xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision aba989f454791a778d9f67ec47374bec01a1331c)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "scalar-evolution"
97 
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106 
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113 
114 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119     VerifySCEVMap("verify-scev-maps",
120                   cl::desc("Verify no dangling value in ScalarEvolution's "
121                            "ExprValueMap (slow)"));
122 
123 //===----------------------------------------------------------------------===//
124 //                           SCEV class definitions
125 //===----------------------------------------------------------------------===//
126 
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130 
131 LLVM_DUMP_METHOD
132 void SCEV::dump() const {
133   print(dbgs());
134   dbgs() << '\n';
135 }
136 
137 void SCEV::print(raw_ostream &OS) const {
138   switch (static_cast<SCEVTypes>(getSCEVType())) {
139   case scConstant:
140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141     return;
142   case scTruncate: {
143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144     const SCEV *Op = Trunc->getOperand();
145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146        << *Trunc->getType() << ")";
147     return;
148   }
149   case scZeroExtend: {
150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151     const SCEV *Op = ZExt->getOperand();
152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
153        << *ZExt->getType() << ")";
154     return;
155   }
156   case scSignExtend: {
157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158     const SCEV *Op = SExt->getOperand();
159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
160        << *SExt->getType() << ")";
161     return;
162   }
163   case scAddRecExpr: {
164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165     OS << "{" << *AR->getOperand(0);
166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167       OS << ",+," << *AR->getOperand(i);
168     OS << "}<";
169     if (AR->hasNoUnsignedWrap())
170       OS << "nuw><";
171     if (AR->hasNoSignedWrap())
172       OS << "nsw><";
173     if (AR->hasNoSelfWrap() &&
174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175       OS << "nw><";
176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177     OS << ">";
178     return;
179   }
180   case scAddExpr:
181   case scMulExpr:
182   case scUMaxExpr:
183   case scSMaxExpr: {
184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185     const char *OpStr = nullptr;
186     switch (NAry->getSCEVType()) {
187     case scAddExpr: OpStr = " + "; break;
188     case scMulExpr: OpStr = " * "; break;
189     case scUMaxExpr: OpStr = " umax "; break;
190     case scSMaxExpr: OpStr = " smax "; break;
191     }
192     OS << "(";
193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194          I != E; ++I) {
195       OS << **I;
196       if (std::next(I) != E)
197         OS << OpStr;
198     }
199     OS << ")";
200     switch (NAry->getSCEVType()) {
201     case scAddExpr:
202     case scMulExpr:
203       if (NAry->hasNoUnsignedWrap())
204         OS << "<nuw>";
205       if (NAry->hasNoSignedWrap())
206         OS << "<nsw>";
207     }
208     return;
209   }
210   case scUDivExpr: {
211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213     return;
214   }
215   case scUnknown: {
216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
217     Type *AllocTy;
218     if (U->isSizeOf(AllocTy)) {
219       OS << "sizeof(" << *AllocTy << ")";
220       return;
221     }
222     if (U->isAlignOf(AllocTy)) {
223       OS << "alignof(" << *AllocTy << ")";
224       return;
225     }
226 
227     Type *CTy;
228     Constant *FieldNo;
229     if (U->isOffsetOf(CTy, FieldNo)) {
230       OS << "offsetof(" << *CTy << ", ";
231       FieldNo->printAsOperand(OS, false);
232       OS << ")";
233       return;
234     }
235 
236     // Otherwise just print it normally.
237     U->getValue()->printAsOperand(OS, false);
238     return;
239   }
240   case scCouldNotCompute:
241     OS << "***COULDNOTCOMPUTE***";
242     return;
243   }
244   llvm_unreachable("Unknown SCEV kind!");
245 }
246 
247 Type *SCEV::getType() const {
248   switch (static_cast<SCEVTypes>(getSCEVType())) {
249   case scConstant:
250     return cast<SCEVConstant>(this)->getType();
251   case scTruncate:
252   case scZeroExtend:
253   case scSignExtend:
254     return cast<SCEVCastExpr>(this)->getType();
255   case scAddRecExpr:
256   case scMulExpr:
257   case scUMaxExpr:
258   case scSMaxExpr:
259     return cast<SCEVNAryExpr>(this)->getType();
260   case scAddExpr:
261     return cast<SCEVAddExpr>(this)->getType();
262   case scUDivExpr:
263     return cast<SCEVUDivExpr>(this)->getType();
264   case scUnknown:
265     return cast<SCEVUnknown>(this)->getType();
266   case scCouldNotCompute:
267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268   }
269   llvm_unreachable("Unknown SCEV kind!");
270 }
271 
272 bool SCEV::isZero() const {
273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274     return SC->getValue()->isZero();
275   return false;
276 }
277 
278 bool SCEV::isOne() const {
279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280     return SC->getValue()->isOne();
281   return false;
282 }
283 
284 bool SCEV::isAllOnesValue() const {
285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286     return SC->getValue()->isAllOnesValue();
287   return false;
288 }
289 
290 bool SCEV::isNonConstantNegative() const {
291   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
292   if (!Mul) return false;
293 
294   // If there is a constant factor, it will be first.
295   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
296   if (!SC) return false;
297 
298   // Return true if the value is negative, this matches things like (-42 * V).
299   return SC->getAPInt().isNegative();
300 }
301 
302 SCEVCouldNotCompute::SCEVCouldNotCompute() :
303   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
304 
305 bool SCEVCouldNotCompute::classof(const SCEV *S) {
306   return S->getSCEVType() == scCouldNotCompute;
307 }
308 
309 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
310   FoldingSetNodeID ID;
311   ID.AddInteger(scConstant);
312   ID.AddPointer(V);
313   void *IP = nullptr;
314   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
315   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
316   UniqueSCEVs.InsertNode(S, IP);
317   return S;
318 }
319 
320 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
321   return getConstant(ConstantInt::get(getContext(), Val));
322 }
323 
324 const SCEV *
325 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
326   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
327   return getConstant(ConstantInt::get(ITy, V, isSigned));
328 }
329 
330 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
331                            unsigned SCEVTy, const SCEV *op, Type *ty)
332   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
333 
334 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
335                                    const SCEV *op, Type *ty)
336   : SCEVCastExpr(ID, scTruncate, op, ty) {
337   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
338          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
339          "Cannot truncate non-integer value!");
340 }
341 
342 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
343                                        const SCEV *op, Type *ty)
344   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
345   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
346          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
347          "Cannot zero extend non-integer value!");
348 }
349 
350 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
351                                        const SCEV *op, Type *ty)
352   : SCEVCastExpr(ID, scSignExtend, op, ty) {
353   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
354          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
355          "Cannot sign extend non-integer value!");
356 }
357 
358 void SCEVUnknown::deleted() {
359   // Clear this SCEVUnknown from various maps.
360   SE->forgetMemoizedResults(this);
361 
362   // Remove this SCEVUnknown from the uniquing map.
363   SE->UniqueSCEVs.RemoveNode(this);
364 
365   // Release the value.
366   setValPtr(nullptr);
367 }
368 
369 void SCEVUnknown::allUsesReplacedWith(Value *New) {
370   // Clear this SCEVUnknown from various maps.
371   SE->forgetMemoizedResults(this);
372 
373   // Remove this SCEVUnknown from the uniquing map.
374   SE->UniqueSCEVs.RemoveNode(this);
375 
376   // Update this SCEVUnknown to point to the new value. This is needed
377   // because there may still be outstanding SCEVs which still point to
378   // this SCEVUnknown.
379   setValPtr(New);
380 }
381 
382 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
383   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
384     if (VCE->getOpcode() == Instruction::PtrToInt)
385       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
386         if (CE->getOpcode() == Instruction::GetElementPtr &&
387             CE->getOperand(0)->isNullValue() &&
388             CE->getNumOperands() == 2)
389           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
390             if (CI->isOne()) {
391               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
392                                  ->getElementType();
393               return true;
394             }
395 
396   return false;
397 }
398 
399 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
400   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401     if (VCE->getOpcode() == Instruction::PtrToInt)
402       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403         if (CE->getOpcode() == Instruction::GetElementPtr &&
404             CE->getOperand(0)->isNullValue()) {
405           Type *Ty =
406             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
407           if (StructType *STy = dyn_cast<StructType>(Ty))
408             if (!STy->isPacked() &&
409                 CE->getNumOperands() == 3 &&
410                 CE->getOperand(1)->isNullValue()) {
411               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
412                 if (CI->isOne() &&
413                     STy->getNumElements() == 2 &&
414                     STy->getElementType(0)->isIntegerTy(1)) {
415                   AllocTy = STy->getElementType(1);
416                   return true;
417                 }
418             }
419         }
420 
421   return false;
422 }
423 
424 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
425   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
426     if (VCE->getOpcode() == Instruction::PtrToInt)
427       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
428         if (CE->getOpcode() == Instruction::GetElementPtr &&
429             CE->getNumOperands() == 3 &&
430             CE->getOperand(0)->isNullValue() &&
431             CE->getOperand(1)->isNullValue()) {
432           Type *Ty =
433             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
434           // Ignore vector types here so that ScalarEvolutionExpander doesn't
435           // emit getelementptrs that index into vectors.
436           if (Ty->isStructTy() || Ty->isArrayTy()) {
437             CTy = Ty;
438             FieldNo = CE->getOperand(2);
439             return true;
440           }
441         }
442 
443   return false;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                               SCEV Utilities
448 //===----------------------------------------------------------------------===//
449 
450 namespace {
451 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
452 /// than the complexity of the RHS.  This comparator is used to canonicalize
453 /// expressions.
454 class SCEVComplexityCompare {
455   const LoopInfo *const LI;
456 public:
457   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
458 
459   // Return true or false if LHS is less than, or at least RHS, respectively.
460   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
461     return compare(LHS, RHS) < 0;
462   }
463 
464   // Return negative, zero, or positive, if LHS is less than, equal to, or
465   // greater than RHS, respectively. A three-way result allows recursive
466   // comparisons to be more efficient.
467   int compare(const SCEV *LHS, const SCEV *RHS) const {
468     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
469     if (LHS == RHS)
470       return 0;
471 
472     // Primarily, sort the SCEVs by their getSCEVType().
473     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
474     if (LType != RType)
475       return (int)LType - (int)RType;
476 
477     // Aside from the getSCEVType() ordering, the particular ordering
478     // isn't very important except that it's beneficial to be consistent,
479     // so that (a + b) and (b + a) don't end up as different expressions.
480     switch (static_cast<SCEVTypes>(LType)) {
481     case scUnknown: {
482       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
483       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
484 
485       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
486       // not as complete as it could be.
487       const Value *LV = LU->getValue(), *RV = RU->getValue();
488 
489       // Order pointer values after integer values. This helps SCEVExpander
490       // form GEPs.
491       bool LIsPointer = LV->getType()->isPointerTy(),
492         RIsPointer = RV->getType()->isPointerTy();
493       if (LIsPointer != RIsPointer)
494         return (int)LIsPointer - (int)RIsPointer;
495 
496       // Compare getValueID values.
497       unsigned LID = LV->getValueID(),
498         RID = RV->getValueID();
499       if (LID != RID)
500         return (int)LID - (int)RID;
501 
502       // Sort arguments by their position.
503       if (const Argument *LA = dyn_cast<Argument>(LV)) {
504         const Argument *RA = cast<Argument>(RV);
505         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
506         return (int)LArgNo - (int)RArgNo;
507       }
508 
509       // For instructions, compare their loop depth, and their operand
510       // count.  This is pretty loose.
511       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
512         const Instruction *RInst = cast<Instruction>(RV);
513 
514         // Compare loop depths.
515         const BasicBlock *LParent = LInst->getParent(),
516           *RParent = RInst->getParent();
517         if (LParent != RParent) {
518           unsigned LDepth = LI->getLoopDepth(LParent),
519             RDepth = LI->getLoopDepth(RParent);
520           if (LDepth != RDepth)
521             return (int)LDepth - (int)RDepth;
522         }
523 
524         // Compare the number of operands.
525         unsigned LNumOps = LInst->getNumOperands(),
526           RNumOps = RInst->getNumOperands();
527         return (int)LNumOps - (int)RNumOps;
528       }
529 
530       return 0;
531     }
532 
533     case scConstant: {
534       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
535       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
536 
537       // Compare constant values.
538       const APInt &LA = LC->getAPInt();
539       const APInt &RA = RC->getAPInt();
540       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
541       if (LBitWidth != RBitWidth)
542         return (int)LBitWidth - (int)RBitWidth;
543       return LA.ult(RA) ? -1 : 1;
544     }
545 
546     case scAddRecExpr: {
547       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
548       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
549 
550       // Compare addrec loop depths.
551       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
552       if (LLoop != RLoop) {
553         unsigned LDepth = LLoop->getLoopDepth(),
554           RDepth = RLoop->getLoopDepth();
555         if (LDepth != RDepth)
556           return (int)LDepth - (int)RDepth;
557       }
558 
559       // Addrec complexity grows with operand count.
560       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
561       if (LNumOps != RNumOps)
562         return (int)LNumOps - (int)RNumOps;
563 
564       // Lexicographically compare.
565       for (unsigned i = 0; i != LNumOps; ++i) {
566         long X = compare(LA->getOperand(i), RA->getOperand(i));
567         if (X != 0)
568           return X;
569       }
570 
571       return 0;
572     }
573 
574     case scAddExpr:
575     case scMulExpr:
576     case scSMaxExpr:
577     case scUMaxExpr: {
578       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
579       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
580 
581       // Lexicographically compare n-ary expressions.
582       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
583       if (LNumOps != RNumOps)
584         return (int)LNumOps - (int)RNumOps;
585 
586       for (unsigned i = 0; i != LNumOps; ++i) {
587         if (i >= RNumOps)
588           return 1;
589         long X = compare(LC->getOperand(i), RC->getOperand(i));
590         if (X != 0)
591           return X;
592       }
593       return (int)LNumOps - (int)RNumOps;
594     }
595 
596     case scUDivExpr: {
597       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
598       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
599 
600       // Lexicographically compare udiv expressions.
601       long X = compare(LC->getLHS(), RC->getLHS());
602       if (X != 0)
603         return X;
604       return compare(LC->getRHS(), RC->getRHS());
605     }
606 
607     case scTruncate:
608     case scZeroExtend:
609     case scSignExtend: {
610       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
611       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
612 
613       // Compare cast expressions by operand.
614       return compare(LC->getOperand(), RC->getOperand());
615     }
616 
617     case scCouldNotCompute:
618       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
619     }
620     llvm_unreachable("Unknown SCEV kind!");
621   }
622 };
623 }  // end anonymous namespace
624 
625 /// Given a list of SCEV objects, order them by their complexity, and group
626 /// objects of the same complexity together by value.  When this routine is
627 /// finished, we know that any duplicates in the vector are consecutive and that
628 /// complexity is monotonically increasing.
629 ///
630 /// Note that we go take special precautions to ensure that we get deterministic
631 /// results from this routine.  In other words, we don't want the results of
632 /// this to depend on where the addresses of various SCEV objects happened to
633 /// land in memory.
634 ///
635 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
636                               LoopInfo *LI) {
637   if (Ops.size() < 2) return;  // Noop
638   if (Ops.size() == 2) {
639     // This is the common case, which also happens to be trivially simple.
640     // Special case it.
641     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
642     if (SCEVComplexityCompare(LI)(RHS, LHS))
643       std::swap(LHS, RHS);
644     return;
645   }
646 
647   // Do the rough sort by complexity.
648   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
649 
650   // Now that we are sorted by complexity, group elements of the same
651   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
652   // be extremely short in practice.  Note that we take this approach because we
653   // do not want to depend on the addresses of the objects we are grouping.
654   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
655     const SCEV *S = Ops[i];
656     unsigned Complexity = S->getSCEVType();
657 
658     // If there are any objects of the same complexity and same value as this
659     // one, group them.
660     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
661       if (Ops[j] == S) { // Found a duplicate.
662         // Move it to immediately after i'th element.
663         std::swap(Ops[i+1], Ops[j]);
664         ++i;   // no need to rescan it.
665         if (i == e-2) return;  // Done!
666       }
667     }
668   }
669 }
670 
671 // Returns the size of the SCEV S.
672 static inline int sizeOfSCEV(const SCEV *S) {
673   struct FindSCEVSize {
674     int Size;
675     FindSCEVSize() : Size(0) {}
676 
677     bool follow(const SCEV *S) {
678       ++Size;
679       // Keep looking at all operands of S.
680       return true;
681     }
682     bool isDone() const {
683       return false;
684     }
685   };
686 
687   FindSCEVSize F;
688   SCEVTraversal<FindSCEVSize> ST(F);
689   ST.visitAll(S);
690   return F.Size;
691 }
692 
693 namespace {
694 
695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
696 public:
697   // Computes the Quotient and Remainder of the division of Numerator by
698   // Denominator.
699   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700                      const SCEV *Denominator, const SCEV **Quotient,
701                      const SCEV **Remainder) {
702     assert(Numerator && Denominator && "Uninitialized SCEV");
703 
704     SCEVDivision D(SE, Numerator, Denominator);
705 
706     // Check for the trivial case here to avoid having to check for it in the
707     // rest of the code.
708     if (Numerator == Denominator) {
709       *Quotient = D.One;
710       *Remainder = D.Zero;
711       return;
712     }
713 
714     if (Numerator->isZero()) {
715       *Quotient = D.Zero;
716       *Remainder = D.Zero;
717       return;
718     }
719 
720     // A simple case when N/1. The quotient is N.
721     if (Denominator->isOne()) {
722       *Quotient = Numerator;
723       *Remainder = D.Zero;
724       return;
725     }
726 
727     // Split the Denominator when it is a product.
728     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
729       const SCEV *Q, *R;
730       *Quotient = Numerator;
731       for (const SCEV *Op : T->operands()) {
732         divide(SE, *Quotient, Op, &Q, &R);
733         *Quotient = Q;
734 
735         // Bail out when the Numerator is not divisible by one of the terms of
736         // the Denominator.
737         if (!R->isZero()) {
738           *Quotient = D.Zero;
739           *Remainder = Numerator;
740           return;
741         }
742       }
743       *Remainder = D.Zero;
744       return;
745     }
746 
747     D.visit(Numerator);
748     *Quotient = D.Quotient;
749     *Remainder = D.Remainder;
750   }
751 
752   // Except in the trivial case described above, we do not know how to divide
753   // Expr by Denominator for the following functions with empty implementation.
754   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760   void visitUnknown(const SCEVUnknown *Numerator) {}
761   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762 
763   void visitConstant(const SCEVConstant *Numerator) {
764     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765       APInt NumeratorVal = Numerator->getAPInt();
766       APInt DenominatorVal = D->getAPInt();
767       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769 
770       if (NumeratorBW > DenominatorBW)
771         DenominatorVal = DenominatorVal.sext(NumeratorBW);
772       else if (NumeratorBW < DenominatorBW)
773         NumeratorVal = NumeratorVal.sext(DenominatorBW);
774 
775       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778       Quotient = SE.getConstant(QuotientVal);
779       Remainder = SE.getConstant(RemainderVal);
780       return;
781     }
782   }
783 
784   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785     const SCEV *StartQ, *StartR, *StepQ, *StepR;
786     if (!Numerator->isAffine())
787       return cannotDivide(Numerator);
788     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
790     // Bail out if the types do not match.
791     Type *Ty = Denominator->getType();
792     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
793         Ty != StepQ->getType() || Ty != StepR->getType())
794       return cannotDivide(Numerator);
795     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796                                 Numerator->getNoWrapFlags());
797     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798                                  Numerator->getNoWrapFlags());
799   }
800 
801   void visitAddExpr(const SCEVAddExpr *Numerator) {
802     SmallVector<const SCEV *, 2> Qs, Rs;
803     Type *Ty = Denominator->getType();
804 
805     for (const SCEV *Op : Numerator->operands()) {
806       const SCEV *Q, *R;
807       divide(SE, Op, Denominator, &Q, &R);
808 
809       // Bail out if types do not match.
810       if (Ty != Q->getType() || Ty != R->getType())
811         return cannotDivide(Numerator);
812 
813       Qs.push_back(Q);
814       Rs.push_back(R);
815     }
816 
817     if (Qs.size() == 1) {
818       Quotient = Qs[0];
819       Remainder = Rs[0];
820       return;
821     }
822 
823     Quotient = SE.getAddExpr(Qs);
824     Remainder = SE.getAddExpr(Rs);
825   }
826 
827   void visitMulExpr(const SCEVMulExpr *Numerator) {
828     SmallVector<const SCEV *, 2> Qs;
829     Type *Ty = Denominator->getType();
830 
831     bool FoundDenominatorTerm = false;
832     for (const SCEV *Op : Numerator->operands()) {
833       // Bail out if types do not match.
834       if (Ty != Op->getType())
835         return cannotDivide(Numerator);
836 
837       if (FoundDenominatorTerm) {
838         Qs.push_back(Op);
839         continue;
840       }
841 
842       // Check whether Denominator divides one of the product operands.
843       const SCEV *Q, *R;
844       divide(SE, Op, Denominator, &Q, &R);
845       if (!R->isZero()) {
846         Qs.push_back(Op);
847         continue;
848       }
849 
850       // Bail out if types do not match.
851       if (Ty != Q->getType())
852         return cannotDivide(Numerator);
853 
854       FoundDenominatorTerm = true;
855       Qs.push_back(Q);
856     }
857 
858     if (FoundDenominatorTerm) {
859       Remainder = Zero;
860       if (Qs.size() == 1)
861         Quotient = Qs[0];
862       else
863         Quotient = SE.getMulExpr(Qs);
864       return;
865     }
866 
867     if (!isa<SCEVUnknown>(Denominator))
868       return cannotDivide(Numerator);
869 
870     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871     ValueToValueMap RewriteMap;
872     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873         cast<SCEVConstant>(Zero)->getValue();
874     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875 
876     if (Remainder->isZero()) {
877       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879           cast<SCEVConstant>(One)->getValue();
880       Quotient =
881           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882       return;
883     }
884 
885     // Quotient is (Numerator - Remainder) divided by Denominator.
886     const SCEV *Q, *R;
887     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
888     // This SCEV does not seem to simplify: fail the division here.
889     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890       return cannotDivide(Numerator);
891     divide(SE, Diff, Denominator, &Q, &R);
892     if (R != Zero)
893       return cannotDivide(Numerator);
894     Quotient = Q;
895   }
896 
897 private:
898   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899                const SCEV *Denominator)
900       : SE(S), Denominator(Denominator) {
901     Zero = SE.getZero(Denominator->getType());
902     One = SE.getOne(Denominator->getType());
903 
904     // We generally do not know how to divide Expr by Denominator. We
905     // initialize the division to a "cannot divide" state to simplify the rest
906     // of the code.
907     cannotDivide(Numerator);
908   }
909 
910   // Convenience function for giving up on the division. We set the quotient to
911   // be equal to zero and the remainder to be equal to the numerator.
912   void cannotDivide(const SCEV *Numerator) {
913     Quotient = Zero;
914     Remainder = Numerator;
915   }
916 
917   ScalarEvolution &SE;
918   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
919 };
920 
921 }
922 
923 //===----------------------------------------------------------------------===//
924 //                      Simple SCEV method implementations
925 //===----------------------------------------------------------------------===//
926 
927 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
928 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
929                                        ScalarEvolution &SE,
930                                        Type *ResultTy) {
931   // Handle the simplest case efficiently.
932   if (K == 1)
933     return SE.getTruncateOrZeroExtend(It, ResultTy);
934 
935   // We are using the following formula for BC(It, K):
936   //
937   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
938   //
939   // Suppose, W is the bitwidth of the return value.  We must be prepared for
940   // overflow.  Hence, we must assure that the result of our computation is
941   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
942   // safe in modular arithmetic.
943   //
944   // However, this code doesn't use exactly that formula; the formula it uses
945   // is something like the following, where T is the number of factors of 2 in
946   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
947   // exponentiation:
948   //
949   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
950   //
951   // This formula is trivially equivalent to the previous formula.  However,
952   // this formula can be implemented much more efficiently.  The trick is that
953   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
954   // arithmetic.  To do exact division in modular arithmetic, all we have
955   // to do is multiply by the inverse.  Therefore, this step can be done at
956   // width W.
957   //
958   // The next issue is how to safely do the division by 2^T.  The way this
959   // is done is by doing the multiplication step at a width of at least W + T
960   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
961   // when we perform the division by 2^T (which is equivalent to a right shift
962   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
963   // truncated out after the division by 2^T.
964   //
965   // In comparison to just directly using the first formula, this technique
966   // is much more efficient; using the first formula requires W * K bits,
967   // but this formula less than W + K bits. Also, the first formula requires
968   // a division step, whereas this formula only requires multiplies and shifts.
969   //
970   // It doesn't matter whether the subtraction step is done in the calculation
971   // width or the input iteration count's width; if the subtraction overflows,
972   // the result must be zero anyway.  We prefer here to do it in the width of
973   // the induction variable because it helps a lot for certain cases; CodeGen
974   // isn't smart enough to ignore the overflow, which leads to much less
975   // efficient code if the width of the subtraction is wider than the native
976   // register width.
977   //
978   // (It's possible to not widen at all by pulling out factors of 2 before
979   // the multiplication; for example, K=2 can be calculated as
980   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
981   // extra arithmetic, so it's not an obvious win, and it gets
982   // much more complicated for K > 3.)
983 
984   // Protection from insane SCEVs; this bound is conservative,
985   // but it probably doesn't matter.
986   if (K > 1000)
987     return SE.getCouldNotCompute();
988 
989   unsigned W = SE.getTypeSizeInBits(ResultTy);
990 
991   // Calculate K! / 2^T and T; we divide out the factors of two before
992   // multiplying for calculating K! / 2^T to avoid overflow.
993   // Other overflow doesn't matter because we only care about the bottom
994   // W bits of the result.
995   APInt OddFactorial(W, 1);
996   unsigned T = 1;
997   for (unsigned i = 3; i <= K; ++i) {
998     APInt Mult(W, i);
999     unsigned TwoFactors = Mult.countTrailingZeros();
1000     T += TwoFactors;
1001     Mult = Mult.lshr(TwoFactors);
1002     OddFactorial *= Mult;
1003   }
1004 
1005   // We need at least W + T bits for the multiplication step
1006   unsigned CalculationBits = W + T;
1007 
1008   // Calculate 2^T, at width T+W.
1009   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1010 
1011   // Calculate the multiplicative inverse of K! / 2^T;
1012   // this multiplication factor will perform the exact division by
1013   // K! / 2^T.
1014   APInt Mod = APInt::getSignedMinValue(W+1);
1015   APInt MultiplyFactor = OddFactorial.zext(W+1);
1016   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1017   MultiplyFactor = MultiplyFactor.trunc(W);
1018 
1019   // Calculate the product, at width T+W
1020   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1021                                                       CalculationBits);
1022   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1023   for (unsigned i = 1; i != K; ++i) {
1024     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1025     Dividend = SE.getMulExpr(Dividend,
1026                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1027   }
1028 
1029   // Divide by 2^T
1030   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1031 
1032   // Truncate the result, and divide by K! / 2^T.
1033 
1034   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1035                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1036 }
1037 
1038 /// Return the value of this chain of recurrences at the specified iteration
1039 /// number.  We can evaluate this recurrence by multiplying each element in the
1040 /// chain by the binomial coefficient corresponding to it.  In other words, we
1041 /// can evaluate {A,+,B,+,C,+,D} as:
1042 ///
1043 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1044 ///
1045 /// where BC(It, k) stands for binomial coefficient.
1046 ///
1047 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1048                                                 ScalarEvolution &SE) const {
1049   const SCEV *Result = getStart();
1050   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1051     // The computation is correct in the face of overflow provided that the
1052     // multiplication is performed _after_ the evaluation of the binomial
1053     // coefficient.
1054     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1055     if (isa<SCEVCouldNotCompute>(Coeff))
1056       return Coeff;
1057 
1058     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1059   }
1060   return Result;
1061 }
1062 
1063 //===----------------------------------------------------------------------===//
1064 //                    SCEV Expression folder implementations
1065 //===----------------------------------------------------------------------===//
1066 
1067 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1068                                              Type *Ty) {
1069   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1070          "This is not a truncating conversion!");
1071   assert(isSCEVable(Ty) &&
1072          "This is not a conversion to a SCEVable type!");
1073   Ty = getEffectiveSCEVType(Ty);
1074 
1075   FoldingSetNodeID ID;
1076   ID.AddInteger(scTruncate);
1077   ID.AddPointer(Op);
1078   ID.AddPointer(Ty);
1079   void *IP = nullptr;
1080   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1081 
1082   // Fold if the operand is constant.
1083   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084     return getConstant(
1085       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1086 
1087   // trunc(trunc(x)) --> trunc(x)
1088   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1089     return getTruncateExpr(ST->getOperand(), Ty);
1090 
1091   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1092   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1093     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1094 
1095   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1096   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1097     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1098 
1099   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1100   // eliminate all the truncates, or we replace other casts with truncates.
1101   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1102     SmallVector<const SCEV *, 4> Operands;
1103     bool hasTrunc = false;
1104     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1105       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1106       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1107         hasTrunc = isa<SCEVTruncateExpr>(S);
1108       Operands.push_back(S);
1109     }
1110     if (!hasTrunc)
1111       return getAddExpr(Operands);
1112     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1113   }
1114 
1115   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1116   // eliminate all the truncates, or we replace other casts with truncates.
1117   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1118     SmallVector<const SCEV *, 4> Operands;
1119     bool hasTrunc = false;
1120     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1121       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1122       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1123         hasTrunc = isa<SCEVTruncateExpr>(S);
1124       Operands.push_back(S);
1125     }
1126     if (!hasTrunc)
1127       return getMulExpr(Operands);
1128     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1129   }
1130 
1131   // If the input value is a chrec scev, truncate the chrec's operands.
1132   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1133     SmallVector<const SCEV *, 4> Operands;
1134     for (const SCEV *Op : AddRec->operands())
1135       Operands.push_back(getTruncateExpr(Op, Ty));
1136     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1137   }
1138 
1139   // The cast wasn't folded; create an explicit cast node. We can reuse
1140   // the existing insert position since if we get here, we won't have
1141   // made any changes which would invalidate it.
1142   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1143                                                  Op, Ty);
1144   UniqueSCEVs.InsertNode(S, IP);
1145   return S;
1146 }
1147 
1148 // Get the limit of a recurrence such that incrementing by Step cannot cause
1149 // signed overflow as long as the value of the recurrence within the
1150 // loop does not exceed this limit before incrementing.
1151 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1152                                                  ICmpInst::Predicate *Pred,
1153                                                  ScalarEvolution *SE) {
1154   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1155   if (SE->isKnownPositive(Step)) {
1156     *Pred = ICmpInst::ICMP_SLT;
1157     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1158                            SE->getSignedRange(Step).getSignedMax());
1159   }
1160   if (SE->isKnownNegative(Step)) {
1161     *Pred = ICmpInst::ICMP_SGT;
1162     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1163                            SE->getSignedRange(Step).getSignedMin());
1164   }
1165   return nullptr;
1166 }
1167 
1168 // Get the limit of a recurrence such that incrementing by Step cannot cause
1169 // unsigned overflow as long as the value of the recurrence within the loop does
1170 // not exceed this limit before incrementing.
1171 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1172                                                    ICmpInst::Predicate *Pred,
1173                                                    ScalarEvolution *SE) {
1174   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1175   *Pred = ICmpInst::ICMP_ULT;
1176 
1177   return SE->getConstant(APInt::getMinValue(BitWidth) -
1178                          SE->getUnsignedRange(Step).getUnsignedMax());
1179 }
1180 
1181 namespace {
1182 
1183 struct ExtendOpTraitsBase {
1184   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1185 };
1186 
1187 // Used to make code generic over signed and unsigned overflow.
1188 template <typename ExtendOp> struct ExtendOpTraits {
1189   // Members present:
1190   //
1191   // static const SCEV::NoWrapFlags WrapType;
1192   //
1193   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1194   //
1195   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1196   //                                           ICmpInst::Predicate *Pred,
1197   //                                           ScalarEvolution *SE);
1198 };
1199 
1200 template <>
1201 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1202   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1203 
1204   static const GetExtendExprTy GetExtendExpr;
1205 
1206   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1207                                              ICmpInst::Predicate *Pred,
1208                                              ScalarEvolution *SE) {
1209     return getSignedOverflowLimitForStep(Step, Pred, SE);
1210   }
1211 };
1212 
1213 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1214     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1215 
1216 template <>
1217 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1218   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1219 
1220   static const GetExtendExprTy GetExtendExpr;
1221 
1222   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1223                                              ICmpInst::Predicate *Pred,
1224                                              ScalarEvolution *SE) {
1225     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1226   }
1227 };
1228 
1229 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1230     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1231 }
1232 
1233 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1234 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1235 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1236 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1237 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1238 // expression "Step + sext/zext(PreIncAR)" is congruent with
1239 // "sext/zext(PostIncAR)"
1240 template <typename ExtendOpTy>
1241 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1242                                         ScalarEvolution *SE) {
1243   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1244   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1245 
1246   const Loop *L = AR->getLoop();
1247   const SCEV *Start = AR->getStart();
1248   const SCEV *Step = AR->getStepRecurrence(*SE);
1249 
1250   // Check for a simple looking step prior to loop entry.
1251   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1252   if (!SA)
1253     return nullptr;
1254 
1255   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1256   // subtraction is expensive. For this purpose, perform a quick and dirty
1257   // difference, by checking for Step in the operand list.
1258   SmallVector<const SCEV *, 4> DiffOps;
1259   for (const SCEV *Op : SA->operands())
1260     if (Op != Step)
1261       DiffOps.push_back(Op);
1262 
1263   if (DiffOps.size() == SA->getNumOperands())
1264     return nullptr;
1265 
1266   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1267   // `Step`:
1268 
1269   // 1. NSW/NUW flags on the step increment.
1270   auto PreStartFlags =
1271     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1272   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1273   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1274       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1275 
1276   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1277   // "S+X does not sign/unsign-overflow".
1278   //
1279 
1280   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1281   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1282       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1283     return PreStart;
1284 
1285   // 2. Direct overflow check on the step operation's expression.
1286   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1287   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1288   const SCEV *OperandExtendedStart =
1289       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1290                      (SE->*GetExtendExpr)(Step, WideTy));
1291   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1292     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1293       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1294       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1295       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1296       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1297     }
1298     return PreStart;
1299   }
1300 
1301   // 3. Loop precondition.
1302   ICmpInst::Predicate Pred;
1303   const SCEV *OverflowLimit =
1304       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1305 
1306   if (OverflowLimit &&
1307       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1308     return PreStart;
1309 
1310   return nullptr;
1311 }
1312 
1313 // Get the normalized zero or sign extended expression for this AddRec's Start.
1314 template <typename ExtendOpTy>
1315 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1316                                         ScalarEvolution *SE) {
1317   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1318 
1319   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1320   if (!PreStart)
1321     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1322 
1323   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1324                         (SE->*GetExtendExpr)(PreStart, Ty));
1325 }
1326 
1327 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1328 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1329 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1330 //
1331 // Formally:
1332 //
1333 //     {S,+,X} == {S-T,+,X} + T
1334 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1335 //
1336 // If ({S-T,+,X} + T) does not overflow  ... (1)
1337 //
1338 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1339 //
1340 // If {S-T,+,X} does not overflow  ... (2)
1341 //
1342 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1343 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1344 //
1345 // If (S-T)+T does not overflow  ... (3)
1346 //
1347 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1348 //      == {Ext(S),+,Ext(X)} == LHS
1349 //
1350 // Thus, if (1), (2) and (3) are true for some T, then
1351 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1352 //
1353 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1354 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1355 // to check for (1) and (2).
1356 //
1357 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1358 // is `Delta` (defined below).
1359 //
1360 template <typename ExtendOpTy>
1361 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1362                                                 const SCEV *Step,
1363                                                 const Loop *L) {
1364   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1365 
1366   // We restrict `Start` to a constant to prevent SCEV from spending too much
1367   // time here.  It is correct (but more expensive) to continue with a
1368   // non-constant `Start` and do a general SCEV subtraction to compute
1369   // `PreStart` below.
1370   //
1371   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1372   if (!StartC)
1373     return false;
1374 
1375   APInt StartAI = StartC->getAPInt();
1376 
1377   for (unsigned Delta : {-2, -1, 1, 2}) {
1378     const SCEV *PreStart = getConstant(StartAI - Delta);
1379 
1380     FoldingSetNodeID ID;
1381     ID.AddInteger(scAddRecExpr);
1382     ID.AddPointer(PreStart);
1383     ID.AddPointer(Step);
1384     ID.AddPointer(L);
1385     void *IP = nullptr;
1386     const auto *PreAR =
1387       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1388 
1389     // Give up if we don't already have the add recurrence we need because
1390     // actually constructing an add recurrence is relatively expensive.
1391     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1392       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1393       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1394       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1395           DeltaS, &Pred, this);
1396       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1397         return true;
1398     }
1399   }
1400 
1401   return false;
1402 }
1403 
1404 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1405                                                Type *Ty) {
1406   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1407          "This is not an extending conversion!");
1408   assert(isSCEVable(Ty) &&
1409          "This is not a conversion to a SCEVable type!");
1410   Ty = getEffectiveSCEVType(Ty);
1411 
1412   // Fold if the operand is constant.
1413   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1414     return getConstant(
1415       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1416 
1417   // zext(zext(x)) --> zext(x)
1418   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1419     return getZeroExtendExpr(SZ->getOperand(), Ty);
1420 
1421   // Before doing any expensive analysis, check to see if we've already
1422   // computed a SCEV for this Op and Ty.
1423   FoldingSetNodeID ID;
1424   ID.AddInteger(scZeroExtend);
1425   ID.AddPointer(Op);
1426   ID.AddPointer(Ty);
1427   void *IP = nullptr;
1428   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1429 
1430   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1431   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1432     // It's possible the bits taken off by the truncate were all zero bits. If
1433     // so, we should be able to simplify this further.
1434     const SCEV *X = ST->getOperand();
1435     ConstantRange CR = getUnsignedRange(X);
1436     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1437     unsigned NewBits = getTypeSizeInBits(Ty);
1438     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1439             CR.zextOrTrunc(NewBits)))
1440       return getTruncateOrZeroExtend(X, Ty);
1441   }
1442 
1443   // If the input value is a chrec scev, and we can prove that the value
1444   // did not overflow the old, smaller, value, we can zero extend all of the
1445   // operands (often constants).  This allows analysis of something like
1446   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1447   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1448     if (AR->isAffine()) {
1449       const SCEV *Start = AR->getStart();
1450       const SCEV *Step = AR->getStepRecurrence(*this);
1451       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1452       const Loop *L = AR->getLoop();
1453 
1454       if (!AR->hasNoUnsignedWrap()) {
1455         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1456         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1457       }
1458 
1459       // If we have special knowledge that this addrec won't overflow,
1460       // we don't need to do any further analysis.
1461       if (AR->hasNoUnsignedWrap())
1462         return getAddRecExpr(
1463             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1464             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1465 
1466       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1467       // Note that this serves two purposes: It filters out loops that are
1468       // simply not analyzable, and it covers the case where this code is
1469       // being called from within backedge-taken count analysis, such that
1470       // attempting to ask for the backedge-taken count would likely result
1471       // in infinite recursion. In the later case, the analysis code will
1472       // cope with a conservative value, and it will take care to purge
1473       // that value once it has finished.
1474       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1475       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1476         // Manually compute the final value for AR, checking for
1477         // overflow.
1478 
1479         // Check whether the backedge-taken count can be losslessly casted to
1480         // the addrec's type. The count is always unsigned.
1481         const SCEV *CastedMaxBECount =
1482           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1483         const SCEV *RecastedMaxBECount =
1484           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1485         if (MaxBECount == RecastedMaxBECount) {
1486           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1487           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1488           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1489           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1490           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1491           const SCEV *WideMaxBECount =
1492             getZeroExtendExpr(CastedMaxBECount, WideTy);
1493           const SCEV *OperandExtendedAdd =
1494             getAddExpr(WideStart,
1495                        getMulExpr(WideMaxBECount,
1496                                   getZeroExtendExpr(Step, WideTy)));
1497           if (ZAdd == OperandExtendedAdd) {
1498             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1499             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1500             // Return the expression with the addrec on the outside.
1501             return getAddRecExpr(
1502                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1503                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1504           }
1505           // Similar to above, only this time treat the step value as signed.
1506           // This covers loops that count down.
1507           OperandExtendedAdd =
1508             getAddExpr(WideStart,
1509                        getMulExpr(WideMaxBECount,
1510                                   getSignExtendExpr(Step, WideTy)));
1511           if (ZAdd == OperandExtendedAdd) {
1512             // Cache knowledge of AR NW, which is propagated to this AddRec.
1513             // Negative step causes unsigned wrap, but it still can't self-wrap.
1514             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1515             // Return the expression with the addrec on the outside.
1516             return getAddRecExpr(
1517                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1519           }
1520         }
1521       }
1522 
1523       // Normally, in the cases we can prove no-overflow via a
1524       // backedge guarding condition, we can also compute a backedge
1525       // taken count for the loop.  The exceptions are assumptions and
1526       // guards present in the loop -- SCEV is not great at exploiting
1527       // these to compute max backedge taken counts, but can still use
1528       // these to prove lack of overflow.  Use this fact to avoid
1529       // doing extra work that may not pay off.
1530       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1531           !AC.assumptions().empty()) {
1532         // If the backedge is guarded by a comparison with the pre-inc
1533         // value the addrec is safe. Also, if the entry is guarded by
1534         // a comparison with the start value and the backedge is
1535         // guarded by a comparison with the post-inc value, the addrec
1536         // is safe.
1537         if (isKnownPositive(Step)) {
1538           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1539                                       getUnsignedRange(Step).getUnsignedMax());
1540           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1541               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1542                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1543                                            AR->getPostIncExpr(*this), N))) {
1544             // Cache knowledge of AR NUW, which is propagated to this
1545             // AddRec.
1546             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1547             // Return the expression with the addrec on the outside.
1548             return getAddRecExpr(
1549                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1550                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1551           }
1552         } else if (isKnownNegative(Step)) {
1553           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1554                                       getSignedRange(Step).getSignedMin());
1555           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1556               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1557                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1558                                            AR->getPostIncExpr(*this), N))) {
1559             // Cache knowledge of AR NW, which is propagated to this
1560             // AddRec.  Negative step causes unsigned wrap, but it
1561             // still can't self-wrap.
1562             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1563             // Return the expression with the addrec on the outside.
1564             return getAddRecExpr(
1565                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1566                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1567           }
1568         }
1569       }
1570 
1571       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1572         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1573         return getAddRecExpr(
1574             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1575             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1576       }
1577     }
1578 
1579   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1580     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1581     if (SA->hasNoUnsignedWrap()) {
1582       // If the addition does not unsign overflow then we can, by definition,
1583       // commute the zero extension with the addition operation.
1584       SmallVector<const SCEV *, 4> Ops;
1585       for (const auto *Op : SA->operands())
1586         Ops.push_back(getZeroExtendExpr(Op, Ty));
1587       return getAddExpr(Ops, SCEV::FlagNUW);
1588     }
1589   }
1590 
1591   // The cast wasn't folded; create an explicit cast node.
1592   // Recompute the insert position, as it may have been invalidated.
1593   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1594   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1595                                                    Op, Ty);
1596   UniqueSCEVs.InsertNode(S, IP);
1597   return S;
1598 }
1599 
1600 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1601                                                Type *Ty) {
1602   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1603          "This is not an extending conversion!");
1604   assert(isSCEVable(Ty) &&
1605          "This is not a conversion to a SCEVable type!");
1606   Ty = getEffectiveSCEVType(Ty);
1607 
1608   // Fold if the operand is constant.
1609   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1610     return getConstant(
1611       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1612 
1613   // sext(sext(x)) --> sext(x)
1614   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1615     return getSignExtendExpr(SS->getOperand(), Ty);
1616 
1617   // sext(zext(x)) --> zext(x)
1618   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1619     return getZeroExtendExpr(SZ->getOperand(), Ty);
1620 
1621   // Before doing any expensive analysis, check to see if we've already
1622   // computed a SCEV for this Op and Ty.
1623   FoldingSetNodeID ID;
1624   ID.AddInteger(scSignExtend);
1625   ID.AddPointer(Op);
1626   ID.AddPointer(Ty);
1627   void *IP = nullptr;
1628   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1629 
1630   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1631   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1632     // It's possible the bits taken off by the truncate were all sign bits. If
1633     // so, we should be able to simplify this further.
1634     const SCEV *X = ST->getOperand();
1635     ConstantRange CR = getSignedRange(X);
1636     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1637     unsigned NewBits = getTypeSizeInBits(Ty);
1638     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1639             CR.sextOrTrunc(NewBits)))
1640       return getTruncateOrSignExtend(X, Ty);
1641   }
1642 
1643   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1644   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1645     if (SA->getNumOperands() == 2) {
1646       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1647       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1648       if (SMul && SC1) {
1649         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1650           const APInt &C1 = SC1->getAPInt();
1651           const APInt &C2 = SC2->getAPInt();
1652           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1653               C2.ugt(C1) && C2.isPowerOf2())
1654             return getAddExpr(getSignExtendExpr(SC1, Ty),
1655                               getSignExtendExpr(SMul, Ty));
1656         }
1657       }
1658     }
1659 
1660     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1661     if (SA->hasNoSignedWrap()) {
1662       // If the addition does not sign overflow then we can, by definition,
1663       // commute the sign extension with the addition operation.
1664       SmallVector<const SCEV *, 4> Ops;
1665       for (const auto *Op : SA->operands())
1666         Ops.push_back(getSignExtendExpr(Op, Ty));
1667       return getAddExpr(Ops, SCEV::FlagNSW);
1668     }
1669   }
1670   // If the input value is a chrec scev, and we can prove that the value
1671   // did not overflow the old, smaller, value, we can sign extend all of the
1672   // operands (often constants).  This allows analysis of something like
1673   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1674   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1675     if (AR->isAffine()) {
1676       const SCEV *Start = AR->getStart();
1677       const SCEV *Step = AR->getStepRecurrence(*this);
1678       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1679       const Loop *L = AR->getLoop();
1680 
1681       if (!AR->hasNoSignedWrap()) {
1682         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1683         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1684       }
1685 
1686       // If we have special knowledge that this addrec won't overflow,
1687       // we don't need to do any further analysis.
1688       if (AR->hasNoSignedWrap())
1689         return getAddRecExpr(
1690             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1691             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1692 
1693       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1694       // Note that this serves two purposes: It filters out loops that are
1695       // simply not analyzable, and it covers the case where this code is
1696       // being called from within backedge-taken count analysis, such that
1697       // attempting to ask for the backedge-taken count would likely result
1698       // in infinite recursion. In the later case, the analysis code will
1699       // cope with a conservative value, and it will take care to purge
1700       // that value once it has finished.
1701       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1702       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1703         // Manually compute the final value for AR, checking for
1704         // overflow.
1705 
1706         // Check whether the backedge-taken count can be losslessly casted to
1707         // the addrec's type. The count is always unsigned.
1708         const SCEV *CastedMaxBECount =
1709           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1710         const SCEV *RecastedMaxBECount =
1711           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1712         if (MaxBECount == RecastedMaxBECount) {
1713           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1714           // Check whether Start+Step*MaxBECount has no signed overflow.
1715           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1716           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1717           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1718           const SCEV *WideMaxBECount =
1719             getZeroExtendExpr(CastedMaxBECount, WideTy);
1720           const SCEV *OperandExtendedAdd =
1721             getAddExpr(WideStart,
1722                        getMulExpr(WideMaxBECount,
1723                                   getSignExtendExpr(Step, WideTy)));
1724           if (SAdd == OperandExtendedAdd) {
1725             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1726             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1727             // Return the expression with the addrec on the outside.
1728             return getAddRecExpr(
1729                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1730                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1731           }
1732           // Similar to above, only this time treat the step value as unsigned.
1733           // This covers loops that count up with an unsigned step.
1734           OperandExtendedAdd =
1735             getAddExpr(WideStart,
1736                        getMulExpr(WideMaxBECount,
1737                                   getZeroExtendExpr(Step, WideTy)));
1738           if (SAdd == OperandExtendedAdd) {
1739             // If AR wraps around then
1740             //
1741             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1742             // => SAdd != OperandExtendedAdd
1743             //
1744             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1745             // (SAdd == OperandExtendedAdd => AR is NW)
1746 
1747             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748 
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1753           }
1754         }
1755       }
1756 
1757       // Normally, in the cases we can prove no-overflow via a
1758       // backedge guarding condition, we can also compute a backedge
1759       // taken count for the loop.  The exceptions are assumptions and
1760       // guards present in the loop -- SCEV is not great at exploiting
1761       // these to compute max backedge taken counts, but can still use
1762       // these to prove lack of overflow.  Use this fact to avoid
1763       // doing extra work that may not pay off.
1764 
1765       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766           !AC.assumptions().empty()) {
1767         // If the backedge is guarded by a comparison with the pre-inc
1768         // value the addrec is safe. Also, if the entry is guarded by
1769         // a comparison with the start value and the backedge is
1770         // guarded by a comparison with the post-inc value, the addrec
1771         // is safe.
1772         ICmpInst::Predicate Pred;
1773         const SCEV *OverflowLimit =
1774             getSignedOverflowLimitForStep(Step, &Pred, this);
1775         if (OverflowLimit &&
1776             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1777              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1778               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1779                                           OverflowLimit)))) {
1780           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1781           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1782           return getAddRecExpr(
1783               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1784               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1785         }
1786       }
1787 
1788       // If Start and Step are constants, check if we can apply this
1789       // transformation:
1790       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1791       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1792       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1793       if (SC1 && SC2) {
1794         const APInt &C1 = SC1->getAPInt();
1795         const APInt &C2 = SC2->getAPInt();
1796         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1797             C2.isPowerOf2()) {
1798           Start = getSignExtendExpr(Start, Ty);
1799           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1800                                             AR->getNoWrapFlags());
1801           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1802         }
1803       }
1804 
1805       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1806         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1807         return getAddRecExpr(
1808             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1809             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1810       }
1811     }
1812 
1813   // If the input value is provably positive and we could not simplify
1814   // away the sext build a zext instead.
1815   if (isKnownNonNegative(Op))
1816     return getZeroExtendExpr(Op, Ty);
1817 
1818   // The cast wasn't folded; create an explicit cast node.
1819   // Recompute the insert position, as it may have been invalidated.
1820   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1821   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1822                                                    Op, Ty);
1823   UniqueSCEVs.InsertNode(S, IP);
1824   return S;
1825 }
1826 
1827 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1828 /// unspecified bits out to the given type.
1829 ///
1830 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1831                                               Type *Ty) {
1832   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1833          "This is not an extending conversion!");
1834   assert(isSCEVable(Ty) &&
1835          "This is not a conversion to a SCEVable type!");
1836   Ty = getEffectiveSCEVType(Ty);
1837 
1838   // Sign-extend negative constants.
1839   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1840     if (SC->getAPInt().isNegative())
1841       return getSignExtendExpr(Op, Ty);
1842 
1843   // Peel off a truncate cast.
1844   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1845     const SCEV *NewOp = T->getOperand();
1846     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1847       return getAnyExtendExpr(NewOp, Ty);
1848     return getTruncateOrNoop(NewOp, Ty);
1849   }
1850 
1851   // Next try a zext cast. If the cast is folded, use it.
1852   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1853   if (!isa<SCEVZeroExtendExpr>(ZExt))
1854     return ZExt;
1855 
1856   // Next try a sext cast. If the cast is folded, use it.
1857   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1858   if (!isa<SCEVSignExtendExpr>(SExt))
1859     return SExt;
1860 
1861   // Force the cast to be folded into the operands of an addrec.
1862   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1863     SmallVector<const SCEV *, 4> Ops;
1864     for (const SCEV *Op : AR->operands())
1865       Ops.push_back(getAnyExtendExpr(Op, Ty));
1866     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1867   }
1868 
1869   // If the expression is obviously signed, use the sext cast value.
1870   if (isa<SCEVSMaxExpr>(Op))
1871     return SExt;
1872 
1873   // Absent any other information, use the zext cast value.
1874   return ZExt;
1875 }
1876 
1877 /// Process the given Ops list, which is a list of operands to be added under
1878 /// the given scale, update the given map. This is a helper function for
1879 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1880 /// that would form an add expression like this:
1881 ///
1882 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1883 ///
1884 /// where A and B are constants, update the map with these values:
1885 ///
1886 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1887 ///
1888 /// and add 13 + A*B*29 to AccumulatedConstant.
1889 /// This will allow getAddRecExpr to produce this:
1890 ///
1891 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1892 ///
1893 /// This form often exposes folding opportunities that are hidden in
1894 /// the original operand list.
1895 ///
1896 /// Return true iff it appears that any interesting folding opportunities
1897 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1898 /// the common case where no interesting opportunities are present, and
1899 /// is also used as a check to avoid infinite recursion.
1900 ///
1901 static bool
1902 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1903                              SmallVectorImpl<const SCEV *> &NewOps,
1904                              APInt &AccumulatedConstant,
1905                              const SCEV *const *Ops, size_t NumOperands,
1906                              const APInt &Scale,
1907                              ScalarEvolution &SE) {
1908   bool Interesting = false;
1909 
1910   // Iterate over the add operands. They are sorted, with constants first.
1911   unsigned i = 0;
1912   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1913     ++i;
1914     // Pull a buried constant out to the outside.
1915     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1916       Interesting = true;
1917     AccumulatedConstant += Scale * C->getAPInt();
1918   }
1919 
1920   // Next comes everything else. We're especially interested in multiplies
1921   // here, but they're in the middle, so just visit the rest with one loop.
1922   for (; i != NumOperands; ++i) {
1923     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1924     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1925       APInt NewScale =
1926           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1927       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1928         // A multiplication of a constant with another add; recurse.
1929         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1930         Interesting |=
1931           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1932                                        Add->op_begin(), Add->getNumOperands(),
1933                                        NewScale, SE);
1934       } else {
1935         // A multiplication of a constant with some other value. Update
1936         // the map.
1937         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1938         const SCEV *Key = SE.getMulExpr(MulOps);
1939         auto Pair = M.insert({Key, NewScale});
1940         if (Pair.second) {
1941           NewOps.push_back(Pair.first->first);
1942         } else {
1943           Pair.first->second += NewScale;
1944           // The map already had an entry for this value, which may indicate
1945           // a folding opportunity.
1946           Interesting = true;
1947         }
1948       }
1949     } else {
1950       // An ordinary operand. Update the map.
1951       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1952           M.insert({Ops[i], Scale});
1953       if (Pair.second) {
1954         NewOps.push_back(Pair.first->first);
1955       } else {
1956         Pair.first->second += Scale;
1957         // The map already had an entry for this value, which may indicate
1958         // a folding opportunity.
1959         Interesting = true;
1960       }
1961     }
1962   }
1963 
1964   return Interesting;
1965 }
1966 
1967 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1968 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1969 // can't-overflow flags for the operation if possible.
1970 static SCEV::NoWrapFlags
1971 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1972                       const SmallVectorImpl<const SCEV *> &Ops,
1973                       SCEV::NoWrapFlags Flags) {
1974   using namespace std::placeholders;
1975   typedef OverflowingBinaryOperator OBO;
1976 
1977   bool CanAnalyze =
1978       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1979   (void)CanAnalyze;
1980   assert(CanAnalyze && "don't call from other places!");
1981 
1982   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1983   SCEV::NoWrapFlags SignOrUnsignWrap =
1984       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1985 
1986   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1987   auto IsKnownNonNegative = [&](const SCEV *S) {
1988     return SE->isKnownNonNegative(S);
1989   };
1990 
1991   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1992     Flags =
1993         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1994 
1995   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1996 
1997   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1998       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1999 
2000     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2001     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2002 
2003     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2004     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2005       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2006           Instruction::Add, C, OBO::NoSignedWrap);
2007       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2008         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2009     }
2010     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2011       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2012           Instruction::Add, C, OBO::NoUnsignedWrap);
2013       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2014         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2015     }
2016   }
2017 
2018   return Flags;
2019 }
2020 
2021 /// Get a canonical add expression, or something simpler if possible.
2022 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2023                                         SCEV::NoWrapFlags Flags) {
2024   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2025          "only nuw or nsw allowed");
2026   assert(!Ops.empty() && "Cannot get empty add!");
2027   if (Ops.size() == 1) return Ops[0];
2028 #ifndef NDEBUG
2029   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2030   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2031     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2032            "SCEVAddExpr operand types don't match!");
2033 #endif
2034 
2035   // Sort by complexity, this groups all similar expression types together.
2036   GroupByComplexity(Ops, &LI);
2037 
2038   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2039 
2040   // If there are any constants, fold them together.
2041   unsigned Idx = 0;
2042   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2043     ++Idx;
2044     assert(Idx < Ops.size());
2045     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2046       // We found two constants, fold them together!
2047       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2048       if (Ops.size() == 2) return Ops[0];
2049       Ops.erase(Ops.begin()+1);  // Erase the folded element
2050       LHSC = cast<SCEVConstant>(Ops[0]);
2051     }
2052 
2053     // If we are left with a constant zero being added, strip it off.
2054     if (LHSC->getValue()->isZero()) {
2055       Ops.erase(Ops.begin());
2056       --Idx;
2057     }
2058 
2059     if (Ops.size() == 1) return Ops[0];
2060   }
2061 
2062   // Okay, check to see if the same value occurs in the operand list more than
2063   // once.  If so, merge them together into an multiply expression.  Since we
2064   // sorted the list, these values are required to be adjacent.
2065   Type *Ty = Ops[0]->getType();
2066   bool FoundMatch = false;
2067   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2068     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2069       // Scan ahead to count how many equal operands there are.
2070       unsigned Count = 2;
2071       while (i+Count != e && Ops[i+Count] == Ops[i])
2072         ++Count;
2073       // Merge the values into a multiply.
2074       const SCEV *Scale = getConstant(Ty, Count);
2075       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2076       if (Ops.size() == Count)
2077         return Mul;
2078       Ops[i] = Mul;
2079       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2080       --i; e -= Count - 1;
2081       FoundMatch = true;
2082     }
2083   if (FoundMatch)
2084     return getAddExpr(Ops, Flags);
2085 
2086   // Check for truncates. If all the operands are truncated from the same
2087   // type, see if factoring out the truncate would permit the result to be
2088   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2089   // if the contents of the resulting outer trunc fold to something simple.
2090   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2091     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2092     Type *DstType = Trunc->getType();
2093     Type *SrcType = Trunc->getOperand()->getType();
2094     SmallVector<const SCEV *, 8> LargeOps;
2095     bool Ok = true;
2096     // Check all the operands to see if they can be represented in the
2097     // source type of the truncate.
2098     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2099       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2100         if (T->getOperand()->getType() != SrcType) {
2101           Ok = false;
2102           break;
2103         }
2104         LargeOps.push_back(T->getOperand());
2105       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2106         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2107       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2108         SmallVector<const SCEV *, 8> LargeMulOps;
2109         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2110           if (const SCEVTruncateExpr *T =
2111                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2112             if (T->getOperand()->getType() != SrcType) {
2113               Ok = false;
2114               break;
2115             }
2116             LargeMulOps.push_back(T->getOperand());
2117           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2118             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2119           } else {
2120             Ok = false;
2121             break;
2122           }
2123         }
2124         if (Ok)
2125           LargeOps.push_back(getMulExpr(LargeMulOps));
2126       } else {
2127         Ok = false;
2128         break;
2129       }
2130     }
2131     if (Ok) {
2132       // Evaluate the expression in the larger type.
2133       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2134       // If it folds to something simple, use it. Otherwise, don't.
2135       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2136         return getTruncateExpr(Fold, DstType);
2137     }
2138   }
2139 
2140   // Skip past any other cast SCEVs.
2141   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2142     ++Idx;
2143 
2144   // If there are add operands they would be next.
2145   if (Idx < Ops.size()) {
2146     bool DeletedAdd = false;
2147     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2148       // If we have an add, expand the add operands onto the end of the operands
2149       // list.
2150       Ops.erase(Ops.begin()+Idx);
2151       Ops.append(Add->op_begin(), Add->op_end());
2152       DeletedAdd = true;
2153     }
2154 
2155     // If we deleted at least one add, we added operands to the end of the list,
2156     // and they are not necessarily sorted.  Recurse to resort and resimplify
2157     // any operands we just acquired.
2158     if (DeletedAdd)
2159       return getAddExpr(Ops);
2160   }
2161 
2162   // Skip over the add expression until we get to a multiply.
2163   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2164     ++Idx;
2165 
2166   // Check to see if there are any folding opportunities present with
2167   // operands multiplied by constant values.
2168   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2169     uint64_t BitWidth = getTypeSizeInBits(Ty);
2170     DenseMap<const SCEV *, APInt> M;
2171     SmallVector<const SCEV *, 8> NewOps;
2172     APInt AccumulatedConstant(BitWidth, 0);
2173     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2174                                      Ops.data(), Ops.size(),
2175                                      APInt(BitWidth, 1), *this)) {
2176       struct APIntCompare {
2177         bool operator()(const APInt &LHS, const APInt &RHS) const {
2178           return LHS.ult(RHS);
2179         }
2180       };
2181 
2182       // Some interesting folding opportunity is present, so its worthwhile to
2183       // re-generate the operands list. Group the operands by constant scale,
2184       // to avoid multiplying by the same constant scale multiple times.
2185       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2186       for (const SCEV *NewOp : NewOps)
2187         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2188       // Re-generate the operands list.
2189       Ops.clear();
2190       if (AccumulatedConstant != 0)
2191         Ops.push_back(getConstant(AccumulatedConstant));
2192       for (auto &MulOp : MulOpLists)
2193         if (MulOp.first != 0)
2194           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2195                                    getAddExpr(MulOp.second)));
2196       if (Ops.empty())
2197         return getZero(Ty);
2198       if (Ops.size() == 1)
2199         return Ops[0];
2200       return getAddExpr(Ops);
2201     }
2202   }
2203 
2204   // If we are adding something to a multiply expression, make sure the
2205   // something is not already an operand of the multiply.  If so, merge it into
2206   // the multiply.
2207   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2208     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2209     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2210       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2211       if (isa<SCEVConstant>(MulOpSCEV))
2212         continue;
2213       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2214         if (MulOpSCEV == Ops[AddOp]) {
2215           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2216           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2217           if (Mul->getNumOperands() != 2) {
2218             // If the multiply has more than two operands, we must get the
2219             // Y*Z term.
2220             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2221                                                 Mul->op_begin()+MulOp);
2222             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2223             InnerMul = getMulExpr(MulOps);
2224           }
2225           const SCEV *One = getOne(Ty);
2226           const SCEV *AddOne = getAddExpr(One, InnerMul);
2227           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2228           if (Ops.size() == 2) return OuterMul;
2229           if (AddOp < Idx) {
2230             Ops.erase(Ops.begin()+AddOp);
2231             Ops.erase(Ops.begin()+Idx-1);
2232           } else {
2233             Ops.erase(Ops.begin()+Idx);
2234             Ops.erase(Ops.begin()+AddOp-1);
2235           }
2236           Ops.push_back(OuterMul);
2237           return getAddExpr(Ops);
2238         }
2239 
2240       // Check this multiply against other multiplies being added together.
2241       for (unsigned OtherMulIdx = Idx+1;
2242            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2243            ++OtherMulIdx) {
2244         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2245         // If MulOp occurs in OtherMul, we can fold the two multiplies
2246         // together.
2247         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2248              OMulOp != e; ++OMulOp)
2249           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2250             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2251             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2252             if (Mul->getNumOperands() != 2) {
2253               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2254                                                   Mul->op_begin()+MulOp);
2255               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2256               InnerMul1 = getMulExpr(MulOps);
2257             }
2258             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2259             if (OtherMul->getNumOperands() != 2) {
2260               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2261                                                   OtherMul->op_begin()+OMulOp);
2262               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2263               InnerMul2 = getMulExpr(MulOps);
2264             }
2265             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2266             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2267             if (Ops.size() == 2) return OuterMul;
2268             Ops.erase(Ops.begin()+Idx);
2269             Ops.erase(Ops.begin()+OtherMulIdx-1);
2270             Ops.push_back(OuterMul);
2271             return getAddExpr(Ops);
2272           }
2273       }
2274     }
2275   }
2276 
2277   // If there are any add recurrences in the operands list, see if any other
2278   // added values are loop invariant.  If so, we can fold them into the
2279   // recurrence.
2280   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2281     ++Idx;
2282 
2283   // Scan over all recurrences, trying to fold loop invariants into them.
2284   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2285     // Scan all of the other operands to this add and add them to the vector if
2286     // they are loop invariant w.r.t. the recurrence.
2287     SmallVector<const SCEV *, 8> LIOps;
2288     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2289     const Loop *AddRecLoop = AddRec->getLoop();
2290     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2291       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2292         LIOps.push_back(Ops[i]);
2293         Ops.erase(Ops.begin()+i);
2294         --i; --e;
2295       }
2296 
2297     // If we found some loop invariants, fold them into the recurrence.
2298     if (!LIOps.empty()) {
2299       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2300       LIOps.push_back(AddRec->getStart());
2301 
2302       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2303                                              AddRec->op_end());
2304       // This follows from the fact that the no-wrap flags on the outer add
2305       // expression are applicable on the 0th iteration, when the add recurrence
2306       // will be equal to its start value.
2307       AddRecOps[0] = getAddExpr(LIOps, Flags);
2308 
2309       // Build the new addrec. Propagate the NUW and NSW flags if both the
2310       // outer add and the inner addrec are guaranteed to have no overflow.
2311       // Always propagate NW.
2312       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2313       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2314 
2315       // If all of the other operands were loop invariant, we are done.
2316       if (Ops.size() == 1) return NewRec;
2317 
2318       // Otherwise, add the folded AddRec by the non-invariant parts.
2319       for (unsigned i = 0;; ++i)
2320         if (Ops[i] == AddRec) {
2321           Ops[i] = NewRec;
2322           break;
2323         }
2324       return getAddExpr(Ops);
2325     }
2326 
2327     // Okay, if there weren't any loop invariants to be folded, check to see if
2328     // there are multiple AddRec's with the same loop induction variable being
2329     // added together.  If so, we can fold them.
2330     for (unsigned OtherIdx = Idx+1;
2331          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2332          ++OtherIdx)
2333       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2334         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2335         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2336                                                AddRec->op_end());
2337         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2338              ++OtherIdx)
2339           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2340             if (OtherAddRec->getLoop() == AddRecLoop) {
2341               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2342                    i != e; ++i) {
2343                 if (i >= AddRecOps.size()) {
2344                   AddRecOps.append(OtherAddRec->op_begin()+i,
2345                                    OtherAddRec->op_end());
2346                   break;
2347                 }
2348                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2349                                           OtherAddRec->getOperand(i));
2350               }
2351               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2352             }
2353         // Step size has changed, so we cannot guarantee no self-wraparound.
2354         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2355         return getAddExpr(Ops);
2356       }
2357 
2358     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2359     // next one.
2360   }
2361 
2362   // Okay, it looks like we really DO need an add expr.  Check to see if we
2363   // already have one, otherwise create a new one.
2364   FoldingSetNodeID ID;
2365   ID.AddInteger(scAddExpr);
2366   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2367     ID.AddPointer(Ops[i]);
2368   void *IP = nullptr;
2369   SCEVAddExpr *S =
2370     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2371   if (!S) {
2372     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2373     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2374     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2375                                         O, Ops.size());
2376     UniqueSCEVs.InsertNode(S, IP);
2377   }
2378   S->setNoWrapFlags(Flags);
2379   return S;
2380 }
2381 
2382 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2383   uint64_t k = i*j;
2384   if (j > 1 && k / j != i) Overflow = true;
2385   return k;
2386 }
2387 
2388 /// Compute the result of "n choose k", the binomial coefficient.  If an
2389 /// intermediate computation overflows, Overflow will be set and the return will
2390 /// be garbage. Overflow is not cleared on absence of overflow.
2391 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2392   // We use the multiplicative formula:
2393   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2394   // At each iteration, we take the n-th term of the numeral and divide by the
2395   // (k-n)th term of the denominator.  This division will always produce an
2396   // integral result, and helps reduce the chance of overflow in the
2397   // intermediate computations. However, we can still overflow even when the
2398   // final result would fit.
2399 
2400   if (n == 0 || n == k) return 1;
2401   if (k > n) return 0;
2402 
2403   if (k > n/2)
2404     k = n-k;
2405 
2406   uint64_t r = 1;
2407   for (uint64_t i = 1; i <= k; ++i) {
2408     r = umul_ov(r, n-(i-1), Overflow);
2409     r /= i;
2410   }
2411   return r;
2412 }
2413 
2414 /// Determine if any of the operands in this SCEV are a constant or if
2415 /// any of the add or multiply expressions in this SCEV contain a constant.
2416 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2417   SmallVector<const SCEV *, 4> Ops;
2418   Ops.push_back(StartExpr);
2419   while (!Ops.empty()) {
2420     const SCEV *CurrentExpr = Ops.pop_back_val();
2421     if (isa<SCEVConstant>(*CurrentExpr))
2422       return true;
2423 
2424     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2425       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2426       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2427     }
2428   }
2429   return false;
2430 }
2431 
2432 /// Get a canonical multiply expression, or something simpler if possible.
2433 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2434                                         SCEV::NoWrapFlags Flags) {
2435   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2436          "only nuw or nsw allowed");
2437   assert(!Ops.empty() && "Cannot get empty mul!");
2438   if (Ops.size() == 1) return Ops[0];
2439 #ifndef NDEBUG
2440   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2441   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2442     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2443            "SCEVMulExpr operand types don't match!");
2444 #endif
2445 
2446   // Sort by complexity, this groups all similar expression types together.
2447   GroupByComplexity(Ops, &LI);
2448 
2449   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2450 
2451   // If there are any constants, fold them together.
2452   unsigned Idx = 0;
2453   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2454 
2455     // C1*(C2+V) -> C1*C2 + C1*V
2456     if (Ops.size() == 2)
2457         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2458           // If any of Add's ops are Adds or Muls with a constant,
2459           // apply this transformation as well.
2460           if (Add->getNumOperands() == 2)
2461             if (containsConstantSomewhere(Add))
2462               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2463                                 getMulExpr(LHSC, Add->getOperand(1)));
2464 
2465     ++Idx;
2466     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2467       // We found two constants, fold them together!
2468       ConstantInt *Fold =
2469           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2470       Ops[0] = getConstant(Fold);
2471       Ops.erase(Ops.begin()+1);  // Erase the folded element
2472       if (Ops.size() == 1) return Ops[0];
2473       LHSC = cast<SCEVConstant>(Ops[0]);
2474     }
2475 
2476     // If we are left with a constant one being multiplied, strip it off.
2477     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2478       Ops.erase(Ops.begin());
2479       --Idx;
2480     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2481       // If we have a multiply of zero, it will always be zero.
2482       return Ops[0];
2483     } else if (Ops[0]->isAllOnesValue()) {
2484       // If we have a mul by -1 of an add, try distributing the -1 among the
2485       // add operands.
2486       if (Ops.size() == 2) {
2487         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2488           SmallVector<const SCEV *, 4> NewOps;
2489           bool AnyFolded = false;
2490           for (const SCEV *AddOp : Add->operands()) {
2491             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2492             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2493             NewOps.push_back(Mul);
2494           }
2495           if (AnyFolded)
2496             return getAddExpr(NewOps);
2497         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2498           // Negation preserves a recurrence's no self-wrap property.
2499           SmallVector<const SCEV *, 4> Operands;
2500           for (const SCEV *AddRecOp : AddRec->operands())
2501             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2502 
2503           return getAddRecExpr(Operands, AddRec->getLoop(),
2504                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2505         }
2506       }
2507     }
2508 
2509     if (Ops.size() == 1)
2510       return Ops[0];
2511   }
2512 
2513   // Skip over the add expression until we get to a multiply.
2514   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2515     ++Idx;
2516 
2517   // If there are mul operands inline them all into this expression.
2518   if (Idx < Ops.size()) {
2519     bool DeletedMul = false;
2520     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2521       // If we have an mul, expand the mul operands onto the end of the operands
2522       // list.
2523       Ops.erase(Ops.begin()+Idx);
2524       Ops.append(Mul->op_begin(), Mul->op_end());
2525       DeletedMul = true;
2526     }
2527 
2528     // If we deleted at least one mul, we added operands to the end of the list,
2529     // and they are not necessarily sorted.  Recurse to resort and resimplify
2530     // any operands we just acquired.
2531     if (DeletedMul)
2532       return getMulExpr(Ops);
2533   }
2534 
2535   // If there are any add recurrences in the operands list, see if any other
2536   // added values are loop invariant.  If so, we can fold them into the
2537   // recurrence.
2538   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2539     ++Idx;
2540 
2541   // Scan over all recurrences, trying to fold loop invariants into them.
2542   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2543     // Scan all of the other operands to this mul and add them to the vector if
2544     // they are loop invariant w.r.t. the recurrence.
2545     SmallVector<const SCEV *, 8> LIOps;
2546     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2547     const Loop *AddRecLoop = AddRec->getLoop();
2548     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2549       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2550         LIOps.push_back(Ops[i]);
2551         Ops.erase(Ops.begin()+i);
2552         --i; --e;
2553       }
2554 
2555     // If we found some loop invariants, fold them into the recurrence.
2556     if (!LIOps.empty()) {
2557       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2558       SmallVector<const SCEV *, 4> NewOps;
2559       NewOps.reserve(AddRec->getNumOperands());
2560       const SCEV *Scale = getMulExpr(LIOps);
2561       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2562         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2563 
2564       // Build the new addrec. Propagate the NUW and NSW flags if both the
2565       // outer mul and the inner addrec are guaranteed to have no overflow.
2566       //
2567       // No self-wrap cannot be guaranteed after changing the step size, but
2568       // will be inferred if either NUW or NSW is true.
2569       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2570       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2571 
2572       // If all of the other operands were loop invariant, we are done.
2573       if (Ops.size() == 1) return NewRec;
2574 
2575       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2576       for (unsigned i = 0;; ++i)
2577         if (Ops[i] == AddRec) {
2578           Ops[i] = NewRec;
2579           break;
2580         }
2581       return getMulExpr(Ops);
2582     }
2583 
2584     // Okay, if there weren't any loop invariants to be folded, check to see if
2585     // there are multiple AddRec's with the same loop induction variable being
2586     // multiplied together.  If so, we can fold them.
2587 
2588     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2589     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2590     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2591     //   ]]],+,...up to x=2n}.
2592     // Note that the arguments to choose() are always integers with values
2593     // known at compile time, never SCEV objects.
2594     //
2595     // The implementation avoids pointless extra computations when the two
2596     // addrec's are of different length (mathematically, it's equivalent to
2597     // an infinite stream of zeros on the right).
2598     bool OpsModified = false;
2599     for (unsigned OtherIdx = Idx+1;
2600          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2601          ++OtherIdx) {
2602       const SCEVAddRecExpr *OtherAddRec =
2603         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2604       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2605         continue;
2606 
2607       bool Overflow = false;
2608       Type *Ty = AddRec->getType();
2609       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2610       SmallVector<const SCEV*, 7> AddRecOps;
2611       for (int x = 0, xe = AddRec->getNumOperands() +
2612              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2613         const SCEV *Term = getZero(Ty);
2614         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2615           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2616           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2617                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2618                z < ze && !Overflow; ++z) {
2619             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2620             uint64_t Coeff;
2621             if (LargerThan64Bits)
2622               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2623             else
2624               Coeff = Coeff1*Coeff2;
2625             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2626             const SCEV *Term1 = AddRec->getOperand(y-z);
2627             const SCEV *Term2 = OtherAddRec->getOperand(z);
2628             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2629           }
2630         }
2631         AddRecOps.push_back(Term);
2632       }
2633       if (!Overflow) {
2634         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2635                                               SCEV::FlagAnyWrap);
2636         if (Ops.size() == 2) return NewAddRec;
2637         Ops[Idx] = NewAddRec;
2638         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2639         OpsModified = true;
2640         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2641         if (!AddRec)
2642           break;
2643       }
2644     }
2645     if (OpsModified)
2646       return getMulExpr(Ops);
2647 
2648     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2649     // next one.
2650   }
2651 
2652   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2653   // already have one, otherwise create a new one.
2654   FoldingSetNodeID ID;
2655   ID.AddInteger(scMulExpr);
2656   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2657     ID.AddPointer(Ops[i]);
2658   void *IP = nullptr;
2659   SCEVMulExpr *S =
2660     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2661   if (!S) {
2662     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2663     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2664     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2665                                         O, Ops.size());
2666     UniqueSCEVs.InsertNode(S, IP);
2667   }
2668   S->setNoWrapFlags(Flags);
2669   return S;
2670 }
2671 
2672 /// Get a canonical unsigned division expression, or something simpler if
2673 /// possible.
2674 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2675                                          const SCEV *RHS) {
2676   assert(getEffectiveSCEVType(LHS->getType()) ==
2677          getEffectiveSCEVType(RHS->getType()) &&
2678          "SCEVUDivExpr operand types don't match!");
2679 
2680   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2681     if (RHSC->getValue()->equalsInt(1))
2682       return LHS;                               // X udiv 1 --> x
2683     // If the denominator is zero, the result of the udiv is undefined. Don't
2684     // try to analyze it, because the resolution chosen here may differ from
2685     // the resolution chosen in other parts of the compiler.
2686     if (!RHSC->getValue()->isZero()) {
2687       // Determine if the division can be folded into the operands of
2688       // its operands.
2689       // TODO: Generalize this to non-constants by using known-bits information.
2690       Type *Ty = LHS->getType();
2691       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2692       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2693       // For non-power-of-two values, effectively round the value up to the
2694       // nearest power of two.
2695       if (!RHSC->getAPInt().isPowerOf2())
2696         ++MaxShiftAmt;
2697       IntegerType *ExtTy =
2698         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2699       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2700         if (const SCEVConstant *Step =
2701             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2702           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2703           const APInt &StepInt = Step->getAPInt();
2704           const APInt &DivInt = RHSC->getAPInt();
2705           if (!StepInt.urem(DivInt) &&
2706               getZeroExtendExpr(AR, ExtTy) ==
2707               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2708                             getZeroExtendExpr(Step, ExtTy),
2709                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2710             SmallVector<const SCEV *, 4> Operands;
2711             for (const SCEV *Op : AR->operands())
2712               Operands.push_back(getUDivExpr(Op, RHS));
2713             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2714           }
2715           /// Get a canonical UDivExpr for a recurrence.
2716           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2717           // We can currently only fold X%N if X is constant.
2718           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2719           if (StartC && !DivInt.urem(StepInt) &&
2720               getZeroExtendExpr(AR, ExtTy) ==
2721               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2722                             getZeroExtendExpr(Step, ExtTy),
2723                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2724             const APInt &StartInt = StartC->getAPInt();
2725             const APInt &StartRem = StartInt.urem(StepInt);
2726             if (StartRem != 0)
2727               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2728                                   AR->getLoop(), SCEV::FlagNW);
2729           }
2730         }
2731       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2732       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2733         SmallVector<const SCEV *, 4> Operands;
2734         for (const SCEV *Op : M->operands())
2735           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2736         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2737           // Find an operand that's safely divisible.
2738           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2739             const SCEV *Op = M->getOperand(i);
2740             const SCEV *Div = getUDivExpr(Op, RHSC);
2741             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2742               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2743                                                       M->op_end());
2744               Operands[i] = Div;
2745               return getMulExpr(Operands);
2746             }
2747           }
2748       }
2749       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2750       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2751         SmallVector<const SCEV *, 4> Operands;
2752         for (const SCEV *Op : A->operands())
2753           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2754         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2755           Operands.clear();
2756           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2757             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2758             if (isa<SCEVUDivExpr>(Op) ||
2759                 getMulExpr(Op, RHS) != A->getOperand(i))
2760               break;
2761             Operands.push_back(Op);
2762           }
2763           if (Operands.size() == A->getNumOperands())
2764             return getAddExpr(Operands);
2765         }
2766       }
2767 
2768       // Fold if both operands are constant.
2769       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2770         Constant *LHSCV = LHSC->getValue();
2771         Constant *RHSCV = RHSC->getValue();
2772         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2773                                                                    RHSCV)));
2774       }
2775     }
2776   }
2777 
2778   FoldingSetNodeID ID;
2779   ID.AddInteger(scUDivExpr);
2780   ID.AddPointer(LHS);
2781   ID.AddPointer(RHS);
2782   void *IP = nullptr;
2783   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2784   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2785                                              LHS, RHS);
2786   UniqueSCEVs.InsertNode(S, IP);
2787   return S;
2788 }
2789 
2790 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2791   APInt A = C1->getAPInt().abs();
2792   APInt B = C2->getAPInt().abs();
2793   uint32_t ABW = A.getBitWidth();
2794   uint32_t BBW = B.getBitWidth();
2795 
2796   if (ABW > BBW)
2797     B = B.zext(ABW);
2798   else if (ABW < BBW)
2799     A = A.zext(BBW);
2800 
2801   return APIntOps::GreatestCommonDivisor(A, B);
2802 }
2803 
2804 /// Get a canonical unsigned division expression, or something simpler if
2805 /// possible. There is no representation for an exact udiv in SCEV IR, but we
2806 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
2807 /// it's not exact because the udiv may be clearing bits.
2808 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2809                                               const SCEV *RHS) {
2810   // TODO: we could try to find factors in all sorts of things, but for now we
2811   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2812   // end of this file for inspiration.
2813 
2814   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2815   if (!Mul)
2816     return getUDivExpr(LHS, RHS);
2817 
2818   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2819     // If the mulexpr multiplies by a constant, then that constant must be the
2820     // first element of the mulexpr.
2821     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2822       if (LHSCst == RHSCst) {
2823         SmallVector<const SCEV *, 2> Operands;
2824         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2825         return getMulExpr(Operands);
2826       }
2827 
2828       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2829       // that there's a factor provided by one of the other terms. We need to
2830       // check.
2831       APInt Factor = gcd(LHSCst, RHSCst);
2832       if (!Factor.isIntN(1)) {
2833         LHSCst =
2834             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2835         RHSCst =
2836             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2837         SmallVector<const SCEV *, 2> Operands;
2838         Operands.push_back(LHSCst);
2839         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2840         LHS = getMulExpr(Operands);
2841         RHS = RHSCst;
2842         Mul = dyn_cast<SCEVMulExpr>(LHS);
2843         if (!Mul)
2844           return getUDivExactExpr(LHS, RHS);
2845       }
2846     }
2847   }
2848 
2849   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2850     if (Mul->getOperand(i) == RHS) {
2851       SmallVector<const SCEV *, 2> Operands;
2852       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2853       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2854       return getMulExpr(Operands);
2855     }
2856   }
2857 
2858   return getUDivExpr(LHS, RHS);
2859 }
2860 
2861 /// Get an add recurrence expression for the specified loop.  Simplify the
2862 /// expression as much as possible.
2863 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2864                                            const Loop *L,
2865                                            SCEV::NoWrapFlags Flags) {
2866   SmallVector<const SCEV *, 4> Operands;
2867   Operands.push_back(Start);
2868   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2869     if (StepChrec->getLoop() == L) {
2870       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2871       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2872     }
2873 
2874   Operands.push_back(Step);
2875   return getAddRecExpr(Operands, L, Flags);
2876 }
2877 
2878 /// Get an add recurrence expression for the specified loop.  Simplify the
2879 /// expression as much as possible.
2880 const SCEV *
2881 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2882                                const Loop *L, SCEV::NoWrapFlags Flags) {
2883   if (Operands.size() == 1) return Operands[0];
2884 #ifndef NDEBUG
2885   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2886   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2887     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2888            "SCEVAddRecExpr operand types don't match!");
2889   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2890     assert(isLoopInvariant(Operands[i], L) &&
2891            "SCEVAddRecExpr operand is not loop-invariant!");
2892 #endif
2893 
2894   if (Operands.back()->isZero()) {
2895     Operands.pop_back();
2896     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2897   }
2898 
2899   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2900   // use that information to infer NUW and NSW flags. However, computing a
2901   // BE count requires calling getAddRecExpr, so we may not yet have a
2902   // meaningful BE count at this point (and if we don't, we'd be stuck
2903   // with a SCEVCouldNotCompute as the cached BE count).
2904 
2905   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2906 
2907   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2908   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2909     const Loop *NestedLoop = NestedAR->getLoop();
2910     if (L->contains(NestedLoop)
2911             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2912             : (!NestedLoop->contains(L) &&
2913                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2914       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2915                                                   NestedAR->op_end());
2916       Operands[0] = NestedAR->getStart();
2917       // AddRecs require their operands be loop-invariant with respect to their
2918       // loops. Don't perform this transformation if it would break this
2919       // requirement.
2920       bool AllInvariant = all_of(
2921           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2922 
2923       if (AllInvariant) {
2924         // Create a recurrence for the outer loop with the same step size.
2925         //
2926         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2927         // inner recurrence has the same property.
2928         SCEV::NoWrapFlags OuterFlags =
2929           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2930 
2931         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2932         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2933           return isLoopInvariant(Op, NestedLoop);
2934         });
2935 
2936         if (AllInvariant) {
2937           // Ok, both add recurrences are valid after the transformation.
2938           //
2939           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2940           // the outer recurrence has the same property.
2941           SCEV::NoWrapFlags InnerFlags =
2942             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2943           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2944         }
2945       }
2946       // Reset Operands to its original state.
2947       Operands[0] = NestedAR;
2948     }
2949   }
2950 
2951   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2952   // already have one, otherwise create a new one.
2953   FoldingSetNodeID ID;
2954   ID.AddInteger(scAddRecExpr);
2955   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2956     ID.AddPointer(Operands[i]);
2957   ID.AddPointer(L);
2958   void *IP = nullptr;
2959   SCEVAddRecExpr *S =
2960     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2961   if (!S) {
2962     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2963     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2964     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2965                                            O, Operands.size(), L);
2966     UniqueSCEVs.InsertNode(S, IP);
2967   }
2968   S->setNoWrapFlags(Flags);
2969   return S;
2970 }
2971 
2972 const SCEV *
2973 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2974                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2975                             bool InBounds) {
2976   // getSCEV(Base)->getType() has the same address space as Base->getType()
2977   // because SCEV::getType() preserves the address space.
2978   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2979   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2980   // instruction to its SCEV, because the Instruction may be guarded by control
2981   // flow and the no-overflow bits may not be valid for the expression in any
2982   // context. This can be fixed similarly to how these flags are handled for
2983   // adds.
2984   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2985 
2986   const SCEV *TotalOffset = getZero(IntPtrTy);
2987   // The address space is unimportant. The first thing we do on CurTy is getting
2988   // its element type.
2989   Type *CurTy = PointerType::getUnqual(PointeeType);
2990   for (const SCEV *IndexExpr : IndexExprs) {
2991     // Compute the (potentially symbolic) offset in bytes for this index.
2992     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2993       // For a struct, add the member offset.
2994       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2995       unsigned FieldNo = Index->getZExtValue();
2996       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2997 
2998       // Add the field offset to the running total offset.
2999       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3000 
3001       // Update CurTy to the type of the field at Index.
3002       CurTy = STy->getTypeAtIndex(Index);
3003     } else {
3004       // Update CurTy to its element type.
3005       CurTy = cast<SequentialType>(CurTy)->getElementType();
3006       // For an array, add the element offset, explicitly scaled.
3007       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3008       // Getelementptr indices are signed.
3009       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3010 
3011       // Multiply the index by the element size to compute the element offset.
3012       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3013 
3014       // Add the element offset to the running total offset.
3015       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3016     }
3017   }
3018 
3019   // Add the total offset from all the GEP indices to the base.
3020   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3021 }
3022 
3023 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3024                                          const SCEV *RHS) {
3025   SmallVector<const SCEV *, 2> Ops;
3026   Ops.push_back(LHS);
3027   Ops.push_back(RHS);
3028   return getSMaxExpr(Ops);
3029 }
3030 
3031 const SCEV *
3032 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3033   assert(!Ops.empty() && "Cannot get empty smax!");
3034   if (Ops.size() == 1) return Ops[0];
3035 #ifndef NDEBUG
3036   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3037   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3038     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3039            "SCEVSMaxExpr operand types don't match!");
3040 #endif
3041 
3042   // Sort by complexity, this groups all similar expression types together.
3043   GroupByComplexity(Ops, &LI);
3044 
3045   // If there are any constants, fold them together.
3046   unsigned Idx = 0;
3047   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3048     ++Idx;
3049     assert(Idx < Ops.size());
3050     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3051       // We found two constants, fold them together!
3052       ConstantInt *Fold = ConstantInt::get(
3053           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3054       Ops[0] = getConstant(Fold);
3055       Ops.erase(Ops.begin()+1);  // Erase the folded element
3056       if (Ops.size() == 1) return Ops[0];
3057       LHSC = cast<SCEVConstant>(Ops[0]);
3058     }
3059 
3060     // If we are left with a constant minimum-int, strip it off.
3061     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3062       Ops.erase(Ops.begin());
3063       --Idx;
3064     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3065       // If we have an smax with a constant maximum-int, it will always be
3066       // maximum-int.
3067       return Ops[0];
3068     }
3069 
3070     if (Ops.size() == 1) return Ops[0];
3071   }
3072 
3073   // Find the first SMax
3074   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3075     ++Idx;
3076 
3077   // Check to see if one of the operands is an SMax. If so, expand its operands
3078   // onto our operand list, and recurse to simplify.
3079   if (Idx < Ops.size()) {
3080     bool DeletedSMax = false;
3081     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3082       Ops.erase(Ops.begin()+Idx);
3083       Ops.append(SMax->op_begin(), SMax->op_end());
3084       DeletedSMax = true;
3085     }
3086 
3087     if (DeletedSMax)
3088       return getSMaxExpr(Ops);
3089   }
3090 
3091   // Okay, check to see if the same value occurs in the operand list twice.  If
3092   // so, delete one.  Since we sorted the list, these values are required to
3093   // be adjacent.
3094   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3095     //  X smax Y smax Y  -->  X smax Y
3096     //  X smax Y         -->  X, if X is always greater than Y
3097     if (Ops[i] == Ops[i+1] ||
3098         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3099       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3100       --i; --e;
3101     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3102       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3103       --i; --e;
3104     }
3105 
3106   if (Ops.size() == 1) return Ops[0];
3107 
3108   assert(!Ops.empty() && "Reduced smax down to nothing!");
3109 
3110   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3111   // already have one, otherwise create a new one.
3112   FoldingSetNodeID ID;
3113   ID.AddInteger(scSMaxExpr);
3114   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3115     ID.AddPointer(Ops[i]);
3116   void *IP = nullptr;
3117   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3118   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3119   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3120   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3121                                              O, Ops.size());
3122   UniqueSCEVs.InsertNode(S, IP);
3123   return S;
3124 }
3125 
3126 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3127                                          const SCEV *RHS) {
3128   SmallVector<const SCEV *, 2> Ops;
3129   Ops.push_back(LHS);
3130   Ops.push_back(RHS);
3131   return getUMaxExpr(Ops);
3132 }
3133 
3134 const SCEV *
3135 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3136   assert(!Ops.empty() && "Cannot get empty umax!");
3137   if (Ops.size() == 1) return Ops[0];
3138 #ifndef NDEBUG
3139   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3140   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3141     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3142            "SCEVUMaxExpr operand types don't match!");
3143 #endif
3144 
3145   // Sort by complexity, this groups all similar expression types together.
3146   GroupByComplexity(Ops, &LI);
3147 
3148   // If there are any constants, fold them together.
3149   unsigned Idx = 0;
3150   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3151     ++Idx;
3152     assert(Idx < Ops.size());
3153     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3154       // We found two constants, fold them together!
3155       ConstantInt *Fold = ConstantInt::get(
3156           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3157       Ops[0] = getConstant(Fold);
3158       Ops.erase(Ops.begin()+1);  // Erase the folded element
3159       if (Ops.size() == 1) return Ops[0];
3160       LHSC = cast<SCEVConstant>(Ops[0]);
3161     }
3162 
3163     // If we are left with a constant minimum-int, strip it off.
3164     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3165       Ops.erase(Ops.begin());
3166       --Idx;
3167     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3168       // If we have an umax with a constant maximum-int, it will always be
3169       // maximum-int.
3170       return Ops[0];
3171     }
3172 
3173     if (Ops.size() == 1) return Ops[0];
3174   }
3175 
3176   // Find the first UMax
3177   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3178     ++Idx;
3179 
3180   // Check to see if one of the operands is a UMax. If so, expand its operands
3181   // onto our operand list, and recurse to simplify.
3182   if (Idx < Ops.size()) {
3183     bool DeletedUMax = false;
3184     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3185       Ops.erase(Ops.begin()+Idx);
3186       Ops.append(UMax->op_begin(), UMax->op_end());
3187       DeletedUMax = true;
3188     }
3189 
3190     if (DeletedUMax)
3191       return getUMaxExpr(Ops);
3192   }
3193 
3194   // Okay, check to see if the same value occurs in the operand list twice.  If
3195   // so, delete one.  Since we sorted the list, these values are required to
3196   // be adjacent.
3197   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3198     //  X umax Y umax Y  -->  X umax Y
3199     //  X umax Y         -->  X, if X is always greater than Y
3200     if (Ops[i] == Ops[i+1] ||
3201         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3202       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3203       --i; --e;
3204     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3205       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3206       --i; --e;
3207     }
3208 
3209   if (Ops.size() == 1) return Ops[0];
3210 
3211   assert(!Ops.empty() && "Reduced umax down to nothing!");
3212 
3213   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3214   // already have one, otherwise create a new one.
3215   FoldingSetNodeID ID;
3216   ID.AddInteger(scUMaxExpr);
3217   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3218     ID.AddPointer(Ops[i]);
3219   void *IP = nullptr;
3220   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3221   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3222   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3223   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3224                                              O, Ops.size());
3225   UniqueSCEVs.InsertNode(S, IP);
3226   return S;
3227 }
3228 
3229 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3230                                          const SCEV *RHS) {
3231   // ~smax(~x, ~y) == smin(x, y).
3232   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3233 }
3234 
3235 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3236                                          const SCEV *RHS) {
3237   // ~umax(~x, ~y) == umin(x, y)
3238   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3239 }
3240 
3241 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3242   // We can bypass creating a target-independent
3243   // constant expression and then folding it back into a ConstantInt.
3244   // This is just a compile-time optimization.
3245   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3246 }
3247 
3248 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3249                                              StructType *STy,
3250                                              unsigned FieldNo) {
3251   // We can bypass creating a target-independent
3252   // constant expression and then folding it back into a ConstantInt.
3253   // This is just a compile-time optimization.
3254   return getConstant(
3255       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3256 }
3257 
3258 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3259   // Don't attempt to do anything other than create a SCEVUnknown object
3260   // here.  createSCEV only calls getUnknown after checking for all other
3261   // interesting possibilities, and any other code that calls getUnknown
3262   // is doing so in order to hide a value from SCEV canonicalization.
3263 
3264   FoldingSetNodeID ID;
3265   ID.AddInteger(scUnknown);
3266   ID.AddPointer(V);
3267   void *IP = nullptr;
3268   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3269     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3270            "Stale SCEVUnknown in uniquing map!");
3271     return S;
3272   }
3273   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3274                                             FirstUnknown);
3275   FirstUnknown = cast<SCEVUnknown>(S);
3276   UniqueSCEVs.InsertNode(S, IP);
3277   return S;
3278 }
3279 
3280 //===----------------------------------------------------------------------===//
3281 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3282 //
3283 
3284 /// Test if values of the given type are analyzable within the SCEV
3285 /// framework. This primarily includes integer types, and it can optionally
3286 /// include pointer types if the ScalarEvolution class has access to
3287 /// target-specific information.
3288 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3289   // Integers and pointers are always SCEVable.
3290   return Ty->isIntegerTy() || Ty->isPointerTy();
3291 }
3292 
3293 /// Return the size in bits of the specified type, for which isSCEVable must
3294 /// return true.
3295 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3296   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3297   return getDataLayout().getTypeSizeInBits(Ty);
3298 }
3299 
3300 /// Return a type with the same bitwidth as the given type and which represents
3301 /// how SCEV will treat the given type, for which isSCEVable must return
3302 /// true. For pointer types, this is the pointer-sized integer type.
3303 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3304   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3305 
3306   if (Ty->isIntegerTy())
3307     return Ty;
3308 
3309   // The only other support type is pointer.
3310   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3311   return getDataLayout().getIntPtrType(Ty);
3312 }
3313 
3314 const SCEV *ScalarEvolution::getCouldNotCompute() {
3315   return CouldNotCompute.get();
3316 }
3317 
3318 
3319 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3320   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3321   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3322   // is set iff if find such SCEVUnknown.
3323   //
3324   struct FindInvalidSCEVUnknown {
3325     bool FindOne;
3326     FindInvalidSCEVUnknown() { FindOne = false; }
3327     bool follow(const SCEV *S) {
3328       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3329       case scConstant:
3330         return false;
3331       case scUnknown:
3332         if (!cast<SCEVUnknown>(S)->getValue())
3333           FindOne = true;
3334         return false;
3335       default:
3336         return true;
3337       }
3338     }
3339     bool isDone() const { return FindOne; }
3340   };
3341 
3342   FindInvalidSCEVUnknown F;
3343   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3344   ST.visitAll(S);
3345 
3346   return !F.FindOne;
3347 }
3348 
3349 namespace {
3350 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3351 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
3352 // iff if such sub scAddRecExpr type SCEV is found.
3353 struct FindAddRecurrence {
3354   bool FoundOne;
3355   FindAddRecurrence() : FoundOne(false) {}
3356 
3357   bool follow(const SCEV *S) {
3358     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3359     case scAddRecExpr:
3360       FoundOne = true;
3361     case scConstant:
3362     case scUnknown:
3363     case scCouldNotCompute:
3364       return false;
3365     default:
3366       return true;
3367     }
3368   }
3369   bool isDone() const { return FoundOne; }
3370 };
3371 }
3372 
3373 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3374   HasRecMapType::iterator I = HasRecMap.find_as(S);
3375   if (I != HasRecMap.end())
3376     return I->second;
3377 
3378   FindAddRecurrence F;
3379   SCEVTraversal<FindAddRecurrence> ST(F);
3380   ST.visitAll(S);
3381   HasRecMap.insert({S, F.FoundOne});
3382   return F.FoundOne;
3383 }
3384 
3385 /// Return the Value set from S.
3386 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3387   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3388   if (SI == ExprValueMap.end())
3389     return nullptr;
3390 #ifndef NDEBUG
3391   if (VerifySCEVMap) {
3392     // Check there is no dangling Value in the set returned.
3393     for (const auto &VE : SI->second)
3394       assert(ValueExprMap.count(VE));
3395   }
3396 #endif
3397   return &SI->second;
3398 }
3399 
3400 /// Erase Value from ValueExprMap and ExprValueMap.  If ValueExprMap.erase(V) is
3401 /// not used together with forgetMemoizedResults(S), eraseValueFromMap should be
3402 /// used instead to ensure whenever V->S is removed from ValueExprMap, V is also
3403 /// removed from the set of ExprValueMap[S].
3404 void ScalarEvolution::eraseValueFromMap(Value *V) {
3405   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3406   if (I != ValueExprMap.end()) {
3407     const SCEV *S = I->second;
3408     SetVector<Value *> *SV = getSCEVValues(S);
3409     // Remove V from the set of ExprValueMap[S]
3410     if (SV)
3411       SV->remove(V);
3412     ValueExprMap.erase(V);
3413   }
3414 }
3415 
3416 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3417 /// create a new one.
3418 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3419   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3420 
3421   const SCEV *S = getExistingSCEV(V);
3422   if (S == nullptr) {
3423     S = createSCEV(V);
3424     // During PHI resolution, it is possible to create two SCEVs for the same
3425     // V, so it is needed to double check whether V->S is inserted into
3426     // ValueExprMap before insert S->V into ExprValueMap.
3427     std::pair<ValueExprMapType::iterator, bool> Pair =
3428         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3429     if (Pair.second)
3430       ExprValueMap[S].insert(V);
3431   }
3432   return S;
3433 }
3434 
3435 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3436   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3437 
3438   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3439   if (I != ValueExprMap.end()) {
3440     const SCEV *S = I->second;
3441     if (checkValidity(S))
3442       return S;
3443     forgetMemoizedResults(S);
3444     ValueExprMap.erase(I);
3445   }
3446   return nullptr;
3447 }
3448 
3449 /// Return a SCEV corresponding to -V = -1*V
3450 ///
3451 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3452                                              SCEV::NoWrapFlags Flags) {
3453   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3454     return getConstant(
3455                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3456 
3457   Type *Ty = V->getType();
3458   Ty = getEffectiveSCEVType(Ty);
3459   return getMulExpr(
3460       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3461 }
3462 
3463 /// Return a SCEV corresponding to ~V = -1-V
3464 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3465   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3466     return getConstant(
3467                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3468 
3469   Type *Ty = V->getType();
3470   Ty = getEffectiveSCEVType(Ty);
3471   const SCEV *AllOnes =
3472                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3473   return getMinusSCEV(AllOnes, V);
3474 }
3475 
3476 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3477                                           SCEV::NoWrapFlags Flags) {
3478   // Fast path: X - X --> 0.
3479   if (LHS == RHS)
3480     return getZero(LHS->getType());
3481 
3482   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3483   // makes it so that we cannot make much use of NUW.
3484   auto AddFlags = SCEV::FlagAnyWrap;
3485   const bool RHSIsNotMinSigned =
3486       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3487   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3488     // Let M be the minimum representable signed value. Then (-1)*RHS
3489     // signed-wraps if and only if RHS is M. That can happen even for
3490     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3491     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3492     // (-1)*RHS, we need to prove that RHS != M.
3493     //
3494     // If LHS is non-negative and we know that LHS - RHS does not
3495     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3496     // either by proving that RHS > M or that LHS >= 0.
3497     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3498       AddFlags = SCEV::FlagNSW;
3499     }
3500   }
3501 
3502   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3503   // RHS is NSW and LHS >= 0.
3504   //
3505   // The difficulty here is that the NSW flag may have been proven
3506   // relative to a loop that is to be found in a recurrence in LHS and
3507   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3508   // larger scope than intended.
3509   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3510 
3511   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3512 }
3513 
3514 const SCEV *
3515 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3516   Type *SrcTy = V->getType();
3517   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3518          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3519          "Cannot truncate or zero extend with non-integer arguments!");
3520   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3521     return V;  // No conversion
3522   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3523     return getTruncateExpr(V, Ty);
3524   return getZeroExtendExpr(V, Ty);
3525 }
3526 
3527 const SCEV *
3528 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3529                                          Type *Ty) {
3530   Type *SrcTy = V->getType();
3531   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3532          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3533          "Cannot truncate or zero extend with non-integer arguments!");
3534   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3535     return V;  // No conversion
3536   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3537     return getTruncateExpr(V, Ty);
3538   return getSignExtendExpr(V, Ty);
3539 }
3540 
3541 const SCEV *
3542 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3543   Type *SrcTy = V->getType();
3544   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3545          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3546          "Cannot noop or zero extend with non-integer arguments!");
3547   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3548          "getNoopOrZeroExtend cannot truncate!");
3549   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3550     return V;  // No conversion
3551   return getZeroExtendExpr(V, Ty);
3552 }
3553 
3554 const SCEV *
3555 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3556   Type *SrcTy = V->getType();
3557   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3558          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3559          "Cannot noop or sign extend with non-integer arguments!");
3560   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3561          "getNoopOrSignExtend cannot truncate!");
3562   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3563     return V;  // No conversion
3564   return getSignExtendExpr(V, Ty);
3565 }
3566 
3567 const SCEV *
3568 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3569   Type *SrcTy = V->getType();
3570   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3571          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3572          "Cannot noop or any extend with non-integer arguments!");
3573   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3574          "getNoopOrAnyExtend cannot truncate!");
3575   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3576     return V;  // No conversion
3577   return getAnyExtendExpr(V, Ty);
3578 }
3579 
3580 const SCEV *
3581 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3582   Type *SrcTy = V->getType();
3583   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3584          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3585          "Cannot truncate or noop with non-integer arguments!");
3586   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3587          "getTruncateOrNoop cannot extend!");
3588   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3589     return V;  // No conversion
3590   return getTruncateExpr(V, Ty);
3591 }
3592 
3593 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3594                                                         const SCEV *RHS) {
3595   const SCEV *PromotedLHS = LHS;
3596   const SCEV *PromotedRHS = RHS;
3597 
3598   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3599     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3600   else
3601     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3602 
3603   return getUMaxExpr(PromotedLHS, PromotedRHS);
3604 }
3605 
3606 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3607                                                         const SCEV *RHS) {
3608   const SCEV *PromotedLHS = LHS;
3609   const SCEV *PromotedRHS = RHS;
3610 
3611   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3612     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3613   else
3614     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3615 
3616   return getUMinExpr(PromotedLHS, PromotedRHS);
3617 }
3618 
3619 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3620   // A pointer operand may evaluate to a nonpointer expression, such as null.
3621   if (!V->getType()->isPointerTy())
3622     return V;
3623 
3624   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3625     return getPointerBase(Cast->getOperand());
3626   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3627     const SCEV *PtrOp = nullptr;
3628     for (const SCEV *NAryOp : NAry->operands()) {
3629       if (NAryOp->getType()->isPointerTy()) {
3630         // Cannot find the base of an expression with multiple pointer operands.
3631         if (PtrOp)
3632           return V;
3633         PtrOp = NAryOp;
3634       }
3635     }
3636     if (!PtrOp)
3637       return V;
3638     return getPointerBase(PtrOp);
3639   }
3640   return V;
3641 }
3642 
3643 /// Push users of the given Instruction onto the given Worklist.
3644 static void
3645 PushDefUseChildren(Instruction *I,
3646                    SmallVectorImpl<Instruction *> &Worklist) {
3647   // Push the def-use children onto the Worklist stack.
3648   for (User *U : I->users())
3649     Worklist.push_back(cast<Instruction>(U));
3650 }
3651 
3652 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3653   SmallVector<Instruction *, 16> Worklist;
3654   PushDefUseChildren(PN, Worklist);
3655 
3656   SmallPtrSet<Instruction *, 8> Visited;
3657   Visited.insert(PN);
3658   while (!Worklist.empty()) {
3659     Instruction *I = Worklist.pop_back_val();
3660     if (!Visited.insert(I).second)
3661       continue;
3662 
3663     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3664     if (It != ValueExprMap.end()) {
3665       const SCEV *Old = It->second;
3666 
3667       // Short-circuit the def-use traversal if the symbolic name
3668       // ceases to appear in expressions.
3669       if (Old != SymName && !hasOperand(Old, SymName))
3670         continue;
3671 
3672       // SCEVUnknown for a PHI either means that it has an unrecognized
3673       // structure, it's a PHI that's in the progress of being computed
3674       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3675       // additional loop trip count information isn't going to change anything.
3676       // In the second case, createNodeForPHI will perform the necessary
3677       // updates on its own when it gets to that point. In the third, we do
3678       // want to forget the SCEVUnknown.
3679       if (!isa<PHINode>(I) ||
3680           !isa<SCEVUnknown>(Old) ||
3681           (I != PN && Old == SymName)) {
3682         forgetMemoizedResults(Old);
3683         ValueExprMap.erase(It);
3684       }
3685     }
3686 
3687     PushDefUseChildren(I, Worklist);
3688   }
3689 }
3690 
3691 namespace {
3692 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3693 public:
3694   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3695                              ScalarEvolution &SE) {
3696     SCEVInitRewriter Rewriter(L, SE);
3697     const SCEV *Result = Rewriter.visit(S);
3698     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3699   }
3700 
3701   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3702       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3703 
3704   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3705     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3706       Valid = false;
3707     return Expr;
3708   }
3709 
3710   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3711     // Only allow AddRecExprs for this loop.
3712     if (Expr->getLoop() == L)
3713       return Expr->getStart();
3714     Valid = false;
3715     return Expr;
3716   }
3717 
3718   bool isValid() { return Valid; }
3719 
3720 private:
3721   const Loop *L;
3722   bool Valid;
3723 };
3724 
3725 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3726 public:
3727   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3728                              ScalarEvolution &SE) {
3729     SCEVShiftRewriter Rewriter(L, SE);
3730     const SCEV *Result = Rewriter.visit(S);
3731     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3732   }
3733 
3734   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3735       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3736 
3737   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3738     // Only allow AddRecExprs for this loop.
3739     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3740       Valid = false;
3741     return Expr;
3742   }
3743 
3744   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3745     if (Expr->getLoop() == L && Expr->isAffine())
3746       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3747     Valid = false;
3748     return Expr;
3749   }
3750   bool isValid() { return Valid; }
3751 
3752 private:
3753   const Loop *L;
3754   bool Valid;
3755 };
3756 } // end anonymous namespace
3757 
3758 SCEV::NoWrapFlags
3759 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3760   if (!AR->isAffine())
3761     return SCEV::FlagAnyWrap;
3762 
3763   typedef OverflowingBinaryOperator OBO;
3764   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3765 
3766   if (!AR->hasNoSignedWrap()) {
3767     ConstantRange AddRecRange = getSignedRange(AR);
3768     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3769 
3770     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3771         Instruction::Add, IncRange, OBO::NoSignedWrap);
3772     if (NSWRegion.contains(AddRecRange))
3773       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3774   }
3775 
3776   if (!AR->hasNoUnsignedWrap()) {
3777     ConstantRange AddRecRange = getUnsignedRange(AR);
3778     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3779 
3780     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3781         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3782     if (NUWRegion.contains(AddRecRange))
3783       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3784   }
3785 
3786   return Result;
3787 }
3788 
3789 namespace {
3790 /// Represents an abstract binary operation.  This may exist as a
3791 /// normal instruction or constant expression, or may have been
3792 /// derived from an expression tree.
3793 struct BinaryOp {
3794   unsigned Opcode;
3795   Value *LHS;
3796   Value *RHS;
3797   bool IsNSW;
3798   bool IsNUW;
3799 
3800   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3801   /// constant expression.
3802   Operator *Op;
3803 
3804   explicit BinaryOp(Operator *Op)
3805       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3806         IsNSW(false), IsNUW(false), Op(Op) {
3807     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3808       IsNSW = OBO->hasNoSignedWrap();
3809       IsNUW = OBO->hasNoUnsignedWrap();
3810     }
3811   }
3812 
3813   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3814                     bool IsNUW = false)
3815       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3816         Op(nullptr) {}
3817 };
3818 }
3819 
3820 
3821 /// Try to map \p V into a BinaryOp, and return \c None on failure.
3822 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
3823   auto *Op = dyn_cast<Operator>(V);
3824   if (!Op)
3825     return None;
3826 
3827   // Implementation detail: all the cleverness here should happen without
3828   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3829   // SCEV expressions when possible, and we should not break that.
3830 
3831   switch (Op->getOpcode()) {
3832   case Instruction::Add:
3833   case Instruction::Sub:
3834   case Instruction::Mul:
3835   case Instruction::UDiv:
3836   case Instruction::And:
3837   case Instruction::Or:
3838   case Instruction::AShr:
3839   case Instruction::Shl:
3840     return BinaryOp(Op);
3841 
3842   case Instruction::Xor:
3843     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3844       // If the RHS of the xor is a signbit, then this is just an add.
3845       // Instcombine turns add of signbit into xor as a strength reduction step.
3846       if (RHSC->getValue().isSignBit())
3847         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3848     return BinaryOp(Op);
3849 
3850   case Instruction::LShr:
3851     // Turn logical shift right of a constant into a unsigned divide.
3852     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3853       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3854 
3855       // If the shift count is not less than the bitwidth, the result of
3856       // the shift is undefined. Don't try to analyze it, because the
3857       // resolution chosen here may differ from the resolution chosen in
3858       // other parts of the compiler.
3859       if (SA->getValue().ult(BitWidth)) {
3860         Constant *X =
3861             ConstantInt::get(SA->getContext(),
3862                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3863         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3864       }
3865     }
3866     return BinaryOp(Op);
3867 
3868   case Instruction::ExtractValue: {
3869     auto *EVI = cast<ExtractValueInst>(Op);
3870     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3871       break;
3872 
3873     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3874     if (!CI)
3875       break;
3876 
3877     if (auto *F = CI->getCalledFunction())
3878       switch (F->getIntrinsicID()) {
3879       case Intrinsic::sadd_with_overflow:
3880       case Intrinsic::uadd_with_overflow: {
3881         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3882           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3883                           CI->getArgOperand(1));
3884 
3885         // Now that we know that all uses of the arithmetic-result component of
3886         // CI are guarded by the overflow check, we can go ahead and pretend
3887         // that the arithmetic is non-overflowing.
3888         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3889           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3890                           CI->getArgOperand(1), /* IsNSW = */ true,
3891                           /* IsNUW = */ false);
3892         else
3893           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3894                           CI->getArgOperand(1), /* IsNSW = */ false,
3895                           /* IsNUW*/ true);
3896       }
3897 
3898       case Intrinsic::ssub_with_overflow:
3899       case Intrinsic::usub_with_overflow:
3900         return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3901                         CI->getArgOperand(1));
3902 
3903       case Intrinsic::smul_with_overflow:
3904       case Intrinsic::umul_with_overflow:
3905         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3906                         CI->getArgOperand(1));
3907       default:
3908         break;
3909       }
3910   }
3911 
3912   default:
3913     break;
3914   }
3915 
3916   return None;
3917 }
3918 
3919 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3920   const Loop *L = LI.getLoopFor(PN->getParent());
3921   if (!L || L->getHeader() != PN->getParent())
3922     return nullptr;
3923 
3924   // The loop may have multiple entrances or multiple exits; we can analyze
3925   // this phi as an addrec if it has a unique entry value and a unique
3926   // backedge value.
3927   Value *BEValueV = nullptr, *StartValueV = nullptr;
3928   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3929     Value *V = PN->getIncomingValue(i);
3930     if (L->contains(PN->getIncomingBlock(i))) {
3931       if (!BEValueV) {
3932         BEValueV = V;
3933       } else if (BEValueV != V) {
3934         BEValueV = nullptr;
3935         break;
3936       }
3937     } else if (!StartValueV) {
3938       StartValueV = V;
3939     } else if (StartValueV != V) {
3940       StartValueV = nullptr;
3941       break;
3942     }
3943   }
3944   if (BEValueV && StartValueV) {
3945     // While we are analyzing this PHI node, handle its value symbolically.
3946     const SCEV *SymbolicName = getUnknown(PN);
3947     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3948            "PHI node already processed?");
3949     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3950 
3951     // Using this symbolic name for the PHI, analyze the value coming around
3952     // the back-edge.
3953     const SCEV *BEValue = getSCEV(BEValueV);
3954 
3955     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3956     // has a special value for the first iteration of the loop.
3957 
3958     // If the value coming around the backedge is an add with the symbolic
3959     // value we just inserted, then we found a simple induction variable!
3960     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3961       // If there is a single occurrence of the symbolic value, replace it
3962       // with a recurrence.
3963       unsigned FoundIndex = Add->getNumOperands();
3964       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3965         if (Add->getOperand(i) == SymbolicName)
3966           if (FoundIndex == e) {
3967             FoundIndex = i;
3968             break;
3969           }
3970 
3971       if (FoundIndex != Add->getNumOperands()) {
3972         // Create an add with everything but the specified operand.
3973         SmallVector<const SCEV *, 8> Ops;
3974         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3975           if (i != FoundIndex)
3976             Ops.push_back(Add->getOperand(i));
3977         const SCEV *Accum = getAddExpr(Ops);
3978 
3979         // This is not a valid addrec if the step amount is varying each
3980         // loop iteration, but is not itself an addrec in this loop.
3981         if (isLoopInvariant(Accum, L) ||
3982             (isa<SCEVAddRecExpr>(Accum) &&
3983              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3984           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3985 
3986           if (auto BO = MatchBinaryOp(BEValueV, DT)) {
3987             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
3988               if (BO->IsNUW)
3989                 Flags = setFlags(Flags, SCEV::FlagNUW);
3990               if (BO->IsNSW)
3991                 Flags = setFlags(Flags, SCEV::FlagNSW);
3992             }
3993           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3994             // If the increment is an inbounds GEP, then we know the address
3995             // space cannot be wrapped around. We cannot make any guarantee
3996             // about signed or unsigned overflow because pointers are
3997             // unsigned but we may have a negative index from the base
3998             // pointer. We can guarantee that no unsigned wrap occurs if the
3999             // indices form a positive value.
4000             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4001               Flags = setFlags(Flags, SCEV::FlagNW);
4002 
4003               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4004               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4005                 Flags = setFlags(Flags, SCEV::FlagNUW);
4006             }
4007 
4008             // We cannot transfer nuw and nsw flags from subtraction
4009             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4010             // for instance.
4011           }
4012 
4013           const SCEV *StartVal = getSCEV(StartValueV);
4014           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4015 
4016           // Okay, for the entire analysis of this edge we assumed the PHI
4017           // to be symbolic.  We now need to go back and purge all of the
4018           // entries for the scalars that use the symbolic expression.
4019           forgetSymbolicName(PN, SymbolicName);
4020           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4021 
4022           // We can add Flags to the post-inc expression only if we
4023           // know that it us *undefined behavior* for BEValueV to
4024           // overflow.
4025           if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4026             if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4027               (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4028 
4029           return PHISCEV;
4030         }
4031       }
4032     } else {
4033       // Otherwise, this could be a loop like this:
4034       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4035       // In this case, j = {1,+,1}  and BEValue is j.
4036       // Because the other in-value of i (0) fits the evolution of BEValue
4037       // i really is an addrec evolution.
4038       //
4039       // We can generalize this saying that i is the shifted value of BEValue
4040       // by one iteration:
4041       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4042       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4043       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4044       if (Shifted != getCouldNotCompute() &&
4045           Start != getCouldNotCompute()) {
4046         const SCEV *StartVal = getSCEV(StartValueV);
4047         if (Start == StartVal) {
4048           // Okay, for the entire analysis of this edge we assumed the PHI
4049           // to be symbolic.  We now need to go back and purge all of the
4050           // entries for the scalars that use the symbolic expression.
4051           forgetSymbolicName(PN, SymbolicName);
4052           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4053           return Shifted;
4054         }
4055       }
4056     }
4057 
4058     // Remove the temporary PHI node SCEV that has been inserted while intending
4059     // to create an AddRecExpr for this PHI node. We can not keep this temporary
4060     // as it will prevent later (possibly simpler) SCEV expressions to be added
4061     // to the ValueExprMap.
4062     ValueExprMap.erase(PN);
4063   }
4064 
4065   return nullptr;
4066 }
4067 
4068 // Checks if the SCEV S is available at BB.  S is considered available at BB
4069 // if S can be materialized at BB without introducing a fault.
4070 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4071                                BasicBlock *BB) {
4072   struct CheckAvailable {
4073     bool TraversalDone = false;
4074     bool Available = true;
4075 
4076     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4077     BasicBlock *BB = nullptr;
4078     DominatorTree &DT;
4079 
4080     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4081       : L(L), BB(BB), DT(DT) {}
4082 
4083     bool setUnavailable() {
4084       TraversalDone = true;
4085       Available = false;
4086       return false;
4087     }
4088 
4089     bool follow(const SCEV *S) {
4090       switch (S->getSCEVType()) {
4091       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4092       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4093         // These expressions are available if their operand(s) is/are.
4094         return true;
4095 
4096       case scAddRecExpr: {
4097         // We allow add recurrences that are on the loop BB is in, or some
4098         // outer loop.  This guarantees availability because the value of the
4099         // add recurrence at BB is simply the "current" value of the induction
4100         // variable.  We can relax this in the future; for instance an add
4101         // recurrence on a sibling dominating loop is also available at BB.
4102         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4103         if (L && (ARLoop == L || ARLoop->contains(L)))
4104           return true;
4105 
4106         return setUnavailable();
4107       }
4108 
4109       case scUnknown: {
4110         // For SCEVUnknown, we check for simple dominance.
4111         const auto *SU = cast<SCEVUnknown>(S);
4112         Value *V = SU->getValue();
4113 
4114         if (isa<Argument>(V))
4115           return false;
4116 
4117         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4118           return false;
4119 
4120         return setUnavailable();
4121       }
4122 
4123       case scUDivExpr:
4124       case scCouldNotCompute:
4125         // We do not try to smart about these at all.
4126         return setUnavailable();
4127       }
4128       llvm_unreachable("switch should be fully covered!");
4129     }
4130 
4131     bool isDone() { return TraversalDone; }
4132   };
4133 
4134   CheckAvailable CA(L, BB, DT);
4135   SCEVTraversal<CheckAvailable> ST(CA);
4136 
4137   ST.visitAll(S);
4138   return CA.Available;
4139 }
4140 
4141 // Try to match a control flow sequence that branches out at BI and merges back
4142 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4143 // match.
4144 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4145                           Value *&C, Value *&LHS, Value *&RHS) {
4146   C = BI->getCondition();
4147 
4148   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4149   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4150 
4151   if (!LeftEdge.isSingleEdge())
4152     return false;
4153 
4154   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4155 
4156   Use &LeftUse = Merge->getOperandUse(0);
4157   Use &RightUse = Merge->getOperandUse(1);
4158 
4159   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4160     LHS = LeftUse;
4161     RHS = RightUse;
4162     return true;
4163   }
4164 
4165   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4166     LHS = RightUse;
4167     RHS = LeftUse;
4168     return true;
4169   }
4170 
4171   return false;
4172 }
4173 
4174 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4175   if (PN->getNumIncomingValues() == 2) {
4176     const Loop *L = LI.getLoopFor(PN->getParent());
4177 
4178     // We don't want to break LCSSA, even in a SCEV expression tree.
4179     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4180       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4181         return nullptr;
4182 
4183     // Try to match
4184     //
4185     //  br %cond, label %left, label %right
4186     // left:
4187     //  br label %merge
4188     // right:
4189     //  br label %merge
4190     // merge:
4191     //  V = phi [ %x, %left ], [ %y, %right ]
4192     //
4193     // as "select %cond, %x, %y"
4194 
4195     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4196     assert(IDom && "At least the entry block should dominate PN");
4197 
4198     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4199     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4200 
4201     if (BI && BI->isConditional() &&
4202         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4203         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4204         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4205       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4206   }
4207 
4208   return nullptr;
4209 }
4210 
4211 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4212   if (const SCEV *S = createAddRecFromPHI(PN))
4213     return S;
4214 
4215   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4216     return S;
4217 
4218   // If the PHI has a single incoming value, follow that value, unless the
4219   // PHI's incoming blocks are in a different loop, in which case doing so
4220   // risks breaking LCSSA form. Instcombine would normally zap these, but
4221   // it doesn't have DominatorTree information, so it may miss cases.
4222   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4223     if (LI.replacementPreservesLCSSAForm(PN, V))
4224       return getSCEV(V);
4225 
4226   // If it's not a loop phi, we can't handle it yet.
4227   return getUnknown(PN);
4228 }
4229 
4230 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4231                                                       Value *Cond,
4232                                                       Value *TrueVal,
4233                                                       Value *FalseVal) {
4234   // Handle "constant" branch or select. This can occur for instance when a
4235   // loop pass transforms an inner loop and moves on to process the outer loop.
4236   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4237     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4238 
4239   // Try to match some simple smax or umax patterns.
4240   auto *ICI = dyn_cast<ICmpInst>(Cond);
4241   if (!ICI)
4242     return getUnknown(I);
4243 
4244   Value *LHS = ICI->getOperand(0);
4245   Value *RHS = ICI->getOperand(1);
4246 
4247   switch (ICI->getPredicate()) {
4248   case ICmpInst::ICMP_SLT:
4249   case ICmpInst::ICMP_SLE:
4250     std::swap(LHS, RHS);
4251   // fall through
4252   case ICmpInst::ICMP_SGT:
4253   case ICmpInst::ICMP_SGE:
4254     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4255     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4256     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4257       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4258       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4259       const SCEV *LA = getSCEV(TrueVal);
4260       const SCEV *RA = getSCEV(FalseVal);
4261       const SCEV *LDiff = getMinusSCEV(LA, LS);
4262       const SCEV *RDiff = getMinusSCEV(RA, RS);
4263       if (LDiff == RDiff)
4264         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4265       LDiff = getMinusSCEV(LA, RS);
4266       RDiff = getMinusSCEV(RA, LS);
4267       if (LDiff == RDiff)
4268         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4269     }
4270     break;
4271   case ICmpInst::ICMP_ULT:
4272   case ICmpInst::ICMP_ULE:
4273     std::swap(LHS, RHS);
4274   // fall through
4275   case ICmpInst::ICMP_UGT:
4276   case ICmpInst::ICMP_UGE:
4277     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4278     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4279     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4280       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4281       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4282       const SCEV *LA = getSCEV(TrueVal);
4283       const SCEV *RA = getSCEV(FalseVal);
4284       const SCEV *LDiff = getMinusSCEV(LA, LS);
4285       const SCEV *RDiff = getMinusSCEV(RA, RS);
4286       if (LDiff == RDiff)
4287         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4288       LDiff = getMinusSCEV(LA, RS);
4289       RDiff = getMinusSCEV(RA, LS);
4290       if (LDiff == RDiff)
4291         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4292     }
4293     break;
4294   case ICmpInst::ICMP_NE:
4295     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4296     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4297         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4298       const SCEV *One = getOne(I->getType());
4299       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4300       const SCEV *LA = getSCEV(TrueVal);
4301       const SCEV *RA = getSCEV(FalseVal);
4302       const SCEV *LDiff = getMinusSCEV(LA, LS);
4303       const SCEV *RDiff = getMinusSCEV(RA, One);
4304       if (LDiff == RDiff)
4305         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4306     }
4307     break;
4308   case ICmpInst::ICMP_EQ:
4309     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4310     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4311         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4312       const SCEV *One = getOne(I->getType());
4313       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4314       const SCEV *LA = getSCEV(TrueVal);
4315       const SCEV *RA = getSCEV(FalseVal);
4316       const SCEV *LDiff = getMinusSCEV(LA, One);
4317       const SCEV *RDiff = getMinusSCEV(RA, LS);
4318       if (LDiff == RDiff)
4319         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4320     }
4321     break;
4322   default:
4323     break;
4324   }
4325 
4326   return getUnknown(I);
4327 }
4328 
4329 /// Expand GEP instructions into add and multiply operations. This allows them
4330 /// to be analyzed by regular SCEV code.
4331 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4332   // Don't attempt to analyze GEPs over unsized objects.
4333   if (!GEP->getSourceElementType()->isSized())
4334     return getUnknown(GEP);
4335 
4336   SmallVector<const SCEV *, 4> IndexExprs;
4337   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4338     IndexExprs.push_back(getSCEV(*Index));
4339   return getGEPExpr(GEP->getSourceElementType(),
4340                     getSCEV(GEP->getPointerOperand()),
4341                     IndexExprs, GEP->isInBounds());
4342 }
4343 
4344 uint32_t
4345 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4346   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4347     return C->getAPInt().countTrailingZeros();
4348 
4349   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4350     return std::min(GetMinTrailingZeros(T->getOperand()),
4351                     (uint32_t)getTypeSizeInBits(T->getType()));
4352 
4353   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4354     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4355     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4356              getTypeSizeInBits(E->getType()) : OpRes;
4357   }
4358 
4359   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4360     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4361     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4362              getTypeSizeInBits(E->getType()) : OpRes;
4363   }
4364 
4365   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4366     // The result is the min of all operands results.
4367     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4368     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4369       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4370     return MinOpRes;
4371   }
4372 
4373   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4374     // The result is the sum of all operands results.
4375     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4376     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4377     for (unsigned i = 1, e = M->getNumOperands();
4378          SumOpRes != BitWidth && i != e; ++i)
4379       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4380                           BitWidth);
4381     return SumOpRes;
4382   }
4383 
4384   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4385     // The result is the min of all operands results.
4386     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4387     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4388       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4389     return MinOpRes;
4390   }
4391 
4392   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4393     // The result is the min of all operands results.
4394     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4395     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4396       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4397     return MinOpRes;
4398   }
4399 
4400   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4401     // The result is the min of all operands results.
4402     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4403     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4404       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4405     return MinOpRes;
4406   }
4407 
4408   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4409     // For a SCEVUnknown, ask ValueTracking.
4410     unsigned BitWidth = getTypeSizeInBits(U->getType());
4411     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4412     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4413                      nullptr, &DT);
4414     return Zeros.countTrailingOnes();
4415   }
4416 
4417   // SCEVUDivExpr
4418   return 0;
4419 }
4420 
4421 /// Helper method to assign a range to V from metadata present in the IR.
4422 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4423   if (Instruction *I = dyn_cast<Instruction>(V))
4424     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4425       return getConstantRangeFromMetadata(*MD);
4426 
4427   return None;
4428 }
4429 
4430 /// Determine the range for a particular SCEV.  If SignHint is
4431 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4432 /// with a "cleaner" unsigned (resp. signed) representation.
4433 ConstantRange
4434 ScalarEvolution::getRange(const SCEV *S,
4435                           ScalarEvolution::RangeSignHint SignHint) {
4436   DenseMap<const SCEV *, ConstantRange> &Cache =
4437       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4438                                                        : SignedRanges;
4439 
4440   // See if we've computed this range already.
4441   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4442   if (I != Cache.end())
4443     return I->second;
4444 
4445   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4446     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4447 
4448   unsigned BitWidth = getTypeSizeInBits(S->getType());
4449   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4450 
4451   // If the value has known zeros, the maximum value will have those known zeros
4452   // as well.
4453   uint32_t TZ = GetMinTrailingZeros(S);
4454   if (TZ != 0) {
4455     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4456       ConservativeResult =
4457           ConstantRange(APInt::getMinValue(BitWidth),
4458                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4459     else
4460       ConservativeResult = ConstantRange(
4461           APInt::getSignedMinValue(BitWidth),
4462           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4463   }
4464 
4465   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4466     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4467     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4468       X = X.add(getRange(Add->getOperand(i), SignHint));
4469     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4470   }
4471 
4472   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4473     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4474     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4475       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4476     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4477   }
4478 
4479   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4480     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4481     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4482       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4483     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4484   }
4485 
4486   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4487     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4488     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4489       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4490     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4491   }
4492 
4493   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4494     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4495     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4496     return setRange(UDiv, SignHint,
4497                     ConservativeResult.intersectWith(X.udiv(Y)));
4498   }
4499 
4500   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4501     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4502     return setRange(ZExt, SignHint,
4503                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4504   }
4505 
4506   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4507     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4508     return setRange(SExt, SignHint,
4509                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4510   }
4511 
4512   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4513     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4514     return setRange(Trunc, SignHint,
4515                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4516   }
4517 
4518   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4519     // If there's no unsigned wrap, the value will never be less than its
4520     // initial value.
4521     if (AddRec->hasNoUnsignedWrap())
4522       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4523         if (!C->getValue()->isZero())
4524           ConservativeResult = ConservativeResult.intersectWith(
4525               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4526 
4527     // If there's no signed wrap, and all the operands have the same sign or
4528     // zero, the value won't ever change sign.
4529     if (AddRec->hasNoSignedWrap()) {
4530       bool AllNonNeg = true;
4531       bool AllNonPos = true;
4532       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4533         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4534         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4535       }
4536       if (AllNonNeg)
4537         ConservativeResult = ConservativeResult.intersectWith(
4538           ConstantRange(APInt(BitWidth, 0),
4539                         APInt::getSignedMinValue(BitWidth)));
4540       else if (AllNonPos)
4541         ConservativeResult = ConservativeResult.intersectWith(
4542           ConstantRange(APInt::getSignedMinValue(BitWidth),
4543                         APInt(BitWidth, 1)));
4544     }
4545 
4546     // TODO: non-affine addrec
4547     if (AddRec->isAffine()) {
4548       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4549       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4550           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4551         auto RangeFromAffine = getRangeForAffineAR(
4552             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4553             BitWidth);
4554         if (!RangeFromAffine.isFullSet())
4555           ConservativeResult =
4556               ConservativeResult.intersectWith(RangeFromAffine);
4557 
4558         auto RangeFromFactoring = getRangeViaFactoring(
4559             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4560             BitWidth);
4561         if (!RangeFromFactoring.isFullSet())
4562           ConservativeResult =
4563               ConservativeResult.intersectWith(RangeFromFactoring);
4564       }
4565     }
4566 
4567     return setRange(AddRec, SignHint, ConservativeResult);
4568   }
4569 
4570   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4571     // Check if the IR explicitly contains !range metadata.
4572     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4573     if (MDRange.hasValue())
4574       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4575 
4576     // Split here to avoid paying the compile-time cost of calling both
4577     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4578     // if needed.
4579     const DataLayout &DL = getDataLayout();
4580     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4581       // For a SCEVUnknown, ask ValueTracking.
4582       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4583       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4584       if (Ones != ~Zeros + 1)
4585         ConservativeResult =
4586             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4587     } else {
4588       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4589              "generalize as needed!");
4590       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4591       if (NS > 1)
4592         ConservativeResult = ConservativeResult.intersectWith(
4593             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4594                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4595     }
4596 
4597     return setRange(U, SignHint, ConservativeResult);
4598   }
4599 
4600   return setRange(S, SignHint, ConservativeResult);
4601 }
4602 
4603 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4604                                                    const SCEV *Step,
4605                                                    const SCEV *MaxBECount,
4606                                                    unsigned BitWidth) {
4607   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4608          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4609          "Precondition!");
4610 
4611   ConstantRange Result(BitWidth, /* isFullSet = */ true);
4612 
4613   // Check for overflow.  This must be done with ConstantRange arithmetic
4614   // because we could be called from within the ScalarEvolution overflow
4615   // checking code.
4616 
4617   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4618   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4619   ConstantRange ZExtMaxBECountRange =
4620       MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4621 
4622   ConstantRange StepSRange = getSignedRange(Step);
4623   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4624 
4625   ConstantRange StartURange = getUnsignedRange(Start);
4626   ConstantRange EndURange =
4627       StartURange.add(MaxBECountRange.multiply(StepSRange));
4628 
4629   // Check for unsigned overflow.
4630   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4631   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4632   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4633       ZExtEndURange) {
4634     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4635                                EndURange.getUnsignedMin());
4636     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4637                                EndURange.getUnsignedMax());
4638     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4639     if (!IsFullRange)
4640       Result =
4641           Result.intersectWith(ConstantRange(Min, Max + 1));
4642   }
4643 
4644   ConstantRange StartSRange = getSignedRange(Start);
4645   ConstantRange EndSRange =
4646       StartSRange.add(MaxBECountRange.multiply(StepSRange));
4647 
4648   // Check for signed overflow. This must be done with ConstantRange
4649   // arithmetic because we could be called from within the ScalarEvolution
4650   // overflow checking code.
4651   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4652   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4653   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4654       SExtEndSRange) {
4655     APInt Min =
4656         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4657     APInt Max =
4658         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4659     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4660     if (!IsFullRange)
4661       Result =
4662           Result.intersectWith(ConstantRange(Min, Max + 1));
4663   }
4664 
4665   return Result;
4666 }
4667 
4668 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4669                                                     const SCEV *Step,
4670                                                     const SCEV *MaxBECount,
4671                                                     unsigned BitWidth) {
4672   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4673   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4674 
4675   struct SelectPattern {
4676     Value *Condition = nullptr;
4677     APInt TrueValue;
4678     APInt FalseValue;
4679 
4680     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4681                            const SCEV *S) {
4682       Optional<unsigned> CastOp;
4683       APInt Offset(BitWidth, 0);
4684 
4685       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4686              "Should be!");
4687 
4688       // Peel off a constant offset:
4689       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4690         // In the future we could consider being smarter here and handle
4691         // {Start+Step,+,Step} too.
4692         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4693           return;
4694 
4695         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4696         S = SA->getOperand(1);
4697       }
4698 
4699       // Peel off a cast operation
4700       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4701         CastOp = SCast->getSCEVType();
4702         S = SCast->getOperand();
4703       }
4704 
4705       using namespace llvm::PatternMatch;
4706 
4707       auto *SU = dyn_cast<SCEVUnknown>(S);
4708       const APInt *TrueVal, *FalseVal;
4709       if (!SU ||
4710           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4711                                           m_APInt(FalseVal)))) {
4712         Condition = nullptr;
4713         return;
4714       }
4715 
4716       TrueValue = *TrueVal;
4717       FalseValue = *FalseVal;
4718 
4719       // Re-apply the cast we peeled off earlier
4720       if (CastOp.hasValue())
4721         switch (*CastOp) {
4722         default:
4723           llvm_unreachable("Unknown SCEV cast type!");
4724 
4725         case scTruncate:
4726           TrueValue = TrueValue.trunc(BitWidth);
4727           FalseValue = FalseValue.trunc(BitWidth);
4728           break;
4729         case scZeroExtend:
4730           TrueValue = TrueValue.zext(BitWidth);
4731           FalseValue = FalseValue.zext(BitWidth);
4732           break;
4733         case scSignExtend:
4734           TrueValue = TrueValue.sext(BitWidth);
4735           FalseValue = FalseValue.sext(BitWidth);
4736           break;
4737         }
4738 
4739       // Re-apply the constant offset we peeled off earlier
4740       TrueValue += Offset;
4741       FalseValue += Offset;
4742     }
4743 
4744     bool isRecognized() { return Condition != nullptr; }
4745   };
4746 
4747   SelectPattern StartPattern(*this, BitWidth, Start);
4748   if (!StartPattern.isRecognized())
4749     return ConstantRange(BitWidth, /* isFullSet = */ true);
4750 
4751   SelectPattern StepPattern(*this, BitWidth, Step);
4752   if (!StepPattern.isRecognized())
4753     return ConstantRange(BitWidth, /* isFullSet = */ true);
4754 
4755   if (StartPattern.Condition != StepPattern.Condition) {
4756     // We don't handle this case today; but we could, by considering four
4757     // possibilities below instead of two. I'm not sure if there are cases where
4758     // that will help over what getRange already does, though.
4759     return ConstantRange(BitWidth, /* isFullSet = */ true);
4760   }
4761 
4762   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4763   // construct arbitrary general SCEV expressions here.  This function is called
4764   // from deep in the call stack, and calling getSCEV (on a sext instruction,
4765   // say) can end up caching a suboptimal value.
4766 
4767   // FIXME: without the explicit `this` receiver below, MSVC errors out with
4768   // C2352 and C2512 (otherwise it isn't needed).
4769 
4770   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4771   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4772   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4773   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4774 
4775   ConstantRange TrueRange =
4776       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4777   ConstantRange FalseRange =
4778       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4779 
4780   return TrueRange.unionWith(FalseRange);
4781 }
4782 
4783 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4784   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4785   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4786 
4787   // Return early if there are no flags to propagate to the SCEV.
4788   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4789   if (BinOp->hasNoUnsignedWrap())
4790     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4791   if (BinOp->hasNoSignedWrap())
4792     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4793   if (Flags == SCEV::FlagAnyWrap)
4794     return SCEV::FlagAnyWrap;
4795 
4796   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4797 }
4798 
4799 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4800   // Here we check that I is in the header of the innermost loop containing I,
4801   // since we only deal with instructions in the loop header. The actual loop we
4802   // need to check later will come from an add recurrence, but getting that
4803   // requires computing the SCEV of the operands, which can be expensive. This
4804   // check we can do cheaply to rule out some cases early.
4805   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4806   if (InnermostContainingLoop == nullptr ||
4807       InnermostContainingLoop->getHeader() != I->getParent())
4808     return false;
4809 
4810   // Only proceed if we can prove that I does not yield poison.
4811   if (!isKnownNotFullPoison(I)) return false;
4812 
4813   // At this point we know that if I is executed, then it does not wrap
4814   // according to at least one of NSW or NUW. If I is not executed, then we do
4815   // not know if the calculation that I represents would wrap. Multiple
4816   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4817   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4818   // derived from other instructions that map to the same SCEV. We cannot make
4819   // that guarantee for cases where I is not executed. So we need to find the
4820   // loop that I is considered in relation to and prove that I is executed for
4821   // every iteration of that loop. That implies that the value that I
4822   // calculates does not wrap anywhere in the loop, so then we can apply the
4823   // flags to the SCEV.
4824   //
4825   // We check isLoopInvariant to disambiguate in case we are adding recurrences
4826   // from different loops, so that we know which loop to prove that I is
4827   // executed in.
4828   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4829     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4830     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4831       bool AllOtherOpsLoopInvariant = true;
4832       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4833            ++OtherOpIndex) {
4834         if (OtherOpIndex != OpIndex) {
4835           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4836           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4837             AllOtherOpsLoopInvariant = false;
4838             break;
4839           }
4840         }
4841       }
4842       if (AllOtherOpsLoopInvariant &&
4843           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4844         return true;
4845     }
4846   }
4847   return false;
4848 }
4849 
4850 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4851   // If we know that \c I can never be poison period, then that's enough.
4852   if (isSCEVExprNeverPoison(I))
4853     return true;
4854 
4855   // For an add recurrence specifically, we assume that infinite loops without
4856   // side effects are undefined behavior, and then reason as follows:
4857   //
4858   // If the add recurrence is poison in any iteration, it is poison on all
4859   // future iterations (since incrementing poison yields poison). If the result
4860   // of the add recurrence is fed into the loop latch condition and the loop
4861   // does not contain any throws or exiting blocks other than the latch, we now
4862   // have the ability to "choose" whether the backedge is taken or not (by
4863   // choosing a sufficiently evil value for the poison feeding into the branch)
4864   // for every iteration including and after the one in which \p I first became
4865   // poison.  There are two possibilities (let's call the iteration in which \p
4866   // I first became poison as K):
4867   //
4868   //  1. In the set of iterations including and after K, the loop body executes
4869   //     no side effects.  In this case executing the backege an infinte number
4870   //     of times will yield undefined behavior.
4871   //
4872   //  2. In the set of iterations including and after K, the loop body executes
4873   //     at least one side effect.  In this case, that specific instance of side
4874   //     effect is control dependent on poison, which also yields undefined
4875   //     behavior.
4876 
4877   auto *ExitingBB = L->getExitingBlock();
4878   auto *LatchBB = L->getLoopLatch();
4879   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4880     return false;
4881 
4882   SmallPtrSet<const Instruction *, 16> Pushed;
4883   SmallVector<const Instruction *, 8> PoisonStack;
4884 
4885   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
4886   // things that are known to be fully poison under that assumption go on the
4887   // PoisonStack.
4888   Pushed.insert(I);
4889   PoisonStack.push_back(I);
4890 
4891   bool LatchControlDependentOnPoison = false;
4892   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
4893     const Instruction *Poison = PoisonStack.pop_back_val();
4894 
4895     for (auto *PoisonUser : Poison->users()) {
4896       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
4897         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
4898           PoisonStack.push_back(cast<Instruction>(PoisonUser));
4899       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
4900         assert(BI->isConditional() && "Only possibility!");
4901         if (BI->getParent() == LatchBB) {
4902           LatchControlDependentOnPoison = true;
4903           break;
4904         }
4905       }
4906     }
4907   }
4908 
4909   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
4910 }
4911 
4912 bool ScalarEvolution::loopHasNoAbnormalExits(const Loop *L) {
4913   auto Itr = LoopHasNoAbnormalExits.find(L);
4914   if (Itr == LoopHasNoAbnormalExits.end()) {
4915     auto NoAbnormalExitInBB = [&](BasicBlock *BB) {
4916       return all_of(*BB, [](Instruction &I) {
4917         return isGuaranteedToTransferExecutionToSuccessor(&I);
4918       });
4919     };
4920 
4921     auto InsertPair = LoopHasNoAbnormalExits.insert(
4922         {L, all_of(L->getBlocks(), NoAbnormalExitInBB)});
4923     assert(InsertPair.second && "We just checked!");
4924     Itr = InsertPair.first;
4925   }
4926 
4927   return Itr->second;
4928 }
4929 
4930 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4931   if (!isSCEVable(V->getType()))
4932     return getUnknown(V);
4933 
4934   if (Instruction *I = dyn_cast<Instruction>(V)) {
4935     // Don't attempt to analyze instructions in blocks that aren't
4936     // reachable. Such instructions don't matter, and they aren't required
4937     // to obey basic rules for definitions dominating uses which this
4938     // analysis depends on.
4939     if (!DT.isReachableFromEntry(I->getParent()))
4940       return getUnknown(V);
4941   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4942     return getConstant(CI);
4943   else if (isa<ConstantPointerNull>(V))
4944     return getZero(V->getType());
4945   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4946     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
4947   else if (!isa<ConstantExpr>(V))
4948     return getUnknown(V);
4949 
4950   Operator *U = cast<Operator>(V);
4951   if (auto BO = MatchBinaryOp(U, DT)) {
4952     switch (BO->Opcode) {
4953     case Instruction::Add: {
4954       // The simple thing to do would be to just call getSCEV on both operands
4955       // and call getAddExpr with the result. However if we're looking at a
4956       // bunch of things all added together, this can be quite inefficient,
4957       // because it leads to N-1 getAddExpr calls for N ultimate operands.
4958       // Instead, gather up all the operands and make a single getAddExpr call.
4959       // LLVM IR canonical form means we need only traverse the left operands.
4960       SmallVector<const SCEV *, 4> AddOps;
4961       do {
4962         if (BO->Op) {
4963           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4964             AddOps.push_back(OpSCEV);
4965             break;
4966           }
4967 
4968           // If a NUW or NSW flag can be applied to the SCEV for this
4969           // addition, then compute the SCEV for this addition by itself
4970           // with a separate call to getAddExpr. We need to do that
4971           // instead of pushing the operands of the addition onto AddOps,
4972           // since the flags are only known to apply to this particular
4973           // addition - they may not apply to other additions that can be
4974           // formed with operands from AddOps.
4975           const SCEV *RHS = getSCEV(BO->RHS);
4976           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4977           if (Flags != SCEV::FlagAnyWrap) {
4978             const SCEV *LHS = getSCEV(BO->LHS);
4979             if (BO->Opcode == Instruction::Sub)
4980               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4981             else
4982               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4983             break;
4984           }
4985         }
4986 
4987         if (BO->Opcode == Instruction::Sub)
4988           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
4989         else
4990           AddOps.push_back(getSCEV(BO->RHS));
4991 
4992         auto NewBO = MatchBinaryOp(BO->LHS, DT);
4993         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
4994                        NewBO->Opcode != Instruction::Sub)) {
4995           AddOps.push_back(getSCEV(BO->LHS));
4996           break;
4997         }
4998         BO = NewBO;
4999       } while (true);
5000 
5001       return getAddExpr(AddOps);
5002     }
5003 
5004     case Instruction::Mul: {
5005       SmallVector<const SCEV *, 4> MulOps;
5006       do {
5007         if (BO->Op) {
5008           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5009             MulOps.push_back(OpSCEV);
5010             break;
5011           }
5012 
5013           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5014           if (Flags != SCEV::FlagAnyWrap) {
5015             MulOps.push_back(
5016                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5017             break;
5018           }
5019         }
5020 
5021         MulOps.push_back(getSCEV(BO->RHS));
5022         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5023         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5024           MulOps.push_back(getSCEV(BO->LHS));
5025           break;
5026         }
5027 	BO = NewBO;
5028       } while (true);
5029 
5030       return getMulExpr(MulOps);
5031     }
5032     case Instruction::UDiv:
5033       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5034     case Instruction::Sub: {
5035       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5036       if (BO->Op)
5037         Flags = getNoWrapFlagsFromUB(BO->Op);
5038       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5039     }
5040     case Instruction::And:
5041       // For an expression like x&255 that merely masks off the high bits,
5042       // use zext(trunc(x)) as the SCEV expression.
5043       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5044         if (CI->isNullValue())
5045           return getSCEV(BO->RHS);
5046         if (CI->isAllOnesValue())
5047           return getSCEV(BO->LHS);
5048         const APInt &A = CI->getValue();
5049 
5050         // Instcombine's ShrinkDemandedConstant may strip bits out of
5051         // constants, obscuring what would otherwise be a low-bits mask.
5052         // Use computeKnownBits to compute what ShrinkDemandedConstant
5053         // knew about to reconstruct a low-bits mask value.
5054         unsigned LZ = A.countLeadingZeros();
5055         unsigned TZ = A.countTrailingZeros();
5056         unsigned BitWidth = A.getBitWidth();
5057         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5058         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5059                          0, &AC, nullptr, &DT);
5060 
5061         APInt EffectiveMask =
5062             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5063         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5064           const SCEV *MulCount = getConstant(ConstantInt::get(
5065               getContext(), APInt::getOneBitSet(BitWidth, TZ)));
5066           return getMulExpr(
5067               getZeroExtendExpr(
5068                   getTruncateExpr(
5069                       getUDivExactExpr(getSCEV(BO->LHS), MulCount),
5070                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5071                   BO->LHS->getType()),
5072               MulCount);
5073         }
5074       }
5075       break;
5076 
5077     case Instruction::Or:
5078       // If the RHS of the Or is a constant, we may have something like:
5079       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5080       // optimizations will transparently handle this case.
5081       //
5082       // In order for this transformation to be safe, the LHS must be of the
5083       // form X*(2^n) and the Or constant must be less than 2^n.
5084       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5085         const SCEV *LHS = getSCEV(BO->LHS);
5086         const APInt &CIVal = CI->getValue();
5087         if (GetMinTrailingZeros(LHS) >=
5088             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5089           // Build a plain add SCEV.
5090           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5091           // If the LHS of the add was an addrec and it has no-wrap flags,
5092           // transfer the no-wrap flags, since an or won't introduce a wrap.
5093           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5094             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5095             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5096                 OldAR->getNoWrapFlags());
5097           }
5098           return S;
5099         }
5100       }
5101       break;
5102 
5103     case Instruction::Xor:
5104       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5105         // If the RHS of xor is -1, then this is a not operation.
5106         if (CI->isAllOnesValue())
5107           return getNotSCEV(getSCEV(BO->LHS));
5108 
5109         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5110         // This is a variant of the check for xor with -1, and it handles
5111         // the case where instcombine has trimmed non-demanded bits out
5112         // of an xor with -1.
5113         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5114           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5115             if (LBO->getOpcode() == Instruction::And &&
5116                 LCI->getValue() == CI->getValue())
5117               if (const SCEVZeroExtendExpr *Z =
5118                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5119                 Type *UTy = BO->LHS->getType();
5120                 const SCEV *Z0 = Z->getOperand();
5121                 Type *Z0Ty = Z0->getType();
5122                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5123 
5124                 // If C is a low-bits mask, the zero extend is serving to
5125                 // mask off the high bits. Complement the operand and
5126                 // re-apply the zext.
5127                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5128                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5129 
5130                 // If C is a single bit, it may be in the sign-bit position
5131                 // before the zero-extend. In this case, represent the xor
5132                 // using an add, which is equivalent, and re-apply the zext.
5133                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5134                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5135                     Trunc.isSignBit())
5136                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5137                                            UTy);
5138               }
5139       }
5140       break;
5141 
5142   case Instruction::Shl:
5143     // Turn shift left of a constant amount into a multiply.
5144     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5145       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5146 
5147       // If the shift count is not less than the bitwidth, the result of
5148       // the shift is undefined. Don't try to analyze it, because the
5149       // resolution chosen here may differ from the resolution chosen in
5150       // other parts of the compiler.
5151       if (SA->getValue().uge(BitWidth))
5152         break;
5153 
5154       // It is currently not resolved how to interpret NSW for left
5155       // shift by BitWidth - 1, so we avoid applying flags in that
5156       // case. Remove this check (or this comment) once the situation
5157       // is resolved. See
5158       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5159       // and http://reviews.llvm.org/D8890 .
5160       auto Flags = SCEV::FlagAnyWrap;
5161       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5162         Flags = getNoWrapFlagsFromUB(BO->Op);
5163 
5164       Constant *X = ConstantInt::get(getContext(),
5165         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5166       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5167     }
5168     break;
5169 
5170     case Instruction::AShr:
5171       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5172       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5173         if (Operator *L = dyn_cast<Operator>(BO->LHS))
5174           if (L->getOpcode() == Instruction::Shl &&
5175               L->getOperand(1) == BO->RHS) {
5176             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5177 
5178             // If the shift count is not less than the bitwidth, the result of
5179             // the shift is undefined. Don't try to analyze it, because the
5180             // resolution chosen here may differ from the resolution chosen in
5181             // other parts of the compiler.
5182             if (CI->getValue().uge(BitWidth))
5183               break;
5184 
5185             uint64_t Amt = BitWidth - CI->getZExtValue();
5186             if (Amt == BitWidth)
5187               return getSCEV(L->getOperand(0)); // shift by zero --> noop
5188             return getSignExtendExpr(
5189                 getTruncateExpr(getSCEV(L->getOperand(0)),
5190                                 IntegerType::get(getContext(), Amt)),
5191                 BO->LHS->getType());
5192           }
5193       break;
5194     }
5195   }
5196 
5197   switch (U->getOpcode()) {
5198   case Instruction::Trunc:
5199     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5200 
5201   case Instruction::ZExt:
5202     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5203 
5204   case Instruction::SExt:
5205     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5206 
5207   case Instruction::BitCast:
5208     // BitCasts are no-op casts so we just eliminate the cast.
5209     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5210       return getSCEV(U->getOperand(0));
5211     break;
5212 
5213   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5214   // lead to pointer expressions which cannot safely be expanded to GEPs,
5215   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5216   // simplifying integer expressions.
5217 
5218   case Instruction::GetElementPtr:
5219     return createNodeForGEP(cast<GEPOperator>(U));
5220 
5221   case Instruction::PHI:
5222     return createNodeForPHI(cast<PHINode>(U));
5223 
5224   case Instruction::Select:
5225     // U can also be a select constant expr, which let fall through.  Since
5226     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5227     // constant expressions cannot have instructions as operands, we'd have
5228     // returned getUnknown for a select constant expressions anyway.
5229     if (isa<Instruction>(U))
5230       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5231                                       U->getOperand(1), U->getOperand(2));
5232   }
5233 
5234   return getUnknown(V);
5235 }
5236 
5237 
5238 
5239 //===----------------------------------------------------------------------===//
5240 //                   Iteration Count Computation Code
5241 //
5242 
5243 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5244   if (BasicBlock *ExitingBB = L->getExitingBlock())
5245     return getSmallConstantTripCount(L, ExitingBB);
5246 
5247   // No trip count information for multiple exits.
5248   return 0;
5249 }
5250 
5251 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5252                                                     BasicBlock *ExitingBlock) {
5253   assert(ExitingBlock && "Must pass a non-null exiting block!");
5254   assert(L->isLoopExiting(ExitingBlock) &&
5255          "Exiting block must actually branch out of the loop!");
5256   const SCEVConstant *ExitCount =
5257       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5258   if (!ExitCount)
5259     return 0;
5260 
5261   ConstantInt *ExitConst = ExitCount->getValue();
5262 
5263   // Guard against huge trip counts.
5264   if (ExitConst->getValue().getActiveBits() > 32)
5265     return 0;
5266 
5267   // In case of integer overflow, this returns 0, which is correct.
5268   return ((unsigned)ExitConst->getZExtValue()) + 1;
5269 }
5270 
5271 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5272   if (BasicBlock *ExitingBB = L->getExitingBlock())
5273     return getSmallConstantTripMultiple(L, ExitingBB);
5274 
5275   // No trip multiple information for multiple exits.
5276   return 0;
5277 }
5278 
5279 /// Returns the largest constant divisor of the trip count of this loop as a
5280 /// normal unsigned value, if possible. This means that the actual trip count is
5281 /// always a multiple of the returned value (don't forget the trip count could
5282 /// very well be zero as well!).
5283 ///
5284 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5285 /// multiple of a constant (which is also the case if the trip count is simply
5286 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5287 /// if the trip count is very large (>= 2^32).
5288 ///
5289 /// As explained in the comments for getSmallConstantTripCount, this assumes
5290 /// that control exits the loop via ExitingBlock.
5291 unsigned
5292 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5293                                               BasicBlock *ExitingBlock) {
5294   assert(ExitingBlock && "Must pass a non-null exiting block!");
5295   assert(L->isLoopExiting(ExitingBlock) &&
5296          "Exiting block must actually branch out of the loop!");
5297   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5298   if (ExitCount == getCouldNotCompute())
5299     return 1;
5300 
5301   // Get the trip count from the BE count by adding 1.
5302   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5303   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5304   // to factor simple cases.
5305   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5306     TCMul = Mul->getOperand(0);
5307 
5308   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5309   if (!MulC)
5310     return 1;
5311 
5312   ConstantInt *Result = MulC->getValue();
5313 
5314   // Guard against huge trip counts (this requires checking
5315   // for zero to handle the case where the trip count == -1 and the
5316   // addition wraps).
5317   if (!Result || Result->getValue().getActiveBits() > 32 ||
5318       Result->getValue().getActiveBits() == 0)
5319     return 1;
5320 
5321   return (unsigned)Result->getZExtValue();
5322 }
5323 
5324 /// Get the expression for the number of loop iterations for which this loop is
5325 /// guaranteed not to exit via ExitingBlock. Otherwise return
5326 /// SCEVCouldNotCompute.
5327 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5328   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5329 }
5330 
5331 const SCEV *
5332 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5333                                                  SCEVUnionPredicate &Preds) {
5334   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5335 }
5336 
5337 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5338   return getBackedgeTakenInfo(L).getExact(this);
5339 }
5340 
5341 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5342 /// known never to be less than the actual backedge taken count.
5343 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5344   return getBackedgeTakenInfo(L).getMax(this);
5345 }
5346 
5347 /// Push PHI nodes in the header of the given loop onto the given Worklist.
5348 static void
5349 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5350   BasicBlock *Header = L->getHeader();
5351 
5352   // Push all Loop-header PHIs onto the Worklist stack.
5353   for (BasicBlock::iterator I = Header->begin();
5354        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5355     Worklist.push_back(PN);
5356 }
5357 
5358 const ScalarEvolution::BackedgeTakenInfo &
5359 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5360   auto &BTI = getBackedgeTakenInfo(L);
5361   if (BTI.hasFullInfo())
5362     return BTI;
5363 
5364   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5365 
5366   if (!Pair.second)
5367     return Pair.first->second;
5368 
5369   BackedgeTakenInfo Result =
5370       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5371 
5372   return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5373 }
5374 
5375 const ScalarEvolution::BackedgeTakenInfo &
5376 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5377   // Initially insert an invalid entry for this loop. If the insertion
5378   // succeeds, proceed to actually compute a backedge-taken count and
5379   // update the value. The temporary CouldNotCompute value tells SCEV
5380   // code elsewhere that it shouldn't attempt to request a new
5381   // backedge-taken count, which could result in infinite recursion.
5382   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5383       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5384   if (!Pair.second)
5385     return Pair.first->second;
5386 
5387   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5388   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5389   // must be cleared in this scope.
5390   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5391 
5392   if (Result.getExact(this) != getCouldNotCompute()) {
5393     assert(isLoopInvariant(Result.getExact(this), L) &&
5394            isLoopInvariant(Result.getMax(this), L) &&
5395            "Computed backedge-taken count isn't loop invariant for loop!");
5396     ++NumTripCountsComputed;
5397   }
5398   else if (Result.getMax(this) == getCouldNotCompute() &&
5399            isa<PHINode>(L->getHeader()->begin())) {
5400     // Only count loops that have phi nodes as not being computable.
5401     ++NumTripCountsNotComputed;
5402   }
5403 
5404   // Now that we know more about the trip count for this loop, forget any
5405   // existing SCEV values for PHI nodes in this loop since they are only
5406   // conservative estimates made without the benefit of trip count
5407   // information. This is similar to the code in forgetLoop, except that
5408   // it handles SCEVUnknown PHI nodes specially.
5409   if (Result.hasAnyInfo()) {
5410     SmallVector<Instruction *, 16> Worklist;
5411     PushLoopPHIs(L, Worklist);
5412 
5413     SmallPtrSet<Instruction *, 8> Visited;
5414     while (!Worklist.empty()) {
5415       Instruction *I = Worklist.pop_back_val();
5416       if (!Visited.insert(I).second)
5417         continue;
5418 
5419       ValueExprMapType::iterator It =
5420         ValueExprMap.find_as(static_cast<Value *>(I));
5421       if (It != ValueExprMap.end()) {
5422         const SCEV *Old = It->second;
5423 
5424         // SCEVUnknown for a PHI either means that it has an unrecognized
5425         // structure, or it's a PHI that's in the progress of being computed
5426         // by createNodeForPHI.  In the former case, additional loop trip
5427         // count information isn't going to change anything. In the later
5428         // case, createNodeForPHI will perform the necessary updates on its
5429         // own when it gets to that point.
5430         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5431           forgetMemoizedResults(Old);
5432           ValueExprMap.erase(It);
5433         }
5434         if (PHINode *PN = dyn_cast<PHINode>(I))
5435           ConstantEvolutionLoopExitValue.erase(PN);
5436       }
5437 
5438       PushDefUseChildren(I, Worklist);
5439     }
5440   }
5441 
5442   // Re-lookup the insert position, since the call to
5443   // computeBackedgeTakenCount above could result in a
5444   // recusive call to getBackedgeTakenInfo (on a different
5445   // loop), which would invalidate the iterator computed
5446   // earlier.
5447   return BackedgeTakenCounts.find(L)->second = Result;
5448 }
5449 
5450 void ScalarEvolution::forgetLoop(const Loop *L) {
5451   // Drop any stored trip count value.
5452   auto RemoveLoopFromBackedgeMap =
5453       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5454         auto BTCPos = Map.find(L);
5455         if (BTCPos != Map.end()) {
5456           BTCPos->second.clear();
5457           Map.erase(BTCPos);
5458         }
5459       };
5460 
5461   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5462   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5463 
5464   // Drop information about expressions based on loop-header PHIs.
5465   SmallVector<Instruction *, 16> Worklist;
5466   PushLoopPHIs(L, Worklist);
5467 
5468   SmallPtrSet<Instruction *, 8> Visited;
5469   while (!Worklist.empty()) {
5470     Instruction *I = Worklist.pop_back_val();
5471     if (!Visited.insert(I).second)
5472       continue;
5473 
5474     ValueExprMapType::iterator It =
5475       ValueExprMap.find_as(static_cast<Value *>(I));
5476     if (It != ValueExprMap.end()) {
5477       forgetMemoizedResults(It->second);
5478       ValueExprMap.erase(It);
5479       if (PHINode *PN = dyn_cast<PHINode>(I))
5480         ConstantEvolutionLoopExitValue.erase(PN);
5481     }
5482 
5483     PushDefUseChildren(I, Worklist);
5484   }
5485 
5486   // Forget all contained loops too, to avoid dangling entries in the
5487   // ValuesAtScopes map.
5488   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5489     forgetLoop(*I);
5490 
5491   LoopHasNoAbnormalExits.erase(L);
5492 }
5493 
5494 void ScalarEvolution::forgetValue(Value *V) {
5495   Instruction *I = dyn_cast<Instruction>(V);
5496   if (!I) return;
5497 
5498   // Drop information about expressions based on loop-header PHIs.
5499   SmallVector<Instruction *, 16> Worklist;
5500   Worklist.push_back(I);
5501 
5502   SmallPtrSet<Instruction *, 8> Visited;
5503   while (!Worklist.empty()) {
5504     I = Worklist.pop_back_val();
5505     if (!Visited.insert(I).second)
5506       continue;
5507 
5508     ValueExprMapType::iterator It =
5509       ValueExprMap.find_as(static_cast<Value *>(I));
5510     if (It != ValueExprMap.end()) {
5511       forgetMemoizedResults(It->second);
5512       ValueExprMap.erase(It);
5513       if (PHINode *PN = dyn_cast<PHINode>(I))
5514         ConstantEvolutionLoopExitValue.erase(PN);
5515     }
5516 
5517     PushDefUseChildren(I, Worklist);
5518   }
5519 }
5520 
5521 /// Get the exact loop backedge taken count considering all loop exits. A
5522 /// computable result can only be returned for loops with a single exit.
5523 /// Returning the minimum taken count among all exits is incorrect because one
5524 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5525 /// the limit of each loop test is never skipped. This is a valid assumption as
5526 /// long as the loop exits via that test. For precise results, it is the
5527 /// caller's responsibility to specify the relevant loop exit using
5528 /// getExact(ExitingBlock, SE).
5529 const SCEV *
5530 ScalarEvolution::BackedgeTakenInfo::getExact(
5531     ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
5532   // If any exits were not computable, the loop is not computable.
5533   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5534 
5535   // We need exactly one computable exit.
5536   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5537   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5538 
5539   const SCEV *BECount = nullptr;
5540   for (auto &ENT : ExitNotTaken) {
5541     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5542 
5543     if (!BECount)
5544       BECount = ENT.ExactNotTaken;
5545     else if (BECount != ENT.ExactNotTaken)
5546       return SE->getCouldNotCompute();
5547     if (Preds && ENT.getPred())
5548       Preds->add(ENT.getPred());
5549 
5550     assert((Preds || ENT.hasAlwaysTruePred()) &&
5551            "Predicate should be always true!");
5552   }
5553 
5554   assert(BECount && "Invalid not taken count for loop exit");
5555   return BECount;
5556 }
5557 
5558 /// Get the exact not taken count for this loop exit.
5559 const SCEV *
5560 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5561                                              ScalarEvolution *SE) const {
5562   for (auto &ENT : ExitNotTaken)
5563     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5564       return ENT.ExactNotTaken;
5565 
5566   return SE->getCouldNotCompute();
5567 }
5568 
5569 /// getMax - Get the max backedge taken count for the loop.
5570 const SCEV *
5571 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5572   for (auto &ENT : ExitNotTaken)
5573     if (!ENT.hasAlwaysTruePred())
5574       return SE->getCouldNotCompute();
5575 
5576   return Max ? Max : SE->getCouldNotCompute();
5577 }
5578 
5579 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5580                                                     ScalarEvolution *SE) const {
5581   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5582     return true;
5583 
5584   if (!ExitNotTaken.ExitingBlock)
5585     return false;
5586 
5587   for (auto &ENT : ExitNotTaken)
5588     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5589         SE->hasOperand(ENT.ExactNotTaken, S))
5590       return true;
5591 
5592   return false;
5593 }
5594 
5595 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5596 /// computable exit into a persistent ExitNotTakenInfo array.
5597 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5598     SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
5599     : Max(MaxCount) {
5600 
5601   if (!Complete)
5602     ExitNotTaken.setIncomplete();
5603 
5604   unsigned NumExits = ExitCounts.size();
5605   if (NumExits == 0) return;
5606 
5607   ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
5608   ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
5609 
5610   // Determine the number of ExitNotTakenExtras structures that we need.
5611   unsigned ExtraInfoSize = 0;
5612   if (NumExits > 1)
5613     ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5614                                       ExitCounts.end(), [](EdgeInfo &Entry) {
5615                                         return !Entry.Pred.isAlwaysTrue();
5616                                       });
5617   else if (!ExitCounts[0].Pred.isAlwaysTrue())
5618     ExtraInfoSize = 1;
5619 
5620   ExitNotTakenExtras *ENT = nullptr;
5621 
5622   // Allocate the ExitNotTakenExtras structures and initialize the first
5623   // element (ExitNotTaken).
5624   if (ExtraInfoSize > 0) {
5625     ENT = new ExitNotTakenExtras[ExtraInfoSize];
5626     ExitNotTaken.ExtraInfo = &ENT[0];
5627     *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
5628   }
5629 
5630   if (NumExits == 1)
5631     return;
5632 
5633   assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit");
5634 
5635   auto &Exits = ExitNotTaken.ExtraInfo->Exits;
5636 
5637   // Handle the rare case of multiple computable exits.
5638   for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5639     ExitNotTakenExtras *Ptr = nullptr;
5640     if (!ExitCounts[i].Pred.isAlwaysTrue()) {
5641       Ptr = &ENT[PredPos++];
5642       Ptr->Pred = std::move(ExitCounts[i].Pred);
5643     }
5644 
5645     Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
5646   }
5647 }
5648 
5649 /// Invalidate this result and free the ExitNotTakenInfo array.
5650 void ScalarEvolution::BackedgeTakenInfo::clear() {
5651   ExitNotTaken.ExitingBlock = nullptr;
5652   ExitNotTaken.ExactNotTaken = nullptr;
5653   delete[] ExitNotTaken.ExtraInfo;
5654 }
5655 
5656 /// Compute the number of times the backedge of the specified loop will execute.
5657 ScalarEvolution::BackedgeTakenInfo
5658 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5659                                            bool AllowPredicates) {
5660   SmallVector<BasicBlock *, 8> ExitingBlocks;
5661   L->getExitingBlocks(ExitingBlocks);
5662 
5663   SmallVector<EdgeInfo, 4> ExitCounts;
5664   bool CouldComputeBECount = true;
5665   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5666   const SCEV *MustExitMaxBECount = nullptr;
5667   const SCEV *MayExitMaxBECount = nullptr;
5668 
5669   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5670   // and compute maxBECount.
5671   // Do a union of all the predicates here.
5672   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5673     BasicBlock *ExitBB = ExitingBlocks[i];
5674     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5675 
5676     assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
5677            "Predicated exit limit when predicates are not allowed!");
5678 
5679     // 1. For each exit that can be computed, add an entry to ExitCounts.
5680     // CouldComputeBECount is true only if all exits can be computed.
5681     if (EL.Exact == getCouldNotCompute())
5682       // We couldn't compute an exact value for this exit, so
5683       // we won't be able to compute an exact value for the loop.
5684       CouldComputeBECount = false;
5685     else
5686       ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
5687 
5688     // 2. Derive the loop's MaxBECount from each exit's max number of
5689     // non-exiting iterations. Partition the loop exits into two kinds:
5690     // LoopMustExits and LoopMayExits.
5691     //
5692     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5693     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5694     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5695     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5696     // considered greater than any computable EL.Max.
5697     if (EL.Max != getCouldNotCompute() && Latch &&
5698         DT.dominates(ExitBB, Latch)) {
5699       if (!MustExitMaxBECount)
5700         MustExitMaxBECount = EL.Max;
5701       else {
5702         MustExitMaxBECount =
5703           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5704       }
5705     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5706       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5707         MayExitMaxBECount = EL.Max;
5708       else {
5709         MayExitMaxBECount =
5710           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5711       }
5712     }
5713   }
5714   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5715     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5716   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5717 }
5718 
5719 ScalarEvolution::ExitLimit
5720 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5721                                   bool AllowPredicates) {
5722 
5723   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5724   // at this block and remember the exit block and whether all other targets
5725   // lead to the loop header.
5726   bool MustExecuteLoopHeader = true;
5727   BasicBlock *Exit = nullptr;
5728   for (auto *SBB : successors(ExitingBlock))
5729     if (!L->contains(SBB)) {
5730       if (Exit) // Multiple exit successors.
5731         return getCouldNotCompute();
5732       Exit = SBB;
5733     } else if (SBB != L->getHeader()) {
5734       MustExecuteLoopHeader = false;
5735     }
5736 
5737   // At this point, we know we have a conditional branch that determines whether
5738   // the loop is exited.  However, we don't know if the branch is executed each
5739   // time through the loop.  If not, then the execution count of the branch will
5740   // not be equal to the trip count of the loop.
5741   //
5742   // Currently we check for this by checking to see if the Exit branch goes to
5743   // the loop header.  If so, we know it will always execute the same number of
5744   // times as the loop.  We also handle the case where the exit block *is* the
5745   // loop header.  This is common for un-rotated loops.
5746   //
5747   // If both of those tests fail, walk up the unique predecessor chain to the
5748   // header, stopping if there is an edge that doesn't exit the loop. If the
5749   // header is reached, the execution count of the branch will be equal to the
5750   // trip count of the loop.
5751   //
5752   //  More extensive analysis could be done to handle more cases here.
5753   //
5754   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5755     // The simple checks failed, try climbing the unique predecessor chain
5756     // up to the header.
5757     bool Ok = false;
5758     for (BasicBlock *BB = ExitingBlock; BB; ) {
5759       BasicBlock *Pred = BB->getUniquePredecessor();
5760       if (!Pred)
5761         return getCouldNotCompute();
5762       TerminatorInst *PredTerm = Pred->getTerminator();
5763       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5764         if (PredSucc == BB)
5765           continue;
5766         // If the predecessor has a successor that isn't BB and isn't
5767         // outside the loop, assume the worst.
5768         if (L->contains(PredSucc))
5769           return getCouldNotCompute();
5770       }
5771       if (Pred == L->getHeader()) {
5772         Ok = true;
5773         break;
5774       }
5775       BB = Pred;
5776     }
5777     if (!Ok)
5778       return getCouldNotCompute();
5779   }
5780 
5781   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5782   TerminatorInst *Term = ExitingBlock->getTerminator();
5783   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5784     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5785     // Proceed to the next level to examine the exit condition expression.
5786     return computeExitLimitFromCond(
5787         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5788         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5789   }
5790 
5791   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5792     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5793                                                 /*ControlsExit=*/IsOnlyExit);
5794 
5795   return getCouldNotCompute();
5796 }
5797 
5798 ScalarEvolution::ExitLimit
5799 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5800                                           Value *ExitCond,
5801                                           BasicBlock *TBB,
5802                                           BasicBlock *FBB,
5803                                           bool ControlsExit,
5804                                           bool AllowPredicates) {
5805   // Check if the controlling expression for this loop is an And or Or.
5806   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5807     if (BO->getOpcode() == Instruction::And) {
5808       // Recurse on the operands of the and.
5809       bool EitherMayExit = L->contains(TBB);
5810       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5811                                                ControlsExit && !EitherMayExit,
5812                                                AllowPredicates);
5813       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5814                                                ControlsExit && !EitherMayExit,
5815                                                AllowPredicates);
5816       const SCEV *BECount = getCouldNotCompute();
5817       const SCEV *MaxBECount = getCouldNotCompute();
5818       if (EitherMayExit) {
5819         // Both conditions must be true for the loop to continue executing.
5820         // Choose the less conservative count.
5821         if (EL0.Exact == getCouldNotCompute() ||
5822             EL1.Exact == getCouldNotCompute())
5823           BECount = getCouldNotCompute();
5824         else
5825           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5826         if (EL0.Max == getCouldNotCompute())
5827           MaxBECount = EL1.Max;
5828         else if (EL1.Max == getCouldNotCompute())
5829           MaxBECount = EL0.Max;
5830         else
5831           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5832       } else {
5833         // Both conditions must be true at the same time for the loop to exit.
5834         // For now, be conservative.
5835         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5836         if (EL0.Max == EL1.Max)
5837           MaxBECount = EL0.Max;
5838         if (EL0.Exact == EL1.Exact)
5839           BECount = EL0.Exact;
5840       }
5841 
5842       SCEVUnionPredicate NP;
5843       NP.add(&EL0.Pred);
5844       NP.add(&EL1.Pred);
5845       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5846       // to be more aggressive when computing BECount than when computing
5847       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
5848       // to match, but for EL0.Max and EL1.Max to not.
5849       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5850           !isa<SCEVCouldNotCompute>(BECount))
5851         MaxBECount = BECount;
5852 
5853       return ExitLimit(BECount, MaxBECount, NP);
5854     }
5855     if (BO->getOpcode() == Instruction::Or) {
5856       // Recurse on the operands of the or.
5857       bool EitherMayExit = L->contains(FBB);
5858       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5859                                                ControlsExit && !EitherMayExit,
5860                                                AllowPredicates);
5861       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5862                                                ControlsExit && !EitherMayExit,
5863                                                AllowPredicates);
5864       const SCEV *BECount = getCouldNotCompute();
5865       const SCEV *MaxBECount = getCouldNotCompute();
5866       if (EitherMayExit) {
5867         // Both conditions must be false for the loop to continue executing.
5868         // Choose the less conservative count.
5869         if (EL0.Exact == getCouldNotCompute() ||
5870             EL1.Exact == getCouldNotCompute())
5871           BECount = getCouldNotCompute();
5872         else
5873           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5874         if (EL0.Max == getCouldNotCompute())
5875           MaxBECount = EL1.Max;
5876         else if (EL1.Max == getCouldNotCompute())
5877           MaxBECount = EL0.Max;
5878         else
5879           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5880       } else {
5881         // Both conditions must be false at the same time for the loop to exit.
5882         // For now, be conservative.
5883         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5884         if (EL0.Max == EL1.Max)
5885           MaxBECount = EL0.Max;
5886         if (EL0.Exact == EL1.Exact)
5887           BECount = EL0.Exact;
5888       }
5889 
5890       SCEVUnionPredicate NP;
5891       NP.add(&EL0.Pred);
5892       NP.add(&EL1.Pred);
5893       return ExitLimit(BECount, MaxBECount, NP);
5894     }
5895   }
5896 
5897   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5898   // Proceed to the next level to examine the icmp.
5899   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5900     ExitLimit EL =
5901         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5902     if (EL.hasFullInfo() || !AllowPredicates)
5903       return EL;
5904 
5905     // Try again, but use SCEV predicates this time.
5906     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5907                                     /*AllowPredicates=*/true);
5908   }
5909 
5910   // Check for a constant condition. These are normally stripped out by
5911   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5912   // preserve the CFG and is temporarily leaving constant conditions
5913   // in place.
5914   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5915     if (L->contains(FBB) == !CI->getZExtValue())
5916       // The backedge is always taken.
5917       return getCouldNotCompute();
5918     else
5919       // The backedge is never taken.
5920       return getZero(CI->getType());
5921   }
5922 
5923   // If it's not an integer or pointer comparison then compute it the hard way.
5924   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5925 }
5926 
5927 ScalarEvolution::ExitLimit
5928 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5929                                           ICmpInst *ExitCond,
5930                                           BasicBlock *TBB,
5931                                           BasicBlock *FBB,
5932                                           bool ControlsExit,
5933                                           bool AllowPredicates) {
5934 
5935   // If the condition was exit on true, convert the condition to exit on false
5936   ICmpInst::Predicate Cond;
5937   if (!L->contains(FBB))
5938     Cond = ExitCond->getPredicate();
5939   else
5940     Cond = ExitCond->getInversePredicate();
5941 
5942   // Handle common loops like: for (X = "string"; *X; ++X)
5943   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5944     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5945       ExitLimit ItCnt =
5946         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5947       if (ItCnt.hasAnyInfo())
5948         return ItCnt;
5949     }
5950 
5951   ExitLimit ShiftEL = computeShiftCompareExitLimit(
5952       ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5953   if (ShiftEL.hasAnyInfo())
5954     return ShiftEL;
5955 
5956   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5957   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5958 
5959   // Try to evaluate any dependencies out of the loop.
5960   LHS = getSCEVAtScope(LHS, L);
5961   RHS = getSCEVAtScope(RHS, L);
5962 
5963   // At this point, we would like to compute how many iterations of the
5964   // loop the predicate will return true for these inputs.
5965   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5966     // If there is a loop-invariant, force it into the RHS.
5967     std::swap(LHS, RHS);
5968     Cond = ICmpInst::getSwappedPredicate(Cond);
5969   }
5970 
5971   // Simplify the operands before analyzing them.
5972   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5973 
5974   // If we have a comparison of a chrec against a constant, try to use value
5975   // ranges to answer this query.
5976   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5977     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5978       if (AddRec->getLoop() == L) {
5979         // Form the constant range.
5980         ConstantRange CompRange(
5981             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5982 
5983         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5984         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5985       }
5986 
5987   switch (Cond) {
5988   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5989     // Convert to: while (X-Y != 0)
5990     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
5991                                 AllowPredicates);
5992     if (EL.hasAnyInfo()) return EL;
5993     break;
5994   }
5995   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5996     // Convert to: while (X-Y == 0)
5997     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
5998     if (EL.hasAnyInfo()) return EL;
5999     break;
6000   }
6001   case ICmpInst::ICMP_SLT:
6002   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
6003     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6004     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6005                                     AllowPredicates);
6006     if (EL.hasAnyInfo()) return EL;
6007     break;
6008   }
6009   case ICmpInst::ICMP_SGT:
6010   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
6011     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6012     ExitLimit EL =
6013         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6014                             AllowPredicates);
6015     if (EL.hasAnyInfo()) return EL;
6016     break;
6017   }
6018   default:
6019     break;
6020   }
6021   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6022 }
6023 
6024 ScalarEvolution::ExitLimit
6025 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6026                                                       SwitchInst *Switch,
6027                                                       BasicBlock *ExitingBlock,
6028                                                       bool ControlsExit) {
6029   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6030 
6031   // Give up if the exit is the default dest of a switch.
6032   if (Switch->getDefaultDest() == ExitingBlock)
6033     return getCouldNotCompute();
6034 
6035   assert(L->contains(Switch->getDefaultDest()) &&
6036          "Default case must not exit the loop!");
6037   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6038   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6039 
6040   // while (X != Y) --> while (X-Y != 0)
6041   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6042   if (EL.hasAnyInfo())
6043     return EL;
6044 
6045   return getCouldNotCompute();
6046 }
6047 
6048 static ConstantInt *
6049 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6050                                 ScalarEvolution &SE) {
6051   const SCEV *InVal = SE.getConstant(C);
6052   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6053   assert(isa<SCEVConstant>(Val) &&
6054          "Evaluation of SCEV at constant didn't fold correctly?");
6055   return cast<SCEVConstant>(Val)->getValue();
6056 }
6057 
6058 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
6059 /// compute the backedge execution count.
6060 ScalarEvolution::ExitLimit
6061 ScalarEvolution::computeLoadConstantCompareExitLimit(
6062   LoadInst *LI,
6063   Constant *RHS,
6064   const Loop *L,
6065   ICmpInst::Predicate predicate) {
6066 
6067   if (LI->isVolatile()) return getCouldNotCompute();
6068 
6069   // Check to see if the loaded pointer is a getelementptr of a global.
6070   // TODO: Use SCEV instead of manually grubbing with GEPs.
6071   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6072   if (!GEP) return getCouldNotCompute();
6073 
6074   // Make sure that it is really a constant global we are gepping, with an
6075   // initializer, and make sure the first IDX is really 0.
6076   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6077   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6078       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6079       !cast<Constant>(GEP->getOperand(1))->isNullValue())
6080     return getCouldNotCompute();
6081 
6082   // Okay, we allow one non-constant index into the GEP instruction.
6083   Value *VarIdx = nullptr;
6084   std::vector<Constant*> Indexes;
6085   unsigned VarIdxNum = 0;
6086   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6087     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6088       Indexes.push_back(CI);
6089     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6090       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
6091       VarIdx = GEP->getOperand(i);
6092       VarIdxNum = i-2;
6093       Indexes.push_back(nullptr);
6094     }
6095 
6096   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6097   if (!VarIdx)
6098     return getCouldNotCompute();
6099 
6100   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6101   // Check to see if X is a loop variant variable value now.
6102   const SCEV *Idx = getSCEV(VarIdx);
6103   Idx = getSCEVAtScope(Idx, L);
6104 
6105   // We can only recognize very limited forms of loop index expressions, in
6106   // particular, only affine AddRec's like {C1,+,C2}.
6107   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6108   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6109       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6110       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6111     return getCouldNotCompute();
6112 
6113   unsigned MaxSteps = MaxBruteForceIterations;
6114   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6115     ConstantInt *ItCst = ConstantInt::get(
6116                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
6117     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6118 
6119     // Form the GEP offset.
6120     Indexes[VarIdxNum] = Val;
6121 
6122     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6123                                                          Indexes);
6124     if (!Result) break;  // Cannot compute!
6125 
6126     // Evaluate the condition for this iteration.
6127     Result = ConstantExpr::getICmp(predicate, Result, RHS);
6128     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
6129     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6130       ++NumArrayLenItCounts;
6131       return getConstant(ItCst);   // Found terminating iteration!
6132     }
6133   }
6134   return getCouldNotCompute();
6135 }
6136 
6137 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6138     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6139   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6140   if (!RHS)
6141     return getCouldNotCompute();
6142 
6143   const BasicBlock *Latch = L->getLoopLatch();
6144   if (!Latch)
6145     return getCouldNotCompute();
6146 
6147   const BasicBlock *Predecessor = L->getLoopPredecessor();
6148   if (!Predecessor)
6149     return getCouldNotCompute();
6150 
6151   // Return true if V is of the form "LHS `shift_op` <positive constant>".
6152   // Return LHS in OutLHS and shift_opt in OutOpCode.
6153   auto MatchPositiveShift =
6154       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6155 
6156     using namespace PatternMatch;
6157 
6158     ConstantInt *ShiftAmt;
6159     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6160       OutOpCode = Instruction::LShr;
6161     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6162       OutOpCode = Instruction::AShr;
6163     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6164       OutOpCode = Instruction::Shl;
6165     else
6166       return false;
6167 
6168     return ShiftAmt->getValue().isStrictlyPositive();
6169   };
6170 
6171   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6172   //
6173   // loop:
6174   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6175   //   %iv.shifted = lshr i32 %iv, <positive constant>
6176   //
6177   // Return true on a succesful match.  Return the corresponding PHI node (%iv
6178   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6179   auto MatchShiftRecurrence =
6180       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6181     Optional<Instruction::BinaryOps> PostShiftOpCode;
6182 
6183     {
6184       Instruction::BinaryOps OpC;
6185       Value *V;
6186 
6187       // If we encounter a shift instruction, "peel off" the shift operation,
6188       // and remember that we did so.  Later when we inspect %iv's backedge
6189       // value, we will make sure that the backedge value uses the same
6190       // operation.
6191       //
6192       // Note: the peeled shift operation does not have to be the same
6193       // instruction as the one feeding into the PHI's backedge value.  We only
6194       // really care about it being the same *kind* of shift instruction --
6195       // that's all that is required for our later inferences to hold.
6196       if (MatchPositiveShift(LHS, V, OpC)) {
6197         PostShiftOpCode = OpC;
6198         LHS = V;
6199       }
6200     }
6201 
6202     PNOut = dyn_cast<PHINode>(LHS);
6203     if (!PNOut || PNOut->getParent() != L->getHeader())
6204       return false;
6205 
6206     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6207     Value *OpLHS;
6208 
6209     return
6210         // The backedge value for the PHI node must be a shift by a positive
6211         // amount
6212         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6213 
6214         // of the PHI node itself
6215         OpLHS == PNOut &&
6216 
6217         // and the kind of shift should be match the kind of shift we peeled
6218         // off, if any.
6219         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6220   };
6221 
6222   PHINode *PN;
6223   Instruction::BinaryOps OpCode;
6224   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6225     return getCouldNotCompute();
6226 
6227   const DataLayout &DL = getDataLayout();
6228 
6229   // The key rationale for this optimization is that for some kinds of shift
6230   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6231   // within a finite number of iterations.  If the condition guarding the
6232   // backedge (in the sense that the backedge is taken if the condition is true)
6233   // is false for the value the shift recurrence stabilizes to, then we know
6234   // that the backedge is taken only a finite number of times.
6235 
6236   ConstantInt *StableValue = nullptr;
6237   switch (OpCode) {
6238   default:
6239     llvm_unreachable("Impossible case!");
6240 
6241   case Instruction::AShr: {
6242     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6243     // bitwidth(K) iterations.
6244     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6245     bool KnownZero, KnownOne;
6246     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6247                    Predecessor->getTerminator(), &DT);
6248     auto *Ty = cast<IntegerType>(RHS->getType());
6249     if (KnownZero)
6250       StableValue = ConstantInt::get(Ty, 0);
6251     else if (KnownOne)
6252       StableValue = ConstantInt::get(Ty, -1, true);
6253     else
6254       return getCouldNotCompute();
6255 
6256     break;
6257   }
6258   case Instruction::LShr:
6259   case Instruction::Shl:
6260     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6261     // stabilize to 0 in at most bitwidth(K) iterations.
6262     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6263     break;
6264   }
6265 
6266   auto *Result =
6267       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6268   assert(Result->getType()->isIntegerTy(1) &&
6269          "Otherwise cannot be an operand to a branch instruction");
6270 
6271   if (Result->isZeroValue()) {
6272     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6273     const SCEV *UpperBound =
6274         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6275     SCEVUnionPredicate P;
6276     return ExitLimit(getCouldNotCompute(), UpperBound, P);
6277   }
6278 
6279   return getCouldNotCompute();
6280 }
6281 
6282 /// Return true if we can constant fold an instruction of the specified type,
6283 /// assuming that all operands were constants.
6284 static bool CanConstantFold(const Instruction *I) {
6285   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6286       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6287       isa<LoadInst>(I))
6288     return true;
6289 
6290   if (const CallInst *CI = dyn_cast<CallInst>(I))
6291     if (const Function *F = CI->getCalledFunction())
6292       return canConstantFoldCallTo(F);
6293   return false;
6294 }
6295 
6296 /// Determine whether this instruction can constant evolve within this loop
6297 /// assuming its operands can all constant evolve.
6298 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6299   // An instruction outside of the loop can't be derived from a loop PHI.
6300   if (!L->contains(I)) return false;
6301 
6302   if (isa<PHINode>(I)) {
6303     // We don't currently keep track of the control flow needed to evaluate
6304     // PHIs, so we cannot handle PHIs inside of loops.
6305     return L->getHeader() == I->getParent();
6306   }
6307 
6308   // If we won't be able to constant fold this expression even if the operands
6309   // are constants, bail early.
6310   return CanConstantFold(I);
6311 }
6312 
6313 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6314 /// recursing through each instruction operand until reaching a loop header phi.
6315 static PHINode *
6316 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6317                                DenseMap<Instruction *, PHINode *> &PHIMap) {
6318 
6319   // Otherwise, we can evaluate this instruction if all of its operands are
6320   // constant or derived from a PHI node themselves.
6321   PHINode *PHI = nullptr;
6322   for (Value *Op : UseInst->operands()) {
6323     if (isa<Constant>(Op)) continue;
6324 
6325     Instruction *OpInst = dyn_cast<Instruction>(Op);
6326     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6327 
6328     PHINode *P = dyn_cast<PHINode>(OpInst);
6329     if (!P)
6330       // If this operand is already visited, reuse the prior result.
6331       // We may have P != PHI if this is the deepest point at which the
6332       // inconsistent paths meet.
6333       P = PHIMap.lookup(OpInst);
6334     if (!P) {
6335       // Recurse and memoize the results, whether a phi is found or not.
6336       // This recursive call invalidates pointers into PHIMap.
6337       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6338       PHIMap[OpInst] = P;
6339     }
6340     if (!P)
6341       return nullptr;  // Not evolving from PHI
6342     if (PHI && PHI != P)
6343       return nullptr;  // Evolving from multiple different PHIs.
6344     PHI = P;
6345   }
6346   // This is a expression evolving from a constant PHI!
6347   return PHI;
6348 }
6349 
6350 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6351 /// in the loop that V is derived from.  We allow arbitrary operations along the
6352 /// way, but the operands of an operation must either be constants or a value
6353 /// derived from a constant PHI.  If this expression does not fit with these
6354 /// constraints, return null.
6355 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6356   Instruction *I = dyn_cast<Instruction>(V);
6357   if (!I || !canConstantEvolve(I, L)) return nullptr;
6358 
6359   if (PHINode *PN = dyn_cast<PHINode>(I))
6360     return PN;
6361 
6362   // Record non-constant instructions contained by the loop.
6363   DenseMap<Instruction *, PHINode *> PHIMap;
6364   return getConstantEvolvingPHIOperands(I, L, PHIMap);
6365 }
6366 
6367 /// EvaluateExpression - Given an expression that passes the
6368 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6369 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6370 /// reason, return null.
6371 static Constant *EvaluateExpression(Value *V, const Loop *L,
6372                                     DenseMap<Instruction *, Constant *> &Vals,
6373                                     const DataLayout &DL,
6374                                     const TargetLibraryInfo *TLI) {
6375   // Convenient constant check, but redundant for recursive calls.
6376   if (Constant *C = dyn_cast<Constant>(V)) return C;
6377   Instruction *I = dyn_cast<Instruction>(V);
6378   if (!I) return nullptr;
6379 
6380   if (Constant *C = Vals.lookup(I)) return C;
6381 
6382   // An instruction inside the loop depends on a value outside the loop that we
6383   // weren't given a mapping for, or a value such as a call inside the loop.
6384   if (!canConstantEvolve(I, L)) return nullptr;
6385 
6386   // An unmapped PHI can be due to a branch or another loop inside this loop,
6387   // or due to this not being the initial iteration through a loop where we
6388   // couldn't compute the evolution of this particular PHI last time.
6389   if (isa<PHINode>(I)) return nullptr;
6390 
6391   std::vector<Constant*> Operands(I->getNumOperands());
6392 
6393   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6394     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6395     if (!Operand) {
6396       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6397       if (!Operands[i]) return nullptr;
6398       continue;
6399     }
6400     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6401     Vals[Operand] = C;
6402     if (!C) return nullptr;
6403     Operands[i] = C;
6404   }
6405 
6406   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6407     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6408                                            Operands[1], DL, TLI);
6409   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6410     if (!LI->isVolatile())
6411       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6412   }
6413   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6414 }
6415 
6416 
6417 // If every incoming value to PN except the one for BB is a specific Constant,
6418 // return that, else return nullptr.
6419 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6420   Constant *IncomingVal = nullptr;
6421 
6422   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6423     if (PN->getIncomingBlock(i) == BB)
6424       continue;
6425 
6426     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6427     if (!CurrentVal)
6428       return nullptr;
6429 
6430     if (IncomingVal != CurrentVal) {
6431       if (IncomingVal)
6432         return nullptr;
6433       IncomingVal = CurrentVal;
6434     }
6435   }
6436 
6437   return IncomingVal;
6438 }
6439 
6440 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6441 /// in the header of its containing loop, we know the loop executes a
6442 /// constant number of times, and the PHI node is just a recurrence
6443 /// involving constants, fold it.
6444 Constant *
6445 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6446                                                    const APInt &BEs,
6447                                                    const Loop *L) {
6448   auto I = ConstantEvolutionLoopExitValue.find(PN);
6449   if (I != ConstantEvolutionLoopExitValue.end())
6450     return I->second;
6451 
6452   if (BEs.ugt(MaxBruteForceIterations))
6453     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6454 
6455   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6456 
6457   DenseMap<Instruction *, Constant *> CurrentIterVals;
6458   BasicBlock *Header = L->getHeader();
6459   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6460 
6461   BasicBlock *Latch = L->getLoopLatch();
6462   if (!Latch)
6463     return nullptr;
6464 
6465   for (auto &I : *Header) {
6466     PHINode *PHI = dyn_cast<PHINode>(&I);
6467     if (!PHI) break;
6468     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6469     if (!StartCST) continue;
6470     CurrentIterVals[PHI] = StartCST;
6471   }
6472   if (!CurrentIterVals.count(PN))
6473     return RetVal = nullptr;
6474 
6475   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6476 
6477   // Execute the loop symbolically to determine the exit value.
6478   if (BEs.getActiveBits() >= 32)
6479     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6480 
6481   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6482   unsigned IterationNum = 0;
6483   const DataLayout &DL = getDataLayout();
6484   for (; ; ++IterationNum) {
6485     if (IterationNum == NumIterations)
6486       return RetVal = CurrentIterVals[PN];  // Got exit value!
6487 
6488     // Compute the value of the PHIs for the next iteration.
6489     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6490     DenseMap<Instruction *, Constant *> NextIterVals;
6491     Constant *NextPHI =
6492         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6493     if (!NextPHI)
6494       return nullptr;        // Couldn't evaluate!
6495     NextIterVals[PN] = NextPHI;
6496 
6497     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6498 
6499     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6500     // cease to be able to evaluate one of them or if they stop evolving,
6501     // because that doesn't necessarily prevent us from computing PN.
6502     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6503     for (const auto &I : CurrentIterVals) {
6504       PHINode *PHI = dyn_cast<PHINode>(I.first);
6505       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6506       PHIsToCompute.emplace_back(PHI, I.second);
6507     }
6508     // We use two distinct loops because EvaluateExpression may invalidate any
6509     // iterators into CurrentIterVals.
6510     for (const auto &I : PHIsToCompute) {
6511       PHINode *PHI = I.first;
6512       Constant *&NextPHI = NextIterVals[PHI];
6513       if (!NextPHI) {   // Not already computed.
6514         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6515         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6516       }
6517       if (NextPHI != I.second)
6518         StoppedEvolving = false;
6519     }
6520 
6521     // If all entries in CurrentIterVals == NextIterVals then we can stop
6522     // iterating, the loop can't continue to change.
6523     if (StoppedEvolving)
6524       return RetVal = CurrentIterVals[PN];
6525 
6526     CurrentIterVals.swap(NextIterVals);
6527   }
6528 }
6529 
6530 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6531                                                           Value *Cond,
6532                                                           bool ExitWhen) {
6533   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6534   if (!PN) return getCouldNotCompute();
6535 
6536   // If the loop is canonicalized, the PHI will have exactly two entries.
6537   // That's the only form we support here.
6538   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6539 
6540   DenseMap<Instruction *, Constant *> CurrentIterVals;
6541   BasicBlock *Header = L->getHeader();
6542   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6543 
6544   BasicBlock *Latch = L->getLoopLatch();
6545   assert(Latch && "Should follow from NumIncomingValues == 2!");
6546 
6547   for (auto &I : *Header) {
6548     PHINode *PHI = dyn_cast<PHINode>(&I);
6549     if (!PHI)
6550       break;
6551     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6552     if (!StartCST) continue;
6553     CurrentIterVals[PHI] = StartCST;
6554   }
6555   if (!CurrentIterVals.count(PN))
6556     return getCouldNotCompute();
6557 
6558   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6559   // the loop symbolically to determine when the condition gets a value of
6560   // "ExitWhen".
6561   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6562   const DataLayout &DL = getDataLayout();
6563   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6564     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6565         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6566 
6567     // Couldn't symbolically evaluate.
6568     if (!CondVal) return getCouldNotCompute();
6569 
6570     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6571       ++NumBruteForceTripCountsComputed;
6572       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6573     }
6574 
6575     // Update all the PHI nodes for the next iteration.
6576     DenseMap<Instruction *, Constant *> NextIterVals;
6577 
6578     // Create a list of which PHIs we need to compute. We want to do this before
6579     // calling EvaluateExpression on them because that may invalidate iterators
6580     // into CurrentIterVals.
6581     SmallVector<PHINode *, 8> PHIsToCompute;
6582     for (const auto &I : CurrentIterVals) {
6583       PHINode *PHI = dyn_cast<PHINode>(I.first);
6584       if (!PHI || PHI->getParent() != Header) continue;
6585       PHIsToCompute.push_back(PHI);
6586     }
6587     for (PHINode *PHI : PHIsToCompute) {
6588       Constant *&NextPHI = NextIterVals[PHI];
6589       if (NextPHI) continue;    // Already computed!
6590 
6591       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6592       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6593     }
6594     CurrentIterVals.swap(NextIterVals);
6595   }
6596 
6597   // Too many iterations were needed to evaluate.
6598   return getCouldNotCompute();
6599 }
6600 
6601 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6602   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6603       ValuesAtScopes[V];
6604   // Check to see if we've folded this expression at this loop before.
6605   for (auto &LS : Values)
6606     if (LS.first == L)
6607       return LS.second ? LS.second : V;
6608 
6609   Values.emplace_back(L, nullptr);
6610 
6611   // Otherwise compute it.
6612   const SCEV *C = computeSCEVAtScope(V, L);
6613   for (auto &LS : reverse(ValuesAtScopes[V]))
6614     if (LS.first == L) {
6615       LS.second = C;
6616       break;
6617     }
6618   return C;
6619 }
6620 
6621 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6622 /// will return Constants for objects which aren't represented by a
6623 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6624 /// Returns NULL if the SCEV isn't representable as a Constant.
6625 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6626   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6627     case scCouldNotCompute:
6628     case scAddRecExpr:
6629       break;
6630     case scConstant:
6631       return cast<SCEVConstant>(V)->getValue();
6632     case scUnknown:
6633       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6634     case scSignExtend: {
6635       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6636       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6637         return ConstantExpr::getSExt(CastOp, SS->getType());
6638       break;
6639     }
6640     case scZeroExtend: {
6641       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6642       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6643         return ConstantExpr::getZExt(CastOp, SZ->getType());
6644       break;
6645     }
6646     case scTruncate: {
6647       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6648       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6649         return ConstantExpr::getTrunc(CastOp, ST->getType());
6650       break;
6651     }
6652     case scAddExpr: {
6653       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6654       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6655         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6656           unsigned AS = PTy->getAddressSpace();
6657           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6658           C = ConstantExpr::getBitCast(C, DestPtrTy);
6659         }
6660         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6661           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6662           if (!C2) return nullptr;
6663 
6664           // First pointer!
6665           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6666             unsigned AS = C2->getType()->getPointerAddressSpace();
6667             std::swap(C, C2);
6668             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6669             // The offsets have been converted to bytes.  We can add bytes to an
6670             // i8* by GEP with the byte count in the first index.
6671             C = ConstantExpr::getBitCast(C, DestPtrTy);
6672           }
6673 
6674           // Don't bother trying to sum two pointers. We probably can't
6675           // statically compute a load that results from it anyway.
6676           if (C2->getType()->isPointerTy())
6677             return nullptr;
6678 
6679           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6680             if (PTy->getElementType()->isStructTy())
6681               C2 = ConstantExpr::getIntegerCast(
6682                   C2, Type::getInt32Ty(C->getContext()), true);
6683             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6684           } else
6685             C = ConstantExpr::getAdd(C, C2);
6686         }
6687         return C;
6688       }
6689       break;
6690     }
6691     case scMulExpr: {
6692       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6693       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6694         // Don't bother with pointers at all.
6695         if (C->getType()->isPointerTy()) return nullptr;
6696         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6697           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6698           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6699           C = ConstantExpr::getMul(C, C2);
6700         }
6701         return C;
6702       }
6703       break;
6704     }
6705     case scUDivExpr: {
6706       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6707       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6708         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6709           if (LHS->getType() == RHS->getType())
6710             return ConstantExpr::getUDiv(LHS, RHS);
6711       break;
6712     }
6713     case scSMaxExpr:
6714     case scUMaxExpr:
6715       break; // TODO: smax, umax.
6716   }
6717   return nullptr;
6718 }
6719 
6720 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6721   if (isa<SCEVConstant>(V)) return V;
6722 
6723   // If this instruction is evolved from a constant-evolving PHI, compute the
6724   // exit value from the loop without using SCEVs.
6725   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6726     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6727       const Loop *LI = this->LI[I->getParent()];
6728       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6729         if (PHINode *PN = dyn_cast<PHINode>(I))
6730           if (PN->getParent() == LI->getHeader()) {
6731             // Okay, there is no closed form solution for the PHI node.  Check
6732             // to see if the loop that contains it has a known backedge-taken
6733             // count.  If so, we may be able to force computation of the exit
6734             // value.
6735             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6736             if (const SCEVConstant *BTCC =
6737                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6738               // Okay, we know how many times the containing loop executes.  If
6739               // this is a constant evolving PHI node, get the final value at
6740               // the specified iteration number.
6741               Constant *RV =
6742                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6743               if (RV) return getSCEV(RV);
6744             }
6745           }
6746 
6747       // Okay, this is an expression that we cannot symbolically evaluate
6748       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6749       // the arguments into constants, and if so, try to constant propagate the
6750       // result.  This is particularly useful for computing loop exit values.
6751       if (CanConstantFold(I)) {
6752         SmallVector<Constant *, 4> Operands;
6753         bool MadeImprovement = false;
6754         for (Value *Op : I->operands()) {
6755           if (Constant *C = dyn_cast<Constant>(Op)) {
6756             Operands.push_back(C);
6757             continue;
6758           }
6759 
6760           // If any of the operands is non-constant and if they are
6761           // non-integer and non-pointer, don't even try to analyze them
6762           // with scev techniques.
6763           if (!isSCEVable(Op->getType()))
6764             return V;
6765 
6766           const SCEV *OrigV = getSCEV(Op);
6767           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6768           MadeImprovement |= OrigV != OpV;
6769 
6770           Constant *C = BuildConstantFromSCEV(OpV);
6771           if (!C) return V;
6772           if (C->getType() != Op->getType())
6773             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6774                                                               Op->getType(),
6775                                                               false),
6776                                       C, Op->getType());
6777           Operands.push_back(C);
6778         }
6779 
6780         // Check to see if getSCEVAtScope actually made an improvement.
6781         if (MadeImprovement) {
6782           Constant *C = nullptr;
6783           const DataLayout &DL = getDataLayout();
6784           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6785             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6786                                                 Operands[1], DL, &TLI);
6787           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6788             if (!LI->isVolatile())
6789               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6790           } else
6791             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6792           if (!C) return V;
6793           return getSCEV(C);
6794         }
6795       }
6796     }
6797 
6798     // This is some other type of SCEVUnknown, just return it.
6799     return V;
6800   }
6801 
6802   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6803     // Avoid performing the look-up in the common case where the specified
6804     // expression has no loop-variant portions.
6805     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6806       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6807       if (OpAtScope != Comm->getOperand(i)) {
6808         // Okay, at least one of these operands is loop variant but might be
6809         // foldable.  Build a new instance of the folded commutative expression.
6810         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6811                                             Comm->op_begin()+i);
6812         NewOps.push_back(OpAtScope);
6813 
6814         for (++i; i != e; ++i) {
6815           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6816           NewOps.push_back(OpAtScope);
6817         }
6818         if (isa<SCEVAddExpr>(Comm))
6819           return getAddExpr(NewOps);
6820         if (isa<SCEVMulExpr>(Comm))
6821           return getMulExpr(NewOps);
6822         if (isa<SCEVSMaxExpr>(Comm))
6823           return getSMaxExpr(NewOps);
6824         if (isa<SCEVUMaxExpr>(Comm))
6825           return getUMaxExpr(NewOps);
6826         llvm_unreachable("Unknown commutative SCEV type!");
6827       }
6828     }
6829     // If we got here, all operands are loop invariant.
6830     return Comm;
6831   }
6832 
6833   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6834     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6835     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6836     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6837       return Div;   // must be loop invariant
6838     return getUDivExpr(LHS, RHS);
6839   }
6840 
6841   // If this is a loop recurrence for a loop that does not contain L, then we
6842   // are dealing with the final value computed by the loop.
6843   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6844     // First, attempt to evaluate each operand.
6845     // Avoid performing the look-up in the common case where the specified
6846     // expression has no loop-variant portions.
6847     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6848       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6849       if (OpAtScope == AddRec->getOperand(i))
6850         continue;
6851 
6852       // Okay, at least one of these operands is loop variant but might be
6853       // foldable.  Build a new instance of the folded commutative expression.
6854       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6855                                           AddRec->op_begin()+i);
6856       NewOps.push_back(OpAtScope);
6857       for (++i; i != e; ++i)
6858         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6859 
6860       const SCEV *FoldedRec =
6861         getAddRecExpr(NewOps, AddRec->getLoop(),
6862                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6863       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6864       // The addrec may be folded to a nonrecurrence, for example, if the
6865       // induction variable is multiplied by zero after constant folding. Go
6866       // ahead and return the folded value.
6867       if (!AddRec)
6868         return FoldedRec;
6869       break;
6870     }
6871 
6872     // If the scope is outside the addrec's loop, evaluate it by using the
6873     // loop exit value of the addrec.
6874     if (!AddRec->getLoop()->contains(L)) {
6875       // To evaluate this recurrence, we need to know how many times the AddRec
6876       // loop iterates.  Compute this now.
6877       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6878       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6879 
6880       // Then, evaluate the AddRec.
6881       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6882     }
6883 
6884     return AddRec;
6885   }
6886 
6887   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6888     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6889     if (Op == Cast->getOperand())
6890       return Cast;  // must be loop invariant
6891     return getZeroExtendExpr(Op, Cast->getType());
6892   }
6893 
6894   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6895     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6896     if (Op == Cast->getOperand())
6897       return Cast;  // must be loop invariant
6898     return getSignExtendExpr(Op, Cast->getType());
6899   }
6900 
6901   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6902     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6903     if (Op == Cast->getOperand())
6904       return Cast;  // must be loop invariant
6905     return getTruncateExpr(Op, Cast->getType());
6906   }
6907 
6908   llvm_unreachable("Unknown SCEV type!");
6909 }
6910 
6911 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6912   return getSCEVAtScope(getSCEV(V), L);
6913 }
6914 
6915 /// Finds the minimum unsigned root of the following equation:
6916 ///
6917 ///     A * X = B (mod N)
6918 ///
6919 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6920 /// A and B isn't important.
6921 ///
6922 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6923 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6924                                                ScalarEvolution &SE) {
6925   uint32_t BW = A.getBitWidth();
6926   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6927   assert(A != 0 && "A must be non-zero.");
6928 
6929   // 1. D = gcd(A, N)
6930   //
6931   // The gcd of A and N may have only one prime factor: 2. The number of
6932   // trailing zeros in A is its multiplicity
6933   uint32_t Mult2 = A.countTrailingZeros();
6934   // D = 2^Mult2
6935 
6936   // 2. Check if B is divisible by D.
6937   //
6938   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6939   // is not less than multiplicity of this prime factor for D.
6940   if (B.countTrailingZeros() < Mult2)
6941     return SE.getCouldNotCompute();
6942 
6943   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6944   // modulo (N / D).
6945   //
6946   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6947   // bit width during computations.
6948   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6949   APInt Mod(BW + 1, 0);
6950   Mod.setBit(BW - Mult2);  // Mod = N / D
6951   APInt I = AD.multiplicativeInverse(Mod);
6952 
6953   // 4. Compute the minimum unsigned root of the equation:
6954   // I * (B / D) mod (N / D)
6955   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6956 
6957   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6958   // bits.
6959   return SE.getConstant(Result.trunc(BW));
6960 }
6961 
6962 /// Find the roots of the quadratic equation for the given quadratic chrec
6963 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
6964 /// two SCEVCouldNotCompute objects.
6965 ///
6966 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
6967 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6968   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6969   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6970   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6971   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6972 
6973   // We currently can only solve this if the coefficients are constants.
6974   if (!LC || !MC || !NC)
6975     return None;
6976 
6977   uint32_t BitWidth = LC->getAPInt().getBitWidth();
6978   const APInt &L = LC->getAPInt();
6979   const APInt &M = MC->getAPInt();
6980   const APInt &N = NC->getAPInt();
6981   APInt Two(BitWidth, 2);
6982   APInt Four(BitWidth, 4);
6983 
6984   {
6985     using namespace APIntOps;
6986     const APInt& C = L;
6987     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6988     // The B coefficient is M-N/2
6989     APInt B(M);
6990     B -= sdiv(N,Two);
6991 
6992     // The A coefficient is N/2
6993     APInt A(N.sdiv(Two));
6994 
6995     // Compute the B^2-4ac term.
6996     APInt SqrtTerm(B);
6997     SqrtTerm *= B;
6998     SqrtTerm -= Four * (A * C);
6999 
7000     if (SqrtTerm.isNegative()) {
7001       // The loop is provably infinite.
7002       return None;
7003     }
7004 
7005     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7006     // integer value or else APInt::sqrt() will assert.
7007     APInt SqrtVal(SqrtTerm.sqrt());
7008 
7009     // Compute the two solutions for the quadratic formula.
7010     // The divisions must be performed as signed divisions.
7011     APInt NegB(-B);
7012     APInt TwoA(A << 1);
7013     if (TwoA.isMinValue())
7014       return None;
7015 
7016     LLVMContext &Context = SE.getContext();
7017 
7018     ConstantInt *Solution1 =
7019       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7020     ConstantInt *Solution2 =
7021       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7022 
7023     return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7024                           cast<SCEVConstant>(SE.getConstant(Solution2)));
7025   } // end APIntOps namespace
7026 }
7027 
7028 ScalarEvolution::ExitLimit
7029 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7030                               bool AllowPredicates) {
7031 
7032   // This is only used for loops with a "x != y" exit test. The exit condition
7033   // is now expressed as a single expression, V = x-y. So the exit test is
7034   // effectively V != 0.  We know and take advantage of the fact that this
7035   // expression only being used in a comparison by zero context.
7036 
7037   SCEVUnionPredicate P;
7038   // If the value is a constant
7039   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7040     // If the value is already zero, the branch will execute zero times.
7041     if (C->getValue()->isZero()) return C;
7042     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7043   }
7044 
7045   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7046   if (!AddRec && AllowPredicates)
7047     // Try to make this an AddRec using runtime tests, in the first X
7048     // iterations of this loop, where X is the SCEV expression found by the
7049     // algorithm below.
7050     AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7051 
7052   if (!AddRec || AddRec->getLoop() != L)
7053     return getCouldNotCompute();
7054 
7055   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7056   // the quadratic equation to solve it.
7057   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7058     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
7059       const SCEVConstant *R1 = Roots->first;
7060       const SCEVConstant *R2 = Roots->second;
7061       // Pick the smallest positive root value.
7062       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
7063               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
7064         if (!CB->getZExtValue())
7065           std::swap(R1, R2); // R1 is the minimum root now.
7066 
7067         // We can only use this value if the chrec ends up with an exact zero
7068         // value at this index.  When solving for "X*X != 5", for example, we
7069         // should not accept a root of 2.
7070         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7071         if (Val->isZero())
7072           return ExitLimit(R1, R1, P); // We found a quadratic root!
7073       }
7074     }
7075     return getCouldNotCompute();
7076   }
7077 
7078   // Otherwise we can only handle this if it is affine.
7079   if (!AddRec->isAffine())
7080     return getCouldNotCompute();
7081 
7082   // If this is an affine expression, the execution count of this branch is
7083   // the minimum unsigned root of the following equation:
7084   //
7085   //     Start + Step*N = 0 (mod 2^BW)
7086   //
7087   // equivalent to:
7088   //
7089   //             Step*N = -Start (mod 2^BW)
7090   //
7091   // where BW is the common bit width of Start and Step.
7092 
7093   // Get the initial value for the loop.
7094   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7095   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7096 
7097   // For now we handle only constant steps.
7098   //
7099   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7100   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7101   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7102   // We have not yet seen any such cases.
7103   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7104   if (!StepC || StepC->getValue()->equalsInt(0))
7105     return getCouldNotCompute();
7106 
7107   // For positive steps (counting up until unsigned overflow):
7108   //   N = -Start/Step (as unsigned)
7109   // For negative steps (counting down to zero):
7110   //   N = Start/-Step
7111   // First compute the unsigned distance from zero in the direction of Step.
7112   bool CountDown = StepC->getAPInt().isNegative();
7113   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7114 
7115   // Handle unitary steps, which cannot wraparound.
7116   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7117   //   N = Distance (as unsigned)
7118   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7119     ConstantRange CR = getUnsignedRange(Start);
7120     const SCEV *MaxBECount;
7121     if (!CountDown && CR.getUnsignedMin().isMinValue())
7122       // When counting up, the worst starting value is 1, not 0.
7123       MaxBECount = CR.getUnsignedMax().isMinValue()
7124         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7125         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7126     else
7127       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7128                                          : -CR.getUnsignedMin());
7129     return ExitLimit(Distance, MaxBECount, P);
7130   }
7131 
7132   // As a special case, handle the instance where Step is a positive power of
7133   // two. In this case, determining whether Step divides Distance evenly can be
7134   // done by counting and comparing the number of trailing zeros of Step and
7135   // Distance.
7136   if (!CountDown) {
7137     const APInt &StepV = StepC->getAPInt();
7138     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
7139     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7140     // case is not handled as this code is guarded by !CountDown.
7141     if (StepV.isPowerOf2() &&
7142         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7143       // Here we've constrained the equation to be of the form
7144       //
7145       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
7146       //
7147       // where we're operating on a W bit wide integer domain and k is
7148       // non-negative.  The smallest unsigned solution for X is the trip count.
7149       //
7150       // (0) is equivalent to:
7151       //
7152       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
7153       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7154       // <=>  2^k * Distance' - X = L * 2^(W - N)
7155       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
7156       //
7157       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7158       // by 2^(W - N).
7159       //
7160       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
7161       //
7162       // E.g. say we're solving
7163       //
7164       //   2 * Val = 2 * X  (in i8)   ... (3)
7165       //
7166       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7167       //
7168       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7169       // necessarily the smallest unsigned value of X that satisfies (3).
7170       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7171       // is i8 1, not i8 -127
7172 
7173       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7174 
7175       // Since SCEV does not have a URem node, we construct one using a truncate
7176       // and a zero extend.
7177 
7178       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7179       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7180       auto *WideTy = Distance->getType();
7181 
7182       const SCEV *Limit =
7183           getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7184       return ExitLimit(Limit, Limit, P);
7185     }
7186   }
7187 
7188   // If the condition controls loop exit (the loop exits only if the expression
7189   // is true) and the addition is no-wrap we can use unsigned divide to
7190   // compute the backedge count.  In this case, the step may not divide the
7191   // distance, but we don't care because if the condition is "missed" the loop
7192   // will have undefined behavior due to wrapping.
7193   if (ControlsExit && AddRec->hasNoSelfWrap() &&
7194       loopHasNoAbnormalExits(AddRec->getLoop())) {
7195     const SCEV *Exact =
7196         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7197     return ExitLimit(Exact, Exact, P);
7198   }
7199 
7200   // Then, try to solve the above equation provided that Start is constant.
7201   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7202     const SCEV *E = SolveLinEquationWithOverflow(
7203         StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7204     return ExitLimit(E, E, P);
7205   }
7206   return getCouldNotCompute();
7207 }
7208 
7209 ScalarEvolution::ExitLimit
7210 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
7211   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7212   // handle them yet except for the trivial case.  This could be expanded in the
7213   // future as needed.
7214 
7215   // If the value is a constant, check to see if it is known to be non-zero
7216   // already.  If so, the backedge will execute zero times.
7217   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7218     if (!C->getValue()->isNullValue())
7219       return getZero(C->getType());
7220     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7221   }
7222 
7223   // We could implement others, but I really doubt anyone writes loops like
7224   // this, and if they did, they would already be constant folded.
7225   return getCouldNotCompute();
7226 }
7227 
7228 std::pair<BasicBlock *, BasicBlock *>
7229 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7230   // If the block has a unique predecessor, then there is no path from the
7231   // predecessor to the block that does not go through the direct edge
7232   // from the predecessor to the block.
7233   if (BasicBlock *Pred = BB->getSinglePredecessor())
7234     return {Pred, BB};
7235 
7236   // A loop's header is defined to be a block that dominates the loop.
7237   // If the header has a unique predecessor outside the loop, it must be
7238   // a block that has exactly one successor that can reach the loop.
7239   if (Loop *L = LI.getLoopFor(BB))
7240     return {L->getLoopPredecessor(), L->getHeader()};
7241 
7242   return {nullptr, nullptr};
7243 }
7244 
7245 /// SCEV structural equivalence is usually sufficient for testing whether two
7246 /// expressions are equal, however for the purposes of looking for a condition
7247 /// guarding a loop, it can be useful to be a little more general, since a
7248 /// front-end may have replicated the controlling expression.
7249 ///
7250 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7251   // Quick check to see if they are the same SCEV.
7252   if (A == B) return true;
7253 
7254   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7255     // Not all instructions that are "identical" compute the same value.  For
7256     // instance, two distinct alloca instructions allocating the same type are
7257     // identical and do not read memory; but compute distinct values.
7258     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7259   };
7260 
7261   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7262   // two different instructions with the same value. Check for this case.
7263   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7264     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7265       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7266         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7267           if (ComputesEqualValues(AI, BI))
7268             return true;
7269 
7270   // Otherwise assume they may have a different value.
7271   return false;
7272 }
7273 
7274 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7275                                            const SCEV *&LHS, const SCEV *&RHS,
7276                                            unsigned Depth) {
7277   bool Changed = false;
7278 
7279   // If we hit the max recursion limit bail out.
7280   if (Depth >= 3)
7281     return false;
7282 
7283   // Canonicalize a constant to the right side.
7284   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7285     // Check for both operands constant.
7286     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7287       if (ConstantExpr::getICmp(Pred,
7288                                 LHSC->getValue(),
7289                                 RHSC->getValue())->isNullValue())
7290         goto trivially_false;
7291       else
7292         goto trivially_true;
7293     }
7294     // Otherwise swap the operands to put the constant on the right.
7295     std::swap(LHS, RHS);
7296     Pred = ICmpInst::getSwappedPredicate(Pred);
7297     Changed = true;
7298   }
7299 
7300   // If we're comparing an addrec with a value which is loop-invariant in the
7301   // addrec's loop, put the addrec on the left. Also make a dominance check,
7302   // as both operands could be addrecs loop-invariant in each other's loop.
7303   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7304     const Loop *L = AR->getLoop();
7305     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7306       std::swap(LHS, RHS);
7307       Pred = ICmpInst::getSwappedPredicate(Pred);
7308       Changed = true;
7309     }
7310   }
7311 
7312   // If there's a constant operand, canonicalize comparisons with boundary
7313   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7314   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7315     const APInt &RA = RC->getAPInt();
7316     switch (Pred) {
7317     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7318     case ICmpInst::ICMP_EQ:
7319     case ICmpInst::ICMP_NE:
7320       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7321       if (!RA)
7322         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7323           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7324             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7325                 ME->getOperand(0)->isAllOnesValue()) {
7326               RHS = AE->getOperand(1);
7327               LHS = ME->getOperand(1);
7328               Changed = true;
7329             }
7330       break;
7331     case ICmpInst::ICMP_UGE:
7332       if ((RA - 1).isMinValue()) {
7333         Pred = ICmpInst::ICMP_NE;
7334         RHS = getConstant(RA - 1);
7335         Changed = true;
7336         break;
7337       }
7338       if (RA.isMaxValue()) {
7339         Pred = ICmpInst::ICMP_EQ;
7340         Changed = true;
7341         break;
7342       }
7343       if (RA.isMinValue()) goto trivially_true;
7344 
7345       Pred = ICmpInst::ICMP_UGT;
7346       RHS = getConstant(RA - 1);
7347       Changed = true;
7348       break;
7349     case ICmpInst::ICMP_ULE:
7350       if ((RA + 1).isMaxValue()) {
7351         Pred = ICmpInst::ICMP_NE;
7352         RHS = getConstant(RA + 1);
7353         Changed = true;
7354         break;
7355       }
7356       if (RA.isMinValue()) {
7357         Pred = ICmpInst::ICMP_EQ;
7358         Changed = true;
7359         break;
7360       }
7361       if (RA.isMaxValue()) goto trivially_true;
7362 
7363       Pred = ICmpInst::ICMP_ULT;
7364       RHS = getConstant(RA + 1);
7365       Changed = true;
7366       break;
7367     case ICmpInst::ICMP_SGE:
7368       if ((RA - 1).isMinSignedValue()) {
7369         Pred = ICmpInst::ICMP_NE;
7370         RHS = getConstant(RA - 1);
7371         Changed = true;
7372         break;
7373       }
7374       if (RA.isMaxSignedValue()) {
7375         Pred = ICmpInst::ICMP_EQ;
7376         Changed = true;
7377         break;
7378       }
7379       if (RA.isMinSignedValue()) goto trivially_true;
7380 
7381       Pred = ICmpInst::ICMP_SGT;
7382       RHS = getConstant(RA - 1);
7383       Changed = true;
7384       break;
7385     case ICmpInst::ICMP_SLE:
7386       if ((RA + 1).isMaxSignedValue()) {
7387         Pred = ICmpInst::ICMP_NE;
7388         RHS = getConstant(RA + 1);
7389         Changed = true;
7390         break;
7391       }
7392       if (RA.isMinSignedValue()) {
7393         Pred = ICmpInst::ICMP_EQ;
7394         Changed = true;
7395         break;
7396       }
7397       if (RA.isMaxSignedValue()) goto trivially_true;
7398 
7399       Pred = ICmpInst::ICMP_SLT;
7400       RHS = getConstant(RA + 1);
7401       Changed = true;
7402       break;
7403     case ICmpInst::ICMP_UGT:
7404       if (RA.isMinValue()) {
7405         Pred = ICmpInst::ICMP_NE;
7406         Changed = true;
7407         break;
7408       }
7409       if ((RA + 1).isMaxValue()) {
7410         Pred = ICmpInst::ICMP_EQ;
7411         RHS = getConstant(RA + 1);
7412         Changed = true;
7413         break;
7414       }
7415       if (RA.isMaxValue()) goto trivially_false;
7416       break;
7417     case ICmpInst::ICMP_ULT:
7418       if (RA.isMaxValue()) {
7419         Pred = ICmpInst::ICMP_NE;
7420         Changed = true;
7421         break;
7422       }
7423       if ((RA - 1).isMinValue()) {
7424         Pred = ICmpInst::ICMP_EQ;
7425         RHS = getConstant(RA - 1);
7426         Changed = true;
7427         break;
7428       }
7429       if (RA.isMinValue()) goto trivially_false;
7430       break;
7431     case ICmpInst::ICMP_SGT:
7432       if (RA.isMinSignedValue()) {
7433         Pred = ICmpInst::ICMP_NE;
7434         Changed = true;
7435         break;
7436       }
7437       if ((RA + 1).isMaxSignedValue()) {
7438         Pred = ICmpInst::ICMP_EQ;
7439         RHS = getConstant(RA + 1);
7440         Changed = true;
7441         break;
7442       }
7443       if (RA.isMaxSignedValue()) goto trivially_false;
7444       break;
7445     case ICmpInst::ICMP_SLT:
7446       if (RA.isMaxSignedValue()) {
7447         Pred = ICmpInst::ICMP_NE;
7448         Changed = true;
7449         break;
7450       }
7451       if ((RA - 1).isMinSignedValue()) {
7452        Pred = ICmpInst::ICMP_EQ;
7453        RHS = getConstant(RA - 1);
7454         Changed = true;
7455        break;
7456       }
7457       if (RA.isMinSignedValue()) goto trivially_false;
7458       break;
7459     }
7460   }
7461 
7462   // Check for obvious equality.
7463   if (HasSameValue(LHS, RHS)) {
7464     if (ICmpInst::isTrueWhenEqual(Pred))
7465       goto trivially_true;
7466     if (ICmpInst::isFalseWhenEqual(Pred))
7467       goto trivially_false;
7468   }
7469 
7470   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7471   // adding or subtracting 1 from one of the operands.
7472   switch (Pred) {
7473   case ICmpInst::ICMP_SLE:
7474     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7475       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7476                        SCEV::FlagNSW);
7477       Pred = ICmpInst::ICMP_SLT;
7478       Changed = true;
7479     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7480       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7481                        SCEV::FlagNSW);
7482       Pred = ICmpInst::ICMP_SLT;
7483       Changed = true;
7484     }
7485     break;
7486   case ICmpInst::ICMP_SGE:
7487     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7488       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7489                        SCEV::FlagNSW);
7490       Pred = ICmpInst::ICMP_SGT;
7491       Changed = true;
7492     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7493       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7494                        SCEV::FlagNSW);
7495       Pred = ICmpInst::ICMP_SGT;
7496       Changed = true;
7497     }
7498     break;
7499   case ICmpInst::ICMP_ULE:
7500     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7501       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7502                        SCEV::FlagNUW);
7503       Pred = ICmpInst::ICMP_ULT;
7504       Changed = true;
7505     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7506       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7507       Pred = ICmpInst::ICMP_ULT;
7508       Changed = true;
7509     }
7510     break;
7511   case ICmpInst::ICMP_UGE:
7512     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7513       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7514       Pred = ICmpInst::ICMP_UGT;
7515       Changed = true;
7516     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7517       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7518                        SCEV::FlagNUW);
7519       Pred = ICmpInst::ICMP_UGT;
7520       Changed = true;
7521     }
7522     break;
7523   default:
7524     break;
7525   }
7526 
7527   // TODO: More simplifications are possible here.
7528 
7529   // Recursively simplify until we either hit a recursion limit or nothing
7530   // changes.
7531   if (Changed)
7532     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7533 
7534   return Changed;
7535 
7536 trivially_true:
7537   // Return 0 == 0.
7538   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7539   Pred = ICmpInst::ICMP_EQ;
7540   return true;
7541 
7542 trivially_false:
7543   // Return 0 != 0.
7544   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7545   Pred = ICmpInst::ICMP_NE;
7546   return true;
7547 }
7548 
7549 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7550   return getSignedRange(S).getSignedMax().isNegative();
7551 }
7552 
7553 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7554   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7555 }
7556 
7557 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7558   return !getSignedRange(S).getSignedMin().isNegative();
7559 }
7560 
7561 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7562   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7563 }
7564 
7565 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7566   return isKnownNegative(S) || isKnownPositive(S);
7567 }
7568 
7569 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7570                                        const SCEV *LHS, const SCEV *RHS) {
7571   // Canonicalize the inputs first.
7572   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7573 
7574   // If LHS or RHS is an addrec, check to see if the condition is true in
7575   // every iteration of the loop.
7576   // If LHS and RHS are both addrec, both conditions must be true in
7577   // every iteration of the loop.
7578   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7579   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7580   bool LeftGuarded = false;
7581   bool RightGuarded = false;
7582   if (LAR) {
7583     const Loop *L = LAR->getLoop();
7584     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7585         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7586       if (!RAR) return true;
7587       LeftGuarded = true;
7588     }
7589   }
7590   if (RAR) {
7591     const Loop *L = RAR->getLoop();
7592     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7593         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7594       if (!LAR) return true;
7595       RightGuarded = true;
7596     }
7597   }
7598   if (LeftGuarded && RightGuarded)
7599     return true;
7600 
7601   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7602     return true;
7603 
7604   // Otherwise see what can be done with known constant ranges.
7605   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7606 }
7607 
7608 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7609                                            ICmpInst::Predicate Pred,
7610                                            bool &Increasing) {
7611   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7612 
7613 #ifndef NDEBUG
7614   // Verify an invariant: inverting the predicate should turn a monotonically
7615   // increasing change to a monotonically decreasing one, and vice versa.
7616   bool IncreasingSwapped;
7617   bool ResultSwapped = isMonotonicPredicateImpl(
7618       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7619 
7620   assert(Result == ResultSwapped && "should be able to analyze both!");
7621   if (ResultSwapped)
7622     assert(Increasing == !IncreasingSwapped &&
7623            "monotonicity should flip as we flip the predicate");
7624 #endif
7625 
7626   return Result;
7627 }
7628 
7629 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7630                                                ICmpInst::Predicate Pred,
7631                                                bool &Increasing) {
7632 
7633   // A zero step value for LHS means the induction variable is essentially a
7634   // loop invariant value. We don't really depend on the predicate actually
7635   // flipping from false to true (for increasing predicates, and the other way
7636   // around for decreasing predicates), all we care about is that *if* the
7637   // predicate changes then it only changes from false to true.
7638   //
7639   // A zero step value in itself is not very useful, but there may be places
7640   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7641   // as general as possible.
7642 
7643   switch (Pred) {
7644   default:
7645     return false; // Conservative answer
7646 
7647   case ICmpInst::ICMP_UGT:
7648   case ICmpInst::ICMP_UGE:
7649   case ICmpInst::ICMP_ULT:
7650   case ICmpInst::ICMP_ULE:
7651     if (!LHS->hasNoUnsignedWrap())
7652       return false;
7653 
7654     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7655     return true;
7656 
7657   case ICmpInst::ICMP_SGT:
7658   case ICmpInst::ICMP_SGE:
7659   case ICmpInst::ICMP_SLT:
7660   case ICmpInst::ICMP_SLE: {
7661     if (!LHS->hasNoSignedWrap())
7662       return false;
7663 
7664     const SCEV *Step = LHS->getStepRecurrence(*this);
7665 
7666     if (isKnownNonNegative(Step)) {
7667       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7668       return true;
7669     }
7670 
7671     if (isKnownNonPositive(Step)) {
7672       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7673       return true;
7674     }
7675 
7676     return false;
7677   }
7678 
7679   }
7680 
7681   llvm_unreachable("switch has default clause!");
7682 }
7683 
7684 bool ScalarEvolution::isLoopInvariantPredicate(
7685     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7686     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7687     const SCEV *&InvariantRHS) {
7688 
7689   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7690   if (!isLoopInvariant(RHS, L)) {
7691     if (!isLoopInvariant(LHS, L))
7692       return false;
7693 
7694     std::swap(LHS, RHS);
7695     Pred = ICmpInst::getSwappedPredicate(Pred);
7696   }
7697 
7698   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7699   if (!ArLHS || ArLHS->getLoop() != L)
7700     return false;
7701 
7702   bool Increasing;
7703   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7704     return false;
7705 
7706   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7707   // true as the loop iterates, and the backedge is control dependent on
7708   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7709   //
7710   //   * if the predicate was false in the first iteration then the predicate
7711   //     is never evaluated again, since the loop exits without taking the
7712   //     backedge.
7713   //   * if the predicate was true in the first iteration then it will
7714   //     continue to be true for all future iterations since it is
7715   //     monotonically increasing.
7716   //
7717   // For both the above possibilities, we can replace the loop varying
7718   // predicate with its value on the first iteration of the loop (which is
7719   // loop invariant).
7720   //
7721   // A similar reasoning applies for a monotonically decreasing predicate, by
7722   // replacing true with false and false with true in the above two bullets.
7723 
7724   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7725 
7726   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7727     return false;
7728 
7729   InvariantPred = Pred;
7730   InvariantLHS = ArLHS->getStart();
7731   InvariantRHS = RHS;
7732   return true;
7733 }
7734 
7735 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7736     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7737   if (HasSameValue(LHS, RHS))
7738     return ICmpInst::isTrueWhenEqual(Pred);
7739 
7740   // This code is split out from isKnownPredicate because it is called from
7741   // within isLoopEntryGuardedByCond.
7742 
7743   auto CheckRanges =
7744       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7745     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7746         .contains(RangeLHS);
7747   };
7748 
7749   // The check at the top of the function catches the case where the values are
7750   // known to be equal.
7751   if (Pred == CmpInst::ICMP_EQ)
7752     return false;
7753 
7754   if (Pred == CmpInst::ICMP_NE)
7755     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7756            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7757            isKnownNonZero(getMinusSCEV(LHS, RHS));
7758 
7759   if (CmpInst::isSigned(Pred))
7760     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7761 
7762   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7763 }
7764 
7765 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7766                                                     const SCEV *LHS,
7767                                                     const SCEV *RHS) {
7768 
7769   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7770   // Return Y via OutY.
7771   auto MatchBinaryAddToConst =
7772       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7773              SCEV::NoWrapFlags ExpectedFlags) {
7774     const SCEV *NonConstOp, *ConstOp;
7775     SCEV::NoWrapFlags FlagsPresent;
7776 
7777     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7778         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7779       return false;
7780 
7781     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7782     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7783   };
7784 
7785   APInt C;
7786 
7787   switch (Pred) {
7788   default:
7789     break;
7790 
7791   case ICmpInst::ICMP_SGE:
7792     std::swap(LHS, RHS);
7793   case ICmpInst::ICMP_SLE:
7794     // X s<= (X + C)<nsw> if C >= 0
7795     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7796       return true;
7797 
7798     // (X + C)<nsw> s<= X if C <= 0
7799     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7800         !C.isStrictlyPositive())
7801       return true;
7802     break;
7803 
7804   case ICmpInst::ICMP_SGT:
7805     std::swap(LHS, RHS);
7806   case ICmpInst::ICMP_SLT:
7807     // X s< (X + C)<nsw> if C > 0
7808     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7809         C.isStrictlyPositive())
7810       return true;
7811 
7812     // (X + C)<nsw> s< X if C < 0
7813     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7814       return true;
7815     break;
7816   }
7817 
7818   return false;
7819 }
7820 
7821 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7822                                                    const SCEV *LHS,
7823                                                    const SCEV *RHS) {
7824   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7825     return false;
7826 
7827   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7828   // the stack can result in exponential time complexity.
7829   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7830 
7831   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7832   //
7833   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7834   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7835   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7836   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7837   // use isKnownPredicate later if needed.
7838   return isKnownNonNegative(RHS) &&
7839          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7840          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7841 }
7842 
7843 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7844                                         ICmpInst::Predicate Pred,
7845                                         const SCEV *LHS, const SCEV *RHS) {
7846   // No need to even try if we know the module has no guards.
7847   if (!HasGuards)
7848     return false;
7849 
7850   return any_of(*BB, [&](Instruction &I) {
7851     using namespace llvm::PatternMatch;
7852 
7853     Value *Condition;
7854     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7855                          m_Value(Condition))) &&
7856            isImpliedCond(Pred, LHS, RHS, Condition, false);
7857   });
7858 }
7859 
7860 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7861 /// protected by a conditional between LHS and RHS.  This is used to
7862 /// to eliminate casts.
7863 bool
7864 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7865                                              ICmpInst::Predicate Pred,
7866                                              const SCEV *LHS, const SCEV *RHS) {
7867   // Interpret a null as meaning no loop, where there is obviously no guard
7868   // (interprocedural conditions notwithstanding).
7869   if (!L) return true;
7870 
7871   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7872     return true;
7873 
7874   BasicBlock *Latch = L->getLoopLatch();
7875   if (!Latch)
7876     return false;
7877 
7878   BranchInst *LoopContinuePredicate =
7879     dyn_cast<BranchInst>(Latch->getTerminator());
7880   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7881       isImpliedCond(Pred, LHS, RHS,
7882                     LoopContinuePredicate->getCondition(),
7883                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7884     return true;
7885 
7886   // We don't want more than one activation of the following loops on the stack
7887   // -- that can lead to O(n!) time complexity.
7888   if (WalkingBEDominatingConds)
7889     return false;
7890 
7891   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7892 
7893   // See if we can exploit a trip count to prove the predicate.
7894   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7895   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7896   if (LatchBECount != getCouldNotCompute()) {
7897     // We know that Latch branches back to the loop header exactly
7898     // LatchBECount times.  This means the backdege condition at Latch is
7899     // equivalent to  "{0,+,1} u< LatchBECount".
7900     Type *Ty = LatchBECount->getType();
7901     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7902     const SCEV *LoopCounter =
7903       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7904     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7905                       LatchBECount))
7906       return true;
7907   }
7908 
7909   // Check conditions due to any @llvm.assume intrinsics.
7910   for (auto &AssumeVH : AC.assumptions()) {
7911     if (!AssumeVH)
7912       continue;
7913     auto *CI = cast<CallInst>(AssumeVH);
7914     if (!DT.dominates(CI, Latch->getTerminator()))
7915       continue;
7916 
7917     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7918       return true;
7919   }
7920 
7921   // If the loop is not reachable from the entry block, we risk running into an
7922   // infinite loop as we walk up into the dom tree.  These loops do not matter
7923   // anyway, so we just return a conservative answer when we see them.
7924   if (!DT.isReachableFromEntry(L->getHeader()))
7925     return false;
7926 
7927   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7928     return true;
7929 
7930   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7931        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7932 
7933     assert(DTN && "should reach the loop header before reaching the root!");
7934 
7935     BasicBlock *BB = DTN->getBlock();
7936     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7937       return true;
7938 
7939     BasicBlock *PBB = BB->getSinglePredecessor();
7940     if (!PBB)
7941       continue;
7942 
7943     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7944     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7945       continue;
7946 
7947     Value *Condition = ContinuePredicate->getCondition();
7948 
7949     // If we have an edge `E` within the loop body that dominates the only
7950     // latch, the condition guarding `E` also guards the backedge.  This
7951     // reasoning works only for loops with a single latch.
7952 
7953     BasicBlockEdge DominatingEdge(PBB, BB);
7954     if (DominatingEdge.isSingleEdge()) {
7955       // We're constructively (and conservatively) enumerating edges within the
7956       // loop body that dominate the latch.  The dominator tree better agree
7957       // with us on this:
7958       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7959 
7960       if (isImpliedCond(Pred, LHS, RHS, Condition,
7961                         BB != ContinuePredicate->getSuccessor(0)))
7962         return true;
7963     }
7964   }
7965 
7966   return false;
7967 }
7968 
7969 bool
7970 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7971                                           ICmpInst::Predicate Pred,
7972                                           const SCEV *LHS, const SCEV *RHS) {
7973   // Interpret a null as meaning no loop, where there is obviously no guard
7974   // (interprocedural conditions notwithstanding).
7975   if (!L) return false;
7976 
7977   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7978     return true;
7979 
7980   // Starting at the loop predecessor, climb up the predecessor chain, as long
7981   // as there are predecessors that can be found that have unique successors
7982   // leading to the original header.
7983   for (std::pair<BasicBlock *, BasicBlock *>
7984          Pair(L->getLoopPredecessor(), L->getHeader());
7985        Pair.first;
7986        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7987 
7988     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
7989       return true;
7990 
7991     BranchInst *LoopEntryPredicate =
7992       dyn_cast<BranchInst>(Pair.first->getTerminator());
7993     if (!LoopEntryPredicate ||
7994         LoopEntryPredicate->isUnconditional())
7995       continue;
7996 
7997     if (isImpliedCond(Pred, LHS, RHS,
7998                       LoopEntryPredicate->getCondition(),
7999                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
8000       return true;
8001   }
8002 
8003   // Check conditions due to any @llvm.assume intrinsics.
8004   for (auto &AssumeVH : AC.assumptions()) {
8005     if (!AssumeVH)
8006       continue;
8007     auto *CI = cast<CallInst>(AssumeVH);
8008     if (!DT.dominates(CI, L->getHeader()))
8009       continue;
8010 
8011     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8012       return true;
8013   }
8014 
8015   return false;
8016 }
8017 
8018 namespace {
8019 /// RAII wrapper to prevent recursive application of isImpliedCond.
8020 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
8021 /// currently evaluating isImpliedCond.
8022 struct MarkPendingLoopPredicate {
8023   Value *Cond;
8024   DenseSet<Value*> &LoopPreds;
8025   bool Pending;
8026 
8027   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
8028     : Cond(C), LoopPreds(LP) {
8029     Pending = !LoopPreds.insert(Cond).second;
8030   }
8031   ~MarkPendingLoopPredicate() {
8032     if (!Pending)
8033       LoopPreds.erase(Cond);
8034   }
8035 };
8036 } // end anonymous namespace
8037 
8038 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8039                                     const SCEV *LHS, const SCEV *RHS,
8040                                     Value *FoundCondValue,
8041                                     bool Inverse) {
8042   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
8043   if (Mark.Pending)
8044     return false;
8045 
8046   // Recursively handle And and Or conditions.
8047   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8048     if (BO->getOpcode() == Instruction::And) {
8049       if (!Inverse)
8050         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8051                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8052     } else if (BO->getOpcode() == Instruction::Or) {
8053       if (Inverse)
8054         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8055                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8056     }
8057   }
8058 
8059   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8060   if (!ICI) return false;
8061 
8062   // Now that we found a conditional branch that dominates the loop or controls
8063   // the loop latch. Check to see if it is the comparison we are looking for.
8064   ICmpInst::Predicate FoundPred;
8065   if (Inverse)
8066     FoundPred = ICI->getInversePredicate();
8067   else
8068     FoundPred = ICI->getPredicate();
8069 
8070   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8071   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8072 
8073   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8074 }
8075 
8076 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8077                                     const SCEV *RHS,
8078                                     ICmpInst::Predicate FoundPred,
8079                                     const SCEV *FoundLHS,
8080                                     const SCEV *FoundRHS) {
8081   // Balance the types.
8082   if (getTypeSizeInBits(LHS->getType()) <
8083       getTypeSizeInBits(FoundLHS->getType())) {
8084     if (CmpInst::isSigned(Pred)) {
8085       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8086       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8087     } else {
8088       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8089       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8090     }
8091   } else if (getTypeSizeInBits(LHS->getType()) >
8092       getTypeSizeInBits(FoundLHS->getType())) {
8093     if (CmpInst::isSigned(FoundPred)) {
8094       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8095       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8096     } else {
8097       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8098       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8099     }
8100   }
8101 
8102   // Canonicalize the query to match the way instcombine will have
8103   // canonicalized the comparison.
8104   if (SimplifyICmpOperands(Pred, LHS, RHS))
8105     if (LHS == RHS)
8106       return CmpInst::isTrueWhenEqual(Pred);
8107   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8108     if (FoundLHS == FoundRHS)
8109       return CmpInst::isFalseWhenEqual(FoundPred);
8110 
8111   // Check to see if we can make the LHS or RHS match.
8112   if (LHS == FoundRHS || RHS == FoundLHS) {
8113     if (isa<SCEVConstant>(RHS)) {
8114       std::swap(FoundLHS, FoundRHS);
8115       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8116     } else {
8117       std::swap(LHS, RHS);
8118       Pred = ICmpInst::getSwappedPredicate(Pred);
8119     }
8120   }
8121 
8122   // Check whether the found predicate is the same as the desired predicate.
8123   if (FoundPred == Pred)
8124     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8125 
8126   // Check whether swapping the found predicate makes it the same as the
8127   // desired predicate.
8128   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8129     if (isa<SCEVConstant>(RHS))
8130       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8131     else
8132       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8133                                    RHS, LHS, FoundLHS, FoundRHS);
8134   }
8135 
8136   // Unsigned comparison is the same as signed comparison when both the operands
8137   // are non-negative.
8138   if (CmpInst::isUnsigned(FoundPred) &&
8139       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8140       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8141     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8142 
8143   // Check if we can make progress by sharpening ranges.
8144   if (FoundPred == ICmpInst::ICMP_NE &&
8145       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8146 
8147     const SCEVConstant *C = nullptr;
8148     const SCEV *V = nullptr;
8149 
8150     if (isa<SCEVConstant>(FoundLHS)) {
8151       C = cast<SCEVConstant>(FoundLHS);
8152       V = FoundRHS;
8153     } else {
8154       C = cast<SCEVConstant>(FoundRHS);
8155       V = FoundLHS;
8156     }
8157 
8158     // The guarding predicate tells us that C != V. If the known range
8159     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8160     // range we consider has to correspond to same signedness as the
8161     // predicate we're interested in folding.
8162 
8163     APInt Min = ICmpInst::isSigned(Pred) ?
8164         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8165 
8166     if (Min == C->getAPInt()) {
8167       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8168       // This is true even if (Min + 1) wraps around -- in case of
8169       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8170 
8171       APInt SharperMin = Min + 1;
8172 
8173       switch (Pred) {
8174         case ICmpInst::ICMP_SGE:
8175         case ICmpInst::ICMP_UGE:
8176           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8177           // RHS, we're done.
8178           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8179                                     getConstant(SharperMin)))
8180             return true;
8181 
8182         case ICmpInst::ICMP_SGT:
8183         case ICmpInst::ICMP_UGT:
8184           // We know from the range information that (V `Pred` Min ||
8185           // V == Min).  We know from the guarding condition that !(V
8186           // == Min).  This gives us
8187           //
8188           //       V `Pred` Min || V == Min && !(V == Min)
8189           //   =>  V `Pred` Min
8190           //
8191           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8192 
8193           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8194             return true;
8195 
8196         default:
8197           // No change
8198           break;
8199       }
8200     }
8201   }
8202 
8203   // Check whether the actual condition is beyond sufficient.
8204   if (FoundPred == ICmpInst::ICMP_EQ)
8205     if (ICmpInst::isTrueWhenEqual(Pred))
8206       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8207         return true;
8208   if (Pred == ICmpInst::ICMP_NE)
8209     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8210       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8211         return true;
8212 
8213   // Otherwise assume the worst.
8214   return false;
8215 }
8216 
8217 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8218                                      const SCEV *&L, const SCEV *&R,
8219                                      SCEV::NoWrapFlags &Flags) {
8220   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8221   if (!AE || AE->getNumOperands() != 2)
8222     return false;
8223 
8224   L = AE->getOperand(0);
8225   R = AE->getOperand(1);
8226   Flags = AE->getNoWrapFlags();
8227   return true;
8228 }
8229 
8230 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8231                                                 const SCEV *More,
8232                                                 APInt &C) {
8233   // We avoid subtracting expressions here because this function is usually
8234   // fairly deep in the call stack (i.e. is called many times).
8235 
8236   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8237     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8238     const auto *MAR = cast<SCEVAddRecExpr>(More);
8239 
8240     if (LAR->getLoop() != MAR->getLoop())
8241       return false;
8242 
8243     // We look at affine expressions only; not for correctness but to keep
8244     // getStepRecurrence cheap.
8245     if (!LAR->isAffine() || !MAR->isAffine())
8246       return false;
8247 
8248     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8249       return false;
8250 
8251     Less = LAR->getStart();
8252     More = MAR->getStart();
8253 
8254     // fall through
8255   }
8256 
8257   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8258     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8259     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8260     C = M - L;
8261     return true;
8262   }
8263 
8264   const SCEV *L, *R;
8265   SCEV::NoWrapFlags Flags;
8266   if (splitBinaryAdd(Less, L, R, Flags))
8267     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8268       if (R == More) {
8269         C = -(LC->getAPInt());
8270         return true;
8271       }
8272 
8273   if (splitBinaryAdd(More, L, R, Flags))
8274     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8275       if (R == Less) {
8276         C = LC->getAPInt();
8277         return true;
8278       }
8279 
8280   return false;
8281 }
8282 
8283 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8284     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8285     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8286   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8287     return false;
8288 
8289   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8290   if (!AddRecLHS)
8291     return false;
8292 
8293   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8294   if (!AddRecFoundLHS)
8295     return false;
8296 
8297   // We'd like to let SCEV reason about control dependencies, so we constrain
8298   // both the inequalities to be about add recurrences on the same loop.  This
8299   // way we can use isLoopEntryGuardedByCond later.
8300 
8301   const Loop *L = AddRecFoundLHS->getLoop();
8302   if (L != AddRecLHS->getLoop())
8303     return false;
8304 
8305   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8306   //
8307   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8308   //                                                                  ... (2)
8309   //
8310   // Informal proof for (2), assuming (1) [*]:
8311   //
8312   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8313   //
8314   // Then
8315   //
8316   //       FoundLHS s< FoundRHS s< INT_MIN - C
8317   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8318   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8319   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8320   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8321   // <=>  FoundLHS + C s< FoundRHS + C
8322   //
8323   // [*]: (1) can be proved by ruling out overflow.
8324   //
8325   // [**]: This can be proved by analyzing all the four possibilities:
8326   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8327   //    (A s>= 0, B s>= 0).
8328   //
8329   // Note:
8330   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8331   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8332   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8333   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8334   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8335   // C)".
8336 
8337   APInt LDiff, RDiff;
8338   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8339       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
8340       LDiff != RDiff)
8341     return false;
8342 
8343   if (LDiff == 0)
8344     return true;
8345 
8346   APInt FoundRHSLimit;
8347 
8348   if (Pred == CmpInst::ICMP_ULT) {
8349     FoundRHSLimit = -RDiff;
8350   } else {
8351     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8352     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
8353   }
8354 
8355   // Try to prove (1) or (2), as needed.
8356   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8357                                   getConstant(FoundRHSLimit));
8358 }
8359 
8360 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8361                                             const SCEV *LHS, const SCEV *RHS,
8362                                             const SCEV *FoundLHS,
8363                                             const SCEV *FoundRHS) {
8364   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8365     return true;
8366 
8367   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8368     return true;
8369 
8370   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8371                                      FoundLHS, FoundRHS) ||
8372          // ~x < ~y --> x > y
8373          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8374                                      getNotSCEV(FoundRHS),
8375                                      getNotSCEV(FoundLHS));
8376 }
8377 
8378 
8379 /// If Expr computes ~A, return A else return nullptr
8380 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8381   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8382   if (!Add || Add->getNumOperands() != 2 ||
8383       !Add->getOperand(0)->isAllOnesValue())
8384     return nullptr;
8385 
8386   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8387   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8388       !AddRHS->getOperand(0)->isAllOnesValue())
8389     return nullptr;
8390 
8391   return AddRHS->getOperand(1);
8392 }
8393 
8394 
8395 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8396 template<typename MaxExprType>
8397 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8398                               const SCEV *Candidate) {
8399   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8400   if (!MaxExpr) return false;
8401 
8402   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8403 }
8404 
8405 
8406 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8407 template<typename MaxExprType>
8408 static bool IsMinConsistingOf(ScalarEvolution &SE,
8409                               const SCEV *MaybeMinExpr,
8410                               const SCEV *Candidate) {
8411   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8412   if (!MaybeMaxExpr)
8413     return false;
8414 
8415   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8416 }
8417 
8418 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8419                                            ICmpInst::Predicate Pred,
8420                                            const SCEV *LHS, const SCEV *RHS) {
8421 
8422   // If both sides are affine addrecs for the same loop, with equal
8423   // steps, and we know the recurrences don't wrap, then we only
8424   // need to check the predicate on the starting values.
8425 
8426   if (!ICmpInst::isRelational(Pred))
8427     return false;
8428 
8429   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8430   if (!LAR)
8431     return false;
8432   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8433   if (!RAR)
8434     return false;
8435   if (LAR->getLoop() != RAR->getLoop())
8436     return false;
8437   if (!LAR->isAffine() || !RAR->isAffine())
8438     return false;
8439 
8440   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8441     return false;
8442 
8443   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8444                          SCEV::FlagNSW : SCEV::FlagNUW;
8445   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8446     return false;
8447 
8448   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8449 }
8450 
8451 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8452 /// expression?
8453 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8454                                         ICmpInst::Predicate Pred,
8455                                         const SCEV *LHS, const SCEV *RHS) {
8456   switch (Pred) {
8457   default:
8458     return false;
8459 
8460   case ICmpInst::ICMP_SGE:
8461     std::swap(LHS, RHS);
8462     // fall through
8463   case ICmpInst::ICMP_SLE:
8464     return
8465       // min(A, ...) <= A
8466       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8467       // A <= max(A, ...)
8468       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8469 
8470   case ICmpInst::ICMP_UGE:
8471     std::swap(LHS, RHS);
8472     // fall through
8473   case ICmpInst::ICMP_ULE:
8474     return
8475       // min(A, ...) <= A
8476       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8477       // A <= max(A, ...)
8478       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8479   }
8480 
8481   llvm_unreachable("covered switch fell through?!");
8482 }
8483 
8484 bool
8485 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8486                                              const SCEV *LHS, const SCEV *RHS,
8487                                              const SCEV *FoundLHS,
8488                                              const SCEV *FoundRHS) {
8489   auto IsKnownPredicateFull =
8490       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8491     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8492            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8493            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8494            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8495   };
8496 
8497   switch (Pred) {
8498   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8499   case ICmpInst::ICMP_EQ:
8500   case ICmpInst::ICMP_NE:
8501     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8502       return true;
8503     break;
8504   case ICmpInst::ICMP_SLT:
8505   case ICmpInst::ICMP_SLE:
8506     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8507         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8508       return true;
8509     break;
8510   case ICmpInst::ICMP_SGT:
8511   case ICmpInst::ICMP_SGE:
8512     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8513         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8514       return true;
8515     break;
8516   case ICmpInst::ICMP_ULT:
8517   case ICmpInst::ICMP_ULE:
8518     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8519         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8520       return true;
8521     break;
8522   case ICmpInst::ICMP_UGT:
8523   case ICmpInst::ICMP_UGE:
8524     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8525         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8526       return true;
8527     break;
8528   }
8529 
8530   return false;
8531 }
8532 
8533 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8534                                                      const SCEV *LHS,
8535                                                      const SCEV *RHS,
8536                                                      const SCEV *FoundLHS,
8537                                                      const SCEV *FoundRHS) {
8538   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8539     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8540     // reduce the compile time impact of this optimization.
8541     return false;
8542 
8543   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8544   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8545       !isa<SCEVConstant>(AddLHS->getOperand(0)))
8546     return false;
8547 
8548   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8549 
8550   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8551   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8552   ConstantRange FoundLHSRange =
8553       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8554 
8555   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8556   // for `LHS`:
8557   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8558   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8559 
8560   // We can also compute the range of values for `LHS` that satisfy the
8561   // consequent, "`LHS` `Pred` `RHS`":
8562   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8563   ConstantRange SatisfyingLHSRange =
8564       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8565 
8566   // The antecedent implies the consequent if every value of `LHS` that
8567   // satisfies the antecedent also satisfies the consequent.
8568   return SatisfyingLHSRange.contains(LHSRange);
8569 }
8570 
8571 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8572                                          bool IsSigned, bool NoWrap) {
8573   if (NoWrap) return false;
8574 
8575   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8576   const SCEV *One = getOne(Stride->getType());
8577 
8578   if (IsSigned) {
8579     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8580     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8581     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8582                                 .getSignedMax();
8583 
8584     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8585     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8586   }
8587 
8588   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8589   APInt MaxValue = APInt::getMaxValue(BitWidth);
8590   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8591                               .getUnsignedMax();
8592 
8593   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8594   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8595 }
8596 
8597 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8598                                          bool IsSigned, bool NoWrap) {
8599   if (NoWrap) return false;
8600 
8601   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8602   const SCEV *One = getOne(Stride->getType());
8603 
8604   if (IsSigned) {
8605     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8606     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8607     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8608                                .getSignedMax();
8609 
8610     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8611     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8612   }
8613 
8614   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8615   APInt MinValue = APInt::getMinValue(BitWidth);
8616   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8617                             .getUnsignedMax();
8618 
8619   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8620   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8621 }
8622 
8623 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8624                                             bool Equality) {
8625   const SCEV *One = getOne(Step->getType());
8626   Delta = Equality ? getAddExpr(Delta, Step)
8627                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8628   return getUDivExpr(Delta, Step);
8629 }
8630 
8631 ScalarEvolution::ExitLimit
8632 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
8633                                   const Loop *L, bool IsSigned,
8634                                   bool ControlsExit, bool AllowPredicates) {
8635   SCEVUnionPredicate P;
8636   // We handle only IV < Invariant
8637   if (!isLoopInvariant(RHS, L))
8638     return getCouldNotCompute();
8639 
8640   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8641   if (!IV && AllowPredicates)
8642     // Try to make this an AddRec using runtime tests, in the first X
8643     // iterations of this loop, where X is the SCEV expression found by the
8644     // algorithm below.
8645     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8646 
8647   // Avoid weird loops
8648   if (!IV || IV->getLoop() != L || !IV->isAffine())
8649     return getCouldNotCompute();
8650 
8651   bool NoWrap = ControlsExit &&
8652                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8653 
8654   const SCEV *Stride = IV->getStepRecurrence(*this);
8655 
8656   // Avoid negative or zero stride values
8657   if (!isKnownPositive(Stride))
8658     return getCouldNotCompute();
8659 
8660   // Avoid proven overflow cases: this will ensure that the backedge taken count
8661   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8662   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8663   // behaviors like the case of C language.
8664   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8665     return getCouldNotCompute();
8666 
8667   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8668                                       : ICmpInst::ICMP_ULT;
8669   const SCEV *Start = IV->getStart();
8670   const SCEV *End = RHS;
8671   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8672     const SCEV *Diff = getMinusSCEV(RHS, Start);
8673     // If we have NoWrap set, then we can assume that the increment won't
8674     // overflow, in which case if RHS - Start is a constant, we don't need to
8675     // do a max operation since we can just figure it out statically
8676     if (NoWrap && isa<SCEVConstant>(Diff)) {
8677       if (cast<SCEVConstant>(Diff)->getAPInt().isNegative())
8678         End = Start;
8679     } else
8680       End = IsSigned ? getSMaxExpr(RHS, Start)
8681                      : getUMaxExpr(RHS, Start);
8682   }
8683 
8684   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8685 
8686   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8687                             : getUnsignedRange(Start).getUnsignedMin();
8688 
8689   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8690                              : getUnsignedRange(Stride).getUnsignedMin();
8691 
8692   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8693   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8694                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8695 
8696   // Although End can be a MAX expression we estimate MaxEnd considering only
8697   // the case End = RHS. This is safe because in the other case (End - Start)
8698   // is zero, leading to a zero maximum backedge taken count.
8699   APInt MaxEnd =
8700     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8701              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8702 
8703   const SCEV *MaxBECount;
8704   if (isa<SCEVConstant>(BECount))
8705     MaxBECount = BECount;
8706   else
8707     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8708                                 getConstant(MinStride), false);
8709 
8710   if (isa<SCEVCouldNotCompute>(MaxBECount))
8711     MaxBECount = BECount;
8712 
8713   return ExitLimit(BECount, MaxBECount, P);
8714 }
8715 
8716 ScalarEvolution::ExitLimit
8717 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8718                                      const Loop *L, bool IsSigned,
8719                                      bool ControlsExit, bool AllowPredicates) {
8720   SCEVUnionPredicate P;
8721   // We handle only IV > Invariant
8722   if (!isLoopInvariant(RHS, L))
8723     return getCouldNotCompute();
8724 
8725   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8726   if (!IV && AllowPredicates)
8727     // Try to make this an AddRec using runtime tests, in the first X
8728     // iterations of this loop, where X is the SCEV expression found by the
8729     // algorithm below.
8730     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8731 
8732   // Avoid weird loops
8733   if (!IV || IV->getLoop() != L || !IV->isAffine())
8734     return getCouldNotCompute();
8735 
8736   bool NoWrap = ControlsExit &&
8737                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8738 
8739   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8740 
8741   // Avoid negative or zero stride values
8742   if (!isKnownPositive(Stride))
8743     return getCouldNotCompute();
8744 
8745   // Avoid proven overflow cases: this will ensure that the backedge taken count
8746   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8747   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8748   // behaviors like the case of C language.
8749   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8750     return getCouldNotCompute();
8751 
8752   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8753                                       : ICmpInst::ICMP_UGT;
8754 
8755   const SCEV *Start = IV->getStart();
8756   const SCEV *End = RHS;
8757   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8758     const SCEV *Diff = getMinusSCEV(RHS, Start);
8759     // If we have NoWrap set, then we can assume that the increment won't
8760     // overflow, in which case if RHS - Start is a constant, we don't need to
8761     // do a max operation since we can just figure it out statically
8762     if (NoWrap && isa<SCEVConstant>(Diff)) {
8763       if (!cast<SCEVConstant>(Diff)->getAPInt().isNegative())
8764         End = Start;
8765     } else
8766       End = IsSigned ? getSMinExpr(RHS, Start)
8767                      : getUMinExpr(RHS, Start);
8768   }
8769 
8770   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8771 
8772   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8773                             : getUnsignedRange(Start).getUnsignedMax();
8774 
8775   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8776                              : getUnsignedRange(Stride).getUnsignedMin();
8777 
8778   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8779   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8780                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8781 
8782   // Although End can be a MIN expression we estimate MinEnd considering only
8783   // the case End = RHS. This is safe because in the other case (Start - End)
8784   // is zero, leading to a zero maximum backedge taken count.
8785   APInt MinEnd =
8786     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8787              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8788 
8789 
8790   const SCEV *MaxBECount = getCouldNotCompute();
8791   if (isa<SCEVConstant>(BECount))
8792     MaxBECount = BECount;
8793   else
8794     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8795                                 getConstant(MinStride), false);
8796 
8797   if (isa<SCEVCouldNotCompute>(MaxBECount))
8798     MaxBECount = BECount;
8799 
8800   return ExitLimit(BECount, MaxBECount, P);
8801 }
8802 
8803 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
8804                                                     ScalarEvolution &SE) const {
8805   if (Range.isFullSet())  // Infinite loop.
8806     return SE.getCouldNotCompute();
8807 
8808   // If the start is a non-zero constant, shift the range to simplify things.
8809   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8810     if (!SC->getValue()->isZero()) {
8811       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8812       Operands[0] = SE.getZero(SC->getType());
8813       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8814                                              getNoWrapFlags(FlagNW));
8815       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8816         return ShiftedAddRec->getNumIterationsInRange(
8817             Range.subtract(SC->getAPInt()), SE);
8818       // This is strange and shouldn't happen.
8819       return SE.getCouldNotCompute();
8820     }
8821 
8822   // The only time we can solve this is when we have all constant indices.
8823   // Otherwise, we cannot determine the overflow conditions.
8824   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8825     return SE.getCouldNotCompute();
8826 
8827   // Okay at this point we know that all elements of the chrec are constants and
8828   // that the start element is zero.
8829 
8830   // First check to see if the range contains zero.  If not, the first
8831   // iteration exits.
8832   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8833   if (!Range.contains(APInt(BitWidth, 0)))
8834     return SE.getZero(getType());
8835 
8836   if (isAffine()) {
8837     // If this is an affine expression then we have this situation:
8838     //   Solve {0,+,A} in Range  ===  Ax in Range
8839 
8840     // We know that zero is in the range.  If A is positive then we know that
8841     // the upper value of the range must be the first possible exit value.
8842     // If A is negative then the lower of the range is the last possible loop
8843     // value.  Also note that we already checked for a full range.
8844     APInt One(BitWidth,1);
8845     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8846     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8847 
8848     // The exit value should be (End+A)/A.
8849     APInt ExitVal = (End + A).udiv(A);
8850     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8851 
8852     // Evaluate at the exit value.  If we really did fall out of the valid
8853     // range, then we computed our trip count, otherwise wrap around or other
8854     // things must have happened.
8855     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8856     if (Range.contains(Val->getValue()))
8857       return SE.getCouldNotCompute();  // Something strange happened
8858 
8859     // Ensure that the previous value is in the range.  This is a sanity check.
8860     assert(Range.contains(
8861            EvaluateConstantChrecAtConstant(this,
8862            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8863            "Linear scev computation is off in a bad way!");
8864     return SE.getConstant(ExitValue);
8865   } else if (isQuadratic()) {
8866     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8867     // quadratic equation to solve it.  To do this, we must frame our problem in
8868     // terms of figuring out when zero is crossed, instead of when
8869     // Range.getUpper() is crossed.
8870     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8871     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8872     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8873                                              // getNoWrapFlags(FlagNW)
8874                                              FlagAnyWrap);
8875 
8876     // Next, solve the constructed addrec
8877     if (auto Roots =
8878             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
8879       const SCEVConstant *R1 = Roots->first;
8880       const SCEVConstant *R2 = Roots->second;
8881       // Pick the smallest positive root value.
8882       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8883               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8884         if (!CB->getZExtValue())
8885           std::swap(R1, R2); // R1 is the minimum root now.
8886 
8887         // Make sure the root is not off by one.  The returned iteration should
8888         // not be in the range, but the previous one should be.  When solving
8889         // for "X*X < 5", for example, we should not return a root of 2.
8890         ConstantInt *R1Val =
8891             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
8892         if (Range.contains(R1Val->getValue())) {
8893           // The next iteration must be out of the range...
8894           ConstantInt *NextVal =
8895               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8896 
8897           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8898           if (!Range.contains(R1Val->getValue()))
8899             return SE.getConstant(NextVal);
8900           return SE.getCouldNotCompute(); // Something strange happened
8901         }
8902 
8903         // If R1 was not in the range, then it is a good return value.  Make
8904         // sure that R1-1 WAS in the range though, just in case.
8905         ConstantInt *NextVal =
8906             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8907         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8908         if (Range.contains(R1Val->getValue()))
8909           return R1;
8910         return SE.getCouldNotCompute(); // Something strange happened
8911       }
8912     }
8913   }
8914 
8915   return SE.getCouldNotCompute();
8916 }
8917 
8918 namespace {
8919 struct FindUndefs {
8920   bool Found;
8921   FindUndefs() : Found(false) {}
8922 
8923   bool follow(const SCEV *S) {
8924     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8925       if (isa<UndefValue>(C->getValue()))
8926         Found = true;
8927     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8928       if (isa<UndefValue>(C->getValue()))
8929         Found = true;
8930     }
8931 
8932     // Keep looking if we haven't found it yet.
8933     return !Found;
8934   }
8935   bool isDone() const {
8936     // Stop recursion if we have found an undef.
8937     return Found;
8938   }
8939 };
8940 }
8941 
8942 // Return true when S contains at least an undef value.
8943 static inline bool
8944 containsUndefs(const SCEV *S) {
8945   FindUndefs F;
8946   SCEVTraversal<FindUndefs> ST(F);
8947   ST.visitAll(S);
8948 
8949   return F.Found;
8950 }
8951 
8952 namespace {
8953 // Collect all steps of SCEV expressions.
8954 struct SCEVCollectStrides {
8955   ScalarEvolution &SE;
8956   SmallVectorImpl<const SCEV *> &Strides;
8957 
8958   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8959       : SE(SE), Strides(S) {}
8960 
8961   bool follow(const SCEV *S) {
8962     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8963       Strides.push_back(AR->getStepRecurrence(SE));
8964     return true;
8965   }
8966   bool isDone() const { return false; }
8967 };
8968 
8969 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8970 struct SCEVCollectTerms {
8971   SmallVectorImpl<const SCEV *> &Terms;
8972 
8973   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8974       : Terms(T) {}
8975 
8976   bool follow(const SCEV *S) {
8977     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8978       if (!containsUndefs(S))
8979         Terms.push_back(S);
8980 
8981       // Stop recursion: once we collected a term, do not walk its operands.
8982       return false;
8983     }
8984 
8985     // Keep looking.
8986     return true;
8987   }
8988   bool isDone() const { return false; }
8989 };
8990 
8991 // Check if a SCEV contains an AddRecExpr.
8992 struct SCEVHasAddRec {
8993   bool &ContainsAddRec;
8994 
8995   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8996    ContainsAddRec = false;
8997   }
8998 
8999   bool follow(const SCEV *S) {
9000     if (isa<SCEVAddRecExpr>(S)) {
9001       ContainsAddRec = true;
9002 
9003       // Stop recursion: once we collected a term, do not walk its operands.
9004       return false;
9005     }
9006 
9007     // Keep looking.
9008     return true;
9009   }
9010   bool isDone() const { return false; }
9011 };
9012 
9013 // Find factors that are multiplied with an expression that (possibly as a
9014 // subexpression) contains an AddRecExpr. In the expression:
9015 //
9016 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
9017 //
9018 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9019 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9020 // parameters as they form a product with an induction variable.
9021 //
9022 // This collector expects all array size parameters to be in the same MulExpr.
9023 // It might be necessary to later add support for collecting parameters that are
9024 // spread over different nested MulExpr.
9025 struct SCEVCollectAddRecMultiplies {
9026   SmallVectorImpl<const SCEV *> &Terms;
9027   ScalarEvolution &SE;
9028 
9029   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9030       : Terms(T), SE(SE) {}
9031 
9032   bool follow(const SCEV *S) {
9033     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9034       bool HasAddRec = false;
9035       SmallVector<const SCEV *, 0> Operands;
9036       for (auto Op : Mul->operands()) {
9037         if (isa<SCEVUnknown>(Op)) {
9038           Operands.push_back(Op);
9039         } else {
9040           bool ContainsAddRec;
9041           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9042           visitAll(Op, ContiansAddRec);
9043           HasAddRec |= ContainsAddRec;
9044         }
9045       }
9046       if (Operands.size() == 0)
9047         return true;
9048 
9049       if (!HasAddRec)
9050         return false;
9051 
9052       Terms.push_back(SE.getMulExpr(Operands));
9053       // Stop recursion: once we collected a term, do not walk its operands.
9054       return false;
9055     }
9056 
9057     // Keep looking.
9058     return true;
9059   }
9060   bool isDone() const { return false; }
9061 };
9062 }
9063 
9064 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9065 /// two places:
9066 ///   1) The strides of AddRec expressions.
9067 ///   2) Unknowns that are multiplied with AddRec expressions.
9068 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9069     SmallVectorImpl<const SCEV *> &Terms) {
9070   SmallVector<const SCEV *, 4> Strides;
9071   SCEVCollectStrides StrideCollector(*this, Strides);
9072   visitAll(Expr, StrideCollector);
9073 
9074   DEBUG({
9075       dbgs() << "Strides:\n";
9076       for (const SCEV *S : Strides)
9077         dbgs() << *S << "\n";
9078     });
9079 
9080   for (const SCEV *S : Strides) {
9081     SCEVCollectTerms TermCollector(Terms);
9082     visitAll(S, TermCollector);
9083   }
9084 
9085   DEBUG({
9086       dbgs() << "Terms:\n";
9087       for (const SCEV *T : Terms)
9088         dbgs() << *T << "\n";
9089     });
9090 
9091   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9092   visitAll(Expr, MulCollector);
9093 }
9094 
9095 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9096                                    SmallVectorImpl<const SCEV *> &Terms,
9097                                    SmallVectorImpl<const SCEV *> &Sizes) {
9098   int Last = Terms.size() - 1;
9099   const SCEV *Step = Terms[Last];
9100 
9101   // End of recursion.
9102   if (Last == 0) {
9103     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9104       SmallVector<const SCEV *, 2> Qs;
9105       for (const SCEV *Op : M->operands())
9106         if (!isa<SCEVConstant>(Op))
9107           Qs.push_back(Op);
9108 
9109       Step = SE.getMulExpr(Qs);
9110     }
9111 
9112     Sizes.push_back(Step);
9113     return true;
9114   }
9115 
9116   for (const SCEV *&Term : Terms) {
9117     // Normalize the terms before the next call to findArrayDimensionsRec.
9118     const SCEV *Q, *R;
9119     SCEVDivision::divide(SE, Term, Step, &Q, &R);
9120 
9121     // Bail out when GCD does not evenly divide one of the terms.
9122     if (!R->isZero())
9123       return false;
9124 
9125     Term = Q;
9126   }
9127 
9128   // Remove all SCEVConstants.
9129   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
9130                 return isa<SCEVConstant>(E);
9131               }),
9132               Terms.end());
9133 
9134   if (Terms.size() > 0)
9135     if (!findArrayDimensionsRec(SE, Terms, Sizes))
9136       return false;
9137 
9138   Sizes.push_back(Step);
9139   return true;
9140 }
9141 
9142 // Returns true when S contains at least a SCEVUnknown parameter.
9143 static inline bool
9144 containsParameters(const SCEV *S) {
9145   struct FindParameter {
9146     bool FoundParameter;
9147     FindParameter() : FoundParameter(false) {}
9148 
9149     bool follow(const SCEV *S) {
9150       if (isa<SCEVUnknown>(S)) {
9151         FoundParameter = true;
9152         // Stop recursion: we found a parameter.
9153         return false;
9154       }
9155       // Keep looking.
9156       return true;
9157     }
9158     bool isDone() const {
9159       // Stop recursion if we have found a parameter.
9160       return FoundParameter;
9161     }
9162   };
9163 
9164   FindParameter F;
9165   SCEVTraversal<FindParameter> ST(F);
9166   ST.visitAll(S);
9167 
9168   return F.FoundParameter;
9169 }
9170 
9171 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9172 static inline bool
9173 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9174   for (const SCEV *T : Terms)
9175     if (containsParameters(T))
9176       return true;
9177   return false;
9178 }
9179 
9180 // Return the number of product terms in S.
9181 static inline int numberOfTerms(const SCEV *S) {
9182   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9183     return Expr->getNumOperands();
9184   return 1;
9185 }
9186 
9187 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9188   if (isa<SCEVConstant>(T))
9189     return nullptr;
9190 
9191   if (isa<SCEVUnknown>(T))
9192     return T;
9193 
9194   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9195     SmallVector<const SCEV *, 2> Factors;
9196     for (const SCEV *Op : M->operands())
9197       if (!isa<SCEVConstant>(Op))
9198         Factors.push_back(Op);
9199 
9200     return SE.getMulExpr(Factors);
9201   }
9202 
9203   return T;
9204 }
9205 
9206 /// Return the size of an element read or written by Inst.
9207 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9208   Type *Ty;
9209   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9210     Ty = Store->getValueOperand()->getType();
9211   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9212     Ty = Load->getType();
9213   else
9214     return nullptr;
9215 
9216   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9217   return getSizeOfExpr(ETy, Ty);
9218 }
9219 
9220 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9221                                           SmallVectorImpl<const SCEV *> &Sizes,
9222                                           const SCEV *ElementSize) const {
9223   if (Terms.size() < 1 || !ElementSize)
9224     return;
9225 
9226   // Early return when Terms do not contain parameters: we do not delinearize
9227   // non parametric SCEVs.
9228   if (!containsParameters(Terms))
9229     return;
9230 
9231   DEBUG({
9232       dbgs() << "Terms:\n";
9233       for (const SCEV *T : Terms)
9234         dbgs() << *T << "\n";
9235     });
9236 
9237   // Remove duplicates.
9238   std::sort(Terms.begin(), Terms.end());
9239   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9240 
9241   // Put larger terms first.
9242   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9243     return numberOfTerms(LHS) > numberOfTerms(RHS);
9244   });
9245 
9246   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9247 
9248   // Try to divide all terms by the element size. If term is not divisible by
9249   // element size, proceed with the original term.
9250   for (const SCEV *&Term : Terms) {
9251     const SCEV *Q, *R;
9252     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9253     if (!Q->isZero())
9254       Term = Q;
9255   }
9256 
9257   SmallVector<const SCEV *, 4> NewTerms;
9258 
9259   // Remove constant factors.
9260   for (const SCEV *T : Terms)
9261     if (const SCEV *NewT = removeConstantFactors(SE, T))
9262       NewTerms.push_back(NewT);
9263 
9264   DEBUG({
9265       dbgs() << "Terms after sorting:\n";
9266       for (const SCEV *T : NewTerms)
9267         dbgs() << *T << "\n";
9268     });
9269 
9270   if (NewTerms.empty() ||
9271       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9272     Sizes.clear();
9273     return;
9274   }
9275 
9276   // The last element to be pushed into Sizes is the size of an element.
9277   Sizes.push_back(ElementSize);
9278 
9279   DEBUG({
9280       dbgs() << "Sizes:\n";
9281       for (const SCEV *S : Sizes)
9282         dbgs() << *S << "\n";
9283     });
9284 }
9285 
9286 void ScalarEvolution::computeAccessFunctions(
9287     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9288     SmallVectorImpl<const SCEV *> &Sizes) {
9289 
9290   // Early exit in case this SCEV is not an affine multivariate function.
9291   if (Sizes.empty())
9292     return;
9293 
9294   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9295     if (!AR->isAffine())
9296       return;
9297 
9298   const SCEV *Res = Expr;
9299   int Last = Sizes.size() - 1;
9300   for (int i = Last; i >= 0; i--) {
9301     const SCEV *Q, *R;
9302     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9303 
9304     DEBUG({
9305         dbgs() << "Res: " << *Res << "\n";
9306         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9307         dbgs() << "Res divided by Sizes[i]:\n";
9308         dbgs() << "Quotient: " << *Q << "\n";
9309         dbgs() << "Remainder: " << *R << "\n";
9310       });
9311 
9312     Res = Q;
9313 
9314     // Do not record the last subscript corresponding to the size of elements in
9315     // the array.
9316     if (i == Last) {
9317 
9318       // Bail out if the remainder is too complex.
9319       if (isa<SCEVAddRecExpr>(R)) {
9320         Subscripts.clear();
9321         Sizes.clear();
9322         return;
9323       }
9324 
9325       continue;
9326     }
9327 
9328     // Record the access function for the current subscript.
9329     Subscripts.push_back(R);
9330   }
9331 
9332   // Also push in last position the remainder of the last division: it will be
9333   // the access function of the innermost dimension.
9334   Subscripts.push_back(Res);
9335 
9336   std::reverse(Subscripts.begin(), Subscripts.end());
9337 
9338   DEBUG({
9339       dbgs() << "Subscripts:\n";
9340       for (const SCEV *S : Subscripts)
9341         dbgs() << *S << "\n";
9342     });
9343 }
9344 
9345 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9346 /// sizes of an array access. Returns the remainder of the delinearization that
9347 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9348 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9349 /// expressions in the stride and base of a SCEV corresponding to the
9350 /// computation of a GCD (greatest common divisor) of base and stride.  When
9351 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9352 ///
9353 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9354 ///
9355 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9356 ///
9357 ///    for (long i = 0; i < n; i++)
9358 ///      for (long j = 0; j < m; j++)
9359 ///        for (long k = 0; k < o; k++)
9360 ///          A[i][j][k] = 1.0;
9361 ///  }
9362 ///
9363 /// the delinearization input is the following AddRec SCEV:
9364 ///
9365 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9366 ///
9367 /// From this SCEV, we are able to say that the base offset of the access is %A
9368 /// because it appears as an offset that does not divide any of the strides in
9369 /// the loops:
9370 ///
9371 ///  CHECK: Base offset: %A
9372 ///
9373 /// and then SCEV->delinearize determines the size of some of the dimensions of
9374 /// the array as these are the multiples by which the strides are happening:
9375 ///
9376 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9377 ///
9378 /// Note that the outermost dimension remains of UnknownSize because there are
9379 /// no strides that would help identifying the size of the last dimension: when
9380 /// the array has been statically allocated, one could compute the size of that
9381 /// dimension by dividing the overall size of the array by the size of the known
9382 /// dimensions: %m * %o * 8.
9383 ///
9384 /// Finally delinearize provides the access functions for the array reference
9385 /// that does correspond to A[i][j][k] of the above C testcase:
9386 ///
9387 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9388 ///
9389 /// The testcases are checking the output of a function pass:
9390 /// DelinearizationPass that walks through all loads and stores of a function
9391 /// asking for the SCEV of the memory access with respect to all enclosing
9392 /// loops, calling SCEV->delinearize on that and printing the results.
9393 
9394 void ScalarEvolution::delinearize(const SCEV *Expr,
9395                                  SmallVectorImpl<const SCEV *> &Subscripts,
9396                                  SmallVectorImpl<const SCEV *> &Sizes,
9397                                  const SCEV *ElementSize) {
9398   // First step: collect parametric terms.
9399   SmallVector<const SCEV *, 4> Terms;
9400   collectParametricTerms(Expr, Terms);
9401 
9402   if (Terms.empty())
9403     return;
9404 
9405   // Second step: find subscript sizes.
9406   findArrayDimensions(Terms, Sizes, ElementSize);
9407 
9408   if (Sizes.empty())
9409     return;
9410 
9411   // Third step: compute the access functions for each subscript.
9412   computeAccessFunctions(Expr, Subscripts, Sizes);
9413 
9414   if (Subscripts.empty())
9415     return;
9416 
9417   DEBUG({
9418       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9419       dbgs() << "ArrayDecl[UnknownSize]";
9420       for (const SCEV *S : Sizes)
9421         dbgs() << "[" << *S << "]";
9422 
9423       dbgs() << "\nArrayRef";
9424       for (const SCEV *S : Subscripts)
9425         dbgs() << "[" << *S << "]";
9426       dbgs() << "\n";
9427     });
9428 }
9429 
9430 //===----------------------------------------------------------------------===//
9431 //                   SCEVCallbackVH Class Implementation
9432 //===----------------------------------------------------------------------===//
9433 
9434 void ScalarEvolution::SCEVCallbackVH::deleted() {
9435   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9436   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9437     SE->ConstantEvolutionLoopExitValue.erase(PN);
9438   SE->eraseValueFromMap(getValPtr());
9439   // this now dangles!
9440 }
9441 
9442 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9443   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9444 
9445   // Forget all the expressions associated with users of the old value,
9446   // so that future queries will recompute the expressions using the new
9447   // value.
9448   Value *Old = getValPtr();
9449   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9450   SmallPtrSet<User *, 8> Visited;
9451   while (!Worklist.empty()) {
9452     User *U = Worklist.pop_back_val();
9453     // Deleting the Old value will cause this to dangle. Postpone
9454     // that until everything else is done.
9455     if (U == Old)
9456       continue;
9457     if (!Visited.insert(U).second)
9458       continue;
9459     if (PHINode *PN = dyn_cast<PHINode>(U))
9460       SE->ConstantEvolutionLoopExitValue.erase(PN);
9461     SE->eraseValueFromMap(U);
9462     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9463   }
9464   // Delete the Old value.
9465   if (PHINode *PN = dyn_cast<PHINode>(Old))
9466     SE->ConstantEvolutionLoopExitValue.erase(PN);
9467   SE->eraseValueFromMap(Old);
9468   // this now dangles!
9469 }
9470 
9471 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9472   : CallbackVH(V), SE(se) {}
9473 
9474 //===----------------------------------------------------------------------===//
9475 //                   ScalarEvolution Class Implementation
9476 //===----------------------------------------------------------------------===//
9477 
9478 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9479                                  AssumptionCache &AC, DominatorTree &DT,
9480                                  LoopInfo &LI)
9481     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9482       CouldNotCompute(new SCEVCouldNotCompute()),
9483       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9484       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9485       FirstUnknown(nullptr) {
9486 
9487   // To use guards for proving predicates, we need to scan every instruction in
9488   // relevant basic blocks, and not just terminators.  Doing this is a waste of
9489   // time if the IR does not actually contain any calls to
9490   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9491   //
9492   // This pessimizes the case where a pass that preserves ScalarEvolution wants
9493   // to _add_ guards to the module when there weren't any before, and wants
9494   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
9495   // efficient in lieu of being smart in that rather obscure case.
9496 
9497   auto *GuardDecl = F.getParent()->getFunction(
9498       Intrinsic::getName(Intrinsic::experimental_guard));
9499   HasGuards = GuardDecl && !GuardDecl->use_empty();
9500 }
9501 
9502 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9503     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9504       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9505       ValueExprMap(std::move(Arg.ValueExprMap)),
9506       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9507       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9508       PredicatedBackedgeTakenCounts(
9509           std::move(Arg.PredicatedBackedgeTakenCounts)),
9510       ConstantEvolutionLoopExitValue(
9511           std::move(Arg.ConstantEvolutionLoopExitValue)),
9512       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9513       LoopDispositions(std::move(Arg.LoopDispositions)),
9514       BlockDispositions(std::move(Arg.BlockDispositions)),
9515       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9516       SignedRanges(std::move(Arg.SignedRanges)),
9517       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9518       UniquePreds(std::move(Arg.UniquePreds)),
9519       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9520       FirstUnknown(Arg.FirstUnknown) {
9521   Arg.FirstUnknown = nullptr;
9522 }
9523 
9524 ScalarEvolution::~ScalarEvolution() {
9525   // Iterate through all the SCEVUnknown instances and call their
9526   // destructors, so that they release their references to their values.
9527   for (SCEVUnknown *U = FirstUnknown; U;) {
9528     SCEVUnknown *Tmp = U;
9529     U = U->Next;
9530     Tmp->~SCEVUnknown();
9531   }
9532   FirstUnknown = nullptr;
9533 
9534   ExprValueMap.clear();
9535   ValueExprMap.clear();
9536   HasRecMap.clear();
9537 
9538   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9539   // that a loop had multiple computable exits.
9540   for (auto &BTCI : BackedgeTakenCounts)
9541     BTCI.second.clear();
9542   for (auto &BTCI : PredicatedBackedgeTakenCounts)
9543     BTCI.second.clear();
9544 
9545   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9546   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9547   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9548 }
9549 
9550 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9551   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9552 }
9553 
9554 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9555                           const Loop *L) {
9556   // Print all inner loops first
9557   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9558     PrintLoopInfo(OS, SE, *I);
9559 
9560   OS << "Loop ";
9561   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9562   OS << ": ";
9563 
9564   SmallVector<BasicBlock *, 8> ExitBlocks;
9565   L->getExitBlocks(ExitBlocks);
9566   if (ExitBlocks.size() != 1)
9567     OS << "<multiple exits> ";
9568 
9569   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9570     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9571   } else {
9572     OS << "Unpredictable backedge-taken count. ";
9573   }
9574 
9575   OS << "\n"
9576         "Loop ";
9577   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9578   OS << ": ";
9579 
9580   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9581     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9582   } else {
9583     OS << "Unpredictable max backedge-taken count. ";
9584   }
9585 
9586   OS << "\n"
9587         "Loop ";
9588   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9589   OS << ": ";
9590 
9591   SCEVUnionPredicate Pred;
9592   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9593   if (!isa<SCEVCouldNotCompute>(PBT)) {
9594     OS << "Predicated backedge-taken count is " << *PBT << "\n";
9595     OS << " Predicates:\n";
9596     Pred.print(OS, 4);
9597   } else {
9598     OS << "Unpredictable predicated backedge-taken count. ";
9599   }
9600   OS << "\n";
9601 }
9602 
9603 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9604   switch (LD) {
9605   case ScalarEvolution::LoopVariant:
9606     return "Variant";
9607   case ScalarEvolution::LoopInvariant:
9608     return "Invariant";
9609   case ScalarEvolution::LoopComputable:
9610     return "Computable";
9611   }
9612   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
9613 }
9614 
9615 void ScalarEvolution::print(raw_ostream &OS) const {
9616   // ScalarEvolution's implementation of the print method is to print
9617   // out SCEV values of all instructions that are interesting. Doing
9618   // this potentially causes it to create new SCEV objects though,
9619   // which technically conflicts with the const qualifier. This isn't
9620   // observable from outside the class though, so casting away the
9621   // const isn't dangerous.
9622   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9623 
9624   OS << "Classifying expressions for: ";
9625   F.printAsOperand(OS, /*PrintType=*/false);
9626   OS << "\n";
9627   for (Instruction &I : instructions(F))
9628     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9629       OS << I << '\n';
9630       OS << "  -->  ";
9631       const SCEV *SV = SE.getSCEV(&I);
9632       SV->print(OS);
9633       if (!isa<SCEVCouldNotCompute>(SV)) {
9634         OS << " U: ";
9635         SE.getUnsignedRange(SV).print(OS);
9636         OS << " S: ";
9637         SE.getSignedRange(SV).print(OS);
9638       }
9639 
9640       const Loop *L = LI.getLoopFor(I.getParent());
9641 
9642       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9643       if (AtUse != SV) {
9644         OS << "  -->  ";
9645         AtUse->print(OS);
9646         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9647           OS << " U: ";
9648           SE.getUnsignedRange(AtUse).print(OS);
9649           OS << " S: ";
9650           SE.getSignedRange(AtUse).print(OS);
9651         }
9652       }
9653 
9654       if (L) {
9655         OS << "\t\t" "Exits: ";
9656         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9657         if (!SE.isLoopInvariant(ExitValue, L)) {
9658           OS << "<<Unknown>>";
9659         } else {
9660           OS << *ExitValue;
9661         }
9662 
9663         bool First = true;
9664         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9665           if (First) {
9666             OS << "\t\t" "LoopDispositions: { ";
9667             First = false;
9668           } else {
9669             OS << ", ";
9670           }
9671 
9672           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9673           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9674         }
9675 
9676         for (auto *InnerL : depth_first(L)) {
9677           if (InnerL == L)
9678             continue;
9679           if (First) {
9680             OS << "\t\t" "LoopDispositions: { ";
9681             First = false;
9682           } else {
9683             OS << ", ";
9684           }
9685 
9686           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9687           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9688         }
9689 
9690         OS << " }";
9691       }
9692 
9693       OS << "\n";
9694     }
9695 
9696   OS << "Determining loop execution counts for: ";
9697   F.printAsOperand(OS, /*PrintType=*/false);
9698   OS << "\n";
9699   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9700     PrintLoopInfo(OS, &SE, *I);
9701 }
9702 
9703 ScalarEvolution::LoopDisposition
9704 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9705   auto &Values = LoopDispositions[S];
9706   for (auto &V : Values) {
9707     if (V.getPointer() == L)
9708       return V.getInt();
9709   }
9710   Values.emplace_back(L, LoopVariant);
9711   LoopDisposition D = computeLoopDisposition(S, L);
9712   auto &Values2 = LoopDispositions[S];
9713   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9714     if (V.getPointer() == L) {
9715       V.setInt(D);
9716       break;
9717     }
9718   }
9719   return D;
9720 }
9721 
9722 ScalarEvolution::LoopDisposition
9723 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9724   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9725   case scConstant:
9726     return LoopInvariant;
9727   case scTruncate:
9728   case scZeroExtend:
9729   case scSignExtend:
9730     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9731   case scAddRecExpr: {
9732     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9733 
9734     // If L is the addrec's loop, it's computable.
9735     if (AR->getLoop() == L)
9736       return LoopComputable;
9737 
9738     // Add recurrences are never invariant in the function-body (null loop).
9739     if (!L)
9740       return LoopVariant;
9741 
9742     // This recurrence is variant w.r.t. L if L contains AR's loop.
9743     if (L->contains(AR->getLoop()))
9744       return LoopVariant;
9745 
9746     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9747     if (AR->getLoop()->contains(L))
9748       return LoopInvariant;
9749 
9750     // This recurrence is variant w.r.t. L if any of its operands
9751     // are variant.
9752     for (auto *Op : AR->operands())
9753       if (!isLoopInvariant(Op, L))
9754         return LoopVariant;
9755 
9756     // Otherwise it's loop-invariant.
9757     return LoopInvariant;
9758   }
9759   case scAddExpr:
9760   case scMulExpr:
9761   case scUMaxExpr:
9762   case scSMaxExpr: {
9763     bool HasVarying = false;
9764     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9765       LoopDisposition D = getLoopDisposition(Op, L);
9766       if (D == LoopVariant)
9767         return LoopVariant;
9768       if (D == LoopComputable)
9769         HasVarying = true;
9770     }
9771     return HasVarying ? LoopComputable : LoopInvariant;
9772   }
9773   case scUDivExpr: {
9774     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9775     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9776     if (LD == LoopVariant)
9777       return LoopVariant;
9778     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9779     if (RD == LoopVariant)
9780       return LoopVariant;
9781     return (LD == LoopInvariant && RD == LoopInvariant) ?
9782            LoopInvariant : LoopComputable;
9783   }
9784   case scUnknown:
9785     // All non-instruction values are loop invariant.  All instructions are loop
9786     // invariant if they are not contained in the specified loop.
9787     // Instructions are never considered invariant in the function body
9788     // (null loop) because they are defined within the "loop".
9789     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9790       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9791     return LoopInvariant;
9792   case scCouldNotCompute:
9793     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9794   }
9795   llvm_unreachable("Unknown SCEV kind!");
9796 }
9797 
9798 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9799   return getLoopDisposition(S, L) == LoopInvariant;
9800 }
9801 
9802 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9803   return getLoopDisposition(S, L) == LoopComputable;
9804 }
9805 
9806 ScalarEvolution::BlockDisposition
9807 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9808   auto &Values = BlockDispositions[S];
9809   for (auto &V : Values) {
9810     if (V.getPointer() == BB)
9811       return V.getInt();
9812   }
9813   Values.emplace_back(BB, DoesNotDominateBlock);
9814   BlockDisposition D = computeBlockDisposition(S, BB);
9815   auto &Values2 = BlockDispositions[S];
9816   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9817     if (V.getPointer() == BB) {
9818       V.setInt(D);
9819       break;
9820     }
9821   }
9822   return D;
9823 }
9824 
9825 ScalarEvolution::BlockDisposition
9826 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9827   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9828   case scConstant:
9829     return ProperlyDominatesBlock;
9830   case scTruncate:
9831   case scZeroExtend:
9832   case scSignExtend:
9833     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9834   case scAddRecExpr: {
9835     // This uses a "dominates" query instead of "properly dominates" query
9836     // to test for proper dominance too, because the instruction which
9837     // produces the addrec's value is a PHI, and a PHI effectively properly
9838     // dominates its entire containing block.
9839     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9840     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9841       return DoesNotDominateBlock;
9842   }
9843   // FALL THROUGH into SCEVNAryExpr handling.
9844   case scAddExpr:
9845   case scMulExpr:
9846   case scUMaxExpr:
9847   case scSMaxExpr: {
9848     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9849     bool Proper = true;
9850     for (const SCEV *NAryOp : NAry->operands()) {
9851       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9852       if (D == DoesNotDominateBlock)
9853         return DoesNotDominateBlock;
9854       if (D == DominatesBlock)
9855         Proper = false;
9856     }
9857     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9858   }
9859   case scUDivExpr: {
9860     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9861     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9862     BlockDisposition LD = getBlockDisposition(LHS, BB);
9863     if (LD == DoesNotDominateBlock)
9864       return DoesNotDominateBlock;
9865     BlockDisposition RD = getBlockDisposition(RHS, BB);
9866     if (RD == DoesNotDominateBlock)
9867       return DoesNotDominateBlock;
9868     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9869       ProperlyDominatesBlock : DominatesBlock;
9870   }
9871   case scUnknown:
9872     if (Instruction *I =
9873           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9874       if (I->getParent() == BB)
9875         return DominatesBlock;
9876       if (DT.properlyDominates(I->getParent(), BB))
9877         return ProperlyDominatesBlock;
9878       return DoesNotDominateBlock;
9879     }
9880     return ProperlyDominatesBlock;
9881   case scCouldNotCompute:
9882     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9883   }
9884   llvm_unreachable("Unknown SCEV kind!");
9885 }
9886 
9887 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9888   return getBlockDisposition(S, BB) >= DominatesBlock;
9889 }
9890 
9891 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9892   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9893 }
9894 
9895 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9896   // Search for a SCEV expression node within an expression tree.
9897   // Implements SCEVTraversal::Visitor.
9898   struct SCEVSearch {
9899     const SCEV *Node;
9900     bool IsFound;
9901 
9902     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9903 
9904     bool follow(const SCEV *S) {
9905       IsFound |= (S == Node);
9906       return !IsFound;
9907     }
9908     bool isDone() const { return IsFound; }
9909   };
9910 
9911   SCEVSearch Search(Op);
9912   visitAll(S, Search);
9913   return Search.IsFound;
9914 }
9915 
9916 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9917   ValuesAtScopes.erase(S);
9918   LoopDispositions.erase(S);
9919   BlockDispositions.erase(S);
9920   UnsignedRanges.erase(S);
9921   SignedRanges.erase(S);
9922   ExprValueMap.erase(S);
9923   HasRecMap.erase(S);
9924 
9925   auto RemoveSCEVFromBackedgeMap =
9926       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9927         for (auto I = Map.begin(), E = Map.end(); I != E;) {
9928           BackedgeTakenInfo &BEInfo = I->second;
9929           if (BEInfo.hasOperand(S, this)) {
9930             BEInfo.clear();
9931             Map.erase(I++);
9932           } else
9933             ++I;
9934         }
9935       };
9936 
9937   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9938   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
9939 }
9940 
9941 typedef DenseMap<const Loop *, std::string> VerifyMap;
9942 
9943 /// replaceSubString - Replaces all occurrences of From in Str with To.
9944 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9945   size_t Pos = 0;
9946   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9947     Str.replace(Pos, From.size(), To.data(), To.size());
9948     Pos += To.size();
9949   }
9950 }
9951 
9952 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9953 static void
9954 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9955   std::string &S = Map[L];
9956   if (S.empty()) {
9957     raw_string_ostream OS(S);
9958     SE.getBackedgeTakenCount(L)->print(OS);
9959 
9960     // false and 0 are semantically equivalent. This can happen in dead loops.
9961     replaceSubString(OS.str(), "false", "0");
9962     // Remove wrap flags, their use in SCEV is highly fragile.
9963     // FIXME: Remove this when SCEV gets smarter about them.
9964     replaceSubString(OS.str(), "<nw>", "");
9965     replaceSubString(OS.str(), "<nsw>", "");
9966     replaceSubString(OS.str(), "<nuw>", "");
9967   }
9968 
9969   for (auto *R : reverse(*L))
9970     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9971 }
9972 
9973 void ScalarEvolution::verify() const {
9974   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9975 
9976   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9977   // FIXME: It would be much better to store actual values instead of strings,
9978   //        but SCEV pointers will change if we drop the caches.
9979   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9980   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9981     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9982 
9983   // Gather stringified backedge taken counts for all loops using a fresh
9984   // ScalarEvolution object.
9985   ScalarEvolution SE2(F, TLI, AC, DT, LI);
9986   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9987     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9988 
9989   // Now compare whether they're the same with and without caches. This allows
9990   // verifying that no pass changed the cache.
9991   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9992          "New loops suddenly appeared!");
9993 
9994   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9995                            OldE = BackedgeDumpsOld.end(),
9996                            NewI = BackedgeDumpsNew.begin();
9997        OldI != OldE; ++OldI, ++NewI) {
9998     assert(OldI->first == NewI->first && "Loop order changed!");
9999 
10000     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10001     // changes.
10002     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
10003     // means that a pass is buggy or SCEV has to learn a new pattern but is
10004     // usually not harmful.
10005     if (OldI->second != NewI->second &&
10006         OldI->second.find("undef") == std::string::npos &&
10007         NewI->second.find("undef") == std::string::npos &&
10008         OldI->second != "***COULDNOTCOMPUTE***" &&
10009         NewI->second != "***COULDNOTCOMPUTE***") {
10010       dbgs() << "SCEVValidator: SCEV for loop '"
10011              << OldI->first->getHeader()->getName()
10012              << "' changed from '" << OldI->second
10013              << "' to '" << NewI->second << "'!\n";
10014       std::abort();
10015     }
10016   }
10017 
10018   // TODO: Verify more things.
10019 }
10020 
10021 char ScalarEvolutionAnalysis::PassID;
10022 
10023 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10024                                              AnalysisManager<Function> &AM) {
10025   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10026                          AM.getResult<AssumptionAnalysis>(F),
10027                          AM.getResult<DominatorTreeAnalysis>(F),
10028                          AM.getResult<LoopAnalysis>(F));
10029 }
10030 
10031 PreservedAnalyses
10032 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
10033   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10034   return PreservedAnalyses::all();
10035 }
10036 
10037 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10038                       "Scalar Evolution Analysis", false, true)
10039 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10040 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10041 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10042 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10043 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10044                     "Scalar Evolution Analysis", false, true)
10045 char ScalarEvolutionWrapperPass::ID = 0;
10046 
10047 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10048   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10049 }
10050 
10051 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10052   SE.reset(new ScalarEvolution(
10053       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10054       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10055       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10056       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10057   return false;
10058 }
10059 
10060 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10061 
10062 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10063   SE->print(OS);
10064 }
10065 
10066 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10067   if (!VerifySCEV)
10068     return;
10069 
10070   SE->verify();
10071 }
10072 
10073 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10074   AU.setPreservesAll();
10075   AU.addRequiredTransitive<AssumptionCacheTracker>();
10076   AU.addRequiredTransitive<LoopInfoWrapperPass>();
10077   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10078   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10079 }
10080 
10081 const SCEVPredicate *
10082 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10083                                    const SCEVConstant *RHS) {
10084   FoldingSetNodeID ID;
10085   // Unique this node based on the arguments
10086   ID.AddInteger(SCEVPredicate::P_Equal);
10087   ID.AddPointer(LHS);
10088   ID.AddPointer(RHS);
10089   void *IP = nullptr;
10090   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10091     return S;
10092   SCEVEqualPredicate *Eq = new (SCEVAllocator)
10093       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10094   UniquePreds.InsertNode(Eq, IP);
10095   return Eq;
10096 }
10097 
10098 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10099     const SCEVAddRecExpr *AR,
10100     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10101   FoldingSetNodeID ID;
10102   // Unique this node based on the arguments
10103   ID.AddInteger(SCEVPredicate::P_Wrap);
10104   ID.AddPointer(AR);
10105   ID.AddInteger(AddedFlags);
10106   void *IP = nullptr;
10107   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10108     return S;
10109   auto *OF = new (SCEVAllocator)
10110       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10111   UniquePreds.InsertNode(OF, IP);
10112   return OF;
10113 }
10114 
10115 namespace {
10116 
10117 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10118 public:
10119   // Rewrites \p S in the context of a loop L and the predicate A.
10120   // If Assume is true, rewrite is free to add further predicates to A
10121   // such that the result will be an AddRecExpr.
10122   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10123                              SCEVUnionPredicate &A, bool Assume) {
10124     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
10125     return Rewriter.visit(S);
10126   }
10127 
10128   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10129                         SCEVUnionPredicate &P, bool Assume)
10130       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
10131 
10132   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10133     auto ExprPreds = P.getPredicatesForExpr(Expr);
10134     for (auto *Pred : ExprPreds)
10135       if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
10136         if (IPred->getLHS() == Expr)
10137           return IPred->getRHS();
10138 
10139     return Expr;
10140   }
10141 
10142   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10143     const SCEV *Operand = visit(Expr->getOperand());
10144     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10145     if (AR && AR->getLoop() == L && AR->isAffine()) {
10146       // This couldn't be folded because the operand didn't have the nuw
10147       // flag. Add the nusw flag as an assumption that we could make.
10148       const SCEV *Step = AR->getStepRecurrence(SE);
10149       Type *Ty = Expr->getType();
10150       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10151         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10152                                 SE.getSignExtendExpr(Step, Ty), L,
10153                                 AR->getNoWrapFlags());
10154     }
10155     return SE.getZeroExtendExpr(Operand, Expr->getType());
10156   }
10157 
10158   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10159     const SCEV *Operand = visit(Expr->getOperand());
10160     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10161     if (AR && AR->getLoop() == L && AR->isAffine()) {
10162       // This couldn't be folded because the operand didn't have the nsw
10163       // flag. Add the nssw flag as an assumption that we could make.
10164       const SCEV *Step = AR->getStepRecurrence(SE);
10165       Type *Ty = Expr->getType();
10166       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10167         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10168                                 SE.getSignExtendExpr(Step, Ty), L,
10169                                 AR->getNoWrapFlags());
10170     }
10171     return SE.getSignExtendExpr(Operand, Expr->getType());
10172   }
10173 
10174 private:
10175   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10176                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10177     auto *A = SE.getWrapPredicate(AR, AddedFlags);
10178     if (!Assume) {
10179       // Check if we've already made this assumption.
10180       if (P.implies(A))
10181         return true;
10182       return false;
10183     }
10184     P.add(A);
10185     return true;
10186   }
10187 
10188   SCEVUnionPredicate &P;
10189   const Loop *L;
10190   bool Assume;
10191 };
10192 } // end anonymous namespace
10193 
10194 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10195                                                    SCEVUnionPredicate &Preds) {
10196   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
10197 }
10198 
10199 const SCEVAddRecExpr *
10200 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10201                                                    SCEVUnionPredicate &Preds) {
10202   SCEVUnionPredicate TransformPreds;
10203   S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10204   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10205 
10206   if (!AddRec)
10207     return nullptr;
10208 
10209   // Since the transformation was successful, we can now transfer the SCEV
10210   // predicates.
10211   Preds.add(&TransformPreds);
10212   return AddRec;
10213 }
10214 
10215 /// SCEV predicates
10216 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10217                              SCEVPredicateKind Kind)
10218     : FastID(ID), Kind(Kind) {}
10219 
10220 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10221                                        const SCEVUnknown *LHS,
10222                                        const SCEVConstant *RHS)
10223     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10224 
10225 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10226   const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
10227 
10228   if (!Op)
10229     return false;
10230 
10231   return Op->LHS == LHS && Op->RHS == RHS;
10232 }
10233 
10234 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10235 
10236 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10237 
10238 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10239   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10240 }
10241 
10242 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10243                                      const SCEVAddRecExpr *AR,
10244                                      IncrementWrapFlags Flags)
10245     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10246 
10247 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10248 
10249 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10250   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10251 
10252   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10253 }
10254 
10255 bool SCEVWrapPredicate::isAlwaysTrue() const {
10256   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10257   IncrementWrapFlags IFlags = Flags;
10258 
10259   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10260     IFlags = clearFlags(IFlags, IncrementNSSW);
10261 
10262   return IFlags == IncrementAnyWrap;
10263 }
10264 
10265 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10266   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10267   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10268     OS << "<nusw>";
10269   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10270     OS << "<nssw>";
10271   OS << "\n";
10272 }
10273 
10274 SCEVWrapPredicate::IncrementWrapFlags
10275 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10276                                    ScalarEvolution &SE) {
10277   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10278   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10279 
10280   // We can safely transfer the NSW flag as NSSW.
10281   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10282     ImpliedFlags = IncrementNSSW;
10283 
10284   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10285     // If the increment is positive, the SCEV NUW flag will also imply the
10286     // WrapPredicate NUSW flag.
10287     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10288       if (Step->getValue()->getValue().isNonNegative())
10289         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10290   }
10291 
10292   return ImpliedFlags;
10293 }
10294 
10295 /// Union predicates don't get cached so create a dummy set ID for it.
10296 SCEVUnionPredicate::SCEVUnionPredicate()
10297     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10298 
10299 bool SCEVUnionPredicate::isAlwaysTrue() const {
10300   return all_of(Preds,
10301                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10302 }
10303 
10304 ArrayRef<const SCEVPredicate *>
10305 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10306   auto I = SCEVToPreds.find(Expr);
10307   if (I == SCEVToPreds.end())
10308     return ArrayRef<const SCEVPredicate *>();
10309   return I->second;
10310 }
10311 
10312 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10313   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
10314     return all_of(Set->Preds,
10315                   [this](const SCEVPredicate *I) { return this->implies(I); });
10316 
10317   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10318   if (ScevPredsIt == SCEVToPreds.end())
10319     return false;
10320   auto &SCEVPreds = ScevPredsIt->second;
10321 
10322   return any_of(SCEVPreds,
10323                 [N](const SCEVPredicate *I) { return I->implies(N); });
10324 }
10325 
10326 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10327 
10328 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10329   for (auto Pred : Preds)
10330     Pred->print(OS, Depth);
10331 }
10332 
10333 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10334   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
10335     for (auto Pred : Set->Preds)
10336       add(Pred);
10337     return;
10338   }
10339 
10340   if (implies(N))
10341     return;
10342 
10343   const SCEV *Key = N->getExpr();
10344   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10345                 " associated expression!");
10346 
10347   SCEVToPreds[Key].push_back(N);
10348   Preds.push_back(N);
10349 }
10350 
10351 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10352                                                      Loop &L)
10353     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10354 
10355 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10356   const SCEV *Expr = SE.getSCEV(V);
10357   RewriteEntry &Entry = RewriteMap[Expr];
10358 
10359   // If we already have an entry and the version matches, return it.
10360   if (Entry.second && Generation == Entry.first)
10361     return Entry.second;
10362 
10363   // We found an entry but it's stale. Rewrite the stale entry
10364   // acording to the current predicate.
10365   if (Entry.second)
10366     Expr = Entry.second;
10367 
10368   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10369   Entry = {Generation, NewSCEV};
10370 
10371   return NewSCEV;
10372 }
10373 
10374 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10375   if (!BackedgeCount) {
10376     SCEVUnionPredicate BackedgePred;
10377     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10378     addPredicate(BackedgePred);
10379   }
10380   return BackedgeCount;
10381 }
10382 
10383 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10384   if (Preds.implies(&Pred))
10385     return;
10386   Preds.add(&Pred);
10387   updateGeneration();
10388 }
10389 
10390 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10391   return Preds;
10392 }
10393 
10394 void PredicatedScalarEvolution::updateGeneration() {
10395   // If the generation number wrapped recompute everything.
10396   if (++Generation == 0) {
10397     for (auto &II : RewriteMap) {
10398       const SCEV *Rewritten = II.second.second;
10399       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10400     }
10401   }
10402 }
10403 
10404 void PredicatedScalarEvolution::setNoOverflow(
10405     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10406   const SCEV *Expr = getSCEV(V);
10407   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10408 
10409   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10410 
10411   // Clear the statically implied flags.
10412   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10413   addPredicate(*SE.getWrapPredicate(AR, Flags));
10414 
10415   auto II = FlagsMap.insert({V, Flags});
10416   if (!II.second)
10417     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10418 }
10419 
10420 bool PredicatedScalarEvolution::hasNoOverflow(
10421     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10422   const SCEV *Expr = getSCEV(V);
10423   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10424 
10425   Flags = SCEVWrapPredicate::clearFlags(
10426       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10427 
10428   auto II = FlagsMap.find(V);
10429 
10430   if (II != FlagsMap.end())
10431     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10432 
10433   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10434 }
10435 
10436 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10437   const SCEV *Expr = this->getSCEV(V);
10438   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10439 
10440   if (!New)
10441     return nullptr;
10442 
10443   updateGeneration();
10444   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10445   return New;
10446 }
10447 
10448 PredicatedScalarEvolution::PredicatedScalarEvolution(
10449     const PredicatedScalarEvolution &Init)
10450     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10451       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10452   for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
10453     FlagsMap.insert(*I);
10454 }
10455 
10456 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10457   // For each block.
10458   for (auto *BB : L.getBlocks())
10459     for (auto &I : *BB) {
10460       if (!SE.isSCEVable(I.getType()))
10461         continue;
10462 
10463       auto *Expr = SE.getSCEV(&I);
10464       auto II = RewriteMap.find(Expr);
10465 
10466       if (II == RewriteMap.end())
10467         continue;
10468 
10469       // Don't print things that are not interesting.
10470       if (II->second.second == Expr)
10471         continue;
10472 
10473       OS.indent(Depth) << "[PSE]" << I << ":\n";
10474       OS.indent(Depth + 2) << *Expr << "\n";
10475       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10476     }
10477 }
10478