xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision b00209ed100cf76acca2e7f8c8ae511658fe4816)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389   case scMulExpr:
390   case scUMaxExpr:
391   case scSMaxExpr:
392   case scUMinExpr:
393   case scSMinExpr:
394     return cast<SCEVNAryExpr>(this)->getType();
395   case scAddExpr:
396     return cast<SCEVAddExpr>(this)->getType();
397   case scUDivExpr:
398     return cast<SCEVUDivExpr>(this)->getType();
399   case scUnknown:
400     return cast<SCEVUnknown>(this)->getType();
401   case scCouldNotCompute:
402     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
403   }
404   llvm_unreachable("Unknown SCEV kind!");
405 }
406 
407 bool SCEV::isZero() const {
408   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
409     return SC->getValue()->isZero();
410   return false;
411 }
412 
413 bool SCEV::isOne() const {
414   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
415     return SC->getValue()->isOne();
416   return false;
417 }
418 
419 bool SCEV::isAllOnesValue() const {
420   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
421     return SC->getValue()->isMinusOne();
422   return false;
423 }
424 
425 bool SCEV::isNonConstantNegative() const {
426   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
427   if (!Mul) return false;
428 
429   // If there is a constant factor, it will be first.
430   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
431   if (!SC) return false;
432 
433   // Return true if the value is negative, this matches things like (-42 * V).
434   return SC->getAPInt().isNegative();
435 }
436 
437 SCEVCouldNotCompute::SCEVCouldNotCompute() :
438   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
439 
440 bool SCEVCouldNotCompute::classof(const SCEV *S) {
441   return S->getSCEVType() == scCouldNotCompute;
442 }
443 
444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
445   FoldingSetNodeID ID;
446   ID.AddInteger(scConstant);
447   ID.AddPointer(V);
448   void *IP = nullptr;
449   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
450   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
451   UniqueSCEVs.InsertNode(S, IP);
452   return S;
453 }
454 
455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
456   return getConstant(ConstantInt::get(getContext(), Val));
457 }
458 
459 const SCEV *
460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
461   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
462   return getConstant(ConstantInt::get(ITy, V, isSigned));
463 }
464 
465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
466                            const SCEV *op, Type *ty)
467     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
468   Operands[0] = op;
469 }
470 
471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
472                                    Type *ITy)
473     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
474   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
475          "Must be a non-bit-width-changing pointer-to-integer cast!");
476 }
477 
478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
479                                            SCEVTypes SCEVTy, const SCEV *op,
480                                            Type *ty)
481     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
482 
483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
484                                    Type *ty)
485     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
486   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
487          "Cannot truncate non-integer value!");
488 }
489 
490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
491                                        const SCEV *op, Type *ty)
492     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
493   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
494          "Cannot zero extend non-integer value!");
495 }
496 
497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
498                                        const SCEV *op, Type *ty)
499     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
500   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
501          "Cannot sign extend non-integer value!");
502 }
503 
504 void SCEVUnknown::deleted() {
505   // Clear this SCEVUnknown from various maps.
506   SE->forgetMemoizedResults(this);
507 
508   // Remove this SCEVUnknown from the uniquing map.
509   SE->UniqueSCEVs.RemoveNode(this);
510 
511   // Release the value.
512   setValPtr(nullptr);
513 }
514 
515 void SCEVUnknown::allUsesReplacedWith(Value *New) {
516   // Remove this SCEVUnknown from the uniquing map.
517   SE->UniqueSCEVs.RemoveNode(this);
518 
519   // Update this SCEVUnknown to point to the new value. This is needed
520   // because there may still be outstanding SCEVs which still point to
521   // this SCEVUnknown.
522   setValPtr(New);
523 }
524 
525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
526   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
527     if (VCE->getOpcode() == Instruction::PtrToInt)
528       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
529         if (CE->getOpcode() == Instruction::GetElementPtr &&
530             CE->getOperand(0)->isNullValue() &&
531             CE->getNumOperands() == 2)
532           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
533             if (CI->isOne()) {
534               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
535                                  ->getElementType();
536               return true;
537             }
538 
539   return false;
540 }
541 
542 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
543   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
544     if (VCE->getOpcode() == Instruction::PtrToInt)
545       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
546         if (CE->getOpcode() == Instruction::GetElementPtr &&
547             CE->getOperand(0)->isNullValue()) {
548           Type *Ty =
549             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty =
576             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
577           // Ignore vector types here so that ScalarEvolutionExpander doesn't
578           // emit getelementptrs that index into vectors.
579           if (Ty->isStructTy() || Ty->isArrayTy()) {
580             CTy = Ty;
581             FieldNo = CE->getOperand(2);
582             return true;
583           }
584         }
585 
586   return false;
587 }
588 
589 //===----------------------------------------------------------------------===//
590 //                               SCEV Utilities
591 //===----------------------------------------------------------------------===//
592 
593 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
594 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
595 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
596 /// have been previously deemed to be "equally complex" by this routine.  It is
597 /// intended to avoid exponential time complexity in cases like:
598 ///
599 ///   %a = f(%x, %y)
600 ///   %b = f(%a, %a)
601 ///   %c = f(%b, %b)
602 ///
603 ///   %d = f(%x, %y)
604 ///   %e = f(%d, %d)
605 ///   %f = f(%e, %e)
606 ///
607 ///   CompareValueComplexity(%f, %c)
608 ///
609 /// Since we do not continue running this routine on expression trees once we
610 /// have seen unequal values, there is no need to track them in the cache.
611 static int
612 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
613                        const LoopInfo *const LI, Value *LV, Value *RV,
614                        unsigned Depth) {
615   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
616     return 0;
617 
618   // Order pointer values after integer values. This helps SCEVExpander form
619   // GEPs.
620   bool LIsPointer = LV->getType()->isPointerTy(),
621        RIsPointer = RV->getType()->isPointerTy();
622   if (LIsPointer != RIsPointer)
623     return (int)LIsPointer - (int)RIsPointer;
624 
625   // Compare getValueID values.
626   unsigned LID = LV->getValueID(), RID = RV->getValueID();
627   if (LID != RID)
628     return (int)LID - (int)RID;
629 
630   // Sort arguments by their position.
631   if (const auto *LA = dyn_cast<Argument>(LV)) {
632     const auto *RA = cast<Argument>(RV);
633     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
634     return (int)LArgNo - (int)RArgNo;
635   }
636 
637   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
638     const auto *RGV = cast<GlobalValue>(RV);
639 
640     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
641       auto LT = GV->getLinkage();
642       return !(GlobalValue::isPrivateLinkage(LT) ||
643                GlobalValue::isInternalLinkage(LT));
644     };
645 
646     // Use the names to distinguish the two values, but only if the
647     // names are semantically important.
648     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
649       return LGV->getName().compare(RGV->getName());
650   }
651 
652   // For instructions, compare their loop depth, and their operand count.  This
653   // is pretty loose.
654   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
655     const auto *RInst = cast<Instruction>(RV);
656 
657     // Compare loop depths.
658     const BasicBlock *LParent = LInst->getParent(),
659                      *RParent = RInst->getParent();
660     if (LParent != RParent) {
661       unsigned LDepth = LI->getLoopDepth(LParent),
662                RDepth = LI->getLoopDepth(RParent);
663       if (LDepth != RDepth)
664         return (int)LDepth - (int)RDepth;
665     }
666 
667     // Compare the number of operands.
668     unsigned LNumOps = LInst->getNumOperands(),
669              RNumOps = RInst->getNumOperands();
670     if (LNumOps != RNumOps)
671       return (int)LNumOps - (int)RNumOps;
672 
673     for (unsigned Idx : seq(0u, LNumOps)) {
674       int Result =
675           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
676                                  RInst->getOperand(Idx), Depth + 1);
677       if (Result != 0)
678         return Result;
679     }
680   }
681 
682   EqCacheValue.unionSets(LV, RV);
683   return 0;
684 }
685 
686 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
687 // than RHS, respectively. A three-way result allows recursive comparisons to be
688 // more efficient.
689 // If the max analysis depth was reached, return None, assuming we do not know
690 // if they are equivalent for sure.
691 static Optional<int>
692 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
693                       EquivalenceClasses<const Value *> &EqCacheValue,
694                       const LoopInfo *const LI, const SCEV *LHS,
695                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
696   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
697   if (LHS == RHS)
698     return 0;
699 
700   // Primarily, sort the SCEVs by their getSCEVType().
701   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
702   if (LType != RType)
703     return (int)LType - (int)RType;
704 
705   if (EqCacheSCEV.isEquivalent(LHS, RHS))
706     return 0;
707 
708   if (Depth > MaxSCEVCompareDepth)
709     return None;
710 
711   // Aside from the getSCEVType() ordering, the particular ordering
712   // isn't very important except that it's beneficial to be consistent,
713   // so that (a + b) and (b + a) don't end up as different expressions.
714   switch (LType) {
715   case scUnknown: {
716     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
717     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
718 
719     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
720                                    RU->getValue(), Depth + 1);
721     if (X == 0)
722       EqCacheSCEV.unionSets(LHS, RHS);
723     return X;
724   }
725 
726   case scConstant: {
727     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
728     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
729 
730     // Compare constant values.
731     const APInt &LA = LC->getAPInt();
732     const APInt &RA = RC->getAPInt();
733     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
734     if (LBitWidth != RBitWidth)
735       return (int)LBitWidth - (int)RBitWidth;
736     return LA.ult(RA) ? -1 : 1;
737   }
738 
739   case scAddRecExpr: {
740     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
741     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
742 
743     // There is always a dominance between two recs that are used by one SCEV,
744     // so we can safely sort recs by loop header dominance. We require such
745     // order in getAddExpr.
746     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
747     if (LLoop != RLoop) {
748       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
749       assert(LHead != RHead && "Two loops share the same header?");
750       if (DT.dominates(LHead, RHead))
751         return 1;
752       else
753         assert(DT.dominates(RHead, LHead) &&
754                "No dominance between recurrences used by one SCEV?");
755       return -1;
756     }
757 
758     // Addrec complexity grows with operand count.
759     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
760     if (LNumOps != RNumOps)
761       return (int)LNumOps - (int)RNumOps;
762 
763     // Lexicographically compare.
764     for (unsigned i = 0; i != LNumOps; ++i) {
765       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
766                                      LA->getOperand(i), RA->getOperand(i), DT,
767                                      Depth + 1);
768       if (X != 0)
769         return X;
770     }
771     EqCacheSCEV.unionSets(LHS, RHS);
772     return 0;
773   }
774 
775   case scAddExpr:
776   case scMulExpr:
777   case scSMaxExpr:
778   case scUMaxExpr:
779   case scSMinExpr:
780   case scUMinExpr: {
781     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
782     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
783 
784     // Lexicographically compare n-ary expressions.
785     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
786     if (LNumOps != RNumOps)
787       return (int)LNumOps - (int)RNumOps;
788 
789     for (unsigned i = 0; i != LNumOps; ++i) {
790       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
791                                      LC->getOperand(i), RC->getOperand(i), DT,
792                                      Depth + 1);
793       if (X != 0)
794         return X;
795     }
796     EqCacheSCEV.unionSets(LHS, RHS);
797     return 0;
798   }
799 
800   case scUDivExpr: {
801     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
802     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
803 
804     // Lexicographically compare udiv expressions.
805     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
806                                    RC->getLHS(), DT, Depth + 1);
807     if (X != 0)
808       return X;
809     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
810                               RC->getRHS(), DT, Depth + 1);
811     if (X == 0)
812       EqCacheSCEV.unionSets(LHS, RHS);
813     return X;
814   }
815 
816   case scPtrToInt:
817   case scTruncate:
818   case scZeroExtend:
819   case scSignExtend: {
820     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
821     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
822 
823     // Compare cast expressions by operand.
824     auto X =
825         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
826                               RC->getOperand(), DT, Depth + 1);
827     if (X == 0)
828       EqCacheSCEV.unionSets(LHS, RHS);
829     return X;
830   }
831 
832   case scCouldNotCompute:
833     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
834   }
835   llvm_unreachable("Unknown SCEV kind!");
836 }
837 
838 /// Given a list of SCEV objects, order them by their complexity, and group
839 /// objects of the same complexity together by value.  When this routine is
840 /// finished, we know that any duplicates in the vector are consecutive and that
841 /// complexity is monotonically increasing.
842 ///
843 /// Note that we go take special precautions to ensure that we get deterministic
844 /// results from this routine.  In other words, we don't want the results of
845 /// this to depend on where the addresses of various SCEV objects happened to
846 /// land in memory.
847 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
848                               LoopInfo *LI, DominatorTree &DT) {
849   if (Ops.size() < 2) return;  // Noop
850 
851   EquivalenceClasses<const SCEV *> EqCacheSCEV;
852   EquivalenceClasses<const Value *> EqCacheValue;
853 
854   // Whether LHS has provably less complexity than RHS.
855   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
856     auto Complexity =
857         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
858     return Complexity && *Complexity < 0;
859   };
860   if (Ops.size() == 2) {
861     // This is the common case, which also happens to be trivially simple.
862     // Special case it.
863     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
864     if (IsLessComplex(RHS, LHS))
865       std::swap(LHS, RHS);
866     return;
867   }
868 
869   // Do the rough sort by complexity.
870   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
871     return IsLessComplex(LHS, RHS);
872   });
873 
874   // Now that we are sorted by complexity, group elements of the same
875   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
876   // be extremely short in practice.  Note that we take this approach because we
877   // do not want to depend on the addresses of the objects we are grouping.
878   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
879     const SCEV *S = Ops[i];
880     unsigned Complexity = S->getSCEVType();
881 
882     // If there are any objects of the same complexity and same value as this
883     // one, group them.
884     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
885       if (Ops[j] == S) { // Found a duplicate.
886         // Move it to immediately after i'th element.
887         std::swap(Ops[i+1], Ops[j]);
888         ++i;   // no need to rescan it.
889         if (i == e-2) return;  // Done!
890       }
891     }
892   }
893 }
894 
895 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
896 /// least HugeExprThreshold nodes).
897 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
898   return any_of(Ops, [](const SCEV *S) {
899     return S->getExpressionSize() >= HugeExprThreshold;
900   });
901 }
902 
903 //===----------------------------------------------------------------------===//
904 //                      Simple SCEV method implementations
905 //===----------------------------------------------------------------------===//
906 
907 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
908 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
909                                        ScalarEvolution &SE,
910                                        Type *ResultTy) {
911   // Handle the simplest case efficiently.
912   if (K == 1)
913     return SE.getTruncateOrZeroExtend(It, ResultTy);
914 
915   // We are using the following formula for BC(It, K):
916   //
917   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
918   //
919   // Suppose, W is the bitwidth of the return value.  We must be prepared for
920   // overflow.  Hence, we must assure that the result of our computation is
921   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
922   // safe in modular arithmetic.
923   //
924   // However, this code doesn't use exactly that formula; the formula it uses
925   // is something like the following, where T is the number of factors of 2 in
926   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
927   // exponentiation:
928   //
929   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
930   //
931   // This formula is trivially equivalent to the previous formula.  However,
932   // this formula can be implemented much more efficiently.  The trick is that
933   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
934   // arithmetic.  To do exact division in modular arithmetic, all we have
935   // to do is multiply by the inverse.  Therefore, this step can be done at
936   // width W.
937   //
938   // The next issue is how to safely do the division by 2^T.  The way this
939   // is done is by doing the multiplication step at a width of at least W + T
940   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
941   // when we perform the division by 2^T (which is equivalent to a right shift
942   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
943   // truncated out after the division by 2^T.
944   //
945   // In comparison to just directly using the first formula, this technique
946   // is much more efficient; using the first formula requires W * K bits,
947   // but this formula less than W + K bits. Also, the first formula requires
948   // a division step, whereas this formula only requires multiplies and shifts.
949   //
950   // It doesn't matter whether the subtraction step is done in the calculation
951   // width or the input iteration count's width; if the subtraction overflows,
952   // the result must be zero anyway.  We prefer here to do it in the width of
953   // the induction variable because it helps a lot for certain cases; CodeGen
954   // isn't smart enough to ignore the overflow, which leads to much less
955   // efficient code if the width of the subtraction is wider than the native
956   // register width.
957   //
958   // (It's possible to not widen at all by pulling out factors of 2 before
959   // the multiplication; for example, K=2 can be calculated as
960   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
961   // extra arithmetic, so it's not an obvious win, and it gets
962   // much more complicated for K > 3.)
963 
964   // Protection from insane SCEVs; this bound is conservative,
965   // but it probably doesn't matter.
966   if (K > 1000)
967     return SE.getCouldNotCompute();
968 
969   unsigned W = SE.getTypeSizeInBits(ResultTy);
970 
971   // Calculate K! / 2^T and T; we divide out the factors of two before
972   // multiplying for calculating K! / 2^T to avoid overflow.
973   // Other overflow doesn't matter because we only care about the bottom
974   // W bits of the result.
975   APInt OddFactorial(W, 1);
976   unsigned T = 1;
977   for (unsigned i = 3; i <= K; ++i) {
978     APInt Mult(W, i);
979     unsigned TwoFactors = Mult.countTrailingZeros();
980     T += TwoFactors;
981     Mult.lshrInPlace(TwoFactors);
982     OddFactorial *= Mult;
983   }
984 
985   // We need at least W + T bits for the multiplication step
986   unsigned CalculationBits = W + T;
987 
988   // Calculate 2^T, at width T+W.
989   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
990 
991   // Calculate the multiplicative inverse of K! / 2^T;
992   // this multiplication factor will perform the exact division by
993   // K! / 2^T.
994   APInt Mod = APInt::getSignedMinValue(W+1);
995   APInt MultiplyFactor = OddFactorial.zext(W+1);
996   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
997   MultiplyFactor = MultiplyFactor.trunc(W);
998 
999   // Calculate the product, at width T+W
1000   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1001                                                       CalculationBits);
1002   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1003   for (unsigned i = 1; i != K; ++i) {
1004     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1005     Dividend = SE.getMulExpr(Dividend,
1006                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1007   }
1008 
1009   // Divide by 2^T
1010   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1011 
1012   // Truncate the result, and divide by K! / 2^T.
1013 
1014   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1015                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1016 }
1017 
1018 /// Return the value of this chain of recurrences at the specified iteration
1019 /// number.  We can evaluate this recurrence by multiplying each element in the
1020 /// chain by the binomial coefficient corresponding to it.  In other words, we
1021 /// can evaluate {A,+,B,+,C,+,D} as:
1022 ///
1023 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1024 ///
1025 /// where BC(It, k) stands for binomial coefficient.
1026 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1027                                                 ScalarEvolution &SE) const {
1028   const SCEV *Result = getStart();
1029   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1030     // The computation is correct in the face of overflow provided that the
1031     // multiplication is performed _after_ the evaluation of the binomial
1032     // coefficient.
1033     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1034     if (isa<SCEVCouldNotCompute>(Coeff))
1035       return Coeff;
1036 
1037     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1038   }
1039   return Result;
1040 }
1041 
1042 //===----------------------------------------------------------------------===//
1043 //                    SCEV Expression folder implementations
1044 //===----------------------------------------------------------------------===//
1045 
1046 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty,
1047                                              unsigned Depth) {
1048   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1049   assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once.");
1050 
1051   // We could be called with an integer-typed operands during SCEV rewrites.
1052   // Since the operand is an integer already, just perform zext/trunc/self cast.
1053   if (!Op->getType()->isPointerTy())
1054     return getTruncateOrZeroExtend(Op, Ty);
1055 
1056   // What would be an ID for such a SCEV cast expression?
1057   FoldingSetNodeID ID;
1058   ID.AddInteger(scPtrToInt);
1059   ID.AddPointer(Op);
1060 
1061   void *IP = nullptr;
1062 
1063   // Is there already an expression for such a cast?
1064   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1065     return getTruncateOrZeroExtend(S, Ty);
1066 
1067   // If not, is this expression something we can't reduce any further?
1068   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1069     Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1070     assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(
1071                Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) &&
1072            "We can only model ptrtoint if SCEV's effective (integer) type is "
1073            "sufficiently wide to represent all possible pointer values.");
1074 
1075     // Perform some basic constant folding. If the operand of the ptr2int cast
1076     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1077     // left as-is), but produce a zero constant.
1078     // NOTE: We could handle a more general case, but lack motivational cases.
1079     if (isa<ConstantPointerNull>(U->getValue()))
1080       return getZero(Ty);
1081 
1082     // Create an explicit cast node.
1083     // We can reuse the existing insert position since if we get here,
1084     // we won't have made any changes which would invalidate it.
1085     SCEV *S = new (SCEVAllocator)
1086         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1087     UniqueSCEVs.InsertNode(S, IP);
1088     addToLoopUseLists(S);
1089     return getTruncateOrZeroExtend(S, Ty);
1090   }
1091 
1092   assert(Depth == 0 &&
1093          "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's.");
1094 
1095   // Otherwise, we've got some expression that is more complex than just a
1096   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1097   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1098   // only, and the expressions must otherwise be integer-typed.
1099   // So sink the cast down to the SCEVUnknown's.
1100 
1101   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1102   /// which computes a pointer-typed value, and rewrites the whole expression
1103   /// tree so that *all* the computations are done on integers, and the only
1104   /// pointer-typed operands in the expression are SCEVUnknown.
1105   class SCEVPtrToIntSinkingRewriter
1106       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1107     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1108 
1109   public:
1110     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1111 
1112     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1113       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1114       return Rewriter.visit(Scev);
1115     }
1116 
1117     const SCEV *visit(const SCEV *S) {
1118       Type *STy = S->getType();
1119       // If the expression is not pointer-typed, just keep it as-is.
1120       if (!STy->isPointerTy())
1121         return S;
1122       // Else, recursively sink the cast down into it.
1123       return Base::visit(S);
1124     }
1125 
1126     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1127       SmallVector<const SCEV *, 2> Operands;
1128       bool Changed = false;
1129       for (auto *Op : Expr->operands()) {
1130         Operands.push_back(visit(Op));
1131         Changed |= Op != Operands.back();
1132       }
1133       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1134     }
1135 
1136     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1137       SmallVector<const SCEV *, 2> Operands;
1138       bool Changed = false;
1139       for (auto *Op : Expr->operands()) {
1140         Operands.push_back(visit(Op));
1141         Changed |= Op != Operands.back();
1142       }
1143       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1144     }
1145 
1146     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1147       Type *ExprPtrTy = Expr->getType();
1148       assert(ExprPtrTy->isPointerTy() &&
1149              "Should only reach pointer-typed SCEVUnknown's.");
1150       Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy);
1151       return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1);
1152     }
1153   };
1154 
1155   // And actually perform the cast sinking.
1156   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1157   assert(IntOp->getType()->isIntegerTy() &&
1158          "We must have succeeded in sinking the cast, "
1159          "and ending up with an integer-typed expression!");
1160   return getTruncateOrZeroExtend(IntOp, Ty);
1161 }
1162 
1163 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1164                                              unsigned Depth) {
1165   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1166          "This is not a truncating conversion!");
1167   assert(isSCEVable(Ty) &&
1168          "This is not a conversion to a SCEVable type!");
1169   Ty = getEffectiveSCEVType(Ty);
1170 
1171   FoldingSetNodeID ID;
1172   ID.AddInteger(scTruncate);
1173   ID.AddPointer(Op);
1174   ID.AddPointer(Ty);
1175   void *IP = nullptr;
1176   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1177 
1178   // Fold if the operand is constant.
1179   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1180     return getConstant(
1181       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1182 
1183   // trunc(trunc(x)) --> trunc(x)
1184   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1185     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1186 
1187   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1188   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1189     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1190 
1191   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1192   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1193     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1194 
1195   if (Depth > MaxCastDepth) {
1196     SCEV *S =
1197         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1198     UniqueSCEVs.InsertNode(S, IP);
1199     addToLoopUseLists(S);
1200     return S;
1201   }
1202 
1203   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1204   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1205   // if after transforming we have at most one truncate, not counting truncates
1206   // that replace other casts.
1207   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1208     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1209     SmallVector<const SCEV *, 4> Operands;
1210     unsigned numTruncs = 0;
1211     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1212          ++i) {
1213       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1214       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1215           isa<SCEVTruncateExpr>(S))
1216         numTruncs++;
1217       Operands.push_back(S);
1218     }
1219     if (numTruncs < 2) {
1220       if (isa<SCEVAddExpr>(Op))
1221         return getAddExpr(Operands);
1222       else if (isa<SCEVMulExpr>(Op))
1223         return getMulExpr(Operands);
1224       else
1225         llvm_unreachable("Unexpected SCEV type for Op.");
1226     }
1227     // Although we checked in the beginning that ID is not in the cache, it is
1228     // possible that during recursion and different modification ID was inserted
1229     // into the cache. So if we find it, just return it.
1230     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1231       return S;
1232   }
1233 
1234   // If the input value is a chrec scev, truncate the chrec's operands.
1235   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1236     SmallVector<const SCEV *, 4> Operands;
1237     for (const SCEV *Op : AddRec->operands())
1238       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1239     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1240   }
1241 
1242   // Return zero if truncating to known zeros.
1243   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1244   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1245     return getZero(Ty);
1246 
1247   // The cast wasn't folded; create an explicit cast node. We can reuse
1248   // the existing insert position since if we get here, we won't have
1249   // made any changes which would invalidate it.
1250   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1251                                                  Op, Ty);
1252   UniqueSCEVs.InsertNode(S, IP);
1253   addToLoopUseLists(S);
1254   return S;
1255 }
1256 
1257 // Get the limit of a recurrence such that incrementing by Step cannot cause
1258 // signed overflow as long as the value of the recurrence within the
1259 // loop does not exceed this limit before incrementing.
1260 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1261                                                  ICmpInst::Predicate *Pred,
1262                                                  ScalarEvolution *SE) {
1263   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1264   if (SE->isKnownPositive(Step)) {
1265     *Pred = ICmpInst::ICMP_SLT;
1266     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1267                            SE->getSignedRangeMax(Step));
1268   }
1269   if (SE->isKnownNegative(Step)) {
1270     *Pred = ICmpInst::ICMP_SGT;
1271     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1272                            SE->getSignedRangeMin(Step));
1273   }
1274   return nullptr;
1275 }
1276 
1277 // Get the limit of a recurrence such that incrementing by Step cannot cause
1278 // unsigned overflow as long as the value of the recurrence within the loop does
1279 // not exceed this limit before incrementing.
1280 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1281                                                    ICmpInst::Predicate *Pred,
1282                                                    ScalarEvolution *SE) {
1283   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1284   *Pred = ICmpInst::ICMP_ULT;
1285 
1286   return SE->getConstant(APInt::getMinValue(BitWidth) -
1287                          SE->getUnsignedRangeMax(Step));
1288 }
1289 
1290 namespace {
1291 
1292 struct ExtendOpTraitsBase {
1293   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1294                                                           unsigned);
1295 };
1296 
1297 // Used to make code generic over signed and unsigned overflow.
1298 template <typename ExtendOp> struct ExtendOpTraits {
1299   // Members present:
1300   //
1301   // static const SCEV::NoWrapFlags WrapType;
1302   //
1303   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1304   //
1305   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1306   //                                           ICmpInst::Predicate *Pred,
1307   //                                           ScalarEvolution *SE);
1308 };
1309 
1310 template <>
1311 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1312   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1313 
1314   static const GetExtendExprTy GetExtendExpr;
1315 
1316   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1317                                              ICmpInst::Predicate *Pred,
1318                                              ScalarEvolution *SE) {
1319     return getSignedOverflowLimitForStep(Step, Pred, SE);
1320   }
1321 };
1322 
1323 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1324     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1325 
1326 template <>
1327 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1328   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1329 
1330   static const GetExtendExprTy GetExtendExpr;
1331 
1332   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1333                                              ICmpInst::Predicate *Pred,
1334                                              ScalarEvolution *SE) {
1335     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1336   }
1337 };
1338 
1339 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1340     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1341 
1342 } // end anonymous namespace
1343 
1344 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1345 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1346 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1347 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1348 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1349 // expression "Step + sext/zext(PreIncAR)" is congruent with
1350 // "sext/zext(PostIncAR)"
1351 template <typename ExtendOpTy>
1352 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1353                                         ScalarEvolution *SE, unsigned Depth) {
1354   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1355   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1356 
1357   const Loop *L = AR->getLoop();
1358   const SCEV *Start = AR->getStart();
1359   const SCEV *Step = AR->getStepRecurrence(*SE);
1360 
1361   // Check for a simple looking step prior to loop entry.
1362   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1363   if (!SA)
1364     return nullptr;
1365 
1366   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1367   // subtraction is expensive. For this purpose, perform a quick and dirty
1368   // difference, by checking for Step in the operand list.
1369   SmallVector<const SCEV *, 4> DiffOps;
1370   for (const SCEV *Op : SA->operands())
1371     if (Op != Step)
1372       DiffOps.push_back(Op);
1373 
1374   if (DiffOps.size() == SA->getNumOperands())
1375     return nullptr;
1376 
1377   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1378   // `Step`:
1379 
1380   // 1. NSW/NUW flags on the step increment.
1381   auto PreStartFlags =
1382     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1383   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1384   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1385       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1386 
1387   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1388   // "S+X does not sign/unsign-overflow".
1389   //
1390 
1391   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1392   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1393       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1394     return PreStart;
1395 
1396   // 2. Direct overflow check on the step operation's expression.
1397   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1398   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1399   const SCEV *OperandExtendedStart =
1400       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1401                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1402   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1403     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1404       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1405       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1406       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1407       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1408     }
1409     return PreStart;
1410   }
1411 
1412   // 3. Loop precondition.
1413   ICmpInst::Predicate Pred;
1414   const SCEV *OverflowLimit =
1415       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1416 
1417   if (OverflowLimit &&
1418       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1419     return PreStart;
1420 
1421   return nullptr;
1422 }
1423 
1424 // Get the normalized zero or sign extended expression for this AddRec's Start.
1425 template <typename ExtendOpTy>
1426 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1427                                         ScalarEvolution *SE,
1428                                         unsigned Depth) {
1429   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1430 
1431   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1432   if (!PreStart)
1433     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1434 
1435   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1436                                              Depth),
1437                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1438 }
1439 
1440 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1441 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1442 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1443 //
1444 // Formally:
1445 //
1446 //     {S,+,X} == {S-T,+,X} + T
1447 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1448 //
1449 // If ({S-T,+,X} + T) does not overflow  ... (1)
1450 //
1451 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1452 //
1453 // If {S-T,+,X} does not overflow  ... (2)
1454 //
1455 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1456 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1457 //
1458 // If (S-T)+T does not overflow  ... (3)
1459 //
1460 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1461 //      == {Ext(S),+,Ext(X)} == LHS
1462 //
1463 // Thus, if (1), (2) and (3) are true for some T, then
1464 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1465 //
1466 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1467 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1468 // to check for (1) and (2).
1469 //
1470 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1471 // is `Delta` (defined below).
1472 template <typename ExtendOpTy>
1473 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1474                                                 const SCEV *Step,
1475                                                 const Loop *L) {
1476   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1477 
1478   // We restrict `Start` to a constant to prevent SCEV from spending too much
1479   // time here.  It is correct (but more expensive) to continue with a
1480   // non-constant `Start` and do a general SCEV subtraction to compute
1481   // `PreStart` below.
1482   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1483   if (!StartC)
1484     return false;
1485 
1486   APInt StartAI = StartC->getAPInt();
1487 
1488   for (unsigned Delta : {-2, -1, 1, 2}) {
1489     const SCEV *PreStart = getConstant(StartAI - Delta);
1490 
1491     FoldingSetNodeID ID;
1492     ID.AddInteger(scAddRecExpr);
1493     ID.AddPointer(PreStart);
1494     ID.AddPointer(Step);
1495     ID.AddPointer(L);
1496     void *IP = nullptr;
1497     const auto *PreAR =
1498       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1499 
1500     // Give up if we don't already have the add recurrence we need because
1501     // actually constructing an add recurrence is relatively expensive.
1502     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1503       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1504       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1505       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1506           DeltaS, &Pred, this);
1507       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1508         return true;
1509     }
1510   }
1511 
1512   return false;
1513 }
1514 
1515 // Finds an integer D for an expression (C + x + y + ...) such that the top
1516 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1517 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1518 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1519 // the (C + x + y + ...) expression is \p WholeAddExpr.
1520 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1521                                             const SCEVConstant *ConstantTerm,
1522                                             const SCEVAddExpr *WholeAddExpr) {
1523   const APInt &C = ConstantTerm->getAPInt();
1524   const unsigned BitWidth = C.getBitWidth();
1525   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1526   uint32_t TZ = BitWidth;
1527   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1528     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1529   if (TZ) {
1530     // Set D to be as many least significant bits of C as possible while still
1531     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1532     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1533   }
1534   return APInt(BitWidth, 0);
1535 }
1536 
1537 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1538 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1539 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1540 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1541 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1542                                             const APInt &ConstantStart,
1543                                             const SCEV *Step) {
1544   const unsigned BitWidth = ConstantStart.getBitWidth();
1545   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1546   if (TZ)
1547     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1548                          : ConstantStart;
1549   return APInt(BitWidth, 0);
1550 }
1551 
1552 const SCEV *
1553 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1554   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1555          "This is not an extending conversion!");
1556   assert(isSCEVable(Ty) &&
1557          "This is not a conversion to a SCEVable type!");
1558   Ty = getEffectiveSCEVType(Ty);
1559 
1560   // Fold if the operand is constant.
1561   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1562     return getConstant(
1563       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1564 
1565   // zext(zext(x)) --> zext(x)
1566   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1567     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1568 
1569   // Before doing any expensive analysis, check to see if we've already
1570   // computed a SCEV for this Op and Ty.
1571   FoldingSetNodeID ID;
1572   ID.AddInteger(scZeroExtend);
1573   ID.AddPointer(Op);
1574   ID.AddPointer(Ty);
1575   void *IP = nullptr;
1576   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1577   if (Depth > MaxCastDepth) {
1578     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1579                                                      Op, Ty);
1580     UniqueSCEVs.InsertNode(S, IP);
1581     addToLoopUseLists(S);
1582     return S;
1583   }
1584 
1585   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1586   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1587     // It's possible the bits taken off by the truncate were all zero bits. If
1588     // so, we should be able to simplify this further.
1589     const SCEV *X = ST->getOperand();
1590     ConstantRange CR = getUnsignedRange(X);
1591     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1592     unsigned NewBits = getTypeSizeInBits(Ty);
1593     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1594             CR.zextOrTrunc(NewBits)))
1595       return getTruncateOrZeroExtend(X, Ty, Depth);
1596   }
1597 
1598   // If the input value is a chrec scev, and we can prove that the value
1599   // did not overflow the old, smaller, value, we can zero extend all of the
1600   // operands (often constants).  This allows analysis of something like
1601   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1602   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1603     if (AR->isAffine()) {
1604       const SCEV *Start = AR->getStart();
1605       const SCEV *Step = AR->getStepRecurrence(*this);
1606       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1607       const Loop *L = AR->getLoop();
1608 
1609       if (!AR->hasNoUnsignedWrap()) {
1610         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1611         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1612       }
1613 
1614       // If we have special knowledge that this addrec won't overflow,
1615       // we don't need to do any further analysis.
1616       if (AR->hasNoUnsignedWrap())
1617         return getAddRecExpr(
1618             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1619             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1620 
1621       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1622       // Note that this serves two purposes: It filters out loops that are
1623       // simply not analyzable, and it covers the case where this code is
1624       // being called from within backedge-taken count analysis, such that
1625       // attempting to ask for the backedge-taken count would likely result
1626       // in infinite recursion. In the later case, the analysis code will
1627       // cope with a conservative value, and it will take care to purge
1628       // that value once it has finished.
1629       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1630       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1631         // Manually compute the final value for AR, checking for overflow.
1632 
1633         // Check whether the backedge-taken count can be losslessly casted to
1634         // the addrec's type. The count is always unsigned.
1635         const SCEV *CastedMaxBECount =
1636             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1637         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1638             CastedMaxBECount, MaxBECount->getType(), Depth);
1639         if (MaxBECount == RecastedMaxBECount) {
1640           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1641           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1642           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1643                                         SCEV::FlagAnyWrap, Depth + 1);
1644           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1645                                                           SCEV::FlagAnyWrap,
1646                                                           Depth + 1),
1647                                                WideTy, Depth + 1);
1648           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1649           const SCEV *WideMaxBECount =
1650             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1651           const SCEV *OperandExtendedAdd =
1652             getAddExpr(WideStart,
1653                        getMulExpr(WideMaxBECount,
1654                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1655                                   SCEV::FlagAnyWrap, Depth + 1),
1656                        SCEV::FlagAnyWrap, Depth + 1);
1657           if (ZAdd == OperandExtendedAdd) {
1658             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1659             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1660             // Return the expression with the addrec on the outside.
1661             return getAddRecExpr(
1662                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1663                                                          Depth + 1),
1664                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1665                 AR->getNoWrapFlags());
1666           }
1667           // Similar to above, only this time treat the step value as signed.
1668           // This covers loops that count down.
1669           OperandExtendedAdd =
1670             getAddExpr(WideStart,
1671                        getMulExpr(WideMaxBECount,
1672                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1673                                   SCEV::FlagAnyWrap, Depth + 1),
1674                        SCEV::FlagAnyWrap, Depth + 1);
1675           if (ZAdd == OperandExtendedAdd) {
1676             // Cache knowledge of AR NW, which is propagated to this AddRec.
1677             // Negative step causes unsigned wrap, but it still can't self-wrap.
1678             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1679             // Return the expression with the addrec on the outside.
1680             return getAddRecExpr(
1681                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1682                                                          Depth + 1),
1683                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1684                 AR->getNoWrapFlags());
1685           }
1686         }
1687       }
1688 
1689       // Normally, in the cases we can prove no-overflow via a
1690       // backedge guarding condition, we can also compute a backedge
1691       // taken count for the loop.  The exceptions are assumptions and
1692       // guards present in the loop -- SCEV is not great at exploiting
1693       // these to compute max backedge taken counts, but can still use
1694       // these to prove lack of overflow.  Use this fact to avoid
1695       // doing extra work that may not pay off.
1696       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1697           !AC.assumptions().empty()) {
1698 
1699         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1700         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1701         if (AR->hasNoUnsignedWrap()) {
1702           // Same as nuw case above - duplicated here to avoid a compile time
1703           // issue.  It's not clear that the order of checks does matter, but
1704           // it's one of two issue possible causes for a change which was
1705           // reverted.  Be conservative for the moment.
1706           return getAddRecExpr(
1707                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1708                                                          Depth + 1),
1709                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1710                 AR->getNoWrapFlags());
1711         }
1712 
1713         // For a negative step, we can extend the operands iff doing so only
1714         // traverses values in the range zext([0,UINT_MAX]).
1715         if (isKnownNegative(Step)) {
1716           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1717                                       getSignedRangeMin(Step));
1718           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1719               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1720             // Cache knowledge of AR NW, which is propagated to this
1721             // AddRec.  Negative step causes unsigned wrap, but it
1722             // still can't self-wrap.
1723             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1724             // Return the expression with the addrec on the outside.
1725             return getAddRecExpr(
1726                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1727                                                          Depth + 1),
1728                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1729                 AR->getNoWrapFlags());
1730           }
1731         }
1732       }
1733 
1734       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1735       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1736       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1737       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1738         const APInt &C = SC->getAPInt();
1739         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1740         if (D != 0) {
1741           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1742           const SCEV *SResidual =
1743               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1744           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1745           return getAddExpr(SZExtD, SZExtR,
1746                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1747                             Depth + 1);
1748         }
1749       }
1750 
1751       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1752         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1753         return getAddRecExpr(
1754             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1755             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1756       }
1757     }
1758 
1759   // zext(A % B) --> zext(A) % zext(B)
1760   {
1761     const SCEV *LHS;
1762     const SCEV *RHS;
1763     if (matchURem(Op, LHS, RHS))
1764       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1765                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1766   }
1767 
1768   // zext(A / B) --> zext(A) / zext(B).
1769   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1770     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1771                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1772 
1773   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1774     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1775     if (SA->hasNoUnsignedWrap()) {
1776       // If the addition does not unsign overflow then we can, by definition,
1777       // commute the zero extension with the addition operation.
1778       SmallVector<const SCEV *, 4> Ops;
1779       for (const auto *Op : SA->operands())
1780         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1781       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1782     }
1783 
1784     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1785     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1786     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1787     //
1788     // Often address arithmetics contain expressions like
1789     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1790     // This transformation is useful while proving that such expressions are
1791     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1792     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1793       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1794       if (D != 0) {
1795         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1796         const SCEV *SResidual =
1797             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1798         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1799         return getAddExpr(SZExtD, SZExtR,
1800                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1801                           Depth + 1);
1802       }
1803     }
1804   }
1805 
1806   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1807     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1808     if (SM->hasNoUnsignedWrap()) {
1809       // If the multiply does not unsign overflow then we can, by definition,
1810       // commute the zero extension with the multiply operation.
1811       SmallVector<const SCEV *, 4> Ops;
1812       for (const auto *Op : SM->operands())
1813         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1814       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1815     }
1816 
1817     // zext(2^K * (trunc X to iN)) to iM ->
1818     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1819     //
1820     // Proof:
1821     //
1822     //     zext(2^K * (trunc X to iN)) to iM
1823     //   = zext((trunc X to iN) << K) to iM
1824     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1825     //     (because shl removes the top K bits)
1826     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1827     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1828     //
1829     if (SM->getNumOperands() == 2)
1830       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1831         if (MulLHS->getAPInt().isPowerOf2())
1832           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1833             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1834                                MulLHS->getAPInt().logBase2();
1835             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1836             return getMulExpr(
1837                 getZeroExtendExpr(MulLHS, Ty),
1838                 getZeroExtendExpr(
1839                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1840                 SCEV::FlagNUW, Depth + 1);
1841           }
1842   }
1843 
1844   // The cast wasn't folded; create an explicit cast node.
1845   // Recompute the insert position, as it may have been invalidated.
1846   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1847   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1848                                                    Op, Ty);
1849   UniqueSCEVs.InsertNode(S, IP);
1850   addToLoopUseLists(S);
1851   return S;
1852 }
1853 
1854 const SCEV *
1855 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1856   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1857          "This is not an extending conversion!");
1858   assert(isSCEVable(Ty) &&
1859          "This is not a conversion to a SCEVable type!");
1860   Ty = getEffectiveSCEVType(Ty);
1861 
1862   // Fold if the operand is constant.
1863   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1864     return getConstant(
1865       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1866 
1867   // sext(sext(x)) --> sext(x)
1868   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1869     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1870 
1871   // sext(zext(x)) --> zext(x)
1872   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1873     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1874 
1875   // Before doing any expensive analysis, check to see if we've already
1876   // computed a SCEV for this Op and Ty.
1877   FoldingSetNodeID ID;
1878   ID.AddInteger(scSignExtend);
1879   ID.AddPointer(Op);
1880   ID.AddPointer(Ty);
1881   void *IP = nullptr;
1882   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1883   // Limit recursion depth.
1884   if (Depth > MaxCastDepth) {
1885     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1886                                                      Op, Ty);
1887     UniqueSCEVs.InsertNode(S, IP);
1888     addToLoopUseLists(S);
1889     return S;
1890   }
1891 
1892   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1893   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1894     // It's possible the bits taken off by the truncate were all sign bits. If
1895     // so, we should be able to simplify this further.
1896     const SCEV *X = ST->getOperand();
1897     ConstantRange CR = getSignedRange(X);
1898     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1899     unsigned NewBits = getTypeSizeInBits(Ty);
1900     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1901             CR.sextOrTrunc(NewBits)))
1902       return getTruncateOrSignExtend(X, Ty, Depth);
1903   }
1904 
1905   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1906     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1907     if (SA->hasNoSignedWrap()) {
1908       // If the addition does not sign overflow then we can, by definition,
1909       // commute the sign extension with the addition operation.
1910       SmallVector<const SCEV *, 4> Ops;
1911       for (const auto *Op : SA->operands())
1912         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1913       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1914     }
1915 
1916     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1917     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1918     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1919     //
1920     // For instance, this will bring two seemingly different expressions:
1921     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1922     //         sext(6 + 20 * %x + 24 * %y)
1923     // to the same form:
1924     //     2 + sext(4 + 20 * %x + 24 * %y)
1925     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1926       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1927       if (D != 0) {
1928         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1929         const SCEV *SResidual =
1930             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1931         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1932         return getAddExpr(SSExtD, SSExtR,
1933                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1934                           Depth + 1);
1935       }
1936     }
1937   }
1938   // If the input value is a chrec scev, and we can prove that the value
1939   // did not overflow the old, smaller, value, we can sign extend all of the
1940   // operands (often constants).  This allows analysis of something like
1941   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1942   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1943     if (AR->isAffine()) {
1944       const SCEV *Start = AR->getStart();
1945       const SCEV *Step = AR->getStepRecurrence(*this);
1946       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1947       const Loop *L = AR->getLoop();
1948 
1949       if (!AR->hasNoSignedWrap()) {
1950         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1951         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1952       }
1953 
1954       // If we have special knowledge that this addrec won't overflow,
1955       // we don't need to do any further analysis.
1956       if (AR->hasNoSignedWrap())
1957         return getAddRecExpr(
1958             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1959             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1960 
1961       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1962       // Note that this serves two purposes: It filters out loops that are
1963       // simply not analyzable, and it covers the case where this code is
1964       // being called from within backedge-taken count analysis, such that
1965       // attempting to ask for the backedge-taken count would likely result
1966       // in infinite recursion. In the later case, the analysis code will
1967       // cope with a conservative value, and it will take care to purge
1968       // that value once it has finished.
1969       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1970       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1971         // Manually compute the final value for AR, checking for
1972         // overflow.
1973 
1974         // Check whether the backedge-taken count can be losslessly casted to
1975         // the addrec's type. The count is always unsigned.
1976         const SCEV *CastedMaxBECount =
1977             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1978         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1979             CastedMaxBECount, MaxBECount->getType(), Depth);
1980         if (MaxBECount == RecastedMaxBECount) {
1981           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1982           // Check whether Start+Step*MaxBECount has no signed overflow.
1983           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1984                                         SCEV::FlagAnyWrap, Depth + 1);
1985           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1986                                                           SCEV::FlagAnyWrap,
1987                                                           Depth + 1),
1988                                                WideTy, Depth + 1);
1989           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1990           const SCEV *WideMaxBECount =
1991             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1992           const SCEV *OperandExtendedAdd =
1993             getAddExpr(WideStart,
1994                        getMulExpr(WideMaxBECount,
1995                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1996                                   SCEV::FlagAnyWrap, Depth + 1),
1997                        SCEV::FlagAnyWrap, Depth + 1);
1998           if (SAdd == OperandExtendedAdd) {
1999             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2000             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2001             // Return the expression with the addrec on the outside.
2002             return getAddRecExpr(
2003                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2004                                                          Depth + 1),
2005                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2006                 AR->getNoWrapFlags());
2007           }
2008           // Similar to above, only this time treat the step value as unsigned.
2009           // This covers loops that count up with an unsigned step.
2010           OperandExtendedAdd =
2011             getAddExpr(WideStart,
2012                        getMulExpr(WideMaxBECount,
2013                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2014                                   SCEV::FlagAnyWrap, Depth + 1),
2015                        SCEV::FlagAnyWrap, Depth + 1);
2016           if (SAdd == OperandExtendedAdd) {
2017             // If AR wraps around then
2018             //
2019             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2020             // => SAdd != OperandExtendedAdd
2021             //
2022             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2023             // (SAdd == OperandExtendedAdd => AR is NW)
2024 
2025             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2026 
2027             // Return the expression with the addrec on the outside.
2028             return getAddRecExpr(
2029                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2030                                                          Depth + 1),
2031                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2032                 AR->getNoWrapFlags());
2033           }
2034         }
2035       }
2036 
2037       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2038       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2039       if (AR->hasNoSignedWrap()) {
2040         // Same as nsw case above - duplicated here to avoid a compile time
2041         // issue.  It's not clear that the order of checks does matter, but
2042         // it's one of two issue possible causes for a change which was
2043         // reverted.  Be conservative for the moment.
2044         return getAddRecExpr(
2045             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2046             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2047       }
2048 
2049       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2050       // if D + (C - D + Step * n) could be proven to not signed wrap
2051       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2052       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2053         const APInt &C = SC->getAPInt();
2054         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2055         if (D != 0) {
2056           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2057           const SCEV *SResidual =
2058               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2059           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2060           return getAddExpr(SSExtD, SSExtR,
2061                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2062                             Depth + 1);
2063         }
2064       }
2065 
2066       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2067         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2068         return getAddRecExpr(
2069             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2070             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2071       }
2072     }
2073 
2074   // If the input value is provably positive and we could not simplify
2075   // away the sext build a zext instead.
2076   if (isKnownNonNegative(Op))
2077     return getZeroExtendExpr(Op, Ty, Depth + 1);
2078 
2079   // The cast wasn't folded; create an explicit cast node.
2080   // Recompute the insert position, as it may have been invalidated.
2081   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2082   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2083                                                    Op, Ty);
2084   UniqueSCEVs.InsertNode(S, IP);
2085   addToLoopUseLists(S);
2086   return S;
2087 }
2088 
2089 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2090 /// unspecified bits out to the given type.
2091 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2092                                               Type *Ty) {
2093   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2094          "This is not an extending conversion!");
2095   assert(isSCEVable(Ty) &&
2096          "This is not a conversion to a SCEVable type!");
2097   Ty = getEffectiveSCEVType(Ty);
2098 
2099   // Sign-extend negative constants.
2100   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2101     if (SC->getAPInt().isNegative())
2102       return getSignExtendExpr(Op, Ty);
2103 
2104   // Peel off a truncate cast.
2105   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2106     const SCEV *NewOp = T->getOperand();
2107     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2108       return getAnyExtendExpr(NewOp, Ty);
2109     return getTruncateOrNoop(NewOp, Ty);
2110   }
2111 
2112   // Next try a zext cast. If the cast is folded, use it.
2113   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2114   if (!isa<SCEVZeroExtendExpr>(ZExt))
2115     return ZExt;
2116 
2117   // Next try a sext cast. If the cast is folded, use it.
2118   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2119   if (!isa<SCEVSignExtendExpr>(SExt))
2120     return SExt;
2121 
2122   // Force the cast to be folded into the operands of an addrec.
2123   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2124     SmallVector<const SCEV *, 4> Ops;
2125     for (const SCEV *Op : AR->operands())
2126       Ops.push_back(getAnyExtendExpr(Op, Ty));
2127     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2128   }
2129 
2130   // If the expression is obviously signed, use the sext cast value.
2131   if (isa<SCEVSMaxExpr>(Op))
2132     return SExt;
2133 
2134   // Absent any other information, use the zext cast value.
2135   return ZExt;
2136 }
2137 
2138 /// Process the given Ops list, which is a list of operands to be added under
2139 /// the given scale, update the given map. This is a helper function for
2140 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2141 /// that would form an add expression like this:
2142 ///
2143 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2144 ///
2145 /// where A and B are constants, update the map with these values:
2146 ///
2147 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2148 ///
2149 /// and add 13 + A*B*29 to AccumulatedConstant.
2150 /// This will allow getAddRecExpr to produce this:
2151 ///
2152 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2153 ///
2154 /// This form often exposes folding opportunities that are hidden in
2155 /// the original operand list.
2156 ///
2157 /// Return true iff it appears that any interesting folding opportunities
2158 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2159 /// the common case where no interesting opportunities are present, and
2160 /// is also used as a check to avoid infinite recursion.
2161 static bool
2162 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2163                              SmallVectorImpl<const SCEV *> &NewOps,
2164                              APInt &AccumulatedConstant,
2165                              const SCEV *const *Ops, size_t NumOperands,
2166                              const APInt &Scale,
2167                              ScalarEvolution &SE) {
2168   bool Interesting = false;
2169 
2170   // Iterate over the add operands. They are sorted, with constants first.
2171   unsigned i = 0;
2172   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2173     ++i;
2174     // Pull a buried constant out to the outside.
2175     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2176       Interesting = true;
2177     AccumulatedConstant += Scale * C->getAPInt();
2178   }
2179 
2180   // Next comes everything else. We're especially interested in multiplies
2181   // here, but they're in the middle, so just visit the rest with one loop.
2182   for (; i != NumOperands; ++i) {
2183     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2184     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2185       APInt NewScale =
2186           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2187       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2188         // A multiplication of a constant with another add; recurse.
2189         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2190         Interesting |=
2191           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2192                                        Add->op_begin(), Add->getNumOperands(),
2193                                        NewScale, SE);
2194       } else {
2195         // A multiplication of a constant with some other value. Update
2196         // the map.
2197         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2198         const SCEV *Key = SE.getMulExpr(MulOps);
2199         auto Pair = M.insert({Key, NewScale});
2200         if (Pair.second) {
2201           NewOps.push_back(Pair.first->first);
2202         } else {
2203           Pair.first->second += NewScale;
2204           // The map already had an entry for this value, which may indicate
2205           // a folding opportunity.
2206           Interesting = true;
2207         }
2208       }
2209     } else {
2210       // An ordinary operand. Update the map.
2211       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2212           M.insert({Ops[i], Scale});
2213       if (Pair.second) {
2214         NewOps.push_back(Pair.first->first);
2215       } else {
2216         Pair.first->second += Scale;
2217         // The map already had an entry for this value, which may indicate
2218         // a folding opportunity.
2219         Interesting = true;
2220       }
2221     }
2222   }
2223 
2224   return Interesting;
2225 }
2226 
2227 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2228 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2229 // can't-overflow flags for the operation if possible.
2230 static SCEV::NoWrapFlags
2231 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2232                       const ArrayRef<const SCEV *> Ops,
2233                       SCEV::NoWrapFlags Flags) {
2234   using namespace std::placeholders;
2235 
2236   using OBO = OverflowingBinaryOperator;
2237 
2238   bool CanAnalyze =
2239       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2240   (void)CanAnalyze;
2241   assert(CanAnalyze && "don't call from other places!");
2242 
2243   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2244   SCEV::NoWrapFlags SignOrUnsignWrap =
2245       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2246 
2247   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2248   auto IsKnownNonNegative = [&](const SCEV *S) {
2249     return SE->isKnownNonNegative(S);
2250   };
2251 
2252   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2253     Flags =
2254         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2255 
2256   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2257 
2258   if (SignOrUnsignWrap != SignOrUnsignMask &&
2259       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2260       isa<SCEVConstant>(Ops[0])) {
2261 
2262     auto Opcode = [&] {
2263       switch (Type) {
2264       case scAddExpr:
2265         return Instruction::Add;
2266       case scMulExpr:
2267         return Instruction::Mul;
2268       default:
2269         llvm_unreachable("Unexpected SCEV op.");
2270       }
2271     }();
2272 
2273     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2274 
2275     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2276     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2277       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2278           Opcode, C, OBO::NoSignedWrap);
2279       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2280         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2281     }
2282 
2283     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2284     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2285       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2286           Opcode, C, OBO::NoUnsignedWrap);
2287       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2288         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2289     }
2290   }
2291 
2292   return Flags;
2293 }
2294 
2295 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2296   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2297 }
2298 
2299 /// Get a canonical add expression, or something simpler if possible.
2300 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2301                                         SCEV::NoWrapFlags OrigFlags,
2302                                         unsigned Depth) {
2303   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2304          "only nuw or nsw allowed");
2305   assert(!Ops.empty() && "Cannot get empty add!");
2306   if (Ops.size() == 1) return Ops[0];
2307 #ifndef NDEBUG
2308   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2309   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2310     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2311            "SCEVAddExpr operand types don't match!");
2312 #endif
2313 
2314   // Sort by complexity, this groups all similar expression types together.
2315   GroupByComplexity(Ops, &LI, DT);
2316 
2317   // If there are any constants, fold them together.
2318   unsigned Idx = 0;
2319   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2320     ++Idx;
2321     assert(Idx < Ops.size());
2322     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2323       // We found two constants, fold them together!
2324       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2325       if (Ops.size() == 2) return Ops[0];
2326       Ops.erase(Ops.begin()+1);  // Erase the folded element
2327       LHSC = cast<SCEVConstant>(Ops[0]);
2328     }
2329 
2330     // If we are left with a constant zero being added, strip it off.
2331     if (LHSC->getValue()->isZero()) {
2332       Ops.erase(Ops.begin());
2333       --Idx;
2334     }
2335 
2336     if (Ops.size() == 1) return Ops[0];
2337   }
2338 
2339   // Delay expensive flag strengthening until necessary.
2340   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2341     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2342   };
2343 
2344   // Limit recursion calls depth.
2345   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2346     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2347 
2348   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2349     // Don't strengthen flags if we have no new information.
2350     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2351     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2352       Add->setNoWrapFlags(ComputeFlags(Ops));
2353     return S;
2354   }
2355 
2356   // Okay, check to see if the same value occurs in the operand list more than
2357   // once.  If so, merge them together into an multiply expression.  Since we
2358   // sorted the list, these values are required to be adjacent.
2359   Type *Ty = Ops[0]->getType();
2360   bool FoundMatch = false;
2361   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2362     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2363       // Scan ahead to count how many equal operands there are.
2364       unsigned Count = 2;
2365       while (i+Count != e && Ops[i+Count] == Ops[i])
2366         ++Count;
2367       // Merge the values into a multiply.
2368       const SCEV *Scale = getConstant(Ty, Count);
2369       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2370       if (Ops.size() == Count)
2371         return Mul;
2372       Ops[i] = Mul;
2373       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2374       --i; e -= Count - 1;
2375       FoundMatch = true;
2376     }
2377   if (FoundMatch)
2378     return getAddExpr(Ops, OrigFlags, Depth + 1);
2379 
2380   // Check for truncates. If all the operands are truncated from the same
2381   // type, see if factoring out the truncate would permit the result to be
2382   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2383   // if the contents of the resulting outer trunc fold to something simple.
2384   auto FindTruncSrcType = [&]() -> Type * {
2385     // We're ultimately looking to fold an addrec of truncs and muls of only
2386     // constants and truncs, so if we find any other types of SCEV
2387     // as operands of the addrec then we bail and return nullptr here.
2388     // Otherwise, we return the type of the operand of a trunc that we find.
2389     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2390       return T->getOperand()->getType();
2391     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2392       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2393       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2394         return T->getOperand()->getType();
2395     }
2396     return nullptr;
2397   };
2398   if (auto *SrcType = FindTruncSrcType()) {
2399     SmallVector<const SCEV *, 8> LargeOps;
2400     bool Ok = true;
2401     // Check all the operands to see if they can be represented in the
2402     // source type of the truncate.
2403     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2404       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2405         if (T->getOperand()->getType() != SrcType) {
2406           Ok = false;
2407           break;
2408         }
2409         LargeOps.push_back(T->getOperand());
2410       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2411         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2412       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2413         SmallVector<const SCEV *, 8> LargeMulOps;
2414         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2415           if (const SCEVTruncateExpr *T =
2416                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2417             if (T->getOperand()->getType() != SrcType) {
2418               Ok = false;
2419               break;
2420             }
2421             LargeMulOps.push_back(T->getOperand());
2422           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2423             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2424           } else {
2425             Ok = false;
2426             break;
2427           }
2428         }
2429         if (Ok)
2430           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2431       } else {
2432         Ok = false;
2433         break;
2434       }
2435     }
2436     if (Ok) {
2437       // Evaluate the expression in the larger type.
2438       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2439       // If it folds to something simple, use it. Otherwise, don't.
2440       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2441         return getTruncateExpr(Fold, Ty);
2442     }
2443   }
2444 
2445   // Skip past any other cast SCEVs.
2446   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2447     ++Idx;
2448 
2449   // If there are add operands they would be next.
2450   if (Idx < Ops.size()) {
2451     bool DeletedAdd = false;
2452     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2453       if (Ops.size() > AddOpsInlineThreshold ||
2454           Add->getNumOperands() > AddOpsInlineThreshold)
2455         break;
2456       // If we have an add, expand the add operands onto the end of the operands
2457       // list.
2458       Ops.erase(Ops.begin()+Idx);
2459       Ops.append(Add->op_begin(), Add->op_end());
2460       DeletedAdd = true;
2461     }
2462 
2463     // If we deleted at least one add, we added operands to the end of the list,
2464     // and they are not necessarily sorted.  Recurse to resort and resimplify
2465     // any operands we just acquired.
2466     if (DeletedAdd)
2467       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2468   }
2469 
2470   // Skip over the add expression until we get to a multiply.
2471   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2472     ++Idx;
2473 
2474   // Check to see if there are any folding opportunities present with
2475   // operands multiplied by constant values.
2476   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2477     uint64_t BitWidth = getTypeSizeInBits(Ty);
2478     DenseMap<const SCEV *, APInt> M;
2479     SmallVector<const SCEV *, 8> NewOps;
2480     APInt AccumulatedConstant(BitWidth, 0);
2481     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2482                                      Ops.data(), Ops.size(),
2483                                      APInt(BitWidth, 1), *this)) {
2484       struct APIntCompare {
2485         bool operator()(const APInt &LHS, const APInt &RHS) const {
2486           return LHS.ult(RHS);
2487         }
2488       };
2489 
2490       // Some interesting folding opportunity is present, so its worthwhile to
2491       // re-generate the operands list. Group the operands by constant scale,
2492       // to avoid multiplying by the same constant scale multiple times.
2493       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2494       for (const SCEV *NewOp : NewOps)
2495         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2496       // Re-generate the operands list.
2497       Ops.clear();
2498       if (AccumulatedConstant != 0)
2499         Ops.push_back(getConstant(AccumulatedConstant));
2500       for (auto &MulOp : MulOpLists)
2501         if (MulOp.first != 0)
2502           Ops.push_back(getMulExpr(
2503               getConstant(MulOp.first),
2504               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2505               SCEV::FlagAnyWrap, Depth + 1));
2506       if (Ops.empty())
2507         return getZero(Ty);
2508       if (Ops.size() == 1)
2509         return Ops[0];
2510       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2511     }
2512   }
2513 
2514   // If we are adding something to a multiply expression, make sure the
2515   // something is not already an operand of the multiply.  If so, merge it into
2516   // the multiply.
2517   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2518     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2519     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2520       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2521       if (isa<SCEVConstant>(MulOpSCEV))
2522         continue;
2523       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2524         if (MulOpSCEV == Ops[AddOp]) {
2525           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2526           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2527           if (Mul->getNumOperands() != 2) {
2528             // If the multiply has more than two operands, we must get the
2529             // Y*Z term.
2530             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2531                                                 Mul->op_begin()+MulOp);
2532             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2533             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2534           }
2535           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2536           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2537           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2538                                             SCEV::FlagAnyWrap, Depth + 1);
2539           if (Ops.size() == 2) return OuterMul;
2540           if (AddOp < Idx) {
2541             Ops.erase(Ops.begin()+AddOp);
2542             Ops.erase(Ops.begin()+Idx-1);
2543           } else {
2544             Ops.erase(Ops.begin()+Idx);
2545             Ops.erase(Ops.begin()+AddOp-1);
2546           }
2547           Ops.push_back(OuterMul);
2548           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2549         }
2550 
2551       // Check this multiply against other multiplies being added together.
2552       for (unsigned OtherMulIdx = Idx+1;
2553            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2554            ++OtherMulIdx) {
2555         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2556         // If MulOp occurs in OtherMul, we can fold the two multiplies
2557         // together.
2558         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2559              OMulOp != e; ++OMulOp)
2560           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2561             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2562             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2563             if (Mul->getNumOperands() != 2) {
2564               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2565                                                   Mul->op_begin()+MulOp);
2566               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2567               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2568             }
2569             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2570             if (OtherMul->getNumOperands() != 2) {
2571               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2572                                                   OtherMul->op_begin()+OMulOp);
2573               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2574               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2575             }
2576             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2577             const SCEV *InnerMulSum =
2578                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2579             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2580                                               SCEV::FlagAnyWrap, Depth + 1);
2581             if (Ops.size() == 2) return OuterMul;
2582             Ops.erase(Ops.begin()+Idx);
2583             Ops.erase(Ops.begin()+OtherMulIdx-1);
2584             Ops.push_back(OuterMul);
2585             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2586           }
2587       }
2588     }
2589   }
2590 
2591   // If there are any add recurrences in the operands list, see if any other
2592   // added values are loop invariant.  If so, we can fold them into the
2593   // recurrence.
2594   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2595     ++Idx;
2596 
2597   // Scan over all recurrences, trying to fold loop invariants into them.
2598   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2599     // Scan all of the other operands to this add and add them to the vector if
2600     // they are loop invariant w.r.t. the recurrence.
2601     SmallVector<const SCEV *, 8> LIOps;
2602     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2603     const Loop *AddRecLoop = AddRec->getLoop();
2604     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2605       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2606         LIOps.push_back(Ops[i]);
2607         Ops.erase(Ops.begin()+i);
2608         --i; --e;
2609       }
2610 
2611     // If we found some loop invariants, fold them into the recurrence.
2612     if (!LIOps.empty()) {
2613       // Compute nowrap flags for the addition of the loop-invariant ops and
2614       // the addrec. Temporarily push it as an operand for that purpose.
2615       LIOps.push_back(AddRec);
2616       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2617       LIOps.pop_back();
2618 
2619       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2620       LIOps.push_back(AddRec->getStart());
2621 
2622       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2623       // This follows from the fact that the no-wrap flags on the outer add
2624       // expression are applicable on the 0th iteration, when the add recurrence
2625       // will be equal to its start value.
2626       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2627 
2628       // Build the new addrec. Propagate the NUW and NSW flags if both the
2629       // outer add and the inner addrec are guaranteed to have no overflow.
2630       // Always propagate NW.
2631       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2632       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2633 
2634       // If all of the other operands were loop invariant, we are done.
2635       if (Ops.size() == 1) return NewRec;
2636 
2637       // Otherwise, add the folded AddRec by the non-invariant parts.
2638       for (unsigned i = 0;; ++i)
2639         if (Ops[i] == AddRec) {
2640           Ops[i] = NewRec;
2641           break;
2642         }
2643       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2644     }
2645 
2646     // Okay, if there weren't any loop invariants to be folded, check to see if
2647     // there are multiple AddRec's with the same loop induction variable being
2648     // added together.  If so, we can fold them.
2649     for (unsigned OtherIdx = Idx+1;
2650          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2651          ++OtherIdx) {
2652       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2653       // so that the 1st found AddRecExpr is dominated by all others.
2654       assert(DT.dominates(
2655            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2656            AddRec->getLoop()->getHeader()) &&
2657         "AddRecExprs are not sorted in reverse dominance order?");
2658       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2659         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2660         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2661         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2662              ++OtherIdx) {
2663           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2664           if (OtherAddRec->getLoop() == AddRecLoop) {
2665             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2666                  i != e; ++i) {
2667               if (i >= AddRecOps.size()) {
2668                 AddRecOps.append(OtherAddRec->op_begin()+i,
2669                                  OtherAddRec->op_end());
2670                 break;
2671               }
2672               SmallVector<const SCEV *, 2> TwoOps = {
2673                   AddRecOps[i], OtherAddRec->getOperand(i)};
2674               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2675             }
2676             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2677           }
2678         }
2679         // Step size has changed, so we cannot guarantee no self-wraparound.
2680         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2681         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2682       }
2683     }
2684 
2685     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2686     // next one.
2687   }
2688 
2689   // Okay, it looks like we really DO need an add expr.  Check to see if we
2690   // already have one, otherwise create a new one.
2691   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2692 }
2693 
2694 const SCEV *
2695 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2696                                     SCEV::NoWrapFlags Flags) {
2697   FoldingSetNodeID ID;
2698   ID.AddInteger(scAddExpr);
2699   for (const SCEV *Op : Ops)
2700     ID.AddPointer(Op);
2701   void *IP = nullptr;
2702   SCEVAddExpr *S =
2703       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2704   if (!S) {
2705     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2706     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2707     S = new (SCEVAllocator)
2708         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2709     UniqueSCEVs.InsertNode(S, IP);
2710     addToLoopUseLists(S);
2711   }
2712   S->setNoWrapFlags(Flags);
2713   return S;
2714 }
2715 
2716 const SCEV *
2717 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2718                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2719   FoldingSetNodeID ID;
2720   ID.AddInteger(scAddRecExpr);
2721   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2722     ID.AddPointer(Ops[i]);
2723   ID.AddPointer(L);
2724   void *IP = nullptr;
2725   SCEVAddRecExpr *S =
2726       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2727   if (!S) {
2728     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2729     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2730     S = new (SCEVAllocator)
2731         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2732     UniqueSCEVs.InsertNode(S, IP);
2733     addToLoopUseLists(S);
2734   }
2735   setNoWrapFlags(S, Flags);
2736   return S;
2737 }
2738 
2739 const SCEV *
2740 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2741                                     SCEV::NoWrapFlags Flags) {
2742   FoldingSetNodeID ID;
2743   ID.AddInteger(scMulExpr);
2744   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2745     ID.AddPointer(Ops[i]);
2746   void *IP = nullptr;
2747   SCEVMulExpr *S =
2748     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2749   if (!S) {
2750     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2751     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2752     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2753                                         O, Ops.size());
2754     UniqueSCEVs.InsertNode(S, IP);
2755     addToLoopUseLists(S);
2756   }
2757   S->setNoWrapFlags(Flags);
2758   return S;
2759 }
2760 
2761 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2762   uint64_t k = i*j;
2763   if (j > 1 && k / j != i) Overflow = true;
2764   return k;
2765 }
2766 
2767 /// Compute the result of "n choose k", the binomial coefficient.  If an
2768 /// intermediate computation overflows, Overflow will be set and the return will
2769 /// be garbage. Overflow is not cleared on absence of overflow.
2770 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2771   // We use the multiplicative formula:
2772   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2773   // At each iteration, we take the n-th term of the numeral and divide by the
2774   // (k-n)th term of the denominator.  This division will always produce an
2775   // integral result, and helps reduce the chance of overflow in the
2776   // intermediate computations. However, we can still overflow even when the
2777   // final result would fit.
2778 
2779   if (n == 0 || n == k) return 1;
2780   if (k > n) return 0;
2781 
2782   if (k > n/2)
2783     k = n-k;
2784 
2785   uint64_t r = 1;
2786   for (uint64_t i = 1; i <= k; ++i) {
2787     r = umul_ov(r, n-(i-1), Overflow);
2788     r /= i;
2789   }
2790   return r;
2791 }
2792 
2793 /// Determine if any of the operands in this SCEV are a constant or if
2794 /// any of the add or multiply expressions in this SCEV contain a constant.
2795 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2796   struct FindConstantInAddMulChain {
2797     bool FoundConstant = false;
2798 
2799     bool follow(const SCEV *S) {
2800       FoundConstant |= isa<SCEVConstant>(S);
2801       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2802     }
2803 
2804     bool isDone() const {
2805       return FoundConstant;
2806     }
2807   };
2808 
2809   FindConstantInAddMulChain F;
2810   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2811   ST.visitAll(StartExpr);
2812   return F.FoundConstant;
2813 }
2814 
2815 /// Get a canonical multiply expression, or something simpler if possible.
2816 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2817                                         SCEV::NoWrapFlags OrigFlags,
2818                                         unsigned Depth) {
2819   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2820          "only nuw or nsw allowed");
2821   assert(!Ops.empty() && "Cannot get empty mul!");
2822   if (Ops.size() == 1) return Ops[0];
2823 #ifndef NDEBUG
2824   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2825   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2826     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2827            "SCEVMulExpr operand types don't match!");
2828 #endif
2829 
2830   // Sort by complexity, this groups all similar expression types together.
2831   GroupByComplexity(Ops, &LI, DT);
2832 
2833   // If there are any constants, fold them together.
2834   unsigned Idx = 0;
2835   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2836     ++Idx;
2837     assert(Idx < Ops.size());
2838     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2839       // We found two constants, fold them together!
2840       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2841       if (Ops.size() == 2) return Ops[0];
2842       Ops.erase(Ops.begin()+1);  // Erase the folded element
2843       LHSC = cast<SCEVConstant>(Ops[0]);
2844     }
2845 
2846     // If we have a multiply of zero, it will always be zero.
2847     if (LHSC->getValue()->isZero())
2848       return LHSC;
2849 
2850     // If we are left with a constant one being multiplied, strip it off.
2851     if (LHSC->getValue()->isOne()) {
2852       Ops.erase(Ops.begin());
2853       --Idx;
2854     }
2855 
2856     if (Ops.size() == 1)
2857       return Ops[0];
2858   }
2859 
2860   // Delay expensive flag strengthening until necessary.
2861   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2862     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
2863   };
2864 
2865   // Limit recursion calls depth.
2866   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2867     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
2868 
2869   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2870     // Don't strengthen flags if we have no new information.
2871     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
2872     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
2873       Mul->setNoWrapFlags(ComputeFlags(Ops));
2874     return S;
2875   }
2876 
2877   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2878     if (Ops.size() == 2) {
2879       // C1*(C2+V) -> C1*C2 + C1*V
2880       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2881         // If any of Add's ops are Adds or Muls with a constant, apply this
2882         // transformation as well.
2883         //
2884         // TODO: There are some cases where this transformation is not
2885         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2886         // this transformation should be narrowed down.
2887         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2888           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2889                                        SCEV::FlagAnyWrap, Depth + 1),
2890                             getMulExpr(LHSC, Add->getOperand(1),
2891                                        SCEV::FlagAnyWrap, Depth + 1),
2892                             SCEV::FlagAnyWrap, Depth + 1);
2893 
2894       if (Ops[0]->isAllOnesValue()) {
2895         // If we have a mul by -1 of an add, try distributing the -1 among the
2896         // add operands.
2897         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2898           SmallVector<const SCEV *, 4> NewOps;
2899           bool AnyFolded = false;
2900           for (const SCEV *AddOp : Add->operands()) {
2901             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2902                                          Depth + 1);
2903             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2904             NewOps.push_back(Mul);
2905           }
2906           if (AnyFolded)
2907             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2908         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2909           // Negation preserves a recurrence's no self-wrap property.
2910           SmallVector<const SCEV *, 4> Operands;
2911           for (const SCEV *AddRecOp : AddRec->operands())
2912             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2913                                           Depth + 1));
2914 
2915           return getAddRecExpr(Operands, AddRec->getLoop(),
2916                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2917         }
2918       }
2919     }
2920   }
2921 
2922   // Skip over the add expression until we get to a multiply.
2923   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2924     ++Idx;
2925 
2926   // If there are mul operands inline them all into this expression.
2927   if (Idx < Ops.size()) {
2928     bool DeletedMul = false;
2929     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2930       if (Ops.size() > MulOpsInlineThreshold)
2931         break;
2932       // If we have an mul, expand the mul operands onto the end of the
2933       // operands list.
2934       Ops.erase(Ops.begin()+Idx);
2935       Ops.append(Mul->op_begin(), Mul->op_end());
2936       DeletedMul = true;
2937     }
2938 
2939     // If we deleted at least one mul, we added operands to the end of the
2940     // list, and they are not necessarily sorted.  Recurse to resort and
2941     // resimplify any operands we just acquired.
2942     if (DeletedMul)
2943       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2944   }
2945 
2946   // If there are any add recurrences in the operands list, see if any other
2947   // added values are loop invariant.  If so, we can fold them into the
2948   // recurrence.
2949   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2950     ++Idx;
2951 
2952   // Scan over all recurrences, trying to fold loop invariants into them.
2953   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2954     // Scan all of the other operands to this mul and add them to the vector
2955     // if they are loop invariant w.r.t. the recurrence.
2956     SmallVector<const SCEV *, 8> LIOps;
2957     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2958     const Loop *AddRecLoop = AddRec->getLoop();
2959     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2960       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2961         LIOps.push_back(Ops[i]);
2962         Ops.erase(Ops.begin()+i);
2963         --i; --e;
2964       }
2965 
2966     // If we found some loop invariants, fold them into the recurrence.
2967     if (!LIOps.empty()) {
2968       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2969       SmallVector<const SCEV *, 4> NewOps;
2970       NewOps.reserve(AddRec->getNumOperands());
2971       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2972       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2973         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2974                                     SCEV::FlagAnyWrap, Depth + 1));
2975 
2976       // Build the new addrec. Propagate the NUW and NSW flags if both the
2977       // outer mul and the inner addrec are guaranteed to have no overflow.
2978       //
2979       // No self-wrap cannot be guaranteed after changing the step size, but
2980       // will be inferred if either NUW or NSW is true.
2981       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
2982       const SCEV *NewRec = getAddRecExpr(
2983           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
2984 
2985       // If all of the other operands were loop invariant, we are done.
2986       if (Ops.size() == 1) return NewRec;
2987 
2988       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2989       for (unsigned i = 0;; ++i)
2990         if (Ops[i] == AddRec) {
2991           Ops[i] = NewRec;
2992           break;
2993         }
2994       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2995     }
2996 
2997     // Okay, if there weren't any loop invariants to be folded, check to see
2998     // if there are multiple AddRec's with the same loop induction variable
2999     // being multiplied together.  If so, we can fold them.
3000 
3001     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3002     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3003     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3004     //   ]]],+,...up to x=2n}.
3005     // Note that the arguments to choose() are always integers with values
3006     // known at compile time, never SCEV objects.
3007     //
3008     // The implementation avoids pointless extra computations when the two
3009     // addrec's are of different length (mathematically, it's equivalent to
3010     // an infinite stream of zeros on the right).
3011     bool OpsModified = false;
3012     for (unsigned OtherIdx = Idx+1;
3013          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3014          ++OtherIdx) {
3015       const SCEVAddRecExpr *OtherAddRec =
3016         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3017       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3018         continue;
3019 
3020       // Limit max number of arguments to avoid creation of unreasonably big
3021       // SCEVAddRecs with very complex operands.
3022       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3023           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3024         continue;
3025 
3026       bool Overflow = false;
3027       Type *Ty = AddRec->getType();
3028       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3029       SmallVector<const SCEV*, 7> AddRecOps;
3030       for (int x = 0, xe = AddRec->getNumOperands() +
3031              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3032         SmallVector <const SCEV *, 7> SumOps;
3033         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3034           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3035           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3036                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3037                z < ze && !Overflow; ++z) {
3038             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3039             uint64_t Coeff;
3040             if (LargerThan64Bits)
3041               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3042             else
3043               Coeff = Coeff1*Coeff2;
3044             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3045             const SCEV *Term1 = AddRec->getOperand(y-z);
3046             const SCEV *Term2 = OtherAddRec->getOperand(z);
3047             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3048                                         SCEV::FlagAnyWrap, Depth + 1));
3049           }
3050         }
3051         if (SumOps.empty())
3052           SumOps.push_back(getZero(Ty));
3053         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3054       }
3055       if (!Overflow) {
3056         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3057                                               SCEV::FlagAnyWrap);
3058         if (Ops.size() == 2) return NewAddRec;
3059         Ops[Idx] = NewAddRec;
3060         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3061         OpsModified = true;
3062         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3063         if (!AddRec)
3064           break;
3065       }
3066     }
3067     if (OpsModified)
3068       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3069 
3070     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3071     // next one.
3072   }
3073 
3074   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3075   // already have one, otherwise create a new one.
3076   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3077 }
3078 
3079 /// Represents an unsigned remainder expression based on unsigned division.
3080 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3081                                          const SCEV *RHS) {
3082   assert(getEffectiveSCEVType(LHS->getType()) ==
3083          getEffectiveSCEVType(RHS->getType()) &&
3084          "SCEVURemExpr operand types don't match!");
3085 
3086   // Short-circuit easy cases
3087   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3088     // If constant is one, the result is trivial
3089     if (RHSC->getValue()->isOne())
3090       return getZero(LHS->getType()); // X urem 1 --> 0
3091 
3092     // If constant is a power of two, fold into a zext(trunc(LHS)).
3093     if (RHSC->getAPInt().isPowerOf2()) {
3094       Type *FullTy = LHS->getType();
3095       Type *TruncTy =
3096           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3097       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3098     }
3099   }
3100 
3101   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3102   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3103   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3104   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3105 }
3106 
3107 /// Get a canonical unsigned division expression, or something simpler if
3108 /// possible.
3109 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3110                                          const SCEV *RHS) {
3111   assert(getEffectiveSCEVType(LHS->getType()) ==
3112          getEffectiveSCEVType(RHS->getType()) &&
3113          "SCEVUDivExpr operand types don't match!");
3114 
3115   FoldingSetNodeID ID;
3116   ID.AddInteger(scUDivExpr);
3117   ID.AddPointer(LHS);
3118   ID.AddPointer(RHS);
3119   void *IP = nullptr;
3120   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3121     return S;
3122 
3123   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3124     if (RHSC->getValue()->isOne())
3125       return LHS;                               // X udiv 1 --> x
3126     // If the denominator is zero, the result of the udiv is undefined. Don't
3127     // try to analyze it, because the resolution chosen here may differ from
3128     // the resolution chosen in other parts of the compiler.
3129     if (!RHSC->getValue()->isZero()) {
3130       // Determine if the division can be folded into the operands of
3131       // its operands.
3132       // TODO: Generalize this to non-constants by using known-bits information.
3133       Type *Ty = LHS->getType();
3134       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3135       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3136       // For non-power-of-two values, effectively round the value up to the
3137       // nearest power of two.
3138       if (!RHSC->getAPInt().isPowerOf2())
3139         ++MaxShiftAmt;
3140       IntegerType *ExtTy =
3141         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3142       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3143         if (const SCEVConstant *Step =
3144             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3145           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3146           const APInt &StepInt = Step->getAPInt();
3147           const APInt &DivInt = RHSC->getAPInt();
3148           if (!StepInt.urem(DivInt) &&
3149               getZeroExtendExpr(AR, ExtTy) ==
3150               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3151                             getZeroExtendExpr(Step, ExtTy),
3152                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3153             SmallVector<const SCEV *, 4> Operands;
3154             for (const SCEV *Op : AR->operands())
3155               Operands.push_back(getUDivExpr(Op, RHS));
3156             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3157           }
3158           /// Get a canonical UDivExpr for a recurrence.
3159           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3160           // We can currently only fold X%N if X is constant.
3161           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3162           if (StartC && !DivInt.urem(StepInt) &&
3163               getZeroExtendExpr(AR, ExtTy) ==
3164               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3165                             getZeroExtendExpr(Step, ExtTy),
3166                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3167             const APInt &StartInt = StartC->getAPInt();
3168             const APInt &StartRem = StartInt.urem(StepInt);
3169             if (StartRem != 0) {
3170               const SCEV *NewLHS =
3171                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3172                                 AR->getLoop(), SCEV::FlagNW);
3173               if (LHS != NewLHS) {
3174                 LHS = NewLHS;
3175 
3176                 // Reset the ID to include the new LHS, and check if it is
3177                 // already cached.
3178                 ID.clear();
3179                 ID.AddInteger(scUDivExpr);
3180                 ID.AddPointer(LHS);
3181                 ID.AddPointer(RHS);
3182                 IP = nullptr;
3183                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3184                   return S;
3185               }
3186             }
3187           }
3188         }
3189       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3190       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3191         SmallVector<const SCEV *, 4> Operands;
3192         for (const SCEV *Op : M->operands())
3193           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3194         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3195           // Find an operand that's safely divisible.
3196           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3197             const SCEV *Op = M->getOperand(i);
3198             const SCEV *Div = getUDivExpr(Op, RHSC);
3199             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3200               Operands = SmallVector<const SCEV *, 4>(M->operands());
3201               Operands[i] = Div;
3202               return getMulExpr(Operands);
3203             }
3204           }
3205       }
3206 
3207       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3208       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3209         if (auto *DivisorConstant =
3210                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3211           bool Overflow = false;
3212           APInt NewRHS =
3213               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3214           if (Overflow) {
3215             return getConstant(RHSC->getType(), 0, false);
3216           }
3217           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3218         }
3219       }
3220 
3221       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3222       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3223         SmallVector<const SCEV *, 4> Operands;
3224         for (const SCEV *Op : A->operands())
3225           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3226         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3227           Operands.clear();
3228           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3229             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3230             if (isa<SCEVUDivExpr>(Op) ||
3231                 getMulExpr(Op, RHS) != A->getOperand(i))
3232               break;
3233             Operands.push_back(Op);
3234           }
3235           if (Operands.size() == A->getNumOperands())
3236             return getAddExpr(Operands);
3237         }
3238       }
3239 
3240       // Fold if both operands are constant.
3241       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3242         Constant *LHSCV = LHSC->getValue();
3243         Constant *RHSCV = RHSC->getValue();
3244         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3245                                                                    RHSCV)));
3246       }
3247     }
3248   }
3249 
3250   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3251   // changes). Make sure we get a new one.
3252   IP = nullptr;
3253   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3254   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3255                                              LHS, RHS);
3256   UniqueSCEVs.InsertNode(S, IP);
3257   addToLoopUseLists(S);
3258   return S;
3259 }
3260 
3261 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3262   APInt A = C1->getAPInt().abs();
3263   APInt B = C2->getAPInt().abs();
3264   uint32_t ABW = A.getBitWidth();
3265   uint32_t BBW = B.getBitWidth();
3266 
3267   if (ABW > BBW)
3268     B = B.zext(ABW);
3269   else if (ABW < BBW)
3270     A = A.zext(BBW);
3271 
3272   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3273 }
3274 
3275 /// Get a canonical unsigned division expression, or something simpler if
3276 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3277 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3278 /// it's not exact because the udiv may be clearing bits.
3279 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3280                                               const SCEV *RHS) {
3281   // TODO: we could try to find factors in all sorts of things, but for now we
3282   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3283   // end of this file for inspiration.
3284 
3285   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3286   if (!Mul || !Mul->hasNoUnsignedWrap())
3287     return getUDivExpr(LHS, RHS);
3288 
3289   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3290     // If the mulexpr multiplies by a constant, then that constant must be the
3291     // first element of the mulexpr.
3292     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3293       if (LHSCst == RHSCst) {
3294         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3295         return getMulExpr(Operands);
3296       }
3297 
3298       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3299       // that there's a factor provided by one of the other terms. We need to
3300       // check.
3301       APInt Factor = gcd(LHSCst, RHSCst);
3302       if (!Factor.isIntN(1)) {
3303         LHSCst =
3304             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3305         RHSCst =
3306             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3307         SmallVector<const SCEV *, 2> Operands;
3308         Operands.push_back(LHSCst);
3309         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3310         LHS = getMulExpr(Operands);
3311         RHS = RHSCst;
3312         Mul = dyn_cast<SCEVMulExpr>(LHS);
3313         if (!Mul)
3314           return getUDivExactExpr(LHS, RHS);
3315       }
3316     }
3317   }
3318 
3319   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3320     if (Mul->getOperand(i) == RHS) {
3321       SmallVector<const SCEV *, 2> Operands;
3322       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3323       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3324       return getMulExpr(Operands);
3325     }
3326   }
3327 
3328   return getUDivExpr(LHS, RHS);
3329 }
3330 
3331 /// Get an add recurrence expression for the specified loop.  Simplify the
3332 /// expression as much as possible.
3333 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3334                                            const Loop *L,
3335                                            SCEV::NoWrapFlags Flags) {
3336   SmallVector<const SCEV *, 4> Operands;
3337   Operands.push_back(Start);
3338   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3339     if (StepChrec->getLoop() == L) {
3340       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3341       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3342     }
3343 
3344   Operands.push_back(Step);
3345   return getAddRecExpr(Operands, L, Flags);
3346 }
3347 
3348 /// Get an add recurrence expression for the specified loop.  Simplify the
3349 /// expression as much as possible.
3350 const SCEV *
3351 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3352                                const Loop *L, SCEV::NoWrapFlags Flags) {
3353   if (Operands.size() == 1) return Operands[0];
3354 #ifndef NDEBUG
3355   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3356   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3357     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3358            "SCEVAddRecExpr operand types don't match!");
3359   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3360     assert(isLoopInvariant(Operands[i], L) &&
3361            "SCEVAddRecExpr operand is not loop-invariant!");
3362 #endif
3363 
3364   if (Operands.back()->isZero()) {
3365     Operands.pop_back();
3366     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3367   }
3368 
3369   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3370   // use that information to infer NUW and NSW flags. However, computing a
3371   // BE count requires calling getAddRecExpr, so we may not yet have a
3372   // meaningful BE count at this point (and if we don't, we'd be stuck
3373   // with a SCEVCouldNotCompute as the cached BE count).
3374 
3375   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3376 
3377   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3378   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3379     const Loop *NestedLoop = NestedAR->getLoop();
3380     if (L->contains(NestedLoop)
3381             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3382             : (!NestedLoop->contains(L) &&
3383                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3384       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3385       Operands[0] = NestedAR->getStart();
3386       // AddRecs require their operands be loop-invariant with respect to their
3387       // loops. Don't perform this transformation if it would break this
3388       // requirement.
3389       bool AllInvariant = all_of(
3390           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3391 
3392       if (AllInvariant) {
3393         // Create a recurrence for the outer loop with the same step size.
3394         //
3395         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3396         // inner recurrence has the same property.
3397         SCEV::NoWrapFlags OuterFlags =
3398           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3399 
3400         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3401         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3402           return isLoopInvariant(Op, NestedLoop);
3403         });
3404 
3405         if (AllInvariant) {
3406           // Ok, both add recurrences are valid after the transformation.
3407           //
3408           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3409           // the outer recurrence has the same property.
3410           SCEV::NoWrapFlags InnerFlags =
3411             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3412           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3413         }
3414       }
3415       // Reset Operands to its original state.
3416       Operands[0] = NestedAR;
3417     }
3418   }
3419 
3420   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3421   // already have one, otherwise create a new one.
3422   return getOrCreateAddRecExpr(Operands, L, Flags);
3423 }
3424 
3425 const SCEV *
3426 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3427                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3428   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3429   // getSCEV(Base)->getType() has the same address space as Base->getType()
3430   // because SCEV::getType() preserves the address space.
3431   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3432   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3433   // instruction to its SCEV, because the Instruction may be guarded by control
3434   // flow and the no-overflow bits may not be valid for the expression in any
3435   // context. This can be fixed similarly to how these flags are handled for
3436   // adds.
3437   SCEV::NoWrapFlags OffsetWrap =
3438       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3439 
3440   Type *CurTy = GEP->getType();
3441   bool FirstIter = true;
3442   SmallVector<const SCEV *, 4> Offsets;
3443   for (const SCEV *IndexExpr : IndexExprs) {
3444     // Compute the (potentially symbolic) offset in bytes for this index.
3445     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3446       // For a struct, add the member offset.
3447       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3448       unsigned FieldNo = Index->getZExtValue();
3449       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3450       Offsets.push_back(FieldOffset);
3451 
3452       // Update CurTy to the type of the field at Index.
3453       CurTy = STy->getTypeAtIndex(Index);
3454     } else {
3455       // Update CurTy to its element type.
3456       if (FirstIter) {
3457         assert(isa<PointerType>(CurTy) &&
3458                "The first index of a GEP indexes a pointer");
3459         CurTy = GEP->getSourceElementType();
3460         FirstIter = false;
3461       } else {
3462         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3463       }
3464       // For an array, add the element offset, explicitly scaled.
3465       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3466       // Getelementptr indices are signed.
3467       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3468 
3469       // Multiply the index by the element size to compute the element offset.
3470       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3471       Offsets.push_back(LocalOffset);
3472     }
3473   }
3474 
3475   // Handle degenerate case of GEP without offsets.
3476   if (Offsets.empty())
3477     return BaseExpr;
3478 
3479   // Add the offsets together, assuming nsw if inbounds.
3480   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3481   // Add the base address and the offset. We cannot use the nsw flag, as the
3482   // base address is unsigned. However, if we know that the offset is
3483   // non-negative, we can use nuw.
3484   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3485                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3486   return getAddExpr(BaseExpr, Offset, BaseWrap);
3487 }
3488 
3489 std::tuple<SCEV *, FoldingSetNodeID, void *>
3490 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3491                                          ArrayRef<const SCEV *> Ops) {
3492   FoldingSetNodeID ID;
3493   void *IP = nullptr;
3494   ID.AddInteger(SCEVType);
3495   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3496     ID.AddPointer(Ops[i]);
3497   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3498       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3499 }
3500 
3501 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3502   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3503   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3504 }
3505 
3506 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) {
3507   Type *Ty = Op->getType();
3508   return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty));
3509 }
3510 
3511 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3512                                            SmallVectorImpl<const SCEV *> &Ops) {
3513   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3514   if (Ops.size() == 1) return Ops[0];
3515 #ifndef NDEBUG
3516   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3517   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3518     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3519            "Operand types don't match!");
3520 #endif
3521 
3522   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3523   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3524 
3525   // Sort by complexity, this groups all similar expression types together.
3526   GroupByComplexity(Ops, &LI, DT);
3527 
3528   // Check if we have created the same expression before.
3529   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3530     return S;
3531   }
3532 
3533   // If there are any constants, fold them together.
3534   unsigned Idx = 0;
3535   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3536     ++Idx;
3537     assert(Idx < Ops.size());
3538     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3539       if (Kind == scSMaxExpr)
3540         return APIntOps::smax(LHS, RHS);
3541       else if (Kind == scSMinExpr)
3542         return APIntOps::smin(LHS, RHS);
3543       else if (Kind == scUMaxExpr)
3544         return APIntOps::umax(LHS, RHS);
3545       else if (Kind == scUMinExpr)
3546         return APIntOps::umin(LHS, RHS);
3547       llvm_unreachable("Unknown SCEV min/max opcode");
3548     };
3549 
3550     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3551       // We found two constants, fold them together!
3552       ConstantInt *Fold = ConstantInt::get(
3553           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3554       Ops[0] = getConstant(Fold);
3555       Ops.erase(Ops.begin()+1);  // Erase the folded element
3556       if (Ops.size() == 1) return Ops[0];
3557       LHSC = cast<SCEVConstant>(Ops[0]);
3558     }
3559 
3560     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3561     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3562 
3563     if (IsMax ? IsMinV : IsMaxV) {
3564       // If we are left with a constant minimum(/maximum)-int, strip it off.
3565       Ops.erase(Ops.begin());
3566       --Idx;
3567     } else if (IsMax ? IsMaxV : IsMinV) {
3568       // If we have a max(/min) with a constant maximum(/minimum)-int,
3569       // it will always be the extremum.
3570       return LHSC;
3571     }
3572 
3573     if (Ops.size() == 1) return Ops[0];
3574   }
3575 
3576   // Find the first operation of the same kind
3577   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3578     ++Idx;
3579 
3580   // Check to see if one of the operands is of the same kind. If so, expand its
3581   // operands onto our operand list, and recurse to simplify.
3582   if (Idx < Ops.size()) {
3583     bool DeletedAny = false;
3584     while (Ops[Idx]->getSCEVType() == Kind) {
3585       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3586       Ops.erase(Ops.begin()+Idx);
3587       Ops.append(SMME->op_begin(), SMME->op_end());
3588       DeletedAny = true;
3589     }
3590 
3591     if (DeletedAny)
3592       return getMinMaxExpr(Kind, Ops);
3593   }
3594 
3595   // Okay, check to see if the same value occurs in the operand list twice.  If
3596   // so, delete one.  Since we sorted the list, these values are required to
3597   // be adjacent.
3598   llvm::CmpInst::Predicate GEPred =
3599       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3600   llvm::CmpInst::Predicate LEPred =
3601       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3602   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3603   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3604   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3605     if (Ops[i] == Ops[i + 1] ||
3606         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3607       //  X op Y op Y  -->  X op Y
3608       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3609       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3610       --i;
3611       --e;
3612     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3613                                                Ops[i + 1])) {
3614       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3615       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3616       --i;
3617       --e;
3618     }
3619   }
3620 
3621   if (Ops.size() == 1) return Ops[0];
3622 
3623   assert(!Ops.empty() && "Reduced smax down to nothing!");
3624 
3625   // Okay, it looks like we really DO need an expr.  Check to see if we
3626   // already have one, otherwise create a new one.
3627   const SCEV *ExistingSCEV;
3628   FoldingSetNodeID ID;
3629   void *IP;
3630   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3631   if (ExistingSCEV)
3632     return ExistingSCEV;
3633   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3634   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3635   SCEV *S = new (SCEVAllocator)
3636       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3637 
3638   UniqueSCEVs.InsertNode(S, IP);
3639   addToLoopUseLists(S);
3640   return S;
3641 }
3642 
3643 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3644   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3645   return getSMaxExpr(Ops);
3646 }
3647 
3648 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3649   return getMinMaxExpr(scSMaxExpr, Ops);
3650 }
3651 
3652 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3653   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3654   return getUMaxExpr(Ops);
3655 }
3656 
3657 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3658   return getMinMaxExpr(scUMaxExpr, Ops);
3659 }
3660 
3661 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3662                                          const SCEV *RHS) {
3663   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3664   return getSMinExpr(Ops);
3665 }
3666 
3667 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3668   return getMinMaxExpr(scSMinExpr, Ops);
3669 }
3670 
3671 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3672                                          const SCEV *RHS) {
3673   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3674   return getUMinExpr(Ops);
3675 }
3676 
3677 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3678   return getMinMaxExpr(scUMinExpr, Ops);
3679 }
3680 
3681 const SCEV *
3682 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3683                                              ScalableVectorType *ScalableTy) {
3684   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3685   Constant *One = ConstantInt::get(IntTy, 1);
3686   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3687   // Note that the expression we created is the final expression, we don't
3688   // want to simplify it any further Also, if we call a normal getSCEV(),
3689   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3690   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3691 }
3692 
3693 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3694   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3695     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3696   // We can bypass creating a target-independent constant expression and then
3697   // folding it back into a ConstantInt. This is just a compile-time
3698   // optimization.
3699   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3700 }
3701 
3702 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3703   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3704     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3705   // We can bypass creating a target-independent constant expression and then
3706   // folding it back into a ConstantInt. This is just a compile-time
3707   // optimization.
3708   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3709 }
3710 
3711 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3712                                              StructType *STy,
3713                                              unsigned FieldNo) {
3714   // We can bypass creating a target-independent constant expression and then
3715   // folding it back into a ConstantInt. This is just a compile-time
3716   // optimization.
3717   return getConstant(
3718       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3719 }
3720 
3721 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3722   // Don't attempt to do anything other than create a SCEVUnknown object
3723   // here.  createSCEV only calls getUnknown after checking for all other
3724   // interesting possibilities, and any other code that calls getUnknown
3725   // is doing so in order to hide a value from SCEV canonicalization.
3726 
3727   FoldingSetNodeID ID;
3728   ID.AddInteger(scUnknown);
3729   ID.AddPointer(V);
3730   void *IP = nullptr;
3731   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3732     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3733            "Stale SCEVUnknown in uniquing map!");
3734     return S;
3735   }
3736   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3737                                             FirstUnknown);
3738   FirstUnknown = cast<SCEVUnknown>(S);
3739   UniqueSCEVs.InsertNode(S, IP);
3740   return S;
3741 }
3742 
3743 //===----------------------------------------------------------------------===//
3744 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3745 //
3746 
3747 /// Test if values of the given type are analyzable within the SCEV
3748 /// framework. This primarily includes integer types, and it can optionally
3749 /// include pointer types if the ScalarEvolution class has access to
3750 /// target-specific information.
3751 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3752   // Integers and pointers are always SCEVable.
3753   return Ty->isIntOrPtrTy();
3754 }
3755 
3756 /// Return the size in bits of the specified type, for which isSCEVable must
3757 /// return true.
3758 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3759   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3760   if (Ty->isPointerTy())
3761     return getDataLayout().getIndexTypeSizeInBits(Ty);
3762   return getDataLayout().getTypeSizeInBits(Ty);
3763 }
3764 
3765 /// Return a type with the same bitwidth as the given type and which represents
3766 /// how SCEV will treat the given type, for which isSCEVable must return
3767 /// true. For pointer types, this is the pointer index sized integer type.
3768 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3769   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3770 
3771   if (Ty->isIntegerTy())
3772     return Ty;
3773 
3774   // The only other support type is pointer.
3775   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3776   return getDataLayout().getIndexType(Ty);
3777 }
3778 
3779 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3780   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3781 }
3782 
3783 const SCEV *ScalarEvolution::getCouldNotCompute() {
3784   return CouldNotCompute.get();
3785 }
3786 
3787 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3788   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3789     auto *SU = dyn_cast<SCEVUnknown>(S);
3790     return SU && SU->getValue() == nullptr;
3791   });
3792 
3793   return !ContainsNulls;
3794 }
3795 
3796 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3797   HasRecMapType::iterator I = HasRecMap.find(S);
3798   if (I != HasRecMap.end())
3799     return I->second;
3800 
3801   bool FoundAddRec =
3802       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3803   HasRecMap.insert({S, FoundAddRec});
3804   return FoundAddRec;
3805 }
3806 
3807 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3808 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3809 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3810 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3811   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3812   if (!Add)
3813     return {S, nullptr};
3814 
3815   if (Add->getNumOperands() != 2)
3816     return {S, nullptr};
3817 
3818   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3819   if (!ConstOp)
3820     return {S, nullptr};
3821 
3822   return {Add->getOperand(1), ConstOp->getValue()};
3823 }
3824 
3825 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3826 /// by the value and offset from any ValueOffsetPair in the set.
3827 SetVector<ScalarEvolution::ValueOffsetPair> *
3828 ScalarEvolution::getSCEVValues(const SCEV *S) {
3829   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3830   if (SI == ExprValueMap.end())
3831     return nullptr;
3832 #ifndef NDEBUG
3833   if (VerifySCEVMap) {
3834     // Check there is no dangling Value in the set returned.
3835     for (const auto &VE : SI->second)
3836       assert(ValueExprMap.count(VE.first));
3837   }
3838 #endif
3839   return &SI->second;
3840 }
3841 
3842 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3843 /// cannot be used separately. eraseValueFromMap should be used to remove
3844 /// V from ValueExprMap and ExprValueMap at the same time.
3845 void ScalarEvolution::eraseValueFromMap(Value *V) {
3846   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3847   if (I != ValueExprMap.end()) {
3848     const SCEV *S = I->second;
3849     // Remove {V, 0} from the set of ExprValueMap[S]
3850     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3851       SV->remove({V, nullptr});
3852 
3853     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3854     const SCEV *Stripped;
3855     ConstantInt *Offset;
3856     std::tie(Stripped, Offset) = splitAddExpr(S);
3857     if (Offset != nullptr) {
3858       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3859         SV->remove({V, Offset});
3860     }
3861     ValueExprMap.erase(V);
3862   }
3863 }
3864 
3865 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3866 /// TODO: In reality it is better to check the poison recursively
3867 /// but this is better than nothing.
3868 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3869   if (auto *I = dyn_cast<Instruction>(V)) {
3870     if (isa<OverflowingBinaryOperator>(I)) {
3871       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3872         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3873           return true;
3874         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3875           return true;
3876       }
3877     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3878       return true;
3879   }
3880   return false;
3881 }
3882 
3883 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3884 /// create a new one.
3885 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3886   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3887 
3888   const SCEV *S = getExistingSCEV(V);
3889   if (S == nullptr) {
3890     S = createSCEV(V);
3891     // During PHI resolution, it is possible to create two SCEVs for the same
3892     // V, so it is needed to double check whether V->S is inserted into
3893     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3894     std::pair<ValueExprMapType::iterator, bool> Pair =
3895         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3896     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3897       ExprValueMap[S].insert({V, nullptr});
3898 
3899       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3900       // ExprValueMap.
3901       const SCEV *Stripped = S;
3902       ConstantInt *Offset = nullptr;
3903       std::tie(Stripped, Offset) = splitAddExpr(S);
3904       // If stripped is SCEVUnknown, don't bother to save
3905       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3906       // increase the complexity of the expansion code.
3907       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3908       // because it may generate add/sub instead of GEP in SCEV expansion.
3909       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3910           !isa<GetElementPtrInst>(V))
3911         ExprValueMap[Stripped].insert({V, Offset});
3912     }
3913   }
3914   return S;
3915 }
3916 
3917 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3918   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3919 
3920   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3921   if (I != ValueExprMap.end()) {
3922     const SCEV *S = I->second;
3923     if (checkValidity(S))
3924       return S;
3925     eraseValueFromMap(V);
3926     forgetMemoizedResults(S);
3927   }
3928   return nullptr;
3929 }
3930 
3931 /// Return a SCEV corresponding to -V = -1*V
3932 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3933                                              SCEV::NoWrapFlags Flags) {
3934   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3935     return getConstant(
3936                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3937 
3938   Type *Ty = V->getType();
3939   Ty = getEffectiveSCEVType(Ty);
3940   return getMulExpr(V, getMinusOne(Ty), Flags);
3941 }
3942 
3943 /// If Expr computes ~A, return A else return nullptr
3944 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3945   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3946   if (!Add || Add->getNumOperands() != 2 ||
3947       !Add->getOperand(0)->isAllOnesValue())
3948     return nullptr;
3949 
3950   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3951   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3952       !AddRHS->getOperand(0)->isAllOnesValue())
3953     return nullptr;
3954 
3955   return AddRHS->getOperand(1);
3956 }
3957 
3958 /// Return a SCEV corresponding to ~V = -1-V
3959 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3960   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3961     return getConstant(
3962                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3963 
3964   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3965   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3966     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3967       SmallVector<const SCEV *, 2> MatchedOperands;
3968       for (const SCEV *Operand : MME->operands()) {
3969         const SCEV *Matched = MatchNotExpr(Operand);
3970         if (!Matched)
3971           return (const SCEV *)nullptr;
3972         MatchedOperands.push_back(Matched);
3973       }
3974       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
3975                            MatchedOperands);
3976     };
3977     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3978       return Replaced;
3979   }
3980 
3981   Type *Ty = V->getType();
3982   Ty = getEffectiveSCEVType(Ty);
3983   return getMinusSCEV(getMinusOne(Ty), V);
3984 }
3985 
3986 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3987                                           SCEV::NoWrapFlags Flags,
3988                                           unsigned Depth) {
3989   // Fast path: X - X --> 0.
3990   if (LHS == RHS)
3991     return getZero(LHS->getType());
3992 
3993   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3994   // makes it so that we cannot make much use of NUW.
3995   auto AddFlags = SCEV::FlagAnyWrap;
3996   const bool RHSIsNotMinSigned =
3997       !getSignedRangeMin(RHS).isMinSignedValue();
3998   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3999     // Let M be the minimum representable signed value. Then (-1)*RHS
4000     // signed-wraps if and only if RHS is M. That can happen even for
4001     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4002     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4003     // (-1)*RHS, we need to prove that RHS != M.
4004     //
4005     // If LHS is non-negative and we know that LHS - RHS does not
4006     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4007     // either by proving that RHS > M or that LHS >= 0.
4008     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4009       AddFlags = SCEV::FlagNSW;
4010     }
4011   }
4012 
4013   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4014   // RHS is NSW and LHS >= 0.
4015   //
4016   // The difficulty here is that the NSW flag may have been proven
4017   // relative to a loop that is to be found in a recurrence in LHS and
4018   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4019   // larger scope than intended.
4020   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4021 
4022   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4023 }
4024 
4025 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4026                                                      unsigned Depth) {
4027   Type *SrcTy = V->getType();
4028   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4029          "Cannot truncate or zero extend with non-integer arguments!");
4030   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4031     return V;  // No conversion
4032   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4033     return getTruncateExpr(V, Ty, Depth);
4034   return getZeroExtendExpr(V, Ty, Depth);
4035 }
4036 
4037 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4038                                                      unsigned Depth) {
4039   Type *SrcTy = V->getType();
4040   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4041          "Cannot truncate or zero extend with non-integer arguments!");
4042   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4043     return V;  // No conversion
4044   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4045     return getTruncateExpr(V, Ty, Depth);
4046   return getSignExtendExpr(V, Ty, Depth);
4047 }
4048 
4049 const SCEV *
4050 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4051   Type *SrcTy = V->getType();
4052   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4053          "Cannot noop or zero extend with non-integer arguments!");
4054   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4055          "getNoopOrZeroExtend cannot truncate!");
4056   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4057     return V;  // No conversion
4058   return getZeroExtendExpr(V, Ty);
4059 }
4060 
4061 const SCEV *
4062 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4063   Type *SrcTy = V->getType();
4064   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4065          "Cannot noop or sign extend with non-integer arguments!");
4066   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4067          "getNoopOrSignExtend cannot truncate!");
4068   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4069     return V;  // No conversion
4070   return getSignExtendExpr(V, Ty);
4071 }
4072 
4073 const SCEV *
4074 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4075   Type *SrcTy = V->getType();
4076   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4077          "Cannot noop or any extend with non-integer arguments!");
4078   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4079          "getNoopOrAnyExtend cannot truncate!");
4080   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4081     return V;  // No conversion
4082   return getAnyExtendExpr(V, Ty);
4083 }
4084 
4085 const SCEV *
4086 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4087   Type *SrcTy = V->getType();
4088   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4089          "Cannot truncate or noop with non-integer arguments!");
4090   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4091          "getTruncateOrNoop cannot extend!");
4092   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4093     return V;  // No conversion
4094   return getTruncateExpr(V, Ty);
4095 }
4096 
4097 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4098                                                         const SCEV *RHS) {
4099   const SCEV *PromotedLHS = LHS;
4100   const SCEV *PromotedRHS = RHS;
4101 
4102   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4103     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4104   else
4105     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4106 
4107   return getUMaxExpr(PromotedLHS, PromotedRHS);
4108 }
4109 
4110 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4111                                                         const SCEV *RHS) {
4112   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4113   return getUMinFromMismatchedTypes(Ops);
4114 }
4115 
4116 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4117     SmallVectorImpl<const SCEV *> &Ops) {
4118   assert(!Ops.empty() && "At least one operand must be!");
4119   // Trivial case.
4120   if (Ops.size() == 1)
4121     return Ops[0];
4122 
4123   // Find the max type first.
4124   Type *MaxType = nullptr;
4125   for (auto *S : Ops)
4126     if (MaxType)
4127       MaxType = getWiderType(MaxType, S->getType());
4128     else
4129       MaxType = S->getType();
4130   assert(MaxType && "Failed to find maximum type!");
4131 
4132   // Extend all ops to max type.
4133   SmallVector<const SCEV *, 2> PromotedOps;
4134   for (auto *S : Ops)
4135     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4136 
4137   // Generate umin.
4138   return getUMinExpr(PromotedOps);
4139 }
4140 
4141 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4142   // A pointer operand may evaluate to a nonpointer expression, such as null.
4143   if (!V->getType()->isPointerTy())
4144     return V;
4145 
4146   while (true) {
4147     if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
4148       V = Cast->getOperand();
4149     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4150       const SCEV *PtrOp = nullptr;
4151       for (const SCEV *NAryOp : NAry->operands()) {
4152         if (NAryOp->getType()->isPointerTy()) {
4153           // Cannot find the base of an expression with multiple pointer ops.
4154           if (PtrOp)
4155             return V;
4156           PtrOp = NAryOp;
4157         }
4158       }
4159       if (!PtrOp) // All operands were non-pointer.
4160         return V;
4161       V = PtrOp;
4162     } else // Not something we can look further into.
4163       return V;
4164   }
4165 }
4166 
4167 /// Push users of the given Instruction onto the given Worklist.
4168 static void
4169 PushDefUseChildren(Instruction *I,
4170                    SmallVectorImpl<Instruction *> &Worklist) {
4171   // Push the def-use children onto the Worklist stack.
4172   for (User *U : I->users())
4173     Worklist.push_back(cast<Instruction>(U));
4174 }
4175 
4176 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4177   SmallVector<Instruction *, 16> Worklist;
4178   PushDefUseChildren(PN, Worklist);
4179 
4180   SmallPtrSet<Instruction *, 8> Visited;
4181   Visited.insert(PN);
4182   while (!Worklist.empty()) {
4183     Instruction *I = Worklist.pop_back_val();
4184     if (!Visited.insert(I).second)
4185       continue;
4186 
4187     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4188     if (It != ValueExprMap.end()) {
4189       const SCEV *Old = It->second;
4190 
4191       // Short-circuit the def-use traversal if the symbolic name
4192       // ceases to appear in expressions.
4193       if (Old != SymName && !hasOperand(Old, SymName))
4194         continue;
4195 
4196       // SCEVUnknown for a PHI either means that it has an unrecognized
4197       // structure, it's a PHI that's in the progress of being computed
4198       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4199       // additional loop trip count information isn't going to change anything.
4200       // In the second case, createNodeForPHI will perform the necessary
4201       // updates on its own when it gets to that point. In the third, we do
4202       // want to forget the SCEVUnknown.
4203       if (!isa<PHINode>(I) ||
4204           !isa<SCEVUnknown>(Old) ||
4205           (I != PN && Old == SymName)) {
4206         eraseValueFromMap(It->first);
4207         forgetMemoizedResults(Old);
4208       }
4209     }
4210 
4211     PushDefUseChildren(I, Worklist);
4212   }
4213 }
4214 
4215 namespace {
4216 
4217 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4218 /// expression in case its Loop is L. If it is not L then
4219 /// if IgnoreOtherLoops is true then use AddRec itself
4220 /// otherwise rewrite cannot be done.
4221 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4222 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4223 public:
4224   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4225                              bool IgnoreOtherLoops = true) {
4226     SCEVInitRewriter Rewriter(L, SE);
4227     const SCEV *Result = Rewriter.visit(S);
4228     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4229       return SE.getCouldNotCompute();
4230     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4231                ? SE.getCouldNotCompute()
4232                : Result;
4233   }
4234 
4235   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4236     if (!SE.isLoopInvariant(Expr, L))
4237       SeenLoopVariantSCEVUnknown = true;
4238     return Expr;
4239   }
4240 
4241   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4242     // Only re-write AddRecExprs for this loop.
4243     if (Expr->getLoop() == L)
4244       return Expr->getStart();
4245     SeenOtherLoops = true;
4246     return Expr;
4247   }
4248 
4249   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4250 
4251   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4252 
4253 private:
4254   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4255       : SCEVRewriteVisitor(SE), L(L) {}
4256 
4257   const Loop *L;
4258   bool SeenLoopVariantSCEVUnknown = false;
4259   bool SeenOtherLoops = false;
4260 };
4261 
4262 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4263 /// increment expression in case its Loop is L. If it is not L then
4264 /// use AddRec itself.
4265 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4266 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4267 public:
4268   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4269     SCEVPostIncRewriter Rewriter(L, SE);
4270     const SCEV *Result = Rewriter.visit(S);
4271     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4272         ? SE.getCouldNotCompute()
4273         : Result;
4274   }
4275 
4276   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4277     if (!SE.isLoopInvariant(Expr, L))
4278       SeenLoopVariantSCEVUnknown = true;
4279     return Expr;
4280   }
4281 
4282   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4283     // Only re-write AddRecExprs for this loop.
4284     if (Expr->getLoop() == L)
4285       return Expr->getPostIncExpr(SE);
4286     SeenOtherLoops = true;
4287     return Expr;
4288   }
4289 
4290   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4291 
4292   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4293 
4294 private:
4295   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4296       : SCEVRewriteVisitor(SE), L(L) {}
4297 
4298   const Loop *L;
4299   bool SeenLoopVariantSCEVUnknown = false;
4300   bool SeenOtherLoops = false;
4301 };
4302 
4303 /// This class evaluates the compare condition by matching it against the
4304 /// condition of loop latch. If there is a match we assume a true value
4305 /// for the condition while building SCEV nodes.
4306 class SCEVBackedgeConditionFolder
4307     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4308 public:
4309   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4310                              ScalarEvolution &SE) {
4311     bool IsPosBECond = false;
4312     Value *BECond = nullptr;
4313     if (BasicBlock *Latch = L->getLoopLatch()) {
4314       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4315       if (BI && BI->isConditional()) {
4316         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4317                "Both outgoing branches should not target same header!");
4318         BECond = BI->getCondition();
4319         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4320       } else {
4321         return S;
4322       }
4323     }
4324     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4325     return Rewriter.visit(S);
4326   }
4327 
4328   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4329     const SCEV *Result = Expr;
4330     bool InvariantF = SE.isLoopInvariant(Expr, L);
4331 
4332     if (!InvariantF) {
4333       Instruction *I = cast<Instruction>(Expr->getValue());
4334       switch (I->getOpcode()) {
4335       case Instruction::Select: {
4336         SelectInst *SI = cast<SelectInst>(I);
4337         Optional<const SCEV *> Res =
4338             compareWithBackedgeCondition(SI->getCondition());
4339         if (Res.hasValue()) {
4340           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4341           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4342         }
4343         break;
4344       }
4345       default: {
4346         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4347         if (Res.hasValue())
4348           Result = Res.getValue();
4349         break;
4350       }
4351       }
4352     }
4353     return Result;
4354   }
4355 
4356 private:
4357   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4358                                        bool IsPosBECond, ScalarEvolution &SE)
4359       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4360         IsPositiveBECond(IsPosBECond) {}
4361 
4362   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4363 
4364   const Loop *L;
4365   /// Loop back condition.
4366   Value *BackedgeCond = nullptr;
4367   /// Set to true if loop back is on positive branch condition.
4368   bool IsPositiveBECond;
4369 };
4370 
4371 Optional<const SCEV *>
4372 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4373 
4374   // If value matches the backedge condition for loop latch,
4375   // then return a constant evolution node based on loopback
4376   // branch taken.
4377   if (BackedgeCond == IC)
4378     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4379                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4380   return None;
4381 }
4382 
4383 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4384 public:
4385   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4386                              ScalarEvolution &SE) {
4387     SCEVShiftRewriter Rewriter(L, SE);
4388     const SCEV *Result = Rewriter.visit(S);
4389     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4390   }
4391 
4392   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4393     // Only allow AddRecExprs for this loop.
4394     if (!SE.isLoopInvariant(Expr, L))
4395       Valid = false;
4396     return Expr;
4397   }
4398 
4399   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4400     if (Expr->getLoop() == L && Expr->isAffine())
4401       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4402     Valid = false;
4403     return Expr;
4404   }
4405 
4406   bool isValid() { return Valid; }
4407 
4408 private:
4409   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4410       : SCEVRewriteVisitor(SE), L(L) {}
4411 
4412   const Loop *L;
4413   bool Valid = true;
4414 };
4415 
4416 } // end anonymous namespace
4417 
4418 SCEV::NoWrapFlags
4419 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4420   if (!AR->isAffine())
4421     return SCEV::FlagAnyWrap;
4422 
4423   using OBO = OverflowingBinaryOperator;
4424 
4425   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4426 
4427   if (!AR->hasNoSignedWrap()) {
4428     ConstantRange AddRecRange = getSignedRange(AR);
4429     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4430 
4431     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4432         Instruction::Add, IncRange, OBO::NoSignedWrap);
4433     if (NSWRegion.contains(AddRecRange))
4434       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4435   }
4436 
4437   if (!AR->hasNoUnsignedWrap()) {
4438     ConstantRange AddRecRange = getUnsignedRange(AR);
4439     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4440 
4441     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4442         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4443     if (NUWRegion.contains(AddRecRange))
4444       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4445   }
4446 
4447   return Result;
4448 }
4449 
4450 SCEV::NoWrapFlags
4451 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4452   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4453 
4454   if (AR->hasNoSignedWrap())
4455     return Result;
4456 
4457   if (!AR->isAffine())
4458     return Result;
4459 
4460   const SCEV *Step = AR->getStepRecurrence(*this);
4461   const Loop *L = AR->getLoop();
4462 
4463   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4464   // Note that this serves two purposes: It filters out loops that are
4465   // simply not analyzable, and it covers the case where this code is
4466   // being called from within backedge-taken count analysis, such that
4467   // attempting to ask for the backedge-taken count would likely result
4468   // in infinite recursion. In the later case, the analysis code will
4469   // cope with a conservative value, and it will take care to purge
4470   // that value once it has finished.
4471   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4472 
4473   // Normally, in the cases we can prove no-overflow via a
4474   // backedge guarding condition, we can also compute a backedge
4475   // taken count for the loop.  The exceptions are assumptions and
4476   // guards present in the loop -- SCEV is not great at exploiting
4477   // these to compute max backedge taken counts, but can still use
4478   // these to prove lack of overflow.  Use this fact to avoid
4479   // doing extra work that may not pay off.
4480 
4481   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4482       AC.assumptions().empty())
4483     return Result;
4484 
4485   // If the backedge is guarded by a comparison with the pre-inc  value the
4486   // addrec is safe. Also, if the entry is guarded by a comparison with the
4487   // start value and the backedge is guarded by a comparison with the post-inc
4488   // value, the addrec is safe.
4489   ICmpInst::Predicate Pred;
4490   const SCEV *OverflowLimit =
4491     getSignedOverflowLimitForStep(Step, &Pred, this);
4492   if (OverflowLimit &&
4493       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4494        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4495     Result = setFlags(Result, SCEV::FlagNSW);
4496   }
4497   return Result;
4498 }
4499 SCEV::NoWrapFlags
4500 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4501   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4502 
4503   if (AR->hasNoUnsignedWrap())
4504     return Result;
4505 
4506   if (!AR->isAffine())
4507     return Result;
4508 
4509   const SCEV *Step = AR->getStepRecurrence(*this);
4510   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4511   const Loop *L = AR->getLoop();
4512 
4513   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4514   // Note that this serves two purposes: It filters out loops that are
4515   // simply not analyzable, and it covers the case where this code is
4516   // being called from within backedge-taken count analysis, such that
4517   // attempting to ask for the backedge-taken count would likely result
4518   // in infinite recursion. In the later case, the analysis code will
4519   // cope with a conservative value, and it will take care to purge
4520   // that value once it has finished.
4521   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4522 
4523   // Normally, in the cases we can prove no-overflow via a
4524   // backedge guarding condition, we can also compute a backedge
4525   // taken count for the loop.  The exceptions are assumptions and
4526   // guards present in the loop -- SCEV is not great at exploiting
4527   // these to compute max backedge taken counts, but can still use
4528   // these to prove lack of overflow.  Use this fact to avoid
4529   // doing extra work that may not pay off.
4530 
4531   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4532       AC.assumptions().empty())
4533     return Result;
4534 
4535   // If the backedge is guarded by a comparison with the pre-inc  value the
4536   // addrec is safe. Also, if the entry is guarded by a comparison with the
4537   // start value and the backedge is guarded by a comparison with the post-inc
4538   // value, the addrec is safe.
4539   if (isKnownPositive(Step)) {
4540     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4541                                 getUnsignedRangeMax(Step));
4542     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4543         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4544       Result = setFlags(Result, SCEV::FlagNUW);
4545     }
4546   }
4547 
4548   return Result;
4549 }
4550 
4551 namespace {
4552 
4553 /// Represents an abstract binary operation.  This may exist as a
4554 /// normal instruction or constant expression, or may have been
4555 /// derived from an expression tree.
4556 struct BinaryOp {
4557   unsigned Opcode;
4558   Value *LHS;
4559   Value *RHS;
4560   bool IsNSW = false;
4561   bool IsNUW = false;
4562   bool IsExact = false;
4563 
4564   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4565   /// constant expression.
4566   Operator *Op = nullptr;
4567 
4568   explicit BinaryOp(Operator *Op)
4569       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4570         Op(Op) {
4571     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4572       IsNSW = OBO->hasNoSignedWrap();
4573       IsNUW = OBO->hasNoUnsignedWrap();
4574     }
4575     if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op))
4576       IsExact = PEO->isExact();
4577   }
4578 
4579   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4580                     bool IsNUW = false, bool IsExact = false)
4581       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
4582         IsExact(IsExact) {}
4583 };
4584 
4585 } // end anonymous namespace
4586 
4587 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4588 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4589   auto *Op = dyn_cast<Operator>(V);
4590   if (!Op)
4591     return None;
4592 
4593   // Implementation detail: all the cleverness here should happen without
4594   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4595   // SCEV expressions when possible, and we should not break that.
4596 
4597   switch (Op->getOpcode()) {
4598   case Instruction::Add:
4599   case Instruction::Sub:
4600   case Instruction::Mul:
4601   case Instruction::UDiv:
4602   case Instruction::URem:
4603   case Instruction::And:
4604   case Instruction::Or:
4605   case Instruction::AShr:
4606   case Instruction::Shl:
4607     return BinaryOp(Op);
4608 
4609   case Instruction::Xor:
4610     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4611       // If the RHS of the xor is a signmask, then this is just an add.
4612       // Instcombine turns add of signmask into xor as a strength reduction step.
4613       if (RHSC->getValue().isSignMask())
4614         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4615     return BinaryOp(Op);
4616 
4617   case Instruction::LShr:
4618     // Turn logical shift right of a constant into a unsigned divide.
4619     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4620       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4621 
4622       // If the shift count is not less than the bitwidth, the result of
4623       // the shift is undefined. Don't try to analyze it, because the
4624       // resolution chosen here may differ from the resolution chosen in
4625       // other parts of the compiler.
4626       if (SA->getValue().ult(BitWidth)) {
4627         Constant *X =
4628             ConstantInt::get(SA->getContext(),
4629                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4630         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4631       }
4632     }
4633     return BinaryOp(Op);
4634 
4635   case Instruction::ExtractValue: {
4636     auto *EVI = cast<ExtractValueInst>(Op);
4637     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4638       break;
4639 
4640     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4641     if (!WO)
4642       break;
4643 
4644     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4645     bool Signed = WO->isSigned();
4646     // TODO: Should add nuw/nsw flags for mul as well.
4647     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4648       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4649 
4650     // Now that we know that all uses of the arithmetic-result component of
4651     // CI are guarded by the overflow check, we can go ahead and pretend
4652     // that the arithmetic is non-overflowing.
4653     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4654                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4655   }
4656 
4657   default:
4658     break;
4659   }
4660 
4661   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4662   // semantics as a Sub, return a binary sub expression.
4663   if (auto *II = dyn_cast<IntrinsicInst>(V))
4664     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4665       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4666 
4667   return None;
4668 }
4669 
4670 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4671 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4672 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4673 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4674 /// follows one of the following patterns:
4675 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4676 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4677 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4678 /// we return the type of the truncation operation, and indicate whether the
4679 /// truncated type should be treated as signed/unsigned by setting
4680 /// \p Signed to true/false, respectively.
4681 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4682                                bool &Signed, ScalarEvolution &SE) {
4683   // The case where Op == SymbolicPHI (that is, with no type conversions on
4684   // the way) is handled by the regular add recurrence creating logic and
4685   // would have already been triggered in createAddRecForPHI. Reaching it here
4686   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4687   // because one of the other operands of the SCEVAddExpr updating this PHI is
4688   // not invariant).
4689   //
4690   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4691   // this case predicates that allow us to prove that Op == SymbolicPHI will
4692   // be added.
4693   if (Op == SymbolicPHI)
4694     return nullptr;
4695 
4696   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4697   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4698   if (SourceBits != NewBits)
4699     return nullptr;
4700 
4701   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4702   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4703   if (!SExt && !ZExt)
4704     return nullptr;
4705   const SCEVTruncateExpr *Trunc =
4706       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4707            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4708   if (!Trunc)
4709     return nullptr;
4710   const SCEV *X = Trunc->getOperand();
4711   if (X != SymbolicPHI)
4712     return nullptr;
4713   Signed = SExt != nullptr;
4714   return Trunc->getType();
4715 }
4716 
4717 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4718   if (!PN->getType()->isIntegerTy())
4719     return nullptr;
4720   const Loop *L = LI.getLoopFor(PN->getParent());
4721   if (!L || L->getHeader() != PN->getParent())
4722     return nullptr;
4723   return L;
4724 }
4725 
4726 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4727 // computation that updates the phi follows the following pattern:
4728 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4729 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4730 // If so, try to see if it can be rewritten as an AddRecExpr under some
4731 // Predicates. If successful, return them as a pair. Also cache the results
4732 // of the analysis.
4733 //
4734 // Example usage scenario:
4735 //    Say the Rewriter is called for the following SCEV:
4736 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4737 //    where:
4738 //         %X = phi i64 (%Start, %BEValue)
4739 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4740 //    and call this function with %SymbolicPHI = %X.
4741 //
4742 //    The analysis will find that the value coming around the backedge has
4743 //    the following SCEV:
4744 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4745 //    Upon concluding that this matches the desired pattern, the function
4746 //    will return the pair {NewAddRec, SmallPredsVec} where:
4747 //         NewAddRec = {%Start,+,%Step}
4748 //         SmallPredsVec = {P1, P2, P3} as follows:
4749 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4750 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4751 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4752 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4753 //    under the predicates {P1,P2,P3}.
4754 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4755 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4756 //
4757 // TODO's:
4758 //
4759 // 1) Extend the Induction descriptor to also support inductions that involve
4760 //    casts: When needed (namely, when we are called in the context of the
4761 //    vectorizer induction analysis), a Set of cast instructions will be
4762 //    populated by this method, and provided back to isInductionPHI. This is
4763 //    needed to allow the vectorizer to properly record them to be ignored by
4764 //    the cost model and to avoid vectorizing them (otherwise these casts,
4765 //    which are redundant under the runtime overflow checks, will be
4766 //    vectorized, which can be costly).
4767 //
4768 // 2) Support additional induction/PHISCEV patterns: We also want to support
4769 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4770 //    after the induction update operation (the induction increment):
4771 //
4772 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4773 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4774 //
4775 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4776 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4777 //
4778 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4779 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4780 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4781   SmallVector<const SCEVPredicate *, 3> Predicates;
4782 
4783   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4784   // return an AddRec expression under some predicate.
4785 
4786   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4787   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4788   assert(L && "Expecting an integer loop header phi");
4789 
4790   // The loop may have multiple entrances or multiple exits; we can analyze
4791   // this phi as an addrec if it has a unique entry value and a unique
4792   // backedge value.
4793   Value *BEValueV = nullptr, *StartValueV = nullptr;
4794   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4795     Value *V = PN->getIncomingValue(i);
4796     if (L->contains(PN->getIncomingBlock(i))) {
4797       if (!BEValueV) {
4798         BEValueV = V;
4799       } else if (BEValueV != V) {
4800         BEValueV = nullptr;
4801         break;
4802       }
4803     } else if (!StartValueV) {
4804       StartValueV = V;
4805     } else if (StartValueV != V) {
4806       StartValueV = nullptr;
4807       break;
4808     }
4809   }
4810   if (!BEValueV || !StartValueV)
4811     return None;
4812 
4813   const SCEV *BEValue = getSCEV(BEValueV);
4814 
4815   // If the value coming around the backedge is an add with the symbolic
4816   // value we just inserted, possibly with casts that we can ignore under
4817   // an appropriate runtime guard, then we found a simple induction variable!
4818   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4819   if (!Add)
4820     return None;
4821 
4822   // If there is a single occurrence of the symbolic value, possibly
4823   // casted, replace it with a recurrence.
4824   unsigned FoundIndex = Add->getNumOperands();
4825   Type *TruncTy = nullptr;
4826   bool Signed;
4827   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4828     if ((TruncTy =
4829              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4830       if (FoundIndex == e) {
4831         FoundIndex = i;
4832         break;
4833       }
4834 
4835   if (FoundIndex == Add->getNumOperands())
4836     return None;
4837 
4838   // Create an add with everything but the specified operand.
4839   SmallVector<const SCEV *, 8> Ops;
4840   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4841     if (i != FoundIndex)
4842       Ops.push_back(Add->getOperand(i));
4843   const SCEV *Accum = getAddExpr(Ops);
4844 
4845   // The runtime checks will not be valid if the step amount is
4846   // varying inside the loop.
4847   if (!isLoopInvariant(Accum, L))
4848     return None;
4849 
4850   // *** Part2: Create the predicates
4851 
4852   // Analysis was successful: we have a phi-with-cast pattern for which we
4853   // can return an AddRec expression under the following predicates:
4854   //
4855   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4856   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4857   // P2: An Equal predicate that guarantees that
4858   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4859   // P3: An Equal predicate that guarantees that
4860   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4861   //
4862   // As we next prove, the above predicates guarantee that:
4863   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4864   //
4865   //
4866   // More formally, we want to prove that:
4867   //     Expr(i+1) = Start + (i+1) * Accum
4868   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4869   //
4870   // Given that:
4871   // 1) Expr(0) = Start
4872   // 2) Expr(1) = Start + Accum
4873   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4874   // 3) Induction hypothesis (step i):
4875   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4876   //
4877   // Proof:
4878   //  Expr(i+1) =
4879   //   = Start + (i+1)*Accum
4880   //   = (Start + i*Accum) + Accum
4881   //   = Expr(i) + Accum
4882   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4883   //                                                             :: from step i
4884   //
4885   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4886   //
4887   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4888   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4889   //     + Accum                                                     :: from P3
4890   //
4891   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4892   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4893   //
4894   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4895   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4896   //
4897   // By induction, the same applies to all iterations 1<=i<n:
4898   //
4899 
4900   // Create a truncated addrec for which we will add a no overflow check (P1).
4901   const SCEV *StartVal = getSCEV(StartValueV);
4902   const SCEV *PHISCEV =
4903       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4904                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4905 
4906   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4907   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4908   // will be constant.
4909   //
4910   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4911   // add P1.
4912   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4913     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4914         Signed ? SCEVWrapPredicate::IncrementNSSW
4915                : SCEVWrapPredicate::IncrementNUSW;
4916     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4917     Predicates.push_back(AddRecPred);
4918   }
4919 
4920   // Create the Equal Predicates P2,P3:
4921 
4922   // It is possible that the predicates P2 and/or P3 are computable at
4923   // compile time due to StartVal and/or Accum being constants.
4924   // If either one is, then we can check that now and escape if either P2
4925   // or P3 is false.
4926 
4927   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4928   // for each of StartVal and Accum
4929   auto getExtendedExpr = [&](const SCEV *Expr,
4930                              bool CreateSignExtend) -> const SCEV * {
4931     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4932     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4933     const SCEV *ExtendedExpr =
4934         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4935                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4936     return ExtendedExpr;
4937   };
4938 
4939   // Given:
4940   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4941   //               = getExtendedExpr(Expr)
4942   // Determine whether the predicate P: Expr == ExtendedExpr
4943   // is known to be false at compile time
4944   auto PredIsKnownFalse = [&](const SCEV *Expr,
4945                               const SCEV *ExtendedExpr) -> bool {
4946     return Expr != ExtendedExpr &&
4947            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4948   };
4949 
4950   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4951   if (PredIsKnownFalse(StartVal, StartExtended)) {
4952     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4953     return None;
4954   }
4955 
4956   // The Step is always Signed (because the overflow checks are either
4957   // NSSW or NUSW)
4958   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4959   if (PredIsKnownFalse(Accum, AccumExtended)) {
4960     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4961     return None;
4962   }
4963 
4964   auto AppendPredicate = [&](const SCEV *Expr,
4965                              const SCEV *ExtendedExpr) -> void {
4966     if (Expr != ExtendedExpr &&
4967         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4968       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4969       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4970       Predicates.push_back(Pred);
4971     }
4972   };
4973 
4974   AppendPredicate(StartVal, StartExtended);
4975   AppendPredicate(Accum, AccumExtended);
4976 
4977   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4978   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4979   // into NewAR if it will also add the runtime overflow checks specified in
4980   // Predicates.
4981   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4982 
4983   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4984       std::make_pair(NewAR, Predicates);
4985   // Remember the result of the analysis for this SCEV at this locayyytion.
4986   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4987   return PredRewrite;
4988 }
4989 
4990 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4991 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4992   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4993   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4994   if (!L)
4995     return None;
4996 
4997   // Check to see if we already analyzed this PHI.
4998   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4999   if (I != PredicatedSCEVRewrites.end()) {
5000     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5001         I->second;
5002     // Analysis was done before and failed to create an AddRec:
5003     if (Rewrite.first == SymbolicPHI)
5004       return None;
5005     // Analysis was done before and succeeded to create an AddRec under
5006     // a predicate:
5007     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5008     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5009     return Rewrite;
5010   }
5011 
5012   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5013     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5014 
5015   // Record in the cache that the analysis failed
5016   if (!Rewrite) {
5017     SmallVector<const SCEVPredicate *, 3> Predicates;
5018     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5019     return None;
5020   }
5021 
5022   return Rewrite;
5023 }
5024 
5025 // FIXME: This utility is currently required because the Rewriter currently
5026 // does not rewrite this expression:
5027 // {0, +, (sext ix (trunc iy to ix) to iy)}
5028 // into {0, +, %step},
5029 // even when the following Equal predicate exists:
5030 // "%step == (sext ix (trunc iy to ix) to iy)".
5031 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5032     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5033   if (AR1 == AR2)
5034     return true;
5035 
5036   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5037     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5038         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5039       return false;
5040     return true;
5041   };
5042 
5043   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5044       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5045     return false;
5046   return true;
5047 }
5048 
5049 /// A helper function for createAddRecFromPHI to handle simple cases.
5050 ///
5051 /// This function tries to find an AddRec expression for the simplest (yet most
5052 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5053 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5054 /// technique for finding the AddRec expression.
5055 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5056                                                       Value *BEValueV,
5057                                                       Value *StartValueV) {
5058   const Loop *L = LI.getLoopFor(PN->getParent());
5059   assert(L && L->getHeader() == PN->getParent());
5060   assert(BEValueV && StartValueV);
5061 
5062   auto BO = MatchBinaryOp(BEValueV, DT);
5063   if (!BO)
5064     return nullptr;
5065 
5066   if (BO->Opcode != Instruction::Add)
5067     return nullptr;
5068 
5069   const SCEV *Accum = nullptr;
5070   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5071     Accum = getSCEV(BO->RHS);
5072   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5073     Accum = getSCEV(BO->LHS);
5074 
5075   if (!Accum)
5076     return nullptr;
5077 
5078   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5079   if (BO->IsNUW)
5080     Flags = setFlags(Flags, SCEV::FlagNUW);
5081   if (BO->IsNSW)
5082     Flags = setFlags(Flags, SCEV::FlagNSW);
5083 
5084   const SCEV *StartVal = getSCEV(StartValueV);
5085   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5086 
5087   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5088 
5089   // We can add Flags to the post-inc expression only if we
5090   // know that it is *undefined behavior* for BEValueV to
5091   // overflow.
5092   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5093     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5094       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5095 
5096   return PHISCEV;
5097 }
5098 
5099 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5100   const Loop *L = LI.getLoopFor(PN->getParent());
5101   if (!L || L->getHeader() != PN->getParent())
5102     return nullptr;
5103 
5104   // The loop may have multiple entrances or multiple exits; we can analyze
5105   // this phi as an addrec if it has a unique entry value and a unique
5106   // backedge value.
5107   Value *BEValueV = nullptr, *StartValueV = nullptr;
5108   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5109     Value *V = PN->getIncomingValue(i);
5110     if (L->contains(PN->getIncomingBlock(i))) {
5111       if (!BEValueV) {
5112         BEValueV = V;
5113       } else if (BEValueV != V) {
5114         BEValueV = nullptr;
5115         break;
5116       }
5117     } else if (!StartValueV) {
5118       StartValueV = V;
5119     } else if (StartValueV != V) {
5120       StartValueV = nullptr;
5121       break;
5122     }
5123   }
5124   if (!BEValueV || !StartValueV)
5125     return nullptr;
5126 
5127   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5128          "PHI node already processed?");
5129 
5130   // First, try to find AddRec expression without creating a fictituos symbolic
5131   // value for PN.
5132   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5133     return S;
5134 
5135   // Handle PHI node value symbolically.
5136   const SCEV *SymbolicName = getUnknown(PN);
5137   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5138 
5139   // Using this symbolic name for the PHI, analyze the value coming around
5140   // the back-edge.
5141   const SCEV *BEValue = getSCEV(BEValueV);
5142 
5143   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5144   // has a special value for the first iteration of the loop.
5145 
5146   // If the value coming around the backedge is an add with the symbolic
5147   // value we just inserted, then we found a simple induction variable!
5148   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5149     // If there is a single occurrence of the symbolic value, replace it
5150     // with a recurrence.
5151     unsigned FoundIndex = Add->getNumOperands();
5152     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5153       if (Add->getOperand(i) == SymbolicName)
5154         if (FoundIndex == e) {
5155           FoundIndex = i;
5156           break;
5157         }
5158 
5159     if (FoundIndex != Add->getNumOperands()) {
5160       // Create an add with everything but the specified operand.
5161       SmallVector<const SCEV *, 8> Ops;
5162       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5163         if (i != FoundIndex)
5164           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5165                                                              L, *this));
5166       const SCEV *Accum = getAddExpr(Ops);
5167 
5168       // This is not a valid addrec if the step amount is varying each
5169       // loop iteration, but is not itself an addrec in this loop.
5170       if (isLoopInvariant(Accum, L) ||
5171           (isa<SCEVAddRecExpr>(Accum) &&
5172            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5173         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5174 
5175         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5176           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5177             if (BO->IsNUW)
5178               Flags = setFlags(Flags, SCEV::FlagNUW);
5179             if (BO->IsNSW)
5180               Flags = setFlags(Flags, SCEV::FlagNSW);
5181           }
5182         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5183           // If the increment is an inbounds GEP, then we know the address
5184           // space cannot be wrapped around. We cannot make any guarantee
5185           // about signed or unsigned overflow because pointers are
5186           // unsigned but we may have a negative index from the base
5187           // pointer. We can guarantee that no unsigned wrap occurs if the
5188           // indices form a positive value.
5189           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5190             Flags = setFlags(Flags, SCEV::FlagNW);
5191 
5192             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5193             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5194               Flags = setFlags(Flags, SCEV::FlagNUW);
5195           }
5196 
5197           // We cannot transfer nuw and nsw flags from subtraction
5198           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5199           // for instance.
5200         }
5201 
5202         const SCEV *StartVal = getSCEV(StartValueV);
5203         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5204 
5205         // Okay, for the entire analysis of this edge we assumed the PHI
5206         // to be symbolic.  We now need to go back and purge all of the
5207         // entries for the scalars that use the symbolic expression.
5208         forgetSymbolicName(PN, SymbolicName);
5209         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5210 
5211         // We can add Flags to the post-inc expression only if we
5212         // know that it is *undefined behavior* for BEValueV to
5213         // overflow.
5214         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5215           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5216             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5217 
5218         return PHISCEV;
5219       }
5220     }
5221   } else {
5222     // Otherwise, this could be a loop like this:
5223     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5224     // In this case, j = {1,+,1}  and BEValue is j.
5225     // Because the other in-value of i (0) fits the evolution of BEValue
5226     // i really is an addrec evolution.
5227     //
5228     // We can generalize this saying that i is the shifted value of BEValue
5229     // by one iteration:
5230     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5231     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5232     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5233     if (Shifted != getCouldNotCompute() &&
5234         Start != getCouldNotCompute()) {
5235       const SCEV *StartVal = getSCEV(StartValueV);
5236       if (Start == StartVal) {
5237         // Okay, for the entire analysis of this edge we assumed the PHI
5238         // to be symbolic.  We now need to go back and purge all of the
5239         // entries for the scalars that use the symbolic expression.
5240         forgetSymbolicName(PN, SymbolicName);
5241         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5242         return Shifted;
5243       }
5244     }
5245   }
5246 
5247   // Remove the temporary PHI node SCEV that has been inserted while intending
5248   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5249   // as it will prevent later (possibly simpler) SCEV expressions to be added
5250   // to the ValueExprMap.
5251   eraseValueFromMap(PN);
5252 
5253   return nullptr;
5254 }
5255 
5256 // Checks if the SCEV S is available at BB.  S is considered available at BB
5257 // if S can be materialized at BB without introducing a fault.
5258 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5259                                BasicBlock *BB) {
5260   struct CheckAvailable {
5261     bool TraversalDone = false;
5262     bool Available = true;
5263 
5264     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5265     BasicBlock *BB = nullptr;
5266     DominatorTree &DT;
5267 
5268     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5269       : L(L), BB(BB), DT(DT) {}
5270 
5271     bool setUnavailable() {
5272       TraversalDone = true;
5273       Available = false;
5274       return false;
5275     }
5276 
5277     bool follow(const SCEV *S) {
5278       switch (S->getSCEVType()) {
5279       case scConstant:
5280       case scPtrToInt:
5281       case scTruncate:
5282       case scZeroExtend:
5283       case scSignExtend:
5284       case scAddExpr:
5285       case scMulExpr:
5286       case scUMaxExpr:
5287       case scSMaxExpr:
5288       case scUMinExpr:
5289       case scSMinExpr:
5290         // These expressions are available if their operand(s) is/are.
5291         return true;
5292 
5293       case scAddRecExpr: {
5294         // We allow add recurrences that are on the loop BB is in, or some
5295         // outer loop.  This guarantees availability because the value of the
5296         // add recurrence at BB is simply the "current" value of the induction
5297         // variable.  We can relax this in the future; for instance an add
5298         // recurrence on a sibling dominating loop is also available at BB.
5299         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5300         if (L && (ARLoop == L || ARLoop->contains(L)))
5301           return true;
5302 
5303         return setUnavailable();
5304       }
5305 
5306       case scUnknown: {
5307         // For SCEVUnknown, we check for simple dominance.
5308         const auto *SU = cast<SCEVUnknown>(S);
5309         Value *V = SU->getValue();
5310 
5311         if (isa<Argument>(V))
5312           return false;
5313 
5314         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5315           return false;
5316 
5317         return setUnavailable();
5318       }
5319 
5320       case scUDivExpr:
5321       case scCouldNotCompute:
5322         // We do not try to smart about these at all.
5323         return setUnavailable();
5324       }
5325       llvm_unreachable("Unknown SCEV kind!");
5326     }
5327 
5328     bool isDone() { return TraversalDone; }
5329   };
5330 
5331   CheckAvailable CA(L, BB, DT);
5332   SCEVTraversal<CheckAvailable> ST(CA);
5333 
5334   ST.visitAll(S);
5335   return CA.Available;
5336 }
5337 
5338 // Try to match a control flow sequence that branches out at BI and merges back
5339 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5340 // match.
5341 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5342                           Value *&C, Value *&LHS, Value *&RHS) {
5343   C = BI->getCondition();
5344 
5345   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5346   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5347 
5348   if (!LeftEdge.isSingleEdge())
5349     return false;
5350 
5351   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5352 
5353   Use &LeftUse = Merge->getOperandUse(0);
5354   Use &RightUse = Merge->getOperandUse(1);
5355 
5356   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5357     LHS = LeftUse;
5358     RHS = RightUse;
5359     return true;
5360   }
5361 
5362   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5363     LHS = RightUse;
5364     RHS = LeftUse;
5365     return true;
5366   }
5367 
5368   return false;
5369 }
5370 
5371 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5372   auto IsReachable =
5373       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5374   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5375     const Loop *L = LI.getLoopFor(PN->getParent());
5376 
5377     // We don't want to break LCSSA, even in a SCEV expression tree.
5378     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5379       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5380         return nullptr;
5381 
5382     // Try to match
5383     //
5384     //  br %cond, label %left, label %right
5385     // left:
5386     //  br label %merge
5387     // right:
5388     //  br label %merge
5389     // merge:
5390     //  V = phi [ %x, %left ], [ %y, %right ]
5391     //
5392     // as "select %cond, %x, %y"
5393 
5394     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5395     assert(IDom && "At least the entry block should dominate PN");
5396 
5397     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5398     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5399 
5400     if (BI && BI->isConditional() &&
5401         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5402         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5403         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5404       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5405   }
5406 
5407   return nullptr;
5408 }
5409 
5410 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5411   if (const SCEV *S = createAddRecFromPHI(PN))
5412     return S;
5413 
5414   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5415     return S;
5416 
5417   // If the PHI has a single incoming value, follow that value, unless the
5418   // PHI's incoming blocks are in a different loop, in which case doing so
5419   // risks breaking LCSSA form. Instcombine would normally zap these, but
5420   // it doesn't have DominatorTree information, so it may miss cases.
5421   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5422     if (LI.replacementPreservesLCSSAForm(PN, V))
5423       return getSCEV(V);
5424 
5425   // If it's not a loop phi, we can't handle it yet.
5426   return getUnknown(PN);
5427 }
5428 
5429 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5430                                                       Value *Cond,
5431                                                       Value *TrueVal,
5432                                                       Value *FalseVal) {
5433   // Handle "constant" branch or select. This can occur for instance when a
5434   // loop pass transforms an inner loop and moves on to process the outer loop.
5435   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5436     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5437 
5438   // Try to match some simple smax or umax patterns.
5439   auto *ICI = dyn_cast<ICmpInst>(Cond);
5440   if (!ICI)
5441     return getUnknown(I);
5442 
5443   Value *LHS = ICI->getOperand(0);
5444   Value *RHS = ICI->getOperand(1);
5445 
5446   switch (ICI->getPredicate()) {
5447   case ICmpInst::ICMP_SLT:
5448   case ICmpInst::ICMP_SLE:
5449     std::swap(LHS, RHS);
5450     LLVM_FALLTHROUGH;
5451   case ICmpInst::ICMP_SGT:
5452   case ICmpInst::ICMP_SGE:
5453     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5454     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5455     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5456       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5457       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5458       const SCEV *LA = getSCEV(TrueVal);
5459       const SCEV *RA = getSCEV(FalseVal);
5460       const SCEV *LDiff = getMinusSCEV(LA, LS);
5461       const SCEV *RDiff = getMinusSCEV(RA, RS);
5462       if (LDiff == RDiff)
5463         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5464       LDiff = getMinusSCEV(LA, RS);
5465       RDiff = getMinusSCEV(RA, LS);
5466       if (LDiff == RDiff)
5467         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5468     }
5469     break;
5470   case ICmpInst::ICMP_ULT:
5471   case ICmpInst::ICMP_ULE:
5472     std::swap(LHS, RHS);
5473     LLVM_FALLTHROUGH;
5474   case ICmpInst::ICMP_UGT:
5475   case ICmpInst::ICMP_UGE:
5476     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5477     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5478     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5479       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5480       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5481       const SCEV *LA = getSCEV(TrueVal);
5482       const SCEV *RA = getSCEV(FalseVal);
5483       const SCEV *LDiff = getMinusSCEV(LA, LS);
5484       const SCEV *RDiff = getMinusSCEV(RA, RS);
5485       if (LDiff == RDiff)
5486         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5487       LDiff = getMinusSCEV(LA, RS);
5488       RDiff = getMinusSCEV(RA, LS);
5489       if (LDiff == RDiff)
5490         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5491     }
5492     break;
5493   case ICmpInst::ICMP_NE:
5494     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5495     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5496         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5497       const SCEV *One = getOne(I->getType());
5498       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5499       const SCEV *LA = getSCEV(TrueVal);
5500       const SCEV *RA = getSCEV(FalseVal);
5501       const SCEV *LDiff = getMinusSCEV(LA, LS);
5502       const SCEV *RDiff = getMinusSCEV(RA, One);
5503       if (LDiff == RDiff)
5504         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5505     }
5506     break;
5507   case ICmpInst::ICMP_EQ:
5508     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5509     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5510         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5511       const SCEV *One = getOne(I->getType());
5512       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5513       const SCEV *LA = getSCEV(TrueVal);
5514       const SCEV *RA = getSCEV(FalseVal);
5515       const SCEV *LDiff = getMinusSCEV(LA, One);
5516       const SCEV *RDiff = getMinusSCEV(RA, LS);
5517       if (LDiff == RDiff)
5518         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5519     }
5520     break;
5521   default:
5522     break;
5523   }
5524 
5525   return getUnknown(I);
5526 }
5527 
5528 /// Expand GEP instructions into add and multiply operations. This allows them
5529 /// to be analyzed by regular SCEV code.
5530 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5531   // Don't attempt to analyze GEPs over unsized objects.
5532   if (!GEP->getSourceElementType()->isSized())
5533     return getUnknown(GEP);
5534 
5535   SmallVector<const SCEV *, 4> IndexExprs;
5536   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5537     IndexExprs.push_back(getSCEV(*Index));
5538   return getGEPExpr(GEP, IndexExprs);
5539 }
5540 
5541 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5542   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5543     return C->getAPInt().countTrailingZeros();
5544 
5545   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5546     return GetMinTrailingZeros(I->getOperand());
5547 
5548   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5549     return std::min(GetMinTrailingZeros(T->getOperand()),
5550                     (uint32_t)getTypeSizeInBits(T->getType()));
5551 
5552   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5553     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5554     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5555                ? getTypeSizeInBits(E->getType())
5556                : OpRes;
5557   }
5558 
5559   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5560     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5561     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5562                ? getTypeSizeInBits(E->getType())
5563                : OpRes;
5564   }
5565 
5566   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5567     // The result is the min of all operands results.
5568     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5569     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5570       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5571     return MinOpRes;
5572   }
5573 
5574   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5575     // The result is the sum of all operands results.
5576     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5577     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5578     for (unsigned i = 1, e = M->getNumOperands();
5579          SumOpRes != BitWidth && i != e; ++i)
5580       SumOpRes =
5581           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5582     return SumOpRes;
5583   }
5584 
5585   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5586     // The result is the min of all operands results.
5587     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5588     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5589       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5590     return MinOpRes;
5591   }
5592 
5593   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5594     // The result is the min of all operands results.
5595     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5596     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5597       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5598     return MinOpRes;
5599   }
5600 
5601   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5602     // The result is the min of all operands results.
5603     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5604     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5605       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5606     return MinOpRes;
5607   }
5608 
5609   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5610     // For a SCEVUnknown, ask ValueTracking.
5611     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5612     return Known.countMinTrailingZeros();
5613   }
5614 
5615   // SCEVUDivExpr
5616   return 0;
5617 }
5618 
5619 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5620   auto I = MinTrailingZerosCache.find(S);
5621   if (I != MinTrailingZerosCache.end())
5622     return I->second;
5623 
5624   uint32_t Result = GetMinTrailingZerosImpl(S);
5625   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5626   assert(InsertPair.second && "Should insert a new key");
5627   return InsertPair.first->second;
5628 }
5629 
5630 /// Helper method to assign a range to V from metadata present in the IR.
5631 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5632   if (Instruction *I = dyn_cast<Instruction>(V))
5633     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5634       return getConstantRangeFromMetadata(*MD);
5635 
5636   return None;
5637 }
5638 
5639 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5640                                      SCEV::NoWrapFlags Flags) {
5641   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5642     AddRec->setNoWrapFlags(Flags);
5643     UnsignedRanges.erase(AddRec);
5644     SignedRanges.erase(AddRec);
5645   }
5646 }
5647 
5648 ConstantRange ScalarEvolution::
5649 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5650   const DataLayout &DL = getDataLayout();
5651 
5652   unsigned BitWidth = getTypeSizeInBits(U->getType());
5653   ConstantRange CR(BitWidth, /*isFullSet=*/true);
5654 
5655   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5656   // use information about the trip count to improve our available range.  Note
5657   // that the trip count independent cases are already handled by known bits.
5658   // WARNING: The definition of recurrence used here is subtly different than
5659   // the one used by AddRec (and thus most of this file).  Step is allowed to
5660   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5661   // and other addrecs in the same loop (for non-affine addrecs).  The code
5662   // below intentionally handles the case where step is not loop invariant.
5663   auto *P = dyn_cast<PHINode>(U->getValue());
5664   if (!P)
5665     return CR;
5666 
5667   BinaryOperator *BO;
5668   Value *Start, *Step;
5669   if (!matchSimpleRecurrence(P, BO, Start, Step))
5670     return CR;
5671 
5672   // If we found a recurrence, we must be in a loop -- unless we're
5673   // in unreachable code where dominance collapses.  Note that BO might
5674   // be in some subloop of L, and that's completely okay.
5675   auto *L = LI.getLoopFor(P->getParent());
5676   if (!L)
5677     return CR;
5678   assert(L->getHeader() == P->getParent());
5679   if (!L->contains(BO->getParent()))
5680     // NOTE: This bailout should be an assert instead.  However, asserting
5681     // the condition here exposes a case where LoopFusion is querying SCEV
5682     // with malformed loop information during the midst of the transform.
5683     // There doesn't appear to be an obvious fix, so for the moment bailout
5684     // until the caller issue can be fixed.  PR49566 tracks the bug.
5685     return CR;
5686 
5687   // TODO: Handle ashr and lshr cases to increase minimum value reported
5688   if (BO->getOpcode() != Instruction::Shl || BO->getOperand(0) != P)
5689     return CR;
5690 
5691   unsigned TC = getSmallConstantMaxTripCount(L);
5692   if (!TC || TC >= BitWidth)
5693     return CR;
5694 
5695   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5696   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5697   assert(KnownStart.getBitWidth() == BitWidth &&
5698          KnownStep.getBitWidth() == BitWidth);
5699 
5700   // Compute total shift amount, being careful of overflow and bitwidths.
5701   auto MaxShiftAmt = KnownStep.getMaxValue();
5702   APInt TCAP(BitWidth, TC-1);
5703   bool Overflow = false;
5704   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5705   if (Overflow)
5706     return CR;
5707 
5708   // Iff no bits are shifted out, value increases on every shift.
5709   auto KnownEnd = KnownBits::shl(KnownStart,
5710                                  KnownBits::makeConstant(TotalShift));
5711   if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5712     CR = CR.intersectWith(ConstantRange(KnownStart.getMinValue(),
5713                                         KnownEnd.getMaxValue() + 1));
5714   return CR;
5715 }
5716 
5717 
5718 
5719 /// Determine the range for a particular SCEV.  If SignHint is
5720 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5721 /// with a "cleaner" unsigned (resp. signed) representation.
5722 const ConstantRange &
5723 ScalarEvolution::getRangeRef(const SCEV *S,
5724                              ScalarEvolution::RangeSignHint SignHint) {
5725   DenseMap<const SCEV *, ConstantRange> &Cache =
5726       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5727                                                        : SignedRanges;
5728   ConstantRange::PreferredRangeType RangeType =
5729       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5730           ? ConstantRange::Unsigned : ConstantRange::Signed;
5731 
5732   // See if we've computed this range already.
5733   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5734   if (I != Cache.end())
5735     return I->second;
5736 
5737   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5738     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5739 
5740   unsigned BitWidth = getTypeSizeInBits(S->getType());
5741   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5742   using OBO = OverflowingBinaryOperator;
5743 
5744   // If the value has known zeros, the maximum value will have those known zeros
5745   // as well.
5746   uint32_t TZ = GetMinTrailingZeros(S);
5747   if (TZ != 0) {
5748     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5749       ConservativeResult =
5750           ConstantRange(APInt::getMinValue(BitWidth),
5751                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5752     else
5753       ConservativeResult = ConstantRange(
5754           APInt::getSignedMinValue(BitWidth),
5755           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5756   }
5757 
5758   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5759     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5760     unsigned WrapType = OBO::AnyWrap;
5761     if (Add->hasNoSignedWrap())
5762       WrapType |= OBO::NoSignedWrap;
5763     if (Add->hasNoUnsignedWrap())
5764       WrapType |= OBO::NoUnsignedWrap;
5765     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5766       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5767                           WrapType, RangeType);
5768     return setRange(Add, SignHint,
5769                     ConservativeResult.intersectWith(X, RangeType));
5770   }
5771 
5772   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5773     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5774     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5775       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5776     return setRange(Mul, SignHint,
5777                     ConservativeResult.intersectWith(X, RangeType));
5778   }
5779 
5780   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5781     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5782     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5783       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5784     return setRange(SMax, SignHint,
5785                     ConservativeResult.intersectWith(X, RangeType));
5786   }
5787 
5788   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5789     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5790     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5791       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5792     return setRange(UMax, SignHint,
5793                     ConservativeResult.intersectWith(X, RangeType));
5794   }
5795 
5796   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5797     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5798     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5799       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5800     return setRange(SMin, SignHint,
5801                     ConservativeResult.intersectWith(X, RangeType));
5802   }
5803 
5804   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5805     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5806     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5807       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5808     return setRange(UMin, SignHint,
5809                     ConservativeResult.intersectWith(X, RangeType));
5810   }
5811 
5812   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5813     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5814     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5815     return setRange(UDiv, SignHint,
5816                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5817   }
5818 
5819   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5820     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5821     return setRange(ZExt, SignHint,
5822                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5823                                                      RangeType));
5824   }
5825 
5826   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5827     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5828     return setRange(SExt, SignHint,
5829                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5830                                                      RangeType));
5831   }
5832 
5833   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
5834     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
5835     return setRange(PtrToInt, SignHint, X);
5836   }
5837 
5838   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5839     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5840     return setRange(Trunc, SignHint,
5841                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5842                                                      RangeType));
5843   }
5844 
5845   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5846     // If there's no unsigned wrap, the value will never be less than its
5847     // initial value.
5848     if (AddRec->hasNoUnsignedWrap()) {
5849       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5850       if (!UnsignedMinValue.isNullValue())
5851         ConservativeResult = ConservativeResult.intersectWith(
5852             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5853     }
5854 
5855     // If there's no signed wrap, and all the operands except initial value have
5856     // the same sign or zero, the value won't ever be:
5857     // 1: smaller than initial value if operands are non negative,
5858     // 2: bigger than initial value if operands are non positive.
5859     // For both cases, value can not cross signed min/max boundary.
5860     if (AddRec->hasNoSignedWrap()) {
5861       bool AllNonNeg = true;
5862       bool AllNonPos = true;
5863       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5864         if (!isKnownNonNegative(AddRec->getOperand(i)))
5865           AllNonNeg = false;
5866         if (!isKnownNonPositive(AddRec->getOperand(i)))
5867           AllNonPos = false;
5868       }
5869       if (AllNonNeg)
5870         ConservativeResult = ConservativeResult.intersectWith(
5871             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5872                                        APInt::getSignedMinValue(BitWidth)),
5873             RangeType);
5874       else if (AllNonPos)
5875         ConservativeResult = ConservativeResult.intersectWith(
5876             ConstantRange::getNonEmpty(
5877                 APInt::getSignedMinValue(BitWidth),
5878                 getSignedRangeMax(AddRec->getStart()) + 1),
5879             RangeType);
5880     }
5881 
5882     // TODO: non-affine addrec
5883     if (AddRec->isAffine()) {
5884       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5885       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5886           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5887         auto RangeFromAffine = getRangeForAffineAR(
5888             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5889             BitWidth);
5890         ConservativeResult =
5891             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5892 
5893         auto RangeFromFactoring = getRangeViaFactoring(
5894             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5895             BitWidth);
5896         ConservativeResult =
5897             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5898       }
5899 
5900       // Now try symbolic BE count and more powerful methods.
5901       if (UseExpensiveRangeSharpening) {
5902         const SCEV *SymbolicMaxBECount =
5903             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
5904         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
5905             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5906             AddRec->hasNoSelfWrap()) {
5907           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
5908               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
5909           ConservativeResult =
5910               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
5911         }
5912       }
5913     }
5914 
5915     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5916   }
5917 
5918   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5919 
5920     // Check if the IR explicitly contains !range metadata.
5921     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5922     if (MDRange.hasValue())
5923       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5924                                                             RangeType);
5925 
5926     // Use facts about recurrences in the underlying IR.  Note that add
5927     // recurrences are AddRecExprs and thus don't hit this path.  This
5928     // primarily handles shift recurrences.
5929     auto CR = getRangeForUnknownRecurrence(U);
5930     ConservativeResult = ConservativeResult.intersectWith(CR);
5931 
5932     // See if ValueTracking can give us a useful range.
5933     const DataLayout &DL = getDataLayout();
5934     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5935     if (Known.getBitWidth() != BitWidth)
5936       Known = Known.zextOrTrunc(BitWidth);
5937 
5938     // ValueTracking may be able to compute a tighter result for the number of
5939     // sign bits than for the value of those sign bits.
5940     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5941     if (U->getType()->isPointerTy()) {
5942       // If the pointer size is larger than the index size type, this can cause
5943       // NS to be larger than BitWidth. So compensate for this.
5944       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5945       int ptrIdxDiff = ptrSize - BitWidth;
5946       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5947         NS -= ptrIdxDiff;
5948     }
5949 
5950     if (NS > 1) {
5951       // If we know any of the sign bits, we know all of the sign bits.
5952       if (!Known.Zero.getHiBits(NS).isNullValue())
5953         Known.Zero.setHighBits(NS);
5954       if (!Known.One.getHiBits(NS).isNullValue())
5955         Known.One.setHighBits(NS);
5956     }
5957 
5958     if (Known.getMinValue() != Known.getMaxValue() + 1)
5959       ConservativeResult = ConservativeResult.intersectWith(
5960           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5961           RangeType);
5962     if (NS > 1)
5963       ConservativeResult = ConservativeResult.intersectWith(
5964           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5965                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5966           RangeType);
5967 
5968     // A range of Phi is a subset of union of all ranges of its input.
5969     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5970       // Make sure that we do not run over cycled Phis.
5971       if (PendingPhiRanges.insert(Phi).second) {
5972         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5973         for (auto &Op : Phi->operands()) {
5974           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5975           RangeFromOps = RangeFromOps.unionWith(OpRange);
5976           // No point to continue if we already have a full set.
5977           if (RangeFromOps.isFullSet())
5978             break;
5979         }
5980         ConservativeResult =
5981             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5982         bool Erased = PendingPhiRanges.erase(Phi);
5983         assert(Erased && "Failed to erase Phi properly?");
5984         (void) Erased;
5985       }
5986     }
5987 
5988     return setRange(U, SignHint, std::move(ConservativeResult));
5989   }
5990 
5991   return setRange(S, SignHint, std::move(ConservativeResult));
5992 }
5993 
5994 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5995 // values that the expression can take. Initially, the expression has a value
5996 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5997 // argument defines if we treat Step as signed or unsigned.
5998 static ConstantRange getRangeForAffineARHelper(APInt Step,
5999                                                const ConstantRange &StartRange,
6000                                                const APInt &MaxBECount,
6001                                                unsigned BitWidth, bool Signed) {
6002   // If either Step or MaxBECount is 0, then the expression won't change, and we
6003   // just need to return the initial range.
6004   if (Step == 0 || MaxBECount == 0)
6005     return StartRange;
6006 
6007   // If we don't know anything about the initial value (i.e. StartRange is
6008   // FullRange), then we don't know anything about the final range either.
6009   // Return FullRange.
6010   if (StartRange.isFullSet())
6011     return ConstantRange::getFull(BitWidth);
6012 
6013   // If Step is signed and negative, then we use its absolute value, but we also
6014   // note that we're moving in the opposite direction.
6015   bool Descending = Signed && Step.isNegative();
6016 
6017   if (Signed)
6018     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6019     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6020     // This equations hold true due to the well-defined wrap-around behavior of
6021     // APInt.
6022     Step = Step.abs();
6023 
6024   // Check if Offset is more than full span of BitWidth. If it is, the
6025   // expression is guaranteed to overflow.
6026   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6027     return ConstantRange::getFull(BitWidth);
6028 
6029   // Offset is by how much the expression can change. Checks above guarantee no
6030   // overflow here.
6031   APInt Offset = Step * MaxBECount;
6032 
6033   // Minimum value of the final range will match the minimal value of StartRange
6034   // if the expression is increasing and will be decreased by Offset otherwise.
6035   // Maximum value of the final range will match the maximal value of StartRange
6036   // if the expression is decreasing and will be increased by Offset otherwise.
6037   APInt StartLower = StartRange.getLower();
6038   APInt StartUpper = StartRange.getUpper() - 1;
6039   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6040                                    : (StartUpper + std::move(Offset));
6041 
6042   // It's possible that the new minimum/maximum value will fall into the initial
6043   // range (due to wrap around). This means that the expression can take any
6044   // value in this bitwidth, and we have to return full range.
6045   if (StartRange.contains(MovedBoundary))
6046     return ConstantRange::getFull(BitWidth);
6047 
6048   APInt NewLower =
6049       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6050   APInt NewUpper =
6051       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6052   NewUpper += 1;
6053 
6054   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6055   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6056 }
6057 
6058 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6059                                                    const SCEV *Step,
6060                                                    const SCEV *MaxBECount,
6061                                                    unsigned BitWidth) {
6062   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6063          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6064          "Precondition!");
6065 
6066   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6067   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6068 
6069   // First, consider step signed.
6070   ConstantRange StartSRange = getSignedRange(Start);
6071   ConstantRange StepSRange = getSignedRange(Step);
6072 
6073   // If Step can be both positive and negative, we need to find ranges for the
6074   // maximum absolute step values in both directions and union them.
6075   ConstantRange SR =
6076       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6077                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6078   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6079                                               StartSRange, MaxBECountValue,
6080                                               BitWidth, /* Signed = */ true));
6081 
6082   // Next, consider step unsigned.
6083   ConstantRange UR = getRangeForAffineARHelper(
6084       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6085       MaxBECountValue, BitWidth, /* Signed = */ false);
6086 
6087   // Finally, intersect signed and unsigned ranges.
6088   return SR.intersectWith(UR, ConstantRange::Smallest);
6089 }
6090 
6091 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6092     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6093     ScalarEvolution::RangeSignHint SignHint) {
6094   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6095   assert(AddRec->hasNoSelfWrap() &&
6096          "This only works for non-self-wrapping AddRecs!");
6097   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6098   const SCEV *Step = AddRec->getStepRecurrence(*this);
6099   // Only deal with constant step to save compile time.
6100   if (!isa<SCEVConstant>(Step))
6101     return ConstantRange::getFull(BitWidth);
6102   // Let's make sure that we can prove that we do not self-wrap during
6103   // MaxBECount iterations. We need this because MaxBECount is a maximum
6104   // iteration count estimate, and we might infer nw from some exit for which we
6105   // do not know max exit count (or any other side reasoning).
6106   // TODO: Turn into assert at some point.
6107   if (getTypeSizeInBits(MaxBECount->getType()) >
6108       getTypeSizeInBits(AddRec->getType()))
6109     return ConstantRange::getFull(BitWidth);
6110   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6111   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6112   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6113   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6114   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6115                                          MaxItersWithoutWrap))
6116     return ConstantRange::getFull(BitWidth);
6117 
6118   ICmpInst::Predicate LEPred =
6119       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6120   ICmpInst::Predicate GEPred =
6121       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6122   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6123 
6124   // We know that there is no self-wrap. Let's take Start and End values and
6125   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6126   // the iteration. They either lie inside the range [Min(Start, End),
6127   // Max(Start, End)] or outside it:
6128   //
6129   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6130   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6131   //
6132   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6133   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6134   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6135   // Start <= End and step is positive, or Start >= End and step is negative.
6136   const SCEV *Start = AddRec->getStart();
6137   ConstantRange StartRange = getRangeRef(Start, SignHint);
6138   ConstantRange EndRange = getRangeRef(End, SignHint);
6139   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6140   // If they already cover full iteration space, we will know nothing useful
6141   // even if we prove what we want to prove.
6142   if (RangeBetween.isFullSet())
6143     return RangeBetween;
6144   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6145   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6146                                : RangeBetween.isWrappedSet();
6147   if (IsWrappedSet)
6148     return ConstantRange::getFull(BitWidth);
6149 
6150   if (isKnownPositive(Step) &&
6151       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6152     return RangeBetween;
6153   else if (isKnownNegative(Step) &&
6154            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6155     return RangeBetween;
6156   return ConstantRange::getFull(BitWidth);
6157 }
6158 
6159 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6160                                                     const SCEV *Step,
6161                                                     const SCEV *MaxBECount,
6162                                                     unsigned BitWidth) {
6163   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6164   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6165 
6166   struct SelectPattern {
6167     Value *Condition = nullptr;
6168     APInt TrueValue;
6169     APInt FalseValue;
6170 
6171     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6172                            const SCEV *S) {
6173       Optional<unsigned> CastOp;
6174       APInt Offset(BitWidth, 0);
6175 
6176       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6177              "Should be!");
6178 
6179       // Peel off a constant offset:
6180       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6181         // In the future we could consider being smarter here and handle
6182         // {Start+Step,+,Step} too.
6183         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6184           return;
6185 
6186         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6187         S = SA->getOperand(1);
6188       }
6189 
6190       // Peel off a cast operation
6191       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6192         CastOp = SCast->getSCEVType();
6193         S = SCast->getOperand();
6194       }
6195 
6196       using namespace llvm::PatternMatch;
6197 
6198       auto *SU = dyn_cast<SCEVUnknown>(S);
6199       const APInt *TrueVal, *FalseVal;
6200       if (!SU ||
6201           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6202                                           m_APInt(FalseVal)))) {
6203         Condition = nullptr;
6204         return;
6205       }
6206 
6207       TrueValue = *TrueVal;
6208       FalseValue = *FalseVal;
6209 
6210       // Re-apply the cast we peeled off earlier
6211       if (CastOp.hasValue())
6212         switch (*CastOp) {
6213         default:
6214           llvm_unreachable("Unknown SCEV cast type!");
6215 
6216         case scTruncate:
6217           TrueValue = TrueValue.trunc(BitWidth);
6218           FalseValue = FalseValue.trunc(BitWidth);
6219           break;
6220         case scZeroExtend:
6221           TrueValue = TrueValue.zext(BitWidth);
6222           FalseValue = FalseValue.zext(BitWidth);
6223           break;
6224         case scSignExtend:
6225           TrueValue = TrueValue.sext(BitWidth);
6226           FalseValue = FalseValue.sext(BitWidth);
6227           break;
6228         }
6229 
6230       // Re-apply the constant offset we peeled off earlier
6231       TrueValue += Offset;
6232       FalseValue += Offset;
6233     }
6234 
6235     bool isRecognized() { return Condition != nullptr; }
6236   };
6237 
6238   SelectPattern StartPattern(*this, BitWidth, Start);
6239   if (!StartPattern.isRecognized())
6240     return ConstantRange::getFull(BitWidth);
6241 
6242   SelectPattern StepPattern(*this, BitWidth, Step);
6243   if (!StepPattern.isRecognized())
6244     return ConstantRange::getFull(BitWidth);
6245 
6246   if (StartPattern.Condition != StepPattern.Condition) {
6247     // We don't handle this case today; but we could, by considering four
6248     // possibilities below instead of two. I'm not sure if there are cases where
6249     // that will help over what getRange already does, though.
6250     return ConstantRange::getFull(BitWidth);
6251   }
6252 
6253   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6254   // construct arbitrary general SCEV expressions here.  This function is called
6255   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6256   // say) can end up caching a suboptimal value.
6257 
6258   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6259   // C2352 and C2512 (otherwise it isn't needed).
6260 
6261   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6262   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6263   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6264   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6265 
6266   ConstantRange TrueRange =
6267       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6268   ConstantRange FalseRange =
6269       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6270 
6271   return TrueRange.unionWith(FalseRange);
6272 }
6273 
6274 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6275   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6276   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6277 
6278   // Return early if there are no flags to propagate to the SCEV.
6279   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6280   if (BinOp->hasNoUnsignedWrap())
6281     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6282   if (BinOp->hasNoSignedWrap())
6283     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6284   if (Flags == SCEV::FlagAnyWrap)
6285     return SCEV::FlagAnyWrap;
6286 
6287   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6288 }
6289 
6290 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6291   // Here we check that I is in the header of the innermost loop containing I,
6292   // since we only deal with instructions in the loop header. The actual loop we
6293   // need to check later will come from an add recurrence, but getting that
6294   // requires computing the SCEV of the operands, which can be expensive. This
6295   // check we can do cheaply to rule out some cases early.
6296   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6297   if (InnermostContainingLoop == nullptr ||
6298       InnermostContainingLoop->getHeader() != I->getParent())
6299     return false;
6300 
6301   // Only proceed if we can prove that I does not yield poison.
6302   if (!programUndefinedIfPoison(I))
6303     return false;
6304 
6305   // At this point we know that if I is executed, then it does not wrap
6306   // according to at least one of NSW or NUW. If I is not executed, then we do
6307   // not know if the calculation that I represents would wrap. Multiple
6308   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6309   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6310   // derived from other instructions that map to the same SCEV. We cannot make
6311   // that guarantee for cases where I is not executed. So we need to find the
6312   // loop that I is considered in relation to and prove that I is executed for
6313   // every iteration of that loop. That implies that the value that I
6314   // calculates does not wrap anywhere in the loop, so then we can apply the
6315   // flags to the SCEV.
6316   //
6317   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6318   // from different loops, so that we know which loop to prove that I is
6319   // executed in.
6320   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6321     // I could be an extractvalue from a call to an overflow intrinsic.
6322     // TODO: We can do better here in some cases.
6323     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6324       return false;
6325     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6326     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6327       bool AllOtherOpsLoopInvariant = true;
6328       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6329            ++OtherOpIndex) {
6330         if (OtherOpIndex != OpIndex) {
6331           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6332           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6333             AllOtherOpsLoopInvariant = false;
6334             break;
6335           }
6336         }
6337       }
6338       if (AllOtherOpsLoopInvariant &&
6339           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6340         return true;
6341     }
6342   }
6343   return false;
6344 }
6345 
6346 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6347   // If we know that \c I can never be poison period, then that's enough.
6348   if (isSCEVExprNeverPoison(I))
6349     return true;
6350 
6351   // For an add recurrence specifically, we assume that infinite loops without
6352   // side effects are undefined behavior, and then reason as follows:
6353   //
6354   // If the add recurrence is poison in any iteration, it is poison on all
6355   // future iterations (since incrementing poison yields poison). If the result
6356   // of the add recurrence is fed into the loop latch condition and the loop
6357   // does not contain any throws or exiting blocks other than the latch, we now
6358   // have the ability to "choose" whether the backedge is taken or not (by
6359   // choosing a sufficiently evil value for the poison feeding into the branch)
6360   // for every iteration including and after the one in which \p I first became
6361   // poison.  There are two possibilities (let's call the iteration in which \p
6362   // I first became poison as K):
6363   //
6364   //  1. In the set of iterations including and after K, the loop body executes
6365   //     no side effects.  In this case executing the backege an infinte number
6366   //     of times will yield undefined behavior.
6367   //
6368   //  2. In the set of iterations including and after K, the loop body executes
6369   //     at least one side effect.  In this case, that specific instance of side
6370   //     effect is control dependent on poison, which also yields undefined
6371   //     behavior.
6372 
6373   auto *ExitingBB = L->getExitingBlock();
6374   auto *LatchBB = L->getLoopLatch();
6375   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6376     return false;
6377 
6378   SmallPtrSet<const Instruction *, 16> Pushed;
6379   SmallVector<const Instruction *, 8> PoisonStack;
6380 
6381   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6382   // things that are known to be poison under that assumption go on the
6383   // PoisonStack.
6384   Pushed.insert(I);
6385   PoisonStack.push_back(I);
6386 
6387   bool LatchControlDependentOnPoison = false;
6388   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6389     const Instruction *Poison = PoisonStack.pop_back_val();
6390 
6391     for (auto *PoisonUser : Poison->users()) {
6392       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6393         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6394           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6395       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6396         assert(BI->isConditional() && "Only possibility!");
6397         if (BI->getParent() == LatchBB) {
6398           LatchControlDependentOnPoison = true;
6399           break;
6400         }
6401       }
6402     }
6403   }
6404 
6405   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6406 }
6407 
6408 ScalarEvolution::LoopProperties
6409 ScalarEvolution::getLoopProperties(const Loop *L) {
6410   using LoopProperties = ScalarEvolution::LoopProperties;
6411 
6412   auto Itr = LoopPropertiesCache.find(L);
6413   if (Itr == LoopPropertiesCache.end()) {
6414     auto HasSideEffects = [](Instruction *I) {
6415       if (auto *SI = dyn_cast<StoreInst>(I))
6416         return !SI->isSimple();
6417 
6418       return I->mayHaveSideEffects();
6419     };
6420 
6421     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6422                          /*HasNoSideEffects*/ true};
6423 
6424     for (auto *BB : L->getBlocks())
6425       for (auto &I : *BB) {
6426         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6427           LP.HasNoAbnormalExits = false;
6428         if (HasSideEffects(&I))
6429           LP.HasNoSideEffects = false;
6430         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6431           break; // We're already as pessimistic as we can get.
6432       }
6433 
6434     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6435     assert(InsertPair.second && "We just checked!");
6436     Itr = InsertPair.first;
6437   }
6438 
6439   return Itr->second;
6440 }
6441 
6442 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6443   if (!isSCEVable(V->getType()))
6444     return getUnknown(V);
6445 
6446   if (Instruction *I = dyn_cast<Instruction>(V)) {
6447     // Don't attempt to analyze instructions in blocks that aren't
6448     // reachable. Such instructions don't matter, and they aren't required
6449     // to obey basic rules for definitions dominating uses which this
6450     // analysis depends on.
6451     if (!DT.isReachableFromEntry(I->getParent()))
6452       return getUnknown(UndefValue::get(V->getType()));
6453   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6454     return getConstant(CI);
6455   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6456     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6457   else if (!isa<ConstantExpr>(V))
6458     return getUnknown(V);
6459 
6460   Operator *U = cast<Operator>(V);
6461   if (auto BO = MatchBinaryOp(U, DT)) {
6462     switch (BO->Opcode) {
6463     case Instruction::Add: {
6464       // The simple thing to do would be to just call getSCEV on both operands
6465       // and call getAddExpr with the result. However if we're looking at a
6466       // bunch of things all added together, this can be quite inefficient,
6467       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6468       // Instead, gather up all the operands and make a single getAddExpr call.
6469       // LLVM IR canonical form means we need only traverse the left operands.
6470       SmallVector<const SCEV *, 4> AddOps;
6471       do {
6472         if (BO->Op) {
6473           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6474             AddOps.push_back(OpSCEV);
6475             break;
6476           }
6477 
6478           // If a NUW or NSW flag can be applied to the SCEV for this
6479           // addition, then compute the SCEV for this addition by itself
6480           // with a separate call to getAddExpr. We need to do that
6481           // instead of pushing the operands of the addition onto AddOps,
6482           // since the flags are only known to apply to this particular
6483           // addition - they may not apply to other additions that can be
6484           // formed with operands from AddOps.
6485           const SCEV *RHS = getSCEV(BO->RHS);
6486           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6487           if (Flags != SCEV::FlagAnyWrap) {
6488             const SCEV *LHS = getSCEV(BO->LHS);
6489             if (BO->Opcode == Instruction::Sub)
6490               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6491             else
6492               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6493             break;
6494           }
6495         }
6496 
6497         if (BO->Opcode == Instruction::Sub)
6498           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6499         else
6500           AddOps.push_back(getSCEV(BO->RHS));
6501 
6502         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6503         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6504                        NewBO->Opcode != Instruction::Sub)) {
6505           AddOps.push_back(getSCEV(BO->LHS));
6506           break;
6507         }
6508         BO = NewBO;
6509       } while (true);
6510 
6511       return getAddExpr(AddOps);
6512     }
6513 
6514     case Instruction::Mul: {
6515       SmallVector<const SCEV *, 4> MulOps;
6516       do {
6517         if (BO->Op) {
6518           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6519             MulOps.push_back(OpSCEV);
6520             break;
6521           }
6522 
6523           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6524           if (Flags != SCEV::FlagAnyWrap) {
6525             MulOps.push_back(
6526                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6527             break;
6528           }
6529         }
6530 
6531         MulOps.push_back(getSCEV(BO->RHS));
6532         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6533         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6534           MulOps.push_back(getSCEV(BO->LHS));
6535           break;
6536         }
6537         BO = NewBO;
6538       } while (true);
6539 
6540       return getMulExpr(MulOps);
6541     }
6542     case Instruction::UDiv:
6543       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6544     case Instruction::URem:
6545       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6546     case Instruction::Sub: {
6547       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6548       if (BO->Op)
6549         Flags = getNoWrapFlagsFromUB(BO->Op);
6550       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6551     }
6552     case Instruction::And:
6553       // For an expression like x&255 that merely masks off the high bits,
6554       // use zext(trunc(x)) as the SCEV expression.
6555       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6556         if (CI->isZero())
6557           return getSCEV(BO->RHS);
6558         if (CI->isMinusOne())
6559           return getSCEV(BO->LHS);
6560         const APInt &A = CI->getValue();
6561 
6562         // Instcombine's ShrinkDemandedConstant may strip bits out of
6563         // constants, obscuring what would otherwise be a low-bits mask.
6564         // Use computeKnownBits to compute what ShrinkDemandedConstant
6565         // knew about to reconstruct a low-bits mask value.
6566         unsigned LZ = A.countLeadingZeros();
6567         unsigned TZ = A.countTrailingZeros();
6568         unsigned BitWidth = A.getBitWidth();
6569         KnownBits Known(BitWidth);
6570         computeKnownBits(BO->LHS, Known, getDataLayout(),
6571                          0, &AC, nullptr, &DT);
6572 
6573         APInt EffectiveMask =
6574             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6575         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6576           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6577           const SCEV *LHS = getSCEV(BO->LHS);
6578           const SCEV *ShiftedLHS = nullptr;
6579           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6580             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6581               // For an expression like (x * 8) & 8, simplify the multiply.
6582               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6583               unsigned GCD = std::min(MulZeros, TZ);
6584               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6585               SmallVector<const SCEV*, 4> MulOps;
6586               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6587               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6588               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6589               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6590             }
6591           }
6592           if (!ShiftedLHS)
6593             ShiftedLHS = getUDivExpr(LHS, MulCount);
6594           return getMulExpr(
6595               getZeroExtendExpr(
6596                   getTruncateExpr(ShiftedLHS,
6597                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6598                   BO->LHS->getType()),
6599               MulCount);
6600         }
6601       }
6602       break;
6603 
6604     case Instruction::Or:
6605       // If the RHS of the Or is a constant, we may have something like:
6606       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6607       // optimizations will transparently handle this case.
6608       //
6609       // In order for this transformation to be safe, the LHS must be of the
6610       // form X*(2^n) and the Or constant must be less than 2^n.
6611       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6612         const SCEV *LHS = getSCEV(BO->LHS);
6613         const APInt &CIVal = CI->getValue();
6614         if (GetMinTrailingZeros(LHS) >=
6615             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6616           // Build a plain add SCEV.
6617           return getAddExpr(LHS, getSCEV(CI),
6618                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6619         }
6620       }
6621       break;
6622 
6623     case Instruction::Xor:
6624       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6625         // If the RHS of xor is -1, then this is a not operation.
6626         if (CI->isMinusOne())
6627           return getNotSCEV(getSCEV(BO->LHS));
6628 
6629         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6630         // This is a variant of the check for xor with -1, and it handles
6631         // the case where instcombine has trimmed non-demanded bits out
6632         // of an xor with -1.
6633         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6634           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6635             if (LBO->getOpcode() == Instruction::And &&
6636                 LCI->getValue() == CI->getValue())
6637               if (const SCEVZeroExtendExpr *Z =
6638                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6639                 Type *UTy = BO->LHS->getType();
6640                 const SCEV *Z0 = Z->getOperand();
6641                 Type *Z0Ty = Z0->getType();
6642                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6643 
6644                 // If C is a low-bits mask, the zero extend is serving to
6645                 // mask off the high bits. Complement the operand and
6646                 // re-apply the zext.
6647                 if (CI->getValue().isMask(Z0TySize))
6648                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6649 
6650                 // If C is a single bit, it may be in the sign-bit position
6651                 // before the zero-extend. In this case, represent the xor
6652                 // using an add, which is equivalent, and re-apply the zext.
6653                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6654                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6655                     Trunc.isSignMask())
6656                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6657                                            UTy);
6658               }
6659       }
6660       break;
6661 
6662     case Instruction::Shl:
6663       // Turn shift left of a constant amount into a multiply.
6664       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6665         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6666 
6667         // If the shift count is not less than the bitwidth, the result of
6668         // the shift is undefined. Don't try to analyze it, because the
6669         // resolution chosen here may differ from the resolution chosen in
6670         // other parts of the compiler.
6671         if (SA->getValue().uge(BitWidth))
6672           break;
6673 
6674         // We can safely preserve the nuw flag in all cases. It's also safe to
6675         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6676         // requires special handling. It can be preserved as long as we're not
6677         // left shifting by bitwidth - 1.
6678         auto Flags = SCEV::FlagAnyWrap;
6679         if (BO->Op) {
6680           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6681           if ((MulFlags & SCEV::FlagNSW) &&
6682               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6683             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6684           if (MulFlags & SCEV::FlagNUW)
6685             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6686         }
6687 
6688         Constant *X = ConstantInt::get(
6689             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6690         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6691       }
6692       break;
6693 
6694     case Instruction::AShr: {
6695       // AShr X, C, where C is a constant.
6696       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6697       if (!CI)
6698         break;
6699 
6700       Type *OuterTy = BO->LHS->getType();
6701       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6702       // If the shift count is not less than the bitwidth, the result of
6703       // the shift is undefined. Don't try to analyze it, because the
6704       // resolution chosen here may differ from the resolution chosen in
6705       // other parts of the compiler.
6706       if (CI->getValue().uge(BitWidth))
6707         break;
6708 
6709       if (CI->isZero())
6710         return getSCEV(BO->LHS); // shift by zero --> noop
6711 
6712       uint64_t AShrAmt = CI->getZExtValue();
6713       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6714 
6715       Operator *L = dyn_cast<Operator>(BO->LHS);
6716       if (L && L->getOpcode() == Instruction::Shl) {
6717         // X = Shl A, n
6718         // Y = AShr X, m
6719         // Both n and m are constant.
6720 
6721         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6722         if (L->getOperand(1) == BO->RHS)
6723           // For a two-shift sext-inreg, i.e. n = m,
6724           // use sext(trunc(x)) as the SCEV expression.
6725           return getSignExtendExpr(
6726               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6727 
6728         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6729         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6730           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6731           if (ShlAmt > AShrAmt) {
6732             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6733             // expression. We already checked that ShlAmt < BitWidth, so
6734             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6735             // ShlAmt - AShrAmt < Amt.
6736             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6737                                             ShlAmt - AShrAmt);
6738             return getSignExtendExpr(
6739                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6740                 getConstant(Mul)), OuterTy);
6741           }
6742         }
6743       }
6744       if (BO->IsExact) {
6745         // Given exact arithmetic in-bounds right-shift by a constant,
6746         // we can lower it into:  (abs(x) EXACT/u (1<<C)) * signum(x)
6747         const SCEV *X = getSCEV(BO->LHS);
6748         const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false);
6749         APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt);
6750         const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult));
6751         return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW);
6752       }
6753       break;
6754     }
6755     }
6756   }
6757 
6758   switch (U->getOpcode()) {
6759   case Instruction::Trunc:
6760     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6761 
6762   case Instruction::ZExt:
6763     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6764 
6765   case Instruction::SExt:
6766     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6767       // The NSW flag of a subtract does not always survive the conversion to
6768       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6769       // more likely to preserve NSW and allow later AddRec optimisations.
6770       //
6771       // NOTE: This is effectively duplicating this logic from getSignExtend:
6772       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6773       // but by that point the NSW information has potentially been lost.
6774       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6775         Type *Ty = U->getType();
6776         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6777         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6778         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6779       }
6780     }
6781     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6782 
6783   case Instruction::BitCast:
6784     // BitCasts are no-op casts so we just eliminate the cast.
6785     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6786       return getSCEV(U->getOperand(0));
6787     break;
6788 
6789   case Instruction::PtrToInt: {
6790     // Pointer to integer cast is straight-forward, so do model it.
6791     Value *Ptr = U->getOperand(0);
6792     const SCEV *Op = getSCEV(Ptr);
6793     Type *DstIntTy = U->getType();
6794     Type *PtrTy = Ptr->getType();
6795     Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy);
6796     // But only if effective SCEV (integer) type is wide enough to represent
6797     // all possible pointer values.
6798     if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) !=
6799         getDataLayout().getTypeSizeInBits(IntPtrTy))
6800       return getUnknown(V);
6801     return getPtrToIntExpr(Op, DstIntTy);
6802   }
6803   case Instruction::IntToPtr:
6804     // Just don't deal with inttoptr casts.
6805     return getUnknown(V);
6806 
6807   case Instruction::SDiv:
6808     // If both operands are non-negative, this is just an udiv.
6809     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6810         isKnownNonNegative(getSCEV(U->getOperand(1))))
6811       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6812     break;
6813 
6814   case Instruction::SRem:
6815     // If both operands are non-negative, this is just an urem.
6816     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6817         isKnownNonNegative(getSCEV(U->getOperand(1))))
6818       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6819     break;
6820 
6821   case Instruction::GetElementPtr:
6822     return createNodeForGEP(cast<GEPOperator>(U));
6823 
6824   case Instruction::PHI:
6825     return createNodeForPHI(cast<PHINode>(U));
6826 
6827   case Instruction::Select:
6828     // U can also be a select constant expr, which let fall through.  Since
6829     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6830     // constant expressions cannot have instructions as operands, we'd have
6831     // returned getUnknown for a select constant expressions anyway.
6832     if (isa<Instruction>(U))
6833       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6834                                       U->getOperand(1), U->getOperand(2));
6835     break;
6836 
6837   case Instruction::Call:
6838   case Instruction::Invoke:
6839     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6840       return getSCEV(RV);
6841 
6842     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6843       switch (II->getIntrinsicID()) {
6844       case Intrinsic::abs:
6845         return getAbsExpr(
6846             getSCEV(II->getArgOperand(0)),
6847             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6848       case Intrinsic::umax:
6849         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6850                            getSCEV(II->getArgOperand(1)));
6851       case Intrinsic::umin:
6852         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6853                            getSCEV(II->getArgOperand(1)));
6854       case Intrinsic::smax:
6855         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6856                            getSCEV(II->getArgOperand(1)));
6857       case Intrinsic::smin:
6858         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6859                            getSCEV(II->getArgOperand(1)));
6860       case Intrinsic::usub_sat: {
6861         const SCEV *X = getSCEV(II->getArgOperand(0));
6862         const SCEV *Y = getSCEV(II->getArgOperand(1));
6863         const SCEV *ClampedY = getUMinExpr(X, Y);
6864         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6865       }
6866       case Intrinsic::uadd_sat: {
6867         const SCEV *X = getSCEV(II->getArgOperand(0));
6868         const SCEV *Y = getSCEV(II->getArgOperand(1));
6869         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6870         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6871       }
6872       case Intrinsic::start_loop_iterations:
6873         // A start_loop_iterations is just equivalent to the first operand for
6874         // SCEV purposes.
6875         return getSCEV(II->getArgOperand(0));
6876       default:
6877         break;
6878       }
6879     }
6880     break;
6881   }
6882 
6883   return getUnknown(V);
6884 }
6885 
6886 //===----------------------------------------------------------------------===//
6887 //                   Iteration Count Computation Code
6888 //
6889 
6890 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6891   if (!ExitCount)
6892     return 0;
6893 
6894   ConstantInt *ExitConst = ExitCount->getValue();
6895 
6896   // Guard against huge trip counts.
6897   if (ExitConst->getValue().getActiveBits() > 32)
6898     return 0;
6899 
6900   // In case of integer overflow, this returns 0, which is correct.
6901   return ((unsigned)ExitConst->getZExtValue()) + 1;
6902 }
6903 
6904 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6905   if (BasicBlock *ExitingBB = L->getExitingBlock())
6906     return getSmallConstantTripCount(L, ExitingBB);
6907 
6908   // No trip count information for multiple exits.
6909   return 0;
6910 }
6911 
6912 unsigned
6913 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6914                                            const BasicBlock *ExitingBlock) {
6915   assert(ExitingBlock && "Must pass a non-null exiting block!");
6916   assert(L->isLoopExiting(ExitingBlock) &&
6917          "Exiting block must actually branch out of the loop!");
6918   const SCEVConstant *ExitCount =
6919       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6920   return getConstantTripCount(ExitCount);
6921 }
6922 
6923 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6924   const auto *MaxExitCount =
6925       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6926   return getConstantTripCount(MaxExitCount);
6927 }
6928 
6929 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6930   if (BasicBlock *ExitingBB = L->getExitingBlock())
6931     return getSmallConstantTripMultiple(L, ExitingBB);
6932 
6933   // No trip multiple information for multiple exits.
6934   return 0;
6935 }
6936 
6937 /// Returns the largest constant divisor of the trip count of this loop as a
6938 /// normal unsigned value, if possible. This means that the actual trip count is
6939 /// always a multiple of the returned value (don't forget the trip count could
6940 /// very well be zero as well!).
6941 ///
6942 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6943 /// multiple of a constant (which is also the case if the trip count is simply
6944 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6945 /// if the trip count is very large (>= 2^32).
6946 ///
6947 /// As explained in the comments for getSmallConstantTripCount, this assumes
6948 /// that control exits the loop via ExitingBlock.
6949 unsigned
6950 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6951                                               const BasicBlock *ExitingBlock) {
6952   assert(ExitingBlock && "Must pass a non-null exiting block!");
6953   assert(L->isLoopExiting(ExitingBlock) &&
6954          "Exiting block must actually branch out of the loop!");
6955   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6956   if (ExitCount == getCouldNotCompute())
6957     return 1;
6958 
6959   // Get the trip count from the BE count by adding 1.
6960   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6961 
6962   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6963   if (!TC)
6964     // Attempt to factor more general cases. Returns the greatest power of
6965     // two divisor. If overflow happens, the trip count expression is still
6966     // divisible by the greatest power of 2 divisor returned.
6967     return 1U << std::min((uint32_t)31,
6968                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
6969 
6970   ConstantInt *Result = TC->getValue();
6971 
6972   // Guard against huge trip counts (this requires checking
6973   // for zero to handle the case where the trip count == -1 and the
6974   // addition wraps).
6975   if (!Result || Result->getValue().getActiveBits() > 32 ||
6976       Result->getValue().getActiveBits() == 0)
6977     return 1;
6978 
6979   return (unsigned)Result->getZExtValue();
6980 }
6981 
6982 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6983                                           const BasicBlock *ExitingBlock,
6984                                           ExitCountKind Kind) {
6985   switch (Kind) {
6986   case Exact:
6987   case SymbolicMaximum:
6988     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6989   case ConstantMaximum:
6990     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
6991   };
6992   llvm_unreachable("Invalid ExitCountKind!");
6993 }
6994 
6995 const SCEV *
6996 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6997                                                  SCEVUnionPredicate &Preds) {
6998   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6999 }
7000 
7001 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7002                                                    ExitCountKind Kind) {
7003   switch (Kind) {
7004   case Exact:
7005     return getBackedgeTakenInfo(L).getExact(L, this);
7006   case ConstantMaximum:
7007     return getBackedgeTakenInfo(L).getConstantMax(this);
7008   case SymbolicMaximum:
7009     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7010   };
7011   llvm_unreachable("Invalid ExitCountKind!");
7012 }
7013 
7014 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7015   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7016 }
7017 
7018 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7019 static void
7020 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7021   BasicBlock *Header = L->getHeader();
7022 
7023   // Push all Loop-header PHIs onto the Worklist stack.
7024   for (PHINode &PN : Header->phis())
7025     Worklist.push_back(&PN);
7026 }
7027 
7028 const ScalarEvolution::BackedgeTakenInfo &
7029 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7030   auto &BTI = getBackedgeTakenInfo(L);
7031   if (BTI.hasFullInfo())
7032     return BTI;
7033 
7034   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7035 
7036   if (!Pair.second)
7037     return Pair.first->second;
7038 
7039   BackedgeTakenInfo Result =
7040       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7041 
7042   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7043 }
7044 
7045 ScalarEvolution::BackedgeTakenInfo &
7046 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7047   // Initially insert an invalid entry for this loop. If the insertion
7048   // succeeds, proceed to actually compute a backedge-taken count and
7049   // update the value. The temporary CouldNotCompute value tells SCEV
7050   // code elsewhere that it shouldn't attempt to request a new
7051   // backedge-taken count, which could result in infinite recursion.
7052   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7053       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7054   if (!Pair.second)
7055     return Pair.first->second;
7056 
7057   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7058   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7059   // must be cleared in this scope.
7060   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7061 
7062   // In product build, there are no usage of statistic.
7063   (void)NumTripCountsComputed;
7064   (void)NumTripCountsNotComputed;
7065 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7066   const SCEV *BEExact = Result.getExact(L, this);
7067   if (BEExact != getCouldNotCompute()) {
7068     assert(isLoopInvariant(BEExact, L) &&
7069            isLoopInvariant(Result.getConstantMax(this), L) &&
7070            "Computed backedge-taken count isn't loop invariant for loop!");
7071     ++NumTripCountsComputed;
7072   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7073              isa<PHINode>(L->getHeader()->begin())) {
7074     // Only count loops that have phi nodes as not being computable.
7075     ++NumTripCountsNotComputed;
7076   }
7077 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7078 
7079   // Now that we know more about the trip count for this loop, forget any
7080   // existing SCEV values for PHI nodes in this loop since they are only
7081   // conservative estimates made without the benefit of trip count
7082   // information. This is similar to the code in forgetLoop, except that
7083   // it handles SCEVUnknown PHI nodes specially.
7084   if (Result.hasAnyInfo()) {
7085     SmallVector<Instruction *, 16> Worklist;
7086     PushLoopPHIs(L, Worklist);
7087 
7088     SmallPtrSet<Instruction *, 8> Discovered;
7089     while (!Worklist.empty()) {
7090       Instruction *I = Worklist.pop_back_val();
7091 
7092       ValueExprMapType::iterator It =
7093         ValueExprMap.find_as(static_cast<Value *>(I));
7094       if (It != ValueExprMap.end()) {
7095         const SCEV *Old = It->second;
7096 
7097         // SCEVUnknown for a PHI either means that it has an unrecognized
7098         // structure, or it's a PHI that's in the progress of being computed
7099         // by createNodeForPHI.  In the former case, additional loop trip
7100         // count information isn't going to change anything. In the later
7101         // case, createNodeForPHI will perform the necessary updates on its
7102         // own when it gets to that point.
7103         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7104           eraseValueFromMap(It->first);
7105           forgetMemoizedResults(Old);
7106         }
7107         if (PHINode *PN = dyn_cast<PHINode>(I))
7108           ConstantEvolutionLoopExitValue.erase(PN);
7109       }
7110 
7111       // Since we don't need to invalidate anything for correctness and we're
7112       // only invalidating to make SCEV's results more precise, we get to stop
7113       // early to avoid invalidating too much.  This is especially important in
7114       // cases like:
7115       //
7116       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7117       // loop0:
7118       //   %pn0 = phi
7119       //   ...
7120       // loop1:
7121       //   %pn1 = phi
7122       //   ...
7123       //
7124       // where both loop0 and loop1's backedge taken count uses the SCEV
7125       // expression for %v.  If we don't have the early stop below then in cases
7126       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7127       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7128       // count for loop1, effectively nullifying SCEV's trip count cache.
7129       for (auto *U : I->users())
7130         if (auto *I = dyn_cast<Instruction>(U)) {
7131           auto *LoopForUser = LI.getLoopFor(I->getParent());
7132           if (LoopForUser && L->contains(LoopForUser) &&
7133               Discovered.insert(I).second)
7134             Worklist.push_back(I);
7135         }
7136     }
7137   }
7138 
7139   // Re-lookup the insert position, since the call to
7140   // computeBackedgeTakenCount above could result in a
7141   // recusive call to getBackedgeTakenInfo (on a different
7142   // loop), which would invalidate the iterator computed
7143   // earlier.
7144   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7145 }
7146 
7147 void ScalarEvolution::forgetAllLoops() {
7148   // This method is intended to forget all info about loops. It should
7149   // invalidate caches as if the following happened:
7150   // - The trip counts of all loops have changed arbitrarily
7151   // - Every llvm::Value has been updated in place to produce a different
7152   // result.
7153   BackedgeTakenCounts.clear();
7154   PredicatedBackedgeTakenCounts.clear();
7155   LoopPropertiesCache.clear();
7156   ConstantEvolutionLoopExitValue.clear();
7157   ValueExprMap.clear();
7158   ValuesAtScopes.clear();
7159   LoopDispositions.clear();
7160   BlockDispositions.clear();
7161   UnsignedRanges.clear();
7162   SignedRanges.clear();
7163   ExprValueMap.clear();
7164   HasRecMap.clear();
7165   MinTrailingZerosCache.clear();
7166   PredicatedSCEVRewrites.clear();
7167 }
7168 
7169 void ScalarEvolution::forgetLoop(const Loop *L) {
7170   // Drop any stored trip count value.
7171   auto RemoveLoopFromBackedgeMap =
7172       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
7173         auto BTCPos = Map.find(L);
7174         if (BTCPos != Map.end()) {
7175           BTCPos->second.clear();
7176           Map.erase(BTCPos);
7177         }
7178       };
7179 
7180   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7181   SmallVector<Instruction *, 32> Worklist;
7182   SmallPtrSet<Instruction *, 16> Visited;
7183 
7184   // Iterate over all the loops and sub-loops to drop SCEV information.
7185   while (!LoopWorklist.empty()) {
7186     auto *CurrL = LoopWorklist.pop_back_val();
7187 
7188     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
7189     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
7190 
7191     // Drop information about predicated SCEV rewrites for this loop.
7192     for (auto I = PredicatedSCEVRewrites.begin();
7193          I != PredicatedSCEVRewrites.end();) {
7194       std::pair<const SCEV *, const Loop *> Entry = I->first;
7195       if (Entry.second == CurrL)
7196         PredicatedSCEVRewrites.erase(I++);
7197       else
7198         ++I;
7199     }
7200 
7201     auto LoopUsersItr = LoopUsers.find(CurrL);
7202     if (LoopUsersItr != LoopUsers.end()) {
7203       for (auto *S : LoopUsersItr->second)
7204         forgetMemoizedResults(S);
7205       LoopUsers.erase(LoopUsersItr);
7206     }
7207 
7208     // Drop information about expressions based on loop-header PHIs.
7209     PushLoopPHIs(CurrL, Worklist);
7210 
7211     while (!Worklist.empty()) {
7212       Instruction *I = Worklist.pop_back_val();
7213       if (!Visited.insert(I).second)
7214         continue;
7215 
7216       ValueExprMapType::iterator It =
7217           ValueExprMap.find_as(static_cast<Value *>(I));
7218       if (It != ValueExprMap.end()) {
7219         eraseValueFromMap(It->first);
7220         forgetMemoizedResults(It->second);
7221         if (PHINode *PN = dyn_cast<PHINode>(I))
7222           ConstantEvolutionLoopExitValue.erase(PN);
7223       }
7224 
7225       PushDefUseChildren(I, Worklist);
7226     }
7227 
7228     LoopPropertiesCache.erase(CurrL);
7229     // Forget all contained loops too, to avoid dangling entries in the
7230     // ValuesAtScopes map.
7231     LoopWorklist.append(CurrL->begin(), CurrL->end());
7232   }
7233 }
7234 
7235 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7236   while (Loop *Parent = L->getParentLoop())
7237     L = Parent;
7238   forgetLoop(L);
7239 }
7240 
7241 void ScalarEvolution::forgetValue(Value *V) {
7242   Instruction *I = dyn_cast<Instruction>(V);
7243   if (!I) return;
7244 
7245   // Drop information about expressions based on loop-header PHIs.
7246   SmallVector<Instruction *, 16> Worklist;
7247   Worklist.push_back(I);
7248 
7249   SmallPtrSet<Instruction *, 8> Visited;
7250   while (!Worklist.empty()) {
7251     I = Worklist.pop_back_val();
7252     if (!Visited.insert(I).second)
7253       continue;
7254 
7255     ValueExprMapType::iterator It =
7256       ValueExprMap.find_as(static_cast<Value *>(I));
7257     if (It != ValueExprMap.end()) {
7258       eraseValueFromMap(It->first);
7259       forgetMemoizedResults(It->second);
7260       if (PHINode *PN = dyn_cast<PHINode>(I))
7261         ConstantEvolutionLoopExitValue.erase(PN);
7262     }
7263 
7264     PushDefUseChildren(I, Worklist);
7265   }
7266 }
7267 
7268 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7269   LoopDispositions.clear();
7270 }
7271 
7272 /// Get the exact loop backedge taken count considering all loop exits. A
7273 /// computable result can only be returned for loops with all exiting blocks
7274 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7275 /// is never skipped. This is a valid assumption as long as the loop exits via
7276 /// that test. For precise results, it is the caller's responsibility to specify
7277 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7278 const SCEV *
7279 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7280                                              SCEVUnionPredicate *Preds) const {
7281   // If any exits were not computable, the loop is not computable.
7282   if (!isComplete() || ExitNotTaken.empty())
7283     return SE->getCouldNotCompute();
7284 
7285   const BasicBlock *Latch = L->getLoopLatch();
7286   // All exiting blocks we have collected must dominate the only backedge.
7287   if (!Latch)
7288     return SE->getCouldNotCompute();
7289 
7290   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7291   // count is simply a minimum out of all these calculated exit counts.
7292   SmallVector<const SCEV *, 2> Ops;
7293   for (auto &ENT : ExitNotTaken) {
7294     const SCEV *BECount = ENT.ExactNotTaken;
7295     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7296     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7297            "We should only have known counts for exiting blocks that dominate "
7298            "latch!");
7299 
7300     Ops.push_back(BECount);
7301 
7302     if (Preds && !ENT.hasAlwaysTruePredicate())
7303       Preds->add(ENT.Predicate.get());
7304 
7305     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7306            "Predicate should be always true!");
7307   }
7308 
7309   return SE->getUMinFromMismatchedTypes(Ops);
7310 }
7311 
7312 /// Get the exact not taken count for this loop exit.
7313 const SCEV *
7314 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7315                                              ScalarEvolution *SE) const {
7316   for (auto &ENT : ExitNotTaken)
7317     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7318       return ENT.ExactNotTaken;
7319 
7320   return SE->getCouldNotCompute();
7321 }
7322 
7323 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7324     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7325   for (auto &ENT : ExitNotTaken)
7326     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7327       return ENT.MaxNotTaken;
7328 
7329   return SE->getCouldNotCompute();
7330 }
7331 
7332 /// getConstantMax - Get the constant max backedge taken count for the loop.
7333 const SCEV *
7334 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7335   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7336     return !ENT.hasAlwaysTruePredicate();
7337   };
7338 
7339   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7340     return SE->getCouldNotCompute();
7341 
7342   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7343           isa<SCEVConstant>(getConstantMax())) &&
7344          "No point in having a non-constant max backedge taken count!");
7345   return getConstantMax();
7346 }
7347 
7348 const SCEV *
7349 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7350                                                    ScalarEvolution *SE) {
7351   if (!SymbolicMax)
7352     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7353   return SymbolicMax;
7354 }
7355 
7356 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7357     ScalarEvolution *SE) const {
7358   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7359     return !ENT.hasAlwaysTruePredicate();
7360   };
7361   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7362 }
7363 
7364 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7365                                                     ScalarEvolution *SE) const {
7366   if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() &&
7367       SE->hasOperand(getConstantMax(), S))
7368     return true;
7369 
7370   for (auto &ENT : ExitNotTaken)
7371     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7372         SE->hasOperand(ENT.ExactNotTaken, S))
7373       return true;
7374 
7375   return false;
7376 }
7377 
7378 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7379     : ExactNotTaken(E), MaxNotTaken(E) {
7380   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7381           isa<SCEVConstant>(MaxNotTaken)) &&
7382          "No point in having a non-constant max backedge taken count!");
7383 }
7384 
7385 ScalarEvolution::ExitLimit::ExitLimit(
7386     const SCEV *E, const SCEV *M, bool MaxOrZero,
7387     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7388     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7389   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7390           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7391          "Exact is not allowed to be less precise than Max");
7392   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7393           isa<SCEVConstant>(MaxNotTaken)) &&
7394          "No point in having a non-constant max backedge taken count!");
7395   for (auto *PredSet : PredSetList)
7396     for (auto *P : *PredSet)
7397       addPredicate(P);
7398 }
7399 
7400 ScalarEvolution::ExitLimit::ExitLimit(
7401     const SCEV *E, const SCEV *M, bool MaxOrZero,
7402     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7403     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7404   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7405           isa<SCEVConstant>(MaxNotTaken)) &&
7406          "No point in having a non-constant max backedge taken count!");
7407 }
7408 
7409 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7410                                       bool MaxOrZero)
7411     : ExitLimit(E, M, MaxOrZero, None) {
7412   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7413           isa<SCEVConstant>(MaxNotTaken)) &&
7414          "No point in having a non-constant max backedge taken count!");
7415 }
7416 
7417 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7418 /// computable exit into a persistent ExitNotTakenInfo array.
7419 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7420     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7421     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7422     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7423   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7424 
7425   ExitNotTaken.reserve(ExitCounts.size());
7426   std::transform(
7427       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7428       [&](const EdgeExitInfo &EEI) {
7429         BasicBlock *ExitBB = EEI.first;
7430         const ExitLimit &EL = EEI.second;
7431         if (EL.Predicates.empty())
7432           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7433                                   nullptr);
7434 
7435         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7436         for (auto *Pred : EL.Predicates)
7437           Predicate->add(Pred);
7438 
7439         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7440                                 std::move(Predicate));
7441       });
7442   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7443           isa<SCEVConstant>(ConstantMax)) &&
7444          "No point in having a non-constant max backedge taken count!");
7445 }
7446 
7447 /// Invalidate this result and free the ExitNotTakenInfo array.
7448 void ScalarEvolution::BackedgeTakenInfo::clear() {
7449   ExitNotTaken.clear();
7450 }
7451 
7452 /// Compute the number of times the backedge of the specified loop will execute.
7453 ScalarEvolution::BackedgeTakenInfo
7454 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7455                                            bool AllowPredicates) {
7456   SmallVector<BasicBlock *, 8> ExitingBlocks;
7457   L->getExitingBlocks(ExitingBlocks);
7458 
7459   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7460 
7461   SmallVector<EdgeExitInfo, 4> ExitCounts;
7462   bool CouldComputeBECount = true;
7463   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7464   const SCEV *MustExitMaxBECount = nullptr;
7465   const SCEV *MayExitMaxBECount = nullptr;
7466   bool MustExitMaxOrZero = false;
7467 
7468   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7469   // and compute maxBECount.
7470   // Do a union of all the predicates here.
7471   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7472     BasicBlock *ExitBB = ExitingBlocks[i];
7473 
7474     // We canonicalize untaken exits to br (constant), ignore them so that
7475     // proving an exit untaken doesn't negatively impact our ability to reason
7476     // about the loop as whole.
7477     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7478       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7479         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7480         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7481           continue;
7482       }
7483 
7484     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7485 
7486     assert((AllowPredicates || EL.Predicates.empty()) &&
7487            "Predicated exit limit when predicates are not allowed!");
7488 
7489     // 1. For each exit that can be computed, add an entry to ExitCounts.
7490     // CouldComputeBECount is true only if all exits can be computed.
7491     if (EL.ExactNotTaken == getCouldNotCompute())
7492       // We couldn't compute an exact value for this exit, so
7493       // we won't be able to compute an exact value for the loop.
7494       CouldComputeBECount = false;
7495     else
7496       ExitCounts.emplace_back(ExitBB, EL);
7497 
7498     // 2. Derive the loop's MaxBECount from each exit's max number of
7499     // non-exiting iterations. Partition the loop exits into two kinds:
7500     // LoopMustExits and LoopMayExits.
7501     //
7502     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7503     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7504     // MaxBECount is the minimum EL.MaxNotTaken of computable
7505     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7506     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7507     // computable EL.MaxNotTaken.
7508     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7509         DT.dominates(ExitBB, Latch)) {
7510       if (!MustExitMaxBECount) {
7511         MustExitMaxBECount = EL.MaxNotTaken;
7512         MustExitMaxOrZero = EL.MaxOrZero;
7513       } else {
7514         MustExitMaxBECount =
7515             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7516       }
7517     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7518       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7519         MayExitMaxBECount = EL.MaxNotTaken;
7520       else {
7521         MayExitMaxBECount =
7522             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7523       }
7524     }
7525   }
7526   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7527     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7528   // The loop backedge will be taken the maximum or zero times if there's
7529   // a single exit that must be taken the maximum or zero times.
7530   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7531   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7532                            MaxBECount, MaxOrZero);
7533 }
7534 
7535 ScalarEvolution::ExitLimit
7536 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7537                                       bool AllowPredicates) {
7538   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7539   // If our exiting block does not dominate the latch, then its connection with
7540   // loop's exit limit may be far from trivial.
7541   const BasicBlock *Latch = L->getLoopLatch();
7542   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7543     return getCouldNotCompute();
7544 
7545   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7546   Instruction *Term = ExitingBlock->getTerminator();
7547   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7548     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7549     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7550     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7551            "It should have one successor in loop and one exit block!");
7552     // Proceed to the next level to examine the exit condition expression.
7553     return computeExitLimitFromCond(
7554         L, BI->getCondition(), ExitIfTrue,
7555         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7556   }
7557 
7558   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7559     // For switch, make sure that there is a single exit from the loop.
7560     BasicBlock *Exit = nullptr;
7561     for (auto *SBB : successors(ExitingBlock))
7562       if (!L->contains(SBB)) {
7563         if (Exit) // Multiple exit successors.
7564           return getCouldNotCompute();
7565         Exit = SBB;
7566       }
7567     assert(Exit && "Exiting block must have at least one exit");
7568     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7569                                                 /*ControlsExit=*/IsOnlyExit);
7570   }
7571 
7572   return getCouldNotCompute();
7573 }
7574 
7575 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7576     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7577     bool ControlsExit, bool AllowPredicates) {
7578   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7579   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7580                                         ControlsExit, AllowPredicates);
7581 }
7582 
7583 Optional<ScalarEvolution::ExitLimit>
7584 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7585                                       bool ExitIfTrue, bool ControlsExit,
7586                                       bool AllowPredicates) {
7587   (void)this->L;
7588   (void)this->ExitIfTrue;
7589   (void)this->AllowPredicates;
7590 
7591   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7592          this->AllowPredicates == AllowPredicates &&
7593          "Variance in assumed invariant key components!");
7594   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7595   if (Itr == TripCountMap.end())
7596     return None;
7597   return Itr->second;
7598 }
7599 
7600 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7601                                              bool ExitIfTrue,
7602                                              bool ControlsExit,
7603                                              bool AllowPredicates,
7604                                              const ExitLimit &EL) {
7605   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7606          this->AllowPredicates == AllowPredicates &&
7607          "Variance in assumed invariant key components!");
7608 
7609   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7610   assert(InsertResult.second && "Expected successful insertion!");
7611   (void)InsertResult;
7612   (void)ExitIfTrue;
7613 }
7614 
7615 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7616     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7617     bool ControlsExit, bool AllowPredicates) {
7618 
7619   if (auto MaybeEL =
7620           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7621     return *MaybeEL;
7622 
7623   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7624                                               ControlsExit, AllowPredicates);
7625   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7626   return EL;
7627 }
7628 
7629 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7630     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7631     bool ControlsExit, bool AllowPredicates) {
7632   // Handle BinOp conditions (And, Or).
7633   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7634           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7635     return *LimitFromBinOp;
7636 
7637   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7638   // Proceed to the next level to examine the icmp.
7639   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7640     ExitLimit EL =
7641         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7642     if (EL.hasFullInfo() || !AllowPredicates)
7643       return EL;
7644 
7645     // Try again, but use SCEV predicates this time.
7646     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7647                                     /*AllowPredicates=*/true);
7648   }
7649 
7650   // Check for a constant condition. These are normally stripped out by
7651   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7652   // preserve the CFG and is temporarily leaving constant conditions
7653   // in place.
7654   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7655     if (ExitIfTrue == !CI->getZExtValue())
7656       // The backedge is always taken.
7657       return getCouldNotCompute();
7658     else
7659       // The backedge is never taken.
7660       return getZero(CI->getType());
7661   }
7662 
7663   // If it's not an integer or pointer comparison then compute it the hard way.
7664   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7665 }
7666 
7667 Optional<ScalarEvolution::ExitLimit>
7668 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7669     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7670     bool ControlsExit, bool AllowPredicates) {
7671   // Check if the controlling expression for this loop is an And or Or.
7672   Value *Op0, *Op1;
7673   bool IsAnd = false;
7674   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7675     IsAnd = true;
7676   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7677     IsAnd = false;
7678   else
7679     return None;
7680 
7681   // EitherMayExit is true in these two cases:
7682   //   br (and Op0 Op1), loop, exit
7683   //   br (or  Op0 Op1), exit, loop
7684   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7685   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7686                                                  ControlsExit && !EitherMayExit,
7687                                                  AllowPredicates);
7688   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7689                                                  ControlsExit && !EitherMayExit,
7690                                                  AllowPredicates);
7691 
7692   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7693   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7694   if (isa<ConstantInt>(Op1))
7695     return Op1 == NeutralElement ? EL0 : EL1;
7696   if (isa<ConstantInt>(Op0))
7697     return Op0 == NeutralElement ? EL1 : EL0;
7698 
7699   const SCEV *BECount = getCouldNotCompute();
7700   const SCEV *MaxBECount = getCouldNotCompute();
7701   if (EitherMayExit) {
7702     // Both conditions must be same for the loop to continue executing.
7703     // Choose the less conservative count.
7704     // If ExitCond is a short-circuit form (select), using
7705     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7706     // To see the detailed examples, please see
7707     // test/Analysis/ScalarEvolution/exit-count-select.ll
7708     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7709     if (!PoisonSafe)
7710       // Even if ExitCond is select, we can safely derive BECount using both
7711       // EL0 and EL1 in these cases:
7712       // (1) EL0.ExactNotTaken is non-zero
7713       // (2) EL1.ExactNotTaken is non-poison
7714       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7715       //     it cannot be umin(0, ..))
7716       // The PoisonSafe assignment below is simplified and the assertion after
7717       // BECount calculation fully guarantees the condition (3).
7718       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7719                    isa<SCEVConstant>(EL1.ExactNotTaken);
7720     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7721         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7722       BECount =
7723           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7724 
7725       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7726       // it should have been simplified to zero (see the condition (3) above)
7727       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7728              BECount->isZero());
7729     }
7730     if (EL0.MaxNotTaken == getCouldNotCompute())
7731       MaxBECount = EL1.MaxNotTaken;
7732     else if (EL1.MaxNotTaken == getCouldNotCompute())
7733       MaxBECount = EL0.MaxNotTaken;
7734     else
7735       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7736   } else {
7737     // Both conditions must be same at the same time for the loop to exit.
7738     // For now, be conservative.
7739     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7740       BECount = EL0.ExactNotTaken;
7741   }
7742 
7743   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7744   // to be more aggressive when computing BECount than when computing
7745   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7746   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7747   // to not.
7748   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7749       !isa<SCEVCouldNotCompute>(BECount))
7750     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7751 
7752   return ExitLimit(BECount, MaxBECount, false,
7753                    { &EL0.Predicates, &EL1.Predicates });
7754 }
7755 
7756 ScalarEvolution::ExitLimit
7757 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7758                                           ICmpInst *ExitCond,
7759                                           bool ExitIfTrue,
7760                                           bool ControlsExit,
7761                                           bool AllowPredicates) {
7762   // If the condition was exit on true, convert the condition to exit on false
7763   ICmpInst::Predicate Pred;
7764   if (!ExitIfTrue)
7765     Pred = ExitCond->getPredicate();
7766   else
7767     Pred = ExitCond->getInversePredicate();
7768   const ICmpInst::Predicate OriginalPred = Pred;
7769 
7770   // Handle common loops like: for (X = "string"; *X; ++X)
7771   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7772     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7773       ExitLimit ItCnt =
7774         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7775       if (ItCnt.hasAnyInfo())
7776         return ItCnt;
7777     }
7778 
7779   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7780   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7781 
7782   // Try to evaluate any dependencies out of the loop.
7783   LHS = getSCEVAtScope(LHS, L);
7784   RHS = getSCEVAtScope(RHS, L);
7785 
7786   // At this point, we would like to compute how many iterations of the
7787   // loop the predicate will return true for these inputs.
7788   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7789     // If there is a loop-invariant, force it into the RHS.
7790     std::swap(LHS, RHS);
7791     Pred = ICmpInst::getSwappedPredicate(Pred);
7792   }
7793 
7794   // Simplify the operands before analyzing them.
7795   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7796 
7797   // If we have a comparison of a chrec against a constant, try to use value
7798   // ranges to answer this query.
7799   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7800     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7801       if (AddRec->getLoop() == L) {
7802         // Form the constant range.
7803         ConstantRange CompRange =
7804             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7805 
7806         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7807         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7808       }
7809 
7810   switch (Pred) {
7811   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7812     // Convert to: while (X-Y != 0)
7813     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7814                                 AllowPredicates);
7815     if (EL.hasAnyInfo()) return EL;
7816     break;
7817   }
7818   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7819     // Convert to: while (X-Y == 0)
7820     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7821     if (EL.hasAnyInfo()) return EL;
7822     break;
7823   }
7824   case ICmpInst::ICMP_SLT:
7825   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7826     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7827     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7828                                     AllowPredicates);
7829     if (EL.hasAnyInfo()) return EL;
7830     break;
7831   }
7832   case ICmpInst::ICMP_SGT:
7833   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7834     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7835     ExitLimit EL =
7836         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7837                             AllowPredicates);
7838     if (EL.hasAnyInfo()) return EL;
7839     break;
7840   }
7841   default:
7842     break;
7843   }
7844 
7845   auto *ExhaustiveCount =
7846       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7847 
7848   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7849     return ExhaustiveCount;
7850 
7851   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7852                                       ExitCond->getOperand(1), L, OriginalPred);
7853 }
7854 
7855 ScalarEvolution::ExitLimit
7856 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7857                                                       SwitchInst *Switch,
7858                                                       BasicBlock *ExitingBlock,
7859                                                       bool ControlsExit) {
7860   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7861 
7862   // Give up if the exit is the default dest of a switch.
7863   if (Switch->getDefaultDest() == ExitingBlock)
7864     return getCouldNotCompute();
7865 
7866   assert(L->contains(Switch->getDefaultDest()) &&
7867          "Default case must not exit the loop!");
7868   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7869   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7870 
7871   // while (X != Y) --> while (X-Y != 0)
7872   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7873   if (EL.hasAnyInfo())
7874     return EL;
7875 
7876   return getCouldNotCompute();
7877 }
7878 
7879 static ConstantInt *
7880 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7881                                 ScalarEvolution &SE) {
7882   const SCEV *InVal = SE.getConstant(C);
7883   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7884   assert(isa<SCEVConstant>(Val) &&
7885          "Evaluation of SCEV at constant didn't fold correctly?");
7886   return cast<SCEVConstant>(Val)->getValue();
7887 }
7888 
7889 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7890 /// compute the backedge execution count.
7891 ScalarEvolution::ExitLimit
7892 ScalarEvolution::computeLoadConstantCompareExitLimit(
7893   LoadInst *LI,
7894   Constant *RHS,
7895   const Loop *L,
7896   ICmpInst::Predicate predicate) {
7897   if (LI->isVolatile()) return getCouldNotCompute();
7898 
7899   // Check to see if the loaded pointer is a getelementptr of a global.
7900   // TODO: Use SCEV instead of manually grubbing with GEPs.
7901   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7902   if (!GEP) return getCouldNotCompute();
7903 
7904   // Make sure that it is really a constant global we are gepping, with an
7905   // initializer, and make sure the first IDX is really 0.
7906   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7907   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7908       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7909       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7910     return getCouldNotCompute();
7911 
7912   // Okay, we allow one non-constant index into the GEP instruction.
7913   Value *VarIdx = nullptr;
7914   std::vector<Constant*> Indexes;
7915   unsigned VarIdxNum = 0;
7916   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7917     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7918       Indexes.push_back(CI);
7919     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7920       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7921       VarIdx = GEP->getOperand(i);
7922       VarIdxNum = i-2;
7923       Indexes.push_back(nullptr);
7924     }
7925 
7926   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7927   if (!VarIdx)
7928     return getCouldNotCompute();
7929 
7930   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7931   // Check to see if X is a loop variant variable value now.
7932   const SCEV *Idx = getSCEV(VarIdx);
7933   Idx = getSCEVAtScope(Idx, L);
7934 
7935   // We can only recognize very limited forms of loop index expressions, in
7936   // particular, only affine AddRec's like {C1,+,C2}<L>.
7937   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7938   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
7939       isLoopInvariant(IdxExpr, L) ||
7940       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7941       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7942     return getCouldNotCompute();
7943 
7944   unsigned MaxSteps = MaxBruteForceIterations;
7945   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7946     ConstantInt *ItCst = ConstantInt::get(
7947                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7948     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7949 
7950     // Form the GEP offset.
7951     Indexes[VarIdxNum] = Val;
7952 
7953     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7954                                                          Indexes);
7955     if (!Result) break;  // Cannot compute!
7956 
7957     // Evaluate the condition for this iteration.
7958     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7959     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7960     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7961       ++NumArrayLenItCounts;
7962       return getConstant(ItCst);   // Found terminating iteration!
7963     }
7964   }
7965   return getCouldNotCompute();
7966 }
7967 
7968 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7969     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7970   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7971   if (!RHS)
7972     return getCouldNotCompute();
7973 
7974   const BasicBlock *Latch = L->getLoopLatch();
7975   if (!Latch)
7976     return getCouldNotCompute();
7977 
7978   const BasicBlock *Predecessor = L->getLoopPredecessor();
7979   if (!Predecessor)
7980     return getCouldNotCompute();
7981 
7982   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7983   // Return LHS in OutLHS and shift_opt in OutOpCode.
7984   auto MatchPositiveShift =
7985       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7986 
7987     using namespace PatternMatch;
7988 
7989     ConstantInt *ShiftAmt;
7990     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7991       OutOpCode = Instruction::LShr;
7992     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7993       OutOpCode = Instruction::AShr;
7994     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7995       OutOpCode = Instruction::Shl;
7996     else
7997       return false;
7998 
7999     return ShiftAmt->getValue().isStrictlyPositive();
8000   };
8001 
8002   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8003   //
8004   // loop:
8005   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8006   //   %iv.shifted = lshr i32 %iv, <positive constant>
8007   //
8008   // Return true on a successful match.  Return the corresponding PHI node (%iv
8009   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8010   auto MatchShiftRecurrence =
8011       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8012     Optional<Instruction::BinaryOps> PostShiftOpCode;
8013 
8014     {
8015       Instruction::BinaryOps OpC;
8016       Value *V;
8017 
8018       // If we encounter a shift instruction, "peel off" the shift operation,
8019       // and remember that we did so.  Later when we inspect %iv's backedge
8020       // value, we will make sure that the backedge value uses the same
8021       // operation.
8022       //
8023       // Note: the peeled shift operation does not have to be the same
8024       // instruction as the one feeding into the PHI's backedge value.  We only
8025       // really care about it being the same *kind* of shift instruction --
8026       // that's all that is required for our later inferences to hold.
8027       if (MatchPositiveShift(LHS, V, OpC)) {
8028         PostShiftOpCode = OpC;
8029         LHS = V;
8030       }
8031     }
8032 
8033     PNOut = dyn_cast<PHINode>(LHS);
8034     if (!PNOut || PNOut->getParent() != L->getHeader())
8035       return false;
8036 
8037     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8038     Value *OpLHS;
8039 
8040     return
8041         // The backedge value for the PHI node must be a shift by a positive
8042         // amount
8043         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8044 
8045         // of the PHI node itself
8046         OpLHS == PNOut &&
8047 
8048         // and the kind of shift should be match the kind of shift we peeled
8049         // off, if any.
8050         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8051   };
8052 
8053   PHINode *PN;
8054   Instruction::BinaryOps OpCode;
8055   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8056     return getCouldNotCompute();
8057 
8058   const DataLayout &DL = getDataLayout();
8059 
8060   // The key rationale for this optimization is that for some kinds of shift
8061   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8062   // within a finite number of iterations.  If the condition guarding the
8063   // backedge (in the sense that the backedge is taken if the condition is true)
8064   // is false for the value the shift recurrence stabilizes to, then we know
8065   // that the backedge is taken only a finite number of times.
8066 
8067   ConstantInt *StableValue = nullptr;
8068   switch (OpCode) {
8069   default:
8070     llvm_unreachable("Impossible case!");
8071 
8072   case Instruction::AShr: {
8073     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8074     // bitwidth(K) iterations.
8075     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8076     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8077                                        Predecessor->getTerminator(), &DT);
8078     auto *Ty = cast<IntegerType>(RHS->getType());
8079     if (Known.isNonNegative())
8080       StableValue = ConstantInt::get(Ty, 0);
8081     else if (Known.isNegative())
8082       StableValue = ConstantInt::get(Ty, -1, true);
8083     else
8084       return getCouldNotCompute();
8085 
8086     break;
8087   }
8088   case Instruction::LShr:
8089   case Instruction::Shl:
8090     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8091     // stabilize to 0 in at most bitwidth(K) iterations.
8092     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8093     break;
8094   }
8095 
8096   auto *Result =
8097       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8098   assert(Result->getType()->isIntegerTy(1) &&
8099          "Otherwise cannot be an operand to a branch instruction");
8100 
8101   if (Result->isZeroValue()) {
8102     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8103     const SCEV *UpperBound =
8104         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8105     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8106   }
8107 
8108   return getCouldNotCompute();
8109 }
8110 
8111 /// Return true if we can constant fold an instruction of the specified type,
8112 /// assuming that all operands were constants.
8113 static bool CanConstantFold(const Instruction *I) {
8114   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8115       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8116       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8117     return true;
8118 
8119   if (const CallInst *CI = dyn_cast<CallInst>(I))
8120     if (const Function *F = CI->getCalledFunction())
8121       return canConstantFoldCallTo(CI, F);
8122   return false;
8123 }
8124 
8125 /// Determine whether this instruction can constant evolve within this loop
8126 /// assuming its operands can all constant evolve.
8127 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8128   // An instruction outside of the loop can't be derived from a loop PHI.
8129   if (!L->contains(I)) return false;
8130 
8131   if (isa<PHINode>(I)) {
8132     // We don't currently keep track of the control flow needed to evaluate
8133     // PHIs, so we cannot handle PHIs inside of loops.
8134     return L->getHeader() == I->getParent();
8135   }
8136 
8137   // If we won't be able to constant fold this expression even if the operands
8138   // are constants, bail early.
8139   return CanConstantFold(I);
8140 }
8141 
8142 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8143 /// recursing through each instruction operand until reaching a loop header phi.
8144 static PHINode *
8145 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8146                                DenseMap<Instruction *, PHINode *> &PHIMap,
8147                                unsigned Depth) {
8148   if (Depth > MaxConstantEvolvingDepth)
8149     return nullptr;
8150 
8151   // Otherwise, we can evaluate this instruction if all of its operands are
8152   // constant or derived from a PHI node themselves.
8153   PHINode *PHI = nullptr;
8154   for (Value *Op : UseInst->operands()) {
8155     if (isa<Constant>(Op)) continue;
8156 
8157     Instruction *OpInst = dyn_cast<Instruction>(Op);
8158     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8159 
8160     PHINode *P = dyn_cast<PHINode>(OpInst);
8161     if (!P)
8162       // If this operand is already visited, reuse the prior result.
8163       // We may have P != PHI if this is the deepest point at which the
8164       // inconsistent paths meet.
8165       P = PHIMap.lookup(OpInst);
8166     if (!P) {
8167       // Recurse and memoize the results, whether a phi is found or not.
8168       // This recursive call invalidates pointers into PHIMap.
8169       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8170       PHIMap[OpInst] = P;
8171     }
8172     if (!P)
8173       return nullptr;  // Not evolving from PHI
8174     if (PHI && PHI != P)
8175       return nullptr;  // Evolving from multiple different PHIs.
8176     PHI = P;
8177   }
8178   // This is a expression evolving from a constant PHI!
8179   return PHI;
8180 }
8181 
8182 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8183 /// in the loop that V is derived from.  We allow arbitrary operations along the
8184 /// way, but the operands of an operation must either be constants or a value
8185 /// derived from a constant PHI.  If this expression does not fit with these
8186 /// constraints, return null.
8187 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8188   Instruction *I = dyn_cast<Instruction>(V);
8189   if (!I || !canConstantEvolve(I, L)) return nullptr;
8190 
8191   if (PHINode *PN = dyn_cast<PHINode>(I))
8192     return PN;
8193 
8194   // Record non-constant instructions contained by the loop.
8195   DenseMap<Instruction *, PHINode *> PHIMap;
8196   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8197 }
8198 
8199 /// EvaluateExpression - Given an expression that passes the
8200 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8201 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8202 /// reason, return null.
8203 static Constant *EvaluateExpression(Value *V, const Loop *L,
8204                                     DenseMap<Instruction *, Constant *> &Vals,
8205                                     const DataLayout &DL,
8206                                     const TargetLibraryInfo *TLI) {
8207   // Convenient constant check, but redundant for recursive calls.
8208   if (Constant *C = dyn_cast<Constant>(V)) return C;
8209   Instruction *I = dyn_cast<Instruction>(V);
8210   if (!I) return nullptr;
8211 
8212   if (Constant *C = Vals.lookup(I)) return C;
8213 
8214   // An instruction inside the loop depends on a value outside the loop that we
8215   // weren't given a mapping for, or a value such as a call inside the loop.
8216   if (!canConstantEvolve(I, L)) return nullptr;
8217 
8218   // An unmapped PHI can be due to a branch or another loop inside this loop,
8219   // or due to this not being the initial iteration through a loop where we
8220   // couldn't compute the evolution of this particular PHI last time.
8221   if (isa<PHINode>(I)) return nullptr;
8222 
8223   std::vector<Constant*> Operands(I->getNumOperands());
8224 
8225   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8226     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8227     if (!Operand) {
8228       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8229       if (!Operands[i]) return nullptr;
8230       continue;
8231     }
8232     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8233     Vals[Operand] = C;
8234     if (!C) return nullptr;
8235     Operands[i] = C;
8236   }
8237 
8238   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8239     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8240                                            Operands[1], DL, TLI);
8241   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8242     if (!LI->isVolatile())
8243       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8244   }
8245   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8246 }
8247 
8248 
8249 // If every incoming value to PN except the one for BB is a specific Constant,
8250 // return that, else return nullptr.
8251 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8252   Constant *IncomingVal = nullptr;
8253 
8254   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8255     if (PN->getIncomingBlock(i) == BB)
8256       continue;
8257 
8258     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8259     if (!CurrentVal)
8260       return nullptr;
8261 
8262     if (IncomingVal != CurrentVal) {
8263       if (IncomingVal)
8264         return nullptr;
8265       IncomingVal = CurrentVal;
8266     }
8267   }
8268 
8269   return IncomingVal;
8270 }
8271 
8272 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8273 /// in the header of its containing loop, we know the loop executes a
8274 /// constant number of times, and the PHI node is just a recurrence
8275 /// involving constants, fold it.
8276 Constant *
8277 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8278                                                    const APInt &BEs,
8279                                                    const Loop *L) {
8280   auto I = ConstantEvolutionLoopExitValue.find(PN);
8281   if (I != ConstantEvolutionLoopExitValue.end())
8282     return I->second;
8283 
8284   if (BEs.ugt(MaxBruteForceIterations))
8285     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8286 
8287   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8288 
8289   DenseMap<Instruction *, Constant *> CurrentIterVals;
8290   BasicBlock *Header = L->getHeader();
8291   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8292 
8293   BasicBlock *Latch = L->getLoopLatch();
8294   if (!Latch)
8295     return nullptr;
8296 
8297   for (PHINode &PHI : Header->phis()) {
8298     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8299       CurrentIterVals[&PHI] = StartCST;
8300   }
8301   if (!CurrentIterVals.count(PN))
8302     return RetVal = nullptr;
8303 
8304   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8305 
8306   // Execute the loop symbolically to determine the exit value.
8307   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8308          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8309 
8310   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8311   unsigned IterationNum = 0;
8312   const DataLayout &DL = getDataLayout();
8313   for (; ; ++IterationNum) {
8314     if (IterationNum == NumIterations)
8315       return RetVal = CurrentIterVals[PN];  // Got exit value!
8316 
8317     // Compute the value of the PHIs for the next iteration.
8318     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8319     DenseMap<Instruction *, Constant *> NextIterVals;
8320     Constant *NextPHI =
8321         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8322     if (!NextPHI)
8323       return nullptr;        // Couldn't evaluate!
8324     NextIterVals[PN] = NextPHI;
8325 
8326     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8327 
8328     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8329     // cease to be able to evaluate one of them or if they stop evolving,
8330     // because that doesn't necessarily prevent us from computing PN.
8331     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8332     for (const auto &I : CurrentIterVals) {
8333       PHINode *PHI = dyn_cast<PHINode>(I.first);
8334       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8335       PHIsToCompute.emplace_back(PHI, I.second);
8336     }
8337     // We use two distinct loops because EvaluateExpression may invalidate any
8338     // iterators into CurrentIterVals.
8339     for (const auto &I : PHIsToCompute) {
8340       PHINode *PHI = I.first;
8341       Constant *&NextPHI = NextIterVals[PHI];
8342       if (!NextPHI) {   // Not already computed.
8343         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8344         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8345       }
8346       if (NextPHI != I.second)
8347         StoppedEvolving = false;
8348     }
8349 
8350     // If all entries in CurrentIterVals == NextIterVals then we can stop
8351     // iterating, the loop can't continue to change.
8352     if (StoppedEvolving)
8353       return RetVal = CurrentIterVals[PN];
8354 
8355     CurrentIterVals.swap(NextIterVals);
8356   }
8357 }
8358 
8359 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8360                                                           Value *Cond,
8361                                                           bool ExitWhen) {
8362   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8363   if (!PN) return getCouldNotCompute();
8364 
8365   // If the loop is canonicalized, the PHI will have exactly two entries.
8366   // That's the only form we support here.
8367   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8368 
8369   DenseMap<Instruction *, Constant *> CurrentIterVals;
8370   BasicBlock *Header = L->getHeader();
8371   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8372 
8373   BasicBlock *Latch = L->getLoopLatch();
8374   assert(Latch && "Should follow from NumIncomingValues == 2!");
8375 
8376   for (PHINode &PHI : Header->phis()) {
8377     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8378       CurrentIterVals[&PHI] = StartCST;
8379   }
8380   if (!CurrentIterVals.count(PN))
8381     return getCouldNotCompute();
8382 
8383   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8384   // the loop symbolically to determine when the condition gets a value of
8385   // "ExitWhen".
8386   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8387   const DataLayout &DL = getDataLayout();
8388   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8389     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8390         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8391 
8392     // Couldn't symbolically evaluate.
8393     if (!CondVal) return getCouldNotCompute();
8394 
8395     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8396       ++NumBruteForceTripCountsComputed;
8397       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8398     }
8399 
8400     // Update all the PHI nodes for the next iteration.
8401     DenseMap<Instruction *, Constant *> NextIterVals;
8402 
8403     // Create a list of which PHIs we need to compute. We want to do this before
8404     // calling EvaluateExpression on them because that may invalidate iterators
8405     // into CurrentIterVals.
8406     SmallVector<PHINode *, 8> PHIsToCompute;
8407     for (const auto &I : CurrentIterVals) {
8408       PHINode *PHI = dyn_cast<PHINode>(I.first);
8409       if (!PHI || PHI->getParent() != Header) continue;
8410       PHIsToCompute.push_back(PHI);
8411     }
8412     for (PHINode *PHI : PHIsToCompute) {
8413       Constant *&NextPHI = NextIterVals[PHI];
8414       if (NextPHI) continue;    // Already computed!
8415 
8416       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8417       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8418     }
8419     CurrentIterVals.swap(NextIterVals);
8420   }
8421 
8422   // Too many iterations were needed to evaluate.
8423   return getCouldNotCompute();
8424 }
8425 
8426 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8427   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8428       ValuesAtScopes[V];
8429   // Check to see if we've folded this expression at this loop before.
8430   for (auto &LS : Values)
8431     if (LS.first == L)
8432       return LS.second ? LS.second : V;
8433 
8434   Values.emplace_back(L, nullptr);
8435 
8436   // Otherwise compute it.
8437   const SCEV *C = computeSCEVAtScope(V, L);
8438   for (auto &LS : reverse(ValuesAtScopes[V]))
8439     if (LS.first == L) {
8440       LS.second = C;
8441       break;
8442     }
8443   return C;
8444 }
8445 
8446 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8447 /// will return Constants for objects which aren't represented by a
8448 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8449 /// Returns NULL if the SCEV isn't representable as a Constant.
8450 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8451   switch (V->getSCEVType()) {
8452   case scCouldNotCompute:
8453   case scAddRecExpr:
8454     return nullptr;
8455   case scConstant:
8456     return cast<SCEVConstant>(V)->getValue();
8457   case scUnknown:
8458     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8459   case scSignExtend: {
8460     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8461     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8462       return ConstantExpr::getSExt(CastOp, SS->getType());
8463     return nullptr;
8464   }
8465   case scZeroExtend: {
8466     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8467     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8468       return ConstantExpr::getZExt(CastOp, SZ->getType());
8469     return nullptr;
8470   }
8471   case scPtrToInt: {
8472     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8473     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8474       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8475 
8476     return nullptr;
8477   }
8478   case scTruncate: {
8479     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8480     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8481       return ConstantExpr::getTrunc(CastOp, ST->getType());
8482     return nullptr;
8483   }
8484   case scAddExpr: {
8485     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8486     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8487       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8488         unsigned AS = PTy->getAddressSpace();
8489         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8490         C = ConstantExpr::getBitCast(C, DestPtrTy);
8491       }
8492       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8493         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8494         if (!C2)
8495           return nullptr;
8496 
8497         // First pointer!
8498         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8499           unsigned AS = C2->getType()->getPointerAddressSpace();
8500           std::swap(C, C2);
8501           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8502           // The offsets have been converted to bytes.  We can add bytes to an
8503           // i8* by GEP with the byte count in the first index.
8504           C = ConstantExpr::getBitCast(C, DestPtrTy);
8505         }
8506 
8507         // Don't bother trying to sum two pointers. We probably can't
8508         // statically compute a load that results from it anyway.
8509         if (C2->getType()->isPointerTy())
8510           return nullptr;
8511 
8512         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8513           if (PTy->getElementType()->isStructTy())
8514             C2 = ConstantExpr::getIntegerCast(
8515                 C2, Type::getInt32Ty(C->getContext()), true);
8516           C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8517         } else
8518           C = ConstantExpr::getAdd(C, C2);
8519       }
8520       return C;
8521     }
8522     return nullptr;
8523   }
8524   case scMulExpr: {
8525     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8526     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8527       // Don't bother with pointers at all.
8528       if (C->getType()->isPointerTy())
8529         return nullptr;
8530       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8531         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8532         if (!C2 || C2->getType()->isPointerTy())
8533           return nullptr;
8534         C = ConstantExpr::getMul(C, C2);
8535       }
8536       return C;
8537     }
8538     return nullptr;
8539   }
8540   case scUDivExpr: {
8541     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8542     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8543       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8544         if (LHS->getType() == RHS->getType())
8545           return ConstantExpr::getUDiv(LHS, RHS);
8546     return nullptr;
8547   }
8548   case scSMaxExpr:
8549   case scUMaxExpr:
8550   case scSMinExpr:
8551   case scUMinExpr:
8552     return nullptr; // TODO: smax, umax, smin, umax.
8553   }
8554   llvm_unreachable("Unknown SCEV kind!");
8555 }
8556 
8557 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8558   if (isa<SCEVConstant>(V)) return V;
8559 
8560   // If this instruction is evolved from a constant-evolving PHI, compute the
8561   // exit value from the loop without using SCEVs.
8562   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8563     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8564       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8565         const Loop *CurrLoop = this->LI[I->getParent()];
8566         // Looking for loop exit value.
8567         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8568             PN->getParent() == CurrLoop->getHeader()) {
8569           // Okay, there is no closed form solution for the PHI node.  Check
8570           // to see if the loop that contains it has a known backedge-taken
8571           // count.  If so, we may be able to force computation of the exit
8572           // value.
8573           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8574           // This trivial case can show up in some degenerate cases where
8575           // the incoming IR has not yet been fully simplified.
8576           if (BackedgeTakenCount->isZero()) {
8577             Value *InitValue = nullptr;
8578             bool MultipleInitValues = false;
8579             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8580               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8581                 if (!InitValue)
8582                   InitValue = PN->getIncomingValue(i);
8583                 else if (InitValue != PN->getIncomingValue(i)) {
8584                   MultipleInitValues = true;
8585                   break;
8586                 }
8587               }
8588             }
8589             if (!MultipleInitValues && InitValue)
8590               return getSCEV(InitValue);
8591           }
8592           // Do we have a loop invariant value flowing around the backedge
8593           // for a loop which must execute the backedge?
8594           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8595               isKnownPositive(BackedgeTakenCount) &&
8596               PN->getNumIncomingValues() == 2) {
8597 
8598             unsigned InLoopPred =
8599                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8600             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8601             if (CurrLoop->isLoopInvariant(BackedgeVal))
8602               return getSCEV(BackedgeVal);
8603           }
8604           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8605             // Okay, we know how many times the containing loop executes.  If
8606             // this is a constant evolving PHI node, get the final value at
8607             // the specified iteration number.
8608             Constant *RV = getConstantEvolutionLoopExitValue(
8609                 PN, BTCC->getAPInt(), CurrLoop);
8610             if (RV) return getSCEV(RV);
8611           }
8612         }
8613 
8614         // If there is a single-input Phi, evaluate it at our scope. If we can
8615         // prove that this replacement does not break LCSSA form, use new value.
8616         if (PN->getNumOperands() == 1) {
8617           const SCEV *Input = getSCEV(PN->getOperand(0));
8618           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8619           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8620           // for the simplest case just support constants.
8621           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8622         }
8623       }
8624 
8625       // Okay, this is an expression that we cannot symbolically evaluate
8626       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8627       // the arguments into constants, and if so, try to constant propagate the
8628       // result.  This is particularly useful for computing loop exit values.
8629       if (CanConstantFold(I)) {
8630         SmallVector<Constant *, 4> Operands;
8631         bool MadeImprovement = false;
8632         for (Value *Op : I->operands()) {
8633           if (Constant *C = dyn_cast<Constant>(Op)) {
8634             Operands.push_back(C);
8635             continue;
8636           }
8637 
8638           // If any of the operands is non-constant and if they are
8639           // non-integer and non-pointer, don't even try to analyze them
8640           // with scev techniques.
8641           if (!isSCEVable(Op->getType()))
8642             return V;
8643 
8644           const SCEV *OrigV = getSCEV(Op);
8645           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8646           MadeImprovement |= OrigV != OpV;
8647 
8648           Constant *C = BuildConstantFromSCEV(OpV);
8649           if (!C) return V;
8650           if (C->getType() != Op->getType())
8651             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8652                                                               Op->getType(),
8653                                                               false),
8654                                       C, Op->getType());
8655           Operands.push_back(C);
8656         }
8657 
8658         // Check to see if getSCEVAtScope actually made an improvement.
8659         if (MadeImprovement) {
8660           Constant *C = nullptr;
8661           const DataLayout &DL = getDataLayout();
8662           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8663             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8664                                                 Operands[1], DL, &TLI);
8665           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8666             if (!Load->isVolatile())
8667               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8668                                                DL);
8669           } else
8670             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8671           if (!C) return V;
8672           return getSCEV(C);
8673         }
8674       }
8675     }
8676 
8677     // This is some other type of SCEVUnknown, just return it.
8678     return V;
8679   }
8680 
8681   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8682     // Avoid performing the look-up in the common case where the specified
8683     // expression has no loop-variant portions.
8684     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8685       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8686       if (OpAtScope != Comm->getOperand(i)) {
8687         // Okay, at least one of these operands is loop variant but might be
8688         // foldable.  Build a new instance of the folded commutative expression.
8689         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8690                                             Comm->op_begin()+i);
8691         NewOps.push_back(OpAtScope);
8692 
8693         for (++i; i != e; ++i) {
8694           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8695           NewOps.push_back(OpAtScope);
8696         }
8697         if (isa<SCEVAddExpr>(Comm))
8698           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8699         if (isa<SCEVMulExpr>(Comm))
8700           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8701         if (isa<SCEVMinMaxExpr>(Comm))
8702           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8703         llvm_unreachable("Unknown commutative SCEV type!");
8704       }
8705     }
8706     // If we got here, all operands are loop invariant.
8707     return Comm;
8708   }
8709 
8710   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8711     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8712     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8713     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8714       return Div;   // must be loop invariant
8715     return getUDivExpr(LHS, RHS);
8716   }
8717 
8718   // If this is a loop recurrence for a loop that does not contain L, then we
8719   // are dealing with the final value computed by the loop.
8720   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8721     // First, attempt to evaluate each operand.
8722     // Avoid performing the look-up in the common case where the specified
8723     // expression has no loop-variant portions.
8724     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8725       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8726       if (OpAtScope == AddRec->getOperand(i))
8727         continue;
8728 
8729       // Okay, at least one of these operands is loop variant but might be
8730       // foldable.  Build a new instance of the folded commutative expression.
8731       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8732                                           AddRec->op_begin()+i);
8733       NewOps.push_back(OpAtScope);
8734       for (++i; i != e; ++i)
8735         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8736 
8737       const SCEV *FoldedRec =
8738         getAddRecExpr(NewOps, AddRec->getLoop(),
8739                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8740       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8741       // The addrec may be folded to a nonrecurrence, for example, if the
8742       // induction variable is multiplied by zero after constant folding. Go
8743       // ahead and return the folded value.
8744       if (!AddRec)
8745         return FoldedRec;
8746       break;
8747     }
8748 
8749     // If the scope is outside the addrec's loop, evaluate it by using the
8750     // loop exit value of the addrec.
8751     if (!AddRec->getLoop()->contains(L)) {
8752       // To evaluate this recurrence, we need to know how many times the AddRec
8753       // loop iterates.  Compute this now.
8754       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8755       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8756 
8757       // Then, evaluate the AddRec.
8758       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8759     }
8760 
8761     return AddRec;
8762   }
8763 
8764   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8765     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8766     if (Op == Cast->getOperand())
8767       return Cast;  // must be loop invariant
8768     return getZeroExtendExpr(Op, Cast->getType());
8769   }
8770 
8771   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8772     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8773     if (Op == Cast->getOperand())
8774       return Cast;  // must be loop invariant
8775     return getSignExtendExpr(Op, Cast->getType());
8776   }
8777 
8778   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8779     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8780     if (Op == Cast->getOperand())
8781       return Cast;  // must be loop invariant
8782     return getTruncateExpr(Op, Cast->getType());
8783   }
8784 
8785   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
8786     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8787     if (Op == Cast->getOperand())
8788       return Cast; // must be loop invariant
8789     return getPtrToIntExpr(Op, Cast->getType());
8790   }
8791 
8792   llvm_unreachable("Unknown SCEV type!");
8793 }
8794 
8795 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8796   return getSCEVAtScope(getSCEV(V), L);
8797 }
8798 
8799 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8800   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8801     return stripInjectiveFunctions(ZExt->getOperand());
8802   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8803     return stripInjectiveFunctions(SExt->getOperand());
8804   return S;
8805 }
8806 
8807 /// Finds the minimum unsigned root of the following equation:
8808 ///
8809 ///     A * X = B (mod N)
8810 ///
8811 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8812 /// A and B isn't important.
8813 ///
8814 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8815 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8816                                                ScalarEvolution &SE) {
8817   uint32_t BW = A.getBitWidth();
8818   assert(BW == SE.getTypeSizeInBits(B->getType()));
8819   assert(A != 0 && "A must be non-zero.");
8820 
8821   // 1. D = gcd(A, N)
8822   //
8823   // The gcd of A and N may have only one prime factor: 2. The number of
8824   // trailing zeros in A is its multiplicity
8825   uint32_t Mult2 = A.countTrailingZeros();
8826   // D = 2^Mult2
8827 
8828   // 2. Check if B is divisible by D.
8829   //
8830   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8831   // is not less than multiplicity of this prime factor for D.
8832   if (SE.GetMinTrailingZeros(B) < Mult2)
8833     return SE.getCouldNotCompute();
8834 
8835   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8836   // modulo (N / D).
8837   //
8838   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8839   // (N / D) in general. The inverse itself always fits into BW bits, though,
8840   // so we immediately truncate it.
8841   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8842   APInt Mod(BW + 1, 0);
8843   Mod.setBit(BW - Mult2);  // Mod = N / D
8844   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8845 
8846   // 4. Compute the minimum unsigned root of the equation:
8847   // I * (B / D) mod (N / D)
8848   // To simplify the computation, we factor out the divide by D:
8849   // (I * B mod N) / D
8850   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8851   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8852 }
8853 
8854 /// For a given quadratic addrec, generate coefficients of the corresponding
8855 /// quadratic equation, multiplied by a common value to ensure that they are
8856 /// integers.
8857 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8858 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8859 /// were multiplied by, and BitWidth is the bit width of the original addrec
8860 /// coefficients.
8861 /// This function returns None if the addrec coefficients are not compile-
8862 /// time constants.
8863 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8864 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8865   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8866   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8867   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8868   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8869   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8870                     << *AddRec << '\n');
8871 
8872   // We currently can only solve this if the coefficients are constants.
8873   if (!LC || !MC || !NC) {
8874     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8875     return None;
8876   }
8877 
8878   APInt L = LC->getAPInt();
8879   APInt M = MC->getAPInt();
8880   APInt N = NC->getAPInt();
8881   assert(!N.isNullValue() && "This is not a quadratic addrec");
8882 
8883   unsigned BitWidth = LC->getAPInt().getBitWidth();
8884   unsigned NewWidth = BitWidth + 1;
8885   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8886                     << BitWidth << '\n');
8887   // The sign-extension (as opposed to a zero-extension) here matches the
8888   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8889   N = N.sext(NewWidth);
8890   M = M.sext(NewWidth);
8891   L = L.sext(NewWidth);
8892 
8893   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8894   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8895   //   L+M, L+2M+N, L+3M+3N, ...
8896   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8897   //
8898   // The equation Acc = 0 is then
8899   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8900   // In a quadratic form it becomes:
8901   //   N n^2 + (2M-N) n + 2L = 0.
8902 
8903   APInt A = N;
8904   APInt B = 2 * M - A;
8905   APInt C = 2 * L;
8906   APInt T = APInt(NewWidth, 2);
8907   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8908                     << "x + " << C << ", coeff bw: " << NewWidth
8909                     << ", multiplied by " << T << '\n');
8910   return std::make_tuple(A, B, C, T, BitWidth);
8911 }
8912 
8913 /// Helper function to compare optional APInts:
8914 /// (a) if X and Y both exist, return min(X, Y),
8915 /// (b) if neither X nor Y exist, return None,
8916 /// (c) if exactly one of X and Y exists, return that value.
8917 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8918   if (X.hasValue() && Y.hasValue()) {
8919     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8920     APInt XW = X->sextOrSelf(W);
8921     APInt YW = Y->sextOrSelf(W);
8922     return XW.slt(YW) ? *X : *Y;
8923   }
8924   if (!X.hasValue() && !Y.hasValue())
8925     return None;
8926   return X.hasValue() ? *X : *Y;
8927 }
8928 
8929 /// Helper function to truncate an optional APInt to a given BitWidth.
8930 /// When solving addrec-related equations, it is preferable to return a value
8931 /// that has the same bit width as the original addrec's coefficients. If the
8932 /// solution fits in the original bit width, truncate it (except for i1).
8933 /// Returning a value of a different bit width may inhibit some optimizations.
8934 ///
8935 /// In general, a solution to a quadratic equation generated from an addrec
8936 /// may require BW+1 bits, where BW is the bit width of the addrec's
8937 /// coefficients. The reason is that the coefficients of the quadratic
8938 /// equation are BW+1 bits wide (to avoid truncation when converting from
8939 /// the addrec to the equation).
8940 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8941   if (!X.hasValue())
8942     return None;
8943   unsigned W = X->getBitWidth();
8944   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8945     return X->trunc(BitWidth);
8946   return X;
8947 }
8948 
8949 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8950 /// iterations. The values L, M, N are assumed to be signed, and they
8951 /// should all have the same bit widths.
8952 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8953 /// where BW is the bit width of the addrec's coefficients.
8954 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8955 /// returned as such, otherwise the bit width of the returned value may
8956 /// be greater than BW.
8957 ///
8958 /// This function returns None if
8959 /// (a) the addrec coefficients are not constant, or
8960 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8961 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8962 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8963 static Optional<APInt>
8964 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8965   APInt A, B, C, M;
8966   unsigned BitWidth;
8967   auto T = GetQuadraticEquation(AddRec);
8968   if (!T.hasValue())
8969     return None;
8970 
8971   std::tie(A, B, C, M, BitWidth) = *T;
8972   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8973   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8974   if (!X.hasValue())
8975     return None;
8976 
8977   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8978   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8979   if (!V->isZero())
8980     return None;
8981 
8982   return TruncIfPossible(X, BitWidth);
8983 }
8984 
8985 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8986 /// iterations. The values M, N are assumed to be signed, and they
8987 /// should all have the same bit widths.
8988 /// Find the least n such that c(n) does not belong to the given range,
8989 /// while c(n-1) does.
8990 ///
8991 /// This function returns None if
8992 /// (a) the addrec coefficients are not constant, or
8993 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8994 ///     bounds of the range.
8995 static Optional<APInt>
8996 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8997                           const ConstantRange &Range, ScalarEvolution &SE) {
8998   assert(AddRec->getOperand(0)->isZero() &&
8999          "Starting value of addrec should be 0");
9000   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9001                     << Range << ", addrec " << *AddRec << '\n');
9002   // This case is handled in getNumIterationsInRange. Here we can assume that
9003   // we start in the range.
9004   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9005          "Addrec's initial value should be in range");
9006 
9007   APInt A, B, C, M;
9008   unsigned BitWidth;
9009   auto T = GetQuadraticEquation(AddRec);
9010   if (!T.hasValue())
9011     return None;
9012 
9013   // Be careful about the return value: there can be two reasons for not
9014   // returning an actual number. First, if no solutions to the equations
9015   // were found, and second, if the solutions don't leave the given range.
9016   // The first case means that the actual solution is "unknown", the second
9017   // means that it's known, but not valid. If the solution is unknown, we
9018   // cannot make any conclusions.
9019   // Return a pair: the optional solution and a flag indicating if the
9020   // solution was found.
9021   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9022     // Solve for signed overflow and unsigned overflow, pick the lower
9023     // solution.
9024     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9025                       << Bound << " (before multiplying by " << M << ")\n");
9026     Bound *= M; // The quadratic equation multiplier.
9027 
9028     Optional<APInt> SO = None;
9029     if (BitWidth > 1) {
9030       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9031                            "signed overflow\n");
9032       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9033     }
9034     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9035                          "unsigned overflow\n");
9036     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9037                                                               BitWidth+1);
9038 
9039     auto LeavesRange = [&] (const APInt &X) {
9040       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9041       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9042       if (Range.contains(V0->getValue()))
9043         return false;
9044       // X should be at least 1, so X-1 is non-negative.
9045       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9046       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9047       if (Range.contains(V1->getValue()))
9048         return true;
9049       return false;
9050     };
9051 
9052     // If SolveQuadraticEquationWrap returns None, it means that there can
9053     // be a solution, but the function failed to find it. We cannot treat it
9054     // as "no solution".
9055     if (!SO.hasValue() || !UO.hasValue())
9056       return { None, false };
9057 
9058     // Check the smaller value first to see if it leaves the range.
9059     // At this point, both SO and UO must have values.
9060     Optional<APInt> Min = MinOptional(SO, UO);
9061     if (LeavesRange(*Min))
9062       return { Min, true };
9063     Optional<APInt> Max = Min == SO ? UO : SO;
9064     if (LeavesRange(*Max))
9065       return { Max, true };
9066 
9067     // Solutions were found, but were eliminated, hence the "true".
9068     return { None, true };
9069   };
9070 
9071   std::tie(A, B, C, M, BitWidth) = *T;
9072   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9073   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9074   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9075   auto SL = SolveForBoundary(Lower);
9076   auto SU = SolveForBoundary(Upper);
9077   // If any of the solutions was unknown, no meaninigful conclusions can
9078   // be made.
9079   if (!SL.second || !SU.second)
9080     return None;
9081 
9082   // Claim: The correct solution is not some value between Min and Max.
9083   //
9084   // Justification: Assuming that Min and Max are different values, one of
9085   // them is when the first signed overflow happens, the other is when the
9086   // first unsigned overflow happens. Crossing the range boundary is only
9087   // possible via an overflow (treating 0 as a special case of it, modeling
9088   // an overflow as crossing k*2^W for some k).
9089   //
9090   // The interesting case here is when Min was eliminated as an invalid
9091   // solution, but Max was not. The argument is that if there was another
9092   // overflow between Min and Max, it would also have been eliminated if
9093   // it was considered.
9094   //
9095   // For a given boundary, it is possible to have two overflows of the same
9096   // type (signed/unsigned) without having the other type in between: this
9097   // can happen when the vertex of the parabola is between the iterations
9098   // corresponding to the overflows. This is only possible when the two
9099   // overflows cross k*2^W for the same k. In such case, if the second one
9100   // left the range (and was the first one to do so), the first overflow
9101   // would have to enter the range, which would mean that either we had left
9102   // the range before or that we started outside of it. Both of these cases
9103   // are contradictions.
9104   //
9105   // Claim: In the case where SolveForBoundary returns None, the correct
9106   // solution is not some value between the Max for this boundary and the
9107   // Min of the other boundary.
9108   //
9109   // Justification: Assume that we had such Max_A and Min_B corresponding
9110   // to range boundaries A and B and such that Max_A < Min_B. If there was
9111   // a solution between Max_A and Min_B, it would have to be caused by an
9112   // overflow corresponding to either A or B. It cannot correspond to B,
9113   // since Min_B is the first occurrence of such an overflow. If it
9114   // corresponded to A, it would have to be either a signed or an unsigned
9115   // overflow that is larger than both eliminated overflows for A. But
9116   // between the eliminated overflows and this overflow, the values would
9117   // cover the entire value space, thus crossing the other boundary, which
9118   // is a contradiction.
9119 
9120   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9121 }
9122 
9123 ScalarEvolution::ExitLimit
9124 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9125                               bool AllowPredicates) {
9126 
9127   // This is only used for loops with a "x != y" exit test. The exit condition
9128   // is now expressed as a single expression, V = x-y. So the exit test is
9129   // effectively V != 0.  We know and take advantage of the fact that this
9130   // expression only being used in a comparison by zero context.
9131 
9132   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9133   // If the value is a constant
9134   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9135     // If the value is already zero, the branch will execute zero times.
9136     if (C->getValue()->isZero()) return C;
9137     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9138   }
9139 
9140   const SCEVAddRecExpr *AddRec =
9141       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9142 
9143   if (!AddRec && AllowPredicates)
9144     // Try to make this an AddRec using runtime tests, in the first X
9145     // iterations of this loop, where X is the SCEV expression found by the
9146     // algorithm below.
9147     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9148 
9149   if (!AddRec || AddRec->getLoop() != L)
9150     return getCouldNotCompute();
9151 
9152   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9153   // the quadratic equation to solve it.
9154   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9155     // We can only use this value if the chrec ends up with an exact zero
9156     // value at this index.  When solving for "X*X != 5", for example, we
9157     // should not accept a root of 2.
9158     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9159       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9160       return ExitLimit(R, R, false, Predicates);
9161     }
9162     return getCouldNotCompute();
9163   }
9164 
9165   // Otherwise we can only handle this if it is affine.
9166   if (!AddRec->isAffine())
9167     return getCouldNotCompute();
9168 
9169   // If this is an affine expression, the execution count of this branch is
9170   // the minimum unsigned root of the following equation:
9171   //
9172   //     Start + Step*N = 0 (mod 2^BW)
9173   //
9174   // equivalent to:
9175   //
9176   //             Step*N = -Start (mod 2^BW)
9177   //
9178   // where BW is the common bit width of Start and Step.
9179 
9180   // Get the initial value for the loop.
9181   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9182   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9183 
9184   // For now we handle only constant steps.
9185   //
9186   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9187   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9188   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9189   // We have not yet seen any such cases.
9190   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9191   if (!StepC || StepC->getValue()->isZero())
9192     return getCouldNotCompute();
9193 
9194   // For positive steps (counting up until unsigned overflow):
9195   //   N = -Start/Step (as unsigned)
9196   // For negative steps (counting down to zero):
9197   //   N = Start/-Step
9198   // First compute the unsigned distance from zero in the direction of Step.
9199   bool CountDown = StepC->getAPInt().isNegative();
9200   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9201 
9202   // Handle unitary steps, which cannot wraparound.
9203   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9204   //   N = Distance (as unsigned)
9205   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9206     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9207     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9208     if (MaxBECountBase.ult(MaxBECount))
9209       MaxBECount = MaxBECountBase;
9210 
9211     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9212     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9213     // case, and see if we can improve the bound.
9214     //
9215     // Explicitly handling this here is necessary because getUnsignedRange
9216     // isn't context-sensitive; it doesn't know that we only care about the
9217     // range inside the loop.
9218     const SCEV *Zero = getZero(Distance->getType());
9219     const SCEV *One = getOne(Distance->getType());
9220     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9221     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9222       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9223       // as "unsigned_max(Distance + 1) - 1".
9224       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9225       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9226     }
9227     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9228   }
9229 
9230   // If the condition controls loop exit (the loop exits only if the expression
9231   // is true) and the addition is no-wrap we can use unsigned divide to
9232   // compute the backedge count.  In this case, the step may not divide the
9233   // distance, but we don't care because if the condition is "missed" the loop
9234   // will have undefined behavior due to wrapping.
9235   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9236       loopHasNoAbnormalExits(AddRec->getLoop())) {
9237     const SCEV *Exact =
9238         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9239     const SCEV *Max =
9240         Exact == getCouldNotCompute()
9241             ? Exact
9242             : getConstant(getUnsignedRangeMax(Exact));
9243     return ExitLimit(Exact, Max, false, Predicates);
9244   }
9245 
9246   // Solve the general equation.
9247   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9248                                                getNegativeSCEV(Start), *this);
9249   const SCEV *M = E == getCouldNotCompute()
9250                       ? E
9251                       : getConstant(getUnsignedRangeMax(E));
9252   return ExitLimit(E, M, false, Predicates);
9253 }
9254 
9255 ScalarEvolution::ExitLimit
9256 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9257   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9258   // handle them yet except for the trivial case.  This could be expanded in the
9259   // future as needed.
9260 
9261   // If the value is a constant, check to see if it is known to be non-zero
9262   // already.  If so, the backedge will execute zero times.
9263   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9264     if (!C->getValue()->isZero())
9265       return getZero(C->getType());
9266     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9267   }
9268 
9269   // We could implement others, but I really doubt anyone writes loops like
9270   // this, and if they did, they would already be constant folded.
9271   return getCouldNotCompute();
9272 }
9273 
9274 std::pair<const BasicBlock *, const BasicBlock *>
9275 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9276     const {
9277   // If the block has a unique predecessor, then there is no path from the
9278   // predecessor to the block that does not go through the direct edge
9279   // from the predecessor to the block.
9280   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9281     return {Pred, BB};
9282 
9283   // A loop's header is defined to be a block that dominates the loop.
9284   // If the header has a unique predecessor outside the loop, it must be
9285   // a block that has exactly one successor that can reach the loop.
9286   if (const Loop *L = LI.getLoopFor(BB))
9287     return {L->getLoopPredecessor(), L->getHeader()};
9288 
9289   return {nullptr, nullptr};
9290 }
9291 
9292 /// SCEV structural equivalence is usually sufficient for testing whether two
9293 /// expressions are equal, however for the purposes of looking for a condition
9294 /// guarding a loop, it can be useful to be a little more general, since a
9295 /// front-end may have replicated the controlling expression.
9296 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9297   // Quick check to see if they are the same SCEV.
9298   if (A == B) return true;
9299 
9300   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9301     // Not all instructions that are "identical" compute the same value.  For
9302     // instance, two distinct alloca instructions allocating the same type are
9303     // identical and do not read memory; but compute distinct values.
9304     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9305   };
9306 
9307   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9308   // two different instructions with the same value. Check for this case.
9309   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9310     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9311       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9312         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9313           if (ComputesEqualValues(AI, BI))
9314             return true;
9315 
9316   // Otherwise assume they may have a different value.
9317   return false;
9318 }
9319 
9320 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9321                                            const SCEV *&LHS, const SCEV *&RHS,
9322                                            unsigned Depth) {
9323   bool Changed = false;
9324   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9325   // '0 != 0'.
9326   auto TrivialCase = [&](bool TriviallyTrue) {
9327     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9328     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9329     return true;
9330   };
9331   // If we hit the max recursion limit bail out.
9332   if (Depth >= 3)
9333     return false;
9334 
9335   // Canonicalize a constant to the right side.
9336   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9337     // Check for both operands constant.
9338     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9339       if (ConstantExpr::getICmp(Pred,
9340                                 LHSC->getValue(),
9341                                 RHSC->getValue())->isNullValue())
9342         return TrivialCase(false);
9343       else
9344         return TrivialCase(true);
9345     }
9346     // Otherwise swap the operands to put the constant on the right.
9347     std::swap(LHS, RHS);
9348     Pred = ICmpInst::getSwappedPredicate(Pred);
9349     Changed = true;
9350   }
9351 
9352   // If we're comparing an addrec with a value which is loop-invariant in the
9353   // addrec's loop, put the addrec on the left. Also make a dominance check,
9354   // as both operands could be addrecs loop-invariant in each other's loop.
9355   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9356     const Loop *L = AR->getLoop();
9357     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9358       std::swap(LHS, RHS);
9359       Pred = ICmpInst::getSwappedPredicate(Pred);
9360       Changed = true;
9361     }
9362   }
9363 
9364   // If there's a constant operand, canonicalize comparisons with boundary
9365   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9366   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9367     const APInt &RA = RC->getAPInt();
9368 
9369     bool SimplifiedByConstantRange = false;
9370 
9371     if (!ICmpInst::isEquality(Pred)) {
9372       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9373       if (ExactCR.isFullSet())
9374         return TrivialCase(true);
9375       else if (ExactCR.isEmptySet())
9376         return TrivialCase(false);
9377 
9378       APInt NewRHS;
9379       CmpInst::Predicate NewPred;
9380       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9381           ICmpInst::isEquality(NewPred)) {
9382         // We were able to convert an inequality to an equality.
9383         Pred = NewPred;
9384         RHS = getConstant(NewRHS);
9385         Changed = SimplifiedByConstantRange = true;
9386       }
9387     }
9388 
9389     if (!SimplifiedByConstantRange) {
9390       switch (Pred) {
9391       default:
9392         break;
9393       case ICmpInst::ICMP_EQ:
9394       case ICmpInst::ICMP_NE:
9395         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9396         if (!RA)
9397           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9398             if (const SCEVMulExpr *ME =
9399                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9400               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9401                   ME->getOperand(0)->isAllOnesValue()) {
9402                 RHS = AE->getOperand(1);
9403                 LHS = ME->getOperand(1);
9404                 Changed = true;
9405               }
9406         break;
9407 
9408 
9409         // The "Should have been caught earlier!" messages refer to the fact
9410         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9411         // should have fired on the corresponding cases, and canonicalized the
9412         // check to trivial case.
9413 
9414       case ICmpInst::ICMP_UGE:
9415         assert(!RA.isMinValue() && "Should have been caught earlier!");
9416         Pred = ICmpInst::ICMP_UGT;
9417         RHS = getConstant(RA - 1);
9418         Changed = true;
9419         break;
9420       case ICmpInst::ICMP_ULE:
9421         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9422         Pred = ICmpInst::ICMP_ULT;
9423         RHS = getConstant(RA + 1);
9424         Changed = true;
9425         break;
9426       case ICmpInst::ICMP_SGE:
9427         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9428         Pred = ICmpInst::ICMP_SGT;
9429         RHS = getConstant(RA - 1);
9430         Changed = true;
9431         break;
9432       case ICmpInst::ICMP_SLE:
9433         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9434         Pred = ICmpInst::ICMP_SLT;
9435         RHS = getConstant(RA + 1);
9436         Changed = true;
9437         break;
9438       }
9439     }
9440   }
9441 
9442   // Check for obvious equality.
9443   if (HasSameValue(LHS, RHS)) {
9444     if (ICmpInst::isTrueWhenEqual(Pred))
9445       return TrivialCase(true);
9446     if (ICmpInst::isFalseWhenEqual(Pred))
9447       return TrivialCase(false);
9448   }
9449 
9450   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9451   // adding or subtracting 1 from one of the operands.
9452   switch (Pred) {
9453   case ICmpInst::ICMP_SLE:
9454     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9455       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9456                        SCEV::FlagNSW);
9457       Pred = ICmpInst::ICMP_SLT;
9458       Changed = true;
9459     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9460       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9461                        SCEV::FlagNSW);
9462       Pred = ICmpInst::ICMP_SLT;
9463       Changed = true;
9464     }
9465     break;
9466   case ICmpInst::ICMP_SGE:
9467     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9468       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9469                        SCEV::FlagNSW);
9470       Pred = ICmpInst::ICMP_SGT;
9471       Changed = true;
9472     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9473       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9474                        SCEV::FlagNSW);
9475       Pred = ICmpInst::ICMP_SGT;
9476       Changed = true;
9477     }
9478     break;
9479   case ICmpInst::ICMP_ULE:
9480     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9481       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9482                        SCEV::FlagNUW);
9483       Pred = ICmpInst::ICMP_ULT;
9484       Changed = true;
9485     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9486       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9487       Pred = ICmpInst::ICMP_ULT;
9488       Changed = true;
9489     }
9490     break;
9491   case ICmpInst::ICMP_UGE:
9492     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9493       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9494       Pred = ICmpInst::ICMP_UGT;
9495       Changed = true;
9496     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9497       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9498                        SCEV::FlagNUW);
9499       Pred = ICmpInst::ICMP_UGT;
9500       Changed = true;
9501     }
9502     break;
9503   default:
9504     break;
9505   }
9506 
9507   // TODO: More simplifications are possible here.
9508 
9509   // Recursively simplify until we either hit a recursion limit or nothing
9510   // changes.
9511   if (Changed)
9512     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9513 
9514   return Changed;
9515 }
9516 
9517 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9518   return getSignedRangeMax(S).isNegative();
9519 }
9520 
9521 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9522   return getSignedRangeMin(S).isStrictlyPositive();
9523 }
9524 
9525 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9526   return !getSignedRangeMin(S).isNegative();
9527 }
9528 
9529 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9530   return !getSignedRangeMax(S).isStrictlyPositive();
9531 }
9532 
9533 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9534   return isKnownNegative(S) || isKnownPositive(S);
9535 }
9536 
9537 std::pair<const SCEV *, const SCEV *>
9538 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9539   // Compute SCEV on entry of loop L.
9540   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9541   if (Start == getCouldNotCompute())
9542     return { Start, Start };
9543   // Compute post increment SCEV for loop L.
9544   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9545   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9546   return { Start, PostInc };
9547 }
9548 
9549 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9550                                           const SCEV *LHS, const SCEV *RHS) {
9551   // First collect all loops.
9552   SmallPtrSet<const Loop *, 8> LoopsUsed;
9553   getUsedLoops(LHS, LoopsUsed);
9554   getUsedLoops(RHS, LoopsUsed);
9555 
9556   if (LoopsUsed.empty())
9557     return false;
9558 
9559   // Domination relationship must be a linear order on collected loops.
9560 #ifndef NDEBUG
9561   for (auto *L1 : LoopsUsed)
9562     for (auto *L2 : LoopsUsed)
9563       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9564               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9565              "Domination relationship is not a linear order");
9566 #endif
9567 
9568   const Loop *MDL =
9569       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9570                         [&](const Loop *L1, const Loop *L2) {
9571          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9572        });
9573 
9574   // Get init and post increment value for LHS.
9575   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9576   // if LHS contains unknown non-invariant SCEV then bail out.
9577   if (SplitLHS.first == getCouldNotCompute())
9578     return false;
9579   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9580   // Get init and post increment value for RHS.
9581   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9582   // if RHS contains unknown non-invariant SCEV then bail out.
9583   if (SplitRHS.first == getCouldNotCompute())
9584     return false;
9585   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9586   // It is possible that init SCEV contains an invariant load but it does
9587   // not dominate MDL and is not available at MDL loop entry, so we should
9588   // check it here.
9589   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9590       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9591     return false;
9592 
9593   // It seems backedge guard check is faster than entry one so in some cases
9594   // it can speed up whole estimation by short circuit
9595   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9596                                      SplitRHS.second) &&
9597          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9598 }
9599 
9600 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9601                                        const SCEV *LHS, const SCEV *RHS) {
9602   // Canonicalize the inputs first.
9603   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9604 
9605   if (isKnownViaInduction(Pred, LHS, RHS))
9606     return true;
9607 
9608   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9609     return true;
9610 
9611   // Otherwise see what can be done with some simple reasoning.
9612   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9613 }
9614 
9615 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9616                                                   const SCEV *LHS,
9617                                                   const SCEV *RHS) {
9618   if (isKnownPredicate(Pred, LHS, RHS))
9619     return true;
9620   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9621     return false;
9622   return None;
9623 }
9624 
9625 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9626                                          const SCEV *LHS, const SCEV *RHS,
9627                                          const Instruction *Context) {
9628   // TODO: Analyze guards and assumes from Context's block.
9629   return isKnownPredicate(Pred, LHS, RHS) ||
9630          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9631 }
9632 
9633 Optional<bool>
9634 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
9635                                      const SCEV *RHS,
9636                                      const Instruction *Context) {
9637   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9638   if (KnownWithoutContext)
9639     return KnownWithoutContext;
9640 
9641   if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS))
9642     return true;
9643   else if (isBasicBlockEntryGuardedByCond(Context->getParent(),
9644                                           ICmpInst::getInversePredicate(Pred),
9645                                           LHS, RHS))
9646     return false;
9647   return None;
9648 }
9649 
9650 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9651                                               const SCEVAddRecExpr *LHS,
9652                                               const SCEV *RHS) {
9653   const Loop *L = LHS->getLoop();
9654   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9655          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9656 }
9657 
9658 Optional<ScalarEvolution::MonotonicPredicateType>
9659 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9660                                            ICmpInst::Predicate Pred) {
9661   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9662 
9663 #ifndef NDEBUG
9664   // Verify an invariant: inverting the predicate should turn a monotonically
9665   // increasing change to a monotonically decreasing one, and vice versa.
9666   if (Result) {
9667     auto ResultSwapped =
9668         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9669 
9670     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9671     assert(ResultSwapped.getValue() != Result.getValue() &&
9672            "monotonicity should flip as we flip the predicate");
9673   }
9674 #endif
9675 
9676   return Result;
9677 }
9678 
9679 Optional<ScalarEvolution::MonotonicPredicateType>
9680 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9681                                                ICmpInst::Predicate Pred) {
9682   // A zero step value for LHS means the induction variable is essentially a
9683   // loop invariant value. We don't really depend on the predicate actually
9684   // flipping from false to true (for increasing predicates, and the other way
9685   // around for decreasing predicates), all we care about is that *if* the
9686   // predicate changes then it only changes from false to true.
9687   //
9688   // A zero step value in itself is not very useful, but there may be places
9689   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9690   // as general as possible.
9691 
9692   // Only handle LE/LT/GE/GT predicates.
9693   if (!ICmpInst::isRelational(Pred))
9694     return None;
9695 
9696   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9697   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9698          "Should be greater or less!");
9699 
9700   // Check that AR does not wrap.
9701   if (ICmpInst::isUnsigned(Pred)) {
9702     if (!LHS->hasNoUnsignedWrap())
9703       return None;
9704     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9705   } else {
9706     assert(ICmpInst::isSigned(Pred) &&
9707            "Relational predicate is either signed or unsigned!");
9708     if (!LHS->hasNoSignedWrap())
9709       return None;
9710 
9711     const SCEV *Step = LHS->getStepRecurrence(*this);
9712 
9713     if (isKnownNonNegative(Step))
9714       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9715 
9716     if (isKnownNonPositive(Step))
9717       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9718 
9719     return None;
9720   }
9721 }
9722 
9723 Optional<ScalarEvolution::LoopInvariantPredicate>
9724 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
9725                                            const SCEV *LHS, const SCEV *RHS,
9726                                            const Loop *L) {
9727 
9728   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9729   if (!isLoopInvariant(RHS, L)) {
9730     if (!isLoopInvariant(LHS, L))
9731       return None;
9732 
9733     std::swap(LHS, RHS);
9734     Pred = ICmpInst::getSwappedPredicate(Pred);
9735   }
9736 
9737   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9738   if (!ArLHS || ArLHS->getLoop() != L)
9739     return None;
9740 
9741   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
9742   if (!MonotonicType)
9743     return None;
9744   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9745   // true as the loop iterates, and the backedge is control dependent on
9746   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9747   //
9748   //   * if the predicate was false in the first iteration then the predicate
9749   //     is never evaluated again, since the loop exits without taking the
9750   //     backedge.
9751   //   * if the predicate was true in the first iteration then it will
9752   //     continue to be true for all future iterations since it is
9753   //     monotonically increasing.
9754   //
9755   // For both the above possibilities, we can replace the loop varying
9756   // predicate with its value on the first iteration of the loop (which is
9757   // loop invariant).
9758   //
9759   // A similar reasoning applies for a monotonically decreasing predicate, by
9760   // replacing true with false and false with true in the above two bullets.
9761   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
9762   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9763 
9764   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9765     return None;
9766 
9767   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
9768 }
9769 
9770 Optional<ScalarEvolution::LoopInvariantPredicate>
9771 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
9772     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9773     const Instruction *Context, const SCEV *MaxIter) {
9774   // Try to prove the following set of facts:
9775   // - The predicate is monotonic in the iteration space.
9776   // - If the check does not fail on the 1st iteration:
9777   //   - No overflow will happen during first MaxIter iterations;
9778   //   - It will not fail on the MaxIter'th iteration.
9779   // If the check does fail on the 1st iteration, we leave the loop and no
9780   // other checks matter.
9781 
9782   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9783   if (!isLoopInvariant(RHS, L)) {
9784     if (!isLoopInvariant(LHS, L))
9785       return None;
9786 
9787     std::swap(LHS, RHS);
9788     Pred = ICmpInst::getSwappedPredicate(Pred);
9789   }
9790 
9791   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9792   if (!AR || AR->getLoop() != L)
9793     return None;
9794 
9795   // The predicate must be relational (i.e. <, <=, >=, >).
9796   if (!ICmpInst::isRelational(Pred))
9797     return None;
9798 
9799   // TODO: Support steps other than +/- 1.
9800   const SCEV *Step = AR->getStepRecurrence(*this);
9801   auto *One = getOne(Step->getType());
9802   auto *MinusOne = getNegativeSCEV(One);
9803   if (Step != One && Step != MinusOne)
9804     return None;
9805 
9806   // Type mismatch here means that MaxIter is potentially larger than max
9807   // unsigned value in start type, which mean we cannot prove no wrap for the
9808   // indvar.
9809   if (AR->getType() != MaxIter->getType())
9810     return None;
9811 
9812   // Value of IV on suggested last iteration.
9813   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
9814   // Does it still meet the requirement?
9815   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
9816     return None;
9817   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
9818   // not exceed max unsigned value of this type), this effectively proves
9819   // that there is no wrap during the iteration. To prove that there is no
9820   // signed/unsigned wrap, we need to check that
9821   // Start <= Last for step = 1 or Start >= Last for step = -1.
9822   ICmpInst::Predicate NoOverflowPred =
9823       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9824   if (Step == MinusOne)
9825     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
9826   const SCEV *Start = AR->getStart();
9827   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
9828     return None;
9829 
9830   // Everything is fine.
9831   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
9832 }
9833 
9834 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9835     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9836   if (HasSameValue(LHS, RHS))
9837     return ICmpInst::isTrueWhenEqual(Pred);
9838 
9839   // This code is split out from isKnownPredicate because it is called from
9840   // within isLoopEntryGuardedByCond.
9841 
9842   auto CheckRanges =
9843       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9844     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9845         .contains(RangeLHS);
9846   };
9847 
9848   // The check at the top of the function catches the case where the values are
9849   // known to be equal.
9850   if (Pred == CmpInst::ICMP_EQ)
9851     return false;
9852 
9853   if (Pred == CmpInst::ICMP_NE)
9854     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9855            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9856            isKnownNonZero(getMinusSCEV(LHS, RHS));
9857 
9858   if (CmpInst::isSigned(Pred))
9859     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9860 
9861   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9862 }
9863 
9864 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9865                                                     const SCEV *LHS,
9866                                                     const SCEV *RHS) {
9867   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9868   // Return Y via OutY.
9869   auto MatchBinaryAddToConst =
9870       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9871              SCEV::NoWrapFlags ExpectedFlags) {
9872     const SCEV *NonConstOp, *ConstOp;
9873     SCEV::NoWrapFlags FlagsPresent;
9874 
9875     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9876         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9877       return false;
9878 
9879     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9880     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9881   };
9882 
9883   APInt C;
9884 
9885   switch (Pred) {
9886   default:
9887     break;
9888 
9889   case ICmpInst::ICMP_SGE:
9890     std::swap(LHS, RHS);
9891     LLVM_FALLTHROUGH;
9892   case ICmpInst::ICMP_SLE:
9893     // X s<= (X + C)<nsw> if C >= 0
9894     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9895       return true;
9896 
9897     // (X + C)<nsw> s<= X if C <= 0
9898     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9899         !C.isStrictlyPositive())
9900       return true;
9901     break;
9902 
9903   case ICmpInst::ICMP_SGT:
9904     std::swap(LHS, RHS);
9905     LLVM_FALLTHROUGH;
9906   case ICmpInst::ICMP_SLT:
9907     // X s< (X + C)<nsw> if C > 0
9908     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9909         C.isStrictlyPositive())
9910       return true;
9911 
9912     // (X + C)<nsw> s< X if C < 0
9913     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9914       return true;
9915     break;
9916 
9917   case ICmpInst::ICMP_UGE:
9918     std::swap(LHS, RHS);
9919     LLVM_FALLTHROUGH;
9920   case ICmpInst::ICMP_ULE:
9921     // X u<= (X + C)<nuw> for any C
9922     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9923       return true;
9924     break;
9925 
9926   case ICmpInst::ICMP_UGT:
9927     std::swap(LHS, RHS);
9928     LLVM_FALLTHROUGH;
9929   case ICmpInst::ICMP_ULT:
9930     // X u< (X + C)<nuw> if C != 0
9931     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9932       return true;
9933     break;
9934   }
9935 
9936   return false;
9937 }
9938 
9939 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9940                                                    const SCEV *LHS,
9941                                                    const SCEV *RHS) {
9942   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9943     return false;
9944 
9945   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9946   // the stack can result in exponential time complexity.
9947   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9948 
9949   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9950   //
9951   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9952   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9953   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9954   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9955   // use isKnownPredicate later if needed.
9956   return isKnownNonNegative(RHS) &&
9957          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9958          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9959 }
9960 
9961 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9962                                         ICmpInst::Predicate Pred,
9963                                         const SCEV *LHS, const SCEV *RHS) {
9964   // No need to even try if we know the module has no guards.
9965   if (!HasGuards)
9966     return false;
9967 
9968   return any_of(*BB, [&](const Instruction &I) {
9969     using namespace llvm::PatternMatch;
9970 
9971     Value *Condition;
9972     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9973                          m_Value(Condition))) &&
9974            isImpliedCond(Pred, LHS, RHS, Condition, false);
9975   });
9976 }
9977 
9978 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9979 /// protected by a conditional between LHS and RHS.  This is used to
9980 /// to eliminate casts.
9981 bool
9982 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9983                                              ICmpInst::Predicate Pred,
9984                                              const SCEV *LHS, const SCEV *RHS) {
9985   // Interpret a null as meaning no loop, where there is obviously no guard
9986   // (interprocedural conditions notwithstanding).
9987   if (!L) return true;
9988 
9989   if (VerifyIR)
9990     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9991            "This cannot be done on broken IR!");
9992 
9993 
9994   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9995     return true;
9996 
9997   BasicBlock *Latch = L->getLoopLatch();
9998   if (!Latch)
9999     return false;
10000 
10001   BranchInst *LoopContinuePredicate =
10002     dyn_cast<BranchInst>(Latch->getTerminator());
10003   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10004       isImpliedCond(Pred, LHS, RHS,
10005                     LoopContinuePredicate->getCondition(),
10006                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10007     return true;
10008 
10009   // We don't want more than one activation of the following loops on the stack
10010   // -- that can lead to O(n!) time complexity.
10011   if (WalkingBEDominatingConds)
10012     return false;
10013 
10014   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10015 
10016   // See if we can exploit a trip count to prove the predicate.
10017   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10018   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10019   if (LatchBECount != getCouldNotCompute()) {
10020     // We know that Latch branches back to the loop header exactly
10021     // LatchBECount times.  This means the backdege condition at Latch is
10022     // equivalent to  "{0,+,1} u< LatchBECount".
10023     Type *Ty = LatchBECount->getType();
10024     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10025     const SCEV *LoopCounter =
10026       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10027     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10028                       LatchBECount))
10029       return true;
10030   }
10031 
10032   // Check conditions due to any @llvm.assume intrinsics.
10033   for (auto &AssumeVH : AC.assumptions()) {
10034     if (!AssumeVH)
10035       continue;
10036     auto *CI = cast<CallInst>(AssumeVH);
10037     if (!DT.dominates(CI, Latch->getTerminator()))
10038       continue;
10039 
10040     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10041       return true;
10042   }
10043 
10044   // If the loop is not reachable from the entry block, we risk running into an
10045   // infinite loop as we walk up into the dom tree.  These loops do not matter
10046   // anyway, so we just return a conservative answer when we see them.
10047   if (!DT.isReachableFromEntry(L->getHeader()))
10048     return false;
10049 
10050   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10051     return true;
10052 
10053   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10054        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10055     assert(DTN && "should reach the loop header before reaching the root!");
10056 
10057     BasicBlock *BB = DTN->getBlock();
10058     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10059       return true;
10060 
10061     BasicBlock *PBB = BB->getSinglePredecessor();
10062     if (!PBB)
10063       continue;
10064 
10065     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10066     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10067       continue;
10068 
10069     Value *Condition = ContinuePredicate->getCondition();
10070 
10071     // If we have an edge `E` within the loop body that dominates the only
10072     // latch, the condition guarding `E` also guards the backedge.  This
10073     // reasoning works only for loops with a single latch.
10074 
10075     BasicBlockEdge DominatingEdge(PBB, BB);
10076     if (DominatingEdge.isSingleEdge()) {
10077       // We're constructively (and conservatively) enumerating edges within the
10078       // loop body that dominate the latch.  The dominator tree better agree
10079       // with us on this:
10080       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10081 
10082       if (isImpliedCond(Pred, LHS, RHS, Condition,
10083                         BB != ContinuePredicate->getSuccessor(0)))
10084         return true;
10085     }
10086   }
10087 
10088   return false;
10089 }
10090 
10091 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10092                                                      ICmpInst::Predicate Pred,
10093                                                      const SCEV *LHS,
10094                                                      const SCEV *RHS) {
10095   if (VerifyIR)
10096     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10097            "This cannot be done on broken IR!");
10098 
10099   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10100   // the facts (a >= b && a != b) separately. A typical situation is when the
10101   // non-strict comparison is known from ranges and non-equality is known from
10102   // dominating predicates. If we are proving strict comparison, we always try
10103   // to prove non-equality and non-strict comparison separately.
10104   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10105   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10106   bool ProvedNonStrictComparison = false;
10107   bool ProvedNonEquality = false;
10108 
10109   auto SplitAndProve =
10110     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10111     if (!ProvedNonStrictComparison)
10112       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10113     if (!ProvedNonEquality)
10114       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10115     if (ProvedNonStrictComparison && ProvedNonEquality)
10116       return true;
10117     return false;
10118   };
10119 
10120   if (ProvingStrictComparison) {
10121     auto ProofFn = [&](ICmpInst::Predicate P) {
10122       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10123     };
10124     if (SplitAndProve(ProofFn))
10125       return true;
10126   }
10127 
10128   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10129   auto ProveViaGuard = [&](const BasicBlock *Block) {
10130     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10131       return true;
10132     if (ProvingStrictComparison) {
10133       auto ProofFn = [&](ICmpInst::Predicate P) {
10134         return isImpliedViaGuard(Block, P, LHS, RHS);
10135       };
10136       if (SplitAndProve(ProofFn))
10137         return true;
10138     }
10139     return false;
10140   };
10141 
10142   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10143   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10144     const Instruction *Context = &BB->front();
10145     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10146       return true;
10147     if (ProvingStrictComparison) {
10148       auto ProofFn = [&](ICmpInst::Predicate P) {
10149         return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context);
10150       };
10151       if (SplitAndProve(ProofFn))
10152         return true;
10153     }
10154     return false;
10155   };
10156 
10157   // Starting at the block's predecessor, climb up the predecessor chain, as long
10158   // as there are predecessors that can be found that have unique successors
10159   // leading to the original block.
10160   const Loop *ContainingLoop = LI.getLoopFor(BB);
10161   const BasicBlock *PredBB;
10162   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10163     PredBB = ContainingLoop->getLoopPredecessor();
10164   else
10165     PredBB = BB->getSinglePredecessor();
10166   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10167        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10168     if (ProveViaGuard(Pair.first))
10169       return true;
10170 
10171     const BranchInst *LoopEntryPredicate =
10172         dyn_cast<BranchInst>(Pair.first->getTerminator());
10173     if (!LoopEntryPredicate ||
10174         LoopEntryPredicate->isUnconditional())
10175       continue;
10176 
10177     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10178                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10179       return true;
10180   }
10181 
10182   // Check conditions due to any @llvm.assume intrinsics.
10183   for (auto &AssumeVH : AC.assumptions()) {
10184     if (!AssumeVH)
10185       continue;
10186     auto *CI = cast<CallInst>(AssumeVH);
10187     if (!DT.dominates(CI, BB))
10188       continue;
10189 
10190     if (ProveViaCond(CI->getArgOperand(0), false))
10191       return true;
10192   }
10193 
10194   return false;
10195 }
10196 
10197 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10198                                                ICmpInst::Predicate Pred,
10199                                                const SCEV *LHS,
10200                                                const SCEV *RHS) {
10201   // Interpret a null as meaning no loop, where there is obviously no guard
10202   // (interprocedural conditions notwithstanding).
10203   if (!L)
10204     return false;
10205 
10206   // Both LHS and RHS must be available at loop entry.
10207   assert(isAvailableAtLoopEntry(LHS, L) &&
10208          "LHS is not available at Loop Entry");
10209   assert(isAvailableAtLoopEntry(RHS, L) &&
10210          "RHS is not available at Loop Entry");
10211 
10212   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10213     return true;
10214 
10215   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10216 }
10217 
10218 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10219                                     const SCEV *RHS,
10220                                     const Value *FoundCondValue, bool Inverse,
10221                                     const Instruction *Context) {
10222   // False conditions implies anything. Do not bother analyzing it further.
10223   if (FoundCondValue ==
10224       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10225     return true;
10226 
10227   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10228     return false;
10229 
10230   auto ClearOnExit =
10231       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10232 
10233   // Recursively handle And and Or conditions.
10234   const Value *Op0, *Op1;
10235   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10236     if (!Inverse)
10237       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10238               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10239   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10240     if (Inverse)
10241       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10242               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10243   }
10244 
10245   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10246   if (!ICI) return false;
10247 
10248   // Now that we found a conditional branch that dominates the loop or controls
10249   // the loop latch. Check to see if it is the comparison we are looking for.
10250   ICmpInst::Predicate FoundPred;
10251   if (Inverse)
10252     FoundPred = ICI->getInversePredicate();
10253   else
10254     FoundPred = ICI->getPredicate();
10255 
10256   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10257   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10258 
10259   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10260 }
10261 
10262 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10263                                     const SCEV *RHS,
10264                                     ICmpInst::Predicate FoundPred,
10265                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10266                                     const Instruction *Context) {
10267   // Balance the types.
10268   if (getTypeSizeInBits(LHS->getType()) <
10269       getTypeSizeInBits(FoundLHS->getType())) {
10270     // For unsigned and equality predicates, try to prove that both found
10271     // operands fit into narrow unsigned range. If so, try to prove facts in
10272     // narrow types.
10273     if (!CmpInst::isSigned(FoundPred)) {
10274       auto *NarrowType = LHS->getType();
10275       auto *WideType = FoundLHS->getType();
10276       auto BitWidth = getTypeSizeInBits(NarrowType);
10277       const SCEV *MaxValue = getZeroExtendExpr(
10278           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10279       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10280           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10281         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10282         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10283         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10284                                        TruncFoundRHS, Context))
10285           return true;
10286       }
10287     }
10288 
10289     if (CmpInst::isSigned(Pred)) {
10290       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10291       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10292     } else {
10293       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10294       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10295     }
10296   } else if (getTypeSizeInBits(LHS->getType()) >
10297       getTypeSizeInBits(FoundLHS->getType())) {
10298     if (CmpInst::isSigned(FoundPred)) {
10299       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10300       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10301     } else {
10302       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10303       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10304     }
10305   }
10306   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10307                                     FoundRHS, Context);
10308 }
10309 
10310 bool ScalarEvolution::isImpliedCondBalancedTypes(
10311     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10312     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10313     const Instruction *Context) {
10314   assert(getTypeSizeInBits(LHS->getType()) ==
10315              getTypeSizeInBits(FoundLHS->getType()) &&
10316          "Types should be balanced!");
10317   // Canonicalize the query to match the way instcombine will have
10318   // canonicalized the comparison.
10319   if (SimplifyICmpOperands(Pred, LHS, RHS))
10320     if (LHS == RHS)
10321       return CmpInst::isTrueWhenEqual(Pred);
10322   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10323     if (FoundLHS == FoundRHS)
10324       return CmpInst::isFalseWhenEqual(FoundPred);
10325 
10326   // Check to see if we can make the LHS or RHS match.
10327   if (LHS == FoundRHS || RHS == FoundLHS) {
10328     if (isa<SCEVConstant>(RHS)) {
10329       std::swap(FoundLHS, FoundRHS);
10330       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10331     } else {
10332       std::swap(LHS, RHS);
10333       Pred = ICmpInst::getSwappedPredicate(Pred);
10334     }
10335   }
10336 
10337   // Check whether the found predicate is the same as the desired predicate.
10338   if (FoundPred == Pred)
10339     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10340 
10341   // Check whether swapping the found predicate makes it the same as the
10342   // desired predicate.
10343   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10344     if (isa<SCEVConstant>(RHS))
10345       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10346     else
10347       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
10348                                    LHS, FoundLHS, FoundRHS, Context);
10349   }
10350 
10351   // Unsigned comparison is the same as signed comparison when both the operands
10352   // are non-negative.
10353   if (CmpInst::isUnsigned(FoundPred) &&
10354       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10355       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10356     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10357 
10358   // Check if we can make progress by sharpening ranges.
10359   if (FoundPred == ICmpInst::ICMP_NE &&
10360       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10361 
10362     const SCEVConstant *C = nullptr;
10363     const SCEV *V = nullptr;
10364 
10365     if (isa<SCEVConstant>(FoundLHS)) {
10366       C = cast<SCEVConstant>(FoundLHS);
10367       V = FoundRHS;
10368     } else {
10369       C = cast<SCEVConstant>(FoundRHS);
10370       V = FoundLHS;
10371     }
10372 
10373     // The guarding predicate tells us that C != V. If the known range
10374     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10375     // range we consider has to correspond to same signedness as the
10376     // predicate we're interested in folding.
10377 
10378     APInt Min = ICmpInst::isSigned(Pred) ?
10379         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10380 
10381     if (Min == C->getAPInt()) {
10382       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10383       // This is true even if (Min + 1) wraps around -- in case of
10384       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10385 
10386       APInt SharperMin = Min + 1;
10387 
10388       switch (Pred) {
10389         case ICmpInst::ICMP_SGE:
10390         case ICmpInst::ICMP_UGE:
10391           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10392           // RHS, we're done.
10393           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10394                                     Context))
10395             return true;
10396           LLVM_FALLTHROUGH;
10397 
10398         case ICmpInst::ICMP_SGT:
10399         case ICmpInst::ICMP_UGT:
10400           // We know from the range information that (V `Pred` Min ||
10401           // V == Min).  We know from the guarding condition that !(V
10402           // == Min).  This gives us
10403           //
10404           //       V `Pred` Min || V == Min && !(V == Min)
10405           //   =>  V `Pred` Min
10406           //
10407           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10408 
10409           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10410                                     Context))
10411             return true;
10412           break;
10413 
10414         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10415         case ICmpInst::ICMP_SLE:
10416         case ICmpInst::ICMP_ULE:
10417           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10418                                     LHS, V, getConstant(SharperMin), Context))
10419             return true;
10420           LLVM_FALLTHROUGH;
10421 
10422         case ICmpInst::ICMP_SLT:
10423         case ICmpInst::ICMP_ULT:
10424           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10425                                     LHS, V, getConstant(Min), Context))
10426             return true;
10427           break;
10428 
10429         default:
10430           // No change
10431           break;
10432       }
10433     }
10434   }
10435 
10436   // Check whether the actual condition is beyond sufficient.
10437   if (FoundPred == ICmpInst::ICMP_EQ)
10438     if (ICmpInst::isTrueWhenEqual(Pred))
10439       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10440         return true;
10441   if (Pred == ICmpInst::ICMP_NE)
10442     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10443       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10444                                 Context))
10445         return true;
10446 
10447   // Otherwise assume the worst.
10448   return false;
10449 }
10450 
10451 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10452                                      const SCEV *&L, const SCEV *&R,
10453                                      SCEV::NoWrapFlags &Flags) {
10454   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10455   if (!AE || AE->getNumOperands() != 2)
10456     return false;
10457 
10458   L = AE->getOperand(0);
10459   R = AE->getOperand(1);
10460   Flags = AE->getNoWrapFlags();
10461   return true;
10462 }
10463 
10464 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10465                                                            const SCEV *Less) {
10466   // We avoid subtracting expressions here because this function is usually
10467   // fairly deep in the call stack (i.e. is called many times).
10468 
10469   // X - X = 0.
10470   if (More == Less)
10471     return APInt(getTypeSizeInBits(More->getType()), 0);
10472 
10473   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10474     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10475     const auto *MAR = cast<SCEVAddRecExpr>(More);
10476 
10477     if (LAR->getLoop() != MAR->getLoop())
10478       return None;
10479 
10480     // We look at affine expressions only; not for correctness but to keep
10481     // getStepRecurrence cheap.
10482     if (!LAR->isAffine() || !MAR->isAffine())
10483       return None;
10484 
10485     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10486       return None;
10487 
10488     Less = LAR->getStart();
10489     More = MAR->getStart();
10490 
10491     // fall through
10492   }
10493 
10494   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10495     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10496     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10497     return M - L;
10498   }
10499 
10500   SCEV::NoWrapFlags Flags;
10501   const SCEV *LLess = nullptr, *RLess = nullptr;
10502   const SCEV *LMore = nullptr, *RMore = nullptr;
10503   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10504   // Compare (X + C1) vs X.
10505   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10506     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10507       if (RLess == More)
10508         return -(C1->getAPInt());
10509 
10510   // Compare X vs (X + C2).
10511   if (splitBinaryAdd(More, LMore, RMore, Flags))
10512     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10513       if (RMore == Less)
10514         return C2->getAPInt();
10515 
10516   // Compare (X + C1) vs (X + C2).
10517   if (C1 && C2 && RLess == RMore)
10518     return C2->getAPInt() - C1->getAPInt();
10519 
10520   return None;
10521 }
10522 
10523 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10524     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10525     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10526   // Try to recognize the following pattern:
10527   //
10528   //   FoundRHS = ...
10529   // ...
10530   // loop:
10531   //   FoundLHS = {Start,+,W}
10532   // context_bb: // Basic block from the same loop
10533   //   known(Pred, FoundLHS, FoundRHS)
10534   //
10535   // If some predicate is known in the context of a loop, it is also known on
10536   // each iteration of this loop, including the first iteration. Therefore, in
10537   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10538   // prove the original pred using this fact.
10539   if (!Context)
10540     return false;
10541   const BasicBlock *ContextBB = Context->getParent();
10542   // Make sure AR varies in the context block.
10543   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10544     const Loop *L = AR->getLoop();
10545     // Make sure that context belongs to the loop and executes on 1st iteration
10546     // (if it ever executes at all).
10547     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10548       return false;
10549     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10550       return false;
10551     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10552   }
10553 
10554   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10555     const Loop *L = AR->getLoop();
10556     // Make sure that context belongs to the loop and executes on 1st iteration
10557     // (if it ever executes at all).
10558     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10559       return false;
10560     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10561       return false;
10562     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10563   }
10564 
10565   return false;
10566 }
10567 
10568 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10569     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10570     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10571   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10572     return false;
10573 
10574   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10575   if (!AddRecLHS)
10576     return false;
10577 
10578   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10579   if (!AddRecFoundLHS)
10580     return false;
10581 
10582   // We'd like to let SCEV reason about control dependencies, so we constrain
10583   // both the inequalities to be about add recurrences on the same loop.  This
10584   // way we can use isLoopEntryGuardedByCond later.
10585 
10586   const Loop *L = AddRecFoundLHS->getLoop();
10587   if (L != AddRecLHS->getLoop())
10588     return false;
10589 
10590   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10591   //
10592   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10593   //                                                                  ... (2)
10594   //
10595   // Informal proof for (2), assuming (1) [*]:
10596   //
10597   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10598   //
10599   // Then
10600   //
10601   //       FoundLHS s< FoundRHS s< INT_MIN - C
10602   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10603   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10604   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10605   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10606   // <=>  FoundLHS + C s< FoundRHS + C
10607   //
10608   // [*]: (1) can be proved by ruling out overflow.
10609   //
10610   // [**]: This can be proved by analyzing all the four possibilities:
10611   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10612   //    (A s>= 0, B s>= 0).
10613   //
10614   // Note:
10615   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10616   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10617   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10618   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10619   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10620   // C)".
10621 
10622   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10623   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10624   if (!LDiff || !RDiff || *LDiff != *RDiff)
10625     return false;
10626 
10627   if (LDiff->isMinValue())
10628     return true;
10629 
10630   APInt FoundRHSLimit;
10631 
10632   if (Pred == CmpInst::ICMP_ULT) {
10633     FoundRHSLimit = -(*RDiff);
10634   } else {
10635     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10636     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10637   }
10638 
10639   // Try to prove (1) or (2), as needed.
10640   return isAvailableAtLoopEntry(FoundRHS, L) &&
10641          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10642                                   getConstant(FoundRHSLimit));
10643 }
10644 
10645 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10646                                         const SCEV *LHS, const SCEV *RHS,
10647                                         const SCEV *FoundLHS,
10648                                         const SCEV *FoundRHS, unsigned Depth) {
10649   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10650 
10651   auto ClearOnExit = make_scope_exit([&]() {
10652     if (LPhi) {
10653       bool Erased = PendingMerges.erase(LPhi);
10654       assert(Erased && "Failed to erase LPhi!");
10655       (void)Erased;
10656     }
10657     if (RPhi) {
10658       bool Erased = PendingMerges.erase(RPhi);
10659       assert(Erased && "Failed to erase RPhi!");
10660       (void)Erased;
10661     }
10662   });
10663 
10664   // Find respective Phis and check that they are not being pending.
10665   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10666     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10667       if (!PendingMerges.insert(Phi).second)
10668         return false;
10669       LPhi = Phi;
10670     }
10671   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10672     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10673       // If we detect a loop of Phi nodes being processed by this method, for
10674       // example:
10675       //
10676       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10677       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10678       //
10679       // we don't want to deal with a case that complex, so return conservative
10680       // answer false.
10681       if (!PendingMerges.insert(Phi).second)
10682         return false;
10683       RPhi = Phi;
10684     }
10685 
10686   // If none of LHS, RHS is a Phi, nothing to do here.
10687   if (!LPhi && !RPhi)
10688     return false;
10689 
10690   // If there is a SCEVUnknown Phi we are interested in, make it left.
10691   if (!LPhi) {
10692     std::swap(LHS, RHS);
10693     std::swap(FoundLHS, FoundRHS);
10694     std::swap(LPhi, RPhi);
10695     Pred = ICmpInst::getSwappedPredicate(Pred);
10696   }
10697 
10698   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10699   const BasicBlock *LBB = LPhi->getParent();
10700   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10701 
10702   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10703     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10704            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10705            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10706   };
10707 
10708   if (RPhi && RPhi->getParent() == LBB) {
10709     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10710     // If we compare two Phis from the same block, and for each entry block
10711     // the predicate is true for incoming values from this block, then the
10712     // predicate is also true for the Phis.
10713     for (const BasicBlock *IncBB : predecessors(LBB)) {
10714       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10715       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10716       if (!ProvedEasily(L, R))
10717         return false;
10718     }
10719   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10720     // Case two: RHS is also a Phi from the same basic block, and it is an
10721     // AddRec. It means that there is a loop which has both AddRec and Unknown
10722     // PHIs, for it we can compare incoming values of AddRec from above the loop
10723     // and latch with their respective incoming values of LPhi.
10724     // TODO: Generalize to handle loops with many inputs in a header.
10725     if (LPhi->getNumIncomingValues() != 2) return false;
10726 
10727     auto *RLoop = RAR->getLoop();
10728     auto *Predecessor = RLoop->getLoopPredecessor();
10729     assert(Predecessor && "Loop with AddRec with no predecessor?");
10730     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10731     if (!ProvedEasily(L1, RAR->getStart()))
10732       return false;
10733     auto *Latch = RLoop->getLoopLatch();
10734     assert(Latch && "Loop with AddRec with no latch?");
10735     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10736     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10737       return false;
10738   } else {
10739     // In all other cases go over inputs of LHS and compare each of them to RHS,
10740     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10741     // At this point RHS is either a non-Phi, or it is a Phi from some block
10742     // different from LBB.
10743     for (const BasicBlock *IncBB : predecessors(LBB)) {
10744       // Check that RHS is available in this block.
10745       if (!dominates(RHS, IncBB))
10746         return false;
10747       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10748       if (!ProvedEasily(L, RHS))
10749         return false;
10750     }
10751   }
10752   return true;
10753 }
10754 
10755 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10756                                             const SCEV *LHS, const SCEV *RHS,
10757                                             const SCEV *FoundLHS,
10758                                             const SCEV *FoundRHS,
10759                                             const Instruction *Context) {
10760   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10761     return true;
10762 
10763   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10764     return true;
10765 
10766   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10767                                           Context))
10768     return true;
10769 
10770   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10771                                      FoundLHS, FoundRHS) ||
10772          // ~x < ~y --> x > y
10773          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10774                                      getNotSCEV(FoundRHS),
10775                                      getNotSCEV(FoundLHS));
10776 }
10777 
10778 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10779 template <typename MinMaxExprType>
10780 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10781                                  const SCEV *Candidate) {
10782   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10783   if (!MinMaxExpr)
10784     return false;
10785 
10786   return is_contained(MinMaxExpr->operands(), Candidate);
10787 }
10788 
10789 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10790                                            ICmpInst::Predicate Pred,
10791                                            const SCEV *LHS, const SCEV *RHS) {
10792   // If both sides are affine addrecs for the same loop, with equal
10793   // steps, and we know the recurrences don't wrap, then we only
10794   // need to check the predicate on the starting values.
10795 
10796   if (!ICmpInst::isRelational(Pred))
10797     return false;
10798 
10799   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10800   if (!LAR)
10801     return false;
10802   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10803   if (!RAR)
10804     return false;
10805   if (LAR->getLoop() != RAR->getLoop())
10806     return false;
10807   if (!LAR->isAffine() || !RAR->isAffine())
10808     return false;
10809 
10810   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10811     return false;
10812 
10813   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10814                          SCEV::FlagNSW : SCEV::FlagNUW;
10815   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10816     return false;
10817 
10818   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10819 }
10820 
10821 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10822 /// expression?
10823 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10824                                         ICmpInst::Predicate Pred,
10825                                         const SCEV *LHS, const SCEV *RHS) {
10826   switch (Pred) {
10827   default:
10828     return false;
10829 
10830   case ICmpInst::ICMP_SGE:
10831     std::swap(LHS, RHS);
10832     LLVM_FALLTHROUGH;
10833   case ICmpInst::ICMP_SLE:
10834     return
10835         // min(A, ...) <= A
10836         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10837         // A <= max(A, ...)
10838         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10839 
10840   case ICmpInst::ICMP_UGE:
10841     std::swap(LHS, RHS);
10842     LLVM_FALLTHROUGH;
10843   case ICmpInst::ICMP_ULE:
10844     return
10845         // min(A, ...) <= A
10846         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10847         // A <= max(A, ...)
10848         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10849   }
10850 
10851   llvm_unreachable("covered switch fell through?!");
10852 }
10853 
10854 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10855                                              const SCEV *LHS, const SCEV *RHS,
10856                                              const SCEV *FoundLHS,
10857                                              const SCEV *FoundRHS,
10858                                              unsigned Depth) {
10859   assert(getTypeSizeInBits(LHS->getType()) ==
10860              getTypeSizeInBits(RHS->getType()) &&
10861          "LHS and RHS have different sizes?");
10862   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10863              getTypeSizeInBits(FoundRHS->getType()) &&
10864          "FoundLHS and FoundRHS have different sizes?");
10865   // We want to avoid hurting the compile time with analysis of too big trees.
10866   if (Depth > MaxSCEVOperationsImplicationDepth)
10867     return false;
10868 
10869   // We only want to work with GT comparison so far.
10870   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10871     Pred = CmpInst::getSwappedPredicate(Pred);
10872     std::swap(LHS, RHS);
10873     std::swap(FoundLHS, FoundRHS);
10874   }
10875 
10876   // For unsigned, try to reduce it to corresponding signed comparison.
10877   if (Pred == ICmpInst::ICMP_UGT)
10878     // We can replace unsigned predicate with its signed counterpart if all
10879     // involved values are non-negative.
10880     // TODO: We could have better support for unsigned.
10881     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10882       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10883       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10884       // use this fact to prove that LHS and RHS are non-negative.
10885       const SCEV *MinusOne = getMinusOne(LHS->getType());
10886       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10887                                 FoundRHS) &&
10888           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10889                                 FoundRHS))
10890         Pred = ICmpInst::ICMP_SGT;
10891     }
10892 
10893   if (Pred != ICmpInst::ICMP_SGT)
10894     return false;
10895 
10896   auto GetOpFromSExt = [&](const SCEV *S) {
10897     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10898       return Ext->getOperand();
10899     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10900     // the constant in some cases.
10901     return S;
10902   };
10903 
10904   // Acquire values from extensions.
10905   auto *OrigLHS = LHS;
10906   auto *OrigFoundLHS = FoundLHS;
10907   LHS = GetOpFromSExt(LHS);
10908   FoundLHS = GetOpFromSExt(FoundLHS);
10909 
10910   // Is the SGT predicate can be proved trivially or using the found context.
10911   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10912     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10913            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10914                                   FoundRHS, Depth + 1);
10915   };
10916 
10917   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10918     // We want to avoid creation of any new non-constant SCEV. Since we are
10919     // going to compare the operands to RHS, we should be certain that we don't
10920     // need any size extensions for this. So let's decline all cases when the
10921     // sizes of types of LHS and RHS do not match.
10922     // TODO: Maybe try to get RHS from sext to catch more cases?
10923     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10924       return false;
10925 
10926     // Should not overflow.
10927     if (!LHSAddExpr->hasNoSignedWrap())
10928       return false;
10929 
10930     auto *LL = LHSAddExpr->getOperand(0);
10931     auto *LR = LHSAddExpr->getOperand(1);
10932     auto *MinusOne = getMinusOne(RHS->getType());
10933 
10934     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10935     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10936       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10937     };
10938     // Try to prove the following rule:
10939     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10940     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10941     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10942       return true;
10943   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10944     Value *LL, *LR;
10945     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10946 
10947     using namespace llvm::PatternMatch;
10948 
10949     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10950       // Rules for division.
10951       // We are going to perform some comparisons with Denominator and its
10952       // derivative expressions. In general case, creating a SCEV for it may
10953       // lead to a complex analysis of the entire graph, and in particular it
10954       // can request trip count recalculation for the same loop. This would
10955       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10956       // this, we only want to create SCEVs that are constants in this section.
10957       // So we bail if Denominator is not a constant.
10958       if (!isa<ConstantInt>(LR))
10959         return false;
10960 
10961       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10962 
10963       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10964       // then a SCEV for the numerator already exists and matches with FoundLHS.
10965       auto *Numerator = getExistingSCEV(LL);
10966       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10967         return false;
10968 
10969       // Make sure that the numerator matches with FoundLHS and the denominator
10970       // is positive.
10971       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10972         return false;
10973 
10974       auto *DTy = Denominator->getType();
10975       auto *FRHSTy = FoundRHS->getType();
10976       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10977         // One of types is a pointer and another one is not. We cannot extend
10978         // them properly to a wider type, so let us just reject this case.
10979         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10980         // to avoid this check.
10981         return false;
10982 
10983       // Given that:
10984       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10985       auto *WTy = getWiderType(DTy, FRHSTy);
10986       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10987       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10988 
10989       // Try to prove the following rule:
10990       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10991       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10992       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10993       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10994       if (isKnownNonPositive(RHS) &&
10995           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10996         return true;
10997 
10998       // Try to prove the following rule:
10999       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11000       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11001       // If we divide it by Denominator > 2, then:
11002       // 1. If FoundLHS is negative, then the result is 0.
11003       // 2. If FoundLHS is non-negative, then the result is non-negative.
11004       // Anyways, the result is non-negative.
11005       auto *MinusOne = getMinusOne(WTy);
11006       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11007       if (isKnownNegative(RHS) &&
11008           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11009         return true;
11010     }
11011   }
11012 
11013   // If our expression contained SCEVUnknown Phis, and we split it down and now
11014   // need to prove something for them, try to prove the predicate for every
11015   // possible incoming values of those Phis.
11016   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11017     return true;
11018 
11019   return false;
11020 }
11021 
11022 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11023                                         const SCEV *LHS, const SCEV *RHS) {
11024   // zext x u<= sext x, sext x s<= zext x
11025   switch (Pred) {
11026   case ICmpInst::ICMP_SGE:
11027     std::swap(LHS, RHS);
11028     LLVM_FALLTHROUGH;
11029   case ICmpInst::ICMP_SLE: {
11030     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11031     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11032     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11033     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11034       return true;
11035     break;
11036   }
11037   case ICmpInst::ICMP_UGE:
11038     std::swap(LHS, RHS);
11039     LLVM_FALLTHROUGH;
11040   case ICmpInst::ICMP_ULE: {
11041     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11042     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11043     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11044     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11045       return true;
11046     break;
11047   }
11048   default:
11049     break;
11050   };
11051   return false;
11052 }
11053 
11054 bool
11055 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11056                                            const SCEV *LHS, const SCEV *RHS) {
11057   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11058          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11059          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11060          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11061          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11062 }
11063 
11064 bool
11065 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11066                                              const SCEV *LHS, const SCEV *RHS,
11067                                              const SCEV *FoundLHS,
11068                                              const SCEV *FoundRHS) {
11069   switch (Pred) {
11070   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11071   case ICmpInst::ICMP_EQ:
11072   case ICmpInst::ICMP_NE:
11073     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11074       return true;
11075     break;
11076   case ICmpInst::ICMP_SLT:
11077   case ICmpInst::ICMP_SLE:
11078     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11079         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11080       return true;
11081     break;
11082   case ICmpInst::ICMP_SGT:
11083   case ICmpInst::ICMP_SGE:
11084     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11085         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11086       return true;
11087     break;
11088   case ICmpInst::ICMP_ULT:
11089   case ICmpInst::ICMP_ULE:
11090     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11091         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11092       return true;
11093     break;
11094   case ICmpInst::ICMP_UGT:
11095   case ICmpInst::ICMP_UGE:
11096     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11097         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11098       return true;
11099     break;
11100   }
11101 
11102   // Maybe it can be proved via operations?
11103   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11104     return true;
11105 
11106   return false;
11107 }
11108 
11109 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11110                                                      const SCEV *LHS,
11111                                                      const SCEV *RHS,
11112                                                      const SCEV *FoundLHS,
11113                                                      const SCEV *FoundRHS) {
11114   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11115     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11116     // reduce the compile time impact of this optimization.
11117     return false;
11118 
11119   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11120   if (!Addend)
11121     return false;
11122 
11123   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11124 
11125   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11126   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11127   ConstantRange FoundLHSRange =
11128       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
11129 
11130   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11131   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11132 
11133   // We can also compute the range of values for `LHS` that satisfy the
11134   // consequent, "`LHS` `Pred` `RHS`":
11135   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11136   ConstantRange SatisfyingLHSRange =
11137       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
11138 
11139   // The antecedent implies the consequent if every value of `LHS` that
11140   // satisfies the antecedent also satisfies the consequent.
11141   return SatisfyingLHSRange.contains(LHSRange);
11142 }
11143 
11144 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11145                                          bool IsSigned, bool NoWrap) {
11146   assert(isKnownPositive(Stride) && "Positive stride expected!");
11147 
11148   if (NoWrap) return false;
11149 
11150   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11151   const SCEV *One = getOne(Stride->getType());
11152 
11153   if (IsSigned) {
11154     APInt MaxRHS = getSignedRangeMax(RHS);
11155     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11156     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11157 
11158     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11159     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11160   }
11161 
11162   APInt MaxRHS = getUnsignedRangeMax(RHS);
11163   APInt MaxValue = APInt::getMaxValue(BitWidth);
11164   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11165 
11166   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11167   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11168 }
11169 
11170 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11171                                          bool IsSigned, bool NoWrap) {
11172   if (NoWrap) return false;
11173 
11174   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11175   const SCEV *One = getOne(Stride->getType());
11176 
11177   if (IsSigned) {
11178     APInt MinRHS = getSignedRangeMin(RHS);
11179     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11180     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11181 
11182     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11183     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11184   }
11185 
11186   APInt MinRHS = getUnsignedRangeMin(RHS);
11187   APInt MinValue = APInt::getMinValue(BitWidth);
11188   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11189 
11190   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11191   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11192 }
11193 
11194 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
11195                                             bool Equality) {
11196   const SCEV *One = getOne(Step->getType());
11197   Delta = Equality ? getAddExpr(Delta, Step)
11198                    : getAddExpr(Delta, getMinusSCEV(Step, One));
11199   return getUDivExpr(Delta, Step);
11200 }
11201 
11202 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11203                                                     const SCEV *Stride,
11204                                                     const SCEV *End,
11205                                                     unsigned BitWidth,
11206                                                     bool IsSigned) {
11207 
11208   assert(!isKnownNonPositive(Stride) &&
11209          "Stride is expected strictly positive!");
11210   // Calculate the maximum backedge count based on the range of values
11211   // permitted by Start, End, and Stride.
11212   const SCEV *MaxBECount;
11213   APInt MinStart =
11214       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11215 
11216   APInt StrideForMaxBECount =
11217       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11218 
11219   // We already know that the stride is positive, so we paper over conservatism
11220   // in our range computation by forcing StrideForMaxBECount to be at least one.
11221   // In theory this is unnecessary, but we expect MaxBECount to be a
11222   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
11223   // is nothing to constant fold it to).
11224   APInt One(BitWidth, 1, IsSigned);
11225   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
11226 
11227   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11228                             : APInt::getMaxValue(BitWidth);
11229   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11230 
11231   // Although End can be a MAX expression we estimate MaxEnd considering only
11232   // the case End = RHS of the loop termination condition. This is safe because
11233   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11234   // taken count.
11235   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11236                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11237 
11238   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
11239                               getConstant(StrideForMaxBECount) /* Step */,
11240                               false /* Equality */);
11241 
11242   return MaxBECount;
11243 }
11244 
11245 ScalarEvolution::ExitLimit
11246 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11247                                   const Loop *L, bool IsSigned,
11248                                   bool ControlsExit, bool AllowPredicates) {
11249   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11250 
11251   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11252   bool PredicatedIV = false;
11253 
11254   if (!IV && AllowPredicates) {
11255     // Try to make this an AddRec using runtime tests, in the first X
11256     // iterations of this loop, where X is the SCEV expression found by the
11257     // algorithm below.
11258     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11259     PredicatedIV = true;
11260   }
11261 
11262   // Avoid weird loops
11263   if (!IV || IV->getLoop() != L || !IV->isAffine())
11264     return getCouldNotCompute();
11265 
11266   bool NoWrap = ControlsExit &&
11267                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11268 
11269   const SCEV *Stride = IV->getStepRecurrence(*this);
11270 
11271   bool PositiveStride = isKnownPositive(Stride);
11272 
11273   // Avoid negative or zero stride values.
11274   if (!PositiveStride) {
11275     // We can compute the correct backedge taken count for loops with unknown
11276     // strides if we can prove that the loop is not an infinite loop with side
11277     // effects. Here's the loop structure we are trying to handle -
11278     //
11279     // i = start
11280     // do {
11281     //   A[i] = i;
11282     //   i += s;
11283     // } while (i < end);
11284     //
11285     // The backedge taken count for such loops is evaluated as -
11286     // (max(end, start + stride) - start - 1) /u stride
11287     //
11288     // The additional preconditions that we need to check to prove correctness
11289     // of the above formula is as follows -
11290     //
11291     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11292     //    NoWrap flag).
11293     // b) loop is single exit with no side effects.
11294     //
11295     //
11296     // Precondition a) implies that if the stride is negative, this is a single
11297     // trip loop. The backedge taken count formula reduces to zero in this case.
11298     //
11299     // Precondition b) implies that the unknown stride cannot be zero otherwise
11300     // we have UB.
11301     //
11302     // The positive stride case is the same as isKnownPositive(Stride) returning
11303     // true (original behavior of the function).
11304     //
11305     // We want to make sure that the stride is truly unknown as there are edge
11306     // cases where ScalarEvolution propagates no wrap flags to the
11307     // post-increment/decrement IV even though the increment/decrement operation
11308     // itself is wrapping. The computed backedge taken count may be wrong in
11309     // such cases. This is prevented by checking that the stride is not known to
11310     // be either positive or non-positive. For example, no wrap flags are
11311     // propagated to the post-increment IV of this loop with a trip count of 2 -
11312     //
11313     // unsigned char i;
11314     // for(i=127; i<128; i+=129)
11315     //   A[i] = i;
11316     //
11317     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11318         !loopHasNoSideEffects(L))
11319       return getCouldNotCompute();
11320   } else if (!Stride->isOne() &&
11321              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
11322     // Avoid proven overflow cases: this will ensure that the backedge taken
11323     // count will not generate any unsigned overflow. Relaxed no-overflow
11324     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11325     // undefined behaviors like the case of C language.
11326     return getCouldNotCompute();
11327 
11328   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
11329                                       : ICmpInst::ICMP_ULT;
11330   const SCEV *Start = IV->getStart();
11331   const SCEV *End = RHS;
11332   // When the RHS is not invariant, we do not know the end bound of the loop and
11333   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11334   // calculate the MaxBECount, given the start, stride and max value for the end
11335   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11336   // checked above).
11337   if (!isLoopInvariant(RHS, L)) {
11338     const SCEV *MaxBECount = computeMaxBECountForLT(
11339         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11340     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11341                      false /*MaxOrZero*/, Predicates);
11342   }
11343   // If the backedge is taken at least once, then it will be taken
11344   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
11345   // is the LHS value of the less-than comparison the first time it is evaluated
11346   // and End is the RHS.
11347   const SCEV *BECountIfBackedgeTaken =
11348     computeBECount(getMinusSCEV(End, Start), Stride, false);
11349   // If the loop entry is guarded by the result of the backedge test of the
11350   // first loop iteration, then we know the backedge will be taken at least
11351   // once and so the backedge taken count is as above. If not then we use the
11352   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
11353   // as if the backedge is taken at least once max(End,Start) is End and so the
11354   // result is as above, and if not max(End,Start) is Start so we get a backedge
11355   // count of zero.
11356   const SCEV *BECount;
11357   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
11358     BECount = BECountIfBackedgeTaken;
11359   else {
11360     // If we know that RHS >= Start in the context of loop, then we know that
11361     // max(RHS, Start) = RHS at this point.
11362     if (isLoopEntryGuardedByCond(
11363             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
11364       End = RHS;
11365     else
11366       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11367     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
11368   }
11369 
11370   const SCEV *MaxBECount;
11371   bool MaxOrZero = false;
11372   if (isa<SCEVConstant>(BECount))
11373     MaxBECount = BECount;
11374   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11375     // If we know exactly how many times the backedge will be taken if it's
11376     // taken at least once, then the backedge count will either be that or
11377     // zero.
11378     MaxBECount = BECountIfBackedgeTaken;
11379     MaxOrZero = true;
11380   } else {
11381     MaxBECount = computeMaxBECountForLT(
11382         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11383   }
11384 
11385   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11386       !isa<SCEVCouldNotCompute>(BECount))
11387     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11388 
11389   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11390 }
11391 
11392 ScalarEvolution::ExitLimit
11393 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11394                                      const Loop *L, bool IsSigned,
11395                                      bool ControlsExit, bool AllowPredicates) {
11396   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11397   // We handle only IV > Invariant
11398   if (!isLoopInvariant(RHS, L))
11399     return getCouldNotCompute();
11400 
11401   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11402   if (!IV && AllowPredicates)
11403     // Try to make this an AddRec using runtime tests, in the first X
11404     // iterations of this loop, where X is the SCEV expression found by the
11405     // algorithm below.
11406     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11407 
11408   // Avoid weird loops
11409   if (!IV || IV->getLoop() != L || !IV->isAffine())
11410     return getCouldNotCompute();
11411 
11412   bool NoWrap = ControlsExit &&
11413                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11414 
11415   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11416 
11417   // Avoid negative or zero stride values
11418   if (!isKnownPositive(Stride))
11419     return getCouldNotCompute();
11420 
11421   // Avoid proven overflow cases: this will ensure that the backedge taken count
11422   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11423   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11424   // behaviors like the case of C language.
11425   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
11426     return getCouldNotCompute();
11427 
11428   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
11429                                       : ICmpInst::ICMP_UGT;
11430 
11431   const SCEV *Start = IV->getStart();
11432   const SCEV *End = RHS;
11433   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11434     // If we know that Start >= RHS in the context of loop, then we know that
11435     // min(RHS, Start) = RHS at this point.
11436     if (isLoopEntryGuardedByCond(
11437             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11438       End = RHS;
11439     else
11440       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11441   }
11442 
11443   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
11444 
11445   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
11446                             : getUnsignedRangeMax(Start);
11447 
11448   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
11449                              : getUnsignedRangeMin(Stride);
11450 
11451   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
11452   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
11453                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
11454 
11455   // Although End can be a MIN expression we estimate MinEnd considering only
11456   // the case End = RHS. This is safe because in the other case (Start - End)
11457   // is zero, leading to a zero maximum backedge taken count.
11458   APInt MinEnd =
11459     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
11460              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
11461 
11462   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
11463                                ? BECount
11464                                : computeBECount(getConstant(MaxStart - MinEnd),
11465                                                 getConstant(MinStride), false);
11466 
11467   if (isa<SCEVCouldNotCompute>(MaxBECount))
11468     MaxBECount = BECount;
11469 
11470   return ExitLimit(BECount, MaxBECount, false, Predicates);
11471 }
11472 
11473 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
11474                                                     ScalarEvolution &SE) const {
11475   if (Range.isFullSet())  // Infinite loop.
11476     return SE.getCouldNotCompute();
11477 
11478   // If the start is a non-zero constant, shift the range to simplify things.
11479   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
11480     if (!SC->getValue()->isZero()) {
11481       SmallVector<const SCEV *, 4> Operands(operands());
11482       Operands[0] = SE.getZero(SC->getType());
11483       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
11484                                              getNoWrapFlags(FlagNW));
11485       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
11486         return ShiftedAddRec->getNumIterationsInRange(
11487             Range.subtract(SC->getAPInt()), SE);
11488       // This is strange and shouldn't happen.
11489       return SE.getCouldNotCompute();
11490     }
11491 
11492   // The only time we can solve this is when we have all constant indices.
11493   // Otherwise, we cannot determine the overflow conditions.
11494   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
11495     return SE.getCouldNotCompute();
11496 
11497   // Okay at this point we know that all elements of the chrec are constants and
11498   // that the start element is zero.
11499 
11500   // First check to see if the range contains zero.  If not, the first
11501   // iteration exits.
11502   unsigned BitWidth = SE.getTypeSizeInBits(getType());
11503   if (!Range.contains(APInt(BitWidth, 0)))
11504     return SE.getZero(getType());
11505 
11506   if (isAffine()) {
11507     // If this is an affine expression then we have this situation:
11508     //   Solve {0,+,A} in Range  ===  Ax in Range
11509 
11510     // We know that zero is in the range.  If A is positive then we know that
11511     // the upper value of the range must be the first possible exit value.
11512     // If A is negative then the lower of the range is the last possible loop
11513     // value.  Also note that we already checked for a full range.
11514     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
11515     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
11516 
11517     // The exit value should be (End+A)/A.
11518     APInt ExitVal = (End + A).udiv(A);
11519     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
11520 
11521     // Evaluate at the exit value.  If we really did fall out of the valid
11522     // range, then we computed our trip count, otherwise wrap around or other
11523     // things must have happened.
11524     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
11525     if (Range.contains(Val->getValue()))
11526       return SE.getCouldNotCompute();  // Something strange happened
11527 
11528     // Ensure that the previous value is in the range.  This is a sanity check.
11529     assert(Range.contains(
11530            EvaluateConstantChrecAtConstant(this,
11531            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
11532            "Linear scev computation is off in a bad way!");
11533     return SE.getConstant(ExitValue);
11534   }
11535 
11536   if (isQuadratic()) {
11537     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
11538       return SE.getConstant(S.getValue());
11539   }
11540 
11541   return SE.getCouldNotCompute();
11542 }
11543 
11544 const SCEVAddRecExpr *
11545 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
11546   assert(getNumOperands() > 1 && "AddRec with zero step?");
11547   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
11548   // but in this case we cannot guarantee that the value returned will be an
11549   // AddRec because SCEV does not have a fixed point where it stops
11550   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
11551   // may happen if we reach arithmetic depth limit while simplifying. So we
11552   // construct the returned value explicitly.
11553   SmallVector<const SCEV *, 3> Ops;
11554   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
11555   // (this + Step) is {A+B,+,B+C,+...,+,N}.
11556   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
11557     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
11558   // We know that the last operand is not a constant zero (otherwise it would
11559   // have been popped out earlier). This guarantees us that if the result has
11560   // the same last operand, then it will also not be popped out, meaning that
11561   // the returned value will be an AddRec.
11562   const SCEV *Last = getOperand(getNumOperands() - 1);
11563   assert(!Last->isZero() && "Recurrency with zero step?");
11564   Ops.push_back(Last);
11565   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
11566                                                SCEV::FlagAnyWrap));
11567 }
11568 
11569 // Return true when S contains at least an undef value.
11570 static inline bool containsUndefs(const SCEV *S) {
11571   return SCEVExprContains(S, [](const SCEV *S) {
11572     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11573       return isa<UndefValue>(SU->getValue());
11574     return false;
11575   });
11576 }
11577 
11578 namespace {
11579 
11580 // Collect all steps of SCEV expressions.
11581 struct SCEVCollectStrides {
11582   ScalarEvolution &SE;
11583   SmallVectorImpl<const SCEV *> &Strides;
11584 
11585   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11586       : SE(SE), Strides(S) {}
11587 
11588   bool follow(const SCEV *S) {
11589     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11590       Strides.push_back(AR->getStepRecurrence(SE));
11591     return true;
11592   }
11593 
11594   bool isDone() const { return false; }
11595 };
11596 
11597 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11598 struct SCEVCollectTerms {
11599   SmallVectorImpl<const SCEV *> &Terms;
11600 
11601   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11602 
11603   bool follow(const SCEV *S) {
11604     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11605         isa<SCEVSignExtendExpr>(S)) {
11606       if (!containsUndefs(S))
11607         Terms.push_back(S);
11608 
11609       // Stop recursion: once we collected a term, do not walk its operands.
11610       return false;
11611     }
11612 
11613     // Keep looking.
11614     return true;
11615   }
11616 
11617   bool isDone() const { return false; }
11618 };
11619 
11620 // Check if a SCEV contains an AddRecExpr.
11621 struct SCEVHasAddRec {
11622   bool &ContainsAddRec;
11623 
11624   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11625     ContainsAddRec = false;
11626   }
11627 
11628   bool follow(const SCEV *S) {
11629     if (isa<SCEVAddRecExpr>(S)) {
11630       ContainsAddRec = true;
11631 
11632       // Stop recursion: once we collected a term, do not walk its operands.
11633       return false;
11634     }
11635 
11636     // Keep looking.
11637     return true;
11638   }
11639 
11640   bool isDone() const { return false; }
11641 };
11642 
11643 // Find factors that are multiplied with an expression that (possibly as a
11644 // subexpression) contains an AddRecExpr. In the expression:
11645 //
11646 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11647 //
11648 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11649 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11650 // parameters as they form a product with an induction variable.
11651 //
11652 // This collector expects all array size parameters to be in the same MulExpr.
11653 // It might be necessary to later add support for collecting parameters that are
11654 // spread over different nested MulExpr.
11655 struct SCEVCollectAddRecMultiplies {
11656   SmallVectorImpl<const SCEV *> &Terms;
11657   ScalarEvolution &SE;
11658 
11659   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11660       : Terms(T), SE(SE) {}
11661 
11662   bool follow(const SCEV *S) {
11663     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11664       bool HasAddRec = false;
11665       SmallVector<const SCEV *, 0> Operands;
11666       for (auto Op : Mul->operands()) {
11667         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11668         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11669           Operands.push_back(Op);
11670         } else if (Unknown) {
11671           HasAddRec = true;
11672         } else {
11673           bool ContainsAddRec = false;
11674           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11675           visitAll(Op, ContiansAddRec);
11676           HasAddRec |= ContainsAddRec;
11677         }
11678       }
11679       if (Operands.size() == 0)
11680         return true;
11681 
11682       if (!HasAddRec)
11683         return false;
11684 
11685       Terms.push_back(SE.getMulExpr(Operands));
11686       // Stop recursion: once we collected a term, do not walk its operands.
11687       return false;
11688     }
11689 
11690     // Keep looking.
11691     return true;
11692   }
11693 
11694   bool isDone() const { return false; }
11695 };
11696 
11697 } // end anonymous namespace
11698 
11699 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11700 /// two places:
11701 ///   1) The strides of AddRec expressions.
11702 ///   2) Unknowns that are multiplied with AddRec expressions.
11703 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11704     SmallVectorImpl<const SCEV *> &Terms) {
11705   SmallVector<const SCEV *, 4> Strides;
11706   SCEVCollectStrides StrideCollector(*this, Strides);
11707   visitAll(Expr, StrideCollector);
11708 
11709   LLVM_DEBUG({
11710     dbgs() << "Strides:\n";
11711     for (const SCEV *S : Strides)
11712       dbgs() << *S << "\n";
11713   });
11714 
11715   for (const SCEV *S : Strides) {
11716     SCEVCollectTerms TermCollector(Terms);
11717     visitAll(S, TermCollector);
11718   }
11719 
11720   LLVM_DEBUG({
11721     dbgs() << "Terms:\n";
11722     for (const SCEV *T : Terms)
11723       dbgs() << *T << "\n";
11724   });
11725 
11726   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11727   visitAll(Expr, MulCollector);
11728 }
11729 
11730 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11731                                    SmallVectorImpl<const SCEV *> &Terms,
11732                                    SmallVectorImpl<const SCEV *> &Sizes) {
11733   int Last = Terms.size() - 1;
11734   const SCEV *Step = Terms[Last];
11735 
11736   // End of recursion.
11737   if (Last == 0) {
11738     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11739       SmallVector<const SCEV *, 2> Qs;
11740       for (const SCEV *Op : M->operands())
11741         if (!isa<SCEVConstant>(Op))
11742           Qs.push_back(Op);
11743 
11744       Step = SE.getMulExpr(Qs);
11745     }
11746 
11747     Sizes.push_back(Step);
11748     return true;
11749   }
11750 
11751   for (const SCEV *&Term : Terms) {
11752     // Normalize the terms before the next call to findArrayDimensionsRec.
11753     const SCEV *Q, *R;
11754     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11755 
11756     // Bail out when GCD does not evenly divide one of the terms.
11757     if (!R->isZero())
11758       return false;
11759 
11760     Term = Q;
11761   }
11762 
11763   // Remove all SCEVConstants.
11764   erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
11765 
11766   if (Terms.size() > 0)
11767     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11768       return false;
11769 
11770   Sizes.push_back(Step);
11771   return true;
11772 }
11773 
11774 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11775 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11776   for (const SCEV *T : Terms)
11777     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11778       return true;
11779 
11780   return false;
11781 }
11782 
11783 // Return the number of product terms in S.
11784 static inline int numberOfTerms(const SCEV *S) {
11785   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11786     return Expr->getNumOperands();
11787   return 1;
11788 }
11789 
11790 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11791   if (isa<SCEVConstant>(T))
11792     return nullptr;
11793 
11794   if (isa<SCEVUnknown>(T))
11795     return T;
11796 
11797   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11798     SmallVector<const SCEV *, 2> Factors;
11799     for (const SCEV *Op : M->operands())
11800       if (!isa<SCEVConstant>(Op))
11801         Factors.push_back(Op);
11802 
11803     return SE.getMulExpr(Factors);
11804   }
11805 
11806   return T;
11807 }
11808 
11809 /// Return the size of an element read or written by Inst.
11810 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11811   Type *Ty;
11812   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11813     Ty = Store->getValueOperand()->getType();
11814   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11815     Ty = Load->getType();
11816   else
11817     return nullptr;
11818 
11819   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11820   return getSizeOfExpr(ETy, Ty);
11821 }
11822 
11823 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11824                                           SmallVectorImpl<const SCEV *> &Sizes,
11825                                           const SCEV *ElementSize) {
11826   if (Terms.size() < 1 || !ElementSize)
11827     return;
11828 
11829   // Early return when Terms do not contain parameters: we do not delinearize
11830   // non parametric SCEVs.
11831   if (!containsParameters(Terms))
11832     return;
11833 
11834   LLVM_DEBUG({
11835     dbgs() << "Terms:\n";
11836     for (const SCEV *T : Terms)
11837       dbgs() << *T << "\n";
11838   });
11839 
11840   // Remove duplicates.
11841   array_pod_sort(Terms.begin(), Terms.end());
11842   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11843 
11844   // Put larger terms first.
11845   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11846     return numberOfTerms(LHS) > numberOfTerms(RHS);
11847   });
11848 
11849   // Try to divide all terms by the element size. If term is not divisible by
11850   // element size, proceed with the original term.
11851   for (const SCEV *&Term : Terms) {
11852     const SCEV *Q, *R;
11853     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11854     if (!Q->isZero())
11855       Term = Q;
11856   }
11857 
11858   SmallVector<const SCEV *, 4> NewTerms;
11859 
11860   // Remove constant factors.
11861   for (const SCEV *T : Terms)
11862     if (const SCEV *NewT = removeConstantFactors(*this, T))
11863       NewTerms.push_back(NewT);
11864 
11865   LLVM_DEBUG({
11866     dbgs() << "Terms after sorting:\n";
11867     for (const SCEV *T : NewTerms)
11868       dbgs() << *T << "\n";
11869   });
11870 
11871   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11872     Sizes.clear();
11873     return;
11874   }
11875 
11876   // The last element to be pushed into Sizes is the size of an element.
11877   Sizes.push_back(ElementSize);
11878 
11879   LLVM_DEBUG({
11880     dbgs() << "Sizes:\n";
11881     for (const SCEV *S : Sizes)
11882       dbgs() << *S << "\n";
11883   });
11884 }
11885 
11886 void ScalarEvolution::computeAccessFunctions(
11887     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11888     SmallVectorImpl<const SCEV *> &Sizes) {
11889   // Early exit in case this SCEV is not an affine multivariate function.
11890   if (Sizes.empty())
11891     return;
11892 
11893   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11894     if (!AR->isAffine())
11895       return;
11896 
11897   const SCEV *Res = Expr;
11898   int Last = Sizes.size() - 1;
11899   for (int i = Last; i >= 0; i--) {
11900     const SCEV *Q, *R;
11901     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11902 
11903     LLVM_DEBUG({
11904       dbgs() << "Res: " << *Res << "\n";
11905       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11906       dbgs() << "Res divided by Sizes[i]:\n";
11907       dbgs() << "Quotient: " << *Q << "\n";
11908       dbgs() << "Remainder: " << *R << "\n";
11909     });
11910 
11911     Res = Q;
11912 
11913     // Do not record the last subscript corresponding to the size of elements in
11914     // the array.
11915     if (i == Last) {
11916 
11917       // Bail out if the remainder is too complex.
11918       if (isa<SCEVAddRecExpr>(R)) {
11919         Subscripts.clear();
11920         Sizes.clear();
11921         return;
11922       }
11923 
11924       continue;
11925     }
11926 
11927     // Record the access function for the current subscript.
11928     Subscripts.push_back(R);
11929   }
11930 
11931   // Also push in last position the remainder of the last division: it will be
11932   // the access function of the innermost dimension.
11933   Subscripts.push_back(Res);
11934 
11935   std::reverse(Subscripts.begin(), Subscripts.end());
11936 
11937   LLVM_DEBUG({
11938     dbgs() << "Subscripts:\n";
11939     for (const SCEV *S : Subscripts)
11940       dbgs() << *S << "\n";
11941   });
11942 }
11943 
11944 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11945 /// sizes of an array access. Returns the remainder of the delinearization that
11946 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11947 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11948 /// expressions in the stride and base of a SCEV corresponding to the
11949 /// computation of a GCD (greatest common divisor) of base and stride.  When
11950 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11951 ///
11952 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11953 ///
11954 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11955 ///
11956 ///    for (long i = 0; i < n; i++)
11957 ///      for (long j = 0; j < m; j++)
11958 ///        for (long k = 0; k < o; k++)
11959 ///          A[i][j][k] = 1.0;
11960 ///  }
11961 ///
11962 /// the delinearization input is the following AddRec SCEV:
11963 ///
11964 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11965 ///
11966 /// From this SCEV, we are able to say that the base offset of the access is %A
11967 /// because it appears as an offset that does not divide any of the strides in
11968 /// the loops:
11969 ///
11970 ///  CHECK: Base offset: %A
11971 ///
11972 /// and then SCEV->delinearize determines the size of some of the dimensions of
11973 /// the array as these are the multiples by which the strides are happening:
11974 ///
11975 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11976 ///
11977 /// Note that the outermost dimension remains of UnknownSize because there are
11978 /// no strides that would help identifying the size of the last dimension: when
11979 /// the array has been statically allocated, one could compute the size of that
11980 /// dimension by dividing the overall size of the array by the size of the known
11981 /// dimensions: %m * %o * 8.
11982 ///
11983 /// Finally delinearize provides the access functions for the array reference
11984 /// that does correspond to A[i][j][k] of the above C testcase:
11985 ///
11986 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11987 ///
11988 /// The testcases are checking the output of a function pass:
11989 /// DelinearizationPass that walks through all loads and stores of a function
11990 /// asking for the SCEV of the memory access with respect to all enclosing
11991 /// loops, calling SCEV->delinearize on that and printing the results.
11992 void ScalarEvolution::delinearize(const SCEV *Expr,
11993                                  SmallVectorImpl<const SCEV *> &Subscripts,
11994                                  SmallVectorImpl<const SCEV *> &Sizes,
11995                                  const SCEV *ElementSize) {
11996   // First step: collect parametric terms.
11997   SmallVector<const SCEV *, 4> Terms;
11998   collectParametricTerms(Expr, Terms);
11999 
12000   if (Terms.empty())
12001     return;
12002 
12003   // Second step: find subscript sizes.
12004   findArrayDimensions(Terms, Sizes, ElementSize);
12005 
12006   if (Sizes.empty())
12007     return;
12008 
12009   // Third step: compute the access functions for each subscript.
12010   computeAccessFunctions(Expr, Subscripts, Sizes);
12011 
12012   if (Subscripts.empty())
12013     return;
12014 
12015   LLVM_DEBUG({
12016     dbgs() << "succeeded to delinearize " << *Expr << "\n";
12017     dbgs() << "ArrayDecl[UnknownSize]";
12018     for (const SCEV *S : Sizes)
12019       dbgs() << "[" << *S << "]";
12020 
12021     dbgs() << "\nArrayRef";
12022     for (const SCEV *S : Subscripts)
12023       dbgs() << "[" << *S << "]";
12024     dbgs() << "\n";
12025   });
12026 }
12027 
12028 bool ScalarEvolution::getIndexExpressionsFromGEP(
12029     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
12030     SmallVectorImpl<int> &Sizes) {
12031   assert(Subscripts.empty() && Sizes.empty() &&
12032          "Expected output lists to be empty on entry to this function.");
12033   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
12034   Type *Ty = GEP->getPointerOperandType();
12035   bool DroppedFirstDim = false;
12036   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
12037     const SCEV *Expr = getSCEV(GEP->getOperand(i));
12038     if (i == 1) {
12039       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
12040         Ty = PtrTy->getElementType();
12041       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
12042         Ty = ArrayTy->getElementType();
12043       } else {
12044         Subscripts.clear();
12045         Sizes.clear();
12046         return false;
12047       }
12048       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
12049         if (Const->getValue()->isZero()) {
12050           DroppedFirstDim = true;
12051           continue;
12052         }
12053       Subscripts.push_back(Expr);
12054       continue;
12055     }
12056 
12057     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
12058     if (!ArrayTy) {
12059       Subscripts.clear();
12060       Sizes.clear();
12061       return false;
12062     }
12063 
12064     Subscripts.push_back(Expr);
12065     if (!(DroppedFirstDim && i == 2))
12066       Sizes.push_back(ArrayTy->getNumElements());
12067 
12068     Ty = ArrayTy->getElementType();
12069   }
12070   return !Subscripts.empty();
12071 }
12072 
12073 //===----------------------------------------------------------------------===//
12074 //                   SCEVCallbackVH Class Implementation
12075 //===----------------------------------------------------------------------===//
12076 
12077 void ScalarEvolution::SCEVCallbackVH::deleted() {
12078   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12079   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12080     SE->ConstantEvolutionLoopExitValue.erase(PN);
12081   SE->eraseValueFromMap(getValPtr());
12082   // this now dangles!
12083 }
12084 
12085 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12086   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12087 
12088   // Forget all the expressions associated with users of the old value,
12089   // so that future queries will recompute the expressions using the new
12090   // value.
12091   Value *Old = getValPtr();
12092   SmallVector<User *, 16> Worklist(Old->users());
12093   SmallPtrSet<User *, 8> Visited;
12094   while (!Worklist.empty()) {
12095     User *U = Worklist.pop_back_val();
12096     // Deleting the Old value will cause this to dangle. Postpone
12097     // that until everything else is done.
12098     if (U == Old)
12099       continue;
12100     if (!Visited.insert(U).second)
12101       continue;
12102     if (PHINode *PN = dyn_cast<PHINode>(U))
12103       SE->ConstantEvolutionLoopExitValue.erase(PN);
12104     SE->eraseValueFromMap(U);
12105     llvm::append_range(Worklist, U->users());
12106   }
12107   // Delete the Old value.
12108   if (PHINode *PN = dyn_cast<PHINode>(Old))
12109     SE->ConstantEvolutionLoopExitValue.erase(PN);
12110   SE->eraseValueFromMap(Old);
12111   // this now dangles!
12112 }
12113 
12114 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12115   : CallbackVH(V), SE(se) {}
12116 
12117 //===----------------------------------------------------------------------===//
12118 //                   ScalarEvolution Class Implementation
12119 //===----------------------------------------------------------------------===//
12120 
12121 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12122                                  AssumptionCache &AC, DominatorTree &DT,
12123                                  LoopInfo &LI)
12124     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12125       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12126       LoopDispositions(64), BlockDispositions(64) {
12127   // To use guards for proving predicates, we need to scan every instruction in
12128   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12129   // time if the IR does not actually contain any calls to
12130   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12131   //
12132   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12133   // to _add_ guards to the module when there weren't any before, and wants
12134   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12135   // efficient in lieu of being smart in that rather obscure case.
12136 
12137   auto *GuardDecl = F.getParent()->getFunction(
12138       Intrinsic::getName(Intrinsic::experimental_guard));
12139   HasGuards = GuardDecl && !GuardDecl->use_empty();
12140 }
12141 
12142 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12143     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12144       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12145       ValueExprMap(std::move(Arg.ValueExprMap)),
12146       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12147       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12148       PendingMerges(std::move(Arg.PendingMerges)),
12149       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12150       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12151       PredicatedBackedgeTakenCounts(
12152           std::move(Arg.PredicatedBackedgeTakenCounts)),
12153       ConstantEvolutionLoopExitValue(
12154           std::move(Arg.ConstantEvolutionLoopExitValue)),
12155       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12156       LoopDispositions(std::move(Arg.LoopDispositions)),
12157       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12158       BlockDispositions(std::move(Arg.BlockDispositions)),
12159       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12160       SignedRanges(std::move(Arg.SignedRanges)),
12161       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12162       UniquePreds(std::move(Arg.UniquePreds)),
12163       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12164       LoopUsers(std::move(Arg.LoopUsers)),
12165       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12166       FirstUnknown(Arg.FirstUnknown) {
12167   Arg.FirstUnknown = nullptr;
12168 }
12169 
12170 ScalarEvolution::~ScalarEvolution() {
12171   // Iterate through all the SCEVUnknown instances and call their
12172   // destructors, so that they release their references to their values.
12173   for (SCEVUnknown *U = FirstUnknown; U;) {
12174     SCEVUnknown *Tmp = U;
12175     U = U->Next;
12176     Tmp->~SCEVUnknown();
12177   }
12178   FirstUnknown = nullptr;
12179 
12180   ExprValueMap.clear();
12181   ValueExprMap.clear();
12182   HasRecMap.clear();
12183 
12184   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
12185   // that a loop had multiple computable exits.
12186   for (auto &BTCI : BackedgeTakenCounts)
12187     BTCI.second.clear();
12188   for (auto &BTCI : PredicatedBackedgeTakenCounts)
12189     BTCI.second.clear();
12190 
12191   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12192   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12193   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12194   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12195   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12196 }
12197 
12198 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12199   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12200 }
12201 
12202 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12203                           const Loop *L) {
12204   // Print all inner loops first
12205   for (Loop *I : *L)
12206     PrintLoopInfo(OS, SE, I);
12207 
12208   OS << "Loop ";
12209   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12210   OS << ": ";
12211 
12212   SmallVector<BasicBlock *, 8> ExitingBlocks;
12213   L->getExitingBlocks(ExitingBlocks);
12214   if (ExitingBlocks.size() != 1)
12215     OS << "<multiple exits> ";
12216 
12217   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12218     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12219   else
12220     OS << "Unpredictable backedge-taken count.\n";
12221 
12222   if (ExitingBlocks.size() > 1)
12223     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12224       OS << "  exit count for " << ExitingBlock->getName() << ": "
12225          << *SE->getExitCount(L, ExitingBlock) << "\n";
12226     }
12227 
12228   OS << "Loop ";
12229   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12230   OS << ": ";
12231 
12232   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12233     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12234     if (SE->isBackedgeTakenCountMaxOrZero(L))
12235       OS << ", actual taken count either this or zero.";
12236   } else {
12237     OS << "Unpredictable max backedge-taken count. ";
12238   }
12239 
12240   OS << "\n"
12241         "Loop ";
12242   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12243   OS << ": ";
12244 
12245   SCEVUnionPredicate Pred;
12246   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12247   if (!isa<SCEVCouldNotCompute>(PBT)) {
12248     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12249     OS << " Predicates:\n";
12250     Pred.print(OS, 4);
12251   } else {
12252     OS << "Unpredictable predicated backedge-taken count. ";
12253   }
12254   OS << "\n";
12255 
12256   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12257     OS << "Loop ";
12258     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12259     OS << ": ";
12260     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12261   }
12262 }
12263 
12264 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12265   switch (LD) {
12266   case ScalarEvolution::LoopVariant:
12267     return "Variant";
12268   case ScalarEvolution::LoopInvariant:
12269     return "Invariant";
12270   case ScalarEvolution::LoopComputable:
12271     return "Computable";
12272   }
12273   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12274 }
12275 
12276 void ScalarEvolution::print(raw_ostream &OS) const {
12277   // ScalarEvolution's implementation of the print method is to print
12278   // out SCEV values of all instructions that are interesting. Doing
12279   // this potentially causes it to create new SCEV objects though,
12280   // which technically conflicts with the const qualifier. This isn't
12281   // observable from outside the class though, so casting away the
12282   // const isn't dangerous.
12283   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12284 
12285   if (ClassifyExpressions) {
12286     OS << "Classifying expressions for: ";
12287     F.printAsOperand(OS, /*PrintType=*/false);
12288     OS << "\n";
12289     for (Instruction &I : instructions(F))
12290       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12291         OS << I << '\n';
12292         OS << "  -->  ";
12293         const SCEV *SV = SE.getSCEV(&I);
12294         SV->print(OS);
12295         if (!isa<SCEVCouldNotCompute>(SV)) {
12296           OS << " U: ";
12297           SE.getUnsignedRange(SV).print(OS);
12298           OS << " S: ";
12299           SE.getSignedRange(SV).print(OS);
12300         }
12301 
12302         const Loop *L = LI.getLoopFor(I.getParent());
12303 
12304         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12305         if (AtUse != SV) {
12306           OS << "  -->  ";
12307           AtUse->print(OS);
12308           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12309             OS << " U: ";
12310             SE.getUnsignedRange(AtUse).print(OS);
12311             OS << " S: ";
12312             SE.getSignedRange(AtUse).print(OS);
12313           }
12314         }
12315 
12316         if (L) {
12317           OS << "\t\t" "Exits: ";
12318           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12319           if (!SE.isLoopInvariant(ExitValue, L)) {
12320             OS << "<<Unknown>>";
12321           } else {
12322             OS << *ExitValue;
12323           }
12324 
12325           bool First = true;
12326           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12327             if (First) {
12328               OS << "\t\t" "LoopDispositions: { ";
12329               First = false;
12330             } else {
12331               OS << ", ";
12332             }
12333 
12334             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12335             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12336           }
12337 
12338           for (auto *InnerL : depth_first(L)) {
12339             if (InnerL == L)
12340               continue;
12341             if (First) {
12342               OS << "\t\t" "LoopDispositions: { ";
12343               First = false;
12344             } else {
12345               OS << ", ";
12346             }
12347 
12348             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12349             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12350           }
12351 
12352           OS << " }";
12353         }
12354 
12355         OS << "\n";
12356       }
12357   }
12358 
12359   OS << "Determining loop execution counts for: ";
12360   F.printAsOperand(OS, /*PrintType=*/false);
12361   OS << "\n";
12362   for (Loop *I : LI)
12363     PrintLoopInfo(OS, &SE, I);
12364 }
12365 
12366 ScalarEvolution::LoopDisposition
12367 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12368   auto &Values = LoopDispositions[S];
12369   for (auto &V : Values) {
12370     if (V.getPointer() == L)
12371       return V.getInt();
12372   }
12373   Values.emplace_back(L, LoopVariant);
12374   LoopDisposition D = computeLoopDisposition(S, L);
12375   auto &Values2 = LoopDispositions[S];
12376   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12377     if (V.getPointer() == L) {
12378       V.setInt(D);
12379       break;
12380     }
12381   }
12382   return D;
12383 }
12384 
12385 ScalarEvolution::LoopDisposition
12386 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12387   switch (S->getSCEVType()) {
12388   case scConstant:
12389     return LoopInvariant;
12390   case scPtrToInt:
12391   case scTruncate:
12392   case scZeroExtend:
12393   case scSignExtend:
12394     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12395   case scAddRecExpr: {
12396     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12397 
12398     // If L is the addrec's loop, it's computable.
12399     if (AR->getLoop() == L)
12400       return LoopComputable;
12401 
12402     // Add recurrences are never invariant in the function-body (null loop).
12403     if (!L)
12404       return LoopVariant;
12405 
12406     // Everything that is not defined at loop entry is variant.
12407     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12408       return LoopVariant;
12409     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12410            " dominate the contained loop's header?");
12411 
12412     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12413     if (AR->getLoop()->contains(L))
12414       return LoopInvariant;
12415 
12416     // This recurrence is variant w.r.t. L if any of its operands
12417     // are variant.
12418     for (auto *Op : AR->operands())
12419       if (!isLoopInvariant(Op, L))
12420         return LoopVariant;
12421 
12422     // Otherwise it's loop-invariant.
12423     return LoopInvariant;
12424   }
12425   case scAddExpr:
12426   case scMulExpr:
12427   case scUMaxExpr:
12428   case scSMaxExpr:
12429   case scUMinExpr:
12430   case scSMinExpr: {
12431     bool HasVarying = false;
12432     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12433       LoopDisposition D = getLoopDisposition(Op, L);
12434       if (D == LoopVariant)
12435         return LoopVariant;
12436       if (D == LoopComputable)
12437         HasVarying = true;
12438     }
12439     return HasVarying ? LoopComputable : LoopInvariant;
12440   }
12441   case scUDivExpr: {
12442     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12443     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12444     if (LD == LoopVariant)
12445       return LoopVariant;
12446     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12447     if (RD == LoopVariant)
12448       return LoopVariant;
12449     return (LD == LoopInvariant && RD == LoopInvariant) ?
12450            LoopInvariant : LoopComputable;
12451   }
12452   case scUnknown:
12453     // All non-instruction values are loop invariant.  All instructions are loop
12454     // invariant if they are not contained in the specified loop.
12455     // Instructions are never considered invariant in the function body
12456     // (null loop) because they are defined within the "loop".
12457     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12458       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12459     return LoopInvariant;
12460   case scCouldNotCompute:
12461     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12462   }
12463   llvm_unreachable("Unknown SCEV kind!");
12464 }
12465 
12466 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12467   return getLoopDisposition(S, L) == LoopInvariant;
12468 }
12469 
12470 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12471   return getLoopDisposition(S, L) == LoopComputable;
12472 }
12473 
12474 ScalarEvolution::BlockDisposition
12475 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12476   auto &Values = BlockDispositions[S];
12477   for (auto &V : Values) {
12478     if (V.getPointer() == BB)
12479       return V.getInt();
12480   }
12481   Values.emplace_back(BB, DoesNotDominateBlock);
12482   BlockDisposition D = computeBlockDisposition(S, BB);
12483   auto &Values2 = BlockDispositions[S];
12484   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12485     if (V.getPointer() == BB) {
12486       V.setInt(D);
12487       break;
12488     }
12489   }
12490   return D;
12491 }
12492 
12493 ScalarEvolution::BlockDisposition
12494 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12495   switch (S->getSCEVType()) {
12496   case scConstant:
12497     return ProperlyDominatesBlock;
12498   case scPtrToInt:
12499   case scTruncate:
12500   case scZeroExtend:
12501   case scSignExtend:
12502     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12503   case scAddRecExpr: {
12504     // This uses a "dominates" query instead of "properly dominates" query
12505     // to test for proper dominance too, because the instruction which
12506     // produces the addrec's value is a PHI, and a PHI effectively properly
12507     // dominates its entire containing block.
12508     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12509     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12510       return DoesNotDominateBlock;
12511 
12512     // Fall through into SCEVNAryExpr handling.
12513     LLVM_FALLTHROUGH;
12514   }
12515   case scAddExpr:
12516   case scMulExpr:
12517   case scUMaxExpr:
12518   case scSMaxExpr:
12519   case scUMinExpr:
12520   case scSMinExpr: {
12521     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12522     bool Proper = true;
12523     for (const SCEV *NAryOp : NAry->operands()) {
12524       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12525       if (D == DoesNotDominateBlock)
12526         return DoesNotDominateBlock;
12527       if (D == DominatesBlock)
12528         Proper = false;
12529     }
12530     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12531   }
12532   case scUDivExpr: {
12533     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12534     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12535     BlockDisposition LD = getBlockDisposition(LHS, BB);
12536     if (LD == DoesNotDominateBlock)
12537       return DoesNotDominateBlock;
12538     BlockDisposition RD = getBlockDisposition(RHS, BB);
12539     if (RD == DoesNotDominateBlock)
12540       return DoesNotDominateBlock;
12541     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12542       ProperlyDominatesBlock : DominatesBlock;
12543   }
12544   case scUnknown:
12545     if (Instruction *I =
12546           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12547       if (I->getParent() == BB)
12548         return DominatesBlock;
12549       if (DT.properlyDominates(I->getParent(), BB))
12550         return ProperlyDominatesBlock;
12551       return DoesNotDominateBlock;
12552     }
12553     return ProperlyDominatesBlock;
12554   case scCouldNotCompute:
12555     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12556   }
12557   llvm_unreachable("Unknown SCEV kind!");
12558 }
12559 
12560 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12561   return getBlockDisposition(S, BB) >= DominatesBlock;
12562 }
12563 
12564 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12565   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12566 }
12567 
12568 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12569   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12570 }
12571 
12572 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
12573   auto IsS = [&](const SCEV *X) { return S == X; };
12574   auto ContainsS = [&](const SCEV *X) {
12575     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
12576   };
12577   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
12578 }
12579 
12580 void
12581 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12582   ValuesAtScopes.erase(S);
12583   LoopDispositions.erase(S);
12584   BlockDispositions.erase(S);
12585   UnsignedRanges.erase(S);
12586   SignedRanges.erase(S);
12587   ExprValueMap.erase(S);
12588   HasRecMap.erase(S);
12589   MinTrailingZerosCache.erase(S);
12590 
12591   for (auto I = PredicatedSCEVRewrites.begin();
12592        I != PredicatedSCEVRewrites.end();) {
12593     std::pair<const SCEV *, const Loop *> Entry = I->first;
12594     if (Entry.first == S)
12595       PredicatedSCEVRewrites.erase(I++);
12596     else
12597       ++I;
12598   }
12599 
12600   auto RemoveSCEVFromBackedgeMap =
12601       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12602         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12603           BackedgeTakenInfo &BEInfo = I->second;
12604           if (BEInfo.hasOperand(S, this)) {
12605             BEInfo.clear();
12606             Map.erase(I++);
12607           } else
12608             ++I;
12609         }
12610       };
12611 
12612   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12613   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12614 }
12615 
12616 void
12617 ScalarEvolution::getUsedLoops(const SCEV *S,
12618                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12619   struct FindUsedLoops {
12620     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12621         : LoopsUsed(LoopsUsed) {}
12622     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12623     bool follow(const SCEV *S) {
12624       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12625         LoopsUsed.insert(AR->getLoop());
12626       return true;
12627     }
12628 
12629     bool isDone() const { return false; }
12630   };
12631 
12632   FindUsedLoops F(LoopsUsed);
12633   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12634 }
12635 
12636 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12637   SmallPtrSet<const Loop *, 8> LoopsUsed;
12638   getUsedLoops(S, LoopsUsed);
12639   for (auto *L : LoopsUsed)
12640     LoopUsers[L].push_back(S);
12641 }
12642 
12643 void ScalarEvolution::verify() const {
12644   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12645   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12646 
12647   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12648 
12649   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12650   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12651     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12652 
12653     const SCEV *visitConstant(const SCEVConstant *Constant) {
12654       return SE.getConstant(Constant->getAPInt());
12655     }
12656 
12657     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12658       return SE.getUnknown(Expr->getValue());
12659     }
12660 
12661     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12662       return SE.getCouldNotCompute();
12663     }
12664   };
12665 
12666   SCEVMapper SCM(SE2);
12667 
12668   while (!LoopStack.empty()) {
12669     auto *L = LoopStack.pop_back_val();
12670     llvm::append_range(LoopStack, *L);
12671 
12672     auto *CurBECount = SCM.visit(
12673         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12674     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12675 
12676     if (CurBECount == SE2.getCouldNotCompute() ||
12677         NewBECount == SE2.getCouldNotCompute()) {
12678       // NB! This situation is legal, but is very suspicious -- whatever pass
12679       // change the loop to make a trip count go from could not compute to
12680       // computable or vice-versa *should have* invalidated SCEV.  However, we
12681       // choose not to assert here (for now) since we don't want false
12682       // positives.
12683       continue;
12684     }
12685 
12686     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12687       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12688       // not propagate undef aggressively).  This means we can (and do) fail
12689       // verification in cases where a transform makes the trip count of a loop
12690       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12691       // both cases the loop iterates "undef" times, but SCEV thinks we
12692       // increased the trip count of the loop by 1 incorrectly.
12693       continue;
12694     }
12695 
12696     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12697         SE.getTypeSizeInBits(NewBECount->getType()))
12698       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12699     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12700              SE.getTypeSizeInBits(NewBECount->getType()))
12701       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12702 
12703     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12704 
12705     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12706     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12707       dbgs() << "Trip Count for " << *L << " Changed!\n";
12708       dbgs() << "Old: " << *CurBECount << "\n";
12709       dbgs() << "New: " << *NewBECount << "\n";
12710       dbgs() << "Delta: " << *Delta << "\n";
12711       std::abort();
12712     }
12713   }
12714 
12715   // Collect all valid loops currently in LoopInfo.
12716   SmallPtrSet<Loop *, 32> ValidLoops;
12717   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12718   while (!Worklist.empty()) {
12719     Loop *L = Worklist.pop_back_val();
12720     if (ValidLoops.contains(L))
12721       continue;
12722     ValidLoops.insert(L);
12723     Worklist.append(L->begin(), L->end());
12724   }
12725   // Check for SCEV expressions referencing invalid/deleted loops.
12726   for (auto &KV : ValueExprMap) {
12727     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12728     if (!AR)
12729       continue;
12730     assert(ValidLoops.contains(AR->getLoop()) &&
12731            "AddRec references invalid loop");
12732   }
12733 }
12734 
12735 bool ScalarEvolution::invalidate(
12736     Function &F, const PreservedAnalyses &PA,
12737     FunctionAnalysisManager::Invalidator &Inv) {
12738   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12739   // of its dependencies is invalidated.
12740   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12741   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12742          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12743          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12744          Inv.invalidate<LoopAnalysis>(F, PA);
12745 }
12746 
12747 AnalysisKey ScalarEvolutionAnalysis::Key;
12748 
12749 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12750                                              FunctionAnalysisManager &AM) {
12751   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12752                          AM.getResult<AssumptionAnalysis>(F),
12753                          AM.getResult<DominatorTreeAnalysis>(F),
12754                          AM.getResult<LoopAnalysis>(F));
12755 }
12756 
12757 PreservedAnalyses
12758 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12759   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12760   return PreservedAnalyses::all();
12761 }
12762 
12763 PreservedAnalyses
12764 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12765   // For compatibility with opt's -analyze feature under legacy pass manager
12766   // which was not ported to NPM. This keeps tests using
12767   // update_analyze_test_checks.py working.
12768   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12769      << F.getName() << "':\n";
12770   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12771   return PreservedAnalyses::all();
12772 }
12773 
12774 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12775                       "Scalar Evolution Analysis", false, true)
12776 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12777 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12778 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12779 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12780 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12781                     "Scalar Evolution Analysis", false, true)
12782 
12783 char ScalarEvolutionWrapperPass::ID = 0;
12784 
12785 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12786   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12787 }
12788 
12789 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12790   SE.reset(new ScalarEvolution(
12791       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12792       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12793       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12794       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12795   return false;
12796 }
12797 
12798 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12799 
12800 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12801   SE->print(OS);
12802 }
12803 
12804 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12805   if (!VerifySCEV)
12806     return;
12807 
12808   SE->verify();
12809 }
12810 
12811 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12812   AU.setPreservesAll();
12813   AU.addRequiredTransitive<AssumptionCacheTracker>();
12814   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12815   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12816   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12817 }
12818 
12819 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12820                                                         const SCEV *RHS) {
12821   FoldingSetNodeID ID;
12822   assert(LHS->getType() == RHS->getType() &&
12823          "Type mismatch between LHS and RHS");
12824   // Unique this node based on the arguments
12825   ID.AddInteger(SCEVPredicate::P_Equal);
12826   ID.AddPointer(LHS);
12827   ID.AddPointer(RHS);
12828   void *IP = nullptr;
12829   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12830     return S;
12831   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12832       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12833   UniquePreds.InsertNode(Eq, IP);
12834   return Eq;
12835 }
12836 
12837 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12838     const SCEVAddRecExpr *AR,
12839     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12840   FoldingSetNodeID ID;
12841   // Unique this node based on the arguments
12842   ID.AddInteger(SCEVPredicate::P_Wrap);
12843   ID.AddPointer(AR);
12844   ID.AddInteger(AddedFlags);
12845   void *IP = nullptr;
12846   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12847     return S;
12848   auto *OF = new (SCEVAllocator)
12849       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12850   UniquePreds.InsertNode(OF, IP);
12851   return OF;
12852 }
12853 
12854 namespace {
12855 
12856 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12857 public:
12858 
12859   /// Rewrites \p S in the context of a loop L and the SCEV predication
12860   /// infrastructure.
12861   ///
12862   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12863   /// equivalences present in \p Pred.
12864   ///
12865   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12866   /// \p NewPreds such that the result will be an AddRecExpr.
12867   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12868                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12869                              SCEVUnionPredicate *Pred) {
12870     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12871     return Rewriter.visit(S);
12872   }
12873 
12874   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12875     if (Pred) {
12876       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12877       for (auto *Pred : ExprPreds)
12878         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12879           if (IPred->getLHS() == Expr)
12880             return IPred->getRHS();
12881     }
12882     return convertToAddRecWithPreds(Expr);
12883   }
12884 
12885   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12886     const SCEV *Operand = visit(Expr->getOperand());
12887     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12888     if (AR && AR->getLoop() == L && AR->isAffine()) {
12889       // This couldn't be folded because the operand didn't have the nuw
12890       // flag. Add the nusw flag as an assumption that we could make.
12891       const SCEV *Step = AR->getStepRecurrence(SE);
12892       Type *Ty = Expr->getType();
12893       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12894         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12895                                 SE.getSignExtendExpr(Step, Ty), L,
12896                                 AR->getNoWrapFlags());
12897     }
12898     return SE.getZeroExtendExpr(Operand, Expr->getType());
12899   }
12900 
12901   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12902     const SCEV *Operand = visit(Expr->getOperand());
12903     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12904     if (AR && AR->getLoop() == L && AR->isAffine()) {
12905       // This couldn't be folded because the operand didn't have the nsw
12906       // flag. Add the nssw flag as an assumption that we could make.
12907       const SCEV *Step = AR->getStepRecurrence(SE);
12908       Type *Ty = Expr->getType();
12909       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12910         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12911                                 SE.getSignExtendExpr(Step, Ty), L,
12912                                 AR->getNoWrapFlags());
12913     }
12914     return SE.getSignExtendExpr(Operand, Expr->getType());
12915   }
12916 
12917 private:
12918   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12919                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12920                         SCEVUnionPredicate *Pred)
12921       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12922 
12923   bool addOverflowAssumption(const SCEVPredicate *P) {
12924     if (!NewPreds) {
12925       // Check if we've already made this assumption.
12926       return Pred && Pred->implies(P);
12927     }
12928     NewPreds->insert(P);
12929     return true;
12930   }
12931 
12932   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12933                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12934     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12935     return addOverflowAssumption(A);
12936   }
12937 
12938   // If \p Expr represents a PHINode, we try to see if it can be represented
12939   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12940   // to add this predicate as a runtime overflow check, we return the AddRec.
12941   // If \p Expr does not meet these conditions (is not a PHI node, or we
12942   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12943   // return \p Expr.
12944   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12945     if (!isa<PHINode>(Expr->getValue()))
12946       return Expr;
12947     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12948     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12949     if (!PredicatedRewrite)
12950       return Expr;
12951     for (auto *P : PredicatedRewrite->second){
12952       // Wrap predicates from outer loops are not supported.
12953       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12954         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12955         if (L != AR->getLoop())
12956           return Expr;
12957       }
12958       if (!addOverflowAssumption(P))
12959         return Expr;
12960     }
12961     return PredicatedRewrite->first;
12962   }
12963 
12964   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12965   SCEVUnionPredicate *Pred;
12966   const Loop *L;
12967 };
12968 
12969 } // end anonymous namespace
12970 
12971 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12972                                                    SCEVUnionPredicate &Preds) {
12973   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12974 }
12975 
12976 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12977     const SCEV *S, const Loop *L,
12978     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12979   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12980   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12981   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12982 
12983   if (!AddRec)
12984     return nullptr;
12985 
12986   // Since the transformation was successful, we can now transfer the SCEV
12987   // predicates.
12988   for (auto *P : TransformPreds)
12989     Preds.insert(P);
12990 
12991   return AddRec;
12992 }
12993 
12994 /// SCEV predicates
12995 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12996                              SCEVPredicateKind Kind)
12997     : FastID(ID), Kind(Kind) {}
12998 
12999 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13000                                        const SCEV *LHS, const SCEV *RHS)
13001     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13002   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13003   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13004 }
13005 
13006 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13007   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13008 
13009   if (!Op)
13010     return false;
13011 
13012   return Op->LHS == LHS && Op->RHS == RHS;
13013 }
13014 
13015 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13016 
13017 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13018 
13019 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13020   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13021 }
13022 
13023 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13024                                      const SCEVAddRecExpr *AR,
13025                                      IncrementWrapFlags Flags)
13026     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13027 
13028 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13029 
13030 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13031   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13032 
13033   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13034 }
13035 
13036 bool SCEVWrapPredicate::isAlwaysTrue() const {
13037   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13038   IncrementWrapFlags IFlags = Flags;
13039 
13040   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13041     IFlags = clearFlags(IFlags, IncrementNSSW);
13042 
13043   return IFlags == IncrementAnyWrap;
13044 }
13045 
13046 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13047   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13048   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13049     OS << "<nusw>";
13050   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13051     OS << "<nssw>";
13052   OS << "\n";
13053 }
13054 
13055 SCEVWrapPredicate::IncrementWrapFlags
13056 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13057                                    ScalarEvolution &SE) {
13058   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13059   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13060 
13061   // We can safely transfer the NSW flag as NSSW.
13062   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13063     ImpliedFlags = IncrementNSSW;
13064 
13065   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13066     // If the increment is positive, the SCEV NUW flag will also imply the
13067     // WrapPredicate NUSW flag.
13068     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13069       if (Step->getValue()->getValue().isNonNegative())
13070         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13071   }
13072 
13073   return ImpliedFlags;
13074 }
13075 
13076 /// Union predicates don't get cached so create a dummy set ID for it.
13077 SCEVUnionPredicate::SCEVUnionPredicate()
13078     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13079 
13080 bool SCEVUnionPredicate::isAlwaysTrue() const {
13081   return all_of(Preds,
13082                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13083 }
13084 
13085 ArrayRef<const SCEVPredicate *>
13086 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13087   auto I = SCEVToPreds.find(Expr);
13088   if (I == SCEVToPreds.end())
13089     return ArrayRef<const SCEVPredicate *>();
13090   return I->second;
13091 }
13092 
13093 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13094   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13095     return all_of(Set->Preds,
13096                   [this](const SCEVPredicate *I) { return this->implies(I); });
13097 
13098   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13099   if (ScevPredsIt == SCEVToPreds.end())
13100     return false;
13101   auto &SCEVPreds = ScevPredsIt->second;
13102 
13103   return any_of(SCEVPreds,
13104                 [N](const SCEVPredicate *I) { return I->implies(N); });
13105 }
13106 
13107 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13108 
13109 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13110   for (auto Pred : Preds)
13111     Pred->print(OS, Depth);
13112 }
13113 
13114 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13115   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13116     for (auto Pred : Set->Preds)
13117       add(Pred);
13118     return;
13119   }
13120 
13121   if (implies(N))
13122     return;
13123 
13124   const SCEV *Key = N->getExpr();
13125   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13126                 " associated expression!");
13127 
13128   SCEVToPreds[Key].push_back(N);
13129   Preds.push_back(N);
13130 }
13131 
13132 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13133                                                      Loop &L)
13134     : SE(SE), L(L) {}
13135 
13136 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13137   const SCEV *Expr = SE.getSCEV(V);
13138   RewriteEntry &Entry = RewriteMap[Expr];
13139 
13140   // If we already have an entry and the version matches, return it.
13141   if (Entry.second && Generation == Entry.first)
13142     return Entry.second;
13143 
13144   // We found an entry but it's stale. Rewrite the stale entry
13145   // according to the current predicate.
13146   if (Entry.second)
13147     Expr = Entry.second;
13148 
13149   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13150   Entry = {Generation, NewSCEV};
13151 
13152   return NewSCEV;
13153 }
13154 
13155 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13156   if (!BackedgeCount) {
13157     SCEVUnionPredicate BackedgePred;
13158     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13159     addPredicate(BackedgePred);
13160   }
13161   return BackedgeCount;
13162 }
13163 
13164 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13165   if (Preds.implies(&Pred))
13166     return;
13167   Preds.add(&Pred);
13168   updateGeneration();
13169 }
13170 
13171 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13172   return Preds;
13173 }
13174 
13175 void PredicatedScalarEvolution::updateGeneration() {
13176   // If the generation number wrapped recompute everything.
13177   if (++Generation == 0) {
13178     for (auto &II : RewriteMap) {
13179       const SCEV *Rewritten = II.second.second;
13180       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13181     }
13182   }
13183 }
13184 
13185 void PredicatedScalarEvolution::setNoOverflow(
13186     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13187   const SCEV *Expr = getSCEV(V);
13188   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13189 
13190   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13191 
13192   // Clear the statically implied flags.
13193   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13194   addPredicate(*SE.getWrapPredicate(AR, Flags));
13195 
13196   auto II = FlagsMap.insert({V, Flags});
13197   if (!II.second)
13198     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13199 }
13200 
13201 bool PredicatedScalarEvolution::hasNoOverflow(
13202     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13203   const SCEV *Expr = getSCEV(V);
13204   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13205 
13206   Flags = SCEVWrapPredicate::clearFlags(
13207       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13208 
13209   auto II = FlagsMap.find(V);
13210 
13211   if (II != FlagsMap.end())
13212     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13213 
13214   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13215 }
13216 
13217 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13218   const SCEV *Expr = this->getSCEV(V);
13219   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13220   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13221 
13222   if (!New)
13223     return nullptr;
13224 
13225   for (auto *P : NewPreds)
13226     Preds.add(P);
13227 
13228   updateGeneration();
13229   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13230   return New;
13231 }
13232 
13233 PredicatedScalarEvolution::PredicatedScalarEvolution(
13234     const PredicatedScalarEvolution &Init)
13235     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13236       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13237   for (auto I : Init.FlagsMap)
13238     FlagsMap.insert(I);
13239 }
13240 
13241 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13242   // For each block.
13243   for (auto *BB : L.getBlocks())
13244     for (auto &I : *BB) {
13245       if (!SE.isSCEVable(I.getType()))
13246         continue;
13247 
13248       auto *Expr = SE.getSCEV(&I);
13249       auto II = RewriteMap.find(Expr);
13250 
13251       if (II == RewriteMap.end())
13252         continue;
13253 
13254       // Don't print things that are not interesting.
13255       if (II->second.second == Expr)
13256         continue;
13257 
13258       OS.indent(Depth) << "[PSE]" << I << ":\n";
13259       OS.indent(Depth + 2) << *Expr << "\n";
13260       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13261     }
13262 }
13263 
13264 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13265 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13266 // for URem with constant power-of-2 second operands.
13267 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13268 // 4, A / B becomes X / 8).
13269 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13270                                 const SCEV *&RHS) {
13271   // Try to match 'zext (trunc A to iB) to iY', which is used
13272   // for URem with constant power-of-2 second operands. Make sure the size of
13273   // the operand A matches the size of the whole expressions.
13274   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13275     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13276       LHS = Trunc->getOperand();
13277       // Bail out if the type of the LHS is larger than the type of the
13278       // expression for now.
13279       if (getTypeSizeInBits(LHS->getType()) >
13280           getTypeSizeInBits(Expr->getType()))
13281         return false;
13282       if (LHS->getType() != Expr->getType())
13283         LHS = getZeroExtendExpr(LHS, Expr->getType());
13284       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13285                         << getTypeSizeInBits(Trunc->getType()));
13286       return true;
13287     }
13288   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13289   if (Add == nullptr || Add->getNumOperands() != 2)
13290     return false;
13291 
13292   const SCEV *A = Add->getOperand(1);
13293   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13294 
13295   if (Mul == nullptr)
13296     return false;
13297 
13298   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13299     // (SomeExpr + (-(SomeExpr / B) * B)).
13300     if (Expr == getURemExpr(A, B)) {
13301       LHS = A;
13302       RHS = B;
13303       return true;
13304     }
13305     return false;
13306   };
13307 
13308   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13309   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13310     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13311            MatchURemWithDivisor(Mul->getOperand(2));
13312 
13313   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13314   if (Mul->getNumOperands() == 2)
13315     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13316            MatchURemWithDivisor(Mul->getOperand(0)) ||
13317            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13318            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13319   return false;
13320 }
13321 
13322 const SCEV *
13323 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13324   SmallVector<BasicBlock*, 16> ExitingBlocks;
13325   L->getExitingBlocks(ExitingBlocks);
13326 
13327   // Form an expression for the maximum exit count possible for this loop. We
13328   // merge the max and exact information to approximate a version of
13329   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13330   SmallVector<const SCEV*, 4> ExitCounts;
13331   for (BasicBlock *ExitingBB : ExitingBlocks) {
13332     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13333     if (isa<SCEVCouldNotCompute>(ExitCount))
13334       ExitCount = getExitCount(L, ExitingBB,
13335                                   ScalarEvolution::ConstantMaximum);
13336     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13337       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13338              "We should only have known counts for exiting blocks that "
13339              "dominate latch!");
13340       ExitCounts.push_back(ExitCount);
13341     }
13342   }
13343   if (ExitCounts.empty())
13344     return getCouldNotCompute();
13345   return getUMinFromMismatchedTypes(ExitCounts);
13346 }
13347 
13348 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13349 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13350 /// we cannot guarantee that the replacement is loop invariant in the loop of
13351 /// the AddRec.
13352 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13353   ValueToSCEVMapTy &Map;
13354 
13355 public:
13356   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13357       : SCEVRewriteVisitor(SE), Map(M) {}
13358 
13359   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13360 
13361   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13362     auto I = Map.find(Expr->getValue());
13363     if (I == Map.end())
13364       return Expr;
13365     return I->second;
13366   }
13367 };
13368 
13369 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13370   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13371                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13372     // If we have LHS == 0, check if LHS is computing a property of some unknown
13373     // SCEV %v which we can rewrite %v to express explicitly.
13374     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13375     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13376         RHSC->getValue()->isNullValue()) {
13377       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13378       // explicitly express that.
13379       const SCEV *URemLHS = nullptr;
13380       const SCEV *URemRHS = nullptr;
13381       if (matchURem(LHS, URemLHS, URemRHS)) {
13382         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13383           Value *V = LHSUnknown->getValue();
13384           auto Multiple =
13385               getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS,
13386                          (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
13387           RewriteMap[V] = Multiple;
13388           return;
13389         }
13390       }
13391     }
13392 
13393     if (!isa<SCEVUnknown>(LHS)) {
13394       std::swap(LHS, RHS);
13395       Predicate = CmpInst::getSwappedPredicate(Predicate);
13396     }
13397 
13398     // For now, limit to conditions that provide information about unknown
13399     // expressions.
13400     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13401     if (!LHSUnknown)
13402       return;
13403 
13404     // TODO: use information from more predicates.
13405     switch (Predicate) {
13406     case CmpInst::ICMP_ULT: {
13407       if (!containsAddRecurrence(RHS)) {
13408         const SCEV *Base = LHS;
13409         auto I = RewriteMap.find(LHSUnknown->getValue());
13410         if (I != RewriteMap.end())
13411           Base = I->second;
13412 
13413         RewriteMap[LHSUnknown->getValue()] =
13414             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
13415       }
13416       break;
13417     }
13418     case CmpInst::ICMP_ULE: {
13419       if (!containsAddRecurrence(RHS)) {
13420         const SCEV *Base = LHS;
13421         auto I = RewriteMap.find(LHSUnknown->getValue());
13422         if (I != RewriteMap.end())
13423           Base = I->second;
13424         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
13425       }
13426       break;
13427     }
13428     case CmpInst::ICMP_EQ:
13429       if (isa<SCEVConstant>(RHS))
13430         RewriteMap[LHSUnknown->getValue()] = RHS;
13431       break;
13432     case CmpInst::ICMP_NE:
13433       if (isa<SCEVConstant>(RHS) &&
13434           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13435         RewriteMap[LHSUnknown->getValue()] =
13436             getUMaxExpr(LHS, getOne(RHS->getType()));
13437       break;
13438     default:
13439       break;
13440     }
13441   };
13442   // Starting at the loop predecessor, climb up the predecessor chain, as long
13443   // as there are predecessors that can be found that have unique successors
13444   // leading to the original header.
13445   // TODO: share this logic with isLoopEntryGuardedByCond.
13446   ValueToSCEVMapTy RewriteMap;
13447   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13448            L->getLoopPredecessor(), L->getHeader());
13449        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13450 
13451     const BranchInst *LoopEntryPredicate =
13452         dyn_cast<BranchInst>(Pair.first->getTerminator());
13453     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13454       continue;
13455 
13456     // TODO: use information from more complex conditions, e.g. AND expressions.
13457     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
13458     if (!Cmp)
13459       continue;
13460 
13461     auto Predicate = Cmp->getPredicate();
13462     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
13463       Predicate = CmpInst::getInversePredicate(Predicate);
13464     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13465                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13466   }
13467 
13468   // Also collect information from assumptions dominating the loop.
13469   for (auto &AssumeVH : AC.assumptions()) {
13470     if (!AssumeVH)
13471       continue;
13472     auto *AssumeI = cast<CallInst>(AssumeVH);
13473     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13474     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13475       continue;
13476     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13477                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13478   }
13479 
13480   if (RewriteMap.empty())
13481     return Expr;
13482   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13483   return Rewriter.visit(Expr);
13484 }
13485