1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/ConstantRange.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GetElementPtrTypeIterator.h" 82 #include "llvm/Support/InstIterator.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/ADT/STLExtras.h" 87 #include "llvm/ADT/SmallPtrSet.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 STATISTIC(NumArrayLenItCounts, 92 "Number of trip counts computed with array length"); 93 STATISTIC(NumTripCountsComputed, 94 "Number of loops with predictable loop counts"); 95 STATISTIC(NumTripCountsNotComputed, 96 "Number of loops without predictable loop counts"); 97 STATISTIC(NumBruteForceTripCountsComputed, 98 "Number of loops with trip counts computed by force"); 99 100 static cl::opt<unsigned> 101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 102 cl::desc("Maximum number of iterations SCEV will " 103 "symbolically execute a constant " 104 "derived loop"), 105 cl::init(100)); 106 107 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 108 "Scalar Evolution Analysis", false, true) 109 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 110 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 111 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 112 "Scalar Evolution Analysis", false, true) 113 char ScalarEvolution::ID = 0; 114 115 //===----------------------------------------------------------------------===// 116 // SCEV class definitions 117 //===----------------------------------------------------------------------===// 118 119 //===----------------------------------------------------------------------===// 120 // Implementation of the SCEV class. 121 // 122 123 void SCEV::dump() const { 124 print(dbgs()); 125 dbgs() << '\n'; 126 } 127 128 void SCEV::print(raw_ostream &OS) const { 129 switch (getSCEVType()) { 130 case scConstant: 131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 132 return; 133 case scTruncate: { 134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 135 const SCEV *Op = Trunc->getOperand(); 136 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 137 << *Trunc->getType() << ")"; 138 return; 139 } 140 case scZeroExtend: { 141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 142 const SCEV *Op = ZExt->getOperand(); 143 OS << "(zext " << *Op->getType() << " " << *Op << " to " 144 << *ZExt->getType() << ")"; 145 return; 146 } 147 case scSignExtend: { 148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 149 const SCEV *Op = SExt->getOperand(); 150 OS << "(sext " << *Op->getType() << " " << *Op << " to " 151 << *SExt->getType() << ")"; 152 return; 153 } 154 case scAddRecExpr: { 155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 156 OS << "{" << *AR->getOperand(0); 157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 158 OS << ",+," << *AR->getOperand(i); 159 OS << "}<"; 160 if (AR->hasNoUnsignedWrap()) 161 OS << "nuw><"; 162 if (AR->hasNoSignedWrap()) 163 OS << "nsw><"; 164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 165 OS << ">"; 166 return; 167 } 168 case scAddExpr: 169 case scMulExpr: 170 case scUMaxExpr: 171 case scSMaxExpr: { 172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 173 const char *OpStr = 0; 174 switch (NAry->getSCEVType()) { 175 case scAddExpr: OpStr = " + "; break; 176 case scMulExpr: OpStr = " * "; break; 177 case scUMaxExpr: OpStr = " umax "; break; 178 case scSMaxExpr: OpStr = " smax "; break; 179 } 180 OS << "("; 181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 182 I != E; ++I) { 183 OS << **I; 184 if (llvm::next(I) != E) 185 OS << OpStr; 186 } 187 OS << ")"; 188 return; 189 } 190 case scUDivExpr: { 191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 193 return; 194 } 195 case scUnknown: { 196 const SCEVUnknown *U = cast<SCEVUnknown>(this); 197 const Type *AllocTy; 198 if (U->isSizeOf(AllocTy)) { 199 OS << "sizeof(" << *AllocTy << ")"; 200 return; 201 } 202 if (U->isAlignOf(AllocTy)) { 203 OS << "alignof(" << *AllocTy << ")"; 204 return; 205 } 206 207 const Type *CTy; 208 Constant *FieldNo; 209 if (U->isOffsetOf(CTy, FieldNo)) { 210 OS << "offsetof(" << *CTy << ", "; 211 WriteAsOperand(OS, FieldNo, false); 212 OS << ")"; 213 return; 214 } 215 216 // Otherwise just print it normally. 217 WriteAsOperand(OS, U->getValue(), false); 218 return; 219 } 220 case scCouldNotCompute: 221 OS << "***COULDNOTCOMPUTE***"; 222 return; 223 default: break; 224 } 225 llvm_unreachable("Unknown SCEV kind!"); 226 } 227 228 const Type *SCEV::getType() const { 229 switch (getSCEVType()) { 230 case scConstant: 231 return cast<SCEVConstant>(this)->getType(); 232 case scTruncate: 233 case scZeroExtend: 234 case scSignExtend: 235 return cast<SCEVCastExpr>(this)->getType(); 236 case scAddRecExpr: 237 case scMulExpr: 238 case scUMaxExpr: 239 case scSMaxExpr: 240 return cast<SCEVNAryExpr>(this)->getType(); 241 case scAddExpr: 242 return cast<SCEVAddExpr>(this)->getType(); 243 case scUDivExpr: 244 return cast<SCEVUDivExpr>(this)->getType(); 245 case scUnknown: 246 return cast<SCEVUnknown>(this)->getType(); 247 case scCouldNotCompute: 248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 249 return 0; 250 default: break; 251 } 252 llvm_unreachable("Unknown SCEV kind!"); 253 return 0; 254 } 255 256 bool SCEV::isZero() const { 257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 258 return SC->getValue()->isZero(); 259 return false; 260 } 261 262 bool SCEV::isOne() const { 263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 264 return SC->getValue()->isOne(); 265 return false; 266 } 267 268 bool SCEV::isAllOnesValue() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isAllOnesValue(); 271 return false; 272 } 273 274 SCEVCouldNotCompute::SCEVCouldNotCompute() : 275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 276 277 bool SCEVCouldNotCompute::classof(const SCEV *S) { 278 return S->getSCEVType() == scCouldNotCompute; 279 } 280 281 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 282 FoldingSetNodeID ID; 283 ID.AddInteger(scConstant); 284 ID.AddPointer(V); 285 void *IP = 0; 286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 288 UniqueSCEVs.InsertNode(S, IP); 289 return S; 290 } 291 292 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 293 return getConstant(ConstantInt::get(getContext(), Val)); 294 } 295 296 const SCEV * 297 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 299 return getConstant(ConstantInt::get(ITy, V, isSigned)); 300 } 301 302 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 303 unsigned SCEVTy, const SCEV *op, const Type *ty) 304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 305 306 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 307 const SCEV *op, const Type *ty) 308 : SCEVCastExpr(ID, scTruncate, op, ty) { 309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 310 (Ty->isIntegerTy() || Ty->isPointerTy()) && 311 "Cannot truncate non-integer value!"); 312 } 313 314 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 315 const SCEV *op, const Type *ty) 316 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 318 (Ty->isIntegerTy() || Ty->isPointerTy()) && 319 "Cannot zero extend non-integer value!"); 320 } 321 322 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 323 const SCEV *op, const Type *ty) 324 : SCEVCastExpr(ID, scSignExtend, op, ty) { 325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 326 (Ty->isIntegerTy() || Ty->isPointerTy()) && 327 "Cannot sign extend non-integer value!"); 328 } 329 330 void SCEVUnknown::deleted() { 331 // Clear this SCEVUnknown from various maps. 332 SE->forgetMemoizedResults(this); 333 334 // Remove this SCEVUnknown from the uniquing map. 335 SE->UniqueSCEVs.RemoveNode(this); 336 337 // Release the value. 338 setValPtr(0); 339 } 340 341 void SCEVUnknown::allUsesReplacedWith(Value *New) { 342 // Clear this SCEVUnknown from various maps. 343 SE->forgetMemoizedResults(this); 344 345 // Remove this SCEVUnknown from the uniquing map. 346 SE->UniqueSCEVs.RemoveNode(this); 347 348 // Update this SCEVUnknown to point to the new value. This is needed 349 // because there may still be outstanding SCEVs which still point to 350 // this SCEVUnknown. 351 setValPtr(New); 352 } 353 354 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 356 if (VCE->getOpcode() == Instruction::PtrToInt) 357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 358 if (CE->getOpcode() == Instruction::GetElementPtr && 359 CE->getOperand(0)->isNullValue() && 360 CE->getNumOperands() == 2) 361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 362 if (CI->isOne()) { 363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 364 ->getElementType(); 365 return true; 366 } 367 368 return false; 369 } 370 371 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 373 if (VCE->getOpcode() == Instruction::PtrToInt) 374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 375 if (CE->getOpcode() == Instruction::GetElementPtr && 376 CE->getOperand(0)->isNullValue()) { 377 const Type *Ty = 378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 379 if (const StructType *STy = dyn_cast<StructType>(Ty)) 380 if (!STy->isPacked() && 381 CE->getNumOperands() == 3 && 382 CE->getOperand(1)->isNullValue()) { 383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 384 if (CI->isOne() && 385 STy->getNumElements() == 2 && 386 STy->getElementType(0)->isIntegerTy(1)) { 387 AllocTy = STy->getElementType(1); 388 return true; 389 } 390 } 391 } 392 393 return false; 394 } 395 396 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 398 if (VCE->getOpcode() == Instruction::PtrToInt) 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 400 if (CE->getOpcode() == Instruction::GetElementPtr && 401 CE->getNumOperands() == 3 && 402 CE->getOperand(0)->isNullValue() && 403 CE->getOperand(1)->isNullValue()) { 404 const Type *Ty = 405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 406 // Ignore vector types here so that ScalarEvolutionExpander doesn't 407 // emit getelementptrs that index into vectors. 408 if (Ty->isStructTy() || Ty->isArrayTy()) { 409 CTy = Ty; 410 FieldNo = CE->getOperand(2); 411 return true; 412 } 413 } 414 415 return false; 416 } 417 418 //===----------------------------------------------------------------------===// 419 // SCEV Utilities 420 //===----------------------------------------------------------------------===// 421 422 namespace { 423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 424 /// than the complexity of the RHS. This comparator is used to canonicalize 425 /// expressions. 426 class SCEVComplexityCompare { 427 const LoopInfo *const LI; 428 public: 429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 430 431 // Return true or false if LHS is less than, or at least RHS, respectively. 432 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 433 return compare(LHS, RHS) < 0; 434 } 435 436 // Return negative, zero, or positive, if LHS is less than, equal to, or 437 // greater than RHS, respectively. A three-way result allows recursive 438 // comparisons to be more efficient. 439 int compare(const SCEV *LHS, const SCEV *RHS) const { 440 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 441 if (LHS == RHS) 442 return 0; 443 444 // Primarily, sort the SCEVs by their getSCEVType(). 445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 446 if (LType != RType) 447 return (int)LType - (int)RType; 448 449 // Aside from the getSCEVType() ordering, the particular ordering 450 // isn't very important except that it's beneficial to be consistent, 451 // so that (a + b) and (b + a) don't end up as different expressions. 452 switch (LType) { 453 case scUnknown: { 454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 456 457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 458 // not as complete as it could be. 459 const Value *LV = LU->getValue(), *RV = RU->getValue(); 460 461 // Order pointer values after integer values. This helps SCEVExpander 462 // form GEPs. 463 bool LIsPointer = LV->getType()->isPointerTy(), 464 RIsPointer = RV->getType()->isPointerTy(); 465 if (LIsPointer != RIsPointer) 466 return (int)LIsPointer - (int)RIsPointer; 467 468 // Compare getValueID values. 469 unsigned LID = LV->getValueID(), 470 RID = RV->getValueID(); 471 if (LID != RID) 472 return (int)LID - (int)RID; 473 474 // Sort arguments by their position. 475 if (const Argument *LA = dyn_cast<Argument>(LV)) { 476 const Argument *RA = cast<Argument>(RV); 477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 478 return (int)LArgNo - (int)RArgNo; 479 } 480 481 // For instructions, compare their loop depth, and their operand 482 // count. This is pretty loose. 483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 484 const Instruction *RInst = cast<Instruction>(RV); 485 486 // Compare loop depths. 487 const BasicBlock *LParent = LInst->getParent(), 488 *RParent = RInst->getParent(); 489 if (LParent != RParent) { 490 unsigned LDepth = LI->getLoopDepth(LParent), 491 RDepth = LI->getLoopDepth(RParent); 492 if (LDepth != RDepth) 493 return (int)LDepth - (int)RDepth; 494 } 495 496 // Compare the number of operands. 497 unsigned LNumOps = LInst->getNumOperands(), 498 RNumOps = RInst->getNumOperands(); 499 return (int)LNumOps - (int)RNumOps; 500 } 501 502 return 0; 503 } 504 505 case scConstant: { 506 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 507 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 508 509 // Compare constant values. 510 const APInt &LA = LC->getValue()->getValue(); 511 const APInt &RA = RC->getValue()->getValue(); 512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 513 if (LBitWidth != RBitWidth) 514 return (int)LBitWidth - (int)RBitWidth; 515 return LA.ult(RA) ? -1 : 1; 516 } 517 518 case scAddRecExpr: { 519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 521 522 // Compare addrec loop depths. 523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 524 if (LLoop != RLoop) { 525 unsigned LDepth = LLoop->getLoopDepth(), 526 RDepth = RLoop->getLoopDepth(); 527 if (LDepth != RDepth) 528 return (int)LDepth - (int)RDepth; 529 } 530 531 // Addrec complexity grows with operand count. 532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 533 if (LNumOps != RNumOps) 534 return (int)LNumOps - (int)RNumOps; 535 536 // Lexicographically compare. 537 for (unsigned i = 0; i != LNumOps; ++i) { 538 long X = compare(LA->getOperand(i), RA->getOperand(i)); 539 if (X != 0) 540 return X; 541 } 542 543 return 0; 544 } 545 546 case scAddExpr: 547 case scMulExpr: 548 case scSMaxExpr: 549 case scUMaxExpr: { 550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 552 553 // Lexicographically compare n-ary expressions. 554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 555 for (unsigned i = 0; i != LNumOps; ++i) { 556 if (i >= RNumOps) 557 return 1; 558 long X = compare(LC->getOperand(i), RC->getOperand(i)); 559 if (X != 0) 560 return X; 561 } 562 return (int)LNumOps - (int)RNumOps; 563 } 564 565 case scUDivExpr: { 566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 568 569 // Lexicographically compare udiv expressions. 570 long X = compare(LC->getLHS(), RC->getLHS()); 571 if (X != 0) 572 return X; 573 return compare(LC->getRHS(), RC->getRHS()); 574 } 575 576 case scTruncate: 577 case scZeroExtend: 578 case scSignExtend: { 579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 581 582 // Compare cast expressions by operand. 583 return compare(LC->getOperand(), RC->getOperand()); 584 } 585 586 default: 587 break; 588 } 589 590 llvm_unreachable("Unknown SCEV kind!"); 591 return 0; 592 } 593 }; 594 } 595 596 /// GroupByComplexity - Given a list of SCEV objects, order them by their 597 /// complexity, and group objects of the same complexity together by value. 598 /// When this routine is finished, we know that any duplicates in the vector are 599 /// consecutive and that complexity is monotonically increasing. 600 /// 601 /// Note that we go take special precautions to ensure that we get deterministic 602 /// results from this routine. In other words, we don't want the results of 603 /// this to depend on where the addresses of various SCEV objects happened to 604 /// land in memory. 605 /// 606 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 607 LoopInfo *LI) { 608 if (Ops.size() < 2) return; // Noop 609 if (Ops.size() == 2) { 610 // This is the common case, which also happens to be trivially simple. 611 // Special case it. 612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 613 if (SCEVComplexityCompare(LI)(RHS, LHS)) 614 std::swap(LHS, RHS); 615 return; 616 } 617 618 // Do the rough sort by complexity. 619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 620 621 // Now that we are sorted by complexity, group elements of the same 622 // complexity. Note that this is, at worst, N^2, but the vector is likely to 623 // be extremely short in practice. Note that we take this approach because we 624 // do not want to depend on the addresses of the objects we are grouping. 625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 626 const SCEV *S = Ops[i]; 627 unsigned Complexity = S->getSCEVType(); 628 629 // If there are any objects of the same complexity and same value as this 630 // one, group them. 631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 632 if (Ops[j] == S) { // Found a duplicate. 633 // Move it to immediately after i'th element. 634 std::swap(Ops[i+1], Ops[j]); 635 ++i; // no need to rescan it. 636 if (i == e-2) return; // Done! 637 } 638 } 639 } 640 } 641 642 643 644 //===----------------------------------------------------------------------===// 645 // Simple SCEV method implementations 646 //===----------------------------------------------------------------------===// 647 648 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 649 /// Assume, K > 0. 650 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 651 ScalarEvolution &SE, 652 const Type* ResultTy) { 653 // Handle the simplest case efficiently. 654 if (K == 1) 655 return SE.getTruncateOrZeroExtend(It, ResultTy); 656 657 // We are using the following formula for BC(It, K): 658 // 659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 660 // 661 // Suppose, W is the bitwidth of the return value. We must be prepared for 662 // overflow. Hence, we must assure that the result of our computation is 663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 664 // safe in modular arithmetic. 665 // 666 // However, this code doesn't use exactly that formula; the formula it uses 667 // is something like the following, where T is the number of factors of 2 in 668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 669 // exponentiation: 670 // 671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 672 // 673 // This formula is trivially equivalent to the previous formula. However, 674 // this formula can be implemented much more efficiently. The trick is that 675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 676 // arithmetic. To do exact division in modular arithmetic, all we have 677 // to do is multiply by the inverse. Therefore, this step can be done at 678 // width W. 679 // 680 // The next issue is how to safely do the division by 2^T. The way this 681 // is done is by doing the multiplication step at a width of at least W + T 682 // bits. This way, the bottom W+T bits of the product are accurate. Then, 683 // when we perform the division by 2^T (which is equivalent to a right shift 684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 685 // truncated out after the division by 2^T. 686 // 687 // In comparison to just directly using the first formula, this technique 688 // is much more efficient; using the first formula requires W * K bits, 689 // but this formula less than W + K bits. Also, the first formula requires 690 // a division step, whereas this formula only requires multiplies and shifts. 691 // 692 // It doesn't matter whether the subtraction step is done in the calculation 693 // width or the input iteration count's width; if the subtraction overflows, 694 // the result must be zero anyway. We prefer here to do it in the width of 695 // the induction variable because it helps a lot for certain cases; CodeGen 696 // isn't smart enough to ignore the overflow, which leads to much less 697 // efficient code if the width of the subtraction is wider than the native 698 // register width. 699 // 700 // (It's possible to not widen at all by pulling out factors of 2 before 701 // the multiplication; for example, K=2 can be calculated as 702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 703 // extra arithmetic, so it's not an obvious win, and it gets 704 // much more complicated for K > 3.) 705 706 // Protection from insane SCEVs; this bound is conservative, 707 // but it probably doesn't matter. 708 if (K > 1000) 709 return SE.getCouldNotCompute(); 710 711 unsigned W = SE.getTypeSizeInBits(ResultTy); 712 713 // Calculate K! / 2^T and T; we divide out the factors of two before 714 // multiplying for calculating K! / 2^T to avoid overflow. 715 // Other overflow doesn't matter because we only care about the bottom 716 // W bits of the result. 717 APInt OddFactorial(W, 1); 718 unsigned T = 1; 719 for (unsigned i = 3; i <= K; ++i) { 720 APInt Mult(W, i); 721 unsigned TwoFactors = Mult.countTrailingZeros(); 722 T += TwoFactors; 723 Mult = Mult.lshr(TwoFactors); 724 OddFactorial *= Mult; 725 } 726 727 // We need at least W + T bits for the multiplication step 728 unsigned CalculationBits = W + T; 729 730 // Calculate 2^T, at width T+W. 731 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 732 733 // Calculate the multiplicative inverse of K! / 2^T; 734 // this multiplication factor will perform the exact division by 735 // K! / 2^T. 736 APInt Mod = APInt::getSignedMinValue(W+1); 737 APInt MultiplyFactor = OddFactorial.zext(W+1); 738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 739 MultiplyFactor = MultiplyFactor.trunc(W); 740 741 // Calculate the product, at width T+W 742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 743 CalculationBits); 744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 745 for (unsigned i = 1; i != K; ++i) { 746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 747 Dividend = SE.getMulExpr(Dividend, 748 SE.getTruncateOrZeroExtend(S, CalculationTy)); 749 } 750 751 // Divide by 2^T 752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 753 754 // Truncate the result, and divide by K! / 2^T. 755 756 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 757 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 758 } 759 760 /// evaluateAtIteration - Return the value of this chain of recurrences at 761 /// the specified iteration number. We can evaluate this recurrence by 762 /// multiplying each element in the chain by the binomial coefficient 763 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 764 /// 765 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 766 /// 767 /// where BC(It, k) stands for binomial coefficient. 768 /// 769 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 770 ScalarEvolution &SE) const { 771 const SCEV *Result = getStart(); 772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 773 // The computation is correct in the face of overflow provided that the 774 // multiplication is performed _after_ the evaluation of the binomial 775 // coefficient. 776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 777 if (isa<SCEVCouldNotCompute>(Coeff)) 778 return Coeff; 779 780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 781 } 782 return Result; 783 } 784 785 //===----------------------------------------------------------------------===// 786 // SCEV Expression folder implementations 787 //===----------------------------------------------------------------------===// 788 789 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 790 const Type *Ty) { 791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 792 "This is not a truncating conversion!"); 793 assert(isSCEVable(Ty) && 794 "This is not a conversion to a SCEVable type!"); 795 Ty = getEffectiveSCEVType(Ty); 796 797 FoldingSetNodeID ID; 798 ID.AddInteger(scTruncate); 799 ID.AddPointer(Op); 800 ID.AddPointer(Ty); 801 void *IP = 0; 802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 803 804 // Fold if the operand is constant. 805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 806 return getConstant( 807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 808 getEffectiveSCEVType(Ty)))); 809 810 // trunc(trunc(x)) --> trunc(x) 811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 812 return getTruncateExpr(ST->getOperand(), Ty); 813 814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 816 return getTruncateOrSignExtend(SS->getOperand(), Ty); 817 818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 821 822 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 823 // eliminate all the truncates. 824 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 825 SmallVector<const SCEV *, 4> Operands; 826 bool hasTrunc = false; 827 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 828 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 829 hasTrunc = isa<SCEVTruncateExpr>(S); 830 Operands.push_back(S); 831 } 832 if (!hasTrunc) 833 return getAddExpr(Operands, false, false); 834 } 835 836 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 837 // eliminate all the truncates. 838 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 839 SmallVector<const SCEV *, 4> Operands; 840 bool hasTrunc = false; 841 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 842 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 843 hasTrunc = isa<SCEVTruncateExpr>(S); 844 Operands.push_back(S); 845 } 846 if (!hasTrunc) 847 return getMulExpr(Operands, false, false); 848 } 849 850 // If the input value is a chrec scev, truncate the chrec's operands. 851 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 852 SmallVector<const SCEV *, 4> Operands; 853 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 854 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 855 return getAddRecExpr(Operands, AddRec->getLoop()); 856 } 857 858 // As a special case, fold trunc(undef) to undef. We don't want to 859 // know too much about SCEVUnknowns, but this special case is handy 860 // and harmless. 861 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 862 if (isa<UndefValue>(U->getValue())) 863 return getSCEV(UndefValue::get(Ty)); 864 865 // The cast wasn't folded; create an explicit cast node. We can reuse 866 // the existing insert position since if we get here, we won't have 867 // made any changes which would invalidate it. 868 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 869 Op, Ty); 870 UniqueSCEVs.InsertNode(S, IP); 871 return S; 872 } 873 874 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 875 const Type *Ty) { 876 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 877 "This is not an extending conversion!"); 878 assert(isSCEVable(Ty) && 879 "This is not a conversion to a SCEVable type!"); 880 Ty = getEffectiveSCEVType(Ty); 881 882 // Fold if the operand is constant. 883 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 884 return getConstant( 885 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 886 getEffectiveSCEVType(Ty)))); 887 888 // zext(zext(x)) --> zext(x) 889 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 890 return getZeroExtendExpr(SZ->getOperand(), Ty); 891 892 // Before doing any expensive analysis, check to see if we've already 893 // computed a SCEV for this Op and Ty. 894 FoldingSetNodeID ID; 895 ID.AddInteger(scZeroExtend); 896 ID.AddPointer(Op); 897 ID.AddPointer(Ty); 898 void *IP = 0; 899 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 900 901 // If the input value is a chrec scev, and we can prove that the value 902 // did not overflow the old, smaller, value, we can zero extend all of the 903 // operands (often constants). This allows analysis of something like 904 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 906 if (AR->isAffine()) { 907 const SCEV *Start = AR->getStart(); 908 const SCEV *Step = AR->getStepRecurrence(*this); 909 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 910 const Loop *L = AR->getLoop(); 911 912 // If we have special knowledge that this addrec won't overflow, 913 // we don't need to do any further analysis. 914 if (AR->hasNoUnsignedWrap()) 915 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 916 getZeroExtendExpr(Step, Ty), 917 L); 918 919 // Check whether the backedge-taken count is SCEVCouldNotCompute. 920 // Note that this serves two purposes: It filters out loops that are 921 // simply not analyzable, and it covers the case where this code is 922 // being called from within backedge-taken count analysis, such that 923 // attempting to ask for the backedge-taken count would likely result 924 // in infinite recursion. In the later case, the analysis code will 925 // cope with a conservative value, and it will take care to purge 926 // that value once it has finished. 927 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 928 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 929 // Manually compute the final value for AR, checking for 930 // overflow. 931 932 // Check whether the backedge-taken count can be losslessly casted to 933 // the addrec's type. The count is always unsigned. 934 const SCEV *CastedMaxBECount = 935 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 936 const SCEV *RecastedMaxBECount = 937 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 938 if (MaxBECount == RecastedMaxBECount) { 939 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 940 // Check whether Start+Step*MaxBECount has no unsigned overflow. 941 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 942 const SCEV *Add = getAddExpr(Start, ZMul); 943 const SCEV *OperandExtendedAdd = 944 getAddExpr(getZeroExtendExpr(Start, WideTy), 945 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 946 getZeroExtendExpr(Step, WideTy))); 947 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 948 // Return the expression with the addrec on the outside. 949 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 950 getZeroExtendExpr(Step, Ty), 951 L); 952 953 // Similar to above, only this time treat the step value as signed. 954 // This covers loops that count down. 955 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 956 Add = getAddExpr(Start, SMul); 957 OperandExtendedAdd = 958 getAddExpr(getZeroExtendExpr(Start, WideTy), 959 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 960 getSignExtendExpr(Step, WideTy))); 961 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 962 // Return the expression with the addrec on the outside. 963 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 964 getSignExtendExpr(Step, Ty), 965 L); 966 } 967 968 // If the backedge is guarded by a comparison with the pre-inc value 969 // the addrec is safe. Also, if the entry is guarded by a comparison 970 // with the start value and the backedge is guarded by a comparison 971 // with the post-inc value, the addrec is safe. 972 if (isKnownPositive(Step)) { 973 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 974 getUnsignedRange(Step).getUnsignedMax()); 975 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 976 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 977 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 978 AR->getPostIncExpr(*this), N))) 979 // Return the expression with the addrec on the outside. 980 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 981 getZeroExtendExpr(Step, Ty), 982 L); 983 } else if (isKnownNegative(Step)) { 984 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 985 getSignedRange(Step).getSignedMin()); 986 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 987 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 988 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 989 AR->getPostIncExpr(*this), N))) 990 // Return the expression with the addrec on the outside. 991 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 992 getSignExtendExpr(Step, Ty), 993 L); 994 } 995 } 996 } 997 998 // The cast wasn't folded; create an explicit cast node. 999 // Recompute the insert position, as it may have been invalidated. 1000 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1001 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1002 Op, Ty); 1003 UniqueSCEVs.InsertNode(S, IP); 1004 return S; 1005 } 1006 1007 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1008 const Type *Ty) { 1009 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1010 "This is not an extending conversion!"); 1011 assert(isSCEVable(Ty) && 1012 "This is not a conversion to a SCEVable type!"); 1013 Ty = getEffectiveSCEVType(Ty); 1014 1015 // Fold if the operand is constant. 1016 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1017 return getConstant( 1018 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1019 getEffectiveSCEVType(Ty)))); 1020 1021 // sext(sext(x)) --> sext(x) 1022 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1023 return getSignExtendExpr(SS->getOperand(), Ty); 1024 1025 // sext(zext(x)) --> zext(x) 1026 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1027 return getZeroExtendExpr(SZ->getOperand(), Ty); 1028 1029 // Before doing any expensive analysis, check to see if we've already 1030 // computed a SCEV for this Op and Ty. 1031 FoldingSetNodeID ID; 1032 ID.AddInteger(scSignExtend); 1033 ID.AddPointer(Op); 1034 ID.AddPointer(Ty); 1035 void *IP = 0; 1036 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1037 1038 // If the input value is provably positive, build a zext instead. 1039 if (isKnownNonNegative(Op)) 1040 return getZeroExtendExpr(Op, Ty); 1041 1042 // If the input value is a chrec scev, and we can prove that the value 1043 // did not overflow the old, smaller, value, we can sign extend all of the 1044 // operands (often constants). This allows analysis of something like 1045 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1046 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1047 if (AR->isAffine()) { 1048 const SCEV *Start = AR->getStart(); 1049 const SCEV *Step = AR->getStepRecurrence(*this); 1050 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1051 const Loop *L = AR->getLoop(); 1052 1053 // If we have special knowledge that this addrec won't overflow, 1054 // we don't need to do any further analysis. 1055 if (AR->hasNoSignedWrap()) 1056 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1057 getSignExtendExpr(Step, Ty), 1058 L); 1059 1060 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1061 // Note that this serves two purposes: It filters out loops that are 1062 // simply not analyzable, and it covers the case where this code is 1063 // being called from within backedge-taken count analysis, such that 1064 // attempting to ask for the backedge-taken count would likely result 1065 // in infinite recursion. In the later case, the analysis code will 1066 // cope with a conservative value, and it will take care to purge 1067 // that value once it has finished. 1068 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1069 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1070 // Manually compute the final value for AR, checking for 1071 // overflow. 1072 1073 // Check whether the backedge-taken count can be losslessly casted to 1074 // the addrec's type. The count is always unsigned. 1075 const SCEV *CastedMaxBECount = 1076 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1077 const SCEV *RecastedMaxBECount = 1078 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1079 if (MaxBECount == RecastedMaxBECount) { 1080 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1081 // Check whether Start+Step*MaxBECount has no signed overflow. 1082 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1083 const SCEV *Add = getAddExpr(Start, SMul); 1084 const SCEV *OperandExtendedAdd = 1085 getAddExpr(getSignExtendExpr(Start, WideTy), 1086 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1087 getSignExtendExpr(Step, WideTy))); 1088 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1089 // Return the expression with the addrec on the outside. 1090 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1091 getSignExtendExpr(Step, Ty), 1092 L); 1093 1094 // Similar to above, only this time treat the step value as unsigned. 1095 // This covers loops that count up with an unsigned step. 1096 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1097 Add = getAddExpr(Start, UMul); 1098 OperandExtendedAdd = 1099 getAddExpr(getSignExtendExpr(Start, WideTy), 1100 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1101 getZeroExtendExpr(Step, WideTy))); 1102 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1103 // Return the expression with the addrec on the outside. 1104 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1105 getZeroExtendExpr(Step, Ty), 1106 L); 1107 } 1108 1109 // If the backedge is guarded by a comparison with the pre-inc value 1110 // the addrec is safe. Also, if the entry is guarded by a comparison 1111 // with the start value and the backedge is guarded by a comparison 1112 // with the post-inc value, the addrec is safe. 1113 if (isKnownPositive(Step)) { 1114 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1115 getSignedRange(Step).getSignedMax()); 1116 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1117 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1118 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1119 AR->getPostIncExpr(*this), N))) 1120 // Return the expression with the addrec on the outside. 1121 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1122 getSignExtendExpr(Step, Ty), 1123 L); 1124 } else if (isKnownNegative(Step)) { 1125 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1126 getSignedRange(Step).getSignedMin()); 1127 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1128 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1129 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1130 AR->getPostIncExpr(*this), N))) 1131 // Return the expression with the addrec on the outside. 1132 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1133 getSignExtendExpr(Step, Ty), 1134 L); 1135 } 1136 } 1137 } 1138 1139 // The cast wasn't folded; create an explicit cast node. 1140 // Recompute the insert position, as it may have been invalidated. 1141 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1142 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1143 Op, Ty); 1144 UniqueSCEVs.InsertNode(S, IP); 1145 return S; 1146 } 1147 1148 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1149 /// unspecified bits out to the given type. 1150 /// 1151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1152 const Type *Ty) { 1153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1154 "This is not an extending conversion!"); 1155 assert(isSCEVable(Ty) && 1156 "This is not a conversion to a SCEVable type!"); 1157 Ty = getEffectiveSCEVType(Ty); 1158 1159 // Sign-extend negative constants. 1160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1161 if (SC->getValue()->getValue().isNegative()) 1162 return getSignExtendExpr(Op, Ty); 1163 1164 // Peel off a truncate cast. 1165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1166 const SCEV *NewOp = T->getOperand(); 1167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1168 return getAnyExtendExpr(NewOp, Ty); 1169 return getTruncateOrNoop(NewOp, Ty); 1170 } 1171 1172 // Next try a zext cast. If the cast is folded, use it. 1173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1174 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1175 return ZExt; 1176 1177 // Next try a sext cast. If the cast is folded, use it. 1178 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1179 if (!isa<SCEVSignExtendExpr>(SExt)) 1180 return SExt; 1181 1182 // Force the cast to be folded into the operands of an addrec. 1183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1184 SmallVector<const SCEV *, 4> Ops; 1185 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1186 I != E; ++I) 1187 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1188 return getAddRecExpr(Ops, AR->getLoop()); 1189 } 1190 1191 // As a special case, fold anyext(undef) to undef. We don't want to 1192 // know too much about SCEVUnknowns, but this special case is handy 1193 // and harmless. 1194 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1195 if (isa<UndefValue>(U->getValue())) 1196 return getSCEV(UndefValue::get(Ty)); 1197 1198 // If the expression is obviously signed, use the sext cast value. 1199 if (isa<SCEVSMaxExpr>(Op)) 1200 return SExt; 1201 1202 // Absent any other information, use the zext cast value. 1203 return ZExt; 1204 } 1205 1206 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1207 /// a list of operands to be added under the given scale, update the given 1208 /// map. This is a helper function for getAddRecExpr. As an example of 1209 /// what it does, given a sequence of operands that would form an add 1210 /// expression like this: 1211 /// 1212 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1213 /// 1214 /// where A and B are constants, update the map with these values: 1215 /// 1216 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1217 /// 1218 /// and add 13 + A*B*29 to AccumulatedConstant. 1219 /// This will allow getAddRecExpr to produce this: 1220 /// 1221 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1222 /// 1223 /// This form often exposes folding opportunities that are hidden in 1224 /// the original operand list. 1225 /// 1226 /// Return true iff it appears that any interesting folding opportunities 1227 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1228 /// the common case where no interesting opportunities are present, and 1229 /// is also used as a check to avoid infinite recursion. 1230 /// 1231 static bool 1232 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1233 SmallVector<const SCEV *, 8> &NewOps, 1234 APInt &AccumulatedConstant, 1235 const SCEV *const *Ops, size_t NumOperands, 1236 const APInt &Scale, 1237 ScalarEvolution &SE) { 1238 bool Interesting = false; 1239 1240 // Iterate over the add operands. They are sorted, with constants first. 1241 unsigned i = 0; 1242 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1243 ++i; 1244 // Pull a buried constant out to the outside. 1245 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1246 Interesting = true; 1247 AccumulatedConstant += Scale * C->getValue()->getValue(); 1248 } 1249 1250 // Next comes everything else. We're especially interested in multiplies 1251 // here, but they're in the middle, so just visit the rest with one loop. 1252 for (; i != NumOperands; ++i) { 1253 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1254 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1255 APInt NewScale = 1256 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1257 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1258 // A multiplication of a constant with another add; recurse. 1259 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1260 Interesting |= 1261 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1262 Add->op_begin(), Add->getNumOperands(), 1263 NewScale, SE); 1264 } else { 1265 // A multiplication of a constant with some other value. Update 1266 // the map. 1267 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1268 const SCEV *Key = SE.getMulExpr(MulOps); 1269 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1270 M.insert(std::make_pair(Key, NewScale)); 1271 if (Pair.second) { 1272 NewOps.push_back(Pair.first->first); 1273 } else { 1274 Pair.first->second += NewScale; 1275 // The map already had an entry for this value, which may indicate 1276 // a folding opportunity. 1277 Interesting = true; 1278 } 1279 } 1280 } else { 1281 // An ordinary operand. Update the map. 1282 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1283 M.insert(std::make_pair(Ops[i], Scale)); 1284 if (Pair.second) { 1285 NewOps.push_back(Pair.first->first); 1286 } else { 1287 Pair.first->second += Scale; 1288 // The map already had an entry for this value, which may indicate 1289 // a folding opportunity. 1290 Interesting = true; 1291 } 1292 } 1293 } 1294 1295 return Interesting; 1296 } 1297 1298 namespace { 1299 struct APIntCompare { 1300 bool operator()(const APInt &LHS, const APInt &RHS) const { 1301 return LHS.ult(RHS); 1302 } 1303 }; 1304 } 1305 1306 /// getAddExpr - Get a canonical add expression, or something simpler if 1307 /// possible. 1308 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1309 bool HasNUW, bool HasNSW) { 1310 assert(!Ops.empty() && "Cannot get empty add!"); 1311 if (Ops.size() == 1) return Ops[0]; 1312 #ifndef NDEBUG 1313 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1314 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1315 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1316 "SCEVAddExpr operand types don't match!"); 1317 #endif 1318 1319 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1320 if (!HasNUW && HasNSW) { 1321 bool All = true; 1322 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1323 E = Ops.end(); I != E; ++I) 1324 if (!isKnownNonNegative(*I)) { 1325 All = false; 1326 break; 1327 } 1328 if (All) HasNUW = true; 1329 } 1330 1331 // Sort by complexity, this groups all similar expression types together. 1332 GroupByComplexity(Ops, LI); 1333 1334 // If there are any constants, fold them together. 1335 unsigned Idx = 0; 1336 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1337 ++Idx; 1338 assert(Idx < Ops.size()); 1339 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1340 // We found two constants, fold them together! 1341 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1342 RHSC->getValue()->getValue()); 1343 if (Ops.size() == 2) return Ops[0]; 1344 Ops.erase(Ops.begin()+1); // Erase the folded element 1345 LHSC = cast<SCEVConstant>(Ops[0]); 1346 } 1347 1348 // If we are left with a constant zero being added, strip it off. 1349 if (LHSC->getValue()->isZero()) { 1350 Ops.erase(Ops.begin()); 1351 --Idx; 1352 } 1353 1354 if (Ops.size() == 1) return Ops[0]; 1355 } 1356 1357 // Okay, check to see if the same value occurs in the operand list more than 1358 // once. If so, merge them together into an multiply expression. Since we 1359 // sorted the list, these values are required to be adjacent. 1360 const Type *Ty = Ops[0]->getType(); 1361 bool FoundMatch = false; 1362 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1363 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1364 // Scan ahead to count how many equal operands there are. 1365 unsigned Count = 2; 1366 while (i+Count != e && Ops[i+Count] == Ops[i]) 1367 ++Count; 1368 // Merge the values into a multiply. 1369 const SCEV *Scale = getConstant(Ty, Count); 1370 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1371 if (Ops.size() == Count) 1372 return Mul; 1373 Ops[i] = Mul; 1374 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1375 --i; e -= Count - 1; 1376 FoundMatch = true; 1377 } 1378 if (FoundMatch) 1379 return getAddExpr(Ops, HasNUW, HasNSW); 1380 1381 // Check for truncates. If all the operands are truncated from the same 1382 // type, see if factoring out the truncate would permit the result to be 1383 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1384 // if the contents of the resulting outer trunc fold to something simple. 1385 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1386 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1387 const Type *DstType = Trunc->getType(); 1388 const Type *SrcType = Trunc->getOperand()->getType(); 1389 SmallVector<const SCEV *, 8> LargeOps; 1390 bool Ok = true; 1391 // Check all the operands to see if they can be represented in the 1392 // source type of the truncate. 1393 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1394 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1395 if (T->getOperand()->getType() != SrcType) { 1396 Ok = false; 1397 break; 1398 } 1399 LargeOps.push_back(T->getOperand()); 1400 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1401 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1402 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1403 SmallVector<const SCEV *, 8> LargeMulOps; 1404 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1405 if (const SCEVTruncateExpr *T = 1406 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1407 if (T->getOperand()->getType() != SrcType) { 1408 Ok = false; 1409 break; 1410 } 1411 LargeMulOps.push_back(T->getOperand()); 1412 } else if (const SCEVConstant *C = 1413 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1414 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1415 } else { 1416 Ok = false; 1417 break; 1418 } 1419 } 1420 if (Ok) 1421 LargeOps.push_back(getMulExpr(LargeMulOps)); 1422 } else { 1423 Ok = false; 1424 break; 1425 } 1426 } 1427 if (Ok) { 1428 // Evaluate the expression in the larger type. 1429 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1430 // If it folds to something simple, use it. Otherwise, don't. 1431 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1432 return getTruncateExpr(Fold, DstType); 1433 } 1434 } 1435 1436 // Skip past any other cast SCEVs. 1437 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1438 ++Idx; 1439 1440 // If there are add operands they would be next. 1441 if (Idx < Ops.size()) { 1442 bool DeletedAdd = false; 1443 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1444 // If we have an add, expand the add operands onto the end of the operands 1445 // list. 1446 Ops.erase(Ops.begin()+Idx); 1447 Ops.append(Add->op_begin(), Add->op_end()); 1448 DeletedAdd = true; 1449 } 1450 1451 // If we deleted at least one add, we added operands to the end of the list, 1452 // and they are not necessarily sorted. Recurse to resort and resimplify 1453 // any operands we just acquired. 1454 if (DeletedAdd) 1455 return getAddExpr(Ops); 1456 } 1457 1458 // Skip over the add expression until we get to a multiply. 1459 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1460 ++Idx; 1461 1462 // Check to see if there are any folding opportunities present with 1463 // operands multiplied by constant values. 1464 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1465 uint64_t BitWidth = getTypeSizeInBits(Ty); 1466 DenseMap<const SCEV *, APInt> M; 1467 SmallVector<const SCEV *, 8> NewOps; 1468 APInt AccumulatedConstant(BitWidth, 0); 1469 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1470 Ops.data(), Ops.size(), 1471 APInt(BitWidth, 1), *this)) { 1472 // Some interesting folding opportunity is present, so its worthwhile to 1473 // re-generate the operands list. Group the operands by constant scale, 1474 // to avoid multiplying by the same constant scale multiple times. 1475 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1476 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1477 E = NewOps.end(); I != E; ++I) 1478 MulOpLists[M.find(*I)->second].push_back(*I); 1479 // Re-generate the operands list. 1480 Ops.clear(); 1481 if (AccumulatedConstant != 0) 1482 Ops.push_back(getConstant(AccumulatedConstant)); 1483 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1484 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1485 if (I->first != 0) 1486 Ops.push_back(getMulExpr(getConstant(I->first), 1487 getAddExpr(I->second))); 1488 if (Ops.empty()) 1489 return getConstant(Ty, 0); 1490 if (Ops.size() == 1) 1491 return Ops[0]; 1492 return getAddExpr(Ops); 1493 } 1494 } 1495 1496 // If we are adding something to a multiply expression, make sure the 1497 // something is not already an operand of the multiply. If so, merge it into 1498 // the multiply. 1499 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1500 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1501 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1502 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1503 if (isa<SCEVConstant>(MulOpSCEV)) 1504 continue; 1505 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1506 if (MulOpSCEV == Ops[AddOp]) { 1507 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1508 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1509 if (Mul->getNumOperands() != 2) { 1510 // If the multiply has more than two operands, we must get the 1511 // Y*Z term. 1512 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1513 Mul->op_begin()+MulOp); 1514 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1515 InnerMul = getMulExpr(MulOps); 1516 } 1517 const SCEV *One = getConstant(Ty, 1); 1518 const SCEV *AddOne = getAddExpr(One, InnerMul); 1519 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1520 if (Ops.size() == 2) return OuterMul; 1521 if (AddOp < Idx) { 1522 Ops.erase(Ops.begin()+AddOp); 1523 Ops.erase(Ops.begin()+Idx-1); 1524 } else { 1525 Ops.erase(Ops.begin()+Idx); 1526 Ops.erase(Ops.begin()+AddOp-1); 1527 } 1528 Ops.push_back(OuterMul); 1529 return getAddExpr(Ops); 1530 } 1531 1532 // Check this multiply against other multiplies being added together. 1533 for (unsigned OtherMulIdx = Idx+1; 1534 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1535 ++OtherMulIdx) { 1536 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1537 // If MulOp occurs in OtherMul, we can fold the two multiplies 1538 // together. 1539 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1540 OMulOp != e; ++OMulOp) 1541 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1542 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1543 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1544 if (Mul->getNumOperands() != 2) { 1545 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1546 Mul->op_begin()+MulOp); 1547 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1548 InnerMul1 = getMulExpr(MulOps); 1549 } 1550 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1551 if (OtherMul->getNumOperands() != 2) { 1552 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1553 OtherMul->op_begin()+OMulOp); 1554 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1555 InnerMul2 = getMulExpr(MulOps); 1556 } 1557 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1558 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1559 if (Ops.size() == 2) return OuterMul; 1560 Ops.erase(Ops.begin()+Idx); 1561 Ops.erase(Ops.begin()+OtherMulIdx-1); 1562 Ops.push_back(OuterMul); 1563 return getAddExpr(Ops); 1564 } 1565 } 1566 } 1567 } 1568 1569 // If there are any add recurrences in the operands list, see if any other 1570 // added values are loop invariant. If so, we can fold them into the 1571 // recurrence. 1572 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1573 ++Idx; 1574 1575 // Scan over all recurrences, trying to fold loop invariants into them. 1576 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1577 // Scan all of the other operands to this add and add them to the vector if 1578 // they are loop invariant w.r.t. the recurrence. 1579 SmallVector<const SCEV *, 8> LIOps; 1580 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1581 const Loop *AddRecLoop = AddRec->getLoop(); 1582 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1583 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1584 LIOps.push_back(Ops[i]); 1585 Ops.erase(Ops.begin()+i); 1586 --i; --e; 1587 } 1588 1589 // If we found some loop invariants, fold them into the recurrence. 1590 if (!LIOps.empty()) { 1591 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1592 LIOps.push_back(AddRec->getStart()); 1593 1594 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1595 AddRec->op_end()); 1596 AddRecOps[0] = getAddExpr(LIOps); 1597 1598 // Build the new addrec. Propagate the NUW and NSW flags if both the 1599 // outer add and the inner addrec are guaranteed to have no overflow. 1600 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1601 HasNUW && AddRec->hasNoUnsignedWrap(), 1602 HasNSW && AddRec->hasNoSignedWrap()); 1603 1604 // If all of the other operands were loop invariant, we are done. 1605 if (Ops.size() == 1) return NewRec; 1606 1607 // Otherwise, add the folded AddRec by the non-liv parts. 1608 for (unsigned i = 0;; ++i) 1609 if (Ops[i] == AddRec) { 1610 Ops[i] = NewRec; 1611 break; 1612 } 1613 return getAddExpr(Ops); 1614 } 1615 1616 // Okay, if there weren't any loop invariants to be folded, check to see if 1617 // there are multiple AddRec's with the same loop induction variable being 1618 // added together. If so, we can fold them. 1619 for (unsigned OtherIdx = Idx+1; 1620 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1621 ++OtherIdx) 1622 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1623 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1624 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1625 AddRec->op_end()); 1626 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1627 ++OtherIdx) 1628 if (const SCEVAddRecExpr *OtherAddRec = 1629 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1630 if (OtherAddRec->getLoop() == AddRecLoop) { 1631 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1632 i != e; ++i) { 1633 if (i >= AddRecOps.size()) { 1634 AddRecOps.append(OtherAddRec->op_begin()+i, 1635 OtherAddRec->op_end()); 1636 break; 1637 } 1638 AddRecOps[i] = getAddExpr(AddRecOps[i], 1639 OtherAddRec->getOperand(i)); 1640 } 1641 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1642 } 1643 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop); 1644 return getAddExpr(Ops); 1645 } 1646 1647 // Otherwise couldn't fold anything into this recurrence. Move onto the 1648 // next one. 1649 } 1650 1651 // Okay, it looks like we really DO need an add expr. Check to see if we 1652 // already have one, otherwise create a new one. 1653 FoldingSetNodeID ID; 1654 ID.AddInteger(scAddExpr); 1655 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1656 ID.AddPointer(Ops[i]); 1657 void *IP = 0; 1658 SCEVAddExpr *S = 1659 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1660 if (!S) { 1661 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1662 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1663 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1664 O, Ops.size()); 1665 UniqueSCEVs.InsertNode(S, IP); 1666 } 1667 if (HasNUW) S->setHasNoUnsignedWrap(true); 1668 if (HasNSW) S->setHasNoSignedWrap(true); 1669 return S; 1670 } 1671 1672 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1673 /// possible. 1674 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1675 bool HasNUW, bool HasNSW) { 1676 assert(!Ops.empty() && "Cannot get empty mul!"); 1677 if (Ops.size() == 1) return Ops[0]; 1678 #ifndef NDEBUG 1679 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1680 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1681 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1682 "SCEVMulExpr operand types don't match!"); 1683 #endif 1684 1685 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1686 if (!HasNUW && HasNSW) { 1687 bool All = true; 1688 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1689 E = Ops.end(); I != E; ++I) 1690 if (!isKnownNonNegative(*I)) { 1691 All = false; 1692 break; 1693 } 1694 if (All) HasNUW = true; 1695 } 1696 1697 // Sort by complexity, this groups all similar expression types together. 1698 GroupByComplexity(Ops, LI); 1699 1700 // If there are any constants, fold them together. 1701 unsigned Idx = 0; 1702 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1703 1704 // C1*(C2+V) -> C1*C2 + C1*V 1705 if (Ops.size() == 2) 1706 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1707 if (Add->getNumOperands() == 2 && 1708 isa<SCEVConstant>(Add->getOperand(0))) 1709 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1710 getMulExpr(LHSC, Add->getOperand(1))); 1711 1712 ++Idx; 1713 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1714 // We found two constants, fold them together! 1715 ConstantInt *Fold = ConstantInt::get(getContext(), 1716 LHSC->getValue()->getValue() * 1717 RHSC->getValue()->getValue()); 1718 Ops[0] = getConstant(Fold); 1719 Ops.erase(Ops.begin()+1); // Erase the folded element 1720 if (Ops.size() == 1) return Ops[0]; 1721 LHSC = cast<SCEVConstant>(Ops[0]); 1722 } 1723 1724 // If we are left with a constant one being multiplied, strip it off. 1725 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1726 Ops.erase(Ops.begin()); 1727 --Idx; 1728 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1729 // If we have a multiply of zero, it will always be zero. 1730 return Ops[0]; 1731 } else if (Ops[0]->isAllOnesValue()) { 1732 // If we have a mul by -1 of an add, try distributing the -1 among the 1733 // add operands. 1734 if (Ops.size() == 2) 1735 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1736 SmallVector<const SCEV *, 4> NewOps; 1737 bool AnyFolded = false; 1738 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1739 I != E; ++I) { 1740 const SCEV *Mul = getMulExpr(Ops[0], *I); 1741 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1742 NewOps.push_back(Mul); 1743 } 1744 if (AnyFolded) 1745 return getAddExpr(NewOps); 1746 } 1747 } 1748 1749 if (Ops.size() == 1) 1750 return Ops[0]; 1751 } 1752 1753 // Skip over the add expression until we get to a multiply. 1754 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1755 ++Idx; 1756 1757 // If there are mul operands inline them all into this expression. 1758 if (Idx < Ops.size()) { 1759 bool DeletedMul = false; 1760 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1761 // If we have an mul, expand the mul operands onto the end of the operands 1762 // list. 1763 Ops.erase(Ops.begin()+Idx); 1764 Ops.append(Mul->op_begin(), Mul->op_end()); 1765 DeletedMul = true; 1766 } 1767 1768 // If we deleted at least one mul, we added operands to the end of the list, 1769 // and they are not necessarily sorted. Recurse to resort and resimplify 1770 // any operands we just acquired. 1771 if (DeletedMul) 1772 return getMulExpr(Ops); 1773 } 1774 1775 // If there are any add recurrences in the operands list, see if any other 1776 // added values are loop invariant. If so, we can fold them into the 1777 // recurrence. 1778 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1779 ++Idx; 1780 1781 // Scan over all recurrences, trying to fold loop invariants into them. 1782 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1783 // Scan all of the other operands to this mul and add them to the vector if 1784 // they are loop invariant w.r.t. the recurrence. 1785 SmallVector<const SCEV *, 8> LIOps; 1786 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1787 const Loop *AddRecLoop = AddRec->getLoop(); 1788 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1789 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1790 LIOps.push_back(Ops[i]); 1791 Ops.erase(Ops.begin()+i); 1792 --i; --e; 1793 } 1794 1795 // If we found some loop invariants, fold them into the recurrence. 1796 if (!LIOps.empty()) { 1797 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1798 SmallVector<const SCEV *, 4> NewOps; 1799 NewOps.reserve(AddRec->getNumOperands()); 1800 const SCEV *Scale = getMulExpr(LIOps); 1801 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1802 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1803 1804 // Build the new addrec. Propagate the NUW and NSW flags if both the 1805 // outer mul and the inner addrec are guaranteed to have no overflow. 1806 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, 1807 HasNUW && AddRec->hasNoUnsignedWrap(), 1808 HasNSW && AddRec->hasNoSignedWrap()); 1809 1810 // If all of the other operands were loop invariant, we are done. 1811 if (Ops.size() == 1) return NewRec; 1812 1813 // Otherwise, multiply the folded AddRec by the non-liv parts. 1814 for (unsigned i = 0;; ++i) 1815 if (Ops[i] == AddRec) { 1816 Ops[i] = NewRec; 1817 break; 1818 } 1819 return getMulExpr(Ops); 1820 } 1821 1822 // Okay, if there weren't any loop invariants to be folded, check to see if 1823 // there are multiple AddRec's with the same loop induction variable being 1824 // multiplied together. If so, we can fold them. 1825 for (unsigned OtherIdx = Idx+1; 1826 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1827 ++OtherIdx) 1828 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1829 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> --> 1830 // {A*C,+,F*D + G*B + B*D}<L> 1831 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1832 ++OtherIdx) 1833 if (const SCEVAddRecExpr *OtherAddRec = 1834 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1835 if (OtherAddRec->getLoop() == AddRecLoop) { 1836 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1837 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart()); 1838 const SCEV *B = F->getStepRecurrence(*this); 1839 const SCEV *D = G->getStepRecurrence(*this); 1840 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1841 getMulExpr(G, B), 1842 getMulExpr(B, D)); 1843 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1844 F->getLoop()); 1845 if (Ops.size() == 2) return NewAddRec; 1846 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); 1847 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1848 } 1849 return getMulExpr(Ops); 1850 } 1851 1852 // Otherwise couldn't fold anything into this recurrence. Move onto the 1853 // next one. 1854 } 1855 1856 // Okay, it looks like we really DO need an mul expr. Check to see if we 1857 // already have one, otherwise create a new one. 1858 FoldingSetNodeID ID; 1859 ID.AddInteger(scMulExpr); 1860 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1861 ID.AddPointer(Ops[i]); 1862 void *IP = 0; 1863 SCEVMulExpr *S = 1864 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1865 if (!S) { 1866 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1867 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1868 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1869 O, Ops.size()); 1870 UniqueSCEVs.InsertNode(S, IP); 1871 } 1872 if (HasNUW) S->setHasNoUnsignedWrap(true); 1873 if (HasNSW) S->setHasNoSignedWrap(true); 1874 return S; 1875 } 1876 1877 /// getUDivExpr - Get a canonical unsigned division expression, or something 1878 /// simpler if possible. 1879 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1880 const SCEV *RHS) { 1881 assert(getEffectiveSCEVType(LHS->getType()) == 1882 getEffectiveSCEVType(RHS->getType()) && 1883 "SCEVUDivExpr operand types don't match!"); 1884 1885 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1886 if (RHSC->getValue()->equalsInt(1)) 1887 return LHS; // X udiv 1 --> x 1888 // If the denominator is zero, the result of the udiv is undefined. Don't 1889 // try to analyze it, because the resolution chosen here may differ from 1890 // the resolution chosen in other parts of the compiler. 1891 if (!RHSC->getValue()->isZero()) { 1892 // Determine if the division can be folded into the operands of 1893 // its operands. 1894 // TODO: Generalize this to non-constants by using known-bits information. 1895 const Type *Ty = LHS->getType(); 1896 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1897 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 1898 // For non-power-of-two values, effectively round the value up to the 1899 // nearest power of two. 1900 if (!RHSC->getValue()->getValue().isPowerOf2()) 1901 ++MaxShiftAmt; 1902 const IntegerType *ExtTy = 1903 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1904 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1906 if (const SCEVConstant *Step = 1907 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1908 if (!Step->getValue()->getValue() 1909 .urem(RHSC->getValue()->getValue()) && 1910 getZeroExtendExpr(AR, ExtTy) == 1911 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1912 getZeroExtendExpr(Step, ExtTy), 1913 AR->getLoop())) { 1914 SmallVector<const SCEV *, 4> Operands; 1915 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1916 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1917 return getAddRecExpr(Operands, AR->getLoop()); 1918 } 1919 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1920 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1921 SmallVector<const SCEV *, 4> Operands; 1922 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1923 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1924 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1925 // Find an operand that's safely divisible. 1926 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1927 const SCEV *Op = M->getOperand(i); 1928 const SCEV *Div = getUDivExpr(Op, RHSC); 1929 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1930 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1931 M->op_end()); 1932 Operands[i] = Div; 1933 return getMulExpr(Operands); 1934 } 1935 } 1936 } 1937 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1938 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1939 SmallVector<const SCEV *, 4> Operands; 1940 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1941 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1942 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1943 Operands.clear(); 1944 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1945 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1946 if (isa<SCEVUDivExpr>(Op) || 1947 getMulExpr(Op, RHS) != A->getOperand(i)) 1948 break; 1949 Operands.push_back(Op); 1950 } 1951 if (Operands.size() == A->getNumOperands()) 1952 return getAddExpr(Operands); 1953 } 1954 } 1955 1956 // Fold if both operands are constant. 1957 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1958 Constant *LHSCV = LHSC->getValue(); 1959 Constant *RHSCV = RHSC->getValue(); 1960 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1961 RHSCV))); 1962 } 1963 } 1964 } 1965 1966 FoldingSetNodeID ID; 1967 ID.AddInteger(scUDivExpr); 1968 ID.AddPointer(LHS); 1969 ID.AddPointer(RHS); 1970 void *IP = 0; 1971 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1972 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 1973 LHS, RHS); 1974 UniqueSCEVs.InsertNode(S, IP); 1975 return S; 1976 } 1977 1978 1979 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1980 /// Simplify the expression as much as possible. 1981 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1982 const SCEV *Step, const Loop *L, 1983 bool HasNUW, bool HasNSW) { 1984 SmallVector<const SCEV *, 4> Operands; 1985 Operands.push_back(Start); 1986 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1987 if (StepChrec->getLoop() == L) { 1988 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 1989 return getAddRecExpr(Operands, L); 1990 } 1991 1992 Operands.push_back(Step); 1993 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1994 } 1995 1996 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1997 /// Simplify the expression as much as possible. 1998 const SCEV * 1999 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2000 const Loop *L, 2001 bool HasNUW, bool HasNSW) { 2002 if (Operands.size() == 1) return Operands[0]; 2003 #ifndef NDEBUG 2004 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2005 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2006 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2007 "SCEVAddRecExpr operand types don't match!"); 2008 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2009 assert(isLoopInvariant(Operands[i], L) && 2010 "SCEVAddRecExpr operand is not loop-invariant!"); 2011 #endif 2012 2013 if (Operands.back()->isZero()) { 2014 Operands.pop_back(); 2015 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 2016 } 2017 2018 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2019 // use that information to infer NUW and NSW flags. However, computing a 2020 // BE count requires calling getAddRecExpr, so we may not yet have a 2021 // meaningful BE count at this point (and if we don't, we'd be stuck 2022 // with a SCEVCouldNotCompute as the cached BE count). 2023 2024 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 2025 if (!HasNUW && HasNSW) { 2026 bool All = true; 2027 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2028 E = Operands.end(); I != E; ++I) 2029 if (!isKnownNonNegative(*I)) { 2030 All = false; 2031 break; 2032 } 2033 if (All) HasNUW = true; 2034 } 2035 2036 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2037 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2038 const Loop *NestedLoop = NestedAR->getLoop(); 2039 if (L->contains(NestedLoop) ? 2040 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2041 (!NestedLoop->contains(L) && 2042 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2043 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2044 NestedAR->op_end()); 2045 Operands[0] = NestedAR->getStart(); 2046 // AddRecs require their operands be loop-invariant with respect to their 2047 // loops. Don't perform this transformation if it would break this 2048 // requirement. 2049 bool AllInvariant = true; 2050 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2051 if (!isLoopInvariant(Operands[i], L)) { 2052 AllInvariant = false; 2053 break; 2054 } 2055 if (AllInvariant) { 2056 NestedOperands[0] = getAddRecExpr(Operands, L); 2057 AllInvariant = true; 2058 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2059 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2060 AllInvariant = false; 2061 break; 2062 } 2063 if (AllInvariant) 2064 // Ok, both add recurrences are valid after the transformation. 2065 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2066 } 2067 // Reset Operands to its original state. 2068 Operands[0] = NestedAR; 2069 } 2070 } 2071 2072 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2073 // already have one, otherwise create a new one. 2074 FoldingSetNodeID ID; 2075 ID.AddInteger(scAddRecExpr); 2076 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2077 ID.AddPointer(Operands[i]); 2078 ID.AddPointer(L); 2079 void *IP = 0; 2080 SCEVAddRecExpr *S = 2081 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2082 if (!S) { 2083 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2084 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2085 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2086 O, Operands.size(), L); 2087 UniqueSCEVs.InsertNode(S, IP); 2088 } 2089 if (HasNUW) S->setHasNoUnsignedWrap(true); 2090 if (HasNSW) S->setHasNoSignedWrap(true); 2091 return S; 2092 } 2093 2094 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2095 const SCEV *RHS) { 2096 SmallVector<const SCEV *, 2> Ops; 2097 Ops.push_back(LHS); 2098 Ops.push_back(RHS); 2099 return getSMaxExpr(Ops); 2100 } 2101 2102 const SCEV * 2103 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2104 assert(!Ops.empty() && "Cannot get empty smax!"); 2105 if (Ops.size() == 1) return Ops[0]; 2106 #ifndef NDEBUG 2107 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2108 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2109 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2110 "SCEVSMaxExpr operand types don't match!"); 2111 #endif 2112 2113 // Sort by complexity, this groups all similar expression types together. 2114 GroupByComplexity(Ops, LI); 2115 2116 // If there are any constants, fold them together. 2117 unsigned Idx = 0; 2118 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2119 ++Idx; 2120 assert(Idx < Ops.size()); 2121 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2122 // We found two constants, fold them together! 2123 ConstantInt *Fold = ConstantInt::get(getContext(), 2124 APIntOps::smax(LHSC->getValue()->getValue(), 2125 RHSC->getValue()->getValue())); 2126 Ops[0] = getConstant(Fold); 2127 Ops.erase(Ops.begin()+1); // Erase the folded element 2128 if (Ops.size() == 1) return Ops[0]; 2129 LHSC = cast<SCEVConstant>(Ops[0]); 2130 } 2131 2132 // If we are left with a constant minimum-int, strip it off. 2133 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2134 Ops.erase(Ops.begin()); 2135 --Idx; 2136 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2137 // If we have an smax with a constant maximum-int, it will always be 2138 // maximum-int. 2139 return Ops[0]; 2140 } 2141 2142 if (Ops.size() == 1) return Ops[0]; 2143 } 2144 2145 // Find the first SMax 2146 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2147 ++Idx; 2148 2149 // Check to see if one of the operands is an SMax. If so, expand its operands 2150 // onto our operand list, and recurse to simplify. 2151 if (Idx < Ops.size()) { 2152 bool DeletedSMax = false; 2153 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2154 Ops.erase(Ops.begin()+Idx); 2155 Ops.append(SMax->op_begin(), SMax->op_end()); 2156 DeletedSMax = true; 2157 } 2158 2159 if (DeletedSMax) 2160 return getSMaxExpr(Ops); 2161 } 2162 2163 // Okay, check to see if the same value occurs in the operand list twice. If 2164 // so, delete one. Since we sorted the list, these values are required to 2165 // be adjacent. 2166 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2167 // X smax Y smax Y --> X smax Y 2168 // X smax Y --> X, if X is always greater than Y 2169 if (Ops[i] == Ops[i+1] || 2170 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2171 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2172 --i; --e; 2173 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2174 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2175 --i; --e; 2176 } 2177 2178 if (Ops.size() == 1) return Ops[0]; 2179 2180 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2181 2182 // Okay, it looks like we really DO need an smax expr. Check to see if we 2183 // already have one, otherwise create a new one. 2184 FoldingSetNodeID ID; 2185 ID.AddInteger(scSMaxExpr); 2186 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2187 ID.AddPointer(Ops[i]); 2188 void *IP = 0; 2189 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2190 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2191 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2192 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2193 O, Ops.size()); 2194 UniqueSCEVs.InsertNode(S, IP); 2195 return S; 2196 } 2197 2198 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2199 const SCEV *RHS) { 2200 SmallVector<const SCEV *, 2> Ops; 2201 Ops.push_back(LHS); 2202 Ops.push_back(RHS); 2203 return getUMaxExpr(Ops); 2204 } 2205 2206 const SCEV * 2207 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2208 assert(!Ops.empty() && "Cannot get empty umax!"); 2209 if (Ops.size() == 1) return Ops[0]; 2210 #ifndef NDEBUG 2211 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2212 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2213 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2214 "SCEVUMaxExpr operand types don't match!"); 2215 #endif 2216 2217 // Sort by complexity, this groups all similar expression types together. 2218 GroupByComplexity(Ops, LI); 2219 2220 // If there are any constants, fold them together. 2221 unsigned Idx = 0; 2222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2223 ++Idx; 2224 assert(Idx < Ops.size()); 2225 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2226 // We found two constants, fold them together! 2227 ConstantInt *Fold = ConstantInt::get(getContext(), 2228 APIntOps::umax(LHSC->getValue()->getValue(), 2229 RHSC->getValue()->getValue())); 2230 Ops[0] = getConstant(Fold); 2231 Ops.erase(Ops.begin()+1); // Erase the folded element 2232 if (Ops.size() == 1) return Ops[0]; 2233 LHSC = cast<SCEVConstant>(Ops[0]); 2234 } 2235 2236 // If we are left with a constant minimum-int, strip it off. 2237 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2238 Ops.erase(Ops.begin()); 2239 --Idx; 2240 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2241 // If we have an umax with a constant maximum-int, it will always be 2242 // maximum-int. 2243 return Ops[0]; 2244 } 2245 2246 if (Ops.size() == 1) return Ops[0]; 2247 } 2248 2249 // Find the first UMax 2250 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2251 ++Idx; 2252 2253 // Check to see if one of the operands is a UMax. If so, expand its operands 2254 // onto our operand list, and recurse to simplify. 2255 if (Idx < Ops.size()) { 2256 bool DeletedUMax = false; 2257 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2258 Ops.erase(Ops.begin()+Idx); 2259 Ops.append(UMax->op_begin(), UMax->op_end()); 2260 DeletedUMax = true; 2261 } 2262 2263 if (DeletedUMax) 2264 return getUMaxExpr(Ops); 2265 } 2266 2267 // Okay, check to see if the same value occurs in the operand list twice. If 2268 // so, delete one. Since we sorted the list, these values are required to 2269 // be adjacent. 2270 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2271 // X umax Y umax Y --> X umax Y 2272 // X umax Y --> X, if X is always greater than Y 2273 if (Ops[i] == Ops[i+1] || 2274 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2275 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2276 --i; --e; 2277 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2278 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2279 --i; --e; 2280 } 2281 2282 if (Ops.size() == 1) return Ops[0]; 2283 2284 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2285 2286 // Okay, it looks like we really DO need a umax expr. Check to see if we 2287 // already have one, otherwise create a new one. 2288 FoldingSetNodeID ID; 2289 ID.AddInteger(scUMaxExpr); 2290 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2291 ID.AddPointer(Ops[i]); 2292 void *IP = 0; 2293 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2294 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2295 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2296 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2297 O, Ops.size()); 2298 UniqueSCEVs.InsertNode(S, IP); 2299 return S; 2300 } 2301 2302 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2303 const SCEV *RHS) { 2304 // ~smax(~x, ~y) == smin(x, y). 2305 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2306 } 2307 2308 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2309 const SCEV *RHS) { 2310 // ~umax(~x, ~y) == umin(x, y) 2311 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2312 } 2313 2314 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2315 // If we have TargetData, we can bypass creating a target-independent 2316 // constant expression and then folding it back into a ConstantInt. 2317 // This is just a compile-time optimization. 2318 if (TD) 2319 return getConstant(TD->getIntPtrType(getContext()), 2320 TD->getTypeAllocSize(AllocTy)); 2321 2322 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2324 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2325 C = Folded; 2326 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2327 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2328 } 2329 2330 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2331 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2332 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2333 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2334 C = Folded; 2335 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2336 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2337 } 2338 2339 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2340 unsigned FieldNo) { 2341 // If we have TargetData, we can bypass creating a target-independent 2342 // constant expression and then folding it back into a ConstantInt. 2343 // This is just a compile-time optimization. 2344 if (TD) 2345 return getConstant(TD->getIntPtrType(getContext()), 2346 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2347 2348 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2349 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2350 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2351 C = Folded; 2352 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2353 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2354 } 2355 2356 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2357 Constant *FieldNo) { 2358 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2359 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2360 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2361 C = Folded; 2362 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2363 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2364 } 2365 2366 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2367 // Don't attempt to do anything other than create a SCEVUnknown object 2368 // here. createSCEV only calls getUnknown after checking for all other 2369 // interesting possibilities, and any other code that calls getUnknown 2370 // is doing so in order to hide a value from SCEV canonicalization. 2371 2372 FoldingSetNodeID ID; 2373 ID.AddInteger(scUnknown); 2374 ID.AddPointer(V); 2375 void *IP = 0; 2376 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2377 assert(cast<SCEVUnknown>(S)->getValue() == V && 2378 "Stale SCEVUnknown in uniquing map!"); 2379 return S; 2380 } 2381 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2382 FirstUnknown); 2383 FirstUnknown = cast<SCEVUnknown>(S); 2384 UniqueSCEVs.InsertNode(S, IP); 2385 return S; 2386 } 2387 2388 //===----------------------------------------------------------------------===// 2389 // Basic SCEV Analysis and PHI Idiom Recognition Code 2390 // 2391 2392 /// isSCEVable - Test if values of the given type are analyzable within 2393 /// the SCEV framework. This primarily includes integer types, and it 2394 /// can optionally include pointer types if the ScalarEvolution class 2395 /// has access to target-specific information. 2396 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2397 // Integers and pointers are always SCEVable. 2398 return Ty->isIntegerTy() || Ty->isPointerTy(); 2399 } 2400 2401 /// getTypeSizeInBits - Return the size in bits of the specified type, 2402 /// for which isSCEVable must return true. 2403 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2404 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2405 2406 // If we have a TargetData, use it! 2407 if (TD) 2408 return TD->getTypeSizeInBits(Ty); 2409 2410 // Integer types have fixed sizes. 2411 if (Ty->isIntegerTy()) 2412 return Ty->getPrimitiveSizeInBits(); 2413 2414 // The only other support type is pointer. Without TargetData, conservatively 2415 // assume pointers are 64-bit. 2416 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2417 return 64; 2418 } 2419 2420 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2421 /// the given type and which represents how SCEV will treat the given 2422 /// type, for which isSCEVable must return true. For pointer types, 2423 /// this is the pointer-sized integer type. 2424 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2425 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2426 2427 if (Ty->isIntegerTy()) 2428 return Ty; 2429 2430 // The only other support type is pointer. 2431 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2432 if (TD) return TD->getIntPtrType(getContext()); 2433 2434 // Without TargetData, conservatively assume pointers are 64-bit. 2435 return Type::getInt64Ty(getContext()); 2436 } 2437 2438 const SCEV *ScalarEvolution::getCouldNotCompute() { 2439 return &CouldNotCompute; 2440 } 2441 2442 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2443 /// expression and create a new one. 2444 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2445 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2446 2447 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2448 if (I != ValueExprMap.end()) return I->second; 2449 const SCEV *S = createSCEV(V); 2450 2451 // The process of creating a SCEV for V may have caused other SCEVs 2452 // to have been created, so it's necessary to insert the new entry 2453 // from scratch, rather than trying to remember the insert position 2454 // above. 2455 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2456 return S; 2457 } 2458 2459 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2460 /// 2461 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2462 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2463 return getConstant( 2464 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2465 2466 const Type *Ty = V->getType(); 2467 Ty = getEffectiveSCEVType(Ty); 2468 return getMulExpr(V, 2469 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2470 } 2471 2472 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2473 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2474 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2475 return getConstant( 2476 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2477 2478 const Type *Ty = V->getType(); 2479 Ty = getEffectiveSCEVType(Ty); 2480 const SCEV *AllOnes = 2481 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2482 return getMinusSCEV(AllOnes, V); 2483 } 2484 2485 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1, 2486 /// and thus the HasNUW and HasNSW bits apply to the resultant add, not 2487 /// whether the sub would have overflowed. 2488 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2489 bool HasNUW, bool HasNSW) { 2490 // Fast path: X - X --> 0. 2491 if (LHS == RHS) 2492 return getConstant(LHS->getType(), 0); 2493 2494 // X - Y --> X + -Y 2495 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW); 2496 } 2497 2498 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2499 /// input value to the specified type. If the type must be extended, it is zero 2500 /// extended. 2501 const SCEV * 2502 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) { 2503 const Type *SrcTy = V->getType(); 2504 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2505 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2506 "Cannot truncate or zero extend with non-integer arguments!"); 2507 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2508 return V; // No conversion 2509 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2510 return getTruncateExpr(V, Ty); 2511 return getZeroExtendExpr(V, Ty); 2512 } 2513 2514 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2515 /// input value to the specified type. If the type must be extended, it is sign 2516 /// extended. 2517 const SCEV * 2518 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2519 const Type *Ty) { 2520 const Type *SrcTy = V->getType(); 2521 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2522 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2523 "Cannot truncate or zero extend with non-integer arguments!"); 2524 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2525 return V; // No conversion 2526 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2527 return getTruncateExpr(V, Ty); 2528 return getSignExtendExpr(V, Ty); 2529 } 2530 2531 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2532 /// input value to the specified type. If the type must be extended, it is zero 2533 /// extended. The conversion must not be narrowing. 2534 const SCEV * 2535 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2536 const Type *SrcTy = V->getType(); 2537 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2538 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2539 "Cannot noop or zero extend with non-integer arguments!"); 2540 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2541 "getNoopOrZeroExtend cannot truncate!"); 2542 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2543 return V; // No conversion 2544 return getZeroExtendExpr(V, Ty); 2545 } 2546 2547 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2548 /// input value to the specified type. If the type must be extended, it is sign 2549 /// extended. The conversion must not be narrowing. 2550 const SCEV * 2551 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2552 const Type *SrcTy = V->getType(); 2553 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2554 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2555 "Cannot noop or sign extend with non-integer arguments!"); 2556 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2557 "getNoopOrSignExtend cannot truncate!"); 2558 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2559 return V; // No conversion 2560 return getSignExtendExpr(V, Ty); 2561 } 2562 2563 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2564 /// the input value to the specified type. If the type must be extended, 2565 /// it is extended with unspecified bits. The conversion must not be 2566 /// narrowing. 2567 const SCEV * 2568 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2569 const Type *SrcTy = V->getType(); 2570 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2571 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2572 "Cannot noop or any extend with non-integer arguments!"); 2573 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2574 "getNoopOrAnyExtend cannot truncate!"); 2575 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2576 return V; // No conversion 2577 return getAnyExtendExpr(V, Ty); 2578 } 2579 2580 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2581 /// input value to the specified type. The conversion must not be widening. 2582 const SCEV * 2583 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2584 const Type *SrcTy = V->getType(); 2585 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2586 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2587 "Cannot truncate or noop with non-integer arguments!"); 2588 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2589 "getTruncateOrNoop cannot extend!"); 2590 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2591 return V; // No conversion 2592 return getTruncateExpr(V, Ty); 2593 } 2594 2595 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2596 /// the types using zero-extension, and then perform a umax operation 2597 /// with them. 2598 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2599 const SCEV *RHS) { 2600 const SCEV *PromotedLHS = LHS; 2601 const SCEV *PromotedRHS = RHS; 2602 2603 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2604 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2605 else 2606 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2607 2608 return getUMaxExpr(PromotedLHS, PromotedRHS); 2609 } 2610 2611 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2612 /// the types using zero-extension, and then perform a umin operation 2613 /// with them. 2614 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2615 const SCEV *RHS) { 2616 const SCEV *PromotedLHS = LHS; 2617 const SCEV *PromotedRHS = RHS; 2618 2619 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2620 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2621 else 2622 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2623 2624 return getUMinExpr(PromotedLHS, PromotedRHS); 2625 } 2626 2627 /// PushDefUseChildren - Push users of the given Instruction 2628 /// onto the given Worklist. 2629 static void 2630 PushDefUseChildren(Instruction *I, 2631 SmallVectorImpl<Instruction *> &Worklist) { 2632 // Push the def-use children onto the Worklist stack. 2633 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2634 UI != UE; ++UI) 2635 Worklist.push_back(cast<Instruction>(*UI)); 2636 } 2637 2638 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2639 /// instructions that depend on the given instruction and removes them from 2640 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2641 /// resolution. 2642 void 2643 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2644 SmallVector<Instruction *, 16> Worklist; 2645 PushDefUseChildren(PN, Worklist); 2646 2647 SmallPtrSet<Instruction *, 8> Visited; 2648 Visited.insert(PN); 2649 while (!Worklist.empty()) { 2650 Instruction *I = Worklist.pop_back_val(); 2651 if (!Visited.insert(I)) continue; 2652 2653 ValueExprMapType::iterator It = 2654 ValueExprMap.find(static_cast<Value *>(I)); 2655 if (It != ValueExprMap.end()) { 2656 const SCEV *Old = It->second; 2657 2658 // Short-circuit the def-use traversal if the symbolic name 2659 // ceases to appear in expressions. 2660 if (Old != SymName && !hasOperand(Old, SymName)) 2661 continue; 2662 2663 // SCEVUnknown for a PHI either means that it has an unrecognized 2664 // structure, it's a PHI that's in the progress of being computed 2665 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2666 // additional loop trip count information isn't going to change anything. 2667 // In the second case, createNodeForPHI will perform the necessary 2668 // updates on its own when it gets to that point. In the third, we do 2669 // want to forget the SCEVUnknown. 2670 if (!isa<PHINode>(I) || 2671 !isa<SCEVUnknown>(Old) || 2672 (I != PN && Old == SymName)) { 2673 forgetMemoizedResults(Old); 2674 ValueExprMap.erase(It); 2675 } 2676 } 2677 2678 PushDefUseChildren(I, Worklist); 2679 } 2680 } 2681 2682 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2683 /// a loop header, making it a potential recurrence, or it doesn't. 2684 /// 2685 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2686 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2687 if (L->getHeader() == PN->getParent()) { 2688 // The loop may have multiple entrances or multiple exits; we can analyze 2689 // this phi as an addrec if it has a unique entry value and a unique 2690 // backedge value. 2691 Value *BEValueV = 0, *StartValueV = 0; 2692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2693 Value *V = PN->getIncomingValue(i); 2694 if (L->contains(PN->getIncomingBlock(i))) { 2695 if (!BEValueV) { 2696 BEValueV = V; 2697 } else if (BEValueV != V) { 2698 BEValueV = 0; 2699 break; 2700 } 2701 } else if (!StartValueV) { 2702 StartValueV = V; 2703 } else if (StartValueV != V) { 2704 StartValueV = 0; 2705 break; 2706 } 2707 } 2708 if (BEValueV && StartValueV) { 2709 // While we are analyzing this PHI node, handle its value symbolically. 2710 const SCEV *SymbolicName = getUnknown(PN); 2711 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 2712 "PHI node already processed?"); 2713 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2714 2715 // Using this symbolic name for the PHI, analyze the value coming around 2716 // the back-edge. 2717 const SCEV *BEValue = getSCEV(BEValueV); 2718 2719 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2720 // has a special value for the first iteration of the loop. 2721 2722 // If the value coming around the backedge is an add with the symbolic 2723 // value we just inserted, then we found a simple induction variable! 2724 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2725 // If there is a single occurrence of the symbolic value, replace it 2726 // with a recurrence. 2727 unsigned FoundIndex = Add->getNumOperands(); 2728 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2729 if (Add->getOperand(i) == SymbolicName) 2730 if (FoundIndex == e) { 2731 FoundIndex = i; 2732 break; 2733 } 2734 2735 if (FoundIndex != Add->getNumOperands()) { 2736 // Create an add with everything but the specified operand. 2737 SmallVector<const SCEV *, 8> Ops; 2738 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2739 if (i != FoundIndex) 2740 Ops.push_back(Add->getOperand(i)); 2741 const SCEV *Accum = getAddExpr(Ops); 2742 2743 // This is not a valid addrec if the step amount is varying each 2744 // loop iteration, but is not itself an addrec in this loop. 2745 if (isLoopInvariant(Accum, L) || 2746 (isa<SCEVAddRecExpr>(Accum) && 2747 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2748 bool HasNUW = false; 2749 bool HasNSW = false; 2750 2751 // If the increment doesn't overflow, then neither the addrec nor 2752 // the post-increment will overflow. 2753 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2754 if (OBO->hasNoUnsignedWrap()) 2755 HasNUW = true; 2756 if (OBO->hasNoSignedWrap()) 2757 HasNSW = true; 2758 } else if (const GEPOperator *GEP = 2759 dyn_cast<GEPOperator>(BEValueV)) { 2760 // If the increment is a GEP, then we know it won't perform an 2761 // unsigned overflow, because the address space cannot be 2762 // wrapped around. 2763 HasNUW |= GEP->isInBounds(); 2764 } 2765 2766 const SCEV *StartVal = getSCEV(StartValueV); 2767 const SCEV *PHISCEV = 2768 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2769 2770 // Since the no-wrap flags are on the increment, they apply to the 2771 // post-incremented value as well. 2772 if (isLoopInvariant(Accum, L)) 2773 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2774 Accum, L, HasNUW, HasNSW); 2775 2776 // Okay, for the entire analysis of this edge we assumed the PHI 2777 // to be symbolic. We now need to go back and purge all of the 2778 // entries for the scalars that use the symbolic expression. 2779 ForgetSymbolicName(PN, SymbolicName); 2780 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2781 return PHISCEV; 2782 } 2783 } 2784 } else if (const SCEVAddRecExpr *AddRec = 2785 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2786 // Otherwise, this could be a loop like this: 2787 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2788 // In this case, j = {1,+,1} and BEValue is j. 2789 // Because the other in-value of i (0) fits the evolution of BEValue 2790 // i really is an addrec evolution. 2791 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2792 const SCEV *StartVal = getSCEV(StartValueV); 2793 2794 // If StartVal = j.start - j.stride, we can use StartVal as the 2795 // initial step of the addrec evolution. 2796 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2797 AddRec->getOperand(1))) { 2798 const SCEV *PHISCEV = 2799 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2800 2801 // Okay, for the entire analysis of this edge we assumed the PHI 2802 // to be symbolic. We now need to go back and purge all of the 2803 // entries for the scalars that use the symbolic expression. 2804 ForgetSymbolicName(PN, SymbolicName); 2805 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2806 return PHISCEV; 2807 } 2808 } 2809 } 2810 } 2811 } 2812 2813 // If the PHI has a single incoming value, follow that value, unless the 2814 // PHI's incoming blocks are in a different loop, in which case doing so 2815 // risks breaking LCSSA form. Instcombine would normally zap these, but 2816 // it doesn't have DominatorTree information, so it may miss cases. 2817 if (Value *V = SimplifyInstruction(PN, TD, DT)) 2818 if (LI->replacementPreservesLCSSAForm(PN, V)) 2819 return getSCEV(V); 2820 2821 // If it's not a loop phi, we can't handle it yet. 2822 return getUnknown(PN); 2823 } 2824 2825 /// createNodeForGEP - Expand GEP instructions into add and multiply 2826 /// operations. This allows them to be analyzed by regular SCEV code. 2827 /// 2828 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2829 2830 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2831 // Add expression, because the Instruction may be guarded by control flow 2832 // and the no-overflow bits may not be valid for the expression in any 2833 // context. 2834 2835 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2836 Value *Base = GEP->getOperand(0); 2837 // Don't attempt to analyze GEPs over unsized objects. 2838 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2839 return getUnknown(GEP); 2840 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2841 gep_type_iterator GTI = gep_type_begin(GEP); 2842 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 2843 E = GEP->op_end(); 2844 I != E; ++I) { 2845 Value *Index = *I; 2846 // Compute the (potentially symbolic) offset in bytes for this index. 2847 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2848 // For a struct, add the member offset. 2849 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2850 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2851 2852 // Add the field offset to the running total offset. 2853 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2854 } else { 2855 // For an array, add the element offset, explicitly scaled. 2856 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2857 const SCEV *IndexS = getSCEV(Index); 2858 // Getelementptr indices are signed. 2859 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2860 2861 // Multiply the index by the element size to compute the element offset. 2862 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2863 2864 // Add the element offset to the running total offset. 2865 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2866 } 2867 } 2868 2869 // Get the SCEV for the GEP base. 2870 const SCEV *BaseS = getSCEV(Base); 2871 2872 // Add the total offset from all the GEP indices to the base. 2873 return getAddExpr(BaseS, TotalOffset); 2874 } 2875 2876 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2877 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2878 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2879 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2880 uint32_t 2881 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2882 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2883 return C->getValue()->getValue().countTrailingZeros(); 2884 2885 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2886 return std::min(GetMinTrailingZeros(T->getOperand()), 2887 (uint32_t)getTypeSizeInBits(T->getType())); 2888 2889 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2890 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2891 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2892 getTypeSizeInBits(E->getType()) : OpRes; 2893 } 2894 2895 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2896 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2897 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2898 getTypeSizeInBits(E->getType()) : OpRes; 2899 } 2900 2901 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2902 // The result is the min of all operands results. 2903 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2904 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2905 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2906 return MinOpRes; 2907 } 2908 2909 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2910 // The result is the sum of all operands results. 2911 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2912 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2913 for (unsigned i = 1, e = M->getNumOperands(); 2914 SumOpRes != BitWidth && i != e; ++i) 2915 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2916 BitWidth); 2917 return SumOpRes; 2918 } 2919 2920 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2921 // The result is the min of all operands results. 2922 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2923 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2924 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2925 return MinOpRes; 2926 } 2927 2928 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2929 // The result is the min of all operands results. 2930 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2931 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2932 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2933 return MinOpRes; 2934 } 2935 2936 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2937 // The result is the min of all operands results. 2938 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2939 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2940 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2941 return MinOpRes; 2942 } 2943 2944 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2945 // For a SCEVUnknown, ask ValueTracking. 2946 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2947 APInt Mask = APInt::getAllOnesValue(BitWidth); 2948 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2949 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2950 return Zeros.countTrailingOnes(); 2951 } 2952 2953 // SCEVUDivExpr 2954 return 0; 2955 } 2956 2957 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2958 /// 2959 ConstantRange 2960 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2961 // See if we've computed this range already. 2962 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 2963 if (I != UnsignedRanges.end()) 2964 return I->second; 2965 2966 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2967 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 2968 2969 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2970 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2971 2972 // If the value has known zeros, the maximum unsigned value will have those 2973 // known zeros as well. 2974 uint32_t TZ = GetMinTrailingZeros(S); 2975 if (TZ != 0) 2976 ConservativeResult = 2977 ConstantRange(APInt::getMinValue(BitWidth), 2978 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2979 2980 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2981 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2982 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2983 X = X.add(getUnsignedRange(Add->getOperand(i))); 2984 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 2985 } 2986 2987 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2988 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2989 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2990 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2991 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 2992 } 2993 2994 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2995 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2996 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2997 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2998 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 2999 } 3000 3001 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3002 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3003 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3004 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3005 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3006 } 3007 3008 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3009 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3010 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3011 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3012 } 3013 3014 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3015 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3016 return setUnsignedRange(ZExt, 3017 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3018 } 3019 3020 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3021 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3022 return setUnsignedRange(SExt, 3023 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3024 } 3025 3026 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3027 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3028 return setUnsignedRange(Trunc, 3029 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3030 } 3031 3032 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3033 // If there's no unsigned wrap, the value will never be less than its 3034 // initial value. 3035 if (AddRec->hasNoUnsignedWrap()) 3036 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3037 if (!C->getValue()->isZero()) 3038 ConservativeResult = 3039 ConservativeResult.intersectWith( 3040 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3041 3042 // TODO: non-affine addrec 3043 if (AddRec->isAffine()) { 3044 const Type *Ty = AddRec->getType(); 3045 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3046 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3047 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3048 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3049 3050 const SCEV *Start = AddRec->getStart(); 3051 const SCEV *Step = AddRec->getStepRecurrence(*this); 3052 3053 ConstantRange StartRange = getUnsignedRange(Start); 3054 ConstantRange StepRange = getSignedRange(Step); 3055 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3056 ConstantRange EndRange = 3057 StartRange.add(MaxBECountRange.multiply(StepRange)); 3058 3059 // Check for overflow. This must be done with ConstantRange arithmetic 3060 // because we could be called from within the ScalarEvolution overflow 3061 // checking code. 3062 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3063 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3064 ConstantRange ExtMaxBECountRange = 3065 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3066 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3067 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3068 ExtEndRange) 3069 return setUnsignedRange(AddRec, ConservativeResult); 3070 3071 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3072 EndRange.getUnsignedMin()); 3073 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3074 EndRange.getUnsignedMax()); 3075 if (Min.isMinValue() && Max.isMaxValue()) 3076 return setUnsignedRange(AddRec, ConservativeResult); 3077 return setUnsignedRange(AddRec, 3078 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3079 } 3080 } 3081 3082 return setUnsignedRange(AddRec, ConservativeResult); 3083 } 3084 3085 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3086 // For a SCEVUnknown, ask ValueTracking. 3087 APInt Mask = APInt::getAllOnesValue(BitWidth); 3088 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3089 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3090 if (Ones == ~Zeros + 1) 3091 return setUnsignedRange(U, ConservativeResult); 3092 return setUnsignedRange(U, 3093 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3094 } 3095 3096 return setUnsignedRange(S, ConservativeResult); 3097 } 3098 3099 /// getSignedRange - Determine the signed range for a particular SCEV. 3100 /// 3101 ConstantRange 3102 ScalarEvolution::getSignedRange(const SCEV *S) { 3103 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3104 if (I != SignedRanges.end()) 3105 return I->second; 3106 3107 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3108 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3109 3110 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3111 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3112 3113 // If the value has known zeros, the maximum signed value will have those 3114 // known zeros as well. 3115 uint32_t TZ = GetMinTrailingZeros(S); 3116 if (TZ != 0) 3117 ConservativeResult = 3118 ConstantRange(APInt::getSignedMinValue(BitWidth), 3119 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3120 3121 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3122 ConstantRange X = getSignedRange(Add->getOperand(0)); 3123 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3124 X = X.add(getSignedRange(Add->getOperand(i))); 3125 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3126 } 3127 3128 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3129 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3130 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3131 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3132 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3133 } 3134 3135 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3136 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3137 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3138 X = X.smax(getSignedRange(SMax->getOperand(i))); 3139 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3140 } 3141 3142 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3143 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3144 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3145 X = X.umax(getSignedRange(UMax->getOperand(i))); 3146 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3147 } 3148 3149 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3150 ConstantRange X = getSignedRange(UDiv->getLHS()); 3151 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3152 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3153 } 3154 3155 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3156 ConstantRange X = getSignedRange(ZExt->getOperand()); 3157 return setSignedRange(ZExt, 3158 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3159 } 3160 3161 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3162 ConstantRange X = getSignedRange(SExt->getOperand()); 3163 return setSignedRange(SExt, 3164 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3165 } 3166 3167 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3168 ConstantRange X = getSignedRange(Trunc->getOperand()); 3169 return setSignedRange(Trunc, 3170 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3171 } 3172 3173 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3174 // If there's no signed wrap, and all the operands have the same sign or 3175 // zero, the value won't ever change sign. 3176 if (AddRec->hasNoSignedWrap()) { 3177 bool AllNonNeg = true; 3178 bool AllNonPos = true; 3179 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3180 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3181 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3182 } 3183 if (AllNonNeg) 3184 ConservativeResult = ConservativeResult.intersectWith( 3185 ConstantRange(APInt(BitWidth, 0), 3186 APInt::getSignedMinValue(BitWidth))); 3187 else if (AllNonPos) 3188 ConservativeResult = ConservativeResult.intersectWith( 3189 ConstantRange(APInt::getSignedMinValue(BitWidth), 3190 APInt(BitWidth, 1))); 3191 } 3192 3193 // TODO: non-affine addrec 3194 if (AddRec->isAffine()) { 3195 const Type *Ty = AddRec->getType(); 3196 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3197 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3198 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3199 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3200 3201 const SCEV *Start = AddRec->getStart(); 3202 const SCEV *Step = AddRec->getStepRecurrence(*this); 3203 3204 ConstantRange StartRange = getSignedRange(Start); 3205 ConstantRange StepRange = getSignedRange(Step); 3206 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3207 ConstantRange EndRange = 3208 StartRange.add(MaxBECountRange.multiply(StepRange)); 3209 3210 // Check for overflow. This must be done with ConstantRange arithmetic 3211 // because we could be called from within the ScalarEvolution overflow 3212 // checking code. 3213 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3214 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3215 ConstantRange ExtMaxBECountRange = 3216 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3217 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3218 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3219 ExtEndRange) 3220 return setSignedRange(AddRec, ConservativeResult); 3221 3222 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3223 EndRange.getSignedMin()); 3224 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3225 EndRange.getSignedMax()); 3226 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3227 return setSignedRange(AddRec, ConservativeResult); 3228 return setSignedRange(AddRec, 3229 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3230 } 3231 } 3232 3233 return setSignedRange(AddRec, ConservativeResult); 3234 } 3235 3236 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3237 // For a SCEVUnknown, ask ValueTracking. 3238 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3239 return setSignedRange(U, ConservativeResult); 3240 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3241 if (NS == 1) 3242 return setSignedRange(U, ConservativeResult); 3243 return setSignedRange(U, ConservativeResult.intersectWith( 3244 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3245 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3246 } 3247 3248 return setSignedRange(S, ConservativeResult); 3249 } 3250 3251 /// createSCEV - We know that there is no SCEV for the specified value. 3252 /// Analyze the expression. 3253 /// 3254 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3255 if (!isSCEVable(V->getType())) 3256 return getUnknown(V); 3257 3258 unsigned Opcode = Instruction::UserOp1; 3259 if (Instruction *I = dyn_cast<Instruction>(V)) { 3260 Opcode = I->getOpcode(); 3261 3262 // Don't attempt to analyze instructions in blocks that aren't 3263 // reachable. Such instructions don't matter, and they aren't required 3264 // to obey basic rules for definitions dominating uses which this 3265 // analysis depends on. 3266 if (!DT->isReachableFromEntry(I->getParent())) 3267 return getUnknown(V); 3268 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3269 Opcode = CE->getOpcode(); 3270 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3271 return getConstant(CI); 3272 else if (isa<ConstantPointerNull>(V)) 3273 return getConstant(V->getType(), 0); 3274 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3275 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3276 else 3277 return getUnknown(V); 3278 3279 Operator *U = cast<Operator>(V); 3280 switch (Opcode) { 3281 case Instruction::Add: { 3282 // The simple thing to do would be to just call getSCEV on both operands 3283 // and call getAddExpr with the result. However if we're looking at a 3284 // bunch of things all added together, this can be quite inefficient, 3285 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3286 // Instead, gather up all the operands and make a single getAddExpr call. 3287 // LLVM IR canonical form means we need only traverse the left operands. 3288 SmallVector<const SCEV *, 4> AddOps; 3289 AddOps.push_back(getSCEV(U->getOperand(1))); 3290 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3291 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3292 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3293 break; 3294 U = cast<Operator>(Op); 3295 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3296 if (Opcode == Instruction::Sub) 3297 AddOps.push_back(getNegativeSCEV(Op1)); 3298 else 3299 AddOps.push_back(Op1); 3300 } 3301 AddOps.push_back(getSCEV(U->getOperand(0))); 3302 return getAddExpr(AddOps); 3303 } 3304 case Instruction::Mul: { 3305 // See the Add code above. 3306 SmallVector<const SCEV *, 4> MulOps; 3307 MulOps.push_back(getSCEV(U->getOperand(1))); 3308 for (Value *Op = U->getOperand(0); 3309 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3310 Op = U->getOperand(0)) { 3311 U = cast<Operator>(Op); 3312 MulOps.push_back(getSCEV(U->getOperand(1))); 3313 } 3314 MulOps.push_back(getSCEV(U->getOperand(0))); 3315 return getMulExpr(MulOps); 3316 } 3317 case Instruction::UDiv: 3318 return getUDivExpr(getSCEV(U->getOperand(0)), 3319 getSCEV(U->getOperand(1))); 3320 case Instruction::Sub: 3321 return getMinusSCEV(getSCEV(U->getOperand(0)), 3322 getSCEV(U->getOperand(1))); 3323 case Instruction::And: 3324 // For an expression like x&255 that merely masks off the high bits, 3325 // use zext(trunc(x)) as the SCEV expression. 3326 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3327 if (CI->isNullValue()) 3328 return getSCEV(U->getOperand(1)); 3329 if (CI->isAllOnesValue()) 3330 return getSCEV(U->getOperand(0)); 3331 const APInt &A = CI->getValue(); 3332 3333 // Instcombine's ShrinkDemandedConstant may strip bits out of 3334 // constants, obscuring what would otherwise be a low-bits mask. 3335 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3336 // knew about to reconstruct a low-bits mask value. 3337 unsigned LZ = A.countLeadingZeros(); 3338 unsigned BitWidth = A.getBitWidth(); 3339 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3340 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3341 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3342 3343 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3344 3345 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3346 return 3347 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3348 IntegerType::get(getContext(), BitWidth - LZ)), 3349 U->getType()); 3350 } 3351 break; 3352 3353 case Instruction::Or: 3354 // If the RHS of the Or is a constant, we may have something like: 3355 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3356 // optimizations will transparently handle this case. 3357 // 3358 // In order for this transformation to be safe, the LHS must be of the 3359 // form X*(2^n) and the Or constant must be less than 2^n. 3360 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3361 const SCEV *LHS = getSCEV(U->getOperand(0)); 3362 const APInt &CIVal = CI->getValue(); 3363 if (GetMinTrailingZeros(LHS) >= 3364 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3365 // Build a plain add SCEV. 3366 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3367 // If the LHS of the add was an addrec and it has no-wrap flags, 3368 // transfer the no-wrap flags, since an or won't introduce a wrap. 3369 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3370 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3371 if (OldAR->hasNoUnsignedWrap()) 3372 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3373 if (OldAR->hasNoSignedWrap()) 3374 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3375 } 3376 return S; 3377 } 3378 } 3379 break; 3380 case Instruction::Xor: 3381 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3382 // If the RHS of the xor is a signbit, then this is just an add. 3383 // Instcombine turns add of signbit into xor as a strength reduction step. 3384 if (CI->getValue().isSignBit()) 3385 return getAddExpr(getSCEV(U->getOperand(0)), 3386 getSCEV(U->getOperand(1))); 3387 3388 // If the RHS of xor is -1, then this is a not operation. 3389 if (CI->isAllOnesValue()) 3390 return getNotSCEV(getSCEV(U->getOperand(0))); 3391 3392 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3393 // This is a variant of the check for xor with -1, and it handles 3394 // the case where instcombine has trimmed non-demanded bits out 3395 // of an xor with -1. 3396 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3397 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3398 if (BO->getOpcode() == Instruction::And && 3399 LCI->getValue() == CI->getValue()) 3400 if (const SCEVZeroExtendExpr *Z = 3401 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3402 const Type *UTy = U->getType(); 3403 const SCEV *Z0 = Z->getOperand(); 3404 const Type *Z0Ty = Z0->getType(); 3405 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3406 3407 // If C is a low-bits mask, the zero extend is serving to 3408 // mask off the high bits. Complement the operand and 3409 // re-apply the zext. 3410 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3411 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3412 3413 // If C is a single bit, it may be in the sign-bit position 3414 // before the zero-extend. In this case, represent the xor 3415 // using an add, which is equivalent, and re-apply the zext. 3416 APInt Trunc = CI->getValue().trunc(Z0TySize); 3417 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3418 Trunc.isSignBit()) 3419 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3420 UTy); 3421 } 3422 } 3423 break; 3424 3425 case Instruction::Shl: 3426 // Turn shift left of a constant amount into a multiply. 3427 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3428 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3429 3430 // If the shift count is not less than the bitwidth, the result of 3431 // the shift is undefined. Don't try to analyze it, because the 3432 // resolution chosen here may differ from the resolution chosen in 3433 // other parts of the compiler. 3434 if (SA->getValue().uge(BitWidth)) 3435 break; 3436 3437 Constant *X = ConstantInt::get(getContext(), 3438 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3439 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3440 } 3441 break; 3442 3443 case Instruction::LShr: 3444 // Turn logical shift right of a constant into a unsigned divide. 3445 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3446 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3447 3448 // If the shift count is not less than the bitwidth, the result of 3449 // the shift is undefined. Don't try to analyze it, because the 3450 // resolution chosen here may differ from the resolution chosen in 3451 // other parts of the compiler. 3452 if (SA->getValue().uge(BitWidth)) 3453 break; 3454 3455 Constant *X = ConstantInt::get(getContext(), 3456 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3457 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3458 } 3459 break; 3460 3461 case Instruction::AShr: 3462 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3463 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3464 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3465 if (L->getOpcode() == Instruction::Shl && 3466 L->getOperand(1) == U->getOperand(1)) { 3467 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3468 3469 // If the shift count is not less than the bitwidth, the result of 3470 // the shift is undefined. Don't try to analyze it, because the 3471 // resolution chosen here may differ from the resolution chosen in 3472 // other parts of the compiler. 3473 if (CI->getValue().uge(BitWidth)) 3474 break; 3475 3476 uint64_t Amt = BitWidth - CI->getZExtValue(); 3477 if (Amt == BitWidth) 3478 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3479 return 3480 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3481 IntegerType::get(getContext(), 3482 Amt)), 3483 U->getType()); 3484 } 3485 break; 3486 3487 case Instruction::Trunc: 3488 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3489 3490 case Instruction::ZExt: 3491 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3492 3493 case Instruction::SExt: 3494 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3495 3496 case Instruction::BitCast: 3497 // BitCasts are no-op casts so we just eliminate the cast. 3498 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3499 return getSCEV(U->getOperand(0)); 3500 break; 3501 3502 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3503 // lead to pointer expressions which cannot safely be expanded to GEPs, 3504 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3505 // simplifying integer expressions. 3506 3507 case Instruction::GetElementPtr: 3508 return createNodeForGEP(cast<GEPOperator>(U)); 3509 3510 case Instruction::PHI: 3511 return createNodeForPHI(cast<PHINode>(U)); 3512 3513 case Instruction::Select: 3514 // This could be a smax or umax that was lowered earlier. 3515 // Try to recover it. 3516 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3517 Value *LHS = ICI->getOperand(0); 3518 Value *RHS = ICI->getOperand(1); 3519 switch (ICI->getPredicate()) { 3520 case ICmpInst::ICMP_SLT: 3521 case ICmpInst::ICMP_SLE: 3522 std::swap(LHS, RHS); 3523 // fall through 3524 case ICmpInst::ICMP_SGT: 3525 case ICmpInst::ICMP_SGE: 3526 // a >s b ? a+x : b+x -> smax(a, b)+x 3527 // a >s b ? b+x : a+x -> smin(a, b)+x 3528 if (LHS->getType() == U->getType()) { 3529 const SCEV *LS = getSCEV(LHS); 3530 const SCEV *RS = getSCEV(RHS); 3531 const SCEV *LA = getSCEV(U->getOperand(1)); 3532 const SCEV *RA = getSCEV(U->getOperand(2)); 3533 const SCEV *LDiff = getMinusSCEV(LA, LS); 3534 const SCEV *RDiff = getMinusSCEV(RA, RS); 3535 if (LDiff == RDiff) 3536 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3537 LDiff = getMinusSCEV(LA, RS); 3538 RDiff = getMinusSCEV(RA, LS); 3539 if (LDiff == RDiff) 3540 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3541 } 3542 break; 3543 case ICmpInst::ICMP_ULT: 3544 case ICmpInst::ICMP_ULE: 3545 std::swap(LHS, RHS); 3546 // fall through 3547 case ICmpInst::ICMP_UGT: 3548 case ICmpInst::ICMP_UGE: 3549 // a >u b ? a+x : b+x -> umax(a, b)+x 3550 // a >u b ? b+x : a+x -> umin(a, b)+x 3551 if (LHS->getType() == U->getType()) { 3552 const SCEV *LS = getSCEV(LHS); 3553 const SCEV *RS = getSCEV(RHS); 3554 const SCEV *LA = getSCEV(U->getOperand(1)); 3555 const SCEV *RA = getSCEV(U->getOperand(2)); 3556 const SCEV *LDiff = getMinusSCEV(LA, LS); 3557 const SCEV *RDiff = getMinusSCEV(RA, RS); 3558 if (LDiff == RDiff) 3559 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3560 LDiff = getMinusSCEV(LA, RS); 3561 RDiff = getMinusSCEV(RA, LS); 3562 if (LDiff == RDiff) 3563 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3564 } 3565 break; 3566 case ICmpInst::ICMP_NE: 3567 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3568 if (LHS->getType() == U->getType() && 3569 isa<ConstantInt>(RHS) && 3570 cast<ConstantInt>(RHS)->isZero()) { 3571 const SCEV *One = getConstant(LHS->getType(), 1); 3572 const SCEV *LS = getSCEV(LHS); 3573 const SCEV *LA = getSCEV(U->getOperand(1)); 3574 const SCEV *RA = getSCEV(U->getOperand(2)); 3575 const SCEV *LDiff = getMinusSCEV(LA, LS); 3576 const SCEV *RDiff = getMinusSCEV(RA, One); 3577 if (LDiff == RDiff) 3578 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3579 } 3580 break; 3581 case ICmpInst::ICMP_EQ: 3582 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3583 if (LHS->getType() == U->getType() && 3584 isa<ConstantInt>(RHS) && 3585 cast<ConstantInt>(RHS)->isZero()) { 3586 const SCEV *One = getConstant(LHS->getType(), 1); 3587 const SCEV *LS = getSCEV(LHS); 3588 const SCEV *LA = getSCEV(U->getOperand(1)); 3589 const SCEV *RA = getSCEV(U->getOperand(2)); 3590 const SCEV *LDiff = getMinusSCEV(LA, One); 3591 const SCEV *RDiff = getMinusSCEV(RA, LS); 3592 if (LDiff == RDiff) 3593 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3594 } 3595 break; 3596 default: 3597 break; 3598 } 3599 } 3600 3601 default: // We cannot analyze this expression. 3602 break; 3603 } 3604 3605 return getUnknown(V); 3606 } 3607 3608 3609 3610 //===----------------------------------------------------------------------===// 3611 // Iteration Count Computation Code 3612 // 3613 3614 /// getBackedgeTakenCount - If the specified loop has a predictable 3615 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3616 /// object. The backedge-taken count is the number of times the loop header 3617 /// will be branched to from within the loop. This is one less than the 3618 /// trip count of the loop, since it doesn't count the first iteration, 3619 /// when the header is branched to from outside the loop. 3620 /// 3621 /// Note that it is not valid to call this method on a loop without a 3622 /// loop-invariant backedge-taken count (see 3623 /// hasLoopInvariantBackedgeTakenCount). 3624 /// 3625 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3626 return getBackedgeTakenInfo(L).Exact; 3627 } 3628 3629 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3630 /// return the least SCEV value that is known never to be less than the 3631 /// actual backedge taken count. 3632 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3633 return getBackedgeTakenInfo(L).Max; 3634 } 3635 3636 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3637 /// onto the given Worklist. 3638 static void 3639 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3640 BasicBlock *Header = L->getHeader(); 3641 3642 // Push all Loop-header PHIs onto the Worklist stack. 3643 for (BasicBlock::iterator I = Header->begin(); 3644 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3645 Worklist.push_back(PN); 3646 } 3647 3648 const ScalarEvolution::BackedgeTakenInfo & 3649 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3650 // Initially insert a CouldNotCompute for this loop. If the insertion 3651 // succeeds, proceed to actually compute a backedge-taken count and 3652 // update the value. The temporary CouldNotCompute value tells SCEV 3653 // code elsewhere that it shouldn't attempt to request a new 3654 // backedge-taken count, which could result in infinite recursion. 3655 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3656 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3657 if (!Pair.second) 3658 return Pair.first->second; 3659 3660 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3661 if (BECount.Exact != getCouldNotCompute()) { 3662 assert(isLoopInvariant(BECount.Exact, L) && 3663 isLoopInvariant(BECount.Max, L) && 3664 "Computed backedge-taken count isn't loop invariant for loop!"); 3665 ++NumTripCountsComputed; 3666 3667 // Update the value in the map. 3668 Pair.first->second = BECount; 3669 } else { 3670 if (BECount.Max != getCouldNotCompute()) 3671 // Update the value in the map. 3672 Pair.first->second = BECount; 3673 if (isa<PHINode>(L->getHeader()->begin())) 3674 // Only count loops that have phi nodes as not being computable. 3675 ++NumTripCountsNotComputed; 3676 } 3677 3678 // Now that we know more about the trip count for this loop, forget any 3679 // existing SCEV values for PHI nodes in this loop since they are only 3680 // conservative estimates made without the benefit of trip count 3681 // information. This is similar to the code in forgetLoop, except that 3682 // it handles SCEVUnknown PHI nodes specially. 3683 if (BECount.hasAnyInfo()) { 3684 SmallVector<Instruction *, 16> Worklist; 3685 PushLoopPHIs(L, Worklist); 3686 3687 SmallPtrSet<Instruction *, 8> Visited; 3688 while (!Worklist.empty()) { 3689 Instruction *I = Worklist.pop_back_val(); 3690 if (!Visited.insert(I)) continue; 3691 3692 ValueExprMapType::iterator It = 3693 ValueExprMap.find(static_cast<Value *>(I)); 3694 if (It != ValueExprMap.end()) { 3695 const SCEV *Old = It->second; 3696 3697 // SCEVUnknown for a PHI either means that it has an unrecognized 3698 // structure, or it's a PHI that's in the progress of being computed 3699 // by createNodeForPHI. In the former case, additional loop trip 3700 // count information isn't going to change anything. In the later 3701 // case, createNodeForPHI will perform the necessary updates on its 3702 // own when it gets to that point. 3703 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 3704 forgetMemoizedResults(Old); 3705 ValueExprMap.erase(It); 3706 } 3707 if (PHINode *PN = dyn_cast<PHINode>(I)) 3708 ConstantEvolutionLoopExitValue.erase(PN); 3709 } 3710 3711 PushDefUseChildren(I, Worklist); 3712 } 3713 } 3714 return Pair.first->second; 3715 } 3716 3717 /// forgetLoop - This method should be called by the client when it has 3718 /// changed a loop in a way that may effect ScalarEvolution's ability to 3719 /// compute a trip count, or if the loop is deleted. 3720 void ScalarEvolution::forgetLoop(const Loop *L) { 3721 // Drop any stored trip count value. 3722 BackedgeTakenCounts.erase(L); 3723 3724 // Drop information about expressions based on loop-header PHIs. 3725 SmallVector<Instruction *, 16> Worklist; 3726 PushLoopPHIs(L, Worklist); 3727 3728 SmallPtrSet<Instruction *, 8> Visited; 3729 while (!Worklist.empty()) { 3730 Instruction *I = Worklist.pop_back_val(); 3731 if (!Visited.insert(I)) continue; 3732 3733 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3734 if (It != ValueExprMap.end()) { 3735 forgetMemoizedResults(It->second); 3736 ValueExprMap.erase(It); 3737 if (PHINode *PN = dyn_cast<PHINode>(I)) 3738 ConstantEvolutionLoopExitValue.erase(PN); 3739 } 3740 3741 PushDefUseChildren(I, Worklist); 3742 } 3743 3744 // Forget all contained loops too, to avoid dangling entries in the 3745 // ValuesAtScopes map. 3746 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3747 forgetLoop(*I); 3748 } 3749 3750 /// forgetValue - This method should be called by the client when it has 3751 /// changed a value in a way that may effect its value, or which may 3752 /// disconnect it from a def-use chain linking it to a loop. 3753 void ScalarEvolution::forgetValue(Value *V) { 3754 Instruction *I = dyn_cast<Instruction>(V); 3755 if (!I) return; 3756 3757 // Drop information about expressions based on loop-header PHIs. 3758 SmallVector<Instruction *, 16> Worklist; 3759 Worklist.push_back(I); 3760 3761 SmallPtrSet<Instruction *, 8> Visited; 3762 while (!Worklist.empty()) { 3763 I = Worklist.pop_back_val(); 3764 if (!Visited.insert(I)) continue; 3765 3766 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3767 if (It != ValueExprMap.end()) { 3768 forgetMemoizedResults(It->second); 3769 ValueExprMap.erase(It); 3770 if (PHINode *PN = dyn_cast<PHINode>(I)) 3771 ConstantEvolutionLoopExitValue.erase(PN); 3772 } 3773 3774 PushDefUseChildren(I, Worklist); 3775 } 3776 } 3777 3778 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3779 /// of the specified loop will execute. 3780 ScalarEvolution::BackedgeTakenInfo 3781 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3782 SmallVector<BasicBlock *, 8> ExitingBlocks; 3783 L->getExitingBlocks(ExitingBlocks); 3784 3785 // Examine all exits and pick the most conservative values. 3786 const SCEV *BECount = getCouldNotCompute(); 3787 const SCEV *MaxBECount = getCouldNotCompute(); 3788 bool CouldNotComputeBECount = false; 3789 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3790 BackedgeTakenInfo NewBTI = 3791 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3792 3793 if (NewBTI.Exact == getCouldNotCompute()) { 3794 // We couldn't compute an exact value for this exit, so 3795 // we won't be able to compute an exact value for the loop. 3796 CouldNotComputeBECount = true; 3797 BECount = getCouldNotCompute(); 3798 } else if (!CouldNotComputeBECount) { 3799 if (BECount == getCouldNotCompute()) 3800 BECount = NewBTI.Exact; 3801 else 3802 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3803 } 3804 if (MaxBECount == getCouldNotCompute()) 3805 MaxBECount = NewBTI.Max; 3806 else if (NewBTI.Max != getCouldNotCompute()) 3807 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3808 } 3809 3810 return BackedgeTakenInfo(BECount, MaxBECount); 3811 } 3812 3813 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3814 /// of the specified loop will execute if it exits via the specified block. 3815 ScalarEvolution::BackedgeTakenInfo 3816 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3817 BasicBlock *ExitingBlock) { 3818 3819 // Okay, we've chosen an exiting block. See what condition causes us to 3820 // exit at this block. 3821 // 3822 // FIXME: we should be able to handle switch instructions (with a single exit) 3823 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3824 if (ExitBr == 0) return getCouldNotCompute(); 3825 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3826 3827 // At this point, we know we have a conditional branch that determines whether 3828 // the loop is exited. However, we don't know if the branch is executed each 3829 // time through the loop. If not, then the execution count of the branch will 3830 // not be equal to the trip count of the loop. 3831 // 3832 // Currently we check for this by checking to see if the Exit branch goes to 3833 // the loop header. If so, we know it will always execute the same number of 3834 // times as the loop. We also handle the case where the exit block *is* the 3835 // loop header. This is common for un-rotated loops. 3836 // 3837 // If both of those tests fail, walk up the unique predecessor chain to the 3838 // header, stopping if there is an edge that doesn't exit the loop. If the 3839 // header is reached, the execution count of the branch will be equal to the 3840 // trip count of the loop. 3841 // 3842 // More extensive analysis could be done to handle more cases here. 3843 // 3844 if (ExitBr->getSuccessor(0) != L->getHeader() && 3845 ExitBr->getSuccessor(1) != L->getHeader() && 3846 ExitBr->getParent() != L->getHeader()) { 3847 // The simple checks failed, try climbing the unique predecessor chain 3848 // up to the header. 3849 bool Ok = false; 3850 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3851 BasicBlock *Pred = BB->getUniquePredecessor(); 3852 if (!Pred) 3853 return getCouldNotCompute(); 3854 TerminatorInst *PredTerm = Pred->getTerminator(); 3855 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3856 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3857 if (PredSucc == BB) 3858 continue; 3859 // If the predecessor has a successor that isn't BB and isn't 3860 // outside the loop, assume the worst. 3861 if (L->contains(PredSucc)) 3862 return getCouldNotCompute(); 3863 } 3864 if (Pred == L->getHeader()) { 3865 Ok = true; 3866 break; 3867 } 3868 BB = Pred; 3869 } 3870 if (!Ok) 3871 return getCouldNotCompute(); 3872 } 3873 3874 // Proceed to the next level to examine the exit condition expression. 3875 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3876 ExitBr->getSuccessor(0), 3877 ExitBr->getSuccessor(1)); 3878 } 3879 3880 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3881 /// backedge of the specified loop will execute if its exit condition 3882 /// were a conditional branch of ExitCond, TBB, and FBB. 3883 ScalarEvolution::BackedgeTakenInfo 3884 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3885 Value *ExitCond, 3886 BasicBlock *TBB, 3887 BasicBlock *FBB) { 3888 // Check if the controlling expression for this loop is an And or Or. 3889 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3890 if (BO->getOpcode() == Instruction::And) { 3891 // Recurse on the operands of the and. 3892 BackedgeTakenInfo BTI0 = 3893 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3894 BackedgeTakenInfo BTI1 = 3895 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3896 const SCEV *BECount = getCouldNotCompute(); 3897 const SCEV *MaxBECount = getCouldNotCompute(); 3898 if (L->contains(TBB)) { 3899 // Both conditions must be true for the loop to continue executing. 3900 // Choose the less conservative count. 3901 if (BTI0.Exact == getCouldNotCompute() || 3902 BTI1.Exact == getCouldNotCompute()) 3903 BECount = getCouldNotCompute(); 3904 else 3905 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3906 if (BTI0.Max == getCouldNotCompute()) 3907 MaxBECount = BTI1.Max; 3908 else if (BTI1.Max == getCouldNotCompute()) 3909 MaxBECount = BTI0.Max; 3910 else 3911 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3912 } else { 3913 // Both conditions must be true at the same time for the loop to exit. 3914 // For now, be conservative. 3915 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3916 if (BTI0.Max == BTI1.Max) 3917 MaxBECount = BTI0.Max; 3918 if (BTI0.Exact == BTI1.Exact) 3919 BECount = BTI0.Exact; 3920 } 3921 3922 return BackedgeTakenInfo(BECount, MaxBECount); 3923 } 3924 if (BO->getOpcode() == Instruction::Or) { 3925 // Recurse on the operands of the or. 3926 BackedgeTakenInfo BTI0 = 3927 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3928 BackedgeTakenInfo BTI1 = 3929 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3930 const SCEV *BECount = getCouldNotCompute(); 3931 const SCEV *MaxBECount = getCouldNotCompute(); 3932 if (L->contains(FBB)) { 3933 // Both conditions must be false for the loop to continue executing. 3934 // Choose the less conservative count. 3935 if (BTI0.Exact == getCouldNotCompute() || 3936 BTI1.Exact == getCouldNotCompute()) 3937 BECount = getCouldNotCompute(); 3938 else 3939 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3940 if (BTI0.Max == getCouldNotCompute()) 3941 MaxBECount = BTI1.Max; 3942 else if (BTI1.Max == getCouldNotCompute()) 3943 MaxBECount = BTI0.Max; 3944 else 3945 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3946 } else { 3947 // Both conditions must be false at the same time for the loop to exit. 3948 // For now, be conservative. 3949 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3950 if (BTI0.Max == BTI1.Max) 3951 MaxBECount = BTI0.Max; 3952 if (BTI0.Exact == BTI1.Exact) 3953 BECount = BTI0.Exact; 3954 } 3955 3956 return BackedgeTakenInfo(BECount, MaxBECount); 3957 } 3958 } 3959 3960 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3961 // Proceed to the next level to examine the icmp. 3962 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3963 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3964 3965 // Check for a constant condition. These are normally stripped out by 3966 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3967 // preserve the CFG and is temporarily leaving constant conditions 3968 // in place. 3969 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3970 if (L->contains(FBB) == !CI->getZExtValue()) 3971 // The backedge is always taken. 3972 return getCouldNotCompute(); 3973 else 3974 // The backedge is never taken. 3975 return getConstant(CI->getType(), 0); 3976 } 3977 3978 // If it's not an integer or pointer comparison then compute it the hard way. 3979 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3980 } 3981 3982 static const SCEVAddRecExpr * 3983 isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) { 3984 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S); 3985 3986 // The SCEV must be an addrec of this loop. 3987 if (!SA || SA->getLoop() != L || !SA->isAffine()) 3988 return 0; 3989 3990 // The SCEV must be known to not wrap in some way to be interesting. 3991 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap()) 3992 return 0; 3993 3994 // The stride must be a constant so that we know if it is striding up or down. 3995 if (!isa<SCEVConstant>(SA->getOperand(1))) 3996 return 0; 3997 return SA; 3998 } 3999 4000 /// getMinusSCEVForExitTest - When considering an exit test for a loop with a 4001 /// "x != y" exit test, we turn this into a computation that evaluates x-y != 0, 4002 /// and this function returns the expression to use for x-y. We know and take 4003 /// advantage of the fact that this subtraction is only being used in a 4004 /// comparison by zero context. 4005 /// 4006 static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS, 4007 const Loop *L, ScalarEvolution &SE) { 4008 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not 4009 // wrap (either NSW or NUW), then we know that the value will either become 4010 // the other one (and thus the loop terminates), that the loop will terminate 4011 // through some other exit condition first, or that the loop has undefined 4012 // behavior. This information is useful when the addrec has a stride that is 4013 // != 1 or -1, because it means we can't "miss" the exit value. 4014 // 4015 // In any of these three cases, it is safe to turn the exit condition into a 4016 // "counting down" AddRec (to zero) by subtracting the two inputs as normal, 4017 // but since we know that the "end cannot be missed" we can force the 4018 // resulting AddRec to be a NUW addrec. Since it is counting down, this means 4019 // that the AddRec *cannot* pass zero. 4020 4021 // See if LHS and RHS are addrec's we can handle. 4022 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L); 4023 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L); 4024 4025 // If neither addrec is interesting, just return a minus. 4026 if (RHSA == 0 && LHSA == 0) 4027 return SE.getMinusSCEV(LHS, RHS); 4028 4029 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS. 4030 if (RHSA && LHSA == 0) { 4031 // Safe because a-b === b-a for comparisons against zero. 4032 std::swap(LHS, RHS); 4033 std::swap(LHSA, RHSA); 4034 } 4035 4036 // Handle the case when only one is advancing in a non-overflowing way. 4037 if (RHSA == 0) { 4038 // If RHS is loop varying, then we can't predict when LHS will cross it. 4039 if (!SE.isLoopInvariant(RHS, L)) 4040 return SE.getMinusSCEV(LHS, RHS); 4041 4042 // If LHS has a positive stride, then we compute RHS-LHS, because the loop 4043 // is counting up until it crosses RHS (which must be larger than LHS). If 4044 // it is negative, we compute LHS-RHS because we're counting down to RHS. 4045 const ConstantInt *Stride = 4046 cast<SCEVConstant>(LHSA->getOperand(1))->getValue(); 4047 if (Stride->getValue().isNegative()) 4048 std::swap(LHS, RHS); 4049 4050 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/); 4051 } 4052 4053 // If both LHS and RHS are interesting, we have something like: 4054 // a+i*4 != b+i*8. 4055 const ConstantInt *LHSStride = 4056 cast<SCEVConstant>(LHSA->getOperand(1))->getValue(); 4057 const ConstantInt *RHSStride = 4058 cast<SCEVConstant>(RHSA->getOperand(1))->getValue(); 4059 4060 // If the strides are equal, then this is just a (complex) loop invariant 4061 // comparison of a and b. 4062 if (LHSStride == RHSStride) 4063 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart()); 4064 4065 // If the signs of the strides differ, then the negative stride is counting 4066 // down to the positive stride. 4067 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){ 4068 if (RHSStride->getValue().isNegative()) 4069 std::swap(LHS, RHS); 4070 } else { 4071 // If LHS's stride is smaller than RHS's stride, then "b" must be less than 4072 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true 4073 // whether the strides are positive or negative. 4074 if (RHSStride->getValue().slt(LHSStride->getValue())) 4075 std::swap(LHS, RHS); 4076 } 4077 4078 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/); 4079 } 4080 4081 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 4082 /// backedge of the specified loop will execute if its exit condition 4083 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4084 ScalarEvolution::BackedgeTakenInfo 4085 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 4086 ICmpInst *ExitCond, 4087 BasicBlock *TBB, 4088 BasicBlock *FBB) { 4089 4090 // If the condition was exit on true, convert the condition to exit on false 4091 ICmpInst::Predicate Cond; 4092 if (!L->contains(FBB)) 4093 Cond = ExitCond->getPredicate(); 4094 else 4095 Cond = ExitCond->getInversePredicate(); 4096 4097 // Handle common loops like: for (X = "string"; *X; ++X) 4098 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4099 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4100 BackedgeTakenInfo ItCnt = 4101 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 4102 if (ItCnt.hasAnyInfo()) 4103 return ItCnt; 4104 } 4105 4106 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4107 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4108 4109 // Try to evaluate any dependencies out of the loop. 4110 LHS = getSCEVAtScope(LHS, L); 4111 RHS = getSCEVAtScope(RHS, L); 4112 4113 // At this point, we would like to compute how many iterations of the 4114 // loop the predicate will return true for these inputs. 4115 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4116 // If there is a loop-invariant, force it into the RHS. 4117 std::swap(LHS, RHS); 4118 Cond = ICmpInst::getSwappedPredicate(Cond); 4119 } 4120 4121 // Simplify the operands before analyzing them. 4122 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4123 4124 // If we have a comparison of a chrec against a constant, try to use value 4125 // ranges to answer this query. 4126 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4127 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4128 if (AddRec->getLoop() == L) { 4129 // Form the constant range. 4130 ConstantRange CompRange( 4131 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4132 4133 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4134 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4135 } 4136 4137 switch (Cond) { 4138 case ICmpInst::ICMP_NE: { // while (X != Y) 4139 // Convert to: while (X-Y != 0) 4140 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L, 4141 *this), L); 4142 if (BTI.hasAnyInfo()) return BTI; 4143 break; 4144 } 4145 case ICmpInst::ICMP_EQ: { // while (X == Y) 4146 // Convert to: while (X-Y == 0) 4147 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4148 if (BTI.hasAnyInfo()) return BTI; 4149 break; 4150 } 4151 case ICmpInst::ICMP_SLT: { 4152 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 4153 if (BTI.hasAnyInfo()) return BTI; 4154 break; 4155 } 4156 case ICmpInst::ICMP_SGT: { 4157 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4158 getNotSCEV(RHS), L, true); 4159 if (BTI.hasAnyInfo()) return BTI; 4160 break; 4161 } 4162 case ICmpInst::ICMP_ULT: { 4163 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 4164 if (BTI.hasAnyInfo()) return BTI; 4165 break; 4166 } 4167 case ICmpInst::ICMP_UGT: { 4168 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 4169 getNotSCEV(RHS), L, false); 4170 if (BTI.hasAnyInfo()) return BTI; 4171 break; 4172 } 4173 default: 4174 #if 0 4175 dbgs() << "ComputeBackedgeTakenCount "; 4176 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4177 dbgs() << "[unsigned] "; 4178 dbgs() << *LHS << " " 4179 << Instruction::getOpcodeName(Instruction::ICmp) 4180 << " " << *RHS << "\n"; 4181 #endif 4182 break; 4183 } 4184 return 4185 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4186 } 4187 4188 static ConstantInt * 4189 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4190 ScalarEvolution &SE) { 4191 const SCEV *InVal = SE.getConstant(C); 4192 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4193 assert(isa<SCEVConstant>(Val) && 4194 "Evaluation of SCEV at constant didn't fold correctly?"); 4195 return cast<SCEVConstant>(Val)->getValue(); 4196 } 4197 4198 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4199 /// and a GEP expression (missing the pointer index) indexing into it, return 4200 /// the addressed element of the initializer or null if the index expression is 4201 /// invalid. 4202 static Constant * 4203 GetAddressedElementFromGlobal(GlobalVariable *GV, 4204 const std::vector<ConstantInt*> &Indices) { 4205 Constant *Init = GV->getInitializer(); 4206 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4207 uint64_t Idx = Indices[i]->getZExtValue(); 4208 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4209 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4210 Init = cast<Constant>(CS->getOperand(Idx)); 4211 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4212 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4213 Init = cast<Constant>(CA->getOperand(Idx)); 4214 } else if (isa<ConstantAggregateZero>(Init)) { 4215 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4216 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4217 Init = Constant::getNullValue(STy->getElementType(Idx)); 4218 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4219 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4220 Init = Constant::getNullValue(ATy->getElementType()); 4221 } else { 4222 llvm_unreachable("Unknown constant aggregate type!"); 4223 } 4224 return 0; 4225 } else { 4226 return 0; // Unknown initializer type 4227 } 4228 } 4229 return Init; 4230 } 4231 4232 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4233 /// 'icmp op load X, cst', try to see if we can compute the backedge 4234 /// execution count. 4235 ScalarEvolution::BackedgeTakenInfo 4236 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4237 LoadInst *LI, 4238 Constant *RHS, 4239 const Loop *L, 4240 ICmpInst::Predicate predicate) { 4241 if (LI->isVolatile()) return getCouldNotCompute(); 4242 4243 // Check to see if the loaded pointer is a getelementptr of a global. 4244 // TODO: Use SCEV instead of manually grubbing with GEPs. 4245 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4246 if (!GEP) return getCouldNotCompute(); 4247 4248 // Make sure that it is really a constant global we are gepping, with an 4249 // initializer, and make sure the first IDX is really 0. 4250 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4251 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4252 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4253 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4254 return getCouldNotCompute(); 4255 4256 // Okay, we allow one non-constant index into the GEP instruction. 4257 Value *VarIdx = 0; 4258 std::vector<ConstantInt*> Indexes; 4259 unsigned VarIdxNum = 0; 4260 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4261 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4262 Indexes.push_back(CI); 4263 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4264 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4265 VarIdx = GEP->getOperand(i); 4266 VarIdxNum = i-2; 4267 Indexes.push_back(0); 4268 } 4269 4270 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4271 // Check to see if X is a loop variant variable value now. 4272 const SCEV *Idx = getSCEV(VarIdx); 4273 Idx = getSCEVAtScope(Idx, L); 4274 4275 // We can only recognize very limited forms of loop index expressions, in 4276 // particular, only affine AddRec's like {C1,+,C2}. 4277 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4278 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4279 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4280 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4281 return getCouldNotCompute(); 4282 4283 unsigned MaxSteps = MaxBruteForceIterations; 4284 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4285 ConstantInt *ItCst = ConstantInt::get( 4286 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4287 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4288 4289 // Form the GEP offset. 4290 Indexes[VarIdxNum] = Val; 4291 4292 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4293 if (Result == 0) break; // Cannot compute! 4294 4295 // Evaluate the condition for this iteration. 4296 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4297 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4298 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4299 #if 0 4300 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4301 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4302 << "***\n"; 4303 #endif 4304 ++NumArrayLenItCounts; 4305 return getConstant(ItCst); // Found terminating iteration! 4306 } 4307 } 4308 return getCouldNotCompute(); 4309 } 4310 4311 4312 /// CanConstantFold - Return true if we can constant fold an instruction of the 4313 /// specified type, assuming that all operands were constants. 4314 static bool CanConstantFold(const Instruction *I) { 4315 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4316 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4317 return true; 4318 4319 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4320 if (const Function *F = CI->getCalledFunction()) 4321 return canConstantFoldCallTo(F); 4322 return false; 4323 } 4324 4325 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4326 /// in the loop that V is derived from. We allow arbitrary operations along the 4327 /// way, but the operands of an operation must either be constants or a value 4328 /// derived from a constant PHI. If this expression does not fit with these 4329 /// constraints, return null. 4330 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4331 // If this is not an instruction, or if this is an instruction outside of the 4332 // loop, it can't be derived from a loop PHI. 4333 Instruction *I = dyn_cast<Instruction>(V); 4334 if (I == 0 || !L->contains(I)) return 0; 4335 4336 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4337 if (L->getHeader() == I->getParent()) 4338 return PN; 4339 else 4340 // We don't currently keep track of the control flow needed to evaluate 4341 // PHIs, so we cannot handle PHIs inside of loops. 4342 return 0; 4343 } 4344 4345 // If we won't be able to constant fold this expression even if the operands 4346 // are constants, return early. 4347 if (!CanConstantFold(I)) return 0; 4348 4349 // Otherwise, we can evaluate this instruction if all of its operands are 4350 // constant or derived from a PHI node themselves. 4351 PHINode *PHI = 0; 4352 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4353 if (!isa<Constant>(I->getOperand(Op))) { 4354 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4355 if (P == 0) return 0; // Not evolving from PHI 4356 if (PHI == 0) 4357 PHI = P; 4358 else if (PHI != P) 4359 return 0; // Evolving from multiple different PHIs. 4360 } 4361 4362 // This is a expression evolving from a constant PHI! 4363 return PHI; 4364 } 4365 4366 /// EvaluateExpression - Given an expression that passes the 4367 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4368 /// in the loop has the value PHIVal. If we can't fold this expression for some 4369 /// reason, return null. 4370 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4371 const TargetData *TD) { 4372 if (isa<PHINode>(V)) return PHIVal; 4373 if (Constant *C = dyn_cast<Constant>(V)) return C; 4374 Instruction *I = cast<Instruction>(V); 4375 4376 std::vector<Constant*> Operands(I->getNumOperands()); 4377 4378 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4379 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4380 if (Operands[i] == 0) return 0; 4381 } 4382 4383 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4384 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4385 Operands[1], TD); 4386 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4387 &Operands[0], Operands.size(), TD); 4388 } 4389 4390 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4391 /// in the header of its containing loop, we know the loop executes a 4392 /// constant number of times, and the PHI node is just a recurrence 4393 /// involving constants, fold it. 4394 Constant * 4395 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4396 const APInt &BEs, 4397 const Loop *L) { 4398 std::map<PHINode*, Constant*>::const_iterator I = 4399 ConstantEvolutionLoopExitValue.find(PN); 4400 if (I != ConstantEvolutionLoopExitValue.end()) 4401 return I->second; 4402 4403 if (BEs.ugt(MaxBruteForceIterations)) 4404 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4405 4406 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4407 4408 // Since the loop is canonicalized, the PHI node must have two entries. One 4409 // entry must be a constant (coming in from outside of the loop), and the 4410 // second must be derived from the same PHI. 4411 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4412 Constant *StartCST = 4413 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4414 if (StartCST == 0) 4415 return RetVal = 0; // Must be a constant. 4416 4417 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4418 if (getConstantEvolvingPHI(BEValue, L) != PN && 4419 !isa<Constant>(BEValue)) 4420 return RetVal = 0; // Not derived from same PHI. 4421 4422 // Execute the loop symbolically to determine the exit value. 4423 if (BEs.getActiveBits() >= 32) 4424 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4425 4426 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4427 unsigned IterationNum = 0; 4428 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4429 if (IterationNum == NumIterations) 4430 return RetVal = PHIVal; // Got exit value! 4431 4432 // Compute the value of the PHI node for the next iteration. 4433 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4434 if (NextPHI == PHIVal) 4435 return RetVal = NextPHI; // Stopped evolving! 4436 if (NextPHI == 0) 4437 return 0; // Couldn't evaluate! 4438 PHIVal = NextPHI; 4439 } 4440 } 4441 4442 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4443 /// constant number of times (the condition evolves only from constants), 4444 /// try to evaluate a few iterations of the loop until we get the exit 4445 /// condition gets a value of ExitWhen (true or false). If we cannot 4446 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4447 const SCEV * 4448 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4449 Value *Cond, 4450 bool ExitWhen) { 4451 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4452 if (PN == 0) return getCouldNotCompute(); 4453 4454 // If the loop is canonicalized, the PHI will have exactly two entries. 4455 // That's the only form we support here. 4456 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4457 4458 // One entry must be a constant (coming in from outside of the loop), and the 4459 // second must be derived from the same PHI. 4460 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4461 Constant *StartCST = 4462 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4463 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4464 4465 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4466 if (getConstantEvolvingPHI(BEValue, L) != PN && 4467 !isa<Constant>(BEValue)) 4468 return getCouldNotCompute(); // Not derived from same PHI. 4469 4470 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4471 // the loop symbolically to determine when the condition gets a value of 4472 // "ExitWhen". 4473 unsigned IterationNum = 0; 4474 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4475 for (Constant *PHIVal = StartCST; 4476 IterationNum != MaxIterations; ++IterationNum) { 4477 ConstantInt *CondVal = 4478 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4479 4480 // Couldn't symbolically evaluate. 4481 if (!CondVal) return getCouldNotCompute(); 4482 4483 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4484 ++NumBruteForceTripCountsComputed; 4485 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4486 } 4487 4488 // Compute the value of the PHI node for the next iteration. 4489 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4490 if (NextPHI == 0 || NextPHI == PHIVal) 4491 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4492 PHIVal = NextPHI; 4493 } 4494 4495 // Too many iterations were needed to evaluate. 4496 return getCouldNotCompute(); 4497 } 4498 4499 /// getSCEVAtScope - Return a SCEV expression for the specified value 4500 /// at the specified scope in the program. The L value specifies a loop 4501 /// nest to evaluate the expression at, where null is the top-level or a 4502 /// specified loop is immediately inside of the loop. 4503 /// 4504 /// This method can be used to compute the exit value for a variable defined 4505 /// in a loop by querying what the value will hold in the parent loop. 4506 /// 4507 /// In the case that a relevant loop exit value cannot be computed, the 4508 /// original value V is returned. 4509 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4510 // Check to see if we've folded this expression at this loop before. 4511 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4512 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4513 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4514 if (!Pair.second) 4515 return Pair.first->second ? Pair.first->second : V; 4516 4517 // Otherwise compute it. 4518 const SCEV *C = computeSCEVAtScope(V, L); 4519 ValuesAtScopes[V][L] = C; 4520 return C; 4521 } 4522 4523 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4524 if (isa<SCEVConstant>(V)) return V; 4525 4526 // If this instruction is evolved from a constant-evolving PHI, compute the 4527 // exit value from the loop without using SCEVs. 4528 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4529 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4530 const Loop *LI = (*this->LI)[I->getParent()]; 4531 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4532 if (PHINode *PN = dyn_cast<PHINode>(I)) 4533 if (PN->getParent() == LI->getHeader()) { 4534 // Okay, there is no closed form solution for the PHI node. Check 4535 // to see if the loop that contains it has a known backedge-taken 4536 // count. If so, we may be able to force computation of the exit 4537 // value. 4538 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4539 if (const SCEVConstant *BTCC = 4540 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4541 // Okay, we know how many times the containing loop executes. If 4542 // this is a constant evolving PHI node, get the final value at 4543 // the specified iteration number. 4544 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4545 BTCC->getValue()->getValue(), 4546 LI); 4547 if (RV) return getSCEV(RV); 4548 } 4549 } 4550 4551 // Okay, this is an expression that we cannot symbolically evaluate 4552 // into a SCEV. Check to see if it's possible to symbolically evaluate 4553 // the arguments into constants, and if so, try to constant propagate the 4554 // result. This is particularly useful for computing loop exit values. 4555 if (CanConstantFold(I)) { 4556 SmallVector<Constant *, 4> Operands; 4557 bool MadeImprovement = false; 4558 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4559 Value *Op = I->getOperand(i); 4560 if (Constant *C = dyn_cast<Constant>(Op)) { 4561 Operands.push_back(C); 4562 continue; 4563 } 4564 4565 // If any of the operands is non-constant and if they are 4566 // non-integer and non-pointer, don't even try to analyze them 4567 // with scev techniques. 4568 if (!isSCEVable(Op->getType())) 4569 return V; 4570 4571 const SCEV *OrigV = getSCEV(Op); 4572 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4573 MadeImprovement |= OrigV != OpV; 4574 4575 Constant *C = 0; 4576 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4577 C = SC->getValue(); 4578 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4579 C = dyn_cast<Constant>(SU->getValue()); 4580 if (!C) return V; 4581 if (C->getType() != Op->getType()) 4582 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4583 Op->getType(), 4584 false), 4585 C, Op->getType()); 4586 Operands.push_back(C); 4587 } 4588 4589 // Check to see if getSCEVAtScope actually made an improvement. 4590 if (MadeImprovement) { 4591 Constant *C = 0; 4592 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4593 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4594 Operands[0], Operands[1], TD); 4595 else 4596 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4597 &Operands[0], Operands.size(), TD); 4598 if (!C) return V; 4599 return getSCEV(C); 4600 } 4601 } 4602 } 4603 4604 // This is some other type of SCEVUnknown, just return it. 4605 return V; 4606 } 4607 4608 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4609 // Avoid performing the look-up in the common case where the specified 4610 // expression has no loop-variant portions. 4611 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4612 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4613 if (OpAtScope != Comm->getOperand(i)) { 4614 // Okay, at least one of these operands is loop variant but might be 4615 // foldable. Build a new instance of the folded commutative expression. 4616 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4617 Comm->op_begin()+i); 4618 NewOps.push_back(OpAtScope); 4619 4620 for (++i; i != e; ++i) { 4621 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4622 NewOps.push_back(OpAtScope); 4623 } 4624 if (isa<SCEVAddExpr>(Comm)) 4625 return getAddExpr(NewOps); 4626 if (isa<SCEVMulExpr>(Comm)) 4627 return getMulExpr(NewOps); 4628 if (isa<SCEVSMaxExpr>(Comm)) 4629 return getSMaxExpr(NewOps); 4630 if (isa<SCEVUMaxExpr>(Comm)) 4631 return getUMaxExpr(NewOps); 4632 llvm_unreachable("Unknown commutative SCEV type!"); 4633 } 4634 } 4635 // If we got here, all operands are loop invariant. 4636 return Comm; 4637 } 4638 4639 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4640 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4641 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4642 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4643 return Div; // must be loop invariant 4644 return getUDivExpr(LHS, RHS); 4645 } 4646 4647 // If this is a loop recurrence for a loop that does not contain L, then we 4648 // are dealing with the final value computed by the loop. 4649 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4650 // First, attempt to evaluate each operand. 4651 // Avoid performing the look-up in the common case where the specified 4652 // expression has no loop-variant portions. 4653 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4654 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4655 if (OpAtScope == AddRec->getOperand(i)) 4656 continue; 4657 4658 // Okay, at least one of these operands is loop variant but might be 4659 // foldable. Build a new instance of the folded commutative expression. 4660 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4661 AddRec->op_begin()+i); 4662 NewOps.push_back(OpAtScope); 4663 for (++i; i != e; ++i) 4664 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4665 4666 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4667 break; 4668 } 4669 4670 // If the scope is outside the addrec's loop, evaluate it by using the 4671 // loop exit value of the addrec. 4672 if (!AddRec->getLoop()->contains(L)) { 4673 // To evaluate this recurrence, we need to know how many times the AddRec 4674 // loop iterates. Compute this now. 4675 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4676 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4677 4678 // Then, evaluate the AddRec. 4679 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4680 } 4681 4682 return AddRec; 4683 } 4684 4685 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4686 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4687 if (Op == Cast->getOperand()) 4688 return Cast; // must be loop invariant 4689 return getZeroExtendExpr(Op, Cast->getType()); 4690 } 4691 4692 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4693 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4694 if (Op == Cast->getOperand()) 4695 return Cast; // must be loop invariant 4696 return getSignExtendExpr(Op, Cast->getType()); 4697 } 4698 4699 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4700 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4701 if (Op == Cast->getOperand()) 4702 return Cast; // must be loop invariant 4703 return getTruncateExpr(Op, Cast->getType()); 4704 } 4705 4706 llvm_unreachable("Unknown SCEV type!"); 4707 return 0; 4708 } 4709 4710 /// getSCEVAtScope - This is a convenience function which does 4711 /// getSCEVAtScope(getSCEV(V), L). 4712 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4713 return getSCEVAtScope(getSCEV(V), L); 4714 } 4715 4716 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4717 /// following equation: 4718 /// 4719 /// A * X = B (mod N) 4720 /// 4721 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4722 /// A and B isn't important. 4723 /// 4724 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4725 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4726 ScalarEvolution &SE) { 4727 uint32_t BW = A.getBitWidth(); 4728 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4729 assert(A != 0 && "A must be non-zero."); 4730 4731 // 1. D = gcd(A, N) 4732 // 4733 // The gcd of A and N may have only one prime factor: 2. The number of 4734 // trailing zeros in A is its multiplicity 4735 uint32_t Mult2 = A.countTrailingZeros(); 4736 // D = 2^Mult2 4737 4738 // 2. Check if B is divisible by D. 4739 // 4740 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4741 // is not less than multiplicity of this prime factor for D. 4742 if (B.countTrailingZeros() < Mult2) 4743 return SE.getCouldNotCompute(); 4744 4745 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4746 // modulo (N / D). 4747 // 4748 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4749 // bit width during computations. 4750 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4751 APInt Mod(BW + 1, 0); 4752 Mod.setBit(BW - Mult2); // Mod = N / D 4753 APInt I = AD.multiplicativeInverse(Mod); 4754 4755 // 4. Compute the minimum unsigned root of the equation: 4756 // I * (B / D) mod (N / D) 4757 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4758 4759 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4760 // bits. 4761 return SE.getConstant(Result.trunc(BW)); 4762 } 4763 4764 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4765 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4766 /// might be the same) or two SCEVCouldNotCompute objects. 4767 /// 4768 static std::pair<const SCEV *,const SCEV *> 4769 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4770 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4771 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4772 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4773 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4774 4775 // We currently can only solve this if the coefficients are constants. 4776 if (!LC || !MC || !NC) { 4777 const SCEV *CNC = SE.getCouldNotCompute(); 4778 return std::make_pair(CNC, CNC); 4779 } 4780 4781 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4782 const APInt &L = LC->getValue()->getValue(); 4783 const APInt &M = MC->getValue()->getValue(); 4784 const APInt &N = NC->getValue()->getValue(); 4785 APInt Two(BitWidth, 2); 4786 APInt Four(BitWidth, 4); 4787 4788 { 4789 using namespace APIntOps; 4790 const APInt& C = L; 4791 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4792 // The B coefficient is M-N/2 4793 APInt B(M); 4794 B -= sdiv(N,Two); 4795 4796 // The A coefficient is N/2 4797 APInt A(N.sdiv(Two)); 4798 4799 // Compute the B^2-4ac term. 4800 APInt SqrtTerm(B); 4801 SqrtTerm *= B; 4802 SqrtTerm -= Four * (A * C); 4803 4804 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4805 // integer value or else APInt::sqrt() will assert. 4806 APInt SqrtVal(SqrtTerm.sqrt()); 4807 4808 // Compute the two solutions for the quadratic formula. 4809 // The divisions must be performed as signed divisions. 4810 APInt NegB(-B); 4811 APInt TwoA( A << 1 ); 4812 if (TwoA.isMinValue()) { 4813 const SCEV *CNC = SE.getCouldNotCompute(); 4814 return std::make_pair(CNC, CNC); 4815 } 4816 4817 LLVMContext &Context = SE.getContext(); 4818 4819 ConstantInt *Solution1 = 4820 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4821 ConstantInt *Solution2 = 4822 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4823 4824 return std::make_pair(SE.getConstant(Solution1), 4825 SE.getConstant(Solution2)); 4826 } // end APIntOps namespace 4827 } 4828 4829 /// HowFarToZero - Return the number of times a backedge comparing the specified 4830 /// value to zero will execute. If not computable, return CouldNotCompute. 4831 ScalarEvolution::BackedgeTakenInfo 4832 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4833 // If the value is a constant 4834 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4835 // If the value is already zero, the branch will execute zero times. 4836 if (C->getValue()->isZero()) return C; 4837 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4838 } 4839 4840 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4841 if (!AddRec || AddRec->getLoop() != L) 4842 return getCouldNotCompute(); 4843 4844 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4845 // the quadratic equation to solve it. 4846 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4847 std::pair<const SCEV *,const SCEV *> Roots = 4848 SolveQuadraticEquation(AddRec, *this); 4849 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4850 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4851 if (R1 && R2) { 4852 #if 0 4853 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4854 << " sol#2: " << *R2 << "\n"; 4855 #endif 4856 // Pick the smallest positive root value. 4857 if (ConstantInt *CB = 4858 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 4859 R1->getValue(), 4860 R2->getValue()))) { 4861 if (CB->getZExtValue() == false) 4862 std::swap(R1, R2); // R1 is the minimum root now. 4863 4864 // We can only use this value if the chrec ends up with an exact zero 4865 // value at this index. When solving for "X*X != 5", for example, we 4866 // should not accept a root of 2. 4867 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4868 if (Val->isZero()) 4869 return R1; // We found a quadratic root! 4870 } 4871 } 4872 return getCouldNotCompute(); 4873 } 4874 4875 // Otherwise we can only handle this if it is affine. 4876 if (!AddRec->isAffine()) 4877 return getCouldNotCompute(); 4878 4879 // If this is an affine expression, the execution count of this branch is 4880 // the minimum unsigned root of the following equation: 4881 // 4882 // Start + Step*N = 0 (mod 2^BW) 4883 // 4884 // equivalent to: 4885 // 4886 // Step*N = -Start (mod 2^BW) 4887 // 4888 // where BW is the common bit width of Start and Step. 4889 4890 // Get the initial value for the loop. 4891 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 4892 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 4893 4894 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up 4895 // to wrap to 0, it must be counting down to equal 0. Also, while counting 4896 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what 4897 // the stride is. As such, NUW addrec's will always become zero in 4898 // "start / -stride" steps, and we know that the division is exact. 4899 if (AddRec->hasNoUnsignedWrap()) 4900 // FIXME: We really want an "isexact" bit for udiv. 4901 return getUDivExpr(Start, getNegativeSCEV(Step)); 4902 4903 // For now we handle only constant steps. 4904 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 4905 if (StepC == 0) 4906 return getCouldNotCompute(); 4907 4908 // First, handle unitary steps. 4909 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4910 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4911 4912 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4913 return Start; // N = Start (as unsigned) 4914 4915 // Then, try to solve the above equation provided that Start is constant. 4916 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4917 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4918 -StartC->getValue()->getValue(), 4919 *this); 4920 return getCouldNotCompute(); 4921 } 4922 4923 /// HowFarToNonZero - Return the number of times a backedge checking the 4924 /// specified value for nonzero will execute. If not computable, return 4925 /// CouldNotCompute 4926 ScalarEvolution::BackedgeTakenInfo 4927 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4928 // Loops that look like: while (X == 0) are very strange indeed. We don't 4929 // handle them yet except for the trivial case. This could be expanded in the 4930 // future as needed. 4931 4932 // If the value is a constant, check to see if it is known to be non-zero 4933 // already. If so, the backedge will execute zero times. 4934 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4935 if (!C->getValue()->isNullValue()) 4936 return getConstant(C->getType(), 0); 4937 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4938 } 4939 4940 // We could implement others, but I really doubt anyone writes loops like 4941 // this, and if they did, they would already be constant folded. 4942 return getCouldNotCompute(); 4943 } 4944 4945 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4946 /// (which may not be an immediate predecessor) which has exactly one 4947 /// successor from which BB is reachable, or null if no such block is 4948 /// found. 4949 /// 4950 std::pair<BasicBlock *, BasicBlock *> 4951 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4952 // If the block has a unique predecessor, then there is no path from the 4953 // predecessor to the block that does not go through the direct edge 4954 // from the predecessor to the block. 4955 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4956 return std::make_pair(Pred, BB); 4957 4958 // A loop's header is defined to be a block that dominates the loop. 4959 // If the header has a unique predecessor outside the loop, it must be 4960 // a block that has exactly one successor that can reach the loop. 4961 if (Loop *L = LI->getLoopFor(BB)) 4962 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4963 4964 return std::pair<BasicBlock *, BasicBlock *>(); 4965 } 4966 4967 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4968 /// testing whether two expressions are equal, however for the purposes of 4969 /// looking for a condition guarding a loop, it can be useful to be a little 4970 /// more general, since a front-end may have replicated the controlling 4971 /// expression. 4972 /// 4973 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4974 // Quick check to see if they are the same SCEV. 4975 if (A == B) return true; 4976 4977 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4978 // two different instructions with the same value. Check for this case. 4979 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4980 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4981 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4982 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4983 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4984 return true; 4985 4986 // Otherwise assume they may have a different value. 4987 return false; 4988 } 4989 4990 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4991 /// predicate Pred. Return true iff any changes were made. 4992 /// 4993 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4994 const SCEV *&LHS, const SCEV *&RHS) { 4995 bool Changed = false; 4996 4997 // Canonicalize a constant to the right side. 4998 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4999 // Check for both operands constant. 5000 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5001 if (ConstantExpr::getICmp(Pred, 5002 LHSC->getValue(), 5003 RHSC->getValue())->isNullValue()) 5004 goto trivially_false; 5005 else 5006 goto trivially_true; 5007 } 5008 // Otherwise swap the operands to put the constant on the right. 5009 std::swap(LHS, RHS); 5010 Pred = ICmpInst::getSwappedPredicate(Pred); 5011 Changed = true; 5012 } 5013 5014 // If we're comparing an addrec with a value which is loop-invariant in the 5015 // addrec's loop, put the addrec on the left. Also make a dominance check, 5016 // as both operands could be addrecs loop-invariant in each other's loop. 5017 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5018 const Loop *L = AR->getLoop(); 5019 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5020 std::swap(LHS, RHS); 5021 Pred = ICmpInst::getSwappedPredicate(Pred); 5022 Changed = true; 5023 } 5024 } 5025 5026 // If there's a constant operand, canonicalize comparisons with boundary 5027 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5028 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5029 const APInt &RA = RC->getValue()->getValue(); 5030 switch (Pred) { 5031 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5032 case ICmpInst::ICMP_EQ: 5033 case ICmpInst::ICMP_NE: 5034 break; 5035 case ICmpInst::ICMP_UGE: 5036 if ((RA - 1).isMinValue()) { 5037 Pred = ICmpInst::ICMP_NE; 5038 RHS = getConstant(RA - 1); 5039 Changed = true; 5040 break; 5041 } 5042 if (RA.isMaxValue()) { 5043 Pred = ICmpInst::ICMP_EQ; 5044 Changed = true; 5045 break; 5046 } 5047 if (RA.isMinValue()) goto trivially_true; 5048 5049 Pred = ICmpInst::ICMP_UGT; 5050 RHS = getConstant(RA - 1); 5051 Changed = true; 5052 break; 5053 case ICmpInst::ICMP_ULE: 5054 if ((RA + 1).isMaxValue()) { 5055 Pred = ICmpInst::ICMP_NE; 5056 RHS = getConstant(RA + 1); 5057 Changed = true; 5058 break; 5059 } 5060 if (RA.isMinValue()) { 5061 Pred = ICmpInst::ICMP_EQ; 5062 Changed = true; 5063 break; 5064 } 5065 if (RA.isMaxValue()) goto trivially_true; 5066 5067 Pred = ICmpInst::ICMP_ULT; 5068 RHS = getConstant(RA + 1); 5069 Changed = true; 5070 break; 5071 case ICmpInst::ICMP_SGE: 5072 if ((RA - 1).isMinSignedValue()) { 5073 Pred = ICmpInst::ICMP_NE; 5074 RHS = getConstant(RA - 1); 5075 Changed = true; 5076 break; 5077 } 5078 if (RA.isMaxSignedValue()) { 5079 Pred = ICmpInst::ICMP_EQ; 5080 Changed = true; 5081 break; 5082 } 5083 if (RA.isMinSignedValue()) goto trivially_true; 5084 5085 Pred = ICmpInst::ICMP_SGT; 5086 RHS = getConstant(RA - 1); 5087 Changed = true; 5088 break; 5089 case ICmpInst::ICMP_SLE: 5090 if ((RA + 1).isMaxSignedValue()) { 5091 Pred = ICmpInst::ICMP_NE; 5092 RHS = getConstant(RA + 1); 5093 Changed = true; 5094 break; 5095 } 5096 if (RA.isMinSignedValue()) { 5097 Pred = ICmpInst::ICMP_EQ; 5098 Changed = true; 5099 break; 5100 } 5101 if (RA.isMaxSignedValue()) goto trivially_true; 5102 5103 Pred = ICmpInst::ICMP_SLT; 5104 RHS = getConstant(RA + 1); 5105 Changed = true; 5106 break; 5107 case ICmpInst::ICMP_UGT: 5108 if (RA.isMinValue()) { 5109 Pred = ICmpInst::ICMP_NE; 5110 Changed = true; 5111 break; 5112 } 5113 if ((RA + 1).isMaxValue()) { 5114 Pred = ICmpInst::ICMP_EQ; 5115 RHS = getConstant(RA + 1); 5116 Changed = true; 5117 break; 5118 } 5119 if (RA.isMaxValue()) goto trivially_false; 5120 break; 5121 case ICmpInst::ICMP_ULT: 5122 if (RA.isMaxValue()) { 5123 Pred = ICmpInst::ICMP_NE; 5124 Changed = true; 5125 break; 5126 } 5127 if ((RA - 1).isMinValue()) { 5128 Pred = ICmpInst::ICMP_EQ; 5129 RHS = getConstant(RA - 1); 5130 Changed = true; 5131 break; 5132 } 5133 if (RA.isMinValue()) goto trivially_false; 5134 break; 5135 case ICmpInst::ICMP_SGT: 5136 if (RA.isMinSignedValue()) { 5137 Pred = ICmpInst::ICMP_NE; 5138 Changed = true; 5139 break; 5140 } 5141 if ((RA + 1).isMaxSignedValue()) { 5142 Pred = ICmpInst::ICMP_EQ; 5143 RHS = getConstant(RA + 1); 5144 Changed = true; 5145 break; 5146 } 5147 if (RA.isMaxSignedValue()) goto trivially_false; 5148 break; 5149 case ICmpInst::ICMP_SLT: 5150 if (RA.isMaxSignedValue()) { 5151 Pred = ICmpInst::ICMP_NE; 5152 Changed = true; 5153 break; 5154 } 5155 if ((RA - 1).isMinSignedValue()) { 5156 Pred = ICmpInst::ICMP_EQ; 5157 RHS = getConstant(RA - 1); 5158 Changed = true; 5159 break; 5160 } 5161 if (RA.isMinSignedValue()) goto trivially_false; 5162 break; 5163 } 5164 } 5165 5166 // Check for obvious equality. 5167 if (HasSameValue(LHS, RHS)) { 5168 if (ICmpInst::isTrueWhenEqual(Pred)) 5169 goto trivially_true; 5170 if (ICmpInst::isFalseWhenEqual(Pred)) 5171 goto trivially_false; 5172 } 5173 5174 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5175 // adding or subtracting 1 from one of the operands. 5176 switch (Pred) { 5177 case ICmpInst::ICMP_SLE: 5178 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5179 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5180 /*HasNUW=*/false, /*HasNSW=*/true); 5181 Pred = ICmpInst::ICMP_SLT; 5182 Changed = true; 5183 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5184 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5185 /*HasNUW=*/false, /*HasNSW=*/true); 5186 Pred = ICmpInst::ICMP_SLT; 5187 Changed = true; 5188 } 5189 break; 5190 case ICmpInst::ICMP_SGE: 5191 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5192 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5193 /*HasNUW=*/false, /*HasNSW=*/true); 5194 Pred = ICmpInst::ICMP_SGT; 5195 Changed = true; 5196 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5197 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5198 /*HasNUW=*/false, /*HasNSW=*/true); 5199 Pred = ICmpInst::ICMP_SGT; 5200 Changed = true; 5201 } 5202 break; 5203 case ICmpInst::ICMP_ULE: 5204 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5205 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5206 /*HasNUW=*/true, /*HasNSW=*/false); 5207 Pred = ICmpInst::ICMP_ULT; 5208 Changed = true; 5209 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5210 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5211 /*HasNUW=*/true, /*HasNSW=*/false); 5212 Pred = ICmpInst::ICMP_ULT; 5213 Changed = true; 5214 } 5215 break; 5216 case ICmpInst::ICMP_UGE: 5217 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5218 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5219 /*HasNUW=*/true, /*HasNSW=*/false); 5220 Pred = ICmpInst::ICMP_UGT; 5221 Changed = true; 5222 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5223 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5224 /*HasNUW=*/true, /*HasNSW=*/false); 5225 Pred = ICmpInst::ICMP_UGT; 5226 Changed = true; 5227 } 5228 break; 5229 default: 5230 break; 5231 } 5232 5233 // TODO: More simplifications are possible here. 5234 5235 return Changed; 5236 5237 trivially_true: 5238 // Return 0 == 0. 5239 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5240 Pred = ICmpInst::ICMP_EQ; 5241 return true; 5242 5243 trivially_false: 5244 // Return 0 != 0. 5245 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5246 Pred = ICmpInst::ICMP_NE; 5247 return true; 5248 } 5249 5250 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5251 return getSignedRange(S).getSignedMax().isNegative(); 5252 } 5253 5254 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5255 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5256 } 5257 5258 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5259 return !getSignedRange(S).getSignedMin().isNegative(); 5260 } 5261 5262 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5263 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5264 } 5265 5266 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5267 return isKnownNegative(S) || isKnownPositive(S); 5268 } 5269 5270 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5271 const SCEV *LHS, const SCEV *RHS) { 5272 // Canonicalize the inputs first. 5273 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5274 5275 // If LHS or RHS is an addrec, check to see if the condition is true in 5276 // every iteration of the loop. 5277 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5278 if (isLoopEntryGuardedByCond( 5279 AR->getLoop(), Pred, AR->getStart(), RHS) && 5280 isLoopBackedgeGuardedByCond( 5281 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5282 return true; 5283 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5284 if (isLoopEntryGuardedByCond( 5285 AR->getLoop(), Pred, LHS, AR->getStart()) && 5286 isLoopBackedgeGuardedByCond( 5287 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5288 return true; 5289 5290 // Otherwise see what can be done with known constant ranges. 5291 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5292 } 5293 5294 bool 5295 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5296 const SCEV *LHS, const SCEV *RHS) { 5297 if (HasSameValue(LHS, RHS)) 5298 return ICmpInst::isTrueWhenEqual(Pred); 5299 5300 // This code is split out from isKnownPredicate because it is called from 5301 // within isLoopEntryGuardedByCond. 5302 switch (Pred) { 5303 default: 5304 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5305 break; 5306 case ICmpInst::ICMP_SGT: 5307 Pred = ICmpInst::ICMP_SLT; 5308 std::swap(LHS, RHS); 5309 case ICmpInst::ICMP_SLT: { 5310 ConstantRange LHSRange = getSignedRange(LHS); 5311 ConstantRange RHSRange = getSignedRange(RHS); 5312 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5313 return true; 5314 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5315 return false; 5316 break; 5317 } 5318 case ICmpInst::ICMP_SGE: 5319 Pred = ICmpInst::ICMP_SLE; 5320 std::swap(LHS, RHS); 5321 case ICmpInst::ICMP_SLE: { 5322 ConstantRange LHSRange = getSignedRange(LHS); 5323 ConstantRange RHSRange = getSignedRange(RHS); 5324 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5325 return true; 5326 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5327 return false; 5328 break; 5329 } 5330 case ICmpInst::ICMP_UGT: 5331 Pred = ICmpInst::ICMP_ULT; 5332 std::swap(LHS, RHS); 5333 case ICmpInst::ICMP_ULT: { 5334 ConstantRange LHSRange = getUnsignedRange(LHS); 5335 ConstantRange RHSRange = getUnsignedRange(RHS); 5336 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5337 return true; 5338 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5339 return false; 5340 break; 5341 } 5342 case ICmpInst::ICMP_UGE: 5343 Pred = ICmpInst::ICMP_ULE; 5344 std::swap(LHS, RHS); 5345 case ICmpInst::ICMP_ULE: { 5346 ConstantRange LHSRange = getUnsignedRange(LHS); 5347 ConstantRange RHSRange = getUnsignedRange(RHS); 5348 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5349 return true; 5350 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5351 return false; 5352 break; 5353 } 5354 case ICmpInst::ICMP_NE: { 5355 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5356 return true; 5357 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5358 return true; 5359 5360 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5361 if (isKnownNonZero(Diff)) 5362 return true; 5363 break; 5364 } 5365 case ICmpInst::ICMP_EQ: 5366 // The check at the top of the function catches the case where 5367 // the values are known to be equal. 5368 break; 5369 } 5370 return false; 5371 } 5372 5373 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5374 /// protected by a conditional between LHS and RHS. This is used to 5375 /// to eliminate casts. 5376 bool 5377 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5378 ICmpInst::Predicate Pred, 5379 const SCEV *LHS, const SCEV *RHS) { 5380 // Interpret a null as meaning no loop, where there is obviously no guard 5381 // (interprocedural conditions notwithstanding). 5382 if (!L) return true; 5383 5384 BasicBlock *Latch = L->getLoopLatch(); 5385 if (!Latch) 5386 return false; 5387 5388 BranchInst *LoopContinuePredicate = 5389 dyn_cast<BranchInst>(Latch->getTerminator()); 5390 if (!LoopContinuePredicate || 5391 LoopContinuePredicate->isUnconditional()) 5392 return false; 5393 5394 return isImpliedCond(Pred, LHS, RHS, 5395 LoopContinuePredicate->getCondition(), 5396 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5397 } 5398 5399 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5400 /// by a conditional between LHS and RHS. This is used to help avoid max 5401 /// expressions in loop trip counts, and to eliminate casts. 5402 bool 5403 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5404 ICmpInst::Predicate Pred, 5405 const SCEV *LHS, const SCEV *RHS) { 5406 // Interpret a null as meaning no loop, where there is obviously no guard 5407 // (interprocedural conditions notwithstanding). 5408 if (!L) return false; 5409 5410 // Starting at the loop predecessor, climb up the predecessor chain, as long 5411 // as there are predecessors that can be found that have unique successors 5412 // leading to the original header. 5413 for (std::pair<BasicBlock *, BasicBlock *> 5414 Pair(L->getLoopPredecessor(), L->getHeader()); 5415 Pair.first; 5416 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5417 5418 BranchInst *LoopEntryPredicate = 5419 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5420 if (!LoopEntryPredicate || 5421 LoopEntryPredicate->isUnconditional()) 5422 continue; 5423 5424 if (isImpliedCond(Pred, LHS, RHS, 5425 LoopEntryPredicate->getCondition(), 5426 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5427 return true; 5428 } 5429 5430 return false; 5431 } 5432 5433 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5434 /// and RHS is true whenever the given Cond value evaluates to true. 5435 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5436 const SCEV *LHS, const SCEV *RHS, 5437 Value *FoundCondValue, 5438 bool Inverse) { 5439 // Recursively handle And and Or conditions. 5440 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5441 if (BO->getOpcode() == Instruction::And) { 5442 if (!Inverse) 5443 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5444 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5445 } else if (BO->getOpcode() == Instruction::Or) { 5446 if (Inverse) 5447 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5448 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5449 } 5450 } 5451 5452 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5453 if (!ICI) return false; 5454 5455 // Bail if the ICmp's operands' types are wider than the needed type 5456 // before attempting to call getSCEV on them. This avoids infinite 5457 // recursion, since the analysis of widening casts can require loop 5458 // exit condition information for overflow checking, which would 5459 // lead back here. 5460 if (getTypeSizeInBits(LHS->getType()) < 5461 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5462 return false; 5463 5464 // Now that we found a conditional branch that dominates the loop, check to 5465 // see if it is the comparison we are looking for. 5466 ICmpInst::Predicate FoundPred; 5467 if (Inverse) 5468 FoundPred = ICI->getInversePredicate(); 5469 else 5470 FoundPred = ICI->getPredicate(); 5471 5472 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5473 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5474 5475 // Balance the types. The case where FoundLHS' type is wider than 5476 // LHS' type is checked for above. 5477 if (getTypeSizeInBits(LHS->getType()) > 5478 getTypeSizeInBits(FoundLHS->getType())) { 5479 if (CmpInst::isSigned(Pred)) { 5480 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5481 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5482 } else { 5483 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5484 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5485 } 5486 } 5487 5488 // Canonicalize the query to match the way instcombine will have 5489 // canonicalized the comparison. 5490 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5491 if (LHS == RHS) 5492 return CmpInst::isTrueWhenEqual(Pred); 5493 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5494 if (FoundLHS == FoundRHS) 5495 return CmpInst::isFalseWhenEqual(Pred); 5496 5497 // Check to see if we can make the LHS or RHS match. 5498 if (LHS == FoundRHS || RHS == FoundLHS) { 5499 if (isa<SCEVConstant>(RHS)) { 5500 std::swap(FoundLHS, FoundRHS); 5501 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5502 } else { 5503 std::swap(LHS, RHS); 5504 Pred = ICmpInst::getSwappedPredicate(Pred); 5505 } 5506 } 5507 5508 // Check whether the found predicate is the same as the desired predicate. 5509 if (FoundPred == Pred) 5510 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5511 5512 // Check whether swapping the found predicate makes it the same as the 5513 // desired predicate. 5514 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5515 if (isa<SCEVConstant>(RHS)) 5516 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5517 else 5518 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5519 RHS, LHS, FoundLHS, FoundRHS); 5520 } 5521 5522 // Check whether the actual condition is beyond sufficient. 5523 if (FoundPred == ICmpInst::ICMP_EQ) 5524 if (ICmpInst::isTrueWhenEqual(Pred)) 5525 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5526 return true; 5527 if (Pred == ICmpInst::ICMP_NE) 5528 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5529 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5530 return true; 5531 5532 // Otherwise assume the worst. 5533 return false; 5534 } 5535 5536 /// isImpliedCondOperands - Test whether the condition described by Pred, 5537 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5538 /// and FoundRHS is true. 5539 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5540 const SCEV *LHS, const SCEV *RHS, 5541 const SCEV *FoundLHS, 5542 const SCEV *FoundRHS) { 5543 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5544 FoundLHS, FoundRHS) || 5545 // ~x < ~y --> x > y 5546 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5547 getNotSCEV(FoundRHS), 5548 getNotSCEV(FoundLHS)); 5549 } 5550 5551 /// isImpliedCondOperandsHelper - Test whether the condition described by 5552 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5553 /// FoundLHS, and FoundRHS is true. 5554 bool 5555 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5556 const SCEV *LHS, const SCEV *RHS, 5557 const SCEV *FoundLHS, 5558 const SCEV *FoundRHS) { 5559 switch (Pred) { 5560 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5561 case ICmpInst::ICMP_EQ: 5562 case ICmpInst::ICMP_NE: 5563 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5564 return true; 5565 break; 5566 case ICmpInst::ICMP_SLT: 5567 case ICmpInst::ICMP_SLE: 5568 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5569 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5570 return true; 5571 break; 5572 case ICmpInst::ICMP_SGT: 5573 case ICmpInst::ICMP_SGE: 5574 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5575 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5576 return true; 5577 break; 5578 case ICmpInst::ICMP_ULT: 5579 case ICmpInst::ICMP_ULE: 5580 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5581 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5582 return true; 5583 break; 5584 case ICmpInst::ICMP_UGT: 5585 case ICmpInst::ICMP_UGE: 5586 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5587 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5588 return true; 5589 break; 5590 } 5591 5592 return false; 5593 } 5594 5595 /// getBECount - Subtract the end and start values and divide by the step, 5596 /// rounding up, to get the number of times the backedge is executed. Return 5597 /// CouldNotCompute if an intermediate computation overflows. 5598 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5599 const SCEV *End, 5600 const SCEV *Step, 5601 bool NoWrap) { 5602 assert(!isKnownNegative(Step) && 5603 "This code doesn't handle negative strides yet!"); 5604 5605 const Type *Ty = Start->getType(); 5606 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5607 const SCEV *Diff = getMinusSCEV(End, Start); 5608 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5609 5610 // Add an adjustment to the difference between End and Start so that 5611 // the division will effectively round up. 5612 const SCEV *Add = getAddExpr(Diff, RoundUp); 5613 5614 if (!NoWrap) { 5615 // Check Add for unsigned overflow. 5616 // TODO: More sophisticated things could be done here. 5617 const Type *WideTy = IntegerType::get(getContext(), 5618 getTypeSizeInBits(Ty) + 1); 5619 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5620 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5621 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5622 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5623 return getCouldNotCompute(); 5624 } 5625 5626 return getUDivExpr(Add, Step); 5627 } 5628 5629 /// HowManyLessThans - Return the number of times a backedge containing the 5630 /// specified less-than comparison will execute. If not computable, return 5631 /// CouldNotCompute. 5632 ScalarEvolution::BackedgeTakenInfo 5633 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5634 const Loop *L, bool isSigned) { 5635 // Only handle: "ADDREC < LoopInvariant". 5636 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 5637 5638 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5639 if (!AddRec || AddRec->getLoop() != L) 5640 return getCouldNotCompute(); 5641 5642 // Check to see if we have a flag which makes analysis easy. 5643 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5644 AddRec->hasNoUnsignedWrap(); 5645 5646 if (AddRec->isAffine()) { 5647 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5648 const SCEV *Step = AddRec->getStepRecurrence(*this); 5649 5650 if (Step->isZero()) 5651 return getCouldNotCompute(); 5652 if (Step->isOne()) { 5653 // With unit stride, the iteration never steps past the limit value. 5654 } else if (isKnownPositive(Step)) { 5655 // Test whether a positive iteration can step past the limit 5656 // value and past the maximum value for its type in a single step. 5657 // Note that it's not sufficient to check NoWrap here, because even 5658 // though the value after a wrap is undefined, it's not undefined 5659 // behavior, so if wrap does occur, the loop could either terminate or 5660 // loop infinitely, but in either case, the loop is guaranteed to 5661 // iterate at least until the iteration where the wrapping occurs. 5662 const SCEV *One = getConstant(Step->getType(), 1); 5663 if (isSigned) { 5664 APInt Max = APInt::getSignedMaxValue(BitWidth); 5665 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5666 .slt(getSignedRange(RHS).getSignedMax())) 5667 return getCouldNotCompute(); 5668 } else { 5669 APInt Max = APInt::getMaxValue(BitWidth); 5670 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5671 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5672 return getCouldNotCompute(); 5673 } 5674 } else 5675 // TODO: Handle negative strides here and below. 5676 return getCouldNotCompute(); 5677 5678 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5679 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5680 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5681 // treat m-n as signed nor unsigned due to overflow possibility. 5682 5683 // First, we get the value of the LHS in the first iteration: n 5684 const SCEV *Start = AddRec->getOperand(0); 5685 5686 // Determine the minimum constant start value. 5687 const SCEV *MinStart = getConstant(isSigned ? 5688 getSignedRange(Start).getSignedMin() : 5689 getUnsignedRange(Start).getUnsignedMin()); 5690 5691 // If we know that the condition is true in order to enter the loop, 5692 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5693 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5694 // the division must round up. 5695 const SCEV *End = RHS; 5696 if (!isLoopEntryGuardedByCond(L, 5697 isSigned ? ICmpInst::ICMP_SLT : 5698 ICmpInst::ICMP_ULT, 5699 getMinusSCEV(Start, Step), RHS)) 5700 End = isSigned ? getSMaxExpr(RHS, Start) 5701 : getUMaxExpr(RHS, Start); 5702 5703 // Determine the maximum constant end value. 5704 const SCEV *MaxEnd = getConstant(isSigned ? 5705 getSignedRange(End).getSignedMax() : 5706 getUnsignedRange(End).getUnsignedMax()); 5707 5708 // If MaxEnd is within a step of the maximum integer value in its type, 5709 // adjust it down to the minimum value which would produce the same effect. 5710 // This allows the subsequent ceiling division of (N+(step-1))/step to 5711 // compute the correct value. 5712 const SCEV *StepMinusOne = getMinusSCEV(Step, 5713 getConstant(Step->getType(), 1)); 5714 MaxEnd = isSigned ? 5715 getSMinExpr(MaxEnd, 5716 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5717 StepMinusOne)) : 5718 getUMinExpr(MaxEnd, 5719 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5720 StepMinusOne)); 5721 5722 // Finally, we subtract these two values and divide, rounding up, to get 5723 // the number of times the backedge is executed. 5724 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5725 5726 // The maximum backedge count is similar, except using the minimum start 5727 // value and the maximum end value. 5728 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5729 5730 return BackedgeTakenInfo(BECount, MaxBECount); 5731 } 5732 5733 return getCouldNotCompute(); 5734 } 5735 5736 /// getNumIterationsInRange - Return the number of iterations of this loop that 5737 /// produce values in the specified constant range. Another way of looking at 5738 /// this is that it returns the first iteration number where the value is not in 5739 /// the condition, thus computing the exit count. If the iteration count can't 5740 /// be computed, an instance of SCEVCouldNotCompute is returned. 5741 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5742 ScalarEvolution &SE) const { 5743 if (Range.isFullSet()) // Infinite loop. 5744 return SE.getCouldNotCompute(); 5745 5746 // If the start is a non-zero constant, shift the range to simplify things. 5747 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5748 if (!SC->getValue()->isZero()) { 5749 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5750 Operands[0] = SE.getConstant(SC->getType(), 0); 5751 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5752 if (const SCEVAddRecExpr *ShiftedAddRec = 5753 dyn_cast<SCEVAddRecExpr>(Shifted)) 5754 return ShiftedAddRec->getNumIterationsInRange( 5755 Range.subtract(SC->getValue()->getValue()), SE); 5756 // This is strange and shouldn't happen. 5757 return SE.getCouldNotCompute(); 5758 } 5759 5760 // The only time we can solve this is when we have all constant indices. 5761 // Otherwise, we cannot determine the overflow conditions. 5762 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5763 if (!isa<SCEVConstant>(getOperand(i))) 5764 return SE.getCouldNotCompute(); 5765 5766 5767 // Okay at this point we know that all elements of the chrec are constants and 5768 // that the start element is zero. 5769 5770 // First check to see if the range contains zero. If not, the first 5771 // iteration exits. 5772 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5773 if (!Range.contains(APInt(BitWidth, 0))) 5774 return SE.getConstant(getType(), 0); 5775 5776 if (isAffine()) { 5777 // If this is an affine expression then we have this situation: 5778 // Solve {0,+,A} in Range === Ax in Range 5779 5780 // We know that zero is in the range. If A is positive then we know that 5781 // the upper value of the range must be the first possible exit value. 5782 // If A is negative then the lower of the range is the last possible loop 5783 // value. Also note that we already checked for a full range. 5784 APInt One(BitWidth,1); 5785 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5786 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5787 5788 // The exit value should be (End+A)/A. 5789 APInt ExitVal = (End + A).udiv(A); 5790 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5791 5792 // Evaluate at the exit value. If we really did fall out of the valid 5793 // range, then we computed our trip count, otherwise wrap around or other 5794 // things must have happened. 5795 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5796 if (Range.contains(Val->getValue())) 5797 return SE.getCouldNotCompute(); // Something strange happened 5798 5799 // Ensure that the previous value is in the range. This is a sanity check. 5800 assert(Range.contains( 5801 EvaluateConstantChrecAtConstant(this, 5802 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5803 "Linear scev computation is off in a bad way!"); 5804 return SE.getConstant(ExitValue); 5805 } else if (isQuadratic()) { 5806 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5807 // quadratic equation to solve it. To do this, we must frame our problem in 5808 // terms of figuring out when zero is crossed, instead of when 5809 // Range.getUpper() is crossed. 5810 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5811 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5812 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5813 5814 // Next, solve the constructed addrec 5815 std::pair<const SCEV *,const SCEV *> Roots = 5816 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5817 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5818 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5819 if (R1) { 5820 // Pick the smallest positive root value. 5821 if (ConstantInt *CB = 5822 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5823 R1->getValue(), R2->getValue()))) { 5824 if (CB->getZExtValue() == false) 5825 std::swap(R1, R2); // R1 is the minimum root now. 5826 5827 // Make sure the root is not off by one. The returned iteration should 5828 // not be in the range, but the previous one should be. When solving 5829 // for "X*X < 5", for example, we should not return a root of 2. 5830 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5831 R1->getValue(), 5832 SE); 5833 if (Range.contains(R1Val->getValue())) { 5834 // The next iteration must be out of the range... 5835 ConstantInt *NextVal = 5836 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5837 5838 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5839 if (!Range.contains(R1Val->getValue())) 5840 return SE.getConstant(NextVal); 5841 return SE.getCouldNotCompute(); // Something strange happened 5842 } 5843 5844 // If R1 was not in the range, then it is a good return value. Make 5845 // sure that R1-1 WAS in the range though, just in case. 5846 ConstantInt *NextVal = 5847 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5848 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5849 if (Range.contains(R1Val->getValue())) 5850 return R1; 5851 return SE.getCouldNotCompute(); // Something strange happened 5852 } 5853 } 5854 } 5855 5856 return SE.getCouldNotCompute(); 5857 } 5858 5859 5860 5861 //===----------------------------------------------------------------------===// 5862 // SCEVCallbackVH Class Implementation 5863 //===----------------------------------------------------------------------===// 5864 5865 void ScalarEvolution::SCEVCallbackVH::deleted() { 5866 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5867 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5868 SE->ConstantEvolutionLoopExitValue.erase(PN); 5869 SE->ValueExprMap.erase(getValPtr()); 5870 // this now dangles! 5871 } 5872 5873 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 5874 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5875 5876 // Forget all the expressions associated with users of the old value, 5877 // so that future queries will recompute the expressions using the new 5878 // value. 5879 Value *Old = getValPtr(); 5880 SmallVector<User *, 16> Worklist; 5881 SmallPtrSet<User *, 8> Visited; 5882 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5883 UI != UE; ++UI) 5884 Worklist.push_back(*UI); 5885 while (!Worklist.empty()) { 5886 User *U = Worklist.pop_back_val(); 5887 // Deleting the Old value will cause this to dangle. Postpone 5888 // that until everything else is done. 5889 if (U == Old) 5890 continue; 5891 if (!Visited.insert(U)) 5892 continue; 5893 if (PHINode *PN = dyn_cast<PHINode>(U)) 5894 SE->ConstantEvolutionLoopExitValue.erase(PN); 5895 SE->ValueExprMap.erase(U); 5896 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5897 UI != UE; ++UI) 5898 Worklist.push_back(*UI); 5899 } 5900 // Delete the Old value. 5901 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5902 SE->ConstantEvolutionLoopExitValue.erase(PN); 5903 SE->ValueExprMap.erase(Old); 5904 // this now dangles! 5905 } 5906 5907 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5908 : CallbackVH(V), SE(se) {} 5909 5910 //===----------------------------------------------------------------------===// 5911 // ScalarEvolution Class Implementation 5912 //===----------------------------------------------------------------------===// 5913 5914 ScalarEvolution::ScalarEvolution() 5915 : FunctionPass(ID), FirstUnknown(0) { 5916 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 5917 } 5918 5919 bool ScalarEvolution::runOnFunction(Function &F) { 5920 this->F = &F; 5921 LI = &getAnalysis<LoopInfo>(); 5922 TD = getAnalysisIfAvailable<TargetData>(); 5923 DT = &getAnalysis<DominatorTree>(); 5924 return false; 5925 } 5926 5927 void ScalarEvolution::releaseMemory() { 5928 // Iterate through all the SCEVUnknown instances and call their 5929 // destructors, so that they release their references to their values. 5930 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 5931 U->~SCEVUnknown(); 5932 FirstUnknown = 0; 5933 5934 ValueExprMap.clear(); 5935 BackedgeTakenCounts.clear(); 5936 ConstantEvolutionLoopExitValue.clear(); 5937 ValuesAtScopes.clear(); 5938 LoopDispositions.clear(); 5939 BlockDispositions.clear(); 5940 UnsignedRanges.clear(); 5941 SignedRanges.clear(); 5942 UniqueSCEVs.clear(); 5943 SCEVAllocator.Reset(); 5944 } 5945 5946 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5947 AU.setPreservesAll(); 5948 AU.addRequiredTransitive<LoopInfo>(); 5949 AU.addRequiredTransitive<DominatorTree>(); 5950 } 5951 5952 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5953 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5954 } 5955 5956 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5957 const Loop *L) { 5958 // Print all inner loops first 5959 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5960 PrintLoopInfo(OS, SE, *I); 5961 5962 OS << "Loop "; 5963 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5964 OS << ": "; 5965 5966 SmallVector<BasicBlock *, 8> ExitBlocks; 5967 L->getExitBlocks(ExitBlocks); 5968 if (ExitBlocks.size() != 1) 5969 OS << "<multiple exits> "; 5970 5971 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5972 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5973 } else { 5974 OS << "Unpredictable backedge-taken count. "; 5975 } 5976 5977 OS << "\n" 5978 "Loop "; 5979 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5980 OS << ": "; 5981 5982 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5983 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5984 } else { 5985 OS << "Unpredictable max backedge-taken count. "; 5986 } 5987 5988 OS << "\n"; 5989 } 5990 5991 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5992 // ScalarEvolution's implementation of the print method is to print 5993 // out SCEV values of all instructions that are interesting. Doing 5994 // this potentially causes it to create new SCEV objects though, 5995 // which technically conflicts with the const qualifier. This isn't 5996 // observable from outside the class though, so casting away the 5997 // const isn't dangerous. 5998 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5999 6000 OS << "Classifying expressions for: "; 6001 WriteAsOperand(OS, F, /*PrintType=*/false); 6002 OS << "\n"; 6003 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6004 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6005 OS << *I << '\n'; 6006 OS << " --> "; 6007 const SCEV *SV = SE.getSCEV(&*I); 6008 SV->print(OS); 6009 6010 const Loop *L = LI->getLoopFor((*I).getParent()); 6011 6012 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6013 if (AtUse != SV) { 6014 OS << " --> "; 6015 AtUse->print(OS); 6016 } 6017 6018 if (L) { 6019 OS << "\t\t" "Exits: "; 6020 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6021 if (!SE.isLoopInvariant(ExitValue, L)) { 6022 OS << "<<Unknown>>"; 6023 } else { 6024 OS << *ExitValue; 6025 } 6026 } 6027 6028 OS << "\n"; 6029 } 6030 6031 OS << "Determining loop execution counts for: "; 6032 WriteAsOperand(OS, F, /*PrintType=*/false); 6033 OS << "\n"; 6034 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6035 PrintLoopInfo(OS, &SE, *I); 6036 } 6037 6038 ScalarEvolution::LoopDisposition 6039 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6040 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6041 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6042 Values.insert(std::make_pair(L, LoopVariant)); 6043 if (!Pair.second) 6044 return Pair.first->second; 6045 6046 LoopDisposition D = computeLoopDisposition(S, L); 6047 return LoopDispositions[S][L] = D; 6048 } 6049 6050 ScalarEvolution::LoopDisposition 6051 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6052 switch (S->getSCEVType()) { 6053 case scConstant: 6054 return LoopInvariant; 6055 case scTruncate: 6056 case scZeroExtend: 6057 case scSignExtend: 6058 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6059 case scAddRecExpr: { 6060 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6061 6062 // If L is the addrec's loop, it's computable. 6063 if (AR->getLoop() == L) 6064 return LoopComputable; 6065 6066 // Add recurrences are never invariant in the function-body (null loop). 6067 if (!L) 6068 return LoopVariant; 6069 6070 // This recurrence is variant w.r.t. L if L contains AR's loop. 6071 if (L->contains(AR->getLoop())) 6072 return LoopVariant; 6073 6074 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6075 if (AR->getLoop()->contains(L)) 6076 return LoopInvariant; 6077 6078 // This recurrence is variant w.r.t. L if any of its operands 6079 // are variant. 6080 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6081 I != E; ++I) 6082 if (!isLoopInvariant(*I, L)) 6083 return LoopVariant; 6084 6085 // Otherwise it's loop-invariant. 6086 return LoopInvariant; 6087 } 6088 case scAddExpr: 6089 case scMulExpr: 6090 case scUMaxExpr: 6091 case scSMaxExpr: { 6092 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6093 bool HasVarying = false; 6094 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6095 I != E; ++I) { 6096 LoopDisposition D = getLoopDisposition(*I, L); 6097 if (D == LoopVariant) 6098 return LoopVariant; 6099 if (D == LoopComputable) 6100 HasVarying = true; 6101 } 6102 return HasVarying ? LoopComputable : LoopInvariant; 6103 } 6104 case scUDivExpr: { 6105 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6106 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6107 if (LD == LoopVariant) 6108 return LoopVariant; 6109 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6110 if (RD == LoopVariant) 6111 return LoopVariant; 6112 return (LD == LoopInvariant && RD == LoopInvariant) ? 6113 LoopInvariant : LoopComputable; 6114 } 6115 case scUnknown: 6116 // All non-instruction values are loop invariant. All instructions are loop 6117 // invariant if they are not contained in the specified loop. 6118 // Instructions are never considered invariant in the function body 6119 // (null loop) because they are defined within the "loop". 6120 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6121 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6122 return LoopInvariant; 6123 case scCouldNotCompute: 6124 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6125 return LoopVariant; 6126 default: break; 6127 } 6128 llvm_unreachable("Unknown SCEV kind!"); 6129 return LoopVariant; 6130 } 6131 6132 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6133 return getLoopDisposition(S, L) == LoopInvariant; 6134 } 6135 6136 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6137 return getLoopDisposition(S, L) == LoopComputable; 6138 } 6139 6140 ScalarEvolution::BlockDisposition 6141 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6142 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6143 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6144 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6145 if (!Pair.second) 6146 return Pair.first->second; 6147 6148 BlockDisposition D = computeBlockDisposition(S, BB); 6149 return BlockDispositions[S][BB] = D; 6150 } 6151 6152 ScalarEvolution::BlockDisposition 6153 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6154 switch (S->getSCEVType()) { 6155 case scConstant: 6156 return ProperlyDominatesBlock; 6157 case scTruncate: 6158 case scZeroExtend: 6159 case scSignExtend: 6160 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6161 case scAddRecExpr: { 6162 // This uses a "dominates" query instead of "properly dominates" query 6163 // to test for proper dominance too, because the instruction which 6164 // produces the addrec's value is a PHI, and a PHI effectively properly 6165 // dominates its entire containing block. 6166 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6167 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6168 return DoesNotDominateBlock; 6169 } 6170 // FALL THROUGH into SCEVNAryExpr handling. 6171 case scAddExpr: 6172 case scMulExpr: 6173 case scUMaxExpr: 6174 case scSMaxExpr: { 6175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6176 bool Proper = true; 6177 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6178 I != E; ++I) { 6179 BlockDisposition D = getBlockDisposition(*I, BB); 6180 if (D == DoesNotDominateBlock) 6181 return DoesNotDominateBlock; 6182 if (D == DominatesBlock) 6183 Proper = false; 6184 } 6185 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6186 } 6187 case scUDivExpr: { 6188 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6189 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6190 BlockDisposition LD = getBlockDisposition(LHS, BB); 6191 if (LD == DoesNotDominateBlock) 6192 return DoesNotDominateBlock; 6193 BlockDisposition RD = getBlockDisposition(RHS, BB); 6194 if (RD == DoesNotDominateBlock) 6195 return DoesNotDominateBlock; 6196 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6197 ProperlyDominatesBlock : DominatesBlock; 6198 } 6199 case scUnknown: 6200 if (Instruction *I = 6201 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6202 if (I->getParent() == BB) 6203 return DominatesBlock; 6204 if (DT->properlyDominates(I->getParent(), BB)) 6205 return ProperlyDominatesBlock; 6206 return DoesNotDominateBlock; 6207 } 6208 return ProperlyDominatesBlock; 6209 case scCouldNotCompute: 6210 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6211 return DoesNotDominateBlock; 6212 default: break; 6213 } 6214 llvm_unreachable("Unknown SCEV kind!"); 6215 return DoesNotDominateBlock; 6216 } 6217 6218 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6219 return getBlockDisposition(S, BB) >= DominatesBlock; 6220 } 6221 6222 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6223 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6224 } 6225 6226 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6227 switch (S->getSCEVType()) { 6228 case scConstant: 6229 return false; 6230 case scTruncate: 6231 case scZeroExtend: 6232 case scSignExtend: { 6233 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6234 const SCEV *CastOp = Cast->getOperand(); 6235 return Op == CastOp || hasOperand(CastOp, Op); 6236 } 6237 case scAddRecExpr: 6238 case scAddExpr: 6239 case scMulExpr: 6240 case scUMaxExpr: 6241 case scSMaxExpr: { 6242 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6243 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6244 I != E; ++I) { 6245 const SCEV *NAryOp = *I; 6246 if (NAryOp == Op || hasOperand(NAryOp, Op)) 6247 return true; 6248 } 6249 return false; 6250 } 6251 case scUDivExpr: { 6252 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6253 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6254 return LHS == Op || hasOperand(LHS, Op) || 6255 RHS == Op || hasOperand(RHS, Op); 6256 } 6257 case scUnknown: 6258 return false; 6259 case scCouldNotCompute: 6260 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6261 return false; 6262 default: break; 6263 } 6264 llvm_unreachable("Unknown SCEV kind!"); 6265 return false; 6266 } 6267 6268 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6269 ValuesAtScopes.erase(S); 6270 LoopDispositions.erase(S); 6271 BlockDispositions.erase(S); 6272 UnsignedRanges.erase(S); 6273 SignedRanges.erase(S); 6274 } 6275