variable being 2606 // added together. If so, we can fold them. 2607 for (unsigned OtherIdx = Idx+1; 2608 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2609 ++OtherIdx) { 2610 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2611 // so that the 1st found AddRecExpr is dominated by all others. 2612 assert(DT.dominates( 2613 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2614 AddRec->getLoop()->getHeader()) && 2615 "AddRecExprs are not sorted in reverse dominance order?"); 2616 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2617 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2618 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2619 AddRec->op_end()); 2620 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2621 ++OtherIdx) { 2622 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2623 if (OtherAddRec->getLoop() == AddRecLoop) { 2624 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2625 i != e; ++i) { 2626 if (i >= AddRecOps.size()) { 2627 AddRecOps.append(OtherAddRec->op_begin()+i, 2628 OtherAddRec->op_end()); 2629 break; 2630 } 2631 SmallVector<const SCEV *, 2> TwoOps = { 2632 AddRecOps[i], OtherAddRec->getOperand(i)}; 2633 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2634 } 2635 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2636 } 2637 } 2638 // Step size has changed, so we cannot guarantee no self-wraparound. 2639 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2640 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2641 } 2642 } 2643 2644 // Otherwise couldn't fold anything into this recurrence. Move onto the 2645 // next one. 2646 } 2647 2648 // Okay, it looks like we really DO need an add expr. Check to see if we 2649 // already have one, otherwise create a new one. 2650 return getOrCreateAddExpr(Ops, Flags); 2651 } 2652 2653 const SCEV * 2654 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2655 SCEV::NoWrapFlags Flags) { 2656 FoldingSetNodeID ID; 2657 ID.AddInteger(scAddExpr); 2658 for (const SCEV *Op : Ops) 2659 ID.AddPointer(Op); 2660 void *IP = nullptr; 2661 SCEVAddExpr *S = 2662 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2663 if (!S) { 2664 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2665 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2666 S = new (SCEVAllocator) 2667 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2668 UniqueSCEVs.InsertNode(S, IP); 2669 addToLoopUseLists(S); 2670 } 2671 S->setNoWrapFlags(Flags); 2672 return S; 2673 } 2674 2675 const SCEV * 2676 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2677 const Loop *L, SCEV::NoWrapFlags Flags) { 2678 FoldingSetNodeID ID; 2679 ID.AddInteger(scAddRecExpr); 2680 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2681 ID.AddPointer(Ops[i]); 2682 ID.AddPointer(L); 2683 void *IP = nullptr; 2684 SCEVAddRecExpr *S = 2685 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2686 if (!S) { 2687 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2688 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2689 S = new (SCEVAllocator) 2690 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2691 UniqueSCEVs.InsertNode(S, IP); 2692 addToLoopUseLists(S); 2693 } 2694 S->setNoWrapFlags(Flags); 2695 return S; 2696 } 2697 2698 const SCEV * 2699 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2700 SCEV::NoWrapFlags Flags) { 2701 FoldingSetNodeID ID; 2702 ID.AddInteger(scMulExpr); 2703 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2704 ID.AddPointer(Ops[i]); 2705 void *IP = nullptr; 2706 SCEVMulExpr *S = 2707 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2708 if (!S) { 2709 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2710 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2711 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2712 O, Ops.size()); 2713 UniqueSCEVs.InsertNode(S, IP); 2714 addToLoopUseLists(S); 2715 } 2716 S->setNoWrapFlags(Flags); 2717 return S; 2718 } 2719 2720 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2721 uint64_t k = i*j; 2722 if (j > 1 && k / j != i) Overflow = true; 2723 return k; 2724 } 2725 2726 /// Compute the result of "n choose k", the binomial coefficient. If an 2727 /// intermediate computation overflows, Overflow will be set and the return will 2728 /// be garbage. Overflow is not cleared on absence of overflow. 2729 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2730 // We use the multiplicative formula: 2731 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2732 // At each iteration, we take the n-th term of the numeral and divide by the 2733 // (k-n)th term of the denominator. This division will always produce an 2734 // integral result, and helps reduce the chance of overflow in the 2735 // intermediate computations. However, we can still overflow even when the 2736 // final result would fit. 2737 2738 if (n == 0 || n == k) return 1; 2739 if (k > n) return 0; 2740 2741 if (k > n/2) 2742 k = n-k; 2743 2744 uint64_t r = 1; 2745 for (uint64_t i = 1; i <= k; ++i) { 2746 r = umul_ov(r, n-(i-1), Overflow); 2747 r /= i; 2748 } 2749 return r; 2750 } 2751 2752 /// Determine if any of the operands in this SCEV are a constant or if 2753 /// any of the add or multiply expressions in this SCEV contain a constant. 2754 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2755 struct FindConstantInAddMulChain { 2756 bool FoundConstant = false; 2757 2758 bool follow(const SCEV *S) { 2759 FoundConstant |= isa<SCEVConstant>(S); 2760 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2761 } 2762 2763 bool isDone() const { 2764 return FoundConstant; 2765 } 2766 }; 2767 2768 FindConstantInAddMulChain F; 2769 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2770 ST.visitAll(StartExpr); 2771 return F.FoundConstant; 2772 } 2773 2774 /// Get a canonical multiply expression, or something simpler if possible. 2775 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2776 SCEV::NoWrapFlags Flags, 2777 unsigned Depth) { 2778 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2779 "only nuw or nsw allowed"); 2780 assert(!Ops.empty() && "Cannot get empty mul!"); 2781 if (Ops.size() == 1) return Ops[0]; 2782 #ifndef NDEBUG 2783 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2784 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2785 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2786 "SCEVMulExpr operand types don't match!"); 2787 #endif 2788 2789 // Sort by complexity, this groups all similar expression types together. 2790 GroupByComplexity(Ops, &LI, DT); 2791 2792 // If there are any constants, fold them together. 2793 unsigned Idx = 0; 2794 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2795 ++Idx; 2796 assert(Idx < Ops.size()); 2797 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2798 // We found two constants, fold them together! 2799 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2800 if (Ops.size() == 2) return Ops[0]; 2801 Ops.erase(Ops.begin()+1); // Erase the folded element 2802 LHSC = cast<SCEVConstant>(Ops[0]); 2803 } 2804 2805 // If we have a multiply of zero, it will always be zero. 2806 if (LHSC->getValue()->isZero()) 2807 return LHSC; 2808 2809 // If we are left with a constant one being multiplied, strip it off. 2810 if (LHSC->getValue()->isOne()) { 2811 Ops.erase(Ops.begin()); 2812 --Idx; 2813 } 2814 2815 if (Ops.size() == 1) 2816 return Ops[0]; 2817 } 2818 2819 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2820 2821 // Limit recursion calls depth. 2822 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2823 return getOrCreateMulExpr(Ops, Flags); 2824 2825 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2826 static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags); 2827 return S; 2828 } 2829 2830 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2831 if (Ops.size() == 2) { 2832 // C1*(C2+V) -> C1*C2 + C1*V 2833 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2834 // If any of Add's ops are Adds or Muls with a constant, apply this 2835 // transformation as well. 2836 // 2837 // TODO: There are some cases where this transformation is not 2838 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2839 // this transformation should be narrowed down. 2840 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2841 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2842 SCEV::FlagAnyWrap, Depth + 1), 2843 getMulExpr(LHSC, Add->getOperand(1), 2844 SCEV::FlagAnyWrap, Depth + 1), 2845 SCEV::FlagAnyWrap, Depth + 1); 2846 2847 if (Ops[0]->isAllOnesValue()) { 2848 // If we have a mul by -1 of an add, try distributing the -1 among the 2849 // add operands. 2850 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2851 SmallVector<const SCEV *, 4> NewOps; 2852 bool AnyFolded = false; 2853 for (const SCEV *AddOp : Add->operands()) { 2854 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2855 Depth + 1); 2856 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2857 NewOps.push_back(Mul); 2858 } 2859 if (AnyFolded) 2860 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2861 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2862 // Negation preserves a recurrence's no self-wrap property. 2863 SmallVector<const SCEV *, 4> Operands; 2864 for (const SCEV *AddRecOp : AddRec->operands()) 2865 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2866 Depth + 1)); 2867 2868 return getAddRecExpr(Operands, AddRec->getLoop(), 2869 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2870 } 2871 } 2872 } 2873 } 2874 2875 // Skip over the add expression until we get to a multiply. 2876 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2877 ++Idx; 2878 2879 // If there are mul operands inline them all into this expression. 2880 if (Idx < Ops.size()) { 2881 bool DeletedMul = false; 2882 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2883 if (Ops.size() > MulOpsInlineThreshold) 2884 break; 2885 // If we have an mul, expand the mul operands onto the end of the 2886 // operands list. 2887 Ops.erase(Ops.begin()+Idx); 2888 Ops.append(Mul->op_begin(), Mul->op_end()); 2889 DeletedMul = true; 2890 } 2891 2892 // If we deleted at least one mul, we added operands to the end of the 2893 // list, and they are not necessarily sorted. Recurse to resort and 2894 // resimplify any operands we just acquired. 2895 if (DeletedMul) 2896 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2897 } 2898 2899 // If there are any add recurrences in the operands list, see if any other 2900 // added values are loop invariant. If so, we can fold them into the 2901 // recurrence. 2902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2903 ++Idx; 2904 2905 // Scan over all recurrences, trying to fold loop invariants into them. 2906 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2907 // Scan all of the other operands to this mul and add them to the vector 2908 // if they are loop invariant w.r.t. the recurrence. 2909 SmallVector<const SCEV *, 8> LIOps; 2910 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2911 const Loop *AddRecLoop = AddRec->getLoop(); 2912 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2913 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2914 LIOps.push_back(Ops[i]); 2915 Ops.erase(Ops.begin()+i); 2916 --i; --e; 2917 } 2918 2919 // If we found some loop invariants, fold them into the recurrence. 2920 if (!LIOps.empty()) { 2921 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2922 SmallVector<const SCEV *, 4> NewOps; 2923 NewOps.reserve(AddRec->getNumOperands()); 2924 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2925 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2926 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2927 SCEV::FlagAnyWrap, Depth + 1)); 2928 2929 // Build the new addrec. Propagate the NUW and NSW flags if both the 2930 // outer mul and the inner addrec are guaranteed to have no overflow. 2931 // 2932 // No self-wrap cannot be guaranteed after changing the step size, but 2933 // will be inferred if either NUW or NSW is true. 2934 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2935 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2936 2937 // If all of the other operands were loop invariant, we are done. 2938 if (Ops.size() == 1) return NewRec; 2939 2940 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2941 for (unsigned i = 0;; ++i) 2942 if (Ops[i] == AddRec) { 2943 Ops[i] = NewRec; 2944 break; 2945 } 2946 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2947 } 2948 2949 // Okay, if there weren't any loop invariants to be folded, check to see 2950 // if there are multiple AddRec's with the same loop induction variable 2951 // being multiplied together. If so, we can fold them. 2952 2953 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2954 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2955 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2956 // ]]],+,...up to x=2n}. 2957 // Note that the arguments to choose() are always integers with values 2958 // known at compile time, never SCEV objects. 2959 // 2960 // The implementation avoids pointless extra computations when the two 2961 // addrec's are of different length (mathematically, it's equivalent to 2962 // an infinite stream of zeros on the right). 2963 bool OpsModified = false; 2964 for (unsigned OtherIdx = Idx+1; 2965 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2966 ++OtherIdx) { 2967 const SCEVAddRecExpr *OtherAddRec = 2968 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2969 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2970 continue; 2971 2972 // Limit max number of arguments to avoid creation of unreasonably big 2973 // SCEVAddRecs with very complex operands. 2974 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2975 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 2976 continue; 2977 2978 bool Overflow = false; 2979 Type *Ty = AddRec->getType(); 2980 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2981 SmallVector<const SCEV*, 7> AddRecOps; 2982 for (int x = 0, xe = AddRec->getNumOperands() + 2983 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2984 SmallVector <const SCEV *, 7> SumOps; 2985 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2986 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2987 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2988 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2989 z < ze && !Overflow; ++z) { 2990 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2991 uint64_t Coeff; 2992 if (LargerThan64Bits) 2993 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2994 else 2995 Coeff = Coeff1*Coeff2; 2996 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2997 const SCEV *Term1 = AddRec->getOperand(y-z); 2998 const SCEV *Term2 = OtherAddRec->getOperand(z); 2999 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3000 SCEV::FlagAnyWrap, Depth + 1)); 3001 } 3002 } 3003 if (SumOps.empty()) 3004 SumOps.push_back(getZero(Ty)); 3005 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3006 } 3007 if (!Overflow) { 3008 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3009 SCEV::FlagAnyWrap); 3010 if (Ops.size() == 2) return NewAddRec; 3011 Ops[Idx] = NewAddRec; 3012 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3013 OpsModified = true; 3014 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3015 if (!AddRec) 3016 break; 3017 } 3018 } 3019 if (OpsModified) 3020 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3021 3022 // Otherwise couldn't fold anything into this recurrence. Move onto the 3023 // next one. 3024 } 3025 3026 // Okay, it looks like we really DO need an mul expr. Check to see if we 3027 // already have one, otherwise create a new one. 3028 return getOrCreateMulExpr(Ops, Flags); 3029 } 3030 3031 /// Represents an unsigned remainder expression based on unsigned division. 3032 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3033 const SCEV *RHS) { 3034 assert(getEffectiveSCEVType(LHS->getType()) == 3035 getEffectiveSCEVType(RHS->getType()) && 3036 "SCEVURemExpr operand types don't match!"); 3037 3038 // Short-circuit easy cases 3039 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3040 // If constant is one, the result is trivial 3041 if (RHSC->getValue()->isOne()) 3042 return getZero(LHS->getType()); // X urem 1 --> 0 3043 3044 // If constant is a power of two, fold into a zext(trunc(LHS)). 3045 if (RHSC->getAPInt().isPowerOf2()) { 3046 Type *FullTy = LHS->getType(); 3047 Type *TruncTy = 3048 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3049 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3050 } 3051 } 3052 3053 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3054 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3055 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3056 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3057 } 3058 3059 /// Get a canonical unsigned division expression, or something simpler if 3060 /// possible. 3061 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3062 const SCEV *RHS) { 3063 assert(getEffectiveSCEVType(LHS->getType()) == 3064 getEffectiveSCEVType(RHS->getType()) && 3065 "SCEVUDivExpr operand types don't match!"); 3066 3067 FoldingSetNodeID ID; 3068 ID.AddInteger(scUDivExpr); 3069 ID.AddPointer(LHS); 3070 ID.AddPointer(RHS); 3071 void *IP = nullptr; 3072 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3073 return S; 3074 3075 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3076 if (RHSC->getValue()->isOne()) 3077 return LHS; // X udiv 1 --> x 3078 // If the denominator is zero, the result of the udiv is undefined. Don't 3079 // try to analyze it, because the resolution chosen here may differ from 3080 // the resolution chosen in other parts of the compiler. 3081 if (!RHSC->getValue()->isZero()) { 3082 // Determine if the division can be folded into the operands of 3083 // its operands. 3084 // TODO: Generalize this to non-constants by using known-bits information. 3085 Type *Ty = LHS->getType(); 3086 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3087 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3088 // For non-power-of-two values, effectively round the value up to the 3089 // nearest power of two. 3090 if (!RHSC->getAPInt().isPowerOf2()) 3091 ++MaxShiftAmt; 3092 IntegerType *ExtTy = 3093 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3094 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3095 if (const SCEVConstant *Step = 3096 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3097 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3098 const APInt &StepInt = Step->getAPInt(); 3099 const APInt &DivInt = RHSC->getAPInt(); 3100 if (!StepInt.urem(DivInt) && 3101 getZeroExtendExpr(AR, ExtTy) == 3102 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3103 getZeroExtendExpr(Step, ExtTy), 3104 AR->getLoop(), SCEV::FlagAnyWrap)) { 3105 SmallVector<const SCEV *, 4> Operands; 3106 for (const SCEV *Op : AR->operands()) 3107 Operands.push_back(getUDivExpr(Op, RHS)); 3108 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3109 } 3110 /// Get a canonical UDivExpr for a recurrence. 3111 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3112 // We can currently only fold X%N if X is constant. 3113 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3114 if (StartC && !DivInt.urem(StepInt) && 3115 getZeroExtendExpr(AR, ExtTy) == 3116 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3117 getZeroExtendExpr(Step, ExtTy), 3118 AR->getLoop(), SCEV::FlagAnyWrap)) { 3119 const APInt &StartInt = StartC->getAPInt(); 3120 const APInt &StartRem = StartInt.urem(StepInt); 3121 if (StartRem != 0) { 3122 const SCEV *NewLHS = 3123 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3124 AR->getLoop(), SCEV::FlagNW); 3125 if (LHS != NewLHS) { 3126 LHS = NewLHS; 3127 3128 // Reset the ID to include the new LHS, and check if it is 3129 // already cached. 3130 ID.clear(); 3131 ID.AddInteger(scUDivExpr); 3132 ID.AddPointer(LHS); 3133 ID.AddPointer(RHS); 3134 IP = nullptr; 3135 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3136 return S; 3137 } 3138 } 3139 } 3140 } 3141 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3142 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3143 SmallVector<const SCEV *, 4> Operands; 3144 for (const SCEV *Op : M->operands()) 3145 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3146 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3147 // Find an operand that's safely divisible. 3148 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3149 const SCEV *Op = M->getOperand(i); 3150 const SCEV *Div = getUDivExpr(Op, RHSC); 3151 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3152 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3153 M->op_end()); 3154 Operands[i] = Div; 3155 return getMulExpr(Operands); 3156 } 3157 } 3158 } 3159 3160 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3161 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3162 if (auto *DivisorConstant = 3163 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3164 bool Overflow = false; 3165 APInt NewRHS = 3166 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3167 if (Overflow) { 3168 return getConstant(RHSC->getType(), 0, false); 3169 } 3170 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3171 } 3172 } 3173 3174 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3175 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3176 SmallVector<const SCEV *, 4> Operands; 3177 for (const SCEV *Op : A->operands()) 3178 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3179 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3180 Operands.clear(); 3181 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3182 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3183 if (isa<SCEVUDivExpr>(Op) || 3184 getMulExpr(Op, RHS) != A->getOperand(i)) 3185 break; 3186 Operands.push_back(Op); 3187 } 3188 if (Operands.size() == A->getNumOperands()) 3189 return getAddExpr(Operands); 3190 } 3191 } 3192 3193 // Fold if both operands are constant. 3194 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3195 Constant *LHSCV = LHSC->getValue(); 3196 Constant *RHSCV = RHSC->getValue(); 3197 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3198 RHSCV))); 3199 } 3200 } 3201 } 3202 3203 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3204 // changes). Make sure we get a new one. 3205 IP = nullptr; 3206 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3207 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3208 LHS, RHS); 3209 UniqueSCEVs.InsertNode(S, IP); 3210 addToLoopUseLists(S); 3211 return S; 3212 } 3213 3214 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3215 APInt A = C1->getAPInt().abs(); 3216 APInt B = C2->getAPInt().abs(); 3217 uint32_t ABW = A.getBitWidth(); 3218 uint32_t BBW = B.getBitWidth(); 3219 3220 if (ABW > BBW) 3221 B = B.zext(ABW); 3222 else if (ABW < BBW) 3223 A = A.zext(BBW); 3224 3225 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3226 } 3227 3228 /// Get a canonical unsigned division expression, or something simpler if 3229 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3230 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3231 /// it's not exact because the udiv may be clearing bits. 3232 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3233 const SCEV *RHS) { 3234 // TODO: we could try to find factors in all sorts of things, but for now we 3235 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3236 // end of this file for inspiration. 3237 3238 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3239 if (!Mul || !Mul->hasNoUnsignedWrap()) 3240 return getUDivExpr(LHS, RHS); 3241 3242 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3243 // If the mulexpr multiplies by a constant, then that constant must be the 3244 // first element of the mulexpr. 3245 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3246 if (LHSCst == RHSCst) { 3247 SmallVector<const SCEV *, 2> Operands; 3248 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3249 return getMulExpr(Operands); 3250 } 3251 3252 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3253 // that there's a factor provided by one of the other terms. We need to 3254 // check. 3255 APInt Factor = gcd(LHSCst, RHSCst); 3256 if (!Factor.isIntN(1)) { 3257 LHSCst = 3258 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3259 RHSCst = 3260 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3261 SmallVector<const SCEV *, 2> Operands; 3262 Operands.push_back(LHSCst); 3263 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3264 LHS = getMulExpr(Operands); 3265 RHS = RHSCst; 3266 Mul = dyn_cast<SCEVMulExpr>(LHS); 3267 if (!Mul) 3268 return getUDivExactExpr(LHS, RHS); 3269 } 3270 } 3271 } 3272 3273 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3274 if (Mul->getOperand(i) == RHS) { 3275 SmallVector<const SCEV *, 2> Operands; 3276 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3277 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3278 return getMulExpr(Operands); 3279 } 3280 } 3281 3282 return getUDivExpr(LHS, RHS); 3283 } 3284 3285 /// Get an add recurrence expression for the specified loop. Simplify the 3286 /// expression as much as possible. 3287 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3288 const Loop *L, 3289 SCEV::NoWrapFlags Flags) { 3290 SmallVector<const SCEV *, 4> Operands; 3291 Operands.push_back(Start); 3292 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3293 if (StepChrec->getLoop() == L) { 3294 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3295 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3296 } 3297 3298 Operands.push_back(Step); 3299 return getAddRecExpr(Operands, L, Flags); 3300 } 3301 3302 /// Get an add recurrence expression for the specified loop. Simplify the 3303 /// expression as much as possible. 3304 const SCEV * 3305 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3306 const Loop *L, SCEV::NoWrapFlags Flags) { 3307 if (Operands.size() == 1) return Operands[0]; 3308 #ifndef NDEBUG 3309 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3310 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3311 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3312 "SCEVAddRecExpr operand types don't match!"); 3313 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3314 assert(isLoopInvariant(Operands[i], L) && 3315 "SCEVAddRecExpr operand is not loop-invariant!"); 3316 #endif 3317 3318 if (Operands.back()->isZero()) { 3319 Operands.pop_back(); 3320 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3321 } 3322 3323 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3324 // use that information to infer NUW and NSW flags. However, computing a 3325 // BE count requires calling getAddRecExpr, so we may not yet have a 3326 // meaningful BE count at this point (and if we don't, we'd be stuck 3327 // with a SCEVCouldNotCompute as the cached BE count). 3328 3329 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3330 3331 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3332 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3333 const Loop *NestedLoop = NestedAR->getLoop(); 3334 if (L->contains(NestedLoop) 3335 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3336 : (!NestedLoop->contains(L) && 3337 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3338 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3339 NestedAR->op_end()); 3340 Operands[0] = NestedAR->getStart(); 3341 // AddRecs require their operands be loop-invariant with respect to their 3342 // loops. Don't perform this transformation if it would break this 3343 // requirement. 3344 bool AllInvariant = all_of( 3345 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3346 3347 if (AllInvariant) { 3348 // Create a recurrence for the outer loop with the same step size. 3349 // 3350 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3351 // inner recurrence has the same property. 3352 SCEV::NoWrapFlags OuterFlags = 3353 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3354 3355 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3356 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3357 return isLoopInvariant(Op, NestedLoop); 3358 }); 3359 3360 if (AllInvariant) { 3361 // Ok, both add recurrences are valid after the transformation. 3362 // 3363 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3364 // the outer recurrence has the same property. 3365 SCEV::NoWrapFlags InnerFlags = 3366 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3367 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3368 } 3369 } 3370 // Reset Operands to its original state. 3371 Operands[0] = NestedAR; 3372 } 3373 } 3374 3375 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3376 // already have one, otherwise create a new one. 3377 return getOrCreateAddRecExpr(Operands, L, Flags); 3378 } 3379 3380 const SCEV * 3381 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3382 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3383 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3384 // getSCEV(Base)->getType() has the same address space as Base->getType() 3385 // because SCEV::getType() preserves the address space. 3386 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3387 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3388 // instruction to its SCEV, because the Instruction may be guarded by control 3389 // flow and the no-overflow bits may not be valid for the expression in any 3390 // context. This can be fixed similarly to how these flags are handled for 3391 // adds. 3392 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3393 : SCEV::FlagAnyWrap; 3394 3395 const SCEV *TotalOffset = getZero(IntIdxTy); 3396 Type *CurTy = GEP->getType(); 3397 bool FirstIter = true; 3398 for (const SCEV *IndexExpr : IndexExprs) { 3399 // Compute the (potentially symbolic) offset in bytes for this index. 3400 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3401 // For a struct, add the member offset. 3402 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3403 unsigned FieldNo = Index->getZExtValue(); 3404 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3405 3406 // Add the field offset to the running total offset. 3407 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3408 3409 // Update CurTy to the type of the field at Index. 3410 CurTy = STy->getTypeAtIndex(Index); 3411 } else { 3412 // Update CurTy to its element type. 3413 if (FirstIter) { 3414 assert(isa<PointerType>(CurTy) && 3415 "The first index of a GEP indexes a pointer"); 3416 CurTy = GEP->getSourceElementType(); 3417 FirstIter = false; 3418 } else { 3419 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3420 } 3421 // For an array, add the element offset, explicitly scaled. 3422 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3423 // Getelementptr indices are signed. 3424 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3425 3426 // Multiply the index by the element size to compute the element offset. 3427 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3428 3429 // Add the element offset to the running total offset. 3430 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3431 } 3432 } 3433 3434 // Add the total offset from all the GEP indices to the base. 3435 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3436 } 3437 3438 std::tuple<SCEV *, FoldingSetNodeID, void *> 3439 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3440 ArrayRef<const SCEV *> Ops) { 3441 FoldingSetNodeID ID; 3442 void *IP = nullptr; 3443 ID.AddInteger(SCEVType); 3444 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3445 ID.AddPointer(Ops[i]); 3446 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3447 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3448 } 3449 3450 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3451 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3452 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3453 } 3454 3455 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) { 3456 Type *Ty = Op->getType(); 3457 return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty)); 3458 } 3459 3460 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3461 SmallVectorImpl<const SCEV *> &Ops) { 3462 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3463 if (Ops.size() == 1) return Ops[0]; 3464 #ifndef NDEBUG 3465 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3466 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3467 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3468 "Operand types don't match!"); 3469 #endif 3470 3471 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3472 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3473 3474 // Sort by complexity, this groups all similar expression types together. 3475 GroupByComplexity(Ops, &LI, DT); 3476 3477 // Check if we have created the same expression before. 3478 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3479 return S; 3480 } 3481 3482 // If there are any constants, fold them together. 3483 unsigned Idx = 0; 3484 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3485 ++Idx; 3486 assert(Idx < Ops.size()); 3487 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3488 if (Kind == scSMaxExpr) 3489 return APIntOps::smax(LHS, RHS); 3490 else if (Kind == scSMinExpr) 3491 return APIntOps::smin(LHS, RHS); 3492 else if (Kind == scUMaxExpr) 3493 return APIntOps::umax(LHS, RHS); 3494 else if (Kind == scUMinExpr) 3495 return APIntOps::umin(LHS, RHS); 3496 llvm_unreachable("Unknown SCEV min/max opcode"); 3497 }; 3498 3499 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3500 // We found two constants, fold them together! 3501 ConstantInt *Fold = ConstantInt::get( 3502 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3503 Ops[0] = getConstant(Fold); 3504 Ops.erase(Ops.begin()+1); // Erase the folded element 3505 if (Ops.size() == 1) return Ops[0]; 3506 LHSC = cast<SCEVConstant>(Ops[0]); 3507 } 3508 3509 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3510 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3511 3512 if (IsMax ? IsMinV : IsMaxV) { 3513 // If we are left with a constant minimum(/maximum)-int, strip it off. 3514 Ops.erase(Ops.begin()); 3515 --Idx; 3516 } else if (IsMax ? IsMaxV : IsMinV) { 3517 // If we have a max(/min) with a constant maximum(/minimum)-int, 3518 // it will always be the extremum. 3519 return LHSC; 3520 } 3521 3522 if (Ops.size() == 1) return Ops[0]; 3523 } 3524 3525 // Find the first operation of the same kind 3526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3527 ++Idx; 3528 3529 // Check to see if one of the operands is of the same kind. If so, expand its 3530 // operands onto our operand list, and recurse to simplify. 3531 if (Idx < Ops.size()) { 3532 bool DeletedAny = false; 3533 while (Ops[Idx]->getSCEVType() == Kind) { 3534 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3535 Ops.erase(Ops.begin()+Idx); 3536 Ops.append(SMME->op_begin(), SMME->op_end()); 3537 DeletedAny = true; 3538 } 3539 3540 if (DeletedAny) 3541 return getMinMaxExpr(Kind, Ops); 3542 } 3543 3544 // Okay, check to see if the same value occurs in the operand list twice. If 3545 // so, delete one. Since we sorted the list, these values are required to 3546 // be adjacent. 3547 llvm::CmpInst::Predicate GEPred = 3548 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3549 llvm::CmpInst::Predicate LEPred = 3550 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3551 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3552 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3553 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3554 if (Ops[i] == Ops[i + 1] || 3555 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3556 // X op Y op Y --> X op Y 3557 // X op Y --> X, if we know X, Y are ordered appropriately 3558 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3559 --i; 3560 --e; 3561 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3562 Ops[i + 1])) { 3563 // X op Y --> Y, if we know X, Y are ordered appropriately 3564 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3565 --i; 3566 --e; 3567 } 3568 } 3569 3570 if (Ops.size() == 1) return Ops[0]; 3571 3572 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3573 3574 // Okay, it looks like we really DO need an expr. Check to see if we 3575 // already have one, otherwise create a new one. 3576 const SCEV *ExistingSCEV; 3577 FoldingSetNodeID ID; 3578 void *IP; 3579 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3580 if (ExistingSCEV) 3581 return ExistingSCEV; 3582 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3583 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3584 SCEV *S = new (SCEVAllocator) 3585 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3586 3587 UniqueSCEVs.InsertNode(S, IP); 3588 addToLoopUseLists(S); 3589 return S; 3590 } 3591 3592 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3593 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3594 return getSMaxExpr(Ops); 3595 } 3596 3597 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3598 return getMinMaxExpr(scSMaxExpr, Ops); 3599 } 3600 3601 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3602 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3603 return getUMaxExpr(Ops); 3604 } 3605 3606 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3607 return getMinMaxExpr(scUMaxExpr, Ops); 3608 } 3609 3610 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3611 const SCEV *RHS) { 3612 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3613 return getSMinExpr(Ops); 3614 } 3615 3616 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3617 return getMinMaxExpr(scSMinExpr, Ops); 3618 } 3619 3620 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3621 const SCEV *RHS) { 3622 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3623 return getUMinExpr(Ops); 3624 } 3625 3626 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3627 return getMinMaxExpr(scUMinExpr, Ops); 3628 } 3629 3630 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3631 if (isa<ScalableVectorType>(AllocTy)) { 3632 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo()); 3633 Constant *One = ConstantInt::get(IntTy, 1); 3634 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One); 3635 // Note that the expression we created is the final expression, we don't 3636 // want to simplify it any further Also, if we call a normal getSCEV(), 3637 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3638 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3639 } 3640 // We can bypass creating a target-independent 3641 // constant expression and then folding it back into a ConstantInt. 3642 // This is just a compile-time optimization. 3643 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3644 } 3645 3646 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3647 StructType *STy, 3648 unsigned FieldNo) { 3649 // We can bypass creating a target-independent 3650 // constant expression and then folding it back into a ConstantInt. 3651 // This is just a compile-time optimization. 3652 return getConstant( 3653 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3654 } 3655 3656 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3657 // Don't attempt to do anything other than create a SCEVUnknown object 3658 // here. createSCEV only calls getUnknown after checking for all other 3659 // interesting possibilities, and any other code that calls getUnknown 3660 // is doing so in order to hide a value from SCEV canonicalization. 3661 3662 FoldingSetNodeID ID; 3663 ID.AddInteger(scUnknown); 3664 ID.AddPointer(V); 3665 void *IP = nullptr; 3666 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3667 assert(cast<SCEVUnknown>(S)->getValue() == V && 3668 "Stale SCEVUnknown in uniquing map!"); 3669 return S; 3670 } 3671 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3672 FirstUnknown); 3673 FirstUnknown = cast<SCEVUnknown>(S); 3674 UniqueSCEVs.InsertNode(S, IP); 3675 return S; 3676 } 3677 3678 //===----------------------------------------------------------------------===// 3679 // Basic SCEV Analysis and PHI Idiom Recognition Code 3680 // 3681 3682 /// Test if values of the given type are analyzable within the SCEV 3683 /// framework. This primarily includes integer types, and it can optionally 3684 /// include pointer types if the ScalarEvolution class has access to 3685 /// target-specific information. 3686 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3687 // Integers and pointers are always SCEVable. 3688 return Ty->isIntOrPtrTy(); 3689 } 3690 3691 /// Return the size in bits of the specified type, for which isSCEVable must 3692 /// return true. 3693 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3694 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3695 if (Ty->isPointerTy()) 3696 return getDataLayout().getIndexTypeSizeInBits(Ty); 3697 return getDataLayout().getTypeSizeInBits(Ty); 3698 } 3699 3700 /// Return a type with the same bitwidth as the given type and which represents 3701 /// how SCEV will treat the given type, for which isSCEVable must return 3702 /// true. For pointer types, this is the pointer index sized integer type. 3703 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3704 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3705 3706 if (Ty->isIntegerTy()) 3707 return Ty; 3708 3709 // The only other support type is pointer. 3710 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3711 return getDataLayout().getIndexType(Ty); 3712 } 3713 3714 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3715 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3716 } 3717 3718 const SCEV *ScalarEvolution::getCouldNotCompute() { 3719 return CouldNotCompute.get(); 3720 } 3721 3722 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3723 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3724 auto *SU = dyn_cast<SCEVUnknown>(S); 3725 return SU && SU->getValue() == nullptr; 3726 }); 3727 3728 return !ContainsNulls; 3729 } 3730 3731 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3732 HasRecMapType::iterator I = HasRecMap.find(S); 3733 if (I != HasRecMap.end()) 3734 return I->second; 3735 3736 bool FoundAddRec = 3737 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3738 HasRecMap.insert({S, FoundAddRec}); 3739 return FoundAddRec; 3740 } 3741 3742 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3743 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3744 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3745 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3746 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3747 if (!Add) 3748 return {S, nullptr}; 3749 3750 if (Add->getNumOperands() != 2) 3751 return {S, nullptr}; 3752 3753 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3754 if (!ConstOp) 3755 return {S, nullptr}; 3756 3757 return {Add->getOperand(1), ConstOp->getValue()}; 3758 } 3759 3760 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3761 /// by the value and offset from any ValueOffsetPair in the set. 3762 SetVector<ScalarEvolution::ValueOffsetPair> * 3763 ScalarEvolution::getSCEVValues(const SCEV *S) { 3764 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3765 if (SI == ExprValueMap.end()) 3766 return nullptr; 3767 #ifndef NDEBUG 3768 if (VerifySCEVMap) { 3769 // Check there is no dangling Value in the set returned. 3770 for (const auto &VE : SI->second) 3771 assert(ValueExprMap.count(VE.first)); 3772 } 3773 #endif 3774 return &SI->second; 3775 } 3776 3777 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3778 /// cannot be used separately. eraseValueFromMap should be used to remove 3779 /// V from ValueExprMap and ExprValueMap at the same time. 3780 void ScalarEvolution::eraseValueFromMap(Value *V) { 3781 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3782 if (I != ValueExprMap.end()) { 3783 const SCEV *S = I->second; 3784 // Remove {V, 0} from the set of ExprValueMap[S] 3785 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3786 SV->remove({V, nullptr}); 3787 3788 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3789 const SCEV *Stripped; 3790 ConstantInt *Offset; 3791 std::tie(Stripped, Offset) = splitAddExpr(S); 3792 if (Offset != nullptr) { 3793 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3794 SV->remove({V, Offset}); 3795 } 3796 ValueExprMap.erase(V); 3797 } 3798 } 3799 3800 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3801 /// TODO: In reality it is better to check the poison recursively 3802 /// but this is better than nothing. 3803 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3804 if (auto *I = dyn_cast<Instruction>(V)) { 3805 if (isa<OverflowingBinaryOperator>(I)) { 3806 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3807 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3808 return true; 3809 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3810 return true; 3811 } 3812 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3813 return true; 3814 } 3815 return false; 3816 } 3817 3818 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3819 /// create a new one. 3820 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3821 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3822 3823 const SCEV *S = getExistingSCEV(V); 3824 if (S == nullptr) { 3825 S = createSCEV(V); 3826 // During PHI resolution, it is possible to create two SCEVs for the same 3827 // V, so it is needed to double check whether V->S is inserted into 3828 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3829 std::pair<ValueExprMapType::iterator, bool> Pair = 3830 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3831 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3832 ExprValueMap[S].insert({V, nullptr}); 3833 3834 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3835 // ExprValueMap. 3836 const SCEV *Stripped = S; 3837 ConstantInt *Offset = nullptr; 3838 std::tie(Stripped, Offset) = splitAddExpr(S); 3839 // If stripped is SCEVUnknown, don't bother to save 3840 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3841 // increase the complexity of the expansion code. 3842 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3843 // because it may generate add/sub instead of GEP in SCEV expansion. 3844 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3845 !isa<GetElementPtrInst>(V)) 3846 ExprValueMap[Stripped].insert({V, Offset}); 3847 } 3848 } 3849 return S; 3850 } 3851 3852 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3853 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3854 3855 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3856 if (I != ValueExprMap.end()) { 3857 const SCEV *S = I->second; 3858 if (checkValidity(S)) 3859 return S; 3860 eraseValueFromMap(V); 3861 forgetMemoizedResults(S); 3862 } 3863 return nullptr; 3864 } 3865 3866 /// Return a SCEV corresponding to -V = -1*V 3867 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3868 SCEV::NoWrapFlags Flags) { 3869 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3870 return getConstant( 3871 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3872 3873 Type *Ty = V->getType(); 3874 Ty = getEffectiveSCEVType(Ty); 3875 return getMulExpr(V, getMinusOne(Ty), Flags); 3876 } 3877 3878 /// If Expr computes ~A, return A else return nullptr 3879 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3880 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3881 if (!Add || Add->getNumOperands() != 2 || 3882 !Add->getOperand(0)->isAllOnesValue()) 3883 return nullptr; 3884 3885 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3886 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3887 !AddRHS->getOperand(0)->isAllOnesValue()) 3888 return nullptr; 3889 3890 return AddRHS->getOperand(1); 3891 } 3892 3893 /// Return a SCEV corresponding to ~V = -1-V 3894 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3895 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3896 return getConstant( 3897 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3898 3899 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3900 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3901 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3902 SmallVector<const SCEV *, 2> MatchedOperands; 3903 for (const SCEV *Operand : MME->operands()) { 3904 const SCEV *Matched = MatchNotExpr(Operand); 3905 if (!Matched) 3906 return (const SCEV *)nullptr; 3907 MatchedOperands.push_back(Matched); 3908 } 3909 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 3910 MatchedOperands); 3911 }; 3912 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3913 return Replaced; 3914 } 3915 3916 Type *Ty = V->getType(); 3917 Ty = getEffectiveSCEVType(Ty); 3918 return getMinusSCEV(getMinusOne(Ty), V); 3919 } 3920 3921 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3922 SCEV::NoWrapFlags Flags, 3923 unsigned Depth) { 3924 // Fast path: X - X --> 0. 3925 if (LHS == RHS) 3926 return getZero(LHS->getType()); 3927 3928 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3929 // makes it so that we cannot make much use of NUW. 3930 auto AddFlags = SCEV::FlagAnyWrap; 3931 const bool RHSIsNotMinSigned = 3932 !getSignedRangeMin(RHS).isMinSignedValue(); 3933 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3934 // Let M be the minimum representable signed value. Then (-1)*RHS 3935 // signed-wraps if and only if RHS is M. That can happen even for 3936 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3937 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3938 // (-1)*RHS, we need to prove that RHS != M. 3939 // 3940 // If LHS is non-negative and we know that LHS - RHS does not 3941 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3942 // either by proving that RHS > M or that LHS >= 0. 3943 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3944 AddFlags = SCEV::FlagNSW; 3945 } 3946 } 3947 3948 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3949 // RHS is NSW and LHS >= 0. 3950 // 3951 // The difficulty here is that the NSW flag may have been proven 3952 // relative to a loop that is to be found in a recurrence in LHS and 3953 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3954 // larger scope than intended. 3955 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3956 3957 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3958 } 3959 3960 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 3961 unsigned Depth) { 3962 Type *SrcTy = V->getType(); 3963 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3964 "Cannot truncate or zero extend with non-integer arguments!"); 3965 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3966 return V; // No conversion 3967 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3968 return getTruncateExpr(V, Ty, Depth); 3969 return getZeroExtendExpr(V, Ty, Depth); 3970 } 3971 3972 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 3973 unsigned Depth) { 3974 Type *SrcTy = V->getType(); 3975 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3976 "Cannot truncate or zero extend with non-integer arguments!"); 3977 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3978 return V; // No conversion 3979 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3980 return getTruncateExpr(V, Ty, Depth); 3981 return getSignExtendExpr(V, Ty, Depth); 3982 } 3983 3984 const SCEV * 3985 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3986 Type *SrcTy = V->getType(); 3987 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3988 "Cannot noop or zero extend with non-integer arguments!"); 3989 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3990 "getNoopOrZeroExtend cannot truncate!"); 3991 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3992 return V; // No conversion 3993 return getZeroExtendExpr(V, Ty); 3994 } 3995 3996 const SCEV * 3997 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3998 Type *SrcTy = V->getType(); 3999 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4000 "Cannot noop or sign extend with non-integer arguments!"); 4001 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4002 "getNoopOrSignExtend cannot truncate!"); 4003 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4004 return V; // No conversion 4005 return getSignExtendExpr(V, Ty); 4006 } 4007 4008 const SCEV * 4009 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4010 Type *SrcTy = V->getType(); 4011 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4012 "Cannot noop or any extend with non-integer arguments!"); 4013 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4014 "getNoopOrAnyExtend cannot truncate!"); 4015 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4016 return V; // No conversion 4017 return getAnyExtendExpr(V, Ty); 4018 } 4019 4020 const SCEV * 4021 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4022 Type *SrcTy = V->getType(); 4023 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4024 "Cannot truncate or noop with non-integer arguments!"); 4025 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4026 "getTruncateOrNoop cannot extend!"); 4027 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4028 return V; // No conversion 4029 return getTruncateExpr(V, Ty); 4030 } 4031 4032 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4033 const SCEV *RHS) { 4034 const SCEV *PromotedLHS = LHS; 4035 const SCEV *PromotedRHS = RHS; 4036 4037 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4038 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4039 else 4040 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4041 4042 return getUMaxExpr(PromotedLHS, PromotedRHS); 4043 } 4044 4045 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4046 const SCEV *RHS) { 4047 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4048 return getUMinFromMismatchedTypes(Ops); 4049 } 4050 4051 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4052 SmallVectorImpl<const SCEV *> &Ops) { 4053 assert(!Ops.empty() && "At least one operand must be!"); 4054 // Trivial case. 4055 if (Ops.size() == 1) 4056 return Ops[0]; 4057 4058 // Find the max type first. 4059 Type *MaxType = nullptr; 4060 for (auto *S : Ops) 4061 if (MaxType) 4062 MaxType = getWiderType(MaxType, S->getType()); 4063 else 4064 MaxType = S->getType(); 4065 assert(MaxType && "Failed to find maximum type!"); 4066 4067 // Extend all ops to max type. 4068 SmallVector<const SCEV *, 2> PromotedOps; 4069 for (auto *S : Ops) 4070 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4071 4072 // Generate umin. 4073 return getUMinExpr(PromotedOps); 4074 } 4075 4076 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4077 // A pointer operand may evaluate to a nonpointer expression, such as null. 4078 if (!V->getType()->isPointerTy()) 4079 return V; 4080 4081 while (true) { 4082 if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) { 4083 V = Cast->getOperand(); 4084 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4085 const SCEV *PtrOp = nullptr; 4086 for (const SCEV *NAryOp : NAry->operands()) { 4087 if (NAryOp->getType()->isPointerTy()) { 4088 // Cannot find the base of an expression with multiple pointer ops. 4089 if (PtrOp) 4090 return V; 4091 PtrOp = NAryOp; 4092 } 4093 } 4094 if (!PtrOp) // All operands were non-pointer. 4095 return V; 4096 V = PtrOp; 4097 } else // Not something we can look further into. 4098 return V; 4099 } 4100 } 4101 4102 /// Push users of the given Instruction onto the given Worklist. 4103 static void 4104 PushDefUseChildren(Instruction *I, 4105 SmallVectorImpl<Instruction *> &Worklist) { 4106 // Push the def-use children onto the Worklist stack. 4107 for (User *U : I->users()) 4108 Worklist.push_back(cast<Instruction>(U)); 4109 } 4110 4111 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4112 SmallVector<Instruction *, 16> Worklist; 4113 PushDefUseChildren(PN, Worklist); 4114 4115 SmallPtrSet<Instruction *, 8> Visited; 4116 Visited.insert(PN); 4117 while (!Worklist.empty()) { 4118 Instruction *I = Worklist.pop_back_val(); 4119 if (!Visited.insert(I).second) 4120 continue; 4121 4122 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4123 if (It != ValueExprMap.end()) { 4124 const SCEV *Old = It->second; 4125 4126 // Short-circuit the def-use traversal if the symbolic name 4127 // ceases to appear in expressions. 4128 if (Old != SymName && !hasOperand(Old, SymName)) 4129 continue; 4130 4131 // SCEVUnknown for a PHI either means that it has an unrecognized 4132 // structure, it's a PHI that's in the progress of being computed 4133 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4134 // additional loop trip count information isn't going to change anything. 4135 // In the second case, createNodeForPHI will perform the necessary 4136 // updates on its own when it gets to that point. In the third, we do 4137 // want to forget the SCEVUnknown. 4138 if (!isa<PHINode>(I) || 4139 !isa<SCEVUnknown>(Old) || 4140 (I != PN && Old == SymName)) { 4141 eraseValueFromMap(It->first); 4142 forgetMemoizedResults(Old); 4143 } 4144 } 4145 4146 PushDefUseChildren(I, Worklist); 4147 } 4148 } 4149 4150 namespace { 4151 4152 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4153 /// expression in case its Loop is L. If it is not L then 4154 /// if IgnoreOtherLoops is true then use AddRec itself 4155 /// otherwise rewrite cannot be done. 4156 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4157 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4158 public: 4159 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4160 bool IgnoreOtherLoops = true) { 4161 SCEVInitRewriter Rewriter(L, SE); 4162 const SCEV *Result = Rewriter.visit(S); 4163 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4164 return SE.getCouldNotCompute(); 4165 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4166 ? SE.getCouldNotCompute() 4167 : Result; 4168 } 4169 4170 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4171 if (!SE.isLoopInvariant(Expr, L)) 4172 SeenLoopVariantSCEVUnknown = true; 4173 return Expr; 4174 } 4175 4176 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4177 // Only re-write AddRecExprs for this loop. 4178 if (Expr->getLoop() == L) 4179 return Expr->getStart(); 4180 SeenOtherLoops = true; 4181 return Expr; 4182 } 4183 4184 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4185 4186 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4187 4188 private: 4189 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4190 : SCEVRewriteVisitor(SE), L(L) {} 4191 4192 const Loop *L; 4193 bool SeenLoopVariantSCEVUnknown = false; 4194 bool SeenOtherLoops = false; 4195 }; 4196 4197 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4198 /// increment expression in case its Loop is L. If it is not L then 4199 /// use AddRec itself. 4200 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4201 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4202 public: 4203 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4204 SCEVPostIncRewriter Rewriter(L, SE); 4205 const SCEV *Result = Rewriter.visit(S); 4206 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4207 ? SE.getCouldNotCompute() 4208 : Result; 4209 } 4210 4211 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4212 if (!SE.isLoopInvariant(Expr, L)) 4213 SeenLoopVariantSCEVUnknown = true; 4214 return Expr; 4215 } 4216 4217 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4218 // Only re-write AddRecExprs for this loop. 4219 if (Expr->getLoop() == L) 4220 return Expr->getPostIncExpr(SE); 4221 SeenOtherLoops = true; 4222 return Expr; 4223 } 4224 4225 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4226 4227 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4228 4229 private: 4230 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4231 : SCEVRewriteVisitor(SE), L(L) {} 4232 4233 const Loop *L; 4234 bool SeenLoopVariantSCEVUnknown = false; 4235 bool SeenOtherLoops = false; 4236 }; 4237 4238 /// This class evaluates the compare condition by matching it against the 4239 /// condition of loop latch. If there is a match we assume a true value 4240 /// for the condition while building SCEV nodes. 4241 class SCEVBackedgeConditionFolder 4242 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4243 public: 4244 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4245 ScalarEvolution &SE) { 4246 bool IsPosBECond = false; 4247 Value *BECond = nullptr; 4248 if (BasicBlock *Latch = L->getLoopLatch()) { 4249 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4250 if (BI && BI->isConditional()) { 4251 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4252 "Both outgoing branches should not target same header!"); 4253 BECond = BI->getCondition(); 4254 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4255 } else { 4256 return S; 4257 } 4258 } 4259 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4260 return Rewriter.visit(S); 4261 } 4262 4263 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4264 const SCEV *Result = Expr; 4265 bool InvariantF = SE.isLoopInvariant(Expr, L); 4266 4267 if (!InvariantF) { 4268 Instruction *I = cast<Instruction>(Expr->getValue()); 4269 switch (I->getOpcode()) { 4270 case Instruction::Select: { 4271 SelectInst *SI = cast<SelectInst>(I); 4272 Optional<const SCEV *> Res = 4273 compareWithBackedgeCondition(SI->getCondition()); 4274 if (Res.hasValue()) { 4275 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4276 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4277 } 4278 break; 4279 } 4280 default: { 4281 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4282 if (Res.hasValue()) 4283 Result = Res.getValue(); 4284 break; 4285 } 4286 } 4287 } 4288 return Result; 4289 } 4290 4291 private: 4292 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4293 bool IsPosBECond, ScalarEvolution &SE) 4294 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4295 IsPositiveBECond(IsPosBECond) {} 4296 4297 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4298 4299 const Loop *L; 4300 /// Loop back condition. 4301 Value *BackedgeCond = nullptr; 4302 /// Set to true if loop back is on positive branch condition. 4303 bool IsPositiveBECond; 4304 }; 4305 4306 Optional<const SCEV *> 4307 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4308 4309 // If value matches the backedge condition for loop latch, 4310 // then return a constant evolution node based on loopback 4311 // branch taken. 4312 if (BackedgeCond == IC) 4313 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4314 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4315 return None; 4316 } 4317 4318 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4319 public: 4320 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4321 ScalarEvolution &SE) { 4322 SCEVShiftRewriter Rewriter(L, SE); 4323 const SCEV *Result = Rewriter.visit(S); 4324 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4325 } 4326 4327 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4328 // Only allow AddRecExprs for this loop. 4329 if (!SE.isLoopInvariant(Expr, L)) 4330 Valid = false; 4331 return Expr; 4332 } 4333 4334 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4335 if (Expr->getLoop() == L && Expr->isAffine()) 4336 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4337 Valid = false; 4338 return Expr; 4339 } 4340 4341 bool isValid() { return Valid; } 4342 4343 private: 4344 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4345 : SCEVRewriteVisitor(SE), L(L) {} 4346 4347 const Loop *L; 4348 bool Valid = true; 4349 }; 4350 4351 } // end anonymous namespace 4352 4353 SCEV::NoWrapFlags 4354 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4355 if (!AR->isAffine()) 4356 return SCEV::FlagAnyWrap; 4357 4358 using OBO = OverflowingBinaryOperator; 4359 4360 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4361 4362 if (!AR->hasNoSignedWrap()) { 4363 ConstantRange AddRecRange = getSignedRange(AR); 4364 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4365 4366 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4367 Instruction::Add, IncRange, OBO::NoSignedWrap); 4368 if (NSWRegion.contains(AddRecRange)) 4369 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4370 } 4371 4372 if (!AR->hasNoUnsignedWrap()) { 4373 ConstantRange AddRecRange = getUnsignedRange(AR); 4374 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4375 4376 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4377 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4378 if (NUWRegion.contains(AddRecRange)) 4379 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4380 } 4381 4382 return Result; 4383 } 4384 4385 namespace { 4386 4387 /// Represents an abstract binary operation. This may exist as a 4388 /// normal instruction or constant expression, or may have been 4389 /// derived from an expression tree. 4390 struct BinaryOp { 4391 unsigned Opcode; 4392 Value *LHS; 4393 Value *RHS; 4394 bool IsNSW = false; 4395 bool IsNUW = false; 4396 bool IsExact = false; 4397 4398 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4399 /// constant expression. 4400 Operator *Op = nullptr; 4401 4402 explicit BinaryOp(Operator *Op) 4403 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4404 Op(Op) { 4405 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4406 IsNSW = OBO->hasNoSignedWrap(); 4407 IsNUW = OBO->hasNoUnsignedWrap(); 4408 } 4409 if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op)) 4410 IsExact = PEO->isExact(); 4411 } 4412 4413 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4414 bool IsNUW = false, bool IsExact = false) 4415 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 4416 IsExact(IsExact) {} 4417 }; 4418 4419 } // end anonymous namespace 4420 4421 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4422 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4423 auto *Op = dyn_cast<Operator>(V); 4424 if (!Op) 4425 return None; 4426 4427 // Implementation detail: all the cleverness here should happen without 4428 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4429 // SCEV expressions when possible, and we should not break that. 4430 4431 switch (Op->getOpcode()) { 4432 case Instruction::Add: 4433 case Instruction::Sub: 4434 case Instruction::Mul: 4435 case Instruction::UDiv: 4436 case Instruction::URem: 4437 case Instruction::And: 4438 case Instruction::Or: 4439 case Instruction::AShr: 4440 case Instruction::Shl: 4441 return BinaryOp(Op); 4442 4443 case Instruction::Xor: 4444 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4445 // If the RHS of the xor is a signmask, then this is just an add. 4446 // Instcombine turns add of signmask into xor as a strength reduction step. 4447 if (RHSC->getValue().isSignMask()) 4448 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4449 return BinaryOp(Op); 4450 4451 case Instruction::LShr: 4452 // Turn logical shift right of a constant into a unsigned divide. 4453 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4454 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4455 4456 // If the shift count is not less than the bitwidth, the result of 4457 // the shift is undefined. Don't try to analyze it, because the 4458 // resolution chosen here may differ from the resolution chosen in 4459 // other parts of the compiler. 4460 if (SA->getValue().ult(BitWidth)) { 4461 Constant *X = 4462 ConstantInt::get(SA->getContext(), 4463 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4464 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4465 } 4466 } 4467 return BinaryOp(Op); 4468 4469 case Instruction::ExtractValue: { 4470 auto *EVI = cast<ExtractValueInst>(Op); 4471 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4472 break; 4473 4474 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4475 if (!WO) 4476 break; 4477 4478 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4479 bool Signed = WO->isSigned(); 4480 // TODO: Should add nuw/nsw flags for mul as well. 4481 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4482 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4483 4484 // Now that we know that all uses of the arithmetic-result component of 4485 // CI are guarded by the overflow check, we can go ahead and pretend 4486 // that the arithmetic is non-overflowing. 4487 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4488 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4489 } 4490 4491 default: 4492 break; 4493 } 4494 4495 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4496 // semantics as a Sub, return a binary sub expression. 4497 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4498 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4499 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4500 4501 return None; 4502 } 4503 4504 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4505 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4506 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4507 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4508 /// follows one of the following patterns: 4509 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4510 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4511 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4512 /// we return the type of the truncation operation, and indicate whether the 4513 /// truncated type should be treated as signed/unsigned by setting 4514 /// \p Signed to true/false, respectively. 4515 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4516 bool &Signed, ScalarEvolution &SE) { 4517 // The case where Op == SymbolicPHI (that is, with no type conversions on 4518 // the way) is handled by the regular add recurrence creating logic and 4519 // would have already been triggered in createAddRecForPHI. Reaching it here 4520 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4521 // because one of the other operands of the SCEVAddExpr updating this PHI is 4522 // not invariant). 4523 // 4524 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4525 // this case predicates that allow us to prove that Op == SymbolicPHI will 4526 // be added. 4527 if (Op == SymbolicPHI) 4528 return nullptr; 4529 4530 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4531 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4532 if (SourceBits != NewBits) 4533 return nullptr; 4534 4535 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4536 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4537 if (!SExt && !ZExt) 4538 return nullptr; 4539 const SCEVTruncateExpr *Trunc = 4540 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4541 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4542 if (!Trunc) 4543 return nullptr; 4544 const SCEV *X = Trunc->getOperand(); 4545 if (X != SymbolicPHI) 4546 return nullptr; 4547 Signed = SExt != nullptr; 4548 return Trunc->getType(); 4549 } 4550 4551 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4552 if (!PN->getType()->isIntegerTy()) 4553 return nullptr; 4554 const Loop *L = LI.getLoopFor(PN->getParent()); 4555 if (!L || L->getHeader() != PN->getParent()) 4556 return nullptr; 4557 return L; 4558 } 4559 4560 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4561 // computation that updates the phi follows the following pattern: 4562 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4563 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4564 // If so, try to see if it can be rewritten as an AddRecExpr under some 4565 // Predicates. If successful, return them as a pair. Also cache the results 4566 // of the analysis. 4567 // 4568 // Example usage scenario: 4569 // Say the Rewriter is called for the following SCEV: 4570 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4571 // where: 4572 // %X = phi i64 (%Start, %BEValue) 4573 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4574 // and call this function with %SymbolicPHI = %X. 4575 // 4576 // The analysis will find that the value coming around the backedge has 4577 // the following SCEV: 4578 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4579 // Upon concluding that this matches the desired pattern, the function 4580 // will return the pair {NewAddRec, SmallPredsVec} where: 4581 // NewAddRec = {%Start,+,%Step} 4582 // SmallPredsVec = {P1, P2, P3} as follows: 4583 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4584 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4585 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4586 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4587 // under the predicates {P1,P2,P3}. 4588 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4589 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4590 // 4591 // TODO's: 4592 // 4593 // 1) Extend the Induction descriptor to also support inductions that involve 4594 // casts: When needed (namely, when we are called in the context of the 4595 // vectorizer induction analysis), a Set of cast instructions will be 4596 // populated by this method, and provided back to isInductionPHI. This is 4597 // needed to allow the vectorizer to properly record them to be ignored by 4598 // the cost model and to avoid vectorizing them (otherwise these casts, 4599 // which are redundant under the runtime overflow checks, will be 4600 // vectorized, which can be costly). 4601 // 4602 // 2) Support additional induction/PHISCEV patterns: We also want to support 4603 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4604 // after the induction update operation (the induction increment): 4605 // 4606 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4607 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4608 // 4609 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4610 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4611 // 4612 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4613 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4614 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4615 SmallVector<const SCEVPredicate *, 3> Predicates; 4616 4617 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4618 // return an AddRec expression under some predicate. 4619 4620 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4621 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4622 assert(L && "Expecting an integer loop header phi"); 4623 4624 // The loop may have multiple entrances or multiple exits; we can analyze 4625 // this phi as an addrec if it has a unique entry value and a unique 4626 // backedge value. 4627 Value *BEValueV = nullptr, *StartValueV = nullptr; 4628 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4629 Value *V = PN->getIncomingValue(i); 4630 if (L->contains(PN->getIncomingBlock(i))) { 4631 if (!BEValueV) { 4632 BEValueV = V; 4633 } else if (BEValueV != V) { 4634 BEValueV = nullptr; 4635 break; 4636 } 4637 } else if (!StartValueV) { 4638 StartValueV = V; 4639 } else if (StartValueV != V) { 4640 StartValueV = nullptr; 4641 break; 4642 } 4643 } 4644 if (!BEValueV || !StartValueV) 4645 return None; 4646 4647 const SCEV *BEValue = getSCEV(BEValueV); 4648 4649 // If the value coming around the backedge is an add with the symbolic 4650 // value we just inserted, possibly with casts that we can ignore under 4651 // an appropriate runtime guard, then we found a simple induction variable! 4652 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4653 if (!Add) 4654 return None; 4655 4656 // If there is a single occurrence of the symbolic value, possibly 4657 // casted, replace it with a recurrence. 4658 unsigned FoundIndex = Add->getNumOperands(); 4659 Type *TruncTy = nullptr; 4660 bool Signed; 4661 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4662 if ((TruncTy = 4663 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4664 if (FoundIndex == e) { 4665 FoundIndex = i; 4666 break; 4667 } 4668 4669 if (FoundIndex == Add->getNumOperands()) 4670 return None; 4671 4672 // Create an add with everything but the specified operand. 4673 SmallVector<const SCEV *, 8> Ops; 4674 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4675 if (i != FoundIndex) 4676 Ops.push_back(Add->getOperand(i)); 4677 const SCEV *Accum = getAddExpr(Ops); 4678 4679 // The runtime checks will not be valid if the step amount is 4680 // varying inside the loop. 4681 if (!isLoopInvariant(Accum, L)) 4682 return None; 4683 4684 // *** Part2: Create the predicates 4685 4686 // Analysis was successful: we have a phi-with-cast pattern for which we 4687 // can return an AddRec expression under the following predicates: 4688 // 4689 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4690 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4691 // P2: An Equal predicate that guarantees that 4692 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4693 // P3: An Equal predicate that guarantees that 4694 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4695 // 4696 // As we next prove, the above predicates guarantee that: 4697 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4698 // 4699 // 4700 // More formally, we want to prove that: 4701 // Expr(i+1) = Start + (i+1) * Accum 4702 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4703 // 4704 // Given that: 4705 // 1) Expr(0) = Start 4706 // 2) Expr(1) = Start + Accum 4707 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4708 // 3) Induction hypothesis (step i): 4709 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4710 // 4711 // Proof: 4712 // Expr(i+1) = 4713 // = Start + (i+1)*Accum 4714 // = (Start + i*Accum) + Accum 4715 // = Expr(i) + Accum 4716 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4717 // :: from step i 4718 // 4719 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4720 // 4721 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4722 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4723 // + Accum :: from P3 4724 // 4725 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4726 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4727 // 4728 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4729 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4730 // 4731 // By induction, the same applies to all iterations 1<=i<n: 4732 // 4733 4734 // Create a truncated addrec for which we will add a no overflow check (P1). 4735 const SCEV *StartVal = getSCEV(StartValueV); 4736 const SCEV *PHISCEV = 4737 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4738 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4739 4740 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4741 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4742 // will be constant. 4743 // 4744 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4745 // add P1. 4746 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4747 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4748 Signed ? SCEVWrapPredicate::IncrementNSSW 4749 : SCEVWrapPredicate::IncrementNUSW; 4750 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4751 Predicates.push_back(AddRecPred); 4752 } 4753 4754 // Create the Equal Predicates P2,P3: 4755 4756 // It is possible that the predicates P2 and/or P3 are computable at 4757 // compile time due to StartVal and/or Accum being constants. 4758 // If either one is, then we can check that now and escape if either P2 4759 // or P3 is false. 4760 4761 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4762 // for each of StartVal and Accum 4763 auto getExtendedExpr = [&](const SCEV *Expr, 4764 bool CreateSignExtend) -> const SCEV * { 4765 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4766 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4767 const SCEV *ExtendedExpr = 4768 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4769 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4770 return ExtendedExpr; 4771 }; 4772 4773 // Given: 4774 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4775 // = getExtendedExpr(Expr) 4776 // Determine whether the predicate P: Expr == ExtendedExpr 4777 // is known to be false at compile time 4778 auto PredIsKnownFalse = [&](const SCEV *Expr, 4779 const SCEV *ExtendedExpr) -> bool { 4780 return Expr != ExtendedExpr && 4781 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4782 }; 4783 4784 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4785 if (PredIsKnownFalse(StartVal, StartExtended)) { 4786 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4787 return None; 4788 } 4789 4790 // The Step is always Signed (because the overflow checks are either 4791 // NSSW or NUSW) 4792 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4793 if (PredIsKnownFalse(Accum, AccumExtended)) { 4794 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4795 return None; 4796 } 4797 4798 auto AppendPredicate = [&](const SCEV *Expr, 4799 const SCEV *ExtendedExpr) -> void { 4800 if (Expr != ExtendedExpr && 4801 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4802 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4803 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4804 Predicates.push_back(Pred); 4805 } 4806 }; 4807 4808 AppendPredicate(StartVal, StartExtended); 4809 AppendPredicate(Accum, AccumExtended); 4810 4811 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4812 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4813 // into NewAR if it will also add the runtime overflow checks specified in 4814 // Predicates. 4815 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4816 4817 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4818 std::make_pair(NewAR, Predicates); 4819 // Remember the result of the analysis for this SCEV at this locayyytion. 4820 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4821 return PredRewrite; 4822 } 4823 4824 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4825 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4826 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4827 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4828 if (!L) 4829 return None; 4830 4831 // Check to see if we already analyzed this PHI. 4832 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4833 if (I != PredicatedSCEVRewrites.end()) { 4834 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4835 I->second; 4836 // Analysis was done before and failed to create an AddRec: 4837 if (Rewrite.first == SymbolicPHI) 4838 return None; 4839 // Analysis was done before and succeeded to create an AddRec under 4840 // a predicate: 4841 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4842 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4843 return Rewrite; 4844 } 4845 4846 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4847 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4848 4849 // Record in the cache that the analysis failed 4850 if (!Rewrite) { 4851 SmallVector<const SCEVPredicate *, 3> Predicates; 4852 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4853 return None; 4854 } 4855 4856 return Rewrite; 4857 } 4858 4859 // FIXME: This utility is currently required because the Rewriter currently 4860 // does not rewrite this expression: 4861 // {0, +, (sext ix (trunc iy to ix) to iy)} 4862 // into {0, +, %step}, 4863 // even when the following Equal predicate exists: 4864 // "%step == (sext ix (trunc iy to ix) to iy)". 4865 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4866 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4867 if (AR1 == AR2) 4868 return true; 4869 4870 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4871 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4872 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4873 return false; 4874 return true; 4875 }; 4876 4877 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4878 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4879 return false; 4880 return true; 4881 } 4882 4883 /// A helper function for createAddRecFromPHI to handle simple cases. 4884 /// 4885 /// This function tries to find an AddRec expression for the simplest (yet most 4886 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4887 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4888 /// technique for finding the AddRec expression. 4889 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4890 Value *BEValueV, 4891 Value *StartValueV) { 4892 const Loop *L = LI.getLoopFor(PN->getParent()); 4893 assert(L && L->getHeader() == PN->getParent()); 4894 assert(BEValueV && StartValueV); 4895 4896 auto BO = MatchBinaryOp(BEValueV, DT); 4897 if (!BO) 4898 return nullptr; 4899 4900 if (BO->Opcode != Instruction::Add) 4901 return nullptr; 4902 4903 const SCEV *Accum = nullptr; 4904 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4905 Accum = getSCEV(BO->RHS); 4906 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4907 Accum = getSCEV(BO->LHS); 4908 4909 if (!Accum) 4910 return nullptr; 4911 4912 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4913 if (BO->IsNUW) 4914 Flags = setFlags(Flags, SCEV::FlagNUW); 4915 if (BO->IsNSW) 4916 Flags = setFlags(Flags, SCEV::FlagNSW); 4917 4918 const SCEV *StartVal = getSCEV(StartValueV); 4919 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4920 4921 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4922 4923 // We can add Flags to the post-inc expression only if we 4924 // know that it is *undefined behavior* for BEValueV to 4925 // overflow. 4926 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4927 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4928 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4929 4930 return PHISCEV; 4931 } 4932 4933 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4934 const Loop *L = LI.getLoopFor(PN->getParent()); 4935 if (!L || L->getHeader() != PN->getParent()) 4936 return nullptr; 4937 4938 // The loop may have multiple entrances or multiple exits; we can analyze 4939 // this phi as an addrec if it has a unique entry value and a unique 4940 // backedge value. 4941 Value *BEValueV = nullptr, *StartValueV = nullptr; 4942 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4943 Value *V = PN->getIncomingValue(i); 4944 if (L->contains(PN->getIncomingBlock(i))) { 4945 if (!BEValueV) { 4946 BEValueV = V; 4947 } else if (BEValueV != V) { 4948 BEValueV = nullptr; 4949 break; 4950 } 4951 } else if (!StartValueV) { 4952 StartValueV = V; 4953 } else if (StartValueV != V) { 4954 StartValueV = nullptr; 4955 break; 4956 } 4957 } 4958 if (!BEValueV || !StartValueV) 4959 return nullptr; 4960 4961 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4962 "PHI node already processed?"); 4963 4964 // First, try to find AddRec expression without creating a fictituos symbolic 4965 // value for PN. 4966 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4967 return S; 4968 4969 // Handle PHI node value symbolically. 4970 const SCEV *SymbolicName = getUnknown(PN); 4971 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4972 4973 // Using this symbolic name for the PHI, analyze the value coming around 4974 // the back-edge. 4975 const SCEV *BEValue = getSCEV(BEValueV); 4976 4977 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4978 // has a special value for the first iteration of the loop. 4979 4980 // If the value coming around the backedge is an add with the symbolic 4981 // value we just inserted, then we found a simple induction variable! 4982 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4983 // If there is a single occurrence of the symbolic value, replace it 4984 // with a recurrence. 4985 unsigned FoundIndex = Add->getNumOperands(); 4986 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4987 if (Add->getOperand(i) == SymbolicName) 4988 if (FoundIndex == e) { 4989 FoundIndex = i; 4990 break; 4991 } 4992 4993 if (FoundIndex != Add->getNumOperands()) { 4994 // Create an add with everything but the specified operand. 4995 SmallVector<const SCEV *, 8> Ops; 4996 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4997 if (i != FoundIndex) 4998 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4999 L, *this)); 5000 const SCEV *Accum = getAddExpr(Ops); 5001 5002 // This is not a valid addrec if the step amount is varying each 5003 // loop iteration, but is not itself an addrec in this loop. 5004 if (isLoopInvariant(Accum, L) || 5005 (isa<SCEVAddRecExpr>(Accum) && 5006 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5007 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5008 5009 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5010 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5011 if (BO->IsNUW) 5012 Flags = setFlags(Flags, SCEV::FlagNUW); 5013 if (BO->IsNSW) 5014 Flags = setFlags(Flags, SCEV::FlagNSW); 5015 } 5016 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5017 // If the increment is an inbounds GEP, then we know the address 5018 // space cannot be wrapped around. We cannot make any guarantee 5019 // about signed or unsigned overflow because pointers are 5020 // unsigned but we may have a negative index from the base 5021 // pointer. We can guarantee that no unsigned wrap occurs if the 5022 // indices form a positive value. 5023 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5024 Flags = setFlags(Flags, SCEV::FlagNW); 5025 5026 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5027 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5028 Flags = setFlags(Flags, SCEV::FlagNUW); 5029 } 5030 5031 // We cannot transfer nuw and nsw flags from subtraction 5032 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5033 // for instance. 5034 } 5035 5036 const SCEV *StartVal = getSCEV(StartValueV); 5037 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5038 5039 // Okay, for the entire analysis of this edge we assumed the PHI 5040 // to be symbolic. We now need to go back and purge all of the 5041 // entries for the scalars that use the symbolic expression. 5042 forgetSymbolicName(PN, SymbolicName); 5043 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5044 5045 // We can add Flags to the post-inc expression only if we 5046 // know that it is *undefined behavior* for BEValueV to 5047 // overflow. 5048 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5049 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5050 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5051 5052 return PHISCEV; 5053 } 5054 } 5055 } else { 5056 // Otherwise, this could be a loop like this: 5057 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5058 // In this case, j = {1,+,1} and BEValue is j. 5059 // Because the other in-value of i (0) fits the evolution of BEValue 5060 // i really is an addrec evolution. 5061 // 5062 // We can generalize this saying that i is the shifted value of BEValue 5063 // by one iteration: 5064 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5065 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5066 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5067 if (Shifted != getCouldNotCompute() && 5068 Start != getCouldNotCompute()) { 5069 const SCEV *StartVal = getSCEV(StartValueV); 5070 if (Start == StartVal) { 5071 // Okay, for the entire analysis of this edge we assumed the PHI 5072 // to be symbolic. We now need to go back and purge all of the 5073 // entries for the scalars that use the symbolic expression. 5074 forgetSymbolicName(PN, SymbolicName); 5075 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5076 return Shifted; 5077 } 5078 } 5079 } 5080 5081 // Remove the temporary PHI node SCEV that has been inserted while intending 5082 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5083 // as it will prevent later (possibly simpler) SCEV expressions to be added 5084 // to the ValueExprMap. 5085 eraseValueFromMap(PN); 5086 5087 return nullptr; 5088 } 5089 5090 // Checks if the SCEV S is available at BB. S is considered available at BB 5091 // if S can be materialized at BB without introducing a fault. 5092 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5093 BasicBlock *BB) { 5094 struct CheckAvailable { 5095 bool TraversalDone = false; 5096 bool Available = true; 5097 5098 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5099 BasicBlock *BB = nullptr; 5100 DominatorTree &DT; 5101 5102 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5103 : L(L), BB(BB), DT(DT) {} 5104 5105 bool setUnavailable() { 5106 TraversalDone = true; 5107 Available = false; 5108 return false; 5109 } 5110 5111 bool follow(const SCEV *S) { 5112 switch (S->getSCEVType()) { 5113 case scConstant: 5114 case scPtrToInt: 5115 case scTruncate: 5116 case scZeroExtend: 5117 case scSignExtend: 5118 case scAddExpr: 5119 case scMulExpr: 5120 case scUMaxExpr: 5121 case scSMaxExpr: 5122 case scUMinExpr: 5123 case scSMinExpr: 5124 // These expressions are available if their operand(s) is/are. 5125 return true; 5126 5127 case scAddRecExpr: { 5128 // We allow add recurrences that are on the loop BB is in, or some 5129 // outer loop. This guarantees availability because the value of the 5130 // add recurrence at BB is simply the "current" value of the induction 5131 // variable. We can relax this in the future; for instance an add 5132 // recurrence on a sibling dominating loop is also available at BB. 5133 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5134 if (L && (ARLoop == L || ARLoop->contains(L))) 5135 return true; 5136 5137 return setUnavailable(); 5138 } 5139 5140 case scUnknown: { 5141 // For SCEVUnknown, we check for simple dominance. 5142 const auto *SU = cast<SCEVUnknown>(S); 5143 Value *V = SU->getValue(); 5144 5145 if (isa<Argument>(V)) 5146 return false; 5147 5148 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5149 return false; 5150 5151 return setUnavailable(); 5152 } 5153 5154 case scUDivExpr: 5155 case scCouldNotCompute: 5156 // We do not try to smart about these at all. 5157 return setUnavailable(); 5158 } 5159 llvm_unreachable("Unknown SCEV kind!"); 5160 } 5161 5162 bool isDone() { return TraversalDone; } 5163 }; 5164 5165 CheckAvailable CA(L, BB, DT); 5166 SCEVTraversal<CheckAvailable> ST(CA); 5167 5168 ST.visitAll(S); 5169 return CA.Available; 5170 } 5171 5172 // Try to match a control flow sequence that branches out at BI and merges back 5173 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5174 // match. 5175 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5176 Value *&C, Value *&LHS, Value *&RHS) { 5177 C = BI->getCondition(); 5178 5179 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5180 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5181 5182 if (!LeftEdge.isSingleEdge()) 5183 return false; 5184 5185 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5186 5187 Use &LeftUse = Merge->getOperandUse(0); 5188 Use &RightUse = Merge->getOperandUse(1); 5189 5190 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5191 LHS = LeftUse; 5192 RHS = RightUse; 5193 return true; 5194 } 5195 5196 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5197 LHS = RightUse; 5198 RHS = LeftUse; 5199 return true; 5200 } 5201 5202 return false; 5203 } 5204 5205 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5206 auto IsReachable = 5207 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5208 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5209 const Loop *L = LI.getLoopFor(PN->getParent()); 5210 5211 // We don't want to break LCSSA, even in a SCEV expression tree. 5212 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5213 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5214 return nullptr; 5215 5216 // Try to match 5217 // 5218 // br %cond, label %left, label %right 5219 // left: 5220 // br label %merge 5221 // right: 5222 // br label %merge 5223 // merge: 5224 // V = phi [ %x, %left ], [ %y, %right ] 5225 // 5226 // as "select %cond, %x, %y" 5227 5228 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5229 assert(IDom && "At least the entry block should dominate PN"); 5230 5231 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5232 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5233 5234 if (BI && BI->isConditional() && 5235 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5236 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5237 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5238 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5239 } 5240 5241 return nullptr; 5242 } 5243 5244 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5245 if (const SCEV *S = createAddRecFromPHI(PN)) 5246 return S; 5247 5248 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5249 return S; 5250 5251 // If the PHI has a single incoming value, follow that value, unless the 5252 // PHI's incoming blocks are in a different loop, in which case doing so 5253 // risks breaking LCSSA form. Instcombine would normally zap these, but 5254 // it doesn't have DominatorTree information, so it may miss cases. 5255 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5256 if (LI.replacementPreservesLCSSAForm(PN, V)) 5257 return getSCEV(V); 5258 5259 // If it's not a loop phi, we can't handle it yet. 5260 return getUnknown(PN); 5261 } 5262 5263 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5264 Value *Cond, 5265 Value *TrueVal, 5266 Value *FalseVal) { 5267 // Handle "constant" branch or select. This can occur for instance when a 5268 // loop pass transforms an inner loop and moves on to process the outer loop. 5269 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5270 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5271 5272 // Try to match some simple smax or umax patterns. 5273 auto *ICI = dyn_cast<ICmpInst>(Cond); 5274 if (!ICI) 5275 return getUnknown(I); 5276 5277 Value *LHS = ICI->getOperand(0); 5278 Value *RHS = ICI->getOperand(1); 5279 5280 switch (ICI->getPredicate()) { 5281 case ICmpInst::ICMP_SLT: 5282 case ICmpInst::ICMP_SLE: 5283 std::swap(LHS, RHS); 5284 LLVM_FALLTHROUGH; 5285 case ICmpInst::ICMP_SGT: 5286 case ICmpInst::ICMP_SGE: 5287 // a >s b ? a+x : b+x -> smax(a, b)+x 5288 // a >s b ? b+x : a+x -> smin(a, b)+x 5289 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5290 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5291 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5292 const SCEV *LA = getSCEV(TrueVal); 5293 const SCEV *RA = getSCEV(FalseVal); 5294 const SCEV *LDiff = getMinusSCEV(LA, LS); 5295 const SCEV *RDiff = getMinusSCEV(RA, RS); 5296 if (LDiff == RDiff) 5297 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5298 LDiff = getMinusSCEV(LA, RS); 5299 RDiff = getMinusSCEV(RA, LS); 5300 if (LDiff == RDiff) 5301 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5302 } 5303 break; 5304 case ICmpInst::ICMP_ULT: 5305 case ICmpInst::ICMP_ULE: 5306 std::swap(LHS, RHS); 5307 LLVM_FALLTHROUGH; 5308 case ICmpInst::ICMP_UGT: 5309 case ICmpInst::ICMP_UGE: 5310 // a >u b ? a+x : b+x -> umax(a, b)+x 5311 // a >u b ? b+x : a+x -> umin(a, b)+x 5312 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5313 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5314 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5315 const SCEV *LA = getSCEV(TrueVal); 5316 const SCEV *RA = getSCEV(FalseVal); 5317 const SCEV *LDiff = getMinusSCEV(LA, LS); 5318 const SCEV *RDiff = getMinusSCEV(RA, RS); 5319 if (LDiff == RDiff) 5320 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5321 LDiff = getMinusSCEV(LA, RS); 5322 RDiff = getMinusSCEV(RA, LS); 5323 if (LDiff == RDiff) 5324 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5325 } 5326 break; 5327 case ICmpInst::ICMP_NE: 5328 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5329 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5330 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5331 const SCEV *One = getOne(I->getType()); 5332 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5333 const SCEV *LA = getSCEV(TrueVal); 5334 const SCEV *RA = getSCEV(FalseVal); 5335 const SCEV *LDiff = getMinusSCEV(LA, LS); 5336 const SCEV *RDiff = getMinusSCEV(RA, One); 5337 if (LDiff == RDiff) 5338 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5339 } 5340 break; 5341 case ICmpInst::ICMP_EQ: 5342 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5343 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5344 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5345 const SCEV *One = getOne(I->getType()); 5346 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5347 const SCEV *LA = getSCEV(TrueVal); 5348 const SCEV *RA = getSCEV(FalseVal); 5349 const SCEV *LDiff = getMinusSCEV(LA, One); 5350 const SCEV *RDiff = getMinusSCEV(RA, LS); 5351 if (LDiff == RDiff) 5352 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5353 } 5354 break; 5355 default: 5356 break; 5357 } 5358 5359 return getUnknown(I); 5360 } 5361 5362 /// Expand GEP instructions into add and multiply operations. This allows them 5363 /// to be analyzed by regular SCEV code. 5364 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5365 // Don't attempt to analyze GEPs over unsized objects. 5366 if (!GEP->getSourceElementType()->isSized()) 5367 return getUnknown(GEP); 5368 5369 SmallVector<const SCEV *, 4> IndexExprs; 5370 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5371 IndexExprs.push_back(getSCEV(*Index)); 5372 return getGEPExpr(GEP, IndexExprs); 5373 } 5374 5375 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5376 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5377 return C->getAPInt().countTrailingZeros(); 5378 5379 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5380 return GetMinTrailingZeros(I->getOperand()); 5381 5382 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5383 return std::min(GetMinTrailingZeros(T->getOperand()), 5384 (uint32_t)getTypeSizeInBits(T->getType())); 5385 5386 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5387 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5388 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5389 ? getTypeSizeInBits(E->getType()) 5390 : OpRes; 5391 } 5392 5393 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5394 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5395 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5396 ? getTypeSizeInBits(E->getType()) 5397 : OpRes; 5398 } 5399 5400 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5401 // The result is the min of all operands results. 5402 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5403 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5404 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5405 return MinOpRes; 5406 } 5407 5408 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5409 // The result is the sum of all operands results. 5410 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5411 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5412 for (unsigned i = 1, e = M->getNumOperands(); 5413 SumOpRes != BitWidth && i != e; ++i) 5414 SumOpRes = 5415 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5416 return SumOpRes; 5417 } 5418 5419 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5420 // The result is the min of all operands results. 5421 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5422 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5423 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5424 return MinOpRes; 5425 } 5426 5427 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5428 // The result is the min of all operands results. 5429 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5430 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5431 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5432 return MinOpRes; 5433 } 5434 5435 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5436 // The result is the min of all operands results. 5437 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5438 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5439 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5440 return MinOpRes; 5441 } 5442 5443 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5444 // For a SCEVUnknown, ask ValueTracking. 5445 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5446 return Known.countMinTrailingZeros(); 5447 } 5448 5449 // SCEVUDivExpr 5450 return 0; 5451 } 5452 5453 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5454 auto I = MinTrailingZerosCache.find(S); 5455 if (I != MinTrailingZerosCache.end()) 5456 return I->second; 5457 5458 uint32_t Result = GetMinTrailingZerosImpl(S); 5459 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5460 assert(InsertPair.second && "Should insert a new key"); 5461 return InsertPair.first->second; 5462 } 5463 5464 /// Helper method to assign a range to V from metadata present in the IR. 5465 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5466 if (Instruction *I = dyn_cast<Instruction>(V)) 5467 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5468 return getConstantRangeFromMetadata(*MD); 5469 5470 return None; 5471 } 5472 5473 /// Determine the range for a particular SCEV. If SignHint is 5474 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5475 /// with a "cleaner" unsigned (resp. signed) representation. 5476 const ConstantRange & 5477 ScalarEvolution::getRangeRef(const SCEV *S, 5478 ScalarEvolution::RangeSignHint SignHint) { 5479 DenseMap<const SCEV *, ConstantRange> &Cache = 5480 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5481 : SignedRanges; 5482 ConstantRange::PreferredRangeType RangeType = 5483 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5484 ? ConstantRange::Unsigned : ConstantRange::Signed; 5485 5486 // See if we've computed this range already. 5487 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5488 if (I != Cache.end()) 5489 return I->second; 5490 5491 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5492 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5493 5494 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5495 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5496 using OBO = OverflowingBinaryOperator; 5497 5498 // If the value has known zeros, the maximum value will have those known zeros 5499 // as well. 5500 uint32_t TZ = GetMinTrailingZeros(S); 5501 if (TZ != 0) { 5502 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5503 ConservativeResult = 5504 ConstantRange(APInt::getMinValue(BitWidth), 5505 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5506 else 5507 ConservativeResult = ConstantRange( 5508 APInt::getSignedMinValue(BitWidth), 5509 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5510 } 5511 5512 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5513 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5514 unsigned WrapType = OBO::AnyWrap; 5515 if (Add->hasNoSignedWrap()) 5516 WrapType |= OBO::NoSignedWrap; 5517 if (Add->hasNoUnsignedWrap()) 5518 WrapType |= OBO::NoUnsignedWrap; 5519 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5520 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5521 WrapType, RangeType); 5522 return setRange(Add, SignHint, 5523 ConservativeResult.intersectWith(X, RangeType)); 5524 } 5525 5526 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5527 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5528 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5529 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5530 return setRange(Mul, SignHint, 5531 ConservativeResult.intersectWith(X, RangeType)); 5532 } 5533 5534 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5535 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5536 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5537 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5538 return setRange(SMax, SignHint, 5539 ConservativeResult.intersectWith(X, RangeType)); 5540 } 5541 5542 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5543 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5544 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5545 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5546 return setRange(UMax, SignHint, 5547 ConservativeResult.intersectWith(X, RangeType)); 5548 } 5549 5550 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5551 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5552 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5553 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5554 return setRange(SMin, SignHint, 5555 ConservativeResult.intersectWith(X, RangeType)); 5556 } 5557 5558 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5559 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5560 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5561 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5562 return setRange(UMin, SignHint, 5563 ConservativeResult.intersectWith(X, RangeType)); 5564 } 5565 5566 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5567 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5568 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5569 return setRange(UDiv, SignHint, 5570 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5571 } 5572 5573 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5574 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5575 return setRange(ZExt, SignHint, 5576 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5577 RangeType)); 5578 } 5579 5580 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5581 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5582 return setRange(SExt, SignHint, 5583 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5584 RangeType)); 5585 } 5586 5587 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 5588 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 5589 return setRange(PtrToInt, SignHint, X); 5590 } 5591 5592 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5593 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5594 return setRange(Trunc, SignHint, 5595 ConservativeResult.intersectWith(X.truncate(BitWidth), 5596 RangeType)); 5597 } 5598 5599 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5600 // If there's no unsigned wrap, the value will never be less than its 5601 // initial value. 5602 if (AddRec->hasNoUnsignedWrap()) { 5603 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5604 if (!UnsignedMinValue.isNullValue()) 5605 ConservativeResult = ConservativeResult.intersectWith( 5606 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5607 } 5608 5609 // If there's no signed wrap, and all the operands except initial value have 5610 // the same sign or zero, the value won't ever be: 5611 // 1: smaller than initial value if operands are non negative, 5612 // 2: bigger than initial value if operands are non positive. 5613 // For both cases, value can not cross signed min/max boundary. 5614 if (AddRec->hasNoSignedWrap()) { 5615 bool AllNonNeg = true; 5616 bool AllNonPos = true; 5617 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5618 if (!isKnownNonNegative(AddRec->getOperand(i))) 5619 AllNonNeg = false; 5620 if (!isKnownNonPositive(AddRec->getOperand(i))) 5621 AllNonPos = false; 5622 } 5623 if (AllNonNeg) 5624 ConservativeResult = ConservativeResult.intersectWith( 5625 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5626 APInt::getSignedMinValue(BitWidth)), 5627 RangeType); 5628 else if (AllNonPos) 5629 ConservativeResult = ConservativeResult.intersectWith( 5630 ConstantRange::getNonEmpty( 5631 APInt::getSignedMinValue(BitWidth), 5632 getSignedRangeMax(AddRec->getStart()) + 1), 5633 RangeType); 5634 } 5635 5636 // TODO: non-affine addrec 5637 if (AddRec->isAffine()) { 5638 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5639 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5640 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5641 auto RangeFromAffine = getRangeForAffineAR( 5642 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5643 BitWidth); 5644 ConservativeResult = 5645 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5646 5647 auto RangeFromFactoring = getRangeViaFactoring( 5648 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5649 BitWidth); 5650 ConservativeResult = 5651 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5652 } 5653 5654 // Now try symbolic BE count and more powerful methods. 5655 if (UseExpensiveRangeSharpening) { 5656 const SCEV *SymbolicMaxBECount = 5657 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 5658 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 5659 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5660 AddRec->hasNoSelfWrap()) { 5661 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 5662 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 5663 ConservativeResult = 5664 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 5665 } 5666 } 5667 } 5668 5669 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5670 } 5671 5672 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5673 // Check if the IR explicitly contains !range metadata. 5674 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5675 if (MDRange.hasValue()) 5676 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5677 RangeType); 5678 5679 // Split here to avoid paying the compile-time cost of calling both 5680 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5681 // if needed. 5682 const DataLayout &DL = getDataLayout(); 5683 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5684 // For a SCEVUnknown, ask ValueTracking. 5685 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5686 if (Known.getBitWidth() != BitWidth) 5687 Known = Known.zextOrTrunc(BitWidth); 5688 // If Known does not result in full-set, intersect with it. 5689 if (Known.getMinValue() != Known.getMaxValue() + 1) 5690 ConservativeResult = ConservativeResult.intersectWith( 5691 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5692 RangeType); 5693 } else { 5694 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5695 "generalize as needed!"); 5696 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5697 // If the pointer size is larger than the index size type, this can cause 5698 // NS to be larger than BitWidth. So compensate for this. 5699 if (U->getType()->isPointerTy()) { 5700 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5701 int ptrIdxDiff = ptrSize - BitWidth; 5702 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5703 NS -= ptrIdxDiff; 5704 } 5705 5706 if (NS > 1) 5707 ConservativeResult = ConservativeResult.intersectWith( 5708 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5709 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5710 RangeType); 5711 } 5712 5713 // A range of Phi is a subset of union of all ranges of its input. 5714 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5715 // Make sure that we do not run over cycled Phis. 5716 if (PendingPhiRanges.insert(Phi).second) { 5717 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5718 for (auto &Op : Phi->operands()) { 5719 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5720 RangeFromOps = RangeFromOps.unionWith(OpRange); 5721 // No point to continue if we already have a full set. 5722 if (RangeFromOps.isFullSet()) 5723 break; 5724 } 5725 ConservativeResult = 5726 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5727 bool Erased = PendingPhiRanges.erase(Phi); 5728 assert(Erased && "Failed to erase Phi properly?"); 5729 (void) Erased; 5730 } 5731 } 5732 5733 return setRange(U, SignHint, std::move(ConservativeResult)); 5734 } 5735 5736 return setRange(S, SignHint, std::move(ConservativeResult)); 5737 } 5738 5739 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5740 // values that the expression can take. Initially, the expression has a value 5741 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5742 // argument defines if we treat Step as signed or unsigned. 5743 static ConstantRange getRangeForAffineARHelper(APInt Step, 5744 const ConstantRange &StartRange, 5745 const APInt &MaxBECount, 5746 unsigned BitWidth, bool Signed) { 5747 // If either Step or MaxBECount is 0, then the expression won't change, and we 5748 // just need to return the initial range. 5749 if (Step == 0 || MaxBECount == 0) 5750 return StartRange; 5751 5752 // If we don't know anything about the initial value (i.e. StartRange is 5753 // FullRange), then we don't know anything about the final range either. 5754 // Return FullRange. 5755 if (StartRange.isFullSet()) 5756 return ConstantRange::getFull(BitWidth); 5757 5758 // If Step is signed and negative, then we use its absolute value, but we also 5759 // note that we're moving in the opposite direction. 5760 bool Descending = Signed && Step.isNegative(); 5761 5762 if (Signed) 5763 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5764 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5765 // This equations hold true due to the well-defined wrap-around behavior of 5766 // APInt. 5767 Step = Step.abs(); 5768 5769 // Check if Offset is more than full span of BitWidth. If it is, the 5770 // expression is guaranteed to overflow. 5771 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5772 return ConstantRange::getFull(BitWidth); 5773 5774 // Offset is by how much the expression can change. Checks above guarantee no 5775 // overflow here. 5776 APInt Offset = Step * MaxBECount; 5777 5778 // Minimum value of the final range will match the minimal value of StartRange 5779 // if the expression is increasing and will be decreased by Offset otherwise. 5780 // Maximum value of the final range will match the maximal value of StartRange 5781 // if the expression is decreasing and will be increased by Offset otherwise. 5782 APInt StartLower = StartRange.getLower(); 5783 APInt StartUpper = StartRange.getUpper() - 1; 5784 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5785 : (StartUpper + std::move(Offset)); 5786 5787 // It's possible that the new minimum/maximum value will fall into the initial 5788 // range (due to wrap around). This means that the expression can take any 5789 // value in this bitwidth, and we have to return full range. 5790 if (StartRange.contains(MovedBoundary)) 5791 return ConstantRange::getFull(BitWidth); 5792 5793 APInt NewLower = 5794 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5795 APInt NewUpper = 5796 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5797 NewUpper += 1; 5798 5799 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5800 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5801 } 5802 5803 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5804 const SCEV *Step, 5805 const SCEV *MaxBECount, 5806 unsigned BitWidth) { 5807 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5808 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5809 "Precondition!"); 5810 5811 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5812 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5813 5814 // First, consider step signed. 5815 ConstantRange StartSRange = getSignedRange(Start); 5816 ConstantRange StepSRange = getSignedRange(Step); 5817 5818 // If Step can be both positive and negative, we need to find ranges for the 5819 // maximum absolute step values in both directions and union them. 5820 ConstantRange SR = 5821 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5822 MaxBECountValue, BitWidth, /* Signed = */ true); 5823 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5824 StartSRange, MaxBECountValue, 5825 BitWidth, /* Signed = */ true)); 5826 5827 // Next, consider step unsigned. 5828 ConstantRange UR = getRangeForAffineARHelper( 5829 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5830 MaxBECountValue, BitWidth, /* Signed = */ false); 5831 5832 // Finally, intersect signed and unsigned ranges. 5833 return SR.intersectWith(UR, ConstantRange::Smallest); 5834 } 5835 5836 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 5837 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 5838 ScalarEvolution::RangeSignHint SignHint) { 5839 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 5840 assert(AddRec->hasNoSelfWrap() && 5841 "This only works for non-self-wrapping AddRecs!"); 5842 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 5843 const SCEV *Step = AddRec->getStepRecurrence(*this); 5844 // Only deal with constant step to save compile time. 5845 if (!isa<SCEVConstant>(Step)) 5846 return ConstantRange::getFull(BitWidth); 5847 // Let's make sure that we can prove that we do not self-wrap during 5848 // MaxBECount iterations. We need this because MaxBECount is a maximum 5849 // iteration count estimate, and we might infer nw from some exit for which we 5850 // do not know max exit count (or any other side reasoning). 5851 // TODO: Turn into assert at some point. 5852 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 5853 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 5854 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 5855 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 5856 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 5857 MaxItersWithoutWrap)) 5858 return ConstantRange::getFull(BitWidth); 5859 5860 ICmpInst::Predicate LEPred = 5861 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 5862 ICmpInst::Predicate GEPred = 5863 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 5864 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 5865 5866 // We know that there is no self-wrap. Let's take Start and End values and 5867 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 5868 // the iteration. They either lie inside the range [Min(Start, End), 5869 // Max(Start, End)] or outside it: 5870 // 5871 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 5872 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 5873 // 5874 // No self wrap flag guarantees that the intermediate values cannot be BOTH 5875 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 5876 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 5877 // Start <= End and step is positive, or Start >= End and step is negative. 5878 const SCEV *Start = AddRec->getStart(); 5879 ConstantRange StartRange = getRangeRef(Start, SignHint); 5880 ConstantRange EndRange = getRangeRef(End, SignHint); 5881 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 5882 // If they already cover full iteration space, we will know nothing useful 5883 // even if we prove what we want to prove. 5884 if (RangeBetween.isFullSet()) 5885 return RangeBetween; 5886 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 5887 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 5888 : RangeBetween.isWrappedSet(); 5889 if (IsWrappedSet) 5890 return ConstantRange::getFull(BitWidth); 5891 5892 if (isKnownPositive(Step) && 5893 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 5894 return RangeBetween; 5895 else if (isKnownNegative(Step) && 5896 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 5897 return RangeBetween; 5898 return ConstantRange::getFull(BitWidth); 5899 } 5900 5901 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5902 const SCEV *Step, 5903 const SCEV *MaxBECount, 5904 unsigned BitWidth) { 5905 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5906 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5907 5908 struct SelectPattern { 5909 Value *Condition = nullptr; 5910 APInt TrueValue; 5911 APInt FalseValue; 5912 5913 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5914 const SCEV *S) { 5915 Optional<unsigned> CastOp; 5916 APInt Offset(BitWidth, 0); 5917 5918 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5919 "Should be!"); 5920 5921 // Peel off a constant offset: 5922 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5923 // In the future we could consider being smarter here and handle 5924 // {Start+Step,+,Step} too. 5925 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5926 return; 5927 5928 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5929 S = SA->getOperand(1); 5930 } 5931 5932 // Peel off a cast operation 5933 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 5934 CastOp = SCast->getSCEVType(); 5935 S = SCast->getOperand(); 5936 } 5937 5938 using namespace llvm::PatternMatch; 5939 5940 auto *SU = dyn_cast<SCEVUnknown>(S); 5941 const APInt *TrueVal, *FalseVal; 5942 if (!SU || 5943 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5944 m_APInt(FalseVal)))) { 5945 Condition = nullptr; 5946 return; 5947 } 5948 5949 TrueValue = *TrueVal; 5950 FalseValue = *FalseVal; 5951 5952 // Re-apply the cast we peeled off earlier 5953 if (CastOp.hasValue()) 5954 switch (*CastOp) { 5955 default: 5956 llvm_unreachable("Unknown SCEV cast type!"); 5957 5958 case scTruncate: 5959 TrueValue = TrueValue.trunc(BitWidth); 5960 FalseValue = FalseValue.trunc(BitWidth); 5961 break; 5962 case scZeroExtend: 5963 TrueValue = TrueValue.zext(BitWidth); 5964 FalseValue = FalseValue.zext(BitWidth); 5965 break; 5966 case scSignExtend: 5967 TrueValue = TrueValue.sext(BitWidth); 5968 FalseValue = FalseValue.sext(BitWidth); 5969 break; 5970 } 5971 5972 // Re-apply the constant offset we peeled off earlier 5973 TrueValue += Offset; 5974 FalseValue += Offset; 5975 } 5976 5977 bool isRecognized() { return Condition != nullptr; } 5978 }; 5979 5980 SelectPattern StartPattern(*this, BitWidth, Start); 5981 if (!StartPattern.isRecognized()) 5982 return ConstantRange::getFull(BitWidth); 5983 5984 SelectPattern StepPattern(*this, BitWidth, Step); 5985 if (!StepPattern.isRecognized()) 5986 return ConstantRange::getFull(BitWidth); 5987 5988 if (StartPattern.Condition != StepPattern.Condition) { 5989 // We don't handle this case today; but we could, by considering four 5990 // possibilities below instead of two. I'm not sure if there are cases where 5991 // that will help over what getRange already does, though. 5992 return ConstantRange::getFull(BitWidth); 5993 } 5994 5995 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5996 // construct arbitrary general SCEV expressions here. This function is called 5997 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5998 // say) can end up caching a suboptimal value. 5999 6000 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6001 // C2352 and C2512 (otherwise it isn't needed). 6002 6003 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6004 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6005 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6006 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6007 6008 ConstantRange TrueRange = 6009 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6010 ConstantRange FalseRange = 6011 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6012 6013 return TrueRange.unionWith(FalseRange); 6014 } 6015 6016 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6017 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6018 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6019 6020 // Return early if there are no flags to propagate to the SCEV. 6021 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6022 if (BinOp->hasNoUnsignedWrap()) 6023 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6024 if (BinOp->hasNoSignedWrap()) 6025 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6026 if (Flags == SCEV::FlagAnyWrap) 6027 return SCEV::FlagAnyWrap; 6028 6029 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6030 } 6031 6032 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6033 // Here we check that I is in the header of the innermost loop containing I, 6034 // since we only deal with instructions in the loop header. The actual loop we 6035 // need to check later will come from an add recurrence, but getting that 6036 // requires computing the SCEV of the operands, which can be expensive. This 6037 // check we can do cheaply to rule out some cases early. 6038 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6039 if (InnermostContainingLoop == nullptr || 6040 InnermostContainingLoop->getHeader() != I->getParent()) 6041 return false; 6042 6043 // Only proceed if we can prove that I does not yield poison. 6044 if (!programUndefinedIfPoison(I)) 6045 return false; 6046 6047 // At this point we know that if I is executed, then it does not wrap 6048 // according to at least one of NSW or NUW. If I is not executed, then we do 6049 // not know if the calculation that I represents would wrap. Multiple 6050 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6051 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6052 // derived from other instructions that map to the same SCEV. We cannot make 6053 // that guarantee for cases where I is not executed. So we need to find the 6054 // loop that I is considered in relation to and prove that I is executed for 6055 // every iteration of that loop. That implies that the value that I 6056 // calculates does not wrap anywhere in the loop, so then we can apply the 6057 // flags to the SCEV. 6058 // 6059 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6060 // from different loops, so that we know which loop to prove that I is 6061 // executed in. 6062 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6063 // I could be an extractvalue from a call to an overflow intrinsic. 6064 // TODO: We can do better here in some cases. 6065 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6066 return false; 6067 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6068 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6069 bool AllOtherOpsLoopInvariant = true; 6070 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6071 ++OtherOpIndex) { 6072 if (OtherOpIndex != OpIndex) { 6073 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6074 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6075 AllOtherOpsLoopInvariant = false; 6076 break; 6077 } 6078 } 6079 } 6080 if (AllOtherOpsLoopInvariant && 6081 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6082 return true; 6083 } 6084 } 6085 return false; 6086 } 6087 6088 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6089 // If we know that \c I can never be poison period, then that's enough. 6090 if (isSCEVExprNeverPoison(I)) 6091 return true; 6092 6093 // For an add recurrence specifically, we assume that infinite loops without 6094 // side effects are undefined behavior, and then reason as follows: 6095 // 6096 // If the add recurrence is poison in any iteration, it is poison on all 6097 // future iterations (since incrementing poison yields poison). If the result 6098 // of the add recurrence is fed into the loop latch condition and the loop 6099 // does not contain any throws or exiting blocks other than the latch, we now 6100 // have the ability to "choose" whether the backedge is taken or not (by 6101 // choosing a sufficiently evil value for the poison feeding into the branch) 6102 // for every iteration including and after the one in which \p I first became 6103 // poison. There are two possibilities (let's call the iteration in which \p 6104 // I first became poison as K): 6105 // 6106 // 1. In the set of iterations including and after K, the loop body executes 6107 // no side effects. In this case executing the backege an infinte number 6108 // of times will yield undefined behavior. 6109 // 6110 // 2. In the set of iterations including and after K, the loop body executes 6111 // at least one side effect. In this case, that specific instance of side 6112 // effect is control dependent on poison, which also yields undefined 6113 // behavior. 6114 6115 auto *ExitingBB = L->getExitingBlock(); 6116 auto *LatchBB = L->getLoopLatch(); 6117 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6118 return false; 6119 6120 SmallPtrSet<const Instruction *, 16> Pushed; 6121 SmallVector<const Instruction *, 8> PoisonStack; 6122 6123 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6124 // things that are known to be poison under that assumption go on the 6125 // PoisonStack. 6126 Pushed.insert(I); 6127 PoisonStack.push_back(I); 6128 6129 bool LatchControlDependentOnPoison = false; 6130 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6131 const Instruction *Poison = PoisonStack.pop_back_val(); 6132 6133 for (auto *PoisonUser : Poison->users()) { 6134 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6135 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6136 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6137 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6138 assert(BI->isConditional() && "Only possibility!"); 6139 if (BI->getParent() == LatchBB) { 6140 LatchControlDependentOnPoison = true; 6141 break; 6142 } 6143 } 6144 } 6145 } 6146 6147 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6148 } 6149 6150 ScalarEvolution::LoopProperties 6151 ScalarEvolution::getLoopProperties(const Loop *L) { 6152 using LoopProperties = ScalarEvolution::LoopProperties; 6153 6154 auto Itr = LoopPropertiesCache.find(L); 6155 if (Itr == LoopPropertiesCache.end()) { 6156 auto HasSideEffects = [](Instruction *I) { 6157 if (auto *SI = dyn_cast<StoreInst>(I)) 6158 return !SI->isSimple(); 6159 6160 return I->mayHaveSideEffects(); 6161 }; 6162 6163 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6164 /*HasNoSideEffects*/ true}; 6165 6166 for (auto *BB : L->getBlocks()) 6167 for (auto &I : *BB) { 6168 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6169 LP.HasNoAbnormalExits = false; 6170 if (HasSideEffects(&I)) 6171 LP.HasNoSideEffects = false; 6172 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6173 break; // We're already as pessimistic as we can get. 6174 } 6175 6176 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6177 assert(InsertPair.second && "We just checked!"); 6178 Itr = InsertPair.first; 6179 } 6180 6181 return Itr->second; 6182 } 6183 6184 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6185 if (!isSCEVable(V->getType())) 6186 return getUnknown(V); 6187 6188 if (Instruction *I = dyn_cast<Instruction>(V)) { 6189 // Don't attempt to analyze instructions in blocks that aren't 6190 // reachable. Such instructions don't matter, and they aren't required 6191 // to obey basic rules for definitions dominating uses which this 6192 // analysis depends on. 6193 if (!DT.isReachableFromEntry(I->getParent())) 6194 return getUnknown(UndefValue::get(V->getType())); 6195 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6196 return getConstant(CI); 6197 else if (isa<ConstantPointerNull>(V)) 6198 // FIXME: we shouldn't special-case null pointer constant. 6199 return getZero(V->getType()); 6200 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6201 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6202 else if (!isa<ConstantExpr>(V)) 6203 return getUnknown(V); 6204 6205 Operator *U = cast<Operator>(V); 6206 if (auto BO = MatchBinaryOp(U, DT)) { 6207 switch (BO->Opcode) { 6208 case Instruction::Add: { 6209 // The simple thing to do would be to just call getSCEV on both operands 6210 // and call getAddExpr with the result. However if we're looking at a 6211 // bunch of things all added together, this can be quite inefficient, 6212 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6213 // Instead, gather up all the operands and make a single getAddExpr call. 6214 // LLVM IR canonical form means we need only traverse the left operands. 6215 SmallVector<const SCEV *, 4> AddOps; 6216 do { 6217 if (BO->Op) { 6218 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6219 AddOps.push_back(OpSCEV); 6220 break; 6221 } 6222 6223 // If a NUW or NSW flag can be applied to the SCEV for this 6224 // addition, then compute the SCEV for this addition by itself 6225 // with a separate call to getAddExpr. We need to do that 6226 // instead of pushing the operands of the addition onto AddOps, 6227 // since the flags are only known to apply to this particular 6228 // addition - they may not apply to other additions that can be 6229 // formed with operands from AddOps. 6230 const SCEV *RHS = getSCEV(BO->RHS); 6231 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6232 if (Flags != SCEV::FlagAnyWrap) { 6233 const SCEV *LHS = getSCEV(BO->LHS); 6234 if (BO->Opcode == Instruction::Sub) 6235 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6236 else 6237 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6238 break; 6239 } 6240 } 6241 6242 if (BO->Opcode == Instruction::Sub) 6243 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6244 else 6245 AddOps.push_back(getSCEV(BO->RHS)); 6246 6247 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6248 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6249 NewBO->Opcode != Instruction::Sub)) { 6250 AddOps.push_back(getSCEV(BO->LHS)); 6251 break; 6252 } 6253 BO = NewBO; 6254 } while (true); 6255 6256 return getAddExpr(AddOps); 6257 } 6258 6259 case Instruction::Mul: { 6260 SmallVector<const SCEV *, 4> MulOps; 6261 do { 6262 if (BO->Op) { 6263 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6264 MulOps.push_back(OpSCEV); 6265 break; 6266 } 6267 6268 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6269 if (Flags != SCEV::FlagAnyWrap) { 6270 MulOps.push_back( 6271 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6272 break; 6273 } 6274 } 6275 6276 MulOps.push_back(getSCEV(BO->RHS)); 6277 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6278 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6279 MulOps.push_back(getSCEV(BO->LHS)); 6280 break; 6281 } 6282 BO = NewBO; 6283 } while (true); 6284 6285 return getMulExpr(MulOps); 6286 } 6287 case Instruction::UDiv: 6288 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6289 case Instruction::URem: 6290 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6291 case Instruction::Sub: { 6292 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6293 if (BO->Op) 6294 Flags = getNoWrapFlagsFromUB(BO->Op); 6295 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6296 } 6297 case Instruction::And: 6298 // For an expression like x&255 that merely masks off the high bits, 6299 // use zext(trunc(x)) as the SCEV expression. 6300 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6301 if (CI->isZero()) 6302 return getSCEV(BO->RHS); 6303 if (CI->isMinusOne()) 6304 return getSCEV(BO->LHS); 6305 const APInt &A = CI->getValue(); 6306 6307 // Instcombine's ShrinkDemandedConstant may strip bits out of 6308 // constants, obscuring what would otherwise be a low-bits mask. 6309 // Use computeKnownBits to compute what ShrinkDemandedConstant 6310 // knew about to reconstruct a low-bits mask value. 6311 unsigned LZ = A.countLeadingZeros(); 6312 unsigned TZ = A.countTrailingZeros(); 6313 unsigned BitWidth = A.getBitWidth(); 6314 KnownBits Known(BitWidth); 6315 computeKnownBits(BO->LHS, Known, getDataLayout(), 6316 0, &AC, nullptr, &DT); 6317 6318 APInt EffectiveMask = 6319 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6320 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6321 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6322 const SCEV *LHS = getSCEV(BO->LHS); 6323 const SCEV *ShiftedLHS = nullptr; 6324 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6325 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6326 // For an expression like (x * 8) & 8, simplify the multiply. 6327 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6328 unsigned GCD = std::min(MulZeros, TZ); 6329 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6330 SmallVector<const SCEV*, 4> MulOps; 6331 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6332 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6333 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6334 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6335 } 6336 } 6337 if (!ShiftedLHS) 6338 ShiftedLHS = getUDivExpr(LHS, MulCount); 6339 return getMulExpr( 6340 getZeroExtendExpr( 6341 getTruncateExpr(ShiftedLHS, 6342 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6343 BO->LHS->getType()), 6344 MulCount); 6345 } 6346 } 6347 break; 6348 6349 case Instruction::Or: 6350 // If the RHS of the Or is a constant, we may have something like: 6351 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6352 // optimizations will transparently handle this case. 6353 // 6354 // In order for this transformation to be safe, the LHS must be of the 6355 // form X*(2^n) and the Or constant must be less than 2^n. 6356 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6357 const SCEV *LHS = getSCEV(BO->LHS); 6358 const APInt &CIVal = CI->getValue(); 6359 if (GetMinTrailingZeros(LHS) >= 6360 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6361 // Build a plain add SCEV. 6362 return getAddExpr(LHS, getSCEV(CI), 6363 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6364 } 6365 } 6366 break; 6367 6368 case Instruction::Xor: 6369 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6370 // If the RHS of xor is -1, then this is a not operation. 6371 if (CI->isMinusOne()) 6372 return getNotSCEV(getSCEV(BO->LHS)); 6373 6374 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6375 // This is a variant of the check for xor with -1, and it handles 6376 // the case where instcombine has trimmed non-demanded bits out 6377 // of an xor with -1. 6378 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6379 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6380 if (LBO->getOpcode() == Instruction::And && 6381 LCI->getValue() == CI->getValue()) 6382 if (const SCEVZeroExtendExpr *Z = 6383 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6384 Type *UTy = BO->LHS->getType(); 6385 const SCEV *Z0 = Z->getOperand(); 6386 Type *Z0Ty = Z0->getType(); 6387 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6388 6389 // If C is a low-bits mask, the zero extend is serving to 6390 // mask off the high bits. Complement the operand and 6391 // re-apply the zext. 6392 if (CI->getValue().isMask(Z0TySize)) 6393 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6394 6395 // If C is a single bit, it may be in the sign-bit position 6396 // before the zero-extend. In this case, represent the xor 6397 // using an add, which is equivalent, and re-apply the zext. 6398 APInt Trunc = CI->getValue().trunc(Z0TySize); 6399 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6400 Trunc.isSignMask()) 6401 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6402 UTy); 6403 } 6404 } 6405 break; 6406 6407 case Instruction::Shl: 6408 // Turn shift left of a constant amount into a multiply. 6409 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6410 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6411 6412 // If the shift count is not less than the bitwidth, the result of 6413 // the shift is undefined. Don't try to analyze it, because the 6414 // resolution chosen here may differ from the resolution chosen in 6415 // other parts of the compiler. 6416 if (SA->getValue().uge(BitWidth)) 6417 break; 6418 6419 // We can safely preserve the nuw flag in all cases. It's also safe to 6420 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6421 // requires special handling. It can be preserved as long as we're not 6422 // left shifting by bitwidth - 1. 6423 auto Flags = SCEV::FlagAnyWrap; 6424 if (BO->Op) { 6425 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6426 if ((MulFlags & SCEV::FlagNSW) && 6427 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6428 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6429 if (MulFlags & SCEV::FlagNUW) 6430 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6431 } 6432 6433 Constant *X = ConstantInt::get( 6434 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6435 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6436 } 6437 break; 6438 6439 case Instruction::AShr: { 6440 // AShr X, C, where C is a constant. 6441 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6442 if (!CI) 6443 break; 6444 6445 Type *OuterTy = BO->LHS->getType(); 6446 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6447 // If the shift count is not less than the bitwidth, the result of 6448 // the shift is undefined. Don't try to analyze it, because the 6449 // resolution chosen here may differ from the resolution chosen in 6450 // other parts of the compiler. 6451 if (CI->getValue().uge(BitWidth)) 6452 break; 6453 6454 if (CI->isZero()) 6455 return getSCEV(BO->LHS); // shift by zero --> noop 6456 6457 uint64_t AShrAmt = CI->getZExtValue(); 6458 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6459 6460 Operator *L = dyn_cast<Operator>(BO->LHS); 6461 if (L && L->getOpcode() == Instruction::Shl) { 6462 // X = Shl A, n 6463 // Y = AShr X, m 6464 // Both n and m are constant. 6465 6466 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6467 if (L->getOperand(1) == BO->RHS) 6468 // For a two-shift sext-inreg, i.e. n = m, 6469 // use sext(trunc(x)) as the SCEV expression. 6470 return getSignExtendExpr( 6471 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6472 6473 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6474 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6475 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6476 if (ShlAmt > AShrAmt) { 6477 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6478 // expression. We already checked that ShlAmt < BitWidth, so 6479 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6480 // ShlAmt - AShrAmt < Amt. 6481 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6482 ShlAmt - AShrAmt); 6483 return getSignExtendExpr( 6484 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6485 getConstant(Mul)), OuterTy); 6486 } 6487 } 6488 } 6489 if (BO->IsExact) { 6490 // Given exact arithmetic in-bounds right-shift by a constant, 6491 // we can lower it into: (abs(x) EXACT/u (1<<C)) * signum(x) 6492 const SCEV *X = getSCEV(BO->LHS); 6493 const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false); 6494 APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt); 6495 const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult)); 6496 return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW); 6497 } 6498 break; 6499 } 6500 } 6501 } 6502 6503 switch (U->getOpcode()) { 6504 case Instruction::Trunc: 6505 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6506 6507 case Instruction::ZExt: 6508 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6509 6510 case Instruction::SExt: 6511 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6512 // The NSW flag of a subtract does not always survive the conversion to 6513 // A + (-1)*B. By pushing sign extension onto its operands we are much 6514 // more likely to preserve NSW and allow later AddRec optimisations. 6515 // 6516 // NOTE: This is effectively duplicating this logic from getSignExtend: 6517 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6518 // but by that point the NSW information has potentially been lost. 6519 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6520 Type *Ty = U->getType(); 6521 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6522 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6523 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6524 } 6525 } 6526 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6527 6528 case Instruction::BitCast: 6529 // BitCasts are no-op casts so we just eliminate the cast. 6530 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6531 return getSCEV(U->getOperand(0)); 6532 break; 6533 6534 case Instruction::PtrToInt: { 6535 // Pointer to integer cast is straight-forward, so do model it. 6536 Value *Ptr = U->getOperand(0); 6537 const SCEV *Op = getSCEV(Ptr); 6538 Type *DstIntTy = U->getType(); 6539 // SCEV doesn't have constant pointer expression type, but it supports 6540 // nullptr constant (and only that one), which is modelled in SCEV as a 6541 // zero integer constant. So just skip the ptrtoint cast for constants. 6542 if (isa<SCEVConstant>(Op)) 6543 return getTruncateOrZeroExtend(Op, DstIntTy); 6544 Type *PtrTy = Ptr->getType(); 6545 Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy); 6546 // But only if effective SCEV (integer) type is wide enough to represent 6547 // all possible pointer values. 6548 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) != 6549 getDataLayout().getTypeSizeInBits(IntPtrTy)) 6550 return getUnknown(V); 6551 return getPtrToIntExpr(Op, DstIntTy); 6552 } 6553 case Instruction::IntToPtr: 6554 // Just don't deal with inttoptr casts. 6555 return getUnknown(V); 6556 6557 case Instruction::SDiv: 6558 // If both operands are non-negative, this is just an udiv. 6559 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6560 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6561 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6562 break; 6563 6564 case Instruction::SRem: 6565 // If both operands are non-negative, this is just an urem. 6566 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6567 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6568 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6569 break; 6570 6571 case Instruction::GetElementPtr: 6572 return createNodeForGEP(cast<GEPOperator>(U)); 6573 6574 case Instruction::PHI: 6575 return createNodeForPHI(cast<PHINode>(U)); 6576 6577 case Instruction::Select: 6578 // U can also be a select constant expr, which let fall through. Since 6579 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6580 // constant expressions cannot have instructions as operands, we'd have 6581 // returned getUnknown for a select constant expressions anyway. 6582 if (isa<Instruction>(U)) 6583 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6584 U->getOperand(1), U->getOperand(2)); 6585 break; 6586 6587 case Instruction::Call: 6588 case Instruction::Invoke: 6589 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6590 return getSCEV(RV); 6591 6592 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6593 switch (II->getIntrinsicID()) { 6594 case Intrinsic::abs: 6595 return getAbsExpr( 6596 getSCEV(II->getArgOperand(0)), 6597 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 6598 case Intrinsic::umax: 6599 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6600 getSCEV(II->getArgOperand(1))); 6601 case Intrinsic::umin: 6602 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6603 getSCEV(II->getArgOperand(1))); 6604 case Intrinsic::smax: 6605 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6606 getSCEV(II->getArgOperand(1))); 6607 case Intrinsic::smin: 6608 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6609 getSCEV(II->getArgOperand(1))); 6610 case Intrinsic::usub_sat: { 6611 const SCEV *X = getSCEV(II->getArgOperand(0)); 6612 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6613 const SCEV *ClampedY = getUMinExpr(X, Y); 6614 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 6615 } 6616 case Intrinsic::uadd_sat: { 6617 const SCEV *X = getSCEV(II->getArgOperand(0)); 6618 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6619 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 6620 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 6621 } 6622 default: 6623 break; 6624 } 6625 } 6626 break; 6627 } 6628 6629 return getUnknown(V); 6630 } 6631 6632 //===----------------------------------------------------------------------===// 6633 // Iteration Count Computation Code 6634 // 6635 6636 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6637 if (!ExitCount) 6638 return 0; 6639 6640 ConstantInt *ExitConst = ExitCount->getValue(); 6641 6642 // Guard against huge trip counts. 6643 if (ExitConst->getValue().getActiveBits() > 32) 6644 return 0; 6645 6646 // In case of integer overflow, this returns 0, which is correct. 6647 return ((unsigned)ExitConst->getZExtValue()) + 1; 6648 } 6649 6650 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6651 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6652 return getSmallConstantTripCount(L, ExitingBB); 6653 6654 // No trip count information for multiple exits. 6655 return 0; 6656 } 6657 6658 unsigned 6659 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6660 const BasicBlock *ExitingBlock) { 6661 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6662 assert(L->isLoopExiting(ExitingBlock) && 6663 "Exiting block must actually branch out of the loop!"); 6664 const SCEVConstant *ExitCount = 6665 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6666 return getConstantTripCount(ExitCount); 6667 } 6668 6669 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6670 const auto *MaxExitCount = 6671 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6672 return getConstantTripCount(MaxExitCount); 6673 } 6674 6675 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6676 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6677 return getSmallConstantTripMultiple(L, ExitingBB); 6678 6679 // No trip multiple information for multiple exits. 6680 return 0; 6681 } 6682 6683 /// Returns the largest constant divisor of the trip count of this loop as a 6684 /// normal unsigned value, if possible. This means that the actual trip count is 6685 /// always a multiple of the returned value (don't forget the trip count could 6686 /// very well be zero as well!). 6687 /// 6688 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6689 /// multiple of a constant (which is also the case if the trip count is simply 6690 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6691 /// if the trip count is very large (>= 2^32). 6692 /// 6693 /// As explained in the comments for getSmallConstantTripCount, this assumes 6694 /// that control exits the loop via ExitingBlock. 6695 unsigned 6696 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6697 const BasicBlock *ExitingBlock) { 6698 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6699 assert(L->isLoopExiting(ExitingBlock) && 6700 "Exiting block must actually branch out of the loop!"); 6701 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6702 if (ExitCount == getCouldNotCompute()) 6703 return 1; 6704 6705 // Get the trip count from the BE count by adding 1. 6706 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6707 6708 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6709 if (!TC) 6710 // Attempt to factor more general cases. Returns the greatest power of 6711 // two divisor. If overflow happens, the trip count expression is still 6712 // divisible by the greatest power of 2 divisor returned. 6713 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6714 6715 ConstantInt *Result = TC->getValue(); 6716 6717 // Guard against huge trip counts (this requires checking 6718 // for zero to handle the case where the trip count == -1 and the 6719 // addition wraps). 6720 if (!Result || Result->getValue().getActiveBits() > 32 || 6721 Result->getValue().getActiveBits() == 0) 6722 return 1; 6723 6724 return (unsigned)Result->getZExtValue(); 6725 } 6726 6727 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6728 const BasicBlock *ExitingBlock, 6729 ExitCountKind Kind) { 6730 switch (Kind) { 6731 case Exact: 6732 case SymbolicMaximum: 6733 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6734 case ConstantMaximum: 6735 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 6736 }; 6737 llvm_unreachable("Invalid ExitCountKind!"); 6738 } 6739 6740 const SCEV * 6741 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6742 SCEVUnionPredicate &Preds) { 6743 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6744 } 6745 6746 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6747 ExitCountKind Kind) { 6748 switch (Kind) { 6749 case Exact: 6750 return getBackedgeTakenInfo(L).getExact(L, this); 6751 case ConstantMaximum: 6752 return getBackedgeTakenInfo(L).getConstantMax(this); 6753 case SymbolicMaximum: 6754 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 6755 }; 6756 llvm_unreachable("Invalid ExitCountKind!"); 6757 } 6758 6759 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6760 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 6761 } 6762 6763 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6764 static void 6765 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6766 BasicBlock *Header = L->getHeader(); 6767 6768 // Push all Loop-header PHIs onto the Worklist stack. 6769 for (PHINode &PN : Header->phis()) 6770 Worklist.push_back(&PN); 6771 } 6772 6773 const ScalarEvolution::BackedgeTakenInfo & 6774 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6775 auto &BTI = getBackedgeTakenInfo(L); 6776 if (BTI.hasFullInfo()) 6777 return BTI; 6778 6779 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6780 6781 if (!Pair.second) 6782 return Pair.first->second; 6783 6784 BackedgeTakenInfo Result = 6785 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6786 6787 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6788 } 6789 6790 ScalarEvolution::BackedgeTakenInfo & 6791 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6792 // Initially insert an invalid entry for this loop. If the insertion 6793 // succeeds, proceed to actually compute a backedge-taken count and 6794 // update the value. The temporary CouldNotCompute value tells SCEV 6795 // code elsewhere that it shouldn't attempt to request a new 6796 // backedge-taken count, which could result in infinite recursion. 6797 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6798 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6799 if (!Pair.second) 6800 return Pair.first->second; 6801 6802 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6803 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6804 // must be cleared in this scope. 6805 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6806 6807 // In product build, there are no usage of statistic. 6808 (void)NumTripCountsComputed; 6809 (void)NumTripCountsNotComputed; 6810 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6811 const SCEV *BEExact = Result.getExact(L, this); 6812 if (BEExact != getCouldNotCompute()) { 6813 assert(isLoopInvariant(BEExact, L) && 6814 isLoopInvariant(Result.getConstantMax(this), L) && 6815 "Computed backedge-taken count isn't loop invariant for loop!"); 6816 ++NumTripCountsComputed; 6817 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 6818 isa<PHINode>(L->getHeader()->begin())) { 6819 // Only count loops that have phi nodes as not being computable. 6820 ++NumTripCountsNotComputed; 6821 } 6822 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6823 6824 // Now that we know more about the trip count for this loop, forget any 6825 // existing SCEV values for PHI nodes in this loop since they are only 6826 // conservative estimates made without the benefit of trip count 6827 // information. This is similar to the code in forgetLoop, except that 6828 // it handles SCEVUnknown PHI nodes specially. 6829 if (Result.hasAnyInfo()) { 6830 SmallVector<Instruction *, 16> Worklist; 6831 PushLoopPHIs(L, Worklist); 6832 6833 SmallPtrSet<Instruction *, 8> Discovered; 6834 while (!Worklist.empty()) { 6835 Instruction *I = Worklist.pop_back_val(); 6836 6837 ValueExprMapType::iterator It = 6838 ValueExprMap.find_as(static_cast<Value *>(I)); 6839 if (It != ValueExprMap.end()) { 6840 const SCEV *Old = It->second; 6841 6842 // SCEVUnknown for a PHI either means that it has an unrecognized 6843 // structure, or it's a PHI that's in the progress of being computed 6844 // by createNodeForPHI. In the former case, additional loop trip 6845 // count information isn't going to change anything. In the later 6846 // case, createNodeForPHI will perform the necessary updates on its 6847 // own when it gets to that point. 6848 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6849 eraseValueFromMap(It->first); 6850 forgetMemoizedResults(Old); 6851 } 6852 if (PHINode *PN = dyn_cast<PHINode>(I)) 6853 ConstantEvolutionLoopExitValue.erase(PN); 6854 } 6855 6856 // Since we don't need to invalidate anything for correctness and we're 6857 // only invalidating to make SCEV's results more precise, we get to stop 6858 // early to avoid invalidating too much. This is especially important in 6859 // cases like: 6860 // 6861 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6862 // loop0: 6863 // %pn0 = phi 6864 // ... 6865 // loop1: 6866 // %pn1 = phi 6867 // ... 6868 // 6869 // where both loop0 and loop1's backedge taken count uses the SCEV 6870 // expression for %v. If we don't have the early stop below then in cases 6871 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6872 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6873 // count for loop1, effectively nullifying SCEV's trip count cache. 6874 for (auto *U : I->users()) 6875 if (auto *I = dyn_cast<Instruction>(U)) { 6876 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6877 if (LoopForUser && L->contains(LoopForUser) && 6878 Discovered.insert(I).second) 6879 Worklist.push_back(I); 6880 } 6881 } 6882 } 6883 6884 // Re-lookup the insert position, since the call to 6885 // computeBackedgeTakenCount above could result in a 6886 // recusive call to getBackedgeTakenInfo (on a different 6887 // loop), which would invalidate the iterator computed 6888 // earlier. 6889 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6890 } 6891 6892 void ScalarEvolution::forgetAllLoops() { 6893 // This method is intended to forget all info about loops. It should 6894 // invalidate caches as if the following happened: 6895 // - The trip counts of all loops have changed arbitrarily 6896 // - Every llvm::Value has been updated in place to produce a different 6897 // result. 6898 BackedgeTakenCounts.clear(); 6899 PredicatedBackedgeTakenCounts.clear(); 6900 LoopPropertiesCache.clear(); 6901 ConstantEvolutionLoopExitValue.clear(); 6902 ValueExprMap.clear(); 6903 ValuesAtScopes.clear(); 6904 LoopDispositions.clear(); 6905 BlockDispositions.clear(); 6906 UnsignedRanges.clear(); 6907 SignedRanges.clear(); 6908 ExprValueMap.clear(); 6909 HasRecMap.clear(); 6910 MinTrailingZerosCache.clear(); 6911 PredicatedSCEVRewrites.clear(); 6912 } 6913 6914 void ScalarEvolution::forgetLoop(const Loop *L) { 6915 // Drop any stored trip count value. 6916 auto RemoveLoopFromBackedgeMap = 6917 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6918 auto BTCPos = Map.find(L); 6919 if (BTCPos != Map.end()) { 6920 BTCPos->second.clear(); 6921 Map.erase(BTCPos); 6922 } 6923 }; 6924 6925 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6926 SmallVector<Instruction *, 32> Worklist; 6927 SmallPtrSet<Instruction *, 16> Visited; 6928 6929 // Iterate over all the loops and sub-loops to drop SCEV information. 6930 while (!LoopWorklist.empty()) { 6931 auto *CurrL = LoopWorklist.pop_back_val(); 6932 6933 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6934 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6935 6936 // Drop information about predicated SCEV rewrites for this loop. 6937 for (auto I = PredicatedSCEVRewrites.begin(); 6938 I != PredicatedSCEVRewrites.end();) { 6939 std::pair<const SCEV *, const Loop *> Entry = I->first; 6940 if (Entry.second == CurrL) 6941 PredicatedSCEVRewrites.erase(I++); 6942 else 6943 ++I; 6944 } 6945 6946 auto LoopUsersItr = LoopUsers.find(CurrL); 6947 if (LoopUsersItr != LoopUsers.end()) { 6948 for (auto *S : LoopUsersItr->second) 6949 forgetMemoizedResults(S); 6950 LoopUsers.erase(LoopUsersItr); 6951 } 6952 6953 // Drop information about expressions based on loop-header PHIs. 6954 PushLoopPHIs(CurrL, Worklist); 6955 6956 while (!Worklist.empty()) { 6957 Instruction *I = Worklist.pop_back_val(); 6958 if (!Visited.insert(I).second) 6959 continue; 6960 6961 ValueExprMapType::iterator It = 6962 ValueExprMap.find_as(static_cast<Value *>(I)); 6963 if (It != ValueExprMap.end()) { 6964 eraseValueFromMap(It->first); 6965 forgetMemoizedResults(It->second); 6966 if (PHINode *PN = dyn_cast<PHINode>(I)) 6967 ConstantEvolutionLoopExitValue.erase(PN); 6968 } 6969 6970 PushDefUseChildren(I, Worklist); 6971 } 6972 6973 LoopPropertiesCache.erase(CurrL); 6974 // Forget all contained loops too, to avoid dangling entries in the 6975 // ValuesAtScopes map. 6976 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6977 } 6978 } 6979 6980 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6981 while (Loop *Parent = L->getParentLoop()) 6982 L = Parent; 6983 forgetLoop(L); 6984 } 6985 6986 void ScalarEvolution::forgetValue(Value *V) { 6987 Instruction *I = dyn_cast<Instruction>(V); 6988 if (!I) return; 6989 6990 // Drop information about expressions based on loop-header PHIs. 6991 SmallVector<Instruction *, 16> Worklist; 6992 Worklist.push_back(I); 6993 6994 SmallPtrSet<Instruction *, 8> Visited; 6995 while (!Worklist.empty()) { 6996 I = Worklist.pop_back_val(); 6997 if (!Visited.insert(I).second) 6998 continue; 6999 7000 ValueExprMapType::iterator It = 7001 ValueExprMap.find_as(static_cast<Value *>(I)); 7002 if (It != ValueExprMap.end()) { 7003 eraseValueFromMap(It->first); 7004 forgetMemoizedResults(It->second); 7005 if (PHINode *PN = dyn_cast<PHINode>(I)) 7006 ConstantEvolutionLoopExitValue.erase(PN); 7007 } 7008 7009 PushDefUseChildren(I, Worklist); 7010 } 7011 } 7012 7013 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7014 LoopDispositions.clear(); 7015 } 7016 7017 /// Get the exact loop backedge taken count considering all loop exits. A 7018 /// computable result can only be returned for loops with all exiting blocks 7019 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7020 /// is never skipped. This is a valid assumption as long as the loop exits via 7021 /// that test. For precise results, it is the caller's responsibility to specify 7022 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7023 const SCEV * 7024 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7025 SCEVUnionPredicate *Preds) const { 7026 // If any exits were not computable, the loop is not computable. 7027 if (!isComplete() || ExitNotTaken.empty()) 7028 return SE->getCouldNotCompute(); 7029 7030 const BasicBlock *Latch = L->getLoopLatch(); 7031 // All exiting blocks we have collected must dominate the only backedge. 7032 if (!Latch) 7033 return SE->getCouldNotCompute(); 7034 7035 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7036 // count is simply a minimum out of all these calculated exit counts. 7037 SmallVector<const SCEV *, 2> Ops; 7038 for (auto &ENT : ExitNotTaken) { 7039 const SCEV *BECount = ENT.ExactNotTaken; 7040 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7041 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7042 "We should only have known counts for exiting blocks that dominate " 7043 "latch!"); 7044 7045 Ops.push_back(BECount); 7046 7047 if (Preds && !ENT.hasAlwaysTruePredicate()) 7048 Preds->add(ENT.Predicate.get()); 7049 7050 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7051 "Predicate should be always true!"); 7052 } 7053 7054 return SE->getUMinFromMismatchedTypes(Ops); 7055 } 7056 7057 /// Get the exact not taken count for this loop exit. 7058 const SCEV * 7059 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7060 ScalarEvolution *SE) const { 7061 for (auto &ENT : ExitNotTaken) 7062 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7063 return ENT.ExactNotTaken; 7064 7065 return SE->getCouldNotCompute(); 7066 } 7067 7068 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7069 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7070 for (auto &ENT : ExitNotTaken) 7071 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7072 return ENT.MaxNotTaken; 7073 7074 return SE->getCouldNotCompute(); 7075 } 7076 7077 /// getConstantMax - Get the constant max backedge taken count for the loop. 7078 const SCEV * 7079 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7080 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7081 return !ENT.hasAlwaysTruePredicate(); 7082 }; 7083 7084 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7085 return SE->getCouldNotCompute(); 7086 7087 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7088 isa<SCEVConstant>(getConstantMax())) && 7089 "No point in having a non-constant max backedge taken count!"); 7090 return getConstantMax(); 7091 } 7092 7093 const SCEV * 7094 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7095 ScalarEvolution *SE) { 7096 if (!SymbolicMax) 7097 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7098 return SymbolicMax; 7099 } 7100 7101 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7102 ScalarEvolution *SE) const { 7103 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7104 return !ENT.hasAlwaysTruePredicate(); 7105 }; 7106 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7107 } 7108 7109 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 7110 ScalarEvolution *SE) const { 7111 if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() && 7112 SE->hasOperand(getConstantMax(), S)) 7113 return true; 7114 7115 for (auto &ENT : ExitNotTaken) 7116 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 7117 SE->hasOperand(ENT.ExactNotTaken, S)) 7118 return true; 7119 7120 return false; 7121 } 7122 7123 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7124 : ExactNotTaken(E), MaxNotTaken(E) { 7125 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7126 isa<SCEVConstant>(MaxNotTaken)) && 7127 "No point in having a non-constant max backedge taken count!"); 7128 } 7129 7130 ScalarEvolution::ExitLimit::ExitLimit( 7131 const SCEV *E, const SCEV *M, bool MaxOrZero, 7132 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7133 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7134 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7135 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7136 "Exact is not allowed to be less precise than Max"); 7137 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7138 isa<SCEVConstant>(MaxNotTaken)) && 7139 "No point in having a non-constant max backedge taken count!"); 7140 for (auto *PredSet : PredSetList) 7141 for (auto *P : *PredSet) 7142 addPredicate(P); 7143 } 7144 7145 ScalarEvolution::ExitLimit::ExitLimit( 7146 const SCEV *E, const SCEV *M, bool MaxOrZero, 7147 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7148 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7149 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7150 isa<SCEVConstant>(MaxNotTaken)) && 7151 "No point in having a non-constant max backedge taken count!"); 7152 } 7153 7154 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7155 bool MaxOrZero) 7156 : ExitLimit(E, M, MaxOrZero, None) { 7157 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7158 isa<SCEVConstant>(MaxNotTaken)) && 7159 "No point in having a non-constant max backedge taken count!"); 7160 } 7161 7162 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7163 /// computable exit into a persistent ExitNotTakenInfo array. 7164 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7165 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7166 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7167 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7168 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7169 7170 ExitNotTaken.reserve(ExitCounts.size()); 7171 std::transform( 7172 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7173 [&](const EdgeExitInfo &EEI) { 7174 BasicBlock *ExitBB = EEI.first; 7175 const ExitLimit &EL = EEI.second; 7176 if (EL.Predicates.empty()) 7177 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7178 nullptr); 7179 7180 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7181 for (auto *Pred : EL.Predicates) 7182 Predicate->add(Pred); 7183 7184 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7185 std::move(Predicate)); 7186 }); 7187 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7188 isa<SCEVConstant>(ConstantMax)) && 7189 "No point in having a non-constant max backedge taken count!"); 7190 } 7191 7192 /// Invalidate this result and free the ExitNotTakenInfo array. 7193 void ScalarEvolution::BackedgeTakenInfo::clear() { 7194 ExitNotTaken.clear(); 7195 } 7196 7197 /// Compute the number of times the backedge of the specified loop will execute. 7198 ScalarEvolution::BackedgeTakenInfo 7199 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7200 bool AllowPredicates) { 7201 SmallVector<BasicBlock *, 8> ExitingBlocks; 7202 L->getExitingBlocks(ExitingBlocks); 7203 7204 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7205 7206 SmallVector<EdgeExitInfo, 4> ExitCounts; 7207 bool CouldComputeBECount = true; 7208 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7209 const SCEV *MustExitMaxBECount = nullptr; 7210 const SCEV *MayExitMaxBECount = nullptr; 7211 bool MustExitMaxOrZero = false; 7212 7213 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7214 // and compute maxBECount. 7215 // Do a union of all the predicates here. 7216 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7217 BasicBlock *ExitBB = ExitingBlocks[i]; 7218 7219 // We canonicalize untaken exits to br (constant), ignore them so that 7220 // proving an exit untaken doesn't negatively impact our ability to reason 7221 // about the loop as whole. 7222 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7223 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7224 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7225 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7226 continue; 7227 } 7228 7229 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7230 7231 assert((AllowPredicates || EL.Predicates.empty()) && 7232 "Predicated exit limit when predicates are not allowed!"); 7233 7234 // 1. For each exit that can be computed, add an entry to ExitCounts. 7235 // CouldComputeBECount is true only if all exits can be computed. 7236 if (EL.ExactNotTaken == getCouldNotCompute()) 7237 // We couldn't compute an exact value for this exit, so 7238 // we won't be able to compute an exact value for the loop. 7239 CouldComputeBECount = false; 7240 else 7241 ExitCounts.emplace_back(ExitBB, EL); 7242 7243 // 2. Derive the loop's MaxBECount from each exit's max number of 7244 // non-exiting iterations. Partition the loop exits into two kinds: 7245 // LoopMustExits and LoopMayExits. 7246 // 7247 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7248 // is a LoopMayExit. If any computable LoopMustExit is found, then 7249 // MaxBECount is the minimum EL.MaxNotTaken of computable 7250 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7251 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7252 // computable EL.MaxNotTaken. 7253 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7254 DT.dominates(ExitBB, Latch)) { 7255 if (!MustExitMaxBECount) { 7256 MustExitMaxBECount = EL.MaxNotTaken; 7257 MustExitMaxOrZero = EL.MaxOrZero; 7258 } else { 7259 MustExitMaxBECount = 7260 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7261 } 7262 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7263 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7264 MayExitMaxBECount = EL.MaxNotTaken; 7265 else { 7266 MayExitMaxBECount = 7267 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7268 } 7269 } 7270 } 7271 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7272 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7273 // The loop backedge will be taken the maximum or zero times if there's 7274 // a single exit that must be taken the maximum or zero times. 7275 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7276 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7277 MaxBECount, MaxOrZero); 7278 } 7279 7280 ScalarEvolution::ExitLimit 7281 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7282 bool AllowPredicates) { 7283 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7284 // If our exiting block does not dominate the latch, then its connection with 7285 // loop's exit limit may be far from trivial. 7286 const BasicBlock *Latch = L->getLoopLatch(); 7287 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7288 return getCouldNotCompute(); 7289 7290 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7291 Instruction *Term = ExitingBlock->getTerminator(); 7292 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7293 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7294 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7295 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7296 "It should have one successor in loop and one exit block!"); 7297 // Proceed to the next level to examine the exit condition expression. 7298 return computeExitLimitFromCond( 7299 L, BI->getCondition(), ExitIfTrue, 7300 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7301 } 7302 7303 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7304 // For switch, make sure that there is a single exit from the loop. 7305 BasicBlock *Exit = nullptr; 7306 for (auto *SBB : successors(ExitingBlock)) 7307 if (!L->contains(SBB)) { 7308 if (Exit) // Multiple exit successors. 7309 return getCouldNotCompute(); 7310 Exit = SBB; 7311 } 7312 assert(Exit && "Exiting block must have at least one exit"); 7313 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7314 /*ControlsExit=*/IsOnlyExit); 7315 } 7316 7317 return getCouldNotCompute(); 7318 } 7319 7320 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7321 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7322 bool ControlsExit, bool AllowPredicates) { 7323 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7324 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7325 ControlsExit, AllowPredicates); 7326 } 7327 7328 Optional<ScalarEvolution::ExitLimit> 7329 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7330 bool ExitIfTrue, bool ControlsExit, 7331 bool AllowPredicates) { 7332 (void)this->L; 7333 (void)this->ExitIfTrue; 7334 (void)this->AllowPredicates; 7335 7336 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7337 this->AllowPredicates == AllowPredicates && 7338 "Variance in assumed invariant key components!"); 7339 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7340 if (Itr == TripCountMap.end()) 7341 return None; 7342 return Itr->second; 7343 } 7344 7345 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7346 bool ExitIfTrue, 7347 bool ControlsExit, 7348 bool AllowPredicates, 7349 const ExitLimit &EL) { 7350 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7351 this->AllowPredicates == AllowPredicates && 7352 "Variance in assumed invariant key components!"); 7353 7354 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7355 assert(InsertResult.second && "Expected successful insertion!"); 7356 (void)InsertResult; 7357 (void)ExitIfTrue; 7358 } 7359 7360 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7361 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7362 bool ControlsExit, bool AllowPredicates) { 7363 7364 if (auto MaybeEL = 7365 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7366 return *MaybeEL; 7367 7368 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7369 ControlsExit, AllowPredicates); 7370 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7371 return EL; 7372 } 7373 7374 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7375 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7376 bool ControlsExit, bool AllowPredicates) { 7377 // Check if the controlling expression for this loop is an And or Or. 7378 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7379 if (BO->getOpcode() == Instruction::And) { 7380 // Recurse on the operands of the and. 7381 bool EitherMayExit = !ExitIfTrue; 7382 ExitLimit EL0 = computeExitLimitFromCondCached( 7383 Cache, L, BO->getOperand(0), ExitIfTrue, 7384 ControlsExit && !EitherMayExit, AllowPredicates); 7385 ExitLimit EL1 = computeExitLimitFromCondCached( 7386 Cache, L, BO->getOperand(1), ExitIfTrue, 7387 ControlsExit && !EitherMayExit, AllowPredicates); 7388 // Be robust against unsimplified IR for the form "and i1 X, true" 7389 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7390 return CI->isOne() ? EL0 : EL1; 7391 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7392 return CI->isOne() ? EL1 : EL0; 7393 const SCEV *BECount = getCouldNotCompute(); 7394 const SCEV *MaxBECount = getCouldNotCompute(); 7395 if (EitherMayExit) { 7396 // Both conditions must be true for the loop to continue executing. 7397 // Choose the less conservative count. 7398 if (EL0.ExactNotTaken == getCouldNotCompute() || 7399 EL1.ExactNotTaken == getCouldNotCompute()) 7400 BECount = getCouldNotCompute(); 7401 else 7402 BECount = 7403 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7404 if (EL0.MaxNotTaken == getCouldNotCompute()) 7405 MaxBECount = EL1.MaxNotTaken; 7406 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7407 MaxBECount = EL0.MaxNotTaken; 7408 else 7409 MaxBECount = 7410 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7411 } else { 7412 // Both conditions must be true at the same time for the loop to exit. 7413 // For now, be conservative. 7414 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7415 MaxBECount = EL0.MaxNotTaken; 7416 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7417 BECount = EL0.ExactNotTaken; 7418 } 7419 7420 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7421 // to be more aggressive when computing BECount than when computing 7422 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7423 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7424 // to not. 7425 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7426 !isa<SCEVCouldNotCompute>(BECount)) 7427 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7428 7429 return ExitLimit(BECount, MaxBECount, false, 7430 {&EL0.Predicates, &EL1.Predicates}); 7431 } 7432 if (BO->getOpcode() == Instruction::Or) { 7433 // Recurse on the operands of the or. 7434 bool EitherMayExit = ExitIfTrue; 7435 ExitLimit EL0 = computeExitLimitFromCondCached( 7436 Cache, L, BO->getOperand(0), ExitIfTrue, 7437 ControlsExit && !EitherMayExit, AllowPredicates); 7438 ExitLimit EL1 = computeExitLimitFromCondCached( 7439 Cache, L, BO->getOperand(1), ExitIfTrue, 7440 ControlsExit && !EitherMayExit, AllowPredicates); 7441 // Be robust against unsimplified IR for the form "or i1 X, true" 7442 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7443 return CI->isZero() ? EL0 : EL1; 7444 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7445 return CI->isZero() ? EL1 : EL0; 7446 const SCEV *BECount = getCouldNotCompute(); 7447 const SCEV *MaxBECount = getCouldNotCompute(); 7448 if (EitherMayExit) { 7449 // Both conditions must be false for the loop to continue executing. 7450 // Choose the less conservative count. 7451 if (EL0.ExactNotTaken == getCouldNotCompute() || 7452 EL1.ExactNotTaken == getCouldNotCompute()) 7453 BECount = getCouldNotCompute(); 7454 else 7455 BECount = 7456 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7457 if (EL0.MaxNotTaken == getCouldNotCompute()) 7458 MaxBECount = EL1.MaxNotTaken; 7459 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7460 MaxBECount = EL0.MaxNotTaken; 7461 else 7462 MaxBECount = 7463 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7464 } else { 7465 // Both conditions must be false at the same time for the loop to exit. 7466 // For now, be conservative. 7467 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7468 MaxBECount = EL0.MaxNotTaken; 7469 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7470 BECount = EL0.ExactNotTaken; 7471 } 7472 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7473 // to be more aggressive when computing BECount than when computing 7474 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7475 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7476 // to not. 7477 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7478 !isa<SCEVCouldNotCompute>(BECount)) 7479 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7480 7481 return ExitLimit(BECount, MaxBECount, false, 7482 {&EL0.Predicates, &EL1.Predicates}); 7483 } 7484 } 7485 7486 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7487 // Proceed to the next level to examine the icmp. 7488 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7489 ExitLimit EL = 7490 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7491 if (EL.hasFullInfo() || !AllowPredicates) 7492 return EL; 7493 7494 // Try again, but use SCEV predicates this time. 7495 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7496 /*AllowPredicates=*/true); 7497 } 7498 7499 // Check for a constant condition. These are normally stripped out by 7500 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7501 // preserve the CFG and is temporarily leaving constant conditions 7502 // in place. 7503 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7504 if (ExitIfTrue == !CI->getZExtValue()) 7505 // The backedge is always taken. 7506 return getCouldNotCompute(); 7507 else 7508 // The backedge is never taken. 7509 return getZero(CI->getType()); 7510 } 7511 7512 // If it's not an integer or pointer comparison then compute it the hard way. 7513 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7514 } 7515 7516 ScalarEvolution::ExitLimit 7517 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7518 ICmpInst *ExitCond, 7519 bool ExitIfTrue, 7520 bool ControlsExit, 7521 bool AllowPredicates) { 7522 // If the condition was exit on true, convert the condition to exit on false 7523 ICmpInst::Predicate Pred; 7524 if (!ExitIfTrue) 7525 Pred = ExitCond->getPredicate(); 7526 else 7527 Pred = ExitCond->getInversePredicate(); 7528 const ICmpInst::Predicate OriginalPred = Pred; 7529 7530 // Handle common loops like: for (X = "string"; *X; ++X) 7531 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7532 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7533 ExitLimit ItCnt = 7534 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7535 if (ItCnt.hasAnyInfo()) 7536 return ItCnt; 7537 } 7538 7539 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7540 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7541 7542 // Try to evaluate any dependencies out of the loop. 7543 LHS = getSCEVAtScope(LHS, L); 7544 RHS = getSCEVAtScope(RHS, L); 7545 7546 // At this point, we would like to compute how many iterations of the 7547 // loop the predicate will return true for these inputs. 7548 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7549 // If there is a loop-invariant, force it into the RHS. 7550 std::swap(LHS, RHS); 7551 Pred = ICmpInst::getSwappedPredicate(Pred); 7552 } 7553 7554 // Simplify the operands before analyzing them. 7555 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7556 7557 // If we have a comparison of a chrec against a constant, try to use value 7558 // ranges to answer this query. 7559 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7560 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7561 if (AddRec->getLoop() == L) { 7562 // Form the constant range. 7563 ConstantRange CompRange = 7564 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7565 7566 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7567 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7568 } 7569 7570 switch (Pred) { 7571 case ICmpInst::ICMP_NE: { // while (X != Y) 7572 // Convert to: while (X-Y != 0) 7573 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7574 AllowPredicates); 7575 if (EL.hasAnyInfo()) return EL; 7576 break; 7577 } 7578 case ICmpInst::ICMP_EQ: { // while (X == Y) 7579 // Convert to: while (X-Y == 0) 7580 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7581 if (EL.hasAnyInfo()) return EL; 7582 break; 7583 } 7584 case ICmpInst::ICMP_SLT: 7585 case ICmpInst::ICMP_ULT: { // while (X < Y) 7586 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7587 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7588 AllowPredicates); 7589 if (EL.hasAnyInfo()) return EL; 7590 break; 7591 } 7592 case ICmpInst::ICMP_SGT: 7593 case ICmpInst::ICMP_UGT: { // while (X > Y) 7594 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7595 ExitLimit EL = 7596 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7597 AllowPredicates); 7598 if (EL.hasAnyInfo()) return EL; 7599 break; 7600 } 7601 default: 7602 break; 7603 } 7604 7605 auto *ExhaustiveCount = 7606 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7607 7608 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7609 return ExhaustiveCount; 7610 7611 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7612 ExitCond->getOperand(1), L, OriginalPred); 7613 } 7614 7615 ScalarEvolution::ExitLimit 7616 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7617 SwitchInst *Switch, 7618 BasicBlock *ExitingBlock, 7619 bool ControlsExit) { 7620 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7621 7622 // Give up if the exit is the default dest of a switch. 7623 if (Switch->getDefaultDest() == ExitingBlock) 7624 return getCouldNotCompute(); 7625 7626 assert(L->contains(Switch->getDefaultDest()) && 7627 "Default case must not exit the loop!"); 7628 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7629 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7630 7631 // while (X != Y) --> while (X-Y != 0) 7632 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7633 if (EL.hasAnyInfo()) 7634 return EL; 7635 7636 return getCouldNotCompute(); 7637 } 7638 7639 static ConstantInt * 7640 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7641 ScalarEvolution &SE) { 7642 const SCEV *InVal = SE.getConstant(C); 7643 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7644 assert(isa<SCEVConstant>(Val) && 7645 "Evaluation of SCEV at constant didn't fold correctly?"); 7646 return cast<SCEVConstant>(Val)->getValue(); 7647 } 7648 7649 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7650 /// compute the backedge execution count. 7651 ScalarEvolution::ExitLimit 7652 ScalarEvolution::computeLoadConstantCompareExitLimit( 7653 LoadInst *LI, 7654 Constant *RHS, 7655 const Loop *L, 7656 ICmpInst::Predicate predicate) { 7657 if (LI->isVolatile()) return getCouldNotCompute(); 7658 7659 // Check to see if the loaded pointer is a getelementptr of a global. 7660 // TODO: Use SCEV instead of manually grubbing with GEPs. 7661 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7662 if (!GEP) return getCouldNotCompute(); 7663 7664 // Make sure that it is really a constant global we are gepping, with an 7665 // initializer, and make sure the first IDX is really 0. 7666 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7667 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7668 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7669 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7670 return getCouldNotCompute(); 7671 7672 // Okay, we allow one non-constant index into the GEP instruction. 7673 Value *VarIdx = nullptr; 7674 std::vector<Constant*> Indexes; 7675 unsigned VarIdxNum = 0; 7676 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7677 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7678 Indexes.push_back(CI); 7679 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7680 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7681 VarIdx = GEP->getOperand(i); 7682 VarIdxNum = i-2; 7683 Indexes.push_back(nullptr); 7684 } 7685 7686 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7687 if (!VarIdx) 7688 return getCouldNotCompute(); 7689 7690 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7691 // Check to see if X is a loop variant variable value now. 7692 const SCEV *Idx = getSCEV(VarIdx); 7693 Idx = getSCEVAtScope(Idx, L); 7694 7695 // We can only recognize very limited forms of loop index expressions, in 7696 // particular, only affine AddRec's like {C1,+,C2}. 7697 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7698 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7699 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7700 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7701 return getCouldNotCompute(); 7702 7703 unsigned MaxSteps = MaxBruteForceIterations; 7704 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7705 ConstantInt *ItCst = ConstantInt::get( 7706 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7707 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7708 7709 // Form the GEP offset. 7710 Indexes[VarIdxNum] = Val; 7711 7712 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7713 Indexes); 7714 if (!Result) break; // Cannot compute! 7715 7716 // Evaluate the condition for this iteration. 7717 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7718 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7719 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7720 ++NumArrayLenItCounts; 7721 return getConstant(ItCst); // Found terminating iteration! 7722 } 7723 } 7724 return getCouldNotCompute(); 7725 } 7726 7727 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7728 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7729 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7730 if (!RHS) 7731 return getCouldNotCompute(); 7732 7733 const BasicBlock *Latch = L->getLoopLatch(); 7734 if (!Latch) 7735 return getCouldNotCompute(); 7736 7737 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7738 if (!Predecessor) 7739 return getCouldNotCompute(); 7740 7741 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7742 // Return LHS in OutLHS and shift_opt in OutOpCode. 7743 auto MatchPositiveShift = 7744 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7745 7746 using namespace PatternMatch; 7747 7748 ConstantInt *ShiftAmt; 7749 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7750 OutOpCode = Instruction::LShr; 7751 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7752 OutOpCode = Instruction::AShr; 7753 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7754 OutOpCode = Instruction::Shl; 7755 else 7756 return false; 7757 7758 return ShiftAmt->getValue().isStrictlyPositive(); 7759 }; 7760 7761 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7762 // 7763 // loop: 7764 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7765 // %iv.shifted = lshr i32 %iv, <positive constant> 7766 // 7767 // Return true on a successful match. Return the corresponding PHI node (%iv 7768 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7769 auto MatchShiftRecurrence = 7770 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7771 Optional<Instruction::BinaryOps> PostShiftOpCode; 7772 7773 { 7774 Instruction::BinaryOps OpC; 7775 Value *V; 7776 7777 // If we encounter a shift instruction, "peel off" the shift operation, 7778 // and remember that we did so. Later when we inspect %iv's backedge 7779 // value, we will make sure that the backedge value uses the same 7780 // operation. 7781 // 7782 // Note: the peeled shift operation does not have to be the same 7783 // instruction as the one feeding into the PHI's backedge value. We only 7784 // really care about it being the same *kind* of shift instruction -- 7785 // that's all that is required for our later inferences to hold. 7786 if (MatchPositiveShift(LHS, V, OpC)) { 7787 PostShiftOpCode = OpC; 7788 LHS = V; 7789 } 7790 } 7791 7792 PNOut = dyn_cast<PHINode>(LHS); 7793 if (!PNOut || PNOut->getParent() != L->getHeader()) 7794 return false; 7795 7796 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7797 Value *OpLHS; 7798 7799 return 7800 // The backedge value for the PHI node must be a shift by a positive 7801 // amount 7802 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7803 7804 // of the PHI node itself 7805 OpLHS == PNOut && 7806 7807 // and the kind of shift should be match the kind of shift we peeled 7808 // off, if any. 7809 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7810 }; 7811 7812 PHINode *PN; 7813 Instruction::BinaryOps OpCode; 7814 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7815 return getCouldNotCompute(); 7816 7817 const DataLayout &DL = getDataLayout(); 7818 7819 // The key rationale for this optimization is that for some kinds of shift 7820 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7821 // within a finite number of iterations. If the condition guarding the 7822 // backedge (in the sense that the backedge is taken if the condition is true) 7823 // is false for the value the shift recurrence stabilizes to, then we know 7824 // that the backedge is taken only a finite number of times. 7825 7826 ConstantInt *StableValue = nullptr; 7827 switch (OpCode) { 7828 default: 7829 llvm_unreachable("Impossible case!"); 7830 7831 case Instruction::AShr: { 7832 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7833 // bitwidth(K) iterations. 7834 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7835 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7836 Predecessor->getTerminator(), &DT); 7837 auto *Ty = cast<IntegerType>(RHS->getType()); 7838 if (Known.isNonNegative()) 7839 StableValue = ConstantInt::get(Ty, 0); 7840 else if (Known.isNegative()) 7841 StableValue = ConstantInt::get(Ty, -1, true); 7842 else 7843 return getCouldNotCompute(); 7844 7845 break; 7846 } 7847 case Instruction::LShr: 7848 case Instruction::Shl: 7849 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7850 // stabilize to 0 in at most bitwidth(K) iterations. 7851 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7852 break; 7853 } 7854 7855 auto *Result = 7856 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7857 assert(Result->getType()->isIntegerTy(1) && 7858 "Otherwise cannot be an operand to a branch instruction"); 7859 7860 if (Result->isZeroValue()) { 7861 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7862 const SCEV *UpperBound = 7863 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7864 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7865 } 7866 7867 return getCouldNotCompute(); 7868 } 7869 7870 /// Return true if we can constant fold an instruction of the specified type, 7871 /// assuming that all operands were constants. 7872 static bool CanConstantFold(const Instruction *I) { 7873 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7874 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7875 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7876 return true; 7877 7878 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7879 if (const Function *F = CI->getCalledFunction()) 7880 return canConstantFoldCallTo(CI, F); 7881 return false; 7882 } 7883 7884 /// Determine whether this instruction can constant evolve within this loop 7885 /// assuming its operands can all constant evolve. 7886 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7887 // An instruction outside of the loop can't be derived from a loop PHI. 7888 if (!L->contains(I)) return false; 7889 7890 if (isa<PHINode>(I)) { 7891 // We don't currently keep track of the control flow needed to evaluate 7892 // PHIs, so we cannot handle PHIs inside of loops. 7893 return L->getHeader() == I->getParent(); 7894 } 7895 7896 // If we won't be able to constant fold this expression even if the operands 7897 // are constants, bail early. 7898 return CanConstantFold(I); 7899 } 7900 7901 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7902 /// recursing through each instruction operand until reaching a loop header phi. 7903 static PHINode * 7904 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7905 DenseMap<Instruction *, PHINode *> &PHIMap, 7906 unsigned Depth) { 7907 if (Depth > MaxConstantEvolvingDepth) 7908 return nullptr; 7909 7910 // Otherwise, we can evaluate this instruction if all of its operands are 7911 // constant or derived from a PHI node themselves. 7912 PHINode *PHI = nullptr; 7913 for (Value *Op : UseInst->operands()) { 7914 if (isa<Constant>(Op)) continue; 7915 7916 Instruction *OpInst = dyn_cast<Instruction>(Op); 7917 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7918 7919 PHINode *P = dyn_cast<PHINode>(OpInst); 7920 if (!P) 7921 // If this operand is already visited, reuse the prior result. 7922 // We may have P != PHI if this is the deepest point at which the 7923 // inconsistent paths meet. 7924 P = PHIMap.lookup(OpInst); 7925 if (!P) { 7926 // Recurse and memoize the results, whether a phi is found or not. 7927 // This recursive call invalidates pointers into PHIMap. 7928 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7929 PHIMap[OpInst] = P; 7930 } 7931 if (!P) 7932 return nullptr; // Not evolving from PHI 7933 if (PHI && PHI != P) 7934 return nullptr; // Evolving from multiple different PHIs. 7935 PHI = P; 7936 } 7937 // This is a expression evolving from a constant PHI! 7938 return PHI; 7939 } 7940 7941 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7942 /// in the loop that V is derived from. We allow arbitrary operations along the 7943 /// way, but the operands of an operation must either be constants or a value 7944 /// derived from a constant PHI. If this expression does not fit with these 7945 /// constraints, return null. 7946 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7947 Instruction *I = dyn_cast<Instruction>(V); 7948 if (!I || !canConstantEvolve(I, L)) return nullptr; 7949 7950 if (PHINode *PN = dyn_cast<PHINode>(I)) 7951 return PN; 7952 7953 // Record non-constant instructions contained by the loop. 7954 DenseMap<Instruction *, PHINode *> PHIMap; 7955 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7956 } 7957 7958 /// EvaluateExpression - Given an expression that passes the 7959 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7960 /// in the loop has the value PHIVal. If we can't fold this expression for some 7961 /// reason, return null. 7962 static Constant *EvaluateExpression(Value *V, const Loop *L, 7963 DenseMap<Instruction *, Constant *> &Vals, 7964 const DataLayout &DL, 7965 const TargetLibraryInfo *TLI) { 7966 // Convenient constant check, but redundant for recursive calls. 7967 if (Constant *C = dyn_cast<Constant>(V)) return C; 7968 Instruction *I = dyn_cast<Instruction>(V); 7969 if (!I) return nullptr; 7970 7971 if (Constant *C = Vals.lookup(I)) return C; 7972 7973 // An instruction inside the loop depends on a value outside the loop that we 7974 // weren't given a mapping for, or a value such as a call inside the loop. 7975 if (!canConstantEvolve(I, L)) return nullptr; 7976 7977 // An unmapped PHI can be due to a branch or another loop inside this loop, 7978 // or due to this not being the initial iteration through a loop where we 7979 // couldn't compute the evolution of this particular PHI last time. 7980 if (isa<PHINode>(I)) return nullptr; 7981 7982 std::vector<Constant*> Operands(I->getNumOperands()); 7983 7984 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7985 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7986 if (!Operand) { 7987 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7988 if (!Operands[i]) return nullptr; 7989 continue; 7990 } 7991 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7992 Vals[Operand] = C; 7993 if (!C) return nullptr; 7994 Operands[i] = C; 7995 } 7996 7997 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7998 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7999 Operands[1], DL, TLI); 8000 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8001 if (!LI->isVolatile()) 8002 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8003 } 8004 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8005 } 8006 8007 8008 // If every incoming value to PN except the one for BB is a specific Constant, 8009 // return that, else return nullptr. 8010 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8011 Constant *IncomingVal = nullptr; 8012 8013 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8014 if (PN->getIncomingBlock(i) == BB) 8015 continue; 8016 8017 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8018 if (!CurrentVal) 8019 return nullptr; 8020 8021 if (IncomingVal != CurrentVal) { 8022 if (IncomingVal) 8023 return nullptr; 8024 IncomingVal = CurrentVal; 8025 } 8026 } 8027 8028 return IncomingVal; 8029 } 8030 8031 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8032 /// in the header of its containing loop, we know the loop executes a 8033 /// constant number of times, and the PHI node is just a recurrence 8034 /// involving constants, fold it. 8035 Constant * 8036 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8037 const APInt &BEs, 8038 const Loop *L) { 8039 auto I = ConstantEvolutionLoopExitValue.find(PN); 8040 if (I != ConstantEvolutionLoopExitValue.end()) 8041 return I->second; 8042 8043 if (BEs.ugt(MaxBruteForceIterations)) 8044 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8045 8046 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8047 8048 DenseMap<Instruction *, Constant *> CurrentIterVals; 8049 BasicBlock *Header = L->getHeader(); 8050 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8051 8052 BasicBlock *Latch = L->getLoopLatch(); 8053 if (!Latch) 8054 return nullptr; 8055 8056 for (PHINode &PHI : Header->phis()) { 8057 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8058 CurrentIterVals[&PHI] = StartCST; 8059 } 8060 if (!CurrentIterVals.count(PN)) 8061 return RetVal = nullptr; 8062 8063 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8064 8065 // Execute the loop symbolically to determine the exit value. 8066 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8067 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8068 8069 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8070 unsigned IterationNum = 0; 8071 const DataLayout &DL = getDataLayout(); 8072 for (; ; ++IterationNum) { 8073 if (IterationNum == NumIterations) 8074 return RetVal = CurrentIterVals[PN]; // Got exit value! 8075 8076 // Compute the value of the PHIs for the next iteration. 8077 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8078 DenseMap<Instruction *, Constant *> NextIterVals; 8079 Constant *NextPHI = 8080 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8081 if (!NextPHI) 8082 return nullptr; // Couldn't evaluate! 8083 NextIterVals[PN] = NextPHI; 8084 8085 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8086 8087 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8088 // cease to be able to evaluate one of them or if they stop evolving, 8089 // because that doesn't necessarily prevent us from computing PN. 8090 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8091 for (const auto &I : CurrentIterVals) { 8092 PHINode *PHI = dyn_cast<PHINode>(I.first); 8093 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8094 PHIsToCompute.emplace_back(PHI, I.second); 8095 } 8096 // We use two distinct loops because EvaluateExpression may invalidate any 8097 // iterators into CurrentIterVals. 8098 for (const auto &I : PHIsToCompute) { 8099 PHINode *PHI = I.first; 8100 Constant *&NextPHI = NextIterVals[PHI]; 8101 if (!NextPHI) { // Not already computed. 8102 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8103 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8104 } 8105 if (NextPHI != I.second) 8106 StoppedEvolving = false; 8107 } 8108 8109 // If all entries in CurrentIterVals == NextIterVals then we can stop 8110 // iterating, the loop can't continue to change. 8111 if (StoppedEvolving) 8112 return RetVal = CurrentIterVals[PN]; 8113 8114 CurrentIterVals.swap(NextIterVals); 8115 } 8116 } 8117 8118 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8119 Value *Cond, 8120 bool ExitWhen) { 8121 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8122 if (!PN) return getCouldNotCompute(); 8123 8124 // If the loop is canonicalized, the PHI will have exactly two entries. 8125 // That's the only form we support here. 8126 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8127 8128 DenseMap<Instruction *, Constant *> CurrentIterVals; 8129 BasicBlock *Header = L->getHeader(); 8130 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8131 8132 BasicBlock *Latch = L->getLoopLatch(); 8133 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8134 8135 for (PHINode &PHI : Header->phis()) { 8136 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8137 CurrentIterVals[&PHI] = StartCST; 8138 } 8139 if (!CurrentIterVals.count(PN)) 8140 return getCouldNotCompute(); 8141 8142 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8143 // the loop symbolically to determine when the condition gets a value of 8144 // "ExitWhen". 8145 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8146 const DataLayout &DL = getDataLayout(); 8147 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8148 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8149 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8150 8151 // Couldn't symbolically evaluate. 8152 if (!CondVal) return getCouldNotCompute(); 8153 8154 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8155 ++NumBruteForceTripCountsComputed; 8156 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8157 } 8158 8159 // Update all the PHI nodes for the next iteration. 8160 DenseMap<Instruction *, Constant *> NextIterVals; 8161 8162 // Create a list of which PHIs we need to compute. We want to do this before 8163 // calling EvaluateExpression on them because that may invalidate iterators 8164 // into CurrentIterVals. 8165 SmallVector<PHINode *, 8> PHIsToCompute; 8166 for (const auto &I : CurrentIterVals) { 8167 PHINode *PHI = dyn_cast<PHINode>(I.first); 8168 if (!PHI || PHI->getParent() != Header) continue; 8169 PHIsToCompute.push_back(PHI); 8170 } 8171 for (PHINode *PHI : PHIsToCompute) { 8172 Constant *&NextPHI = NextIterVals[PHI]; 8173 if (NextPHI) continue; // Already computed! 8174 8175 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8176 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8177 } 8178 CurrentIterVals.swap(NextIterVals); 8179 } 8180 8181 // Too many iterations were needed to evaluate. 8182 return getCouldNotCompute(); 8183 } 8184 8185 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8186 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8187 ValuesAtScopes[V]; 8188 // Check to see if we've folded this expression at this loop before. 8189 for (auto &LS : Values) 8190 if (LS.first == L) 8191 return LS.second ? LS.second : V; 8192 8193 Values.emplace_back(L, nullptr); 8194 8195 // Otherwise compute it. 8196 const SCEV *C = computeSCEVAtScope(V, L); 8197 for (auto &LS : reverse(ValuesAtScopes[V])) 8198 if (LS.first == L) { 8199 LS.second = C; 8200 break; 8201 } 8202 return C; 8203 } 8204 8205 /// This builds up a Constant using the ConstantExpr interface. That way, we 8206 /// will return Constants for objects which aren't represented by a 8207 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8208 /// Returns NULL if the SCEV isn't representable as a Constant. 8209 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8210 switch (V->getSCEVType()) { 8211 case scCouldNotCompute: 8212 case scAddRecExpr: 8213 return nullptr; 8214 case scConstant: 8215 return cast<SCEVConstant>(V)->getValue(); 8216 case scUnknown: 8217 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8218 case scSignExtend: { 8219 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8220 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8221 return ConstantExpr::getSExt(CastOp, SS->getType()); 8222 return nullptr; 8223 } 8224 case scZeroExtend: { 8225 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8226 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8227 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8228 return nullptr; 8229 } 8230 case scPtrToInt: { 8231 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8232 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8233 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8234 8235 return nullptr; 8236 } 8237 case scTruncate: { 8238 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8239 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8240 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8241 return nullptr; 8242 } 8243 case scAddExpr: { 8244 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8245 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8246 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8247 unsigned AS = PTy->getAddressSpace(); 8248 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8249 C = ConstantExpr::getBitCast(C, DestPtrTy); 8250 } 8251 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8252 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8253 if (!C2) 8254 return nullptr; 8255 8256 // First pointer! 8257 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8258 unsigned AS = C2->getType()->getPointerAddressSpace(); 8259 std::swap(C, C2); 8260 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8261 // The offsets have been converted to bytes. We can add bytes to an 8262 // i8* by GEP with the byte count in the first index. 8263 C = ConstantExpr::getBitCast(C, DestPtrTy); 8264 } 8265 8266 // Don't bother trying to sum two pointers. We probably can't 8267 // statically compute a load that results from it anyway. 8268 if (C2->getType()->isPointerTy()) 8269 return nullptr; 8270 8271 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8272 if (PTy->getElementType()->isStructTy()) 8273 C2 = ConstantExpr::getIntegerCast( 8274 C2, Type::getInt32Ty(C->getContext()), true); 8275 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8276 } else 8277 C = ConstantExpr::getAdd(C, C2); 8278 } 8279 return C; 8280 } 8281 return nullptr; 8282 } 8283 case scMulExpr: { 8284 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8285 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8286 // Don't bother with pointers at all. 8287 if (C->getType()->isPointerTy()) 8288 return nullptr; 8289 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8290 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8291 if (!C2 || C2->getType()->isPointerTy()) 8292 return nullptr; 8293 C = ConstantExpr::getMul(C, C2); 8294 } 8295 return C; 8296 } 8297 return nullptr; 8298 } 8299 case scUDivExpr: { 8300 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8301 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8302 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8303 if (LHS->getType() == RHS->getType()) 8304 return ConstantExpr::getUDiv(LHS, RHS); 8305 return nullptr; 8306 } 8307 case scSMaxExpr: 8308 case scUMaxExpr: 8309 case scSMinExpr: 8310 case scUMinExpr: 8311 return nullptr; // TODO: smax, umax, smin, umax. 8312 } 8313 llvm_unreachable("Unknown SCEV kind!"); 8314 } 8315 8316 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8317 if (isa<SCEVConstant>(V)) return V; 8318 8319 // If this instruction is evolved from a constant-evolving PHI, compute the 8320 // exit value from the loop without using SCEVs. 8321 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8322 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8323 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8324 const Loop *CurrLoop = this->LI[I->getParent()]; 8325 // Looking for loop exit value. 8326 if (CurrLoop && CurrLoop->getParentLoop() == L && 8327 PN->getParent() == CurrLoop->getHeader()) { 8328 // Okay, there is no closed form solution for the PHI node. Check 8329 // to see if the loop that contains it has a known backedge-taken 8330 // count. If so, we may be able to force computation of the exit 8331 // value. 8332 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8333 // This trivial case can show up in some degenerate cases where 8334 // the incoming IR has not yet been fully simplified. 8335 if (BackedgeTakenCount->isZero()) { 8336 Value *InitValue = nullptr; 8337 bool MultipleInitValues = false; 8338 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8339 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8340 if (!InitValue) 8341 InitValue = PN->getIncomingValue(i); 8342 else if (InitValue != PN->getIncomingValue(i)) { 8343 MultipleInitValues = true; 8344 break; 8345 } 8346 } 8347 } 8348 if (!MultipleInitValues && InitValue) 8349 return getSCEV(InitValue); 8350 } 8351 // Do we have a loop invariant value flowing around the backedge 8352 // for a loop which must execute the backedge? 8353 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8354 isKnownPositive(BackedgeTakenCount) && 8355 PN->getNumIncomingValues() == 2) { 8356 8357 unsigned InLoopPred = 8358 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8359 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8360 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8361 return getSCEV(BackedgeVal); 8362 } 8363 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8364 // Okay, we know how many times the containing loop executes. If 8365 // this is a constant evolving PHI node, get the final value at 8366 // the specified iteration number. 8367 Constant *RV = getConstantEvolutionLoopExitValue( 8368 PN, BTCC->getAPInt(), CurrLoop); 8369 if (RV) return getSCEV(RV); 8370 } 8371 } 8372 8373 // If there is a single-input Phi, evaluate it at our scope. If we can 8374 // prove that this replacement does not break LCSSA form, use new value. 8375 if (PN->getNumOperands() == 1) { 8376 const SCEV *Input = getSCEV(PN->getOperand(0)); 8377 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8378 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8379 // for the simplest case just support constants. 8380 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8381 } 8382 } 8383 8384 // Okay, this is an expression that we cannot symbolically evaluate 8385 // into a SCEV. Check to see if it's possible to symbolically evaluate 8386 // the arguments into constants, and if so, try to constant propagate the 8387 // result. This is particularly useful for computing loop exit values. 8388 if (CanConstantFold(I)) { 8389 SmallVector<Constant *, 4> Operands; 8390 bool MadeImprovement = false; 8391 for (Value *Op : I->operands()) { 8392 if (Constant *C = dyn_cast<Constant>(Op)) { 8393 Operands.push_back(C); 8394 continue; 8395 } 8396 8397 // If any of the operands is non-constant and if they are 8398 // non-integer and non-pointer, don't even try to analyze them 8399 // with scev techniques. 8400 if (!isSCEVable(Op->getType())) 8401 return V; 8402 8403 const SCEV *OrigV = getSCEV(Op); 8404 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8405 MadeImprovement |= OrigV != OpV; 8406 8407 Constant *C = BuildConstantFromSCEV(OpV); 8408 if (!C) return V; 8409 if (C->getType() != Op->getType()) 8410 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8411 Op->getType(), 8412 false), 8413 C, Op->getType()); 8414 Operands.push_back(C); 8415 } 8416 8417 // Check to see if getSCEVAtScope actually made an improvement. 8418 if (MadeImprovement) { 8419 Constant *C = nullptr; 8420 const DataLayout &DL = getDataLayout(); 8421 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8422 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8423 Operands[1], DL, &TLI); 8424 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8425 if (!Load->isVolatile()) 8426 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8427 DL); 8428 } else 8429 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8430 if (!C) return V; 8431 return getSCEV(C); 8432 } 8433 } 8434 } 8435 8436 // This is some other type of SCEVUnknown, just return it. 8437 return V; 8438 } 8439 8440 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8441 // Avoid performing the look-up in the common case where the specified 8442 // expression has no loop-variant portions. 8443 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8444 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8445 if (OpAtScope != Comm->getOperand(i)) { 8446 // Okay, at least one of these operands is loop variant but might be 8447 // foldable. Build a new instance of the folded commutative expression. 8448 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8449 Comm->op_begin()+i); 8450 NewOps.push_back(OpAtScope); 8451 8452 for (++i; i != e; ++i) { 8453 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8454 NewOps.push_back(OpAtScope); 8455 } 8456 if (isa<SCEVAddExpr>(Comm)) 8457 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8458 if (isa<SCEVMulExpr>(Comm)) 8459 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8460 if (isa<SCEVMinMaxExpr>(Comm)) 8461 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8462 llvm_unreachable("Unknown commutative SCEV type!"); 8463 } 8464 } 8465 // If we got here, all operands are loop invariant. 8466 return Comm; 8467 } 8468 8469 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8470 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8471 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8472 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8473 return Div; // must be loop invariant 8474 return getUDivExpr(LHS, RHS); 8475 } 8476 8477 // If this is a loop recurrence for a loop that does not contain L, then we 8478 // are dealing with the final value computed by the loop. 8479 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8480 // First, attempt to evaluate each operand. 8481 // Avoid performing the look-up in the common case where the specified 8482 // expression has no loop-variant portions. 8483 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8484 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8485 if (OpAtScope == AddRec->getOperand(i)) 8486 continue; 8487 8488 // Okay, at least one of these operands is loop variant but might be 8489 // foldable. Build a new instance of the folded commutative expression. 8490 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8491 AddRec->op_begin()+i); 8492 NewOps.push_back(OpAtScope); 8493 for (++i; i != e; ++i) 8494 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8495 8496 const SCEV *FoldedRec = 8497 getAddRecExpr(NewOps, AddRec->getLoop(), 8498 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8499 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8500 // The addrec may be folded to a nonrecurrence, for example, if the 8501 // induction variable is multiplied by zero after constant folding. Go 8502 // ahead and return the folded value. 8503 if (!AddRec) 8504 return FoldedRec; 8505 break; 8506 } 8507 8508 // If the scope is outside the addrec's loop, evaluate it by using the 8509 // loop exit value of the addrec. 8510 if (!AddRec->getLoop()->contains(L)) { 8511 // To evaluate this recurrence, we need to know how many times the AddRec 8512 // loop iterates. Compute this now. 8513 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8514 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8515 8516 // Then, evaluate the AddRec. 8517 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8518 } 8519 8520 return AddRec; 8521 } 8522 8523 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8524 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8525 if (Op == Cast->getOperand()) 8526 return Cast; // must be loop invariant 8527 return getZeroExtendExpr(Op, Cast->getType()); 8528 } 8529 8530 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8531 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8532 if (Op == Cast->getOperand()) 8533 return Cast; // must be loop invariant 8534 return getSignExtendExpr(Op, Cast->getType()); 8535 } 8536 8537 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8538 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8539 if (Op == Cast->getOperand()) 8540 return Cast; // must be loop invariant 8541 return getTruncateExpr(Op, Cast->getType()); 8542 } 8543 8544 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 8545 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8546 if (Op == Cast->getOperand()) 8547 return Cast; // must be loop invariant 8548 return getPtrToIntExpr(Op, Cast->getType()); 8549 } 8550 8551 llvm_unreachable("Unknown SCEV type!"); 8552 } 8553 8554 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8555 return getSCEVAtScope(getSCEV(V), L); 8556 } 8557 8558 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8559 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8560 return stripInjectiveFunctions(ZExt->getOperand()); 8561 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8562 return stripInjectiveFunctions(SExt->getOperand()); 8563 return S; 8564 } 8565 8566 /// Finds the minimum unsigned root of the following equation: 8567 /// 8568 /// A * X = B (mod N) 8569 /// 8570 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8571 /// A and B isn't important. 8572 /// 8573 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8574 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8575 ScalarEvolution &SE) { 8576 uint32_t BW = A.getBitWidth(); 8577 assert(BW == SE.getTypeSizeInBits(B->getType())); 8578 assert(A != 0 && "A must be non-zero."); 8579 8580 // 1. D = gcd(A, N) 8581 // 8582 // The gcd of A and N may have only one prime factor: 2. The number of 8583 // trailing zeros in A is its multiplicity 8584 uint32_t Mult2 = A.countTrailingZeros(); 8585 // D = 2^Mult2 8586 8587 // 2. Check if B is divisible by D. 8588 // 8589 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8590 // is not less than multiplicity of this prime factor for D. 8591 if (SE.GetMinTrailingZeros(B) < Mult2) 8592 return SE.getCouldNotCompute(); 8593 8594 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8595 // modulo (N / D). 8596 // 8597 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8598 // (N / D) in general. The inverse itself always fits into BW bits, though, 8599 // so we immediately truncate it. 8600 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8601 APInt Mod(BW + 1, 0); 8602 Mod.setBit(BW - Mult2); // Mod = N / D 8603 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8604 8605 // 4. Compute the minimum unsigned root of the equation: 8606 // I * (B / D) mod (N / D) 8607 // To simplify the computation, we factor out the divide by D: 8608 // (I * B mod N) / D 8609 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8610 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8611 } 8612 8613 /// For a given quadratic addrec, generate coefficients of the corresponding 8614 /// quadratic equation, multiplied by a common value to ensure that they are 8615 /// integers. 8616 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8617 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8618 /// were multiplied by, and BitWidth is the bit width of the original addrec 8619 /// coefficients. 8620 /// This function returns None if the addrec coefficients are not compile- 8621 /// time constants. 8622 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8623 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8624 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8625 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8626 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8627 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8628 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8629 << *AddRec << '\n'); 8630 8631 // We currently can only solve this if the coefficients are constants. 8632 if (!LC || !MC || !NC) { 8633 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8634 return None; 8635 } 8636 8637 APInt L = LC->getAPInt(); 8638 APInt M = MC->getAPInt(); 8639 APInt N = NC->getAPInt(); 8640 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8641 8642 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8643 unsigned NewWidth = BitWidth + 1; 8644 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8645 << BitWidth << '\n'); 8646 // The sign-extension (as opposed to a zero-extension) here matches the 8647 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8648 N = N.sext(NewWidth); 8649 M = M.sext(NewWidth); 8650 L = L.sext(NewWidth); 8651 8652 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8653 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8654 // L+M, L+2M+N, L+3M+3N, ... 8655 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8656 // 8657 // The equation Acc = 0 is then 8658 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8659 // In a quadratic form it becomes: 8660 // N n^2 + (2M-N) n + 2L = 0. 8661 8662 APInt A = N; 8663 APInt B = 2 * M - A; 8664 APInt C = 2 * L; 8665 APInt T = APInt(NewWidth, 2); 8666 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8667 << "x + " << C << ", coeff bw: " << NewWidth 8668 << ", multiplied by " << T << '\n'); 8669 return std::make_tuple(A, B, C, T, BitWidth); 8670 } 8671 8672 /// Helper function to compare optional APInts: 8673 /// (a) if X and Y both exist, return min(X, Y), 8674 /// (b) if neither X nor Y exist, return None, 8675 /// (c) if exactly one of X and Y exists, return that value. 8676 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8677 if (X.hasValue() && Y.hasValue()) { 8678 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8679 APInt XW = X->sextOrSelf(W); 8680 APInt YW = Y->sextOrSelf(W); 8681 return XW.slt(YW) ? *X : *Y; 8682 } 8683 if (!X.hasValue() && !Y.hasValue()) 8684 return None; 8685 return X.hasValue() ? *X : *Y; 8686 } 8687 8688 /// Helper function to truncate an optional APInt to a given BitWidth. 8689 /// When solving addrec-related equations, it is preferable to return a value 8690 /// that has the same bit width as the original addrec's coefficients. If the 8691 /// solution fits in the original bit width, truncate it (except for i1). 8692 /// Returning a value of a different bit width may inhibit some optimizations. 8693 /// 8694 /// In general, a solution to a quadratic equation generated from an addrec 8695 /// may require BW+1 bits, where BW is the bit width of the addrec's 8696 /// coefficients. The reason is that the coefficients of the quadratic 8697 /// equation are BW+1 bits wide (to avoid truncation when converting from 8698 /// the addrec to the equation). 8699 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8700 if (!X.hasValue()) 8701 return None; 8702 unsigned W = X->getBitWidth(); 8703 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8704 return X->trunc(BitWidth); 8705 return X; 8706 } 8707 8708 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8709 /// iterations. The values L, M, N are assumed to be signed, and they 8710 /// should all have the same bit widths. 8711 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8712 /// where BW is the bit width of the addrec's coefficients. 8713 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8714 /// returned as such, otherwise the bit width of the returned value may 8715 /// be greater than BW. 8716 /// 8717 /// This function returns None if 8718 /// (a) the addrec coefficients are not constant, or 8719 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8720 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8721 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8722 static Optional<APInt> 8723 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8724 APInt A, B, C, M; 8725 unsigned BitWidth; 8726 auto T = GetQuadraticEquation(AddRec); 8727 if (!T.hasValue()) 8728 return None; 8729 8730 std::tie(A, B, C, M, BitWidth) = *T; 8731 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8732 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8733 if (!X.hasValue()) 8734 return None; 8735 8736 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8737 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8738 if (!V->isZero()) 8739 return None; 8740 8741 return TruncIfPossible(X, BitWidth); 8742 } 8743 8744 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8745 /// iterations. The values M, N are assumed to be signed, and they 8746 /// should all have the same bit widths. 8747 /// Find the least n such that c(n) does not belong to the given range, 8748 /// while c(n-1) does. 8749 /// 8750 /// This function returns None if 8751 /// (a) the addrec coefficients are not constant, or 8752 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8753 /// bounds of the range. 8754 static Optional<APInt> 8755 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8756 const ConstantRange &Range, ScalarEvolution &SE) { 8757 assert(AddRec->getOperand(0)->isZero() && 8758 "Starting value of addrec should be 0"); 8759 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8760 << Range << ", addrec " << *AddRec << '\n'); 8761 // This case is handled in getNumIterationsInRange. Here we can assume that 8762 // we start in the range. 8763 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8764 "Addrec's initial value should be in range"); 8765 8766 APInt A, B, C, M; 8767 unsigned BitWidth; 8768 auto T = GetQuadraticEquation(AddRec); 8769 if (!T.hasValue()) 8770 return None; 8771 8772 // Be careful about the return value: there can be two reasons for not 8773 // returning an actual number. First, if no solutions to the equations 8774 // were found, and second, if the solutions don't leave the given range. 8775 // The first case means that the actual solution is "unknown", the second 8776 // means that it's known, but not valid. If the solution is unknown, we 8777 // cannot make any conclusions. 8778 // Return a pair: the optional solution and a flag indicating if the 8779 // solution was found. 8780 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8781 // Solve for signed overflow and unsigned overflow, pick the lower 8782 // solution. 8783 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8784 << Bound << " (before multiplying by " << M << ")\n"); 8785 Bound *= M; // The quadratic equation multiplier. 8786 8787 Optional<APInt> SO = None; 8788 if (BitWidth > 1) { 8789 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8790 "signed overflow\n"); 8791 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8792 } 8793 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8794 "unsigned overflow\n"); 8795 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8796 BitWidth+1); 8797 8798 auto LeavesRange = [&] (const APInt &X) { 8799 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8800 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8801 if (Range.contains(V0->getValue())) 8802 return false; 8803 // X should be at least 1, so X-1 is non-negative. 8804 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8805 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8806 if (Range.contains(V1->getValue())) 8807 return true; 8808 return false; 8809 }; 8810 8811 // If SolveQuadraticEquationWrap returns None, it means that there can 8812 // be a solution, but the function failed to find it. We cannot treat it 8813 // as "no solution". 8814 if (!SO.hasValue() || !UO.hasValue()) 8815 return { None, false }; 8816 8817 // Check the smaller value first to see if it leaves the range. 8818 // At this point, both SO and UO must have values. 8819 Optional<APInt> Min = MinOptional(SO, UO); 8820 if (LeavesRange(*Min)) 8821 return { Min, true }; 8822 Optional<APInt> Max = Min == SO ? UO : SO; 8823 if (LeavesRange(*Max)) 8824 return { Max, true }; 8825 8826 // Solutions were found, but were eliminated, hence the "true". 8827 return { None, true }; 8828 }; 8829 8830 std::tie(A, B, C, M, BitWidth) = *T; 8831 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8832 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8833 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8834 auto SL = SolveForBoundary(Lower); 8835 auto SU = SolveForBoundary(Upper); 8836 // If any of the solutions was unknown, no meaninigful conclusions can 8837 // be made. 8838 if (!SL.second || !SU.second) 8839 return None; 8840 8841 // Claim: The correct solution is not some value between Min and Max. 8842 // 8843 // Justification: Assuming that Min and Max are different values, one of 8844 // them is when the first signed overflow happens, the other is when the 8845 // first unsigned overflow happens. Crossing the range boundary is only 8846 // possible via an overflow (treating 0 as a special case of it, modeling 8847 // an overflow as crossing k*2^W for some k). 8848 // 8849 // The interesting case here is when Min was eliminated as an invalid 8850 // solution, but Max was not. The argument is that if there was another 8851 // overflow between Min and Max, it would also have been eliminated if 8852 // it was considered. 8853 // 8854 // For a given boundary, it is possible to have two overflows of the same 8855 // type (signed/unsigned) without having the other type in between: this 8856 // can happen when the vertex of the parabola is between the iterations 8857 // corresponding to the overflows. This is only possible when the two 8858 // overflows cross k*2^W for the same k. In such case, if the second one 8859 // left the range (and was the first one to do so), the first overflow 8860 // would have to enter the range, which would mean that either we had left 8861 // the range before or that we started outside of it. Both of these cases 8862 // are contradictions. 8863 // 8864 // Claim: In the case where SolveForBoundary returns None, the correct 8865 // solution is not some value between the Max for this boundary and the 8866 // Min of the other boundary. 8867 // 8868 // Justification: Assume that we had such Max_A and Min_B corresponding 8869 // to range boundaries A and B and such that Max_A < Min_B. If there was 8870 // a solution between Max_A and Min_B, it would have to be caused by an 8871 // overflow corresponding to either A or B. It cannot correspond to B, 8872 // since Min_B is the first occurrence of such an overflow. If it 8873 // corresponded to A, it would have to be either a signed or an unsigned 8874 // overflow that is larger than both eliminated overflows for A. But 8875 // between the eliminated overflows and this overflow, the values would 8876 // cover the entire value space, thus crossing the other boundary, which 8877 // is a contradiction. 8878 8879 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8880 } 8881 8882 ScalarEvolution::ExitLimit 8883 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8884 bool AllowPredicates) { 8885 8886 // This is only used for loops with a "x != y" exit test. The exit condition 8887 // is now expressed as a single expression, V = x-y. So the exit test is 8888 // effectively V != 0. We know and take advantage of the fact that this 8889 // expression only being used in a comparison by zero context. 8890 8891 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8892 // If the value is a constant 8893 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8894 // If the value is already zero, the branch will execute zero times. 8895 if (C->getValue()->isZero()) return C; 8896 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8897 } 8898 8899 const SCEVAddRecExpr *AddRec = 8900 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8901 8902 if (!AddRec && AllowPredicates) 8903 // Try to make this an AddRec using runtime tests, in the first X 8904 // iterations of this loop, where X is the SCEV expression found by the 8905 // algorithm below. 8906 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8907 8908 if (!AddRec || AddRec->getLoop() != L) 8909 return getCouldNotCompute(); 8910 8911 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8912 // the quadratic equation to solve it. 8913 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8914 // We can only use this value if the chrec ends up with an exact zero 8915 // value at this index. When solving for "X*X != 5", for example, we 8916 // should not accept a root of 2. 8917 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8918 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8919 return ExitLimit(R, R, false, Predicates); 8920 } 8921 return getCouldNotCompute(); 8922 } 8923 8924 // Otherwise we can only handle this if it is affine. 8925 if (!AddRec->isAffine()) 8926 return getCouldNotCompute(); 8927 8928 // If this is an affine expression, the execution count of this branch is 8929 // the minimum unsigned root of the following equation: 8930 // 8931 // Start + Step*N = 0 (mod 2^BW) 8932 // 8933 // equivalent to: 8934 // 8935 // Step*N = -Start (mod 2^BW) 8936 // 8937 // where BW is the common bit width of Start and Step. 8938 8939 // Get the initial value for the loop. 8940 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8941 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8942 8943 // For now we handle only constant steps. 8944 // 8945 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8946 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8947 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8948 // We have not yet seen any such cases. 8949 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8950 if (!StepC || StepC->getValue()->isZero()) 8951 return getCouldNotCompute(); 8952 8953 // For positive steps (counting up until unsigned overflow): 8954 // N = -Start/Step (as unsigned) 8955 // For negative steps (counting down to zero): 8956 // N = Start/-Step 8957 // First compute the unsigned distance from zero in the direction of Step. 8958 bool CountDown = StepC->getAPInt().isNegative(); 8959 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8960 8961 // Handle unitary steps, which cannot wraparound. 8962 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8963 // N = Distance (as unsigned) 8964 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8965 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 8966 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 8967 if (MaxBECountBase.ult(MaxBECount)) 8968 MaxBECount = MaxBECountBase; 8969 8970 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8971 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8972 // case, and see if we can improve the bound. 8973 // 8974 // Explicitly handling this here is necessary because getUnsignedRange 8975 // isn't context-sensitive; it doesn't know that we only care about the 8976 // range inside the loop. 8977 const SCEV *Zero = getZero(Distance->getType()); 8978 const SCEV *One = getOne(Distance->getType()); 8979 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8980 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8981 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8982 // as "unsigned_max(Distance + 1) - 1". 8983 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8984 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8985 } 8986 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8987 } 8988 8989 // If the condition controls loop exit (the loop exits only if the expression 8990 // is true) and the addition is no-wrap we can use unsigned divide to 8991 // compute the backedge count. In this case, the step may not divide the 8992 // distance, but we don't care because if the condition is "missed" the loop 8993 // will have undefined behavior due to wrapping. 8994 if (ControlsExit && AddRec->hasNoSelfWrap() && 8995 loopHasNoAbnormalExits(AddRec->getLoop())) { 8996 const SCEV *Exact = 8997 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8998 const SCEV *Max = 8999 Exact == getCouldNotCompute() 9000 ? Exact 9001 : getConstant(getUnsignedRangeMax(Exact)); 9002 return ExitLimit(Exact, Max, false, Predicates); 9003 } 9004 9005 // Solve the general equation. 9006 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9007 getNegativeSCEV(Start), *this); 9008 const SCEV *M = E == getCouldNotCompute() 9009 ? E 9010 : getConstant(getUnsignedRangeMax(E)); 9011 return ExitLimit(E, M, false, Predicates); 9012 } 9013 9014 ScalarEvolution::ExitLimit 9015 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9016 // Loops that look like: while (X == 0) are very strange indeed. We don't 9017 // handle them yet except for the trivial case. This could be expanded in the 9018 // future as needed. 9019 9020 // If the value is a constant, check to see if it is known to be non-zero 9021 // already. If so, the backedge will execute zero times. 9022 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9023 if (!C->getValue()->isZero()) 9024 return getZero(C->getType()); 9025 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9026 } 9027 9028 // We could implement others, but I really doubt anyone writes loops like 9029 // this, and if they did, they would already be constant folded. 9030 return getCouldNotCompute(); 9031 } 9032 9033 std::pair<const BasicBlock *, const BasicBlock *> 9034 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9035 const { 9036 // If the block has a unique predecessor, then there is no path from the 9037 // predecessor to the block that does not go through the direct edge 9038 // from the predecessor to the block. 9039 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9040 return {Pred, BB}; 9041 9042 // A loop's header is defined to be a block that dominates the loop. 9043 // If the header has a unique predecessor outside the loop, it must be 9044 // a block that has exactly one successor that can reach the loop. 9045 if (const Loop *L = LI.getLoopFor(BB)) 9046 return {L->getLoopPredecessor(), L->getHeader()}; 9047 9048 return {nullptr, nullptr}; 9049 } 9050 9051 /// SCEV structural equivalence is usually sufficient for testing whether two 9052 /// expressions are equal, however for the purposes of looking for a condition 9053 /// guarding a loop, it can be useful to be a little more general, since a 9054 /// front-end may have replicated the controlling expression. 9055 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9056 // Quick check to see if they are the same SCEV. 9057 if (A == B) return true; 9058 9059 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9060 // Not all instructions that are "identical" compute the same value. For 9061 // instance, two distinct alloca instructions allocating the same type are 9062 // identical and do not read memory; but compute distinct values. 9063 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9064 }; 9065 9066 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9067 // two different instructions with the same value. Check for this case. 9068 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9069 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9070 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9071 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9072 if (ComputesEqualValues(AI, BI)) 9073 return true; 9074 9075 // Otherwise assume they may have a different value. 9076 return false; 9077 } 9078 9079 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9080 const SCEV *&LHS, const SCEV *&RHS, 9081 unsigned Depth) { 9082 bool Changed = false; 9083 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9084 // '0 != 0'. 9085 auto TrivialCase = [&](bool TriviallyTrue) { 9086 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9087 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9088 return true; 9089 }; 9090 // If we hit the max recursion limit bail out. 9091 if (Depth >= 3) 9092 return false; 9093 9094 // Canonicalize a constant to the right side. 9095 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9096 // Check for both operands constant. 9097 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9098 if (ConstantExpr::getICmp(Pred, 9099 LHSC->getValue(), 9100 RHSC->getValue())->isNullValue()) 9101 return TrivialCase(false); 9102 else 9103 return TrivialCase(true); 9104 } 9105 // Otherwise swap the operands to put the constant on the right. 9106 std::swap(LHS, RHS); 9107 Pred = ICmpInst::getSwappedPredicate(Pred); 9108 Changed = true; 9109 } 9110 9111 // If we're comparing an addrec with a value which is loop-invariant in the 9112 // addrec's loop, put the addrec on the left. Also make a dominance check, 9113 // as both operands could be addrecs loop-invariant in each other's loop. 9114 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9115 const Loop *L = AR->getLoop(); 9116 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9117 std::swap(LHS, RHS); 9118 Pred = ICmpInst::getSwappedPredicate(Pred); 9119 Changed = true; 9120 } 9121 } 9122 9123 // If there's a constant operand, canonicalize comparisons with boundary 9124 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9125 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9126 const APInt &RA = RC->getAPInt(); 9127 9128 bool SimplifiedByConstantRange = false; 9129 9130 if (!ICmpInst::isEquality(Pred)) { 9131 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9132 if (ExactCR.isFullSet()) 9133 return TrivialCase(true); 9134 else if (ExactCR.isEmptySet()) 9135 return TrivialCase(false); 9136 9137 APInt NewRHS; 9138 CmpInst::Predicate NewPred; 9139 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9140 ICmpInst::isEquality(NewPred)) { 9141 // We were able to convert an inequality to an equality. 9142 Pred = NewPred; 9143 RHS = getConstant(NewRHS); 9144 Changed = SimplifiedByConstantRange = true; 9145 } 9146 } 9147 9148 if (!SimplifiedByConstantRange) { 9149 switch (Pred) { 9150 default: 9151 break; 9152 case ICmpInst::ICMP_EQ: 9153 case ICmpInst::ICMP_NE: 9154 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9155 if (!RA) 9156 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9157 if (const SCEVMulExpr *ME = 9158 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9159 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9160 ME->getOperand(0)->isAllOnesValue()) { 9161 RHS = AE->getOperand(1); 9162 LHS = ME->getOperand(1); 9163 Changed = true; 9164 } 9165 break; 9166 9167 9168 // The "Should have been caught earlier!" messages refer to the fact 9169 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9170 // should have fired on the corresponding cases, and canonicalized the 9171 // check to trivial case. 9172 9173 case ICmpInst::ICMP_UGE: 9174 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9175 Pred = ICmpInst::ICMP_UGT; 9176 RHS = getConstant(RA - 1); 9177 Changed = true; 9178 break; 9179 case ICmpInst::ICMP_ULE: 9180 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9181 Pred = ICmpInst::ICMP_ULT; 9182 RHS = getConstant(RA + 1); 9183 Changed = true; 9184 break; 9185 case ICmpInst::ICMP_SGE: 9186 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9187 Pred = ICmpInst::ICMP_SGT; 9188 RHS = getConstant(RA - 1); 9189 Changed = true; 9190 break; 9191 case ICmpInst::ICMP_SLE: 9192 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9193 Pred = ICmpInst::ICMP_SLT; 9194 RHS = getConstant(RA + 1); 9195 Changed = true; 9196 break; 9197 } 9198 } 9199 } 9200 9201 // Check for obvious equality. 9202 if (HasSameValue(LHS, RHS)) { 9203 if (ICmpInst::isTrueWhenEqual(Pred)) 9204 return TrivialCase(true); 9205 if (ICmpInst::isFalseWhenEqual(Pred)) 9206 return TrivialCase(false); 9207 } 9208 9209 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9210 // adding or subtracting 1 from one of the operands. 9211 switch (Pred) { 9212 case ICmpInst::ICMP_SLE: 9213 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9214 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9215 SCEV::FlagNSW); 9216 Pred = ICmpInst::ICMP_SLT; 9217 Changed = true; 9218 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9219 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9220 SCEV::FlagNSW); 9221 Pred = ICmpInst::ICMP_SLT; 9222 Changed = true; 9223 } 9224 break; 9225 case ICmpInst::ICMP_SGE: 9226 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9227 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9228 SCEV::FlagNSW); 9229 Pred = ICmpInst::ICMP_SGT; 9230 Changed = true; 9231 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9232 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9233 SCEV::FlagNSW); 9234 Pred = ICmpInst::ICMP_SGT; 9235 Changed = true; 9236 } 9237 break; 9238 case ICmpInst::ICMP_ULE: 9239 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9240 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9241 SCEV::FlagNUW); 9242 Pred = ICmpInst::ICMP_ULT; 9243 Changed = true; 9244 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9245 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9246 Pred = ICmpInst::ICMP_ULT; 9247 Changed = true; 9248 } 9249 break; 9250 case ICmpInst::ICMP_UGE: 9251 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9252 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9253 Pred = ICmpInst::ICMP_UGT; 9254 Changed = true; 9255 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9256 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9257 SCEV::FlagNUW); 9258 Pred = ICmpInst::ICMP_UGT; 9259 Changed = true; 9260 } 9261 break; 9262 default: 9263 break; 9264 } 9265 9266 // TODO: More simplifications are possible here. 9267 9268 // Recursively simplify until we either hit a recursion limit or nothing 9269 // changes. 9270 if (Changed) 9271 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9272 9273 return Changed; 9274 } 9275 9276 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9277 return getSignedRangeMax(S).isNegative(); 9278 } 9279 9280 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9281 return getSignedRangeMin(S).isStrictlyPositive(); 9282 } 9283 9284 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9285 return !getSignedRangeMin(S).isNegative(); 9286 } 9287 9288 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9289 return !getSignedRangeMax(S).isStrictlyPositive(); 9290 } 9291 9292 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9293 return isKnownNegative(S) || isKnownPositive(S); 9294 } 9295 9296 std::pair<const SCEV *, const SCEV *> 9297 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9298 // Compute SCEV on entry of loop L. 9299 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9300 if (Start == getCouldNotCompute()) 9301 return { Start, Start }; 9302 // Compute post increment SCEV for loop L. 9303 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9304 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9305 return { Start, PostInc }; 9306 } 9307 9308 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9309 const SCEV *LHS, const SCEV *RHS) { 9310 // First collect all loops. 9311 SmallPtrSet<const Loop *, 8> LoopsUsed; 9312 getUsedLoops(LHS, LoopsUsed); 9313 getUsedLoops(RHS, LoopsUsed); 9314 9315 if (LoopsUsed.empty()) 9316 return false; 9317 9318 // Domination relationship must be a linear order on collected loops. 9319 #ifndef NDEBUG 9320 for (auto *L1 : LoopsUsed) 9321 for (auto *L2 : LoopsUsed) 9322 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9323 DT.dominates(L2->getHeader(), L1->getHeader())) && 9324 "Domination relationship is not a linear order"); 9325 #endif 9326 9327 const Loop *MDL = 9328 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9329 [&](const Loop *L1, const Loop *L2) { 9330 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9331 }); 9332 9333 // Get init and post increment value for LHS. 9334 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9335 // if LHS contains unknown non-invariant SCEV then bail out. 9336 if (SplitLHS.first == getCouldNotCompute()) 9337 return false; 9338 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9339 // Get init and post increment value for RHS. 9340 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9341 // if RHS contains unknown non-invariant SCEV then bail out. 9342 if (SplitRHS.first == getCouldNotCompute()) 9343 return false; 9344 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9345 // It is possible that init SCEV contains an invariant load but it does 9346 // not dominate MDL and is not available at MDL loop entry, so we should 9347 // check it here. 9348 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9349 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9350 return false; 9351 9352 // It seems backedge guard check is faster than entry one so in some cases 9353 // it can speed up whole estimation by short circuit 9354 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9355 SplitRHS.second) && 9356 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9357 } 9358 9359 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9360 const SCEV *LHS, const SCEV *RHS) { 9361 // Canonicalize the inputs first. 9362 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9363 9364 if (isKnownViaInduction(Pred, LHS, RHS)) 9365 return true; 9366 9367 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9368 return true; 9369 9370 // Otherwise see what can be done with some simple reasoning. 9371 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9372 } 9373 9374 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9375 const SCEV *LHS, const SCEV *RHS, 9376 const Instruction *Context) { 9377 // TODO: Analyze guards and assumes from Context's block. 9378 return isKnownPredicate(Pred, LHS, RHS) || 9379 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9380 } 9381 9382 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9383 const SCEVAddRecExpr *LHS, 9384 const SCEV *RHS) { 9385 const Loop *L = LHS->getLoop(); 9386 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9387 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9388 } 9389 9390 Optional<ScalarEvolution::MonotonicPredicateType> 9391 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9392 ICmpInst::Predicate Pred) { 9393 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9394 9395 #ifndef NDEBUG 9396 // Verify an invariant: inverting the predicate should turn a monotonically 9397 // increasing change to a monotonically decreasing one, and vice versa. 9398 if (Result) { 9399 auto ResultSwapped = 9400 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9401 9402 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9403 assert(ResultSwapped.getValue() != Result.getValue() && 9404 "monotonicity should flip as we flip the predicate"); 9405 } 9406 #endif 9407 9408 return Result; 9409 } 9410 9411 Optional<ScalarEvolution::MonotonicPredicateType> 9412 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9413 ICmpInst::Predicate Pred) { 9414 // A zero step value for LHS means the induction variable is essentially a 9415 // loop invariant value. We don't really depend on the predicate actually 9416 // flipping from false to true (for increasing predicates, and the other way 9417 // around for decreasing predicates), all we care about is that *if* the 9418 // predicate changes then it only changes from false to true. 9419 // 9420 // A zero step value in itself is not very useful, but there may be places 9421 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9422 // as general as possible. 9423 9424 // Only handle LE/LT/GE/GT predicates. 9425 if (!ICmpInst::isRelational(Pred)) 9426 return None; 9427 9428 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9429 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9430 "Should be greater or less!"); 9431 9432 // Check that AR does not wrap. 9433 if (ICmpInst::isUnsigned(Pred)) { 9434 if (!LHS->hasNoUnsignedWrap()) 9435 return None; 9436 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9437 } else { 9438 assert(ICmpInst::isSigned(Pred) && 9439 "Relational predicate is either signed or unsigned!"); 9440 if (!LHS->hasNoSignedWrap()) 9441 return None; 9442 9443 const SCEV *Step = LHS->getStepRecurrence(*this); 9444 9445 if (isKnownNonNegative(Step)) 9446 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9447 9448 if (isKnownNonPositive(Step)) 9449 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9450 9451 return None; 9452 } 9453 } 9454 9455 bool ScalarEvolution::isLoopInvariantPredicate( 9456 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9457 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9458 const SCEV *&InvariantRHS) { 9459 9460 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9461 if (!isLoopInvariant(RHS, L)) { 9462 if (!isLoopInvariant(LHS, L)) 9463 return false; 9464 9465 std::swap(LHS, RHS); 9466 Pred = ICmpInst::getSwappedPredicate(Pred); 9467 } 9468 9469 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9470 if (!ArLHS || ArLHS->getLoop() != L) 9471 return false; 9472 9473 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 9474 if (!MonotonicType) 9475 return false; 9476 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9477 // true as the loop iterates, and the backedge is control dependent on 9478 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9479 // 9480 // * if the predicate was false in the first iteration then the predicate 9481 // is never evaluated again, since the loop exits without taking the 9482 // backedge. 9483 // * if the predicate was true in the first iteration then it will 9484 // continue to be true for all future iterations since it is 9485 // monotonically increasing. 9486 // 9487 // For both the above possibilities, we can replace the loop varying 9488 // predicate with its value on the first iteration of the loop (which is 9489 // loop invariant). 9490 // 9491 // A similar reasoning applies for a monotonically decreasing predicate, by 9492 // replacing true with false and false with true in the above two bullets. 9493 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 9494 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9495 9496 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9497 return false; 9498 9499 InvariantPred = Pred; 9500 InvariantLHS = ArLHS->getStart(); 9501 InvariantRHS = RHS; 9502 return true; 9503 } 9504 9505 bool ScalarEvolution::isLoopInvariantExitCondDuringFirstIterations( 9506 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9507 const Instruction *Context, const SCEV *MaxIter, 9508 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9509 const SCEV *&InvariantRHS) { 9510 // Try to prove the following set of facts: 9511 // - The predicate is monotonic. 9512 // - If the check does not fail on the 1st iteration: 9513 // - No overflow will happen during first MaxIter iterations; 9514 // - It will not fail on the MaxIter'th iteration. 9515 // If the check does fail on the 1st iteration, we leave the loop and no 9516 // other checks matter. 9517 9518 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9519 if (!isLoopInvariant(RHS, L)) { 9520 if (!isLoopInvariant(LHS, L)) 9521 return false; 9522 9523 std::swap(LHS, RHS); 9524 Pred = ICmpInst::getSwappedPredicate(Pred); 9525 } 9526 9527 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 9528 // TODO: Lift affinity limitation in the future. 9529 if (!AR || AR->getLoop() != L || !AR->isAffine()) 9530 return false; 9531 9532 // The predicate must be relational (i.e. <, <=, >=, >). 9533 if (!ICmpInst::isRelational(Pred)) 9534 return false; 9535 9536 // TODO: Support steps other than +/- 1. 9537 const SCEV *Step = AR->getOperand(1); 9538 auto *One = getOne(Step->getType()); 9539 auto *MinusOne = getNegativeSCEV(One); 9540 if (Step != One && Step != MinusOne) 9541 return false; 9542 9543 // Type mismatch here means that MaxIter is potentially larger than max 9544 // unsigned value in start type, which mean we cannot prove no wrap for the 9545 // indvar. 9546 if (AR->getType() != MaxIter->getType()) 9547 return false; 9548 9549 // Value of IV on suggested last iteration. 9550 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 9551 // Does it still meet the requirement? 9552 if (!isKnownPredicateAt(Pred, Last, RHS, Context)) 9553 return false; 9554 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 9555 // not exceed max unsigned value of this type), this effectively proves 9556 // that there is no wrap during the iteration. To prove that there is no 9557 // signed/unsigned wrap, we need to check that 9558 // Start <= Last for step = 1 or Start >= Last for step = -1. 9559 ICmpInst::Predicate NoOverflowPred = 9560 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 9561 if (Step == MinusOne) 9562 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 9563 const SCEV *Start = AR->getStart(); 9564 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 9565 return false; 9566 9567 // Everything is fine. 9568 InvariantPred = Pred; 9569 InvariantLHS = Start; 9570 InvariantRHS = RHS; 9571 return true; 9572 } 9573 9574 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9575 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9576 if (HasSameValue(LHS, RHS)) 9577 return ICmpInst::isTrueWhenEqual(Pred); 9578 9579 // This code is split out from isKnownPredicate because it is called from 9580 // within isLoopEntryGuardedByCond. 9581 9582 auto CheckRanges = 9583 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9584 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9585 .contains(RangeLHS); 9586 }; 9587 9588 // The check at the top of the function catches the case where the values are 9589 // known to be equal. 9590 if (Pred == CmpInst::ICMP_EQ) 9591 return false; 9592 9593 if (Pred == CmpInst::ICMP_NE) 9594 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9595 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9596 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9597 9598 if (CmpInst::isSigned(Pred)) 9599 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9600 9601 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9602 } 9603 9604 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9605 const SCEV *LHS, 9606 const SCEV *RHS) { 9607 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9608 // Return Y via OutY. 9609 auto MatchBinaryAddToConst = 9610 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9611 SCEV::NoWrapFlags ExpectedFlags) { 9612 const SCEV *NonConstOp, *ConstOp; 9613 SCEV::NoWrapFlags FlagsPresent; 9614 9615 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9616 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9617 return false; 9618 9619 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9620 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9621 }; 9622 9623 APInt C; 9624 9625 switch (Pred) { 9626 default: 9627 break; 9628 9629 case ICmpInst::ICMP_SGE: 9630 std::swap(LHS, RHS); 9631 LLVM_FALLTHROUGH; 9632 case ICmpInst::ICMP_SLE: 9633 // X s<= (X + C)<nsw> if C >= 0 9634 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9635 return true; 9636 9637 // (X + C)<nsw> s<= X if C <= 0 9638 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9639 !C.isStrictlyPositive()) 9640 return true; 9641 break; 9642 9643 case ICmpInst::ICMP_SGT: 9644 std::swap(LHS, RHS); 9645 LLVM_FALLTHROUGH; 9646 case ICmpInst::ICMP_SLT: 9647 // X s< (X + C)<nsw> if C > 0 9648 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9649 C.isStrictlyPositive()) 9650 return true; 9651 9652 // (X + C)<nsw> s< X if C < 0 9653 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9654 return true; 9655 break; 9656 9657 case ICmpInst::ICMP_UGE: 9658 std::swap(LHS, RHS); 9659 LLVM_FALLTHROUGH; 9660 case ICmpInst::ICMP_ULE: 9661 // X u<= (X + C)<nuw> for any C 9662 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW)) 9663 return true; 9664 break; 9665 9666 case ICmpInst::ICMP_UGT: 9667 std::swap(LHS, RHS); 9668 LLVM_FALLTHROUGH; 9669 case ICmpInst::ICMP_ULT: 9670 // X u< (X + C)<nuw> if C != 0 9671 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue()) 9672 return true; 9673 break; 9674 } 9675 9676 return false; 9677 } 9678 9679 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9680 const SCEV *LHS, 9681 const SCEV *RHS) { 9682 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9683 return false; 9684 9685 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9686 // the stack can result in exponential time complexity. 9687 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9688 9689 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9690 // 9691 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9692 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9693 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9694 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9695 // use isKnownPredicate later if needed. 9696 return isKnownNonNegative(RHS) && 9697 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9698 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9699 } 9700 9701 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 9702 ICmpInst::Predicate Pred, 9703 const SCEV *LHS, const SCEV *RHS) { 9704 // No need to even try if we know the module has no guards. 9705 if (!HasGuards) 9706 return false; 9707 9708 return any_of(*BB, [&](const Instruction &I) { 9709 using namespace llvm::PatternMatch; 9710 9711 Value *Condition; 9712 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9713 m_Value(Condition))) && 9714 isImpliedCond(Pred, LHS, RHS, Condition, false); 9715 }); 9716 } 9717 9718 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9719 /// protected by a conditional between LHS and RHS. This is used to 9720 /// to eliminate casts. 9721 bool 9722 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9723 ICmpInst::Predicate Pred, 9724 const SCEV *LHS, const SCEV *RHS) { 9725 // Interpret a null as meaning no loop, where there is obviously no guard 9726 // (interprocedural conditions notwithstanding). 9727 if (!L) return true; 9728 9729 if (VerifyIR) 9730 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9731 "This cannot be done on broken IR!"); 9732 9733 9734 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9735 return true; 9736 9737 BasicBlock *Latch = L->getLoopLatch(); 9738 if (!Latch) 9739 return false; 9740 9741 BranchInst *LoopContinuePredicate = 9742 dyn_cast<BranchInst>(Latch->getTerminator()); 9743 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9744 isImpliedCond(Pred, LHS, RHS, 9745 LoopContinuePredicate->getCondition(), 9746 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9747 return true; 9748 9749 // We don't want more than one activation of the following loops on the stack 9750 // -- that can lead to O(n!) time complexity. 9751 if (WalkingBEDominatingConds) 9752 return false; 9753 9754 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9755 9756 // See if we can exploit a trip count to prove the predicate. 9757 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9758 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9759 if (LatchBECount != getCouldNotCompute()) { 9760 // We know that Latch branches back to the loop header exactly 9761 // LatchBECount times. This means the backdege condition at Latch is 9762 // equivalent to "{0,+,1} u< LatchBECount". 9763 Type *Ty = LatchBECount->getType(); 9764 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9765 const SCEV *LoopCounter = 9766 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9767 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9768 LatchBECount)) 9769 return true; 9770 } 9771 9772 // Check conditions due to any @llvm.assume intrinsics. 9773 for (auto &AssumeVH : AC.assumptions()) { 9774 if (!AssumeVH) 9775 continue; 9776 auto *CI = cast<CallInst>(AssumeVH); 9777 if (!DT.dominates(CI, Latch->getTerminator())) 9778 continue; 9779 9780 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9781 return true; 9782 } 9783 9784 // If the loop is not reachable from the entry block, we risk running into an 9785 // infinite loop as we walk up into the dom tree. These loops do not matter 9786 // anyway, so we just return a conservative answer when we see them. 9787 if (!DT.isReachableFromEntry(L->getHeader())) 9788 return false; 9789 9790 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9791 return true; 9792 9793 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9794 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9795 assert(DTN && "should reach the loop header before reaching the root!"); 9796 9797 BasicBlock *BB = DTN->getBlock(); 9798 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9799 return true; 9800 9801 BasicBlock *PBB = BB->getSinglePredecessor(); 9802 if (!PBB) 9803 continue; 9804 9805 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9806 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9807 continue; 9808 9809 Value *Condition = ContinuePredicate->getCondition(); 9810 9811 // If we have an edge `E` within the loop body that dominates the only 9812 // latch, the condition guarding `E` also guards the backedge. This 9813 // reasoning works only for loops with a single latch. 9814 9815 BasicBlockEdge DominatingEdge(PBB, BB); 9816 if (DominatingEdge.isSingleEdge()) { 9817 // We're constructively (and conservatively) enumerating edges within the 9818 // loop body that dominate the latch. The dominator tree better agree 9819 // with us on this: 9820 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9821 9822 if (isImpliedCond(Pred, LHS, RHS, Condition, 9823 BB != ContinuePredicate->getSuccessor(0))) 9824 return true; 9825 } 9826 } 9827 9828 return false; 9829 } 9830 9831 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 9832 ICmpInst::Predicate Pred, 9833 const SCEV *LHS, 9834 const SCEV *RHS) { 9835 if (VerifyIR) 9836 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 9837 "This cannot be done on broken IR!"); 9838 9839 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9840 return true; 9841 9842 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9843 // the facts (a >= b && a != b) separately. A typical situation is when the 9844 // non-strict comparison is known from ranges and non-equality is known from 9845 // dominating predicates. If we are proving strict comparison, we always try 9846 // to prove non-equality and non-strict comparison separately. 9847 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9848 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9849 bool ProvedNonStrictComparison = false; 9850 bool ProvedNonEquality = false; 9851 9852 if (ProvingStrictComparison) { 9853 ProvedNonStrictComparison = 9854 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9855 ProvedNonEquality = 9856 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9857 if (ProvedNonStrictComparison && ProvedNonEquality) 9858 return true; 9859 } 9860 9861 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9862 auto ProveViaGuard = [&](const BasicBlock *Block) { 9863 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9864 return true; 9865 if (ProvingStrictComparison) { 9866 if (!ProvedNonStrictComparison) 9867 ProvedNonStrictComparison = 9868 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9869 if (!ProvedNonEquality) 9870 ProvedNonEquality = 9871 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9872 if (ProvedNonStrictComparison && ProvedNonEquality) 9873 return true; 9874 } 9875 return false; 9876 }; 9877 9878 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9879 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 9880 const Instruction *Context = &BB->front(); 9881 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 9882 return true; 9883 if (ProvingStrictComparison) { 9884 if (!ProvedNonStrictComparison) 9885 ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS, 9886 Condition, Inverse, Context); 9887 if (!ProvedNonEquality) 9888 ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, 9889 Condition, Inverse, Context); 9890 if (ProvedNonStrictComparison && ProvedNonEquality) 9891 return true; 9892 } 9893 return false; 9894 }; 9895 9896 // Starting at the block's predecessor, climb up the predecessor chain, as long 9897 // as there are predecessors that can be found that have unique successors 9898 // leading to the original block. 9899 const Loop *ContainingLoop = LI.getLoopFor(BB); 9900 const BasicBlock *PredBB; 9901 if (ContainingLoop && ContainingLoop->getHeader() == BB) 9902 PredBB = ContainingLoop->getLoopPredecessor(); 9903 else 9904 PredBB = BB->getSinglePredecessor(); 9905 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 9906 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9907 if (ProveViaGuard(Pair.first)) 9908 return true; 9909 9910 const BranchInst *LoopEntryPredicate = 9911 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9912 if (!LoopEntryPredicate || 9913 LoopEntryPredicate->isUnconditional()) 9914 continue; 9915 9916 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9917 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9918 return true; 9919 } 9920 9921 // Check conditions due to any @llvm.assume intrinsics. 9922 for (auto &AssumeVH : AC.assumptions()) { 9923 if (!AssumeVH) 9924 continue; 9925 auto *CI = cast<CallInst>(AssumeVH); 9926 if (!DT.dominates(CI, BB)) 9927 continue; 9928 9929 if (ProveViaCond(CI->getArgOperand(0), false)) 9930 return true; 9931 } 9932 9933 return false; 9934 } 9935 9936 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9937 ICmpInst::Predicate Pred, 9938 const SCEV *LHS, 9939 const SCEV *RHS) { 9940 // Interpret a null as meaning no loop, where there is obviously no guard 9941 // (interprocedural conditions notwithstanding). 9942 if (!L) 9943 return false; 9944 9945 // Both LHS and RHS must be available at loop entry. 9946 assert(isAvailableAtLoopEntry(LHS, L) && 9947 "LHS is not available at Loop Entry"); 9948 assert(isAvailableAtLoopEntry(RHS, L) && 9949 "RHS is not available at Loop Entry"); 9950 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 9951 } 9952 9953 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9954 const SCEV *RHS, 9955 const Value *FoundCondValue, bool Inverse, 9956 const Instruction *Context) { 9957 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9958 return false; 9959 9960 auto ClearOnExit = 9961 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9962 9963 // Recursively handle And and Or conditions. 9964 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9965 if (BO->getOpcode() == Instruction::And) { 9966 if (!Inverse) 9967 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 9968 Context) || 9969 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 9970 Context); 9971 } else if (BO->getOpcode() == Instruction::Or) { 9972 if (Inverse) 9973 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 9974 Context) || 9975 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 9976 Context); 9977 } 9978 } 9979 9980 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9981 if (!ICI) return false; 9982 9983 // Now that we found a conditional branch that dominates the loop or controls 9984 // the loop latch. Check to see if it is the comparison we are looking for. 9985 ICmpInst::Predicate FoundPred; 9986 if (Inverse) 9987 FoundPred = ICI->getInversePredicate(); 9988 else 9989 FoundPred = ICI->getPredicate(); 9990 9991 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9992 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9993 9994 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 9995 } 9996 9997 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9998 const SCEV *RHS, 9999 ICmpInst::Predicate FoundPred, 10000 const SCEV *FoundLHS, const SCEV *FoundRHS, 10001 const Instruction *Context) { 10002 // Balance the types. 10003 if (getTypeSizeInBits(LHS->getType()) < 10004 getTypeSizeInBits(FoundLHS->getType())) { 10005 // For unsigned and equality predicates, try to prove that both found 10006 // operands fit into narrow unsigned range. If so, try to prove facts in 10007 // narrow types. 10008 if (!CmpInst::isSigned(FoundPred)) { 10009 auto *NarrowType = LHS->getType(); 10010 auto *WideType = FoundLHS->getType(); 10011 auto BitWidth = getTypeSizeInBits(NarrowType); 10012 const SCEV *MaxValue = getZeroExtendExpr( 10013 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10014 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10015 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10016 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10017 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10018 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10019 TruncFoundRHS, Context)) 10020 return true; 10021 } 10022 } 10023 10024 if (CmpInst::isSigned(Pred)) { 10025 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10026 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10027 } else { 10028 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10029 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10030 } 10031 } else if (getTypeSizeInBits(LHS->getType()) > 10032 getTypeSizeInBits(FoundLHS->getType())) { 10033 if (CmpInst::isSigned(FoundPred)) { 10034 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10035 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10036 } else { 10037 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10038 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10039 } 10040 } 10041 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10042 FoundRHS, Context); 10043 } 10044 10045 bool ScalarEvolution::isImpliedCondBalancedTypes( 10046 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10047 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10048 const Instruction *Context) { 10049 assert(getTypeSizeInBits(LHS->getType()) == 10050 getTypeSizeInBits(FoundLHS->getType()) && 10051 "Types should be balanced!"); 10052 // Canonicalize the query to match the way instcombine will have 10053 // canonicalized the comparison. 10054 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10055 if (LHS == RHS) 10056 return CmpInst::isTrueWhenEqual(Pred); 10057 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10058 if (FoundLHS == FoundRHS) 10059 return CmpInst::isFalseWhenEqual(FoundPred); 10060 10061 // Check to see if we can make the LHS or RHS match. 10062 if (LHS == FoundRHS || RHS == FoundLHS) { 10063 if (isa<SCEVConstant>(RHS)) { 10064 std::swap(FoundLHS, FoundRHS); 10065 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10066 } else { 10067 std::swap(LHS, RHS); 10068 Pred = ICmpInst::getSwappedPredicate(Pred); 10069 } 10070 } 10071 10072 // Check whether the found predicate is the same as the desired predicate. 10073 if (FoundPred == Pred) 10074 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10075 10076 // Check whether swapping the found predicate makes it the same as the 10077 // desired predicate. 10078 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10079 if (isa<SCEVConstant>(RHS)) 10080 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10081 else 10082 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS, 10083 LHS, FoundLHS, FoundRHS, Context); 10084 } 10085 10086 // Unsigned comparison is the same as signed comparison when both the operands 10087 // are non-negative. 10088 if (CmpInst::isUnsigned(FoundPred) && 10089 CmpInst::getSignedPredicate(FoundPred) == Pred && 10090 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10091 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10092 10093 // Check if we can make progress by sharpening ranges. 10094 if (FoundPred == ICmpInst::ICMP_NE && 10095 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10096 10097 const SCEVConstant *C = nullptr; 10098 const SCEV *V = nullptr; 10099 10100 if (isa<SCEVConstant>(FoundLHS)) { 10101 C = cast<SCEVConstant>(FoundLHS); 10102 V = FoundRHS; 10103 } else { 10104 C = cast<SCEVConstant>(FoundRHS); 10105 V = FoundLHS; 10106 } 10107 10108 // The guarding predicate tells us that C != V. If the known range 10109 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10110 // range we consider has to correspond to same signedness as the 10111 // predicate we're interested in folding. 10112 10113 APInt Min = ICmpInst::isSigned(Pred) ? 10114 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10115 10116 if (Min == C->getAPInt()) { 10117 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10118 // This is true even if (Min + 1) wraps around -- in case of 10119 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10120 10121 APInt SharperMin = Min + 1; 10122 10123 switch (Pred) { 10124 case ICmpInst::ICMP_SGE: 10125 case ICmpInst::ICMP_UGE: 10126 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10127 // RHS, we're done. 10128 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10129 Context)) 10130 return true; 10131 LLVM_FALLTHROUGH; 10132 10133 case ICmpInst::ICMP_SGT: 10134 case ICmpInst::ICMP_UGT: 10135 // We know from the range information that (V `Pred` Min || 10136 // V == Min). We know from the guarding condition that !(V 10137 // == Min). This gives us 10138 // 10139 // V `Pred` Min || V == Min && !(V == Min) 10140 // => V `Pred` Min 10141 // 10142 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10143 10144 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10145 Context)) 10146 return true; 10147 break; 10148 10149 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10150 case ICmpInst::ICMP_SLE: 10151 case ICmpInst::ICMP_ULE: 10152 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10153 LHS, V, getConstant(SharperMin), Context)) 10154 return true; 10155 LLVM_FALLTHROUGH; 10156 10157 case ICmpInst::ICMP_SLT: 10158 case ICmpInst::ICMP_ULT: 10159 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10160 LHS, V, getConstant(Min), Context)) 10161 return true; 10162 break; 10163 10164 default: 10165 // No change 10166 break; 10167 } 10168 } 10169 } 10170 10171 // Check whether the actual condition is beyond sufficient. 10172 if (FoundPred == ICmpInst::ICMP_EQ) 10173 if (ICmpInst::isTrueWhenEqual(Pred)) 10174 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10175 return true; 10176 if (Pred == ICmpInst::ICMP_NE) 10177 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10178 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10179 Context)) 10180 return true; 10181 10182 // Otherwise assume the worst. 10183 return false; 10184 } 10185 10186 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10187 const SCEV *&L, const SCEV *&R, 10188 SCEV::NoWrapFlags &Flags) { 10189 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10190 if (!AE || AE->getNumOperands() != 2) 10191 return false; 10192 10193 L = AE->getOperand(0); 10194 R = AE->getOperand(1); 10195 Flags = AE->getNoWrapFlags(); 10196 return true; 10197 } 10198 10199 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10200 const SCEV *Less) { 10201 // We avoid subtracting expressions here because this function is usually 10202 // fairly deep in the call stack (i.e. is called many times). 10203 10204 // X - X = 0. 10205 if (More == Less) 10206 return APInt(getTypeSizeInBits(More->getType()), 0); 10207 10208 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10209 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10210 const auto *MAR = cast<SCEVAddRecExpr>(More); 10211 10212 if (LAR->getLoop() != MAR->getLoop()) 10213 return None; 10214 10215 // We look at affine expressions only; not for correctness but to keep 10216 // getStepRecurrence cheap. 10217 if (!LAR->isAffine() || !MAR->isAffine()) 10218 return None; 10219 10220 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10221 return None; 10222 10223 Less = LAR->getStart(); 10224 More = MAR->getStart(); 10225 10226 // fall through 10227 } 10228 10229 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10230 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10231 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10232 return M - L; 10233 } 10234 10235 SCEV::NoWrapFlags Flags; 10236 const SCEV *LLess = nullptr, *RLess = nullptr; 10237 const SCEV *LMore = nullptr, *RMore = nullptr; 10238 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10239 // Compare (X + C1) vs X. 10240 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10241 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10242 if (RLess == More) 10243 return -(C1->getAPInt()); 10244 10245 // Compare X vs (X + C2). 10246 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10247 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10248 if (RMore == Less) 10249 return C2->getAPInt(); 10250 10251 // Compare (X + C1) vs (X + C2). 10252 if (C1 && C2 && RLess == RMore) 10253 return C2->getAPInt() - C1->getAPInt(); 10254 10255 return None; 10256 } 10257 10258 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10259 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10260 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10261 // Try to recognize the following pattern: 10262 // 10263 // FoundRHS = ... 10264 // ... 10265 // loop: 10266 // FoundLHS = {Start,+,W} 10267 // context_bb: // Basic block from the same loop 10268 // known(Pred, FoundLHS, FoundRHS) 10269 // 10270 // If some predicate is known in the context of a loop, it is also known on 10271 // each iteration of this loop, including the first iteration. Therefore, in 10272 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10273 // prove the original pred using this fact. 10274 if (!Context) 10275 return false; 10276 const BasicBlock *ContextBB = Context->getParent(); 10277 // Make sure AR varies in the context block. 10278 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10279 const Loop *L = AR->getLoop(); 10280 // Make sure that context belongs to the loop and executes on 1st iteration 10281 // (if it ever executes at all). 10282 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10283 return false; 10284 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10285 return false; 10286 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10287 } 10288 10289 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10290 const Loop *L = AR->getLoop(); 10291 // Make sure that context belongs to the loop and executes on 1st iteration 10292 // (if it ever executes at all). 10293 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10294 return false; 10295 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10296 return false; 10297 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10298 } 10299 10300 return false; 10301 } 10302 10303 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10304 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10305 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10306 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10307 return false; 10308 10309 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10310 if (!AddRecLHS) 10311 return false; 10312 10313 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10314 if (!AddRecFoundLHS) 10315 return false; 10316 10317 // We'd like to let SCEV reason about control dependencies, so we constrain 10318 // both the inequalities to be about add recurrences on the same loop. This 10319 // way we can use isLoopEntryGuardedByCond later. 10320 10321 const Loop *L = AddRecFoundLHS->getLoop(); 10322 if (L != AddRecLHS->getLoop()) 10323 return false; 10324 10325 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10326 // 10327 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10328 // ... (2) 10329 // 10330 // Informal proof for (2), assuming (1) [*]: 10331 // 10332 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10333 // 10334 // Then 10335 // 10336 // FoundLHS s< FoundRHS s< INT_MIN - C 10337 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10338 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10339 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10340 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10341 // <=> FoundLHS + C s< FoundRHS + C 10342 // 10343 // [*]: (1) can be proved by ruling out overflow. 10344 // 10345 // [**]: This can be proved by analyzing all the four possibilities: 10346 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10347 // (A s>= 0, B s>= 0). 10348 // 10349 // Note: 10350 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10351 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10352 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10353 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10354 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10355 // C)". 10356 10357 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10358 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10359 if (!LDiff || !RDiff || *LDiff != *RDiff) 10360 return false; 10361 10362 if (LDiff->isMinValue()) 10363 return true; 10364 10365 APInt FoundRHSLimit; 10366 10367 if (Pred == CmpInst::ICMP_ULT) { 10368 FoundRHSLimit = -(*RDiff); 10369 } else { 10370 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10371 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10372 } 10373 10374 // Try to prove (1) or (2), as needed. 10375 return isAvailableAtLoopEntry(FoundRHS, L) && 10376 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10377 getConstant(FoundRHSLimit)); 10378 } 10379 10380 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10381 const SCEV *LHS, const SCEV *RHS, 10382 const SCEV *FoundLHS, 10383 const SCEV *FoundRHS, unsigned Depth) { 10384 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10385 10386 auto ClearOnExit = make_scope_exit([&]() { 10387 if (LPhi) { 10388 bool Erased = PendingMerges.erase(LPhi); 10389 assert(Erased && "Failed to erase LPhi!"); 10390 (void)Erased; 10391 } 10392 if (RPhi) { 10393 bool Erased = PendingMerges.erase(RPhi); 10394 assert(Erased && "Failed to erase RPhi!"); 10395 (void)Erased; 10396 } 10397 }); 10398 10399 // Find respective Phis and check that they are not being pending. 10400 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10401 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10402 if (!PendingMerges.insert(Phi).second) 10403 return false; 10404 LPhi = Phi; 10405 } 10406 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10407 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10408 // If we detect a loop of Phi nodes being processed by this method, for 10409 // example: 10410 // 10411 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10412 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10413 // 10414 // we don't want to deal with a case that complex, so return conservative 10415 // answer false. 10416 if (!PendingMerges.insert(Phi).second) 10417 return false; 10418 RPhi = Phi; 10419 } 10420 10421 // If none of LHS, RHS is a Phi, nothing to do here. 10422 if (!LPhi && !RPhi) 10423 return false; 10424 10425 // If there is a SCEVUnknown Phi we are interested in, make it left. 10426 if (!LPhi) { 10427 std::swap(LHS, RHS); 10428 std::swap(FoundLHS, FoundRHS); 10429 std::swap(LPhi, RPhi); 10430 Pred = ICmpInst::getSwappedPredicate(Pred); 10431 } 10432 10433 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10434 const BasicBlock *LBB = LPhi->getParent(); 10435 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10436 10437 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10438 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10439 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10440 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10441 }; 10442 10443 if (RPhi && RPhi->getParent() == LBB) { 10444 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10445 // If we compare two Phis from the same block, and for each entry block 10446 // the predicate is true for incoming values from this block, then the 10447 // predicate is also true for the Phis. 10448 for (const BasicBlock *IncBB : predecessors(LBB)) { 10449 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10450 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10451 if (!ProvedEasily(L, R)) 10452 return false; 10453 } 10454 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10455 // Case two: RHS is also a Phi from the same basic block, and it is an 10456 // AddRec. It means that there is a loop which has both AddRec and Unknown 10457 // PHIs, for it we can compare incoming values of AddRec from above the loop 10458 // and latch with their respective incoming values of LPhi. 10459 // TODO: Generalize to handle loops with many inputs in a header. 10460 if (LPhi->getNumIncomingValues() != 2) return false; 10461 10462 auto *RLoop = RAR->getLoop(); 10463 auto *Predecessor = RLoop->getLoopPredecessor(); 10464 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10465 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10466 if (!ProvedEasily(L1, RAR->getStart())) 10467 return false; 10468 auto *Latch = RLoop->getLoopLatch(); 10469 assert(Latch && "Loop with AddRec with no latch?"); 10470 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10471 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10472 return false; 10473 } else { 10474 // In all other cases go over inputs of LHS and compare each of them to RHS, 10475 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10476 // At this point RHS is either a non-Phi, or it is a Phi from some block 10477 // different from LBB. 10478 for (const BasicBlock *IncBB : predecessors(LBB)) { 10479 // Check that RHS is available in this block. 10480 if (!dominates(RHS, IncBB)) 10481 return false; 10482 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10483 if (!ProvedEasily(L, RHS)) 10484 return false; 10485 } 10486 } 10487 return true; 10488 } 10489 10490 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10491 const SCEV *LHS, const SCEV *RHS, 10492 const SCEV *FoundLHS, 10493 const SCEV *FoundRHS, 10494 const Instruction *Context) { 10495 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10496 return true; 10497 10498 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10499 return true; 10500 10501 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 10502 Context)) 10503 return true; 10504 10505 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10506 FoundLHS, FoundRHS) || 10507 // ~x < ~y --> x > y 10508 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10509 getNotSCEV(FoundRHS), 10510 getNotSCEV(FoundLHS)); 10511 } 10512 10513 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10514 template <typename MinMaxExprType> 10515 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10516 const SCEV *Candidate) { 10517 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10518 if (!MinMaxExpr) 10519 return false; 10520 10521 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10522 } 10523 10524 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10525 ICmpInst::Predicate Pred, 10526 const SCEV *LHS, const SCEV *RHS) { 10527 // If both sides are affine addrecs for the same loop, with equal 10528 // steps, and we know the recurrences don't wrap, then we only 10529 // need to check the predicate on the starting values. 10530 10531 if (!ICmpInst::isRelational(Pred)) 10532 return false; 10533 10534 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10535 if (!LAR) 10536 return false; 10537 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10538 if (!RAR) 10539 return false; 10540 if (LAR->getLoop() != RAR->getLoop()) 10541 return false; 10542 if (!LAR->isAffine() || !RAR->isAffine()) 10543 return false; 10544 10545 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10546 return false; 10547 10548 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10549 SCEV::FlagNSW : SCEV::FlagNUW; 10550 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10551 return false; 10552 10553 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10554 } 10555 10556 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10557 /// expression? 10558 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10559 ICmpInst::Predicate Pred, 10560 const SCEV *LHS, const SCEV *RHS) { 10561 switch (Pred) { 10562 default: 10563 return false; 10564 10565 case ICmpInst::ICMP_SGE: 10566 std::swap(LHS, RHS); 10567 LLVM_FALLTHROUGH; 10568 case ICmpInst::ICMP_SLE: 10569 return 10570 // min(A, ...) <= A 10571 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10572 // A <= max(A, ...) 10573 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10574 10575 case ICmpInst::ICMP_UGE: 10576 std::swap(LHS, RHS); 10577 LLVM_FALLTHROUGH; 10578 case ICmpInst::ICMP_ULE: 10579 return 10580 // min(A, ...) <= A 10581 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10582 // A <= max(A, ...) 10583 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10584 } 10585 10586 llvm_unreachable("covered switch fell through?!"); 10587 } 10588 10589 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10590 const SCEV *LHS, const SCEV *RHS, 10591 const SCEV *FoundLHS, 10592 const SCEV *FoundRHS, 10593 unsigned Depth) { 10594 assert(getTypeSizeInBits(LHS->getType()) == 10595 getTypeSizeInBits(RHS->getType()) && 10596 "LHS and RHS have different sizes?"); 10597 assert(getTypeSizeInBits(FoundLHS->getType()) == 10598 getTypeSizeInBits(FoundRHS->getType()) && 10599 "FoundLHS and FoundRHS have different sizes?"); 10600 // We want to avoid hurting the compile time with analysis of too big trees. 10601 if (Depth > MaxSCEVOperationsImplicationDepth) 10602 return false; 10603 10604 // We only want to work with GT comparison so far. 10605 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 10606 Pred = CmpInst::getSwappedPredicate(Pred); 10607 std::swap(LHS, RHS); 10608 std::swap(FoundLHS, FoundRHS); 10609 } 10610 10611 // For unsigned, try to reduce it to corresponding signed comparison. 10612 if (Pred == ICmpInst::ICMP_UGT) 10613 // We can replace unsigned predicate with its signed counterpart if all 10614 // involved values are non-negative. 10615 // TODO: We could have better support for unsigned. 10616 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 10617 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 10618 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 10619 // use this fact to prove that LHS and RHS are non-negative. 10620 const SCEV *MinusOne = getMinusOne(LHS->getType()); 10621 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 10622 FoundRHS) && 10623 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 10624 FoundRHS)) 10625 Pred = ICmpInst::ICMP_SGT; 10626 } 10627 10628 if (Pred != ICmpInst::ICMP_SGT) 10629 return false; 10630 10631 auto GetOpFromSExt = [&](const SCEV *S) { 10632 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10633 return Ext->getOperand(); 10634 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10635 // the constant in some cases. 10636 return S; 10637 }; 10638 10639 // Acquire values from extensions. 10640 auto *OrigLHS = LHS; 10641 auto *OrigFoundLHS = FoundLHS; 10642 LHS = GetOpFromSExt(LHS); 10643 FoundLHS = GetOpFromSExt(FoundLHS); 10644 10645 // Is the SGT predicate can be proved trivially or using the found context. 10646 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10647 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10648 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10649 FoundRHS, Depth + 1); 10650 }; 10651 10652 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10653 // We want to avoid creation of any new non-constant SCEV. Since we are 10654 // going to compare the operands to RHS, we should be certain that we don't 10655 // need any size extensions for this. So let's decline all cases when the 10656 // sizes of types of LHS and RHS do not match. 10657 // TODO: Maybe try to get RHS from sext to catch more cases? 10658 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10659 return false; 10660 10661 // Should not overflow. 10662 if (!LHSAddExpr->hasNoSignedWrap()) 10663 return false; 10664 10665 auto *LL = LHSAddExpr->getOperand(0); 10666 auto *LR = LHSAddExpr->getOperand(1); 10667 auto *MinusOne = getMinusOne(RHS->getType()); 10668 10669 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10670 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10671 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10672 }; 10673 // Try to prove the following rule: 10674 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10675 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10676 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10677 return true; 10678 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10679 Value *LL, *LR; 10680 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10681 10682 using namespace llvm::PatternMatch; 10683 10684 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10685 // Rules for division. 10686 // We are going to perform some comparisons with Denominator and its 10687 // derivative expressions. In general case, creating a SCEV for it may 10688 // lead to a complex analysis of the entire graph, and in particular it 10689 // can request trip count recalculation for the same loop. This would 10690 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10691 // this, we only want to create SCEVs that are constants in this section. 10692 // So we bail if Denominator is not a constant. 10693 if (!isa<ConstantInt>(LR)) 10694 return false; 10695 10696 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10697 10698 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10699 // then a SCEV for the numerator already exists and matches with FoundLHS. 10700 auto *Numerator = getExistingSCEV(LL); 10701 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10702 return false; 10703 10704 // Make sure that the numerator matches with FoundLHS and the denominator 10705 // is positive. 10706 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10707 return false; 10708 10709 auto *DTy = Denominator->getType(); 10710 auto *FRHSTy = FoundRHS->getType(); 10711 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10712 // One of types is a pointer and another one is not. We cannot extend 10713 // them properly to a wider type, so let us just reject this case. 10714 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10715 // to avoid this check. 10716 return false; 10717 10718 // Given that: 10719 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10720 auto *WTy = getWiderType(DTy, FRHSTy); 10721 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10722 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10723 10724 // Try to prove the following rule: 10725 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10726 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10727 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10728 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10729 if (isKnownNonPositive(RHS) && 10730 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10731 return true; 10732 10733 // Try to prove the following rule: 10734 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10735 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10736 // If we divide it by Denominator > 2, then: 10737 // 1. If FoundLHS is negative, then the result is 0. 10738 // 2. If FoundLHS is non-negative, then the result is non-negative. 10739 // Anyways, the result is non-negative. 10740 auto *MinusOne = getMinusOne(WTy); 10741 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10742 if (isKnownNegative(RHS) && 10743 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10744 return true; 10745 } 10746 } 10747 10748 // If our expression contained SCEVUnknown Phis, and we split it down and now 10749 // need to prove something for them, try to prove the predicate for every 10750 // possible incoming values of those Phis. 10751 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10752 return true; 10753 10754 return false; 10755 } 10756 10757 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10758 const SCEV *LHS, const SCEV *RHS) { 10759 // zext x u<= sext x, sext x s<= zext x 10760 switch (Pred) { 10761 case ICmpInst::ICMP_SGE: 10762 std::swap(LHS, RHS); 10763 LLVM_FALLTHROUGH; 10764 case ICmpInst::ICMP_SLE: { 10765 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10766 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10767 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10768 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10769 return true; 10770 break; 10771 } 10772 case ICmpInst::ICMP_UGE: 10773 std::swap(LHS, RHS); 10774 LLVM_FALLTHROUGH; 10775 case ICmpInst::ICMP_ULE: { 10776 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10777 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10778 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10779 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10780 return true; 10781 break; 10782 } 10783 default: 10784 break; 10785 }; 10786 return false; 10787 } 10788 10789 bool 10790 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10791 const SCEV *LHS, const SCEV *RHS) { 10792 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10793 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10794 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10795 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10796 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10797 } 10798 10799 bool 10800 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10801 const SCEV *LHS, const SCEV *RHS, 10802 const SCEV *FoundLHS, 10803 const SCEV *FoundRHS) { 10804 switch (Pred) { 10805 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10806 case ICmpInst::ICMP_EQ: 10807 case ICmpInst::ICMP_NE: 10808 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10809 return true; 10810 break; 10811 case ICmpInst::ICMP_SLT: 10812 case ICmpInst::ICMP_SLE: 10813 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10814 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10815 return true; 10816 break; 10817 case ICmpInst::ICMP_SGT: 10818 case ICmpInst::ICMP_SGE: 10819 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10820 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10821 return true; 10822 break; 10823 case ICmpInst::ICMP_ULT: 10824 case ICmpInst::ICMP_ULE: 10825 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10826 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10827 return true; 10828 break; 10829 case ICmpInst::ICMP_UGT: 10830 case ICmpInst::ICMP_UGE: 10831 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10832 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10833 return true; 10834 break; 10835 } 10836 10837 // Maybe it can be proved via operations? 10838 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10839 return true; 10840 10841 return false; 10842 } 10843 10844 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10845 const SCEV *LHS, 10846 const SCEV *RHS, 10847 const SCEV *FoundLHS, 10848 const SCEV *FoundRHS) { 10849 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10850 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10851 // reduce the compile time impact of this optimization. 10852 return false; 10853 10854 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10855 if (!Addend) 10856 return false; 10857 10858 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10859 10860 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10861 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10862 ConstantRange FoundLHSRange = 10863 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10864 10865 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10866 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10867 10868 // We can also compute the range of values for `LHS` that satisfy the 10869 // consequent, "`LHS` `Pred` `RHS`": 10870 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10871 ConstantRange SatisfyingLHSRange = 10872 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10873 10874 // The antecedent implies the consequent if every value of `LHS` that 10875 // satisfies the antecedent also satisfies the consequent. 10876 return SatisfyingLHSRange.contains(LHSRange); 10877 } 10878 10879 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10880 bool IsSigned, bool NoWrap) { 10881 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10882 10883 if (NoWrap) return false; 10884 10885 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10886 const SCEV *One = getOne(Stride->getType()); 10887 10888 if (IsSigned) { 10889 APInt MaxRHS = getSignedRangeMax(RHS); 10890 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10891 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10892 10893 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10894 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10895 } 10896 10897 APInt MaxRHS = getUnsignedRangeMax(RHS); 10898 APInt MaxValue = APInt::getMaxValue(BitWidth); 10899 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10900 10901 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10902 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10903 } 10904 10905 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10906 bool IsSigned, bool NoWrap) { 10907 if (NoWrap) return false; 10908 10909 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10910 const SCEV *One = getOne(Stride->getType()); 10911 10912 if (IsSigned) { 10913 APInt MinRHS = getSignedRangeMin(RHS); 10914 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10915 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10916 10917 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10918 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10919 } 10920 10921 APInt MinRHS = getUnsignedRangeMin(RHS); 10922 APInt MinValue = APInt::getMinValue(BitWidth); 10923 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10924 10925 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10926 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10927 } 10928 10929 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10930 bool Equality) { 10931 const SCEV *One = getOne(Step->getType()); 10932 Delta = Equality ? getAddExpr(Delta, Step) 10933 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10934 return getUDivExpr(Delta, Step); 10935 } 10936 10937 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10938 const SCEV *Stride, 10939 const SCEV *End, 10940 unsigned BitWidth, 10941 bool IsSigned) { 10942 10943 assert(!isKnownNonPositive(Stride) && 10944 "Stride is expected strictly positive!"); 10945 // Calculate the maximum backedge count based on the range of values 10946 // permitted by Start, End, and Stride. 10947 const SCEV *MaxBECount; 10948 APInt MinStart = 10949 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10950 10951 APInt StrideForMaxBECount = 10952 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10953 10954 // We already know that the stride is positive, so we paper over conservatism 10955 // in our range computation by forcing StrideForMaxBECount to be at least one. 10956 // In theory this is unnecessary, but we expect MaxBECount to be a 10957 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10958 // is nothing to constant fold it to). 10959 APInt One(BitWidth, 1, IsSigned); 10960 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10961 10962 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10963 : APInt::getMaxValue(BitWidth); 10964 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10965 10966 // Although End can be a MAX expression we estimate MaxEnd considering only 10967 // the case End = RHS of the loop termination condition. This is safe because 10968 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10969 // taken count. 10970 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10971 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10972 10973 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10974 getConstant(StrideForMaxBECount) /* Step */, 10975 false /* Equality */); 10976 10977 return MaxBECount; 10978 } 10979 10980 ScalarEvolution::ExitLimit 10981 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10982 const Loop *L, bool IsSigned, 10983 bool ControlsExit, bool AllowPredicates) { 10984 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10985 10986 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10987 bool PredicatedIV = false; 10988 10989 if (!IV && AllowPredicates) { 10990 // Try to make this an AddRec using runtime tests, in the first X 10991 // iterations of this loop, where X is the SCEV expression found by the 10992 // algorithm below. 10993 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10994 PredicatedIV = true; 10995 } 10996 10997 // Avoid weird loops 10998 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10999 return getCouldNotCompute(); 11000 11001 bool NoWrap = ControlsExit && 11002 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11003 11004 const SCEV *Stride = IV->getStepRecurrence(*this); 11005 11006 bool PositiveStride = isKnownPositive(Stride); 11007 11008 // Avoid negative or zero stride values. 11009 if (!PositiveStride) { 11010 // We can compute the correct backedge taken count for loops with unknown 11011 // strides if we can prove that the loop is not an infinite loop with side 11012 // effects. Here's the loop structure we are trying to handle - 11013 // 11014 // i = start 11015 // do { 11016 // A[i] = i; 11017 // i += s; 11018 // } while (i < end); 11019 // 11020 // The backedge taken count for such loops is evaluated as - 11021 // (max(end, start + stride) - start - 1) /u stride 11022 // 11023 // The additional preconditions that we need to check to prove correctness 11024 // of the above formula is as follows - 11025 // 11026 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11027 // NoWrap flag). 11028 // b) loop is single exit with no side effects. 11029 // 11030 // 11031 // Precondition a) implies that if the stride is negative, this is a single 11032 // trip loop. The backedge taken count formula reduces to zero in this case. 11033 // 11034 // Precondition b) implies that the unknown stride cannot be zero otherwise 11035 // we have UB. 11036 // 11037 // The positive stride case is the same as isKnownPositive(Stride) returning 11038 // true (original behavior of the function). 11039 // 11040 // We want to make sure that the stride is truly unknown as there are edge 11041 // cases where ScalarEvolution propagates no wrap flags to the 11042 // post-increment/decrement IV even though the increment/decrement operation 11043 // itself is wrapping. The computed backedge taken count may be wrong in 11044 // such cases. This is prevented by checking that the stride is not known to 11045 // be either positive or non-positive. For example, no wrap flags are 11046 // propagated to the post-increment IV of this loop with a trip count of 2 - 11047 // 11048 // unsigned char i; 11049 // for(i=127; i<128; i+=129) 11050 // A[i] = i; 11051 // 11052 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11053 !loopHasNoSideEffects(L)) 11054 return getCouldNotCompute(); 11055 } else if (!Stride->isOne() && 11056 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 11057 // Avoid proven overflow cases: this will ensure that the backedge taken 11058 // count will not generate any unsigned overflow. Relaxed no-overflow 11059 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11060 // undefined behaviors like the case of C language. 11061 return getCouldNotCompute(); 11062 11063 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 11064 : ICmpInst::ICMP_ULT; 11065 const SCEV *Start = IV->getStart(); 11066 const SCEV *End = RHS; 11067 // When the RHS is not invariant, we do not know the end bound of the loop and 11068 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11069 // calculate the MaxBECount, given the start, stride and max value for the end 11070 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11071 // checked above). 11072 if (!isLoopInvariant(RHS, L)) { 11073 const SCEV *MaxBECount = computeMaxBECountForLT( 11074 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11075 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11076 false /*MaxOrZero*/, Predicates); 11077 } 11078 // If the backedge is taken at least once, then it will be taken 11079 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 11080 // is the LHS value of the less-than comparison the first time it is evaluated 11081 // and End is the RHS. 11082 const SCEV *BECountIfBackedgeTaken = 11083 computeBECount(getMinusSCEV(End, Start), Stride, false); 11084 // If the loop entry is guarded by the result of the backedge test of the 11085 // first loop iteration, then we know the backedge will be taken at least 11086 // once and so the backedge taken count is as above. If not then we use the 11087 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 11088 // as if the backedge is taken at least once max(End,Start) is End and so the 11089 // result is as above, and if not max(End,Start) is Start so we get a backedge 11090 // count of zero. 11091 const SCEV *BECount; 11092 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 11093 BECount = BECountIfBackedgeTaken; 11094 else { 11095 // If we know that RHS >= Start in the context of loop, then we know that 11096 // max(RHS, Start) = RHS at this point. 11097 if (isLoopEntryGuardedByCond( 11098 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 11099 End = RHS; 11100 else 11101 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11102 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 11103 } 11104 11105 const SCEV *MaxBECount; 11106 bool MaxOrZero = false; 11107 if (isa<SCEVConstant>(BECount)) 11108 MaxBECount = BECount; 11109 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11110 // If we know exactly how many times the backedge will be taken if it's 11111 // taken at least once, then the backedge count will either be that or 11112 // zero. 11113 MaxBECount = BECountIfBackedgeTaken; 11114 MaxOrZero = true; 11115 } else { 11116 MaxBECount = computeMaxBECountForLT( 11117 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11118 } 11119 11120 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11121 !isa<SCEVCouldNotCompute>(BECount)) 11122 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11123 11124 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11125 } 11126 11127 ScalarEvolution::ExitLimit 11128 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11129 const Loop *L, bool IsSigned, 11130 bool ControlsExit, bool AllowPredicates) { 11131 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11132 // We handle only IV > Invariant 11133 if (!isLoopInvariant(RHS, L)) 11134 return getCouldNotCompute(); 11135 11136 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11137 if (!IV && AllowPredicates) 11138 // Try to make this an AddRec using runtime tests, in the first X 11139 // iterations of this loop, where X is the SCEV expression found by the 11140 // algorithm below. 11141 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11142 11143 // Avoid weird loops 11144 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11145 return getCouldNotCompute(); 11146 11147 bool NoWrap = ControlsExit && 11148 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11149 11150 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11151 11152 // Avoid negative or zero stride values 11153 if (!isKnownPositive(Stride)) 11154 return getCouldNotCompute(); 11155 11156 // Avoid proven overflow cases: this will ensure that the backedge taken count 11157 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11158 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11159 // behaviors like the case of C language. 11160 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 11161 return getCouldNotCompute(); 11162 11163 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 11164 : ICmpInst::ICMP_UGT; 11165 11166 const SCEV *Start = IV->getStart(); 11167 const SCEV *End = RHS; 11168 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11169 // If we know that Start >= RHS in the context of loop, then we know that 11170 // min(RHS, Start) = RHS at this point. 11171 if (isLoopEntryGuardedByCond( 11172 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11173 End = RHS; 11174 else 11175 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11176 } 11177 11178 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 11179 11180 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 11181 : getUnsignedRangeMax(Start); 11182 11183 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 11184 : getUnsignedRangeMin(Stride); 11185 11186 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 11187 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 11188 : APInt::getMinValue(BitWidth) + (MinStride - 1); 11189 11190 // Although End can be a MIN expression we estimate MinEnd considering only 11191 // the case End = RHS. This is safe because in the other case (Start - End) 11192 // is zero, leading to a zero maximum backedge taken count. 11193 APInt MinEnd = 11194 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 11195 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 11196 11197 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 11198 ? BECount 11199 : computeBECount(getConstant(MaxStart - MinEnd), 11200 getConstant(MinStride), false); 11201 11202 if (isa<SCEVCouldNotCompute>(MaxBECount)) 11203 MaxBECount = BECount; 11204 11205 return ExitLimit(BECount, MaxBECount, false, Predicates); 11206 } 11207 11208 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 11209 ScalarEvolution &SE) const { 11210 if (Range.isFullSet()) // Infinite loop. 11211 return SE.getCouldNotCompute(); 11212 11213 // If the start is a non-zero constant, shift the range to simplify things. 11214 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 11215 if (!SC->getValue()->isZero()) { 11216 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 11217 Operands[0] = SE.getZero(SC->getType()); 11218 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 11219 getNoWrapFlags(FlagNW)); 11220 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 11221 return ShiftedAddRec->getNumIterationsInRange( 11222 Range.subtract(SC->getAPInt()), SE); 11223 // This is strange and shouldn't happen. 11224 return SE.getCouldNotCompute(); 11225 } 11226 11227 // The only time we can solve this is when we have all constant indices. 11228 // Otherwise, we cannot determine the overflow conditions. 11229 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 11230 return SE.getCouldNotCompute(); 11231 11232 // Okay at this point we know that all elements of the chrec are constants and 11233 // that the start element is zero. 11234 11235 // First check to see if the range contains zero. If not, the first 11236 // iteration exits. 11237 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 11238 if (!Range.contains(APInt(BitWidth, 0))) 11239 return SE.getZero(getType()); 11240 11241 if (isAffine()) { 11242 // If this is an affine expression then we have this situation: 11243 // Solve {0,+,A} in Range === Ax in Range 11244 11245 // We know that zero is in the range. If A is positive then we know that 11246 // the upper value of the range must be the first possible exit value. 11247 // If A is negative then the lower of the range is the last possible loop 11248 // value. Also note that we already checked for a full range. 11249 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 11250 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 11251 11252 // The exit value should be (End+A)/A. 11253 APInt ExitVal = (End + A).udiv(A); 11254 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 11255 11256 // Evaluate at the exit value. If we really did fall out of the valid 11257 // range, then we computed our trip count, otherwise wrap around or other 11258 // things must have happened. 11259 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 11260 if (Range.contains(Val->getValue())) 11261 return SE.getCouldNotCompute(); // Something strange happened 11262 11263 // Ensure that the previous value is in the range. This is a sanity check. 11264 assert(Range.contains( 11265 EvaluateConstantChrecAtConstant(this, 11266 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 11267 "Linear scev computation is off in a bad way!"); 11268 return SE.getConstant(ExitValue); 11269 } 11270 11271 if (isQuadratic()) { 11272 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11273 return SE.getConstant(S.getValue()); 11274 } 11275 11276 return SE.getCouldNotCompute(); 11277 } 11278 11279 const SCEVAddRecExpr * 11280 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11281 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11282 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11283 // but in this case we cannot guarantee that the value returned will be an 11284 // AddRec because SCEV does not have a fixed point where it stops 11285 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11286 // may happen if we reach arithmetic depth limit while simplifying. So we 11287 // construct the returned value explicitly. 11288 SmallVector<const SCEV *, 3> Ops; 11289 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11290 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11291 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11292 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11293 // We know that the last operand is not a constant zero (otherwise it would 11294 // have been popped out earlier). This guarantees us that if the result has 11295 // the same last operand, then it will also not be popped out, meaning that 11296 // the returned value will be an AddRec. 11297 const SCEV *Last = getOperand(getNumOperands() - 1); 11298 assert(!Last->isZero() && "Recurrency with zero step?"); 11299 Ops.push_back(Last); 11300 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11301 SCEV::FlagAnyWrap)); 11302 } 11303 11304 // Return true when S contains at least an undef value. 11305 static inline bool containsUndefs(const SCEV *S) { 11306 return SCEVExprContains(S, [](const SCEV *S) { 11307 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11308 return isa<UndefValue>(SU->getValue()); 11309 return false; 11310 }); 11311 } 11312 11313 namespace { 11314 11315 // Collect all steps of SCEV expressions. 11316 struct SCEVCollectStrides { 11317 ScalarEvolution &SE; 11318 SmallVectorImpl<const SCEV *> &Strides; 11319 11320 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11321 : SE(SE), Strides(S) {} 11322 11323 bool follow(const SCEV *S) { 11324 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11325 Strides.push_back(AR->getStepRecurrence(SE)); 11326 return true; 11327 } 11328 11329 bool isDone() const { return false; } 11330 }; 11331 11332 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11333 struct SCEVCollectTerms { 11334 SmallVectorImpl<const SCEV *> &Terms; 11335 11336 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11337 11338 bool follow(const SCEV *S) { 11339 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11340 isa<SCEVSignExtendExpr>(S)) { 11341 if (!containsUndefs(S)) 11342 Terms.push_back(S); 11343 11344 // Stop recursion: once we collected a term, do not walk its operands. 11345 return false; 11346 } 11347 11348 // Keep looking. 11349 return true; 11350 } 11351 11352 bool isDone() const { return false; } 11353 }; 11354 11355 // Check if a SCEV contains an AddRecExpr. 11356 struct SCEVHasAddRec { 11357 bool &ContainsAddRec; 11358 11359 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11360 ContainsAddRec = false; 11361 } 11362 11363 bool follow(const SCEV *S) { 11364 if (isa<SCEVAddRecExpr>(S)) { 11365 ContainsAddRec = true; 11366 11367 // Stop recursion: once we collected a term, do not walk its operands. 11368 return false; 11369 } 11370 11371 // Keep looking. 11372 return true; 11373 } 11374 11375 bool isDone() const { return false; } 11376 }; 11377 11378 // Find factors that are multiplied with an expression that (possibly as a 11379 // subexpression) contains an AddRecExpr. In the expression: 11380 // 11381 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11382 // 11383 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11384 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11385 // parameters as they form a product with an induction variable. 11386 // 11387 // This collector expects all array size parameters to be in the same MulExpr. 11388 // It might be necessary to later add support for collecting parameters that are 11389 // spread over different nested MulExpr. 11390 struct SCEVCollectAddRecMultiplies { 11391 SmallVectorImpl<const SCEV *> &Terms; 11392 ScalarEvolution &SE; 11393 11394 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11395 : Terms(T), SE(SE) {} 11396 11397 bool follow(const SCEV *S) { 11398 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11399 bool HasAddRec = false; 11400 SmallVector<const SCEV *, 0> Operands; 11401 for (auto Op : Mul->operands()) { 11402 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11403 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11404 Operands.push_back(Op); 11405 } else if (Unknown) { 11406 HasAddRec = true; 11407 } else { 11408 bool ContainsAddRec = false; 11409 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11410 visitAll(Op, ContiansAddRec); 11411 HasAddRec |= ContainsAddRec; 11412 } 11413 } 11414 if (Operands.size() == 0) 11415 return true; 11416 11417 if (!HasAddRec) 11418 return false; 11419 11420 Terms.push_back(SE.getMulExpr(Operands)); 11421 // Stop recursion: once we collected a term, do not walk its operands. 11422 return false; 11423 } 11424 11425 // Keep looking. 11426 return true; 11427 } 11428 11429 bool isDone() const { return false; } 11430 }; 11431 11432 } // end anonymous namespace 11433 11434 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11435 /// two places: 11436 /// 1) The strides of AddRec expressions. 11437 /// 2) Unknowns that are multiplied with AddRec expressions. 11438 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11439 SmallVectorImpl<const SCEV *> &Terms) { 11440 SmallVector<const SCEV *, 4> Strides; 11441 SCEVCollectStrides StrideCollector(*this, Strides); 11442 visitAll(Expr, StrideCollector); 11443 11444 LLVM_DEBUG({ 11445 dbgs() << "Strides:\n"; 11446 for (const SCEV *S : Strides) 11447 dbgs() << *S << "\n"; 11448 }); 11449 11450 for (const SCEV *S : Strides) { 11451 SCEVCollectTerms TermCollector(Terms); 11452 visitAll(S, TermCollector); 11453 } 11454 11455 LLVM_DEBUG({ 11456 dbgs() << "Terms:\n"; 11457 for (const SCEV *T : Terms) 11458 dbgs() << *T << "\n"; 11459 }); 11460 11461 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11462 visitAll(Expr, MulCollector); 11463 } 11464 11465 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11466 SmallVectorImpl<const SCEV *> &Terms, 11467 SmallVectorImpl<const SCEV *> &Sizes) { 11468 int Last = Terms.size() - 1; 11469 const SCEV *Step = Terms[Last]; 11470 11471 // End of recursion. 11472 if (Last == 0) { 11473 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11474 SmallVector<const SCEV *, 2> Qs; 11475 for (const SCEV *Op : M->operands()) 11476 if (!isa<SCEVConstant>(Op)) 11477 Qs.push_back(Op); 11478 11479 Step = SE.getMulExpr(Qs); 11480 } 11481 11482 Sizes.push_back(Step); 11483 return true; 11484 } 11485 11486 for (const SCEV *&Term : Terms) { 11487 // Normalize the terms before the next call to findArrayDimensionsRec. 11488 const SCEV *Q, *R; 11489 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11490 11491 // Bail out when GCD does not evenly divide one of the terms. 11492 if (!R->isZero()) 11493 return false; 11494 11495 Term = Q; 11496 } 11497 11498 // Remove all SCEVConstants. 11499 Terms.erase( 11500 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11501 Terms.end()); 11502 11503 if (Terms.size() > 0) 11504 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11505 return false; 11506 11507 Sizes.push_back(Step); 11508 return true; 11509 } 11510 11511 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11512 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11513 for (const SCEV *T : Terms) 11514 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11515 return true; 11516 11517 return false; 11518 } 11519 11520 // Return the number of product terms in S. 11521 static inline int numberOfTerms(const SCEV *S) { 11522 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11523 return Expr->getNumOperands(); 11524 return 1; 11525 } 11526 11527 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11528 if (isa<SCEVConstant>(T)) 11529 return nullptr; 11530 11531 if (isa<SCEVUnknown>(T)) 11532 return T; 11533 11534 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11535 SmallVector<const SCEV *, 2> Factors; 11536 for (const SCEV *Op : M->operands()) 11537 if (!isa<SCEVConstant>(Op)) 11538 Factors.push_back(Op); 11539 11540 return SE.getMulExpr(Factors); 11541 } 11542 11543 return T; 11544 } 11545 11546 /// Return the size of an element read or written by Inst. 11547 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11548 Type *Ty; 11549 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11550 Ty = Store->getValueOperand()->getType(); 11551 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11552 Ty = Load->getType(); 11553 else 11554 return nullptr; 11555 11556 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11557 return getSizeOfExpr(ETy, Ty); 11558 } 11559 11560 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11561 SmallVectorImpl<const SCEV *> &Sizes, 11562 const SCEV *ElementSize) { 11563 if (Terms.size() < 1 || !ElementSize) 11564 return; 11565 11566 // Early return when Terms do not contain parameters: we do not delinearize 11567 // non parametric SCEVs. 11568 if (!containsParameters(Terms)) 11569 return; 11570 11571 LLVM_DEBUG({ 11572 dbgs() << "Terms:\n"; 11573 for (const SCEV *T : Terms) 11574 dbgs() << *T << "\n"; 11575 }); 11576 11577 // Remove duplicates. 11578 array_pod_sort(Terms.begin(), Terms.end()); 11579 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11580 11581 // Put larger terms first. 11582 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11583 return numberOfTerms(LHS) > numberOfTerms(RHS); 11584 }); 11585 11586 // Try to divide all terms by the element size. If term is not divisible by 11587 // element size, proceed with the original term. 11588 for (const SCEV *&Term : Terms) { 11589 const SCEV *Q, *R; 11590 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11591 if (!Q->isZero()) 11592 Term = Q; 11593 } 11594 11595 SmallVector<const SCEV *, 4> NewTerms; 11596 11597 // Remove constant factors. 11598 for (const SCEV *T : Terms) 11599 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11600 NewTerms.push_back(NewT); 11601 11602 LLVM_DEBUG({ 11603 dbgs() << "Terms after sorting:\n"; 11604 for (const SCEV *T : NewTerms) 11605 dbgs() << *T << "\n"; 11606 }); 11607 11608 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11609 Sizes.clear(); 11610 return; 11611 } 11612 11613 // The last element to be pushed into Sizes is the size of an element. 11614 Sizes.push_back(ElementSize); 11615 11616 LLVM_DEBUG({ 11617 dbgs() << "Sizes:\n"; 11618 for (const SCEV *S : Sizes) 11619 dbgs() << *S << "\n"; 11620 }); 11621 } 11622 11623 void ScalarEvolution::computeAccessFunctions( 11624 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11625 SmallVectorImpl<const SCEV *> &Sizes) { 11626 // Early exit in case this SCEV is not an affine multivariate function. 11627 if (Sizes.empty()) 11628 return; 11629 11630 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11631 if (!AR->isAffine()) 11632 return; 11633 11634 const SCEV *Res = Expr; 11635 int Last = Sizes.size() - 1; 11636 for (int i = Last; i >= 0; i--) { 11637 const SCEV *Q, *R; 11638 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11639 11640 LLVM_DEBUG({ 11641 dbgs() << "Res: " << *Res << "\n"; 11642 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11643 dbgs() << "Res divided by Sizes[i]:\n"; 11644 dbgs() << "Quotient: " << *Q << "\n"; 11645 dbgs() << "Remainder: " << *R << "\n"; 11646 }); 11647 11648 Res = Q; 11649 11650 // Do not record the last subscript corresponding to the size of elements in 11651 // the array. 11652 if (i == Last) { 11653 11654 // Bail out if the remainder is too complex. 11655 if (isa<SCEVAddRecExpr>(R)) { 11656 Subscripts.clear(); 11657 Sizes.clear(); 11658 return; 11659 } 11660 11661 continue; 11662 } 11663 11664 // Record the access function for the current subscript. 11665 Subscripts.push_back(R); 11666 } 11667 11668 // Also push in last position the remainder of the last division: it will be 11669 // the access function of the innermost dimension. 11670 Subscripts.push_back(Res); 11671 11672 std::reverse(Subscripts.begin(), Subscripts.end()); 11673 11674 LLVM_DEBUG({ 11675 dbgs() << "Subscripts:\n"; 11676 for (const SCEV *S : Subscripts) 11677 dbgs() << *S << "\n"; 11678 }); 11679 } 11680 11681 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11682 /// sizes of an array access. Returns the remainder of the delinearization that 11683 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11684 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11685 /// expressions in the stride and base of a SCEV corresponding to the 11686 /// computation of a GCD (greatest common divisor) of base and stride. When 11687 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11688 /// 11689 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11690 /// 11691 /// void foo(long n, long m, long o, double A[n][m][o]) { 11692 /// 11693 /// for (long i = 0; i < n; i++) 11694 /// for (long j = 0; j < m; j++) 11695 /// for (long k = 0; k < o; k++) 11696 /// A[i][j][k] = 1.0; 11697 /// } 11698 /// 11699 /// the delinearization input is the following AddRec SCEV: 11700 /// 11701 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11702 /// 11703 /// From this SCEV, we are able to say that the base offset of the access is %A 11704 /// because it appears as an offset that does not divide any of the strides in 11705 /// the loops: 11706 /// 11707 /// CHECK: Base offset: %A 11708 /// 11709 /// and then SCEV->delinearize determines the size of some of the dimensions of 11710 /// the array as these are the multiples by which the strides are happening: 11711 /// 11712 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11713 /// 11714 /// Note that the outermost dimension remains of UnknownSize because there are 11715 /// no strides that would help identifying the size of the last dimension: when 11716 /// the array has been statically allocated, one could compute the size of that 11717 /// dimension by dividing the overall size of the array by the size of the known 11718 /// dimensions: %m * %o * 8. 11719 /// 11720 /// Finally delinearize provides the access functions for the array reference 11721 /// that does correspond to A[i][j][k] of the above C testcase: 11722 /// 11723 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11724 /// 11725 /// The testcases are checking the output of a function pass: 11726 /// DelinearizationPass that walks through all loads and stores of a function 11727 /// asking for the SCEV of the memory access with respect to all enclosing 11728 /// loops, calling SCEV->delinearize on that and printing the results. 11729 void ScalarEvolution::delinearize(const SCEV *Expr, 11730 SmallVectorImpl<const SCEV *> &Subscripts, 11731 SmallVectorImpl<const SCEV *> &Sizes, 11732 const SCEV *ElementSize) { 11733 // First step: collect parametric terms. 11734 SmallVector<const SCEV *, 4> Terms; 11735 collectParametricTerms(Expr, Terms); 11736 11737 if (Terms.empty()) 11738 return; 11739 11740 // Second step: find subscript sizes. 11741 findArrayDimensions(Terms, Sizes, ElementSize); 11742 11743 if (Sizes.empty()) 11744 return; 11745 11746 // Third step: compute the access functions for each subscript. 11747 computeAccessFunctions(Expr, Subscripts, Sizes); 11748 11749 if (Subscripts.empty()) 11750 return; 11751 11752 LLVM_DEBUG({ 11753 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11754 dbgs() << "ArrayDecl[UnknownSize]"; 11755 for (const SCEV *S : Sizes) 11756 dbgs() << "[" << *S << "]"; 11757 11758 dbgs() << "\nArrayRef"; 11759 for (const SCEV *S : Subscripts) 11760 dbgs() << "[" << *S << "]"; 11761 dbgs() << "\n"; 11762 }); 11763 } 11764 11765 bool ScalarEvolution::getIndexExpressionsFromGEP( 11766 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11767 SmallVectorImpl<int> &Sizes) { 11768 assert(Subscripts.empty() && Sizes.empty() && 11769 "Expected output lists to be empty on entry to this function."); 11770 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11771 Type *Ty = GEP->getPointerOperandType(); 11772 bool DroppedFirstDim = false; 11773 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11774 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11775 if (i == 1) { 11776 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11777 Ty = PtrTy->getElementType(); 11778 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11779 Ty = ArrayTy->getElementType(); 11780 } else { 11781 Subscripts.clear(); 11782 Sizes.clear(); 11783 return false; 11784 } 11785 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11786 if (Const->getValue()->isZero()) { 11787 DroppedFirstDim = true; 11788 continue; 11789 } 11790 Subscripts.push_back(Expr); 11791 continue; 11792 } 11793 11794 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11795 if (!ArrayTy) { 11796 Subscripts.clear(); 11797 Sizes.clear(); 11798 return false; 11799 } 11800 11801 Subscripts.push_back(Expr); 11802 if (!(DroppedFirstDim && i == 2)) 11803 Sizes.push_back(ArrayTy->getNumElements()); 11804 11805 Ty = ArrayTy->getElementType(); 11806 } 11807 return !Subscripts.empty(); 11808 } 11809 11810 //===----------------------------------------------------------------------===// 11811 // SCEVCallbackVH Class Implementation 11812 //===----------------------------------------------------------------------===// 11813 11814 void ScalarEvolution::SCEVCallbackVH::deleted() { 11815 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11816 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11817 SE->ConstantEvolutionLoopExitValue.erase(PN); 11818 SE->eraseValueFromMap(getValPtr()); 11819 // this now dangles! 11820 } 11821 11822 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11823 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11824 11825 // Forget all the expressions associated with users of the old value, 11826 // so that future queries will recompute the expressions using the new 11827 // value. 11828 Value *Old = getValPtr(); 11829 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11830 SmallPtrSet<User *, 8> Visited; 11831 while (!Worklist.empty()) { 11832 User *U = Worklist.pop_back_val(); 11833 // Deleting the Old value will cause this to dangle. Postpone 11834 // that until everything else is done. 11835 if (U == Old) 11836 continue; 11837 if (!Visited.insert(U).second) 11838 continue; 11839 if (PHINode *PN = dyn_cast<PHINode>(U)) 11840 SE->ConstantEvolutionLoopExitValue.erase(PN); 11841 SE->eraseValueFromMap(U); 11842 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11843 } 11844 // Delete the Old value. 11845 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11846 SE->ConstantEvolutionLoopExitValue.erase(PN); 11847 SE->eraseValueFromMap(Old); 11848 // this now dangles! 11849 } 11850 11851 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11852 : CallbackVH(V), SE(se) {} 11853 11854 //===----------------------------------------------------------------------===// 11855 // ScalarEvolution Class Implementation 11856 //===----------------------------------------------------------------------===// 11857 11858 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11859 AssumptionCache &AC, DominatorTree &DT, 11860 LoopInfo &LI) 11861 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11862 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11863 LoopDispositions(64), BlockDispositions(64) { 11864 // To use guards for proving predicates, we need to scan every instruction in 11865 // relevant basic blocks, and not just terminators. Doing this is a waste of 11866 // time if the IR does not actually contain any calls to 11867 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11868 // 11869 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11870 // to _add_ guards to the module when there weren't any before, and wants 11871 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11872 // efficient in lieu of being smart in that rather obscure case. 11873 11874 auto *GuardDecl = F.getParent()->getFunction( 11875 Intrinsic::getName(Intrinsic::experimental_guard)); 11876 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11877 } 11878 11879 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11880 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11881 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11882 ValueExprMap(std::move(Arg.ValueExprMap)), 11883 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11884 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11885 PendingMerges(std::move(Arg.PendingMerges)), 11886 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11887 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11888 PredicatedBackedgeTakenCounts( 11889 std::move(Arg.PredicatedBackedgeTakenCounts)), 11890 ConstantEvolutionLoopExitValue( 11891 std::move(Arg.ConstantEvolutionLoopExitValue)), 11892 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11893 LoopDispositions(std::move(Arg.LoopDispositions)), 11894 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11895 BlockDispositions(std::move(Arg.BlockDispositions)), 11896 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11897 SignedRanges(std::move(Arg.SignedRanges)), 11898 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11899 UniquePreds(std::move(Arg.UniquePreds)), 11900 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11901 LoopUsers(std::move(Arg.LoopUsers)), 11902 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11903 FirstUnknown(Arg.FirstUnknown) { 11904 Arg.FirstUnknown = nullptr; 11905 } 11906 11907 ScalarEvolution::~ScalarEvolution() { 11908 // Iterate through all the SCEVUnknown instances and call their 11909 // destructors, so that they release their references to their values. 11910 for (SCEVUnknown *U = FirstUnknown; U;) { 11911 SCEVUnknown *Tmp = U; 11912 U = U->Next; 11913 Tmp->~SCEVUnknown(); 11914 } 11915 FirstUnknown = nullptr; 11916 11917 ExprValueMap.clear(); 11918 ValueExprMap.clear(); 11919 HasRecMap.clear(); 11920 11921 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11922 // that a loop had multiple computable exits. 11923 for (auto &BTCI : BackedgeTakenCounts) 11924 BTCI.second.clear(); 11925 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11926 BTCI.second.clear(); 11927 11928 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11929 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11930 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11931 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11932 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11933 } 11934 11935 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11936 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11937 } 11938 11939 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11940 const Loop *L) { 11941 // Print all inner loops first 11942 for (Loop *I : *L) 11943 PrintLoopInfo(OS, SE, I); 11944 11945 OS << "Loop "; 11946 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11947 OS << ": "; 11948 11949 SmallVector<BasicBlock *, 8> ExitingBlocks; 11950 L->getExitingBlocks(ExitingBlocks); 11951 if (ExitingBlocks.size() != 1) 11952 OS << "<multiple exits> "; 11953 11954 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 11955 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 11956 else 11957 OS << "Unpredictable backedge-taken count.\n"; 11958 11959 if (ExitingBlocks.size() > 1) 11960 for (BasicBlock *ExitingBlock : ExitingBlocks) { 11961 OS << " exit count for " << ExitingBlock->getName() << ": " 11962 << *SE->getExitCount(L, ExitingBlock) << "\n"; 11963 } 11964 11965 OS << "Loop "; 11966 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11967 OS << ": "; 11968 11969 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 11970 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 11971 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11972 OS << ", actual taken count either this or zero."; 11973 } else { 11974 OS << "Unpredictable max backedge-taken count. "; 11975 } 11976 11977 OS << "\n" 11978 "Loop "; 11979 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11980 OS << ": "; 11981 11982 SCEVUnionPredicate Pred; 11983 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11984 if (!isa<SCEVCouldNotCompute>(PBT)) { 11985 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11986 OS << " Predicates:\n"; 11987 Pred.print(OS, 4); 11988 } else { 11989 OS << "Unpredictable predicated backedge-taken count. "; 11990 } 11991 OS << "\n"; 11992 11993 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11994 OS << "Loop "; 11995 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11996 OS << ": "; 11997 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11998 } 11999 } 12000 12001 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12002 switch (LD) { 12003 case ScalarEvolution::LoopVariant: 12004 return "Variant"; 12005 case ScalarEvolution::LoopInvariant: 12006 return "Invariant"; 12007 case ScalarEvolution::LoopComputable: 12008 return "Computable"; 12009 } 12010 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12011 } 12012 12013 void ScalarEvolution::print(raw_ostream &OS) const { 12014 // ScalarEvolution's implementation of the print method is to print 12015 // out SCEV values of all instructions that are interesting. Doing 12016 // this potentially causes it to create new SCEV objects though, 12017 // which technically conflicts with the const qualifier. This isn't 12018 // observable from outside the class though, so casting away the 12019 // const isn't dangerous. 12020 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12021 12022 if (ClassifyExpressions) { 12023 OS << "Classifying expressions for: "; 12024 F.printAsOperand(OS, /*PrintType=*/false); 12025 OS << "\n"; 12026 for (Instruction &I : instructions(F)) 12027 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12028 OS << I << '\n'; 12029 OS << " --> "; 12030 const SCEV *SV = SE.getSCEV(&I); 12031 SV->print(OS); 12032 if (!isa<SCEVCouldNotCompute>(SV)) { 12033 OS << " U: "; 12034 SE.getUnsignedRange(SV).print(OS); 12035 OS << " S: "; 12036 SE.getSignedRange(SV).print(OS); 12037 } 12038 12039 const Loop *L = LI.getLoopFor(I.getParent()); 12040 12041 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12042 if (AtUse != SV) { 12043 OS << " --> "; 12044 AtUse->print(OS); 12045 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12046 OS << " U: "; 12047 SE.getUnsignedRange(AtUse).print(OS); 12048 OS << " S: "; 12049 SE.getSignedRange(AtUse).print(OS); 12050 } 12051 } 12052 12053 if (L) { 12054 OS << "\t\t" "Exits: "; 12055 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12056 if (!SE.isLoopInvariant(ExitValue, L)) { 12057 OS << "<<Unknown>>"; 12058 } else { 12059 OS << *ExitValue; 12060 } 12061 12062 bool First = true; 12063 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12064 if (First) { 12065 OS << "\t\t" "LoopDispositions: { "; 12066 First = false; 12067 } else { 12068 OS << ", "; 12069 } 12070 12071 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12072 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12073 } 12074 12075 for (auto *InnerL : depth_first(L)) { 12076 if (InnerL == L) 12077 continue; 12078 if (First) { 12079 OS << "\t\t" "LoopDispositions: { "; 12080 First = false; 12081 } else { 12082 OS << ", "; 12083 } 12084 12085 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12086 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12087 } 12088 12089 OS << " }"; 12090 } 12091 12092 OS << "\n"; 12093 } 12094 } 12095 12096 OS << "Determining loop execution counts for: "; 12097 F.printAsOperand(OS, /*PrintType=*/false); 12098 OS << "\n"; 12099 for (Loop *I : LI) 12100 PrintLoopInfo(OS, &SE, I); 12101 } 12102 12103 ScalarEvolution::LoopDisposition 12104 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12105 auto &Values = LoopDispositions[S]; 12106 for (auto &V : Values) { 12107 if (V.getPointer() == L) 12108 return V.getInt(); 12109 } 12110 Values.emplace_back(L, LoopVariant); 12111 LoopDisposition D = computeLoopDisposition(S, L); 12112 auto &Values2 = LoopDispositions[S]; 12113 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12114 if (V.getPointer() == L) { 12115 V.setInt(D); 12116 break; 12117 } 12118 } 12119 return D; 12120 } 12121 12122 ScalarEvolution::LoopDisposition 12123 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12124 switch (S->getSCEVType()) { 12125 case scConstant: 12126 return LoopInvariant; 12127 case scPtrToInt: 12128 case scTruncate: 12129 case scZeroExtend: 12130 case scSignExtend: 12131 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12132 case scAddRecExpr: { 12133 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12134 12135 // If L is the addrec's loop, it's computable. 12136 if (AR->getLoop() == L) 12137 return LoopComputable; 12138 12139 // Add recurrences are never invariant in the function-body (null loop). 12140 if (!L) 12141 return LoopVariant; 12142 12143 // Everything that is not defined at loop entry is variant. 12144 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12145 return LoopVariant; 12146 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12147 " dominate the contained loop's header?"); 12148 12149 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12150 if (AR->getLoop()->contains(L)) 12151 return LoopInvariant; 12152 12153 // This recurrence is variant w.r.t. L if any of its operands 12154 // are variant. 12155 for (auto *Op : AR->operands()) 12156 if (!isLoopInvariant(Op, L)) 12157 return LoopVariant; 12158 12159 // Otherwise it's loop-invariant. 12160 return LoopInvariant; 12161 } 12162 case scAddExpr: 12163 case scMulExpr: 12164 case scUMaxExpr: 12165 case scSMaxExpr: 12166 case scUMinExpr: 12167 case scSMinExpr: { 12168 bool HasVarying = false; 12169 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12170 LoopDisposition D = getLoopDisposition(Op, L); 12171 if (D == LoopVariant) 12172 return LoopVariant; 12173 if (D == LoopComputable) 12174 HasVarying = true; 12175 } 12176 return HasVarying ? LoopComputable : LoopInvariant; 12177 } 12178 case scUDivExpr: { 12179 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12180 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12181 if (LD == LoopVariant) 12182 return LoopVariant; 12183 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12184 if (RD == LoopVariant) 12185 return LoopVariant; 12186 return (LD == LoopInvariant && RD == LoopInvariant) ? 12187 LoopInvariant : LoopComputable; 12188 } 12189 case scUnknown: 12190 // All non-instruction values are loop invariant. All instructions are loop 12191 // invariant if they are not contained in the specified loop. 12192 // Instructions are never considered invariant in the function body 12193 // (null loop) because they are defined within the "loop". 12194 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12195 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12196 return LoopInvariant; 12197 case scCouldNotCompute: 12198 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12199 } 12200 llvm_unreachable("Unknown SCEV kind!"); 12201 } 12202 12203 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12204 return getLoopDisposition(S, L) == LoopInvariant; 12205 } 12206 12207 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12208 return getLoopDisposition(S, L) == LoopComputable; 12209 } 12210 12211 ScalarEvolution::BlockDisposition 12212 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12213 auto &Values = BlockDispositions[S]; 12214 for (auto &V : Values) { 12215 if (V.getPointer() == BB) 12216 return V.getInt(); 12217 } 12218 Values.emplace_back(BB, DoesNotDominateBlock); 12219 BlockDisposition D = computeBlockDisposition(S, BB); 12220 auto &Values2 = BlockDispositions[S]; 12221 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12222 if (V.getPointer() == BB) { 12223 V.setInt(D); 12224 break; 12225 } 12226 } 12227 return D; 12228 } 12229 12230 ScalarEvolution::BlockDisposition 12231 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12232 switch (S->getSCEVType()) { 12233 case scConstant: 12234 return ProperlyDominatesBlock; 12235 case scPtrToInt: 12236 case scTruncate: 12237 case scZeroExtend: 12238 case scSignExtend: 12239 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12240 case scAddRecExpr: { 12241 // This uses a "dominates" query instead of "properly dominates" query 12242 // to test for proper dominance too, because the instruction which 12243 // produces the addrec's value is a PHI, and a PHI effectively properly 12244 // dominates its entire containing block. 12245 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12246 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12247 return DoesNotDominateBlock; 12248 12249 // Fall through into SCEVNAryExpr handling. 12250 LLVM_FALLTHROUGH; 12251 } 12252 case scAddExpr: 12253 case scMulExpr: 12254 case scUMaxExpr: 12255 case scSMaxExpr: 12256 case scUMinExpr: 12257 case scSMinExpr: { 12258 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12259 bool Proper = true; 12260 for (const SCEV *NAryOp : NAry->operands()) { 12261 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12262 if (D == DoesNotDominateBlock) 12263 return DoesNotDominateBlock; 12264 if (D == DominatesBlock) 12265 Proper = false; 12266 } 12267 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12268 } 12269 case scUDivExpr: { 12270 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12271 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12272 BlockDisposition LD = getBlockDisposition(LHS, BB); 12273 if (LD == DoesNotDominateBlock) 12274 return DoesNotDominateBlock; 12275 BlockDisposition RD = getBlockDisposition(RHS, BB); 12276 if (RD == DoesNotDominateBlock) 12277 return DoesNotDominateBlock; 12278 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12279 ProperlyDominatesBlock : DominatesBlock; 12280 } 12281 case scUnknown: 12282 if (Instruction *I = 12283 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12284 if (I->getParent() == BB) 12285 return DominatesBlock; 12286 if (DT.properlyDominates(I->getParent(), BB)) 12287 return ProperlyDominatesBlock; 12288 return DoesNotDominateBlock; 12289 } 12290 return ProperlyDominatesBlock; 12291 case scCouldNotCompute: 12292 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12293 } 12294 llvm_unreachable("Unknown SCEV kind!"); 12295 } 12296 12297 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12298 return getBlockDisposition(S, BB) >= DominatesBlock; 12299 } 12300 12301 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12302 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12303 } 12304 12305 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12306 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12307 } 12308 12309 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 12310 auto IsS = [&](const SCEV *X) { return S == X; }; 12311 auto ContainsS = [&](const SCEV *X) { 12312 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 12313 }; 12314 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 12315 } 12316 12317 void 12318 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12319 ValuesAtScopes.erase(S); 12320 LoopDispositions.erase(S); 12321 BlockDispositions.erase(S); 12322 UnsignedRanges.erase(S); 12323 SignedRanges.erase(S); 12324 ExprValueMap.erase(S); 12325 HasRecMap.erase(S); 12326 MinTrailingZerosCache.erase(S); 12327 12328 for (auto I = PredicatedSCEVRewrites.begin(); 12329 I != PredicatedSCEVRewrites.end();) { 12330 std::pair<const SCEV *, const Loop *> Entry = I->first; 12331 if (Entry.first == S) 12332 PredicatedSCEVRewrites.erase(I++); 12333 else 12334 ++I; 12335 } 12336 12337 auto RemoveSCEVFromBackedgeMap = 12338 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12339 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12340 BackedgeTakenInfo &BEInfo = I->second; 12341 if (BEInfo.hasOperand(S, this)) { 12342 BEInfo.clear(); 12343 Map.erase(I++); 12344 } else 12345 ++I; 12346 } 12347 }; 12348 12349 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12350 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12351 } 12352 12353 void 12354 ScalarEvolution::getUsedLoops(const SCEV *S, 12355 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12356 struct FindUsedLoops { 12357 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12358 : LoopsUsed(LoopsUsed) {} 12359 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12360 bool follow(const SCEV *S) { 12361 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12362 LoopsUsed.insert(AR->getLoop()); 12363 return true; 12364 } 12365 12366 bool isDone() const { return false; } 12367 }; 12368 12369 FindUsedLoops F(LoopsUsed); 12370 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12371 } 12372 12373 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12374 SmallPtrSet<const Loop *, 8> LoopsUsed; 12375 getUsedLoops(S, LoopsUsed); 12376 for (auto *L : LoopsUsed) 12377 LoopUsers[L].push_back(S); 12378 } 12379 12380 void ScalarEvolution::verify() const { 12381 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12382 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12383 12384 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12385 12386 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12387 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12388 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12389 12390 const SCEV *visitConstant(const SCEVConstant *Constant) { 12391 return SE.getConstant(Constant->getAPInt()); 12392 } 12393 12394 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12395 return SE.getUnknown(Expr->getValue()); 12396 } 12397 12398 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12399 return SE.getCouldNotCompute(); 12400 } 12401 }; 12402 12403 SCEVMapper SCM(SE2); 12404 12405 while (!LoopStack.empty()) { 12406 auto *L = LoopStack.pop_back_val(); 12407 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 12408 12409 auto *CurBECount = SCM.visit( 12410 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12411 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12412 12413 if (CurBECount == SE2.getCouldNotCompute() || 12414 NewBECount == SE2.getCouldNotCompute()) { 12415 // NB! This situation is legal, but is very suspicious -- whatever pass 12416 // change the loop to make a trip count go from could not compute to 12417 // computable or vice-versa *should have* invalidated SCEV. However, we 12418 // choose not to assert here (for now) since we don't want false 12419 // positives. 12420 continue; 12421 } 12422 12423 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12424 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12425 // not propagate undef aggressively). This means we can (and do) fail 12426 // verification in cases where a transform makes the trip count of a loop 12427 // go from "undef" to "undef+1" (say). The transform is fine, since in 12428 // both cases the loop iterates "undef" times, but SCEV thinks we 12429 // increased the trip count of the loop by 1 incorrectly. 12430 continue; 12431 } 12432 12433 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12434 SE.getTypeSizeInBits(NewBECount->getType())) 12435 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12436 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12437 SE.getTypeSizeInBits(NewBECount->getType())) 12438 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12439 12440 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12441 12442 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12443 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12444 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12445 dbgs() << "Old: " << *CurBECount << "\n"; 12446 dbgs() << "New: " << *NewBECount << "\n"; 12447 dbgs() << "Delta: " << *Delta << "\n"; 12448 std::abort(); 12449 } 12450 } 12451 12452 // Collect all valid loops currently in LoopInfo. 12453 SmallPtrSet<Loop *, 32> ValidLoops; 12454 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12455 while (!Worklist.empty()) { 12456 Loop *L = Worklist.pop_back_val(); 12457 if (ValidLoops.contains(L)) 12458 continue; 12459 ValidLoops.insert(L); 12460 Worklist.append(L->begin(), L->end()); 12461 } 12462 // Check for SCEV expressions referencing invalid/deleted loops. 12463 for (auto &KV : ValueExprMap) { 12464 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12465 if (!AR) 12466 continue; 12467 assert(ValidLoops.contains(AR->getLoop()) && 12468 "AddRec references invalid loop"); 12469 } 12470 } 12471 12472 bool ScalarEvolution::invalidate( 12473 Function &F, const PreservedAnalyses &PA, 12474 FunctionAnalysisManager::Invalidator &Inv) { 12475 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12476 // of its dependencies is invalidated. 12477 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12478 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12479 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12480 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12481 Inv.invalidate<LoopAnalysis>(F, PA); 12482 } 12483 12484 AnalysisKey ScalarEvolutionAnalysis::Key; 12485 12486 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12487 FunctionAnalysisManager &AM) { 12488 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12489 AM.getResult<AssumptionAnalysis>(F), 12490 AM.getResult<DominatorTreeAnalysis>(F), 12491 AM.getResult<LoopAnalysis>(F)); 12492 } 12493 12494 PreservedAnalyses 12495 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12496 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12497 return PreservedAnalyses::all(); 12498 } 12499 12500 PreservedAnalyses 12501 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12502 // For compatibility with opt's -analyze feature under legacy pass manager 12503 // which was not ported to NPM. This keeps tests using 12504 // update_analyze_test_checks.py working. 12505 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12506 << F.getName() << "':\n"; 12507 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12508 return PreservedAnalyses::all(); 12509 } 12510 12511 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12512 "Scalar Evolution Analysis", false, true) 12513 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12514 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12515 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12516 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12517 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12518 "Scalar Evolution Analysis", false, true) 12519 12520 char ScalarEvolutionWrapperPass::ID = 0; 12521 12522 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12523 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12524 } 12525 12526 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12527 SE.reset(new ScalarEvolution( 12528 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12529 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12530 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12531 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12532 return false; 12533 } 12534 12535 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12536 12537 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12538 SE->print(OS); 12539 } 12540 12541 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12542 if (!VerifySCEV) 12543 return; 12544 12545 SE->verify(); 12546 } 12547 12548 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12549 AU.setPreservesAll(); 12550 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12551 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12552 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12553 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12554 } 12555 12556 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12557 const SCEV *RHS) { 12558 FoldingSetNodeID ID; 12559 assert(LHS->getType() == RHS->getType() && 12560 "Type mismatch between LHS and RHS"); 12561 // Unique this node based on the arguments 12562 ID.AddInteger(SCEVPredicate::P_Equal); 12563 ID.AddPointer(LHS); 12564 ID.AddPointer(RHS); 12565 void *IP = nullptr; 12566 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12567 return S; 12568 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12569 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12570 UniquePreds.InsertNode(Eq, IP); 12571 return Eq; 12572 } 12573 12574 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12575 const SCEVAddRecExpr *AR, 12576 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12577 FoldingSetNodeID ID; 12578 // Unique this node based on the arguments 12579 ID.AddInteger(SCEVPredicate::P_Wrap); 12580 ID.AddPointer(AR); 12581 ID.AddInteger(AddedFlags); 12582 void *IP = nullptr; 12583 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12584 return S; 12585 auto *OF = new (SCEVAllocator) 12586 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12587 UniquePreds.InsertNode(OF, IP); 12588 return OF; 12589 } 12590 12591 namespace { 12592 12593 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12594 public: 12595 12596 /// Rewrites \p S in the context of a loop L and the SCEV predication 12597 /// infrastructure. 12598 /// 12599 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12600 /// equivalences present in \p Pred. 12601 /// 12602 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12603 /// \p NewPreds such that the result will be an AddRecExpr. 12604 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12605 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12606 SCEVUnionPredicate *Pred) { 12607 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12608 return Rewriter.visit(S); 12609 } 12610 12611 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12612 if (Pred) { 12613 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12614 for (auto *Pred : ExprPreds) 12615 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12616 if (IPred->getLHS() == Expr) 12617 return IPred->getRHS(); 12618 } 12619 return convertToAddRecWithPreds(Expr); 12620 } 12621 12622 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12623 const SCEV *Operand = visit(Expr->getOperand()); 12624 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12625 if (AR && AR->getLoop() == L && AR->isAffine()) { 12626 // This couldn't be folded because the operand didn't have the nuw 12627 // flag. Add the nusw flag as an assumption that we could make. 12628 const SCEV *Step = AR->getStepRecurrence(SE); 12629 Type *Ty = Expr->getType(); 12630 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12631 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12632 SE.getSignExtendExpr(Step, Ty), L, 12633 AR->getNoWrapFlags()); 12634 } 12635 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12636 } 12637 12638 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12639 const SCEV *Operand = visit(Expr->getOperand()); 12640 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12641 if (AR && AR->getLoop() == L && AR->isAffine()) { 12642 // This couldn't be folded because the operand didn't have the nsw 12643 // flag. Add the nssw flag as an assumption that we could make. 12644 const SCEV *Step = AR->getStepRecurrence(SE); 12645 Type *Ty = Expr->getType(); 12646 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12647 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12648 SE.getSignExtendExpr(Step, Ty), L, 12649 AR->getNoWrapFlags()); 12650 } 12651 return SE.getSignExtendExpr(Operand, Expr->getType()); 12652 } 12653 12654 private: 12655 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12656 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12657 SCEVUnionPredicate *Pred) 12658 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12659 12660 bool addOverflowAssumption(const SCEVPredicate *P) { 12661 if (!NewPreds) { 12662 // Check if we've already made this assumption. 12663 return Pred && Pred->implies(P); 12664 } 12665 NewPreds->insert(P); 12666 return true; 12667 } 12668 12669 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12670 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12671 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12672 return addOverflowAssumption(A); 12673 } 12674 12675 // If \p Expr represents a PHINode, we try to see if it can be represented 12676 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12677 // to add this predicate as a runtime overflow check, we return the AddRec. 12678 // If \p Expr does not meet these conditions (is not a PHI node, or we 12679 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12680 // return \p Expr. 12681 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12682 if (!isa<PHINode>(Expr->getValue())) 12683 return Expr; 12684 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12685 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12686 if (!PredicatedRewrite) 12687 return Expr; 12688 for (auto *P : PredicatedRewrite->second){ 12689 // Wrap predicates from outer loops are not supported. 12690 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12691 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12692 if (L != AR->getLoop()) 12693 return Expr; 12694 } 12695 if (!addOverflowAssumption(P)) 12696 return Expr; 12697 } 12698 return PredicatedRewrite->first; 12699 } 12700 12701 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12702 SCEVUnionPredicate *Pred; 12703 const Loop *L; 12704 }; 12705 12706 } // end anonymous namespace 12707 12708 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12709 SCEVUnionPredicate &Preds) { 12710 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12711 } 12712 12713 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12714 const SCEV *S, const Loop *L, 12715 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12716 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12717 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12718 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12719 12720 if (!AddRec) 12721 return nullptr; 12722 12723 // Since the transformation was successful, we can now transfer the SCEV 12724 // predicates. 12725 for (auto *P : TransformPreds) 12726 Preds.insert(P); 12727 12728 return AddRec; 12729 } 12730 12731 /// SCEV predicates 12732 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12733 SCEVPredicateKind Kind) 12734 : FastID(ID), Kind(Kind) {} 12735 12736 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12737 const SCEV *LHS, const SCEV *RHS) 12738 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12739 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12740 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12741 } 12742 12743 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12744 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12745 12746 if (!Op) 12747 return false; 12748 12749 return Op->LHS == LHS && Op->RHS == RHS; 12750 } 12751 12752 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12753 12754 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12755 12756 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12757 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12758 } 12759 12760 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12761 const SCEVAddRecExpr *AR, 12762 IncrementWrapFlags Flags) 12763 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12764 12765 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12766 12767 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12768 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12769 12770 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12771 } 12772 12773 bool SCEVWrapPredicate::isAlwaysTrue() const { 12774 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12775 IncrementWrapFlags IFlags = Flags; 12776 12777 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12778 IFlags = clearFlags(IFlags, IncrementNSSW); 12779 12780 return IFlags == IncrementAnyWrap; 12781 } 12782 12783 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12784 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12785 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12786 OS << "<nusw>"; 12787 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12788 OS << "<nssw>"; 12789 OS << "\n"; 12790 } 12791 12792 SCEVWrapPredicate::IncrementWrapFlags 12793 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12794 ScalarEvolution &SE) { 12795 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12796 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12797 12798 // We can safely transfer the NSW flag as NSSW. 12799 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12800 ImpliedFlags = IncrementNSSW; 12801 12802 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12803 // If the increment is positive, the SCEV NUW flag will also imply the 12804 // WrapPredicate NUSW flag. 12805 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12806 if (Step->getValue()->getValue().isNonNegative()) 12807 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12808 } 12809 12810 return ImpliedFlags; 12811 } 12812 12813 /// Union predicates don't get cached so create a dummy set ID for it. 12814 SCEVUnionPredicate::SCEVUnionPredicate() 12815 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12816 12817 bool SCEVUnionPredicate::isAlwaysTrue() const { 12818 return all_of(Preds, 12819 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12820 } 12821 12822 ArrayRef<const SCEVPredicate *> 12823 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12824 auto I = SCEVToPreds.find(Expr); 12825 if (I == SCEVToPreds.end()) 12826 return ArrayRef<const SCEVPredicate *>(); 12827 return I->second; 12828 } 12829 12830 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12831 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12832 return all_of(Set->Preds, 12833 [this](const SCEVPredicate *I) { return this->implies(I); }); 12834 12835 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12836 if (ScevPredsIt == SCEVToPreds.end()) 12837 return false; 12838 auto &SCEVPreds = ScevPredsIt->second; 12839 12840 return any_of(SCEVPreds, 12841 [N](const SCEVPredicate *I) { return I->implies(N); }); 12842 } 12843 12844 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12845 12846 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12847 for (auto Pred : Preds) 12848 Pred->print(OS, Depth); 12849 } 12850 12851 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12852 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12853 for (auto Pred : Set->Preds) 12854 add(Pred); 12855 return; 12856 } 12857 12858 if (implies(N)) 12859 return; 12860 12861 const SCEV *Key = N->getExpr(); 12862 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12863 " associated expression!"); 12864 12865 SCEVToPreds[Key].push_back(N); 12866 Preds.push_back(N); 12867 } 12868 12869 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12870 Loop &L) 12871 : SE(SE), L(L) {} 12872 12873 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12874 const SCEV *Expr = SE.getSCEV(V); 12875 RewriteEntry &Entry = RewriteMap[Expr]; 12876 12877 // If we already have an entry and the version matches, return it. 12878 if (Entry.second && Generation == Entry.first) 12879 return Entry.second; 12880 12881 // We found an entry but it's stale. Rewrite the stale entry 12882 // according to the current predicate. 12883 if (Entry.second) 12884 Expr = Entry.second; 12885 12886 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12887 Entry = {Generation, NewSCEV}; 12888 12889 return NewSCEV; 12890 } 12891 12892 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12893 if (!BackedgeCount) { 12894 SCEVUnionPredicate BackedgePred; 12895 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12896 addPredicate(BackedgePred); 12897 } 12898 return BackedgeCount; 12899 } 12900 12901 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12902 if (Preds.implies(&Pred)) 12903 return; 12904 Preds.add(&Pred); 12905 updateGeneration(); 12906 } 12907 12908 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12909 return Preds; 12910 } 12911 12912 void PredicatedScalarEvolution::updateGeneration() { 12913 // If the generation number wrapped recompute everything. 12914 if (++Generation == 0) { 12915 for (auto &II : RewriteMap) { 12916 const SCEV *Rewritten = II.second.second; 12917 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12918 } 12919 } 12920 } 12921 12922 void PredicatedScalarEvolution::setNoOverflow( 12923 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12924 const SCEV *Expr = getSCEV(V); 12925 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12926 12927 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12928 12929 // Clear the statically implied flags. 12930 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12931 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12932 12933 auto II = FlagsMap.insert({V, Flags}); 12934 if (!II.second) 12935 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12936 } 12937 12938 bool PredicatedScalarEvolution::hasNoOverflow( 12939 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12940 const SCEV *Expr = getSCEV(V); 12941 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12942 12943 Flags = SCEVWrapPredicate::clearFlags( 12944 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12945 12946 auto II = FlagsMap.find(V); 12947 12948 if (II != FlagsMap.end()) 12949 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12950 12951 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12952 } 12953 12954 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12955 const SCEV *Expr = this->getSCEV(V); 12956 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12957 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12958 12959 if (!New) 12960 return nullptr; 12961 12962 for (auto *P : NewPreds) 12963 Preds.add(P); 12964 12965 updateGeneration(); 12966 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12967 return New; 12968 } 12969 12970 PredicatedScalarEvolution::PredicatedScalarEvolution( 12971 const PredicatedScalarEvolution &Init) 12972 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12973 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12974 for (auto I : Init.FlagsMap) 12975 FlagsMap.insert(I); 12976 } 12977 12978 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12979 // For each block. 12980 for (auto *BB : L.getBlocks()) 12981 for (auto &I : *BB) { 12982 if (!SE.isSCEVable(I.getType())) 12983 continue; 12984 12985 auto *Expr = SE.getSCEV(&I); 12986 auto II = RewriteMap.find(Expr); 12987 12988 if (II == RewriteMap.end()) 12989 continue; 12990 12991 // Don't print things that are not interesting. 12992 if (II->second.second == Expr) 12993 continue; 12994 12995 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12996 OS.indent(Depth + 2) << *Expr << "\n"; 12997 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12998 } 12999 } 13000 13001 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13002 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13003 // for URem with constant power-of-2 second operands. 13004 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13005 // 4, A / B becomes X / 8). 13006 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13007 const SCEV *&RHS) { 13008 // Try to match 'zext (trunc A to iB) to iY', which is used 13009 // for URem with constant power-of-2 second operands. Make sure the size of 13010 // the operand A matches the size of the whole expressions. 13011 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13012 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13013 LHS = Trunc->getOperand(); 13014 if (LHS->getType() != Expr->getType()) 13015 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13016 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13017 << getTypeSizeInBits(Trunc->getType())); 13018 return true; 13019 } 13020 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13021 if (Add == nullptr || Add->getNumOperands() != 2) 13022 return false; 13023 13024 const SCEV *A = Add->getOperand(1); 13025 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13026 13027 if (Mul == nullptr) 13028 return false; 13029 13030 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13031 // (SomeExpr + (-(SomeExpr / B) * B)). 13032 if (Expr == getURemExpr(A, B)) { 13033 LHS = A; 13034 RHS = B; 13035 return true; 13036 } 13037 return false; 13038 }; 13039 13040 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13041 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13042 return MatchURemWithDivisor(Mul->getOperand(1)) || 13043 MatchURemWithDivisor(Mul->getOperand(2)); 13044 13045 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13046 if (Mul->getNumOperands() == 2) 13047 return MatchURemWithDivisor(Mul->getOperand(1)) || 13048 MatchURemWithDivisor(Mul->getOperand(0)) || 13049 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13050 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13051 return false; 13052 } 13053 13054 const SCEV * 13055 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13056 SmallVector<BasicBlock*, 16> ExitingBlocks; 13057 L->getExitingBlocks(ExitingBlocks); 13058 13059 // Form an expression for the maximum exit count possible for this loop. We 13060 // merge the max and exact information to approximate a version of 13061 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13062 SmallVector<const SCEV*, 4> ExitCounts; 13063 for (BasicBlock *ExitingBB : ExitingBlocks) { 13064 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13065 if (isa<SCEVCouldNotCompute>(ExitCount)) 13066 ExitCount = getExitCount(L, ExitingBB, 13067 ScalarEvolution::ConstantMaximum); 13068 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13069 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13070 "We should only have known counts for exiting blocks that " 13071 "dominate latch!"); 13072 ExitCounts.push_back(ExitCount); 13073 } 13074 } 13075 if (ExitCounts.empty()) 13076 return getCouldNotCompute(); 13077 return getUMinFromMismatchedTypes(ExitCounts); 13078 } 13079 13080 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13081 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13082 /// we cannot guarantee that the replacement is loop invariant in the loop of 13083 /// the AddRec. 13084 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13085 ValueToSCEVMapTy ⤅ 13086 13087 public: 13088 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13089 : SCEVRewriteVisitor(SE), Map(M) {} 13090 13091 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13092 13093 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13094 auto I = Map.find(Expr->getValue()); 13095 if (I == Map.end()) 13096 return Expr; 13097 return I->second; 13098 } 13099 }; 13100 13101 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13102 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13103 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13104 if (!isa<SCEVUnknown>(LHS)) { 13105 std::swap(LHS, RHS); 13106 Predicate = CmpInst::getSwappedPredicate(Predicate); 13107 } 13108 13109 // For now, limit to conditions that provide information about unknown 13110 // expressions. 13111 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13112 if (!LHSUnknown) 13113 return; 13114 13115 // TODO: use information from more predicates. 13116 switch (Predicate) { 13117 case CmpInst::ICMP_ULT: { 13118 if (!containsAddRecurrence(RHS)) { 13119 const SCEV *Base = LHS; 13120 auto I = RewriteMap.find(LHSUnknown->getValue()); 13121 if (I != RewriteMap.end()) 13122 Base = I->second; 13123 13124 RewriteMap[LHSUnknown->getValue()] = 13125 getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType()))); 13126 } 13127 break; 13128 } 13129 case CmpInst::ICMP_ULE: { 13130 if (!containsAddRecurrence(RHS)) { 13131 const SCEV *Base = LHS; 13132 auto I = RewriteMap.find(LHSUnknown->getValue()); 13133 if (I != RewriteMap.end()) 13134 Base = I->second; 13135 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS); 13136 } 13137 break; 13138 } 13139 case CmpInst::ICMP_EQ: 13140 if (isa<SCEVConstant>(RHS)) 13141 RewriteMap[LHSUnknown->getValue()] = RHS; 13142 break; 13143 case CmpInst::ICMP_NE: 13144 if (isa<SCEVConstant>(RHS) && 13145 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13146 RewriteMap[LHSUnknown->getValue()] = 13147 getUMaxExpr(LHS, getOne(RHS->getType())); 13148 break; 13149 default: 13150 break; 13151 } 13152 }; 13153 // Starting at the loop predecessor, climb up the predecessor chain, as long 13154 // as there are predecessors that can be found that have unique successors 13155 // leading to the original header. 13156 // TODO: share this logic with isLoopEntryGuardedByCond. 13157 ValueToSCEVMapTy RewriteMap; 13158 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13159 L->getLoopPredecessor(), L->getHeader()); 13160 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13161 13162 const BranchInst *LoopEntryPredicate = 13163 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13164 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13165 continue; 13166 13167 // TODO: use information from more complex conditions, e.g. AND expressions. 13168 auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 13169 if (!Cmp) 13170 continue; 13171 13172 auto Predicate = Cmp->getPredicate(); 13173 if (LoopEntryPredicate->getSuccessor(1) == Pair.second) 13174 Predicate = CmpInst::getInversePredicate(Predicate); 13175 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13176 getSCEV(Cmp->getOperand(1)), RewriteMap); 13177 } 13178 13179 // Also collect information from assumptions dominating the loop. 13180 for (auto &AssumeVH : AC.assumptions()) { 13181 if (!AssumeVH) 13182 continue; 13183 auto *AssumeI = cast<CallInst>(AssumeVH); 13184 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13185 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13186 continue; 13187 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13188 getSCEV(Cmp->getOperand(1)), RewriteMap); 13189 } 13190 13191 if (RewriteMap.empty()) 13192 return Expr; 13193 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13194 return Rewriter.visit(Expr); 13195 } 13196