1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 #endif 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (const SCEV *Op : AddRec->operands()) 1136 Operands.push_back(getTruncateExpr(Op, Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 auto PreStartFlags = 1272 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1276 1277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1278 // "S+X does not sign/unsign-overflow". 1279 // 1280 1281 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1284 return PreStart; 1285 1286 // 2. Direct overflow check on the step operation's expression. 1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1289 const SCEV *OperandExtendedStart = 1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1291 (SE->*GetExtendExpr)(Step, WideTy)); 1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1293 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1298 } 1299 return PreStart; 1300 } 1301 1302 // 3. Loop precondition. 1303 ICmpInst::Predicate Pred; 1304 const SCEV *OverflowLimit = 1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1306 1307 if (OverflowLimit && 1308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1309 return PreStart; 1310 1311 return nullptr; 1312 } 1313 1314 // Get the normalized zero or sign extended expression for this AddRec's Start. 1315 template <typename ExtendOpTy> 1316 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1317 ScalarEvolution *SE) { 1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1319 1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1321 if (!PreStart) 1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1323 1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1325 (SE->*GetExtendExpr)(PreStart, Ty)); 1326 } 1327 1328 // Try to prove away overflow by looking at "nearby" add recurrences. A 1329 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1330 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1331 // 1332 // Formally: 1333 // 1334 // {S,+,X} == {S-T,+,X} + T 1335 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1336 // 1337 // If ({S-T,+,X} + T) does not overflow ... (1) 1338 // 1339 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1340 // 1341 // If {S-T,+,X} does not overflow ... (2) 1342 // 1343 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1344 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1345 // 1346 // If (S-T)+T does not overflow ... (3) 1347 // 1348 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1349 // == {Ext(S),+,Ext(X)} == LHS 1350 // 1351 // Thus, if (1), (2) and (3) are true for some T, then 1352 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1353 // 1354 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1355 // does not overflow" restricted to the 0th iteration. Therefore we only need 1356 // to check for (1) and (2). 1357 // 1358 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1359 // is `Delta` (defined below). 1360 // 1361 template <typename ExtendOpTy> 1362 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1363 const SCEV *Step, 1364 const Loop *L) { 1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1366 1367 // We restrict `Start` to a constant to prevent SCEV from spending too much 1368 // time here. It is correct (but more expensive) to continue with a 1369 // non-constant `Start` and do a general SCEV subtraction to compute 1370 // `PreStart` below. 1371 // 1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1373 if (!StartC) 1374 return false; 1375 1376 APInt StartAI = StartC->getValue()->getValue(); 1377 1378 for (unsigned Delta : {-2, -1, 1, 2}) { 1379 const SCEV *PreStart = getConstant(StartAI - Delta); 1380 1381 FoldingSetNodeID ID; 1382 ID.AddInteger(scAddRecExpr); 1383 ID.AddPointer(PreStart); 1384 ID.AddPointer(Step); 1385 ID.AddPointer(L); 1386 void *IP = nullptr; 1387 const auto *PreAR = 1388 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1389 1390 // Give up if we don't already have the add recurrence we need because 1391 // actually constructing an add recurrence is relatively expensive. 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1563 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1564 if (SA->getNoWrapFlags(SCEV::FlagNUW)) { 1565 // If the addition does not unsign overflow then we can, by definition, 1566 // commute the zero extension with the addition operation. 1567 SmallVector<const SCEV *, 4> Ops; 1568 for (const auto *Op : SA->operands()) 1569 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1570 return getAddExpr(Ops, SCEV::FlagNUW); 1571 } 1572 } 1573 1574 // The cast wasn't folded; create an explicit cast node. 1575 // Recompute the insert position, as it may have been invalidated. 1576 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1577 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1578 Op, Ty); 1579 UniqueSCEVs.InsertNode(S, IP); 1580 return S; 1581 } 1582 1583 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1584 Type *Ty) { 1585 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1586 "This is not an extending conversion!"); 1587 assert(isSCEVable(Ty) && 1588 "This is not a conversion to a SCEVable type!"); 1589 Ty = getEffectiveSCEVType(Ty); 1590 1591 // Fold if the operand is constant. 1592 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1593 return getConstant( 1594 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1595 1596 // sext(sext(x)) --> sext(x) 1597 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1598 return getSignExtendExpr(SS->getOperand(), Ty); 1599 1600 // sext(zext(x)) --> zext(x) 1601 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1602 return getZeroExtendExpr(SZ->getOperand(), Ty); 1603 1604 // Before doing any expensive analysis, check to see if we've already 1605 // computed a SCEV for this Op and Ty. 1606 FoldingSetNodeID ID; 1607 ID.AddInteger(scSignExtend); 1608 ID.AddPointer(Op); 1609 ID.AddPointer(Ty); 1610 void *IP = nullptr; 1611 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1612 1613 // If the input value is provably positive, build a zext instead. 1614 if (isKnownNonNegative(Op)) 1615 return getZeroExtendExpr(Op, Ty); 1616 1617 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1618 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1619 // It's possible the bits taken off by the truncate were all sign bits. If 1620 // so, we should be able to simplify this further. 1621 const SCEV *X = ST->getOperand(); 1622 ConstantRange CR = getSignedRange(X); 1623 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1624 unsigned NewBits = getTypeSizeInBits(Ty); 1625 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1626 CR.sextOrTrunc(NewBits))) 1627 return getTruncateOrSignExtend(X, Ty); 1628 } 1629 1630 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1631 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1632 if (SA->getNumOperands() == 2) { 1633 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1634 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1635 if (SMul && SC1) { 1636 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1637 const APInt &C1 = SC1->getValue()->getValue(); 1638 const APInt &C2 = SC2->getValue()->getValue(); 1639 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1640 C2.ugt(C1) && C2.isPowerOf2()) 1641 return getAddExpr(getSignExtendExpr(SC1, Ty), 1642 getSignExtendExpr(SMul, Ty)); 1643 } 1644 } 1645 } 1646 1647 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1648 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1649 // If the addition does not sign overflow then we can, by definition, 1650 // commute the sign extension with the addition operation. 1651 SmallVector<const SCEV *, 4> Ops; 1652 for (const auto *Op : SA->operands()) 1653 Ops.push_back(getSignExtendExpr(Op, Ty)); 1654 return getAddExpr(Ops, SCEV::FlagNSW); 1655 } 1656 } 1657 // If the input value is a chrec scev, and we can prove that the value 1658 // did not overflow the old, smaller, value, we can sign extend all of the 1659 // operands (often constants). This allows analysis of something like 1660 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1662 if (AR->isAffine()) { 1663 const SCEV *Start = AR->getStart(); 1664 const SCEV *Step = AR->getStepRecurrence(*this); 1665 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1666 const Loop *L = AR->getLoop(); 1667 1668 // If we have special knowledge that this addrec won't overflow, 1669 // we don't need to do any further analysis. 1670 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1671 return getAddRecExpr( 1672 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1673 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1674 1675 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1676 // Note that this serves two purposes: It filters out loops that are 1677 // simply not analyzable, and it covers the case where this code is 1678 // being called from within backedge-taken count analysis, such that 1679 // attempting to ask for the backedge-taken count would likely result 1680 // in infinite recursion. In the later case, the analysis code will 1681 // cope with a conservative value, and it will take care to purge 1682 // that value once it has finished. 1683 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1684 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1685 // Manually compute the final value for AR, checking for 1686 // overflow. 1687 1688 // Check whether the backedge-taken count can be losslessly casted to 1689 // the addrec's type. The count is always unsigned. 1690 const SCEV *CastedMaxBECount = 1691 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1692 const SCEV *RecastedMaxBECount = 1693 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1694 if (MaxBECount == RecastedMaxBECount) { 1695 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1696 // Check whether Start+Step*MaxBECount has no signed overflow. 1697 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1698 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1699 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1700 const SCEV *WideMaxBECount = 1701 getZeroExtendExpr(CastedMaxBECount, WideTy); 1702 const SCEV *OperandExtendedAdd = 1703 getAddExpr(WideStart, 1704 getMulExpr(WideMaxBECount, 1705 getSignExtendExpr(Step, WideTy))); 1706 if (SAdd == OperandExtendedAdd) { 1707 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1708 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1712 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1713 } 1714 // Similar to above, only this time treat the step value as unsigned. 1715 // This covers loops that count up with an unsigned step. 1716 OperandExtendedAdd = 1717 getAddExpr(WideStart, 1718 getMulExpr(WideMaxBECount, 1719 getZeroExtendExpr(Step, WideTy))); 1720 if (SAdd == OperandExtendedAdd) { 1721 // If AR wraps around then 1722 // 1723 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1724 // => SAdd != OperandExtendedAdd 1725 // 1726 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1727 // (SAdd == OperandExtendedAdd => AR is NW) 1728 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1730 1731 // Return the expression with the addrec on the outside. 1732 return getAddRecExpr( 1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1734 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1735 } 1736 } 1737 1738 // If the backedge is guarded by a comparison with the pre-inc value 1739 // the addrec is safe. Also, if the entry is guarded by a comparison 1740 // with the start value and the backedge is guarded by a comparison 1741 // with the post-inc value, the addrec is safe. 1742 ICmpInst::Predicate Pred; 1743 const SCEV *OverflowLimit = 1744 getSignedOverflowLimitForStep(Step, &Pred, this); 1745 if (OverflowLimit && 1746 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1747 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1748 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1749 OverflowLimit)))) { 1750 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1751 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1752 return getAddRecExpr( 1753 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1754 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1755 } 1756 } 1757 // If Start and Step are constants, check if we can apply this 1758 // transformation: 1759 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1760 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1761 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1762 if (SC1 && SC2) { 1763 const APInt &C1 = SC1->getValue()->getValue(); 1764 const APInt &C2 = SC2->getValue()->getValue(); 1765 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1766 C2.isPowerOf2()) { 1767 Start = getSignExtendExpr(Start, Ty); 1768 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1769 AR->getNoWrapFlags()); 1770 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1771 } 1772 } 1773 1774 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1775 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1776 return getAddRecExpr( 1777 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1778 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1779 } 1780 } 1781 1782 // The cast wasn't folded; create an explicit cast node. 1783 // Recompute the insert position, as it may have been invalidated. 1784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1785 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1786 Op, Ty); 1787 UniqueSCEVs.InsertNode(S, IP); 1788 return S; 1789 } 1790 1791 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1792 /// unspecified bits out to the given type. 1793 /// 1794 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1795 Type *Ty) { 1796 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1797 "This is not an extending conversion!"); 1798 assert(isSCEVable(Ty) && 1799 "This is not a conversion to a SCEVable type!"); 1800 Ty = getEffectiveSCEVType(Ty); 1801 1802 // Sign-extend negative constants. 1803 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1804 if (SC->getValue()->getValue().isNegative()) 1805 return getSignExtendExpr(Op, Ty); 1806 1807 // Peel off a truncate cast. 1808 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1809 const SCEV *NewOp = T->getOperand(); 1810 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1811 return getAnyExtendExpr(NewOp, Ty); 1812 return getTruncateOrNoop(NewOp, Ty); 1813 } 1814 1815 // Next try a zext cast. If the cast is folded, use it. 1816 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1817 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1818 return ZExt; 1819 1820 // Next try a sext cast. If the cast is folded, use it. 1821 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1822 if (!isa<SCEVSignExtendExpr>(SExt)) 1823 return SExt; 1824 1825 // Force the cast to be folded into the operands of an addrec. 1826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1827 SmallVector<const SCEV *, 4> Ops; 1828 for (const SCEV *Op : AR->operands()) 1829 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1830 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1831 } 1832 1833 // If the expression is obviously signed, use the sext cast value. 1834 if (isa<SCEVSMaxExpr>(Op)) 1835 return SExt; 1836 1837 // Absent any other information, use the zext cast value. 1838 return ZExt; 1839 } 1840 1841 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1842 /// a list of operands to be added under the given scale, update the given 1843 /// map. This is a helper function for getAddRecExpr. As an example of 1844 /// what it does, given a sequence of operands that would form an add 1845 /// expression like this: 1846 /// 1847 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1848 /// 1849 /// where A and B are constants, update the map with these values: 1850 /// 1851 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1852 /// 1853 /// and add 13 + A*B*29 to AccumulatedConstant. 1854 /// This will allow getAddRecExpr to produce this: 1855 /// 1856 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1857 /// 1858 /// This form often exposes folding opportunities that are hidden in 1859 /// the original operand list. 1860 /// 1861 /// Return true iff it appears that any interesting folding opportunities 1862 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1863 /// the common case where no interesting opportunities are present, and 1864 /// is also used as a check to avoid infinite recursion. 1865 /// 1866 static bool 1867 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1868 SmallVectorImpl<const SCEV *> &NewOps, 1869 APInt &AccumulatedConstant, 1870 const SCEV *const *Ops, size_t NumOperands, 1871 const APInt &Scale, 1872 ScalarEvolution &SE) { 1873 bool Interesting = false; 1874 1875 // Iterate over the add operands. They are sorted, with constants first. 1876 unsigned i = 0; 1877 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1878 ++i; 1879 // Pull a buried constant out to the outside. 1880 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1881 Interesting = true; 1882 AccumulatedConstant += Scale * C->getValue()->getValue(); 1883 } 1884 1885 // Next comes everything else. We're especially interested in multiplies 1886 // here, but they're in the middle, so just visit the rest with one loop. 1887 for (; i != NumOperands; ++i) { 1888 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1889 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1890 APInt NewScale = 1891 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1892 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1893 // A multiplication of a constant with another add; recurse. 1894 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1895 Interesting |= 1896 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1897 Add->op_begin(), Add->getNumOperands(), 1898 NewScale, SE); 1899 } else { 1900 // A multiplication of a constant with some other value. Update 1901 // the map. 1902 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1903 const SCEV *Key = SE.getMulExpr(MulOps); 1904 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1905 if (Pair.second) { 1906 NewOps.push_back(Pair.first->first); 1907 } else { 1908 Pair.first->second += NewScale; 1909 // The map already had an entry for this value, which may indicate 1910 // a folding opportunity. 1911 Interesting = true; 1912 } 1913 } 1914 } else { 1915 // An ordinary operand. Update the map. 1916 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1917 M.insert(std::make_pair(Ops[i], Scale)); 1918 if (Pair.second) { 1919 NewOps.push_back(Pair.first->first); 1920 } else { 1921 Pair.first->second += Scale; 1922 // The map already had an entry for this value, which may indicate 1923 // a folding opportunity. 1924 Interesting = true; 1925 } 1926 } 1927 } 1928 1929 return Interesting; 1930 } 1931 1932 namespace { 1933 struct APIntCompare { 1934 bool operator()(const APInt &LHS, const APInt &RHS) const { 1935 return LHS.ult(RHS); 1936 } 1937 }; 1938 } 1939 1940 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1941 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1942 // can't-overflow flags for the operation if possible. 1943 static SCEV::NoWrapFlags 1944 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1945 const SmallVectorImpl<const SCEV *> &Ops, 1946 SCEV::NoWrapFlags Flags) { 1947 using namespace std::placeholders; 1948 typedef OverflowingBinaryOperator OBO; 1949 1950 bool CanAnalyze = 1951 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1952 (void)CanAnalyze; 1953 assert(CanAnalyze && "don't call from other places!"); 1954 1955 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1956 SCEV::NoWrapFlags SignOrUnsignWrap = 1957 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1958 1959 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1960 auto IsKnownNonNegative = 1961 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1962 1963 if (SignOrUnsignWrap == SCEV::FlagNSW && 1964 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1965 Flags = 1966 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1967 1968 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1969 1970 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1971 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1972 1973 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1974 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1975 1976 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue(); 1977 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1978 auto NSWRegion = 1979 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1980 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1981 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1982 } 1983 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1984 auto NUWRegion = 1985 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1986 OBO::NoUnsignedWrap); 1987 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1988 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1989 } 1990 } 1991 1992 return Flags; 1993 } 1994 1995 /// getAddExpr - Get a canonical add expression, or something simpler if 1996 /// possible. 1997 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1998 SCEV::NoWrapFlags Flags) { 1999 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2000 "only nuw or nsw allowed"); 2001 assert(!Ops.empty() && "Cannot get empty add!"); 2002 if (Ops.size() == 1) return Ops[0]; 2003 #ifndef NDEBUG 2004 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2005 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2006 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2007 "SCEVAddExpr operand types don't match!"); 2008 #endif 2009 2010 // Sort by complexity, this groups all similar expression types together. 2011 GroupByComplexity(Ops, &LI); 2012 2013 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2014 2015 // If there are any constants, fold them together. 2016 unsigned Idx = 0; 2017 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2018 ++Idx; 2019 assert(Idx < Ops.size()); 2020 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2021 // We found two constants, fold them together! 2022 Ops[0] = getConstant(LHSC->getValue()->getValue() + 2023 RHSC->getValue()->getValue()); 2024 if (Ops.size() == 2) return Ops[0]; 2025 Ops.erase(Ops.begin()+1); // Erase the folded element 2026 LHSC = cast<SCEVConstant>(Ops[0]); 2027 } 2028 2029 // If we are left with a constant zero being added, strip it off. 2030 if (LHSC->getValue()->isZero()) { 2031 Ops.erase(Ops.begin()); 2032 --Idx; 2033 } 2034 2035 if (Ops.size() == 1) return Ops[0]; 2036 } 2037 2038 // Okay, check to see if the same value occurs in the operand list more than 2039 // once. If so, merge them together into an multiply expression. Since we 2040 // sorted the list, these values are required to be adjacent. 2041 Type *Ty = Ops[0]->getType(); 2042 bool FoundMatch = false; 2043 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2044 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2045 // Scan ahead to count how many equal operands there are. 2046 unsigned Count = 2; 2047 while (i+Count != e && Ops[i+Count] == Ops[i]) 2048 ++Count; 2049 // Merge the values into a multiply. 2050 const SCEV *Scale = getConstant(Ty, Count); 2051 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2052 if (Ops.size() == Count) 2053 return Mul; 2054 Ops[i] = Mul; 2055 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2056 --i; e -= Count - 1; 2057 FoundMatch = true; 2058 } 2059 if (FoundMatch) 2060 return getAddExpr(Ops, Flags); 2061 2062 // Check for truncates. If all the operands are truncated from the same 2063 // type, see if factoring out the truncate would permit the result to be 2064 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2065 // if the contents of the resulting outer trunc fold to something simple. 2066 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2067 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2068 Type *DstType = Trunc->getType(); 2069 Type *SrcType = Trunc->getOperand()->getType(); 2070 SmallVector<const SCEV *, 8> LargeOps; 2071 bool Ok = true; 2072 // Check all the operands to see if they can be represented in the 2073 // source type of the truncate. 2074 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2075 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2076 if (T->getOperand()->getType() != SrcType) { 2077 Ok = false; 2078 break; 2079 } 2080 LargeOps.push_back(T->getOperand()); 2081 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2082 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2083 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2084 SmallVector<const SCEV *, 8> LargeMulOps; 2085 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2086 if (const SCEVTruncateExpr *T = 2087 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2088 if (T->getOperand()->getType() != SrcType) { 2089 Ok = false; 2090 break; 2091 } 2092 LargeMulOps.push_back(T->getOperand()); 2093 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2094 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2095 } else { 2096 Ok = false; 2097 break; 2098 } 2099 } 2100 if (Ok) 2101 LargeOps.push_back(getMulExpr(LargeMulOps)); 2102 } else { 2103 Ok = false; 2104 break; 2105 } 2106 } 2107 if (Ok) { 2108 // Evaluate the expression in the larger type. 2109 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2110 // If it folds to something simple, use it. Otherwise, don't. 2111 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2112 return getTruncateExpr(Fold, DstType); 2113 } 2114 } 2115 2116 // Skip past any other cast SCEVs. 2117 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2118 ++Idx; 2119 2120 // If there are add operands they would be next. 2121 if (Idx < Ops.size()) { 2122 bool DeletedAdd = false; 2123 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2124 // If we have an add, expand the add operands onto the end of the operands 2125 // list. 2126 Ops.erase(Ops.begin()+Idx); 2127 Ops.append(Add->op_begin(), Add->op_end()); 2128 DeletedAdd = true; 2129 } 2130 2131 // If we deleted at least one add, we added operands to the end of the list, 2132 // and they are not necessarily sorted. Recurse to resort and resimplify 2133 // any operands we just acquired. 2134 if (DeletedAdd) 2135 return getAddExpr(Ops); 2136 } 2137 2138 // Skip over the add expression until we get to a multiply. 2139 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2140 ++Idx; 2141 2142 // Check to see if there are any folding opportunities present with 2143 // operands multiplied by constant values. 2144 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2145 uint64_t BitWidth = getTypeSizeInBits(Ty); 2146 DenseMap<const SCEV *, APInt> M; 2147 SmallVector<const SCEV *, 8> NewOps; 2148 APInt AccumulatedConstant(BitWidth, 0); 2149 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2150 Ops.data(), Ops.size(), 2151 APInt(BitWidth, 1), *this)) { 2152 // Some interesting folding opportunity is present, so its worthwhile to 2153 // re-generate the operands list. Group the operands by constant scale, 2154 // to avoid multiplying by the same constant scale multiple times. 2155 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2156 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2157 E = NewOps.end(); I != E; ++I) 2158 MulOpLists[M.find(*I)->second].push_back(*I); 2159 // Re-generate the operands list. 2160 Ops.clear(); 2161 if (AccumulatedConstant != 0) 2162 Ops.push_back(getConstant(AccumulatedConstant)); 2163 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2164 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2165 if (I->first != 0) 2166 Ops.push_back(getMulExpr(getConstant(I->first), 2167 getAddExpr(I->second))); 2168 if (Ops.empty()) 2169 return getZero(Ty); 2170 if (Ops.size() == 1) 2171 return Ops[0]; 2172 return getAddExpr(Ops); 2173 } 2174 } 2175 2176 // If we are adding something to a multiply expression, make sure the 2177 // something is not already an operand of the multiply. If so, merge it into 2178 // the multiply. 2179 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2180 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2181 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2182 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2183 if (isa<SCEVConstant>(MulOpSCEV)) 2184 continue; 2185 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2186 if (MulOpSCEV == Ops[AddOp]) { 2187 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2188 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2189 if (Mul->getNumOperands() != 2) { 2190 // If the multiply has more than two operands, we must get the 2191 // Y*Z term. 2192 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2193 Mul->op_begin()+MulOp); 2194 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2195 InnerMul = getMulExpr(MulOps); 2196 } 2197 const SCEV *One = getOne(Ty); 2198 const SCEV *AddOne = getAddExpr(One, InnerMul); 2199 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2200 if (Ops.size() == 2) return OuterMul; 2201 if (AddOp < Idx) { 2202 Ops.erase(Ops.begin()+AddOp); 2203 Ops.erase(Ops.begin()+Idx-1); 2204 } else { 2205 Ops.erase(Ops.begin()+Idx); 2206 Ops.erase(Ops.begin()+AddOp-1); 2207 } 2208 Ops.push_back(OuterMul); 2209 return getAddExpr(Ops); 2210 } 2211 2212 // Check this multiply against other multiplies being added together. 2213 for (unsigned OtherMulIdx = Idx+1; 2214 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2215 ++OtherMulIdx) { 2216 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2217 // If MulOp occurs in OtherMul, we can fold the two multiplies 2218 // together. 2219 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2220 OMulOp != e; ++OMulOp) 2221 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2222 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2223 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2224 if (Mul->getNumOperands() != 2) { 2225 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2226 Mul->op_begin()+MulOp); 2227 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2228 InnerMul1 = getMulExpr(MulOps); 2229 } 2230 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2231 if (OtherMul->getNumOperands() != 2) { 2232 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2233 OtherMul->op_begin()+OMulOp); 2234 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2235 InnerMul2 = getMulExpr(MulOps); 2236 } 2237 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2238 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2239 if (Ops.size() == 2) return OuterMul; 2240 Ops.erase(Ops.begin()+Idx); 2241 Ops.erase(Ops.begin()+OtherMulIdx-1); 2242 Ops.push_back(OuterMul); 2243 return getAddExpr(Ops); 2244 } 2245 } 2246 } 2247 } 2248 2249 // If there are any add recurrences in the operands list, see if any other 2250 // added values are loop invariant. If so, we can fold them into the 2251 // recurrence. 2252 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2253 ++Idx; 2254 2255 // Scan over all recurrences, trying to fold loop invariants into them. 2256 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2257 // Scan all of the other operands to this add and add them to the vector if 2258 // they are loop invariant w.r.t. the recurrence. 2259 SmallVector<const SCEV *, 8> LIOps; 2260 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2261 const Loop *AddRecLoop = AddRec->getLoop(); 2262 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2263 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2264 LIOps.push_back(Ops[i]); 2265 Ops.erase(Ops.begin()+i); 2266 --i; --e; 2267 } 2268 2269 // If we found some loop invariants, fold them into the recurrence. 2270 if (!LIOps.empty()) { 2271 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2272 LIOps.push_back(AddRec->getStart()); 2273 2274 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2275 AddRec->op_end()); 2276 AddRecOps[0] = getAddExpr(LIOps); 2277 2278 // Build the new addrec. Propagate the NUW and NSW flags if both the 2279 // outer add and the inner addrec are guaranteed to have no overflow. 2280 // Always propagate NW. 2281 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2282 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2283 2284 // If all of the other operands were loop invariant, we are done. 2285 if (Ops.size() == 1) return NewRec; 2286 2287 // Otherwise, add the folded AddRec by the non-invariant parts. 2288 for (unsigned i = 0;; ++i) 2289 if (Ops[i] == AddRec) { 2290 Ops[i] = NewRec; 2291 break; 2292 } 2293 return getAddExpr(Ops); 2294 } 2295 2296 // Okay, if there weren't any loop invariants to be folded, check to see if 2297 // there are multiple AddRec's with the same loop induction variable being 2298 // added together. If so, we can fold them. 2299 for (unsigned OtherIdx = Idx+1; 2300 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2301 ++OtherIdx) 2302 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2303 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2304 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2305 AddRec->op_end()); 2306 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2307 ++OtherIdx) 2308 if (const SCEVAddRecExpr *OtherAddRec = 2309 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2310 if (OtherAddRec->getLoop() == AddRecLoop) { 2311 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2312 i != e; ++i) { 2313 if (i >= AddRecOps.size()) { 2314 AddRecOps.append(OtherAddRec->op_begin()+i, 2315 OtherAddRec->op_end()); 2316 break; 2317 } 2318 AddRecOps[i] = getAddExpr(AddRecOps[i], 2319 OtherAddRec->getOperand(i)); 2320 } 2321 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2322 } 2323 // Step size has changed, so we cannot guarantee no self-wraparound. 2324 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2325 return getAddExpr(Ops); 2326 } 2327 2328 // Otherwise couldn't fold anything into this recurrence. Move onto the 2329 // next one. 2330 } 2331 2332 // Okay, it looks like we really DO need an add expr. Check to see if we 2333 // already have one, otherwise create a new one. 2334 FoldingSetNodeID ID; 2335 ID.AddInteger(scAddExpr); 2336 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2337 ID.AddPointer(Ops[i]); 2338 void *IP = nullptr; 2339 SCEVAddExpr *S = 2340 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2341 if (!S) { 2342 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2343 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2344 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2345 O, Ops.size()); 2346 UniqueSCEVs.InsertNode(S, IP); 2347 } 2348 S->setNoWrapFlags(Flags); 2349 return S; 2350 } 2351 2352 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2353 uint64_t k = i*j; 2354 if (j > 1 && k / j != i) Overflow = true; 2355 return k; 2356 } 2357 2358 /// Compute the result of "n choose k", the binomial coefficient. If an 2359 /// intermediate computation overflows, Overflow will be set and the return will 2360 /// be garbage. Overflow is not cleared on absence of overflow. 2361 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2362 // We use the multiplicative formula: 2363 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2364 // At each iteration, we take the n-th term of the numeral and divide by the 2365 // (k-n)th term of the denominator. This division will always produce an 2366 // integral result, and helps reduce the chance of overflow in the 2367 // intermediate computations. However, we can still overflow even when the 2368 // final result would fit. 2369 2370 if (n == 0 || n == k) return 1; 2371 if (k > n) return 0; 2372 2373 if (k > n/2) 2374 k = n-k; 2375 2376 uint64_t r = 1; 2377 for (uint64_t i = 1; i <= k; ++i) { 2378 r = umul_ov(r, n-(i-1), Overflow); 2379 r /= i; 2380 } 2381 return r; 2382 } 2383 2384 /// Determine if any of the operands in this SCEV are a constant or if 2385 /// any of the add or multiply expressions in this SCEV contain a constant. 2386 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2387 SmallVector<const SCEV *, 4> Ops; 2388 Ops.push_back(StartExpr); 2389 while (!Ops.empty()) { 2390 const SCEV *CurrentExpr = Ops.pop_back_val(); 2391 if (isa<SCEVConstant>(*CurrentExpr)) 2392 return true; 2393 2394 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2395 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2396 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2397 } 2398 } 2399 return false; 2400 } 2401 2402 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2403 /// possible. 2404 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2405 SCEV::NoWrapFlags Flags) { 2406 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2407 "only nuw or nsw allowed"); 2408 assert(!Ops.empty() && "Cannot get empty mul!"); 2409 if (Ops.size() == 1) return Ops[0]; 2410 #ifndef NDEBUG 2411 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2412 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2413 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2414 "SCEVMulExpr operand types don't match!"); 2415 #endif 2416 2417 // Sort by complexity, this groups all similar expression types together. 2418 GroupByComplexity(Ops, &LI); 2419 2420 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2421 2422 // If there are any constants, fold them together. 2423 unsigned Idx = 0; 2424 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2425 2426 // C1*(C2+V) -> C1*C2 + C1*V 2427 if (Ops.size() == 2) 2428 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2429 // If any of Add's ops are Adds or Muls with a constant, 2430 // apply this transformation as well. 2431 if (Add->getNumOperands() == 2) 2432 if (containsConstantSomewhere(Add)) 2433 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2434 getMulExpr(LHSC, Add->getOperand(1))); 2435 2436 ++Idx; 2437 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2438 // We found two constants, fold them together! 2439 ConstantInt *Fold = ConstantInt::get(getContext(), 2440 LHSC->getValue()->getValue() * 2441 RHSC->getValue()->getValue()); 2442 Ops[0] = getConstant(Fold); 2443 Ops.erase(Ops.begin()+1); // Erase the folded element 2444 if (Ops.size() == 1) return Ops[0]; 2445 LHSC = cast<SCEVConstant>(Ops[0]); 2446 } 2447 2448 // If we are left with a constant one being multiplied, strip it off. 2449 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2450 Ops.erase(Ops.begin()); 2451 --Idx; 2452 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2453 // If we have a multiply of zero, it will always be zero. 2454 return Ops[0]; 2455 } else if (Ops[0]->isAllOnesValue()) { 2456 // If we have a mul by -1 of an add, try distributing the -1 among the 2457 // add operands. 2458 if (Ops.size() == 2) { 2459 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2460 SmallVector<const SCEV *, 4> NewOps; 2461 bool AnyFolded = false; 2462 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2463 E = Add->op_end(); I != E; ++I) { 2464 const SCEV *Mul = getMulExpr(Ops[0], *I); 2465 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2466 NewOps.push_back(Mul); 2467 } 2468 if (AnyFolded) 2469 return getAddExpr(NewOps); 2470 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2471 // Negation preserves a recurrence's no self-wrap property. 2472 SmallVector<const SCEV *, 4> Operands; 2473 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2474 E = AddRec->op_end(); I != E; ++I) { 2475 Operands.push_back(getMulExpr(Ops[0], *I)); 2476 } 2477 return getAddRecExpr(Operands, AddRec->getLoop(), 2478 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2479 } 2480 } 2481 } 2482 2483 if (Ops.size() == 1) 2484 return Ops[0]; 2485 } 2486 2487 // Skip over the add expression until we get to a multiply. 2488 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2489 ++Idx; 2490 2491 // If there are mul operands inline them all into this expression. 2492 if (Idx < Ops.size()) { 2493 bool DeletedMul = false; 2494 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2495 // If we have an mul, expand the mul operands onto the end of the operands 2496 // list. 2497 Ops.erase(Ops.begin()+Idx); 2498 Ops.append(Mul->op_begin(), Mul->op_end()); 2499 DeletedMul = true; 2500 } 2501 2502 // If we deleted at least one mul, we added operands to the end of the list, 2503 // and they are not necessarily sorted. Recurse to resort and resimplify 2504 // any operands we just acquired. 2505 if (DeletedMul) 2506 return getMulExpr(Ops); 2507 } 2508 2509 // If there are any add recurrences in the operands list, see if any other 2510 // added values are loop invariant. If so, we can fold them into the 2511 // recurrence. 2512 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2513 ++Idx; 2514 2515 // Scan over all recurrences, trying to fold loop invariants into them. 2516 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2517 // Scan all of the other operands to this mul and add them to the vector if 2518 // they are loop invariant w.r.t. the recurrence. 2519 SmallVector<const SCEV *, 8> LIOps; 2520 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2521 const Loop *AddRecLoop = AddRec->getLoop(); 2522 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2523 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2524 LIOps.push_back(Ops[i]); 2525 Ops.erase(Ops.begin()+i); 2526 --i; --e; 2527 } 2528 2529 // If we found some loop invariants, fold them into the recurrence. 2530 if (!LIOps.empty()) { 2531 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2532 SmallVector<const SCEV *, 4> NewOps; 2533 NewOps.reserve(AddRec->getNumOperands()); 2534 const SCEV *Scale = getMulExpr(LIOps); 2535 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2536 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2537 2538 // Build the new addrec. Propagate the NUW and NSW flags if both the 2539 // outer mul and the inner addrec are guaranteed to have no overflow. 2540 // 2541 // No self-wrap cannot be guaranteed after changing the step size, but 2542 // will be inferred if either NUW or NSW is true. 2543 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2544 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2545 2546 // If all of the other operands were loop invariant, we are done. 2547 if (Ops.size() == 1) return NewRec; 2548 2549 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2550 for (unsigned i = 0;; ++i) 2551 if (Ops[i] == AddRec) { 2552 Ops[i] = NewRec; 2553 break; 2554 } 2555 return getMulExpr(Ops); 2556 } 2557 2558 // Okay, if there weren't any loop invariants to be folded, check to see if 2559 // there are multiple AddRec's with the same loop induction variable being 2560 // multiplied together. If so, we can fold them. 2561 2562 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2563 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2564 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2565 // ]]],+,...up to x=2n}. 2566 // Note that the arguments to choose() are always integers with values 2567 // known at compile time, never SCEV objects. 2568 // 2569 // The implementation avoids pointless extra computations when the two 2570 // addrec's are of different length (mathematically, it's equivalent to 2571 // an infinite stream of zeros on the right). 2572 bool OpsModified = false; 2573 for (unsigned OtherIdx = Idx+1; 2574 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2575 ++OtherIdx) { 2576 const SCEVAddRecExpr *OtherAddRec = 2577 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2578 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2579 continue; 2580 2581 bool Overflow = false; 2582 Type *Ty = AddRec->getType(); 2583 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2584 SmallVector<const SCEV*, 7> AddRecOps; 2585 for (int x = 0, xe = AddRec->getNumOperands() + 2586 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2587 const SCEV *Term = getZero(Ty); 2588 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2589 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2590 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2591 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2592 z < ze && !Overflow; ++z) { 2593 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2594 uint64_t Coeff; 2595 if (LargerThan64Bits) 2596 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2597 else 2598 Coeff = Coeff1*Coeff2; 2599 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2600 const SCEV *Term1 = AddRec->getOperand(y-z); 2601 const SCEV *Term2 = OtherAddRec->getOperand(z); 2602 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2603 } 2604 } 2605 AddRecOps.push_back(Term); 2606 } 2607 if (!Overflow) { 2608 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2609 SCEV::FlagAnyWrap); 2610 if (Ops.size() == 2) return NewAddRec; 2611 Ops[Idx] = NewAddRec; 2612 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2613 OpsModified = true; 2614 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2615 if (!AddRec) 2616 break; 2617 } 2618 } 2619 if (OpsModified) 2620 return getMulExpr(Ops); 2621 2622 // Otherwise couldn't fold anything into this recurrence. Move onto the 2623 // next one. 2624 } 2625 2626 // Okay, it looks like we really DO need an mul expr. Check to see if we 2627 // already have one, otherwise create a new one. 2628 FoldingSetNodeID ID; 2629 ID.AddInteger(scMulExpr); 2630 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2631 ID.AddPointer(Ops[i]); 2632 void *IP = nullptr; 2633 SCEVMulExpr *S = 2634 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2635 if (!S) { 2636 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2637 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2638 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2639 O, Ops.size()); 2640 UniqueSCEVs.InsertNode(S, IP); 2641 } 2642 S->setNoWrapFlags(Flags); 2643 return S; 2644 } 2645 2646 /// getUDivExpr - Get a canonical unsigned division expression, or something 2647 /// simpler if possible. 2648 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2649 const SCEV *RHS) { 2650 assert(getEffectiveSCEVType(LHS->getType()) == 2651 getEffectiveSCEVType(RHS->getType()) && 2652 "SCEVUDivExpr operand types don't match!"); 2653 2654 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2655 if (RHSC->getValue()->equalsInt(1)) 2656 return LHS; // X udiv 1 --> x 2657 // If the denominator is zero, the result of the udiv is undefined. Don't 2658 // try to analyze it, because the resolution chosen here may differ from 2659 // the resolution chosen in other parts of the compiler. 2660 if (!RHSC->getValue()->isZero()) { 2661 // Determine if the division can be folded into the operands of 2662 // its operands. 2663 // TODO: Generalize this to non-constants by using known-bits information. 2664 Type *Ty = LHS->getType(); 2665 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2666 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2667 // For non-power-of-two values, effectively round the value up to the 2668 // nearest power of two. 2669 if (!RHSC->getValue()->getValue().isPowerOf2()) 2670 ++MaxShiftAmt; 2671 IntegerType *ExtTy = 2672 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2673 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2674 if (const SCEVConstant *Step = 2675 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2676 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2677 const APInt &StepInt = Step->getValue()->getValue(); 2678 const APInt &DivInt = RHSC->getValue()->getValue(); 2679 if (!StepInt.urem(DivInt) && 2680 getZeroExtendExpr(AR, ExtTy) == 2681 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2682 getZeroExtendExpr(Step, ExtTy), 2683 AR->getLoop(), SCEV::FlagAnyWrap)) { 2684 SmallVector<const SCEV *, 4> Operands; 2685 for (const SCEV *Op : AR->operands()) 2686 Operands.push_back(getUDivExpr(Op, RHS)); 2687 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2688 } 2689 /// Get a canonical UDivExpr for a recurrence. 2690 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2691 // We can currently only fold X%N if X is constant. 2692 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2693 if (StartC && !DivInt.urem(StepInt) && 2694 getZeroExtendExpr(AR, ExtTy) == 2695 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2696 getZeroExtendExpr(Step, ExtTy), 2697 AR->getLoop(), SCEV::FlagAnyWrap)) { 2698 const APInt &StartInt = StartC->getValue()->getValue(); 2699 const APInt &StartRem = StartInt.urem(StepInt); 2700 if (StartRem != 0) 2701 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2702 AR->getLoop(), SCEV::FlagNW); 2703 } 2704 } 2705 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2706 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2707 SmallVector<const SCEV *, 4> Operands; 2708 for (const SCEV *Op : M->operands()) 2709 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2710 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2711 // Find an operand that's safely divisible. 2712 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2713 const SCEV *Op = M->getOperand(i); 2714 const SCEV *Div = getUDivExpr(Op, RHSC); 2715 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2716 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2717 M->op_end()); 2718 Operands[i] = Div; 2719 return getMulExpr(Operands); 2720 } 2721 } 2722 } 2723 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2724 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2725 SmallVector<const SCEV *, 4> Operands; 2726 for (const SCEV *Op : A->operands()) 2727 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2728 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2729 Operands.clear(); 2730 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2731 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2732 if (isa<SCEVUDivExpr>(Op) || 2733 getMulExpr(Op, RHS) != A->getOperand(i)) 2734 break; 2735 Operands.push_back(Op); 2736 } 2737 if (Operands.size() == A->getNumOperands()) 2738 return getAddExpr(Operands); 2739 } 2740 } 2741 2742 // Fold if both operands are constant. 2743 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2744 Constant *LHSCV = LHSC->getValue(); 2745 Constant *RHSCV = RHSC->getValue(); 2746 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2747 RHSCV))); 2748 } 2749 } 2750 } 2751 2752 FoldingSetNodeID ID; 2753 ID.AddInteger(scUDivExpr); 2754 ID.AddPointer(LHS); 2755 ID.AddPointer(RHS); 2756 void *IP = nullptr; 2757 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2758 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2759 LHS, RHS); 2760 UniqueSCEVs.InsertNode(S, IP); 2761 return S; 2762 } 2763 2764 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2765 APInt A = C1->getValue()->getValue().abs(); 2766 APInt B = C2->getValue()->getValue().abs(); 2767 uint32_t ABW = A.getBitWidth(); 2768 uint32_t BBW = B.getBitWidth(); 2769 2770 if (ABW > BBW) 2771 B = B.zext(ABW); 2772 else if (ABW < BBW) 2773 A = A.zext(BBW); 2774 2775 return APIntOps::GreatestCommonDivisor(A, B); 2776 } 2777 2778 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2779 /// something simpler if possible. There is no representation for an exact udiv 2780 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2781 /// We can't do this when it's not exact because the udiv may be clearing bits. 2782 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2783 const SCEV *RHS) { 2784 // TODO: we could try to find factors in all sorts of things, but for now we 2785 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2786 // end of this file for inspiration. 2787 2788 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2789 if (!Mul) 2790 return getUDivExpr(LHS, RHS); 2791 2792 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2793 // If the mulexpr multiplies by a constant, then that constant must be the 2794 // first element of the mulexpr. 2795 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2796 if (LHSCst == RHSCst) { 2797 SmallVector<const SCEV *, 2> Operands; 2798 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2799 return getMulExpr(Operands); 2800 } 2801 2802 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2803 // that there's a factor provided by one of the other terms. We need to 2804 // check. 2805 APInt Factor = gcd(LHSCst, RHSCst); 2806 if (!Factor.isIntN(1)) { 2807 LHSCst = cast<SCEVConstant>( 2808 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2809 RHSCst = cast<SCEVConstant>( 2810 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2811 SmallVector<const SCEV *, 2> Operands; 2812 Operands.push_back(LHSCst); 2813 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2814 LHS = getMulExpr(Operands); 2815 RHS = RHSCst; 2816 Mul = dyn_cast<SCEVMulExpr>(LHS); 2817 if (!Mul) 2818 return getUDivExactExpr(LHS, RHS); 2819 } 2820 } 2821 } 2822 2823 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2824 if (Mul->getOperand(i) == RHS) { 2825 SmallVector<const SCEV *, 2> Operands; 2826 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2827 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2828 return getMulExpr(Operands); 2829 } 2830 } 2831 2832 return getUDivExpr(LHS, RHS); 2833 } 2834 2835 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2836 /// Simplify the expression as much as possible. 2837 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2838 const Loop *L, 2839 SCEV::NoWrapFlags Flags) { 2840 SmallVector<const SCEV *, 4> Operands; 2841 Operands.push_back(Start); 2842 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2843 if (StepChrec->getLoop() == L) { 2844 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2845 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2846 } 2847 2848 Operands.push_back(Step); 2849 return getAddRecExpr(Operands, L, Flags); 2850 } 2851 2852 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2853 /// Simplify the expression as much as possible. 2854 const SCEV * 2855 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2856 const Loop *L, SCEV::NoWrapFlags Flags) { 2857 if (Operands.size() == 1) return Operands[0]; 2858 #ifndef NDEBUG 2859 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2860 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2861 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2862 "SCEVAddRecExpr operand types don't match!"); 2863 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2864 assert(isLoopInvariant(Operands[i], L) && 2865 "SCEVAddRecExpr operand is not loop-invariant!"); 2866 #endif 2867 2868 if (Operands.back()->isZero()) { 2869 Operands.pop_back(); 2870 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2871 } 2872 2873 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2874 // use that information to infer NUW and NSW flags. However, computing a 2875 // BE count requires calling getAddRecExpr, so we may not yet have a 2876 // meaningful BE count at this point (and if we don't, we'd be stuck 2877 // with a SCEVCouldNotCompute as the cached BE count). 2878 2879 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2880 2881 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2882 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2883 const Loop *NestedLoop = NestedAR->getLoop(); 2884 if (L->contains(NestedLoop) 2885 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2886 : (!NestedLoop->contains(L) && 2887 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2888 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2889 NestedAR->op_end()); 2890 Operands[0] = NestedAR->getStart(); 2891 // AddRecs require their operands be loop-invariant with respect to their 2892 // loops. Don't perform this transformation if it would break this 2893 // requirement. 2894 bool AllInvariant = 2895 std::all_of(Operands.begin(), Operands.end(), 2896 [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2897 2898 if (AllInvariant) { 2899 // Create a recurrence for the outer loop with the same step size. 2900 // 2901 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2902 // inner recurrence has the same property. 2903 SCEV::NoWrapFlags OuterFlags = 2904 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2905 2906 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2907 AllInvariant = std::all_of( 2908 NestedOperands.begin(), NestedOperands.end(), 2909 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); }); 2910 2911 if (AllInvariant) { 2912 // Ok, both add recurrences are valid after the transformation. 2913 // 2914 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2915 // the outer recurrence has the same property. 2916 SCEV::NoWrapFlags InnerFlags = 2917 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2918 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2919 } 2920 } 2921 // Reset Operands to its original state. 2922 Operands[0] = NestedAR; 2923 } 2924 } 2925 2926 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2927 // already have one, otherwise create a new one. 2928 FoldingSetNodeID ID; 2929 ID.AddInteger(scAddRecExpr); 2930 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2931 ID.AddPointer(Operands[i]); 2932 ID.AddPointer(L); 2933 void *IP = nullptr; 2934 SCEVAddRecExpr *S = 2935 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2936 if (!S) { 2937 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2938 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2939 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2940 O, Operands.size(), L); 2941 UniqueSCEVs.InsertNode(S, IP); 2942 } 2943 S->setNoWrapFlags(Flags); 2944 return S; 2945 } 2946 2947 const SCEV * 2948 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2949 const SmallVectorImpl<const SCEV *> &IndexExprs, 2950 bool InBounds) { 2951 // getSCEV(Base)->getType() has the same address space as Base->getType() 2952 // because SCEV::getType() preserves the address space. 2953 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2954 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2955 // instruction to its SCEV, because the Instruction may be guarded by control 2956 // flow and the no-overflow bits may not be valid for the expression in any 2957 // context. This can be fixed similarly to how these flags are handled for 2958 // adds. 2959 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2960 2961 const SCEV *TotalOffset = getZero(IntPtrTy); 2962 // The address space is unimportant. The first thing we do on CurTy is getting 2963 // its element type. 2964 Type *CurTy = PointerType::getUnqual(PointeeType); 2965 for (const SCEV *IndexExpr : IndexExprs) { 2966 // Compute the (potentially symbolic) offset in bytes for this index. 2967 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2968 // For a struct, add the member offset. 2969 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2970 unsigned FieldNo = Index->getZExtValue(); 2971 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2972 2973 // Add the field offset to the running total offset. 2974 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2975 2976 // Update CurTy to the type of the field at Index. 2977 CurTy = STy->getTypeAtIndex(Index); 2978 } else { 2979 // Update CurTy to its element type. 2980 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2981 // For an array, add the element offset, explicitly scaled. 2982 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2983 // Getelementptr indices are signed. 2984 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2985 2986 // Multiply the index by the element size to compute the element offset. 2987 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2988 2989 // Add the element offset to the running total offset. 2990 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2991 } 2992 } 2993 2994 // Add the total offset from all the GEP indices to the base. 2995 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2996 } 2997 2998 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2999 const SCEV *RHS) { 3000 SmallVector<const SCEV *, 2> Ops; 3001 Ops.push_back(LHS); 3002 Ops.push_back(RHS); 3003 return getSMaxExpr(Ops); 3004 } 3005 3006 const SCEV * 3007 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3008 assert(!Ops.empty() && "Cannot get empty smax!"); 3009 if (Ops.size() == 1) return Ops[0]; 3010 #ifndef NDEBUG 3011 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3012 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3013 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3014 "SCEVSMaxExpr operand types don't match!"); 3015 #endif 3016 3017 // Sort by complexity, this groups all similar expression types together. 3018 GroupByComplexity(Ops, &LI); 3019 3020 // If there are any constants, fold them together. 3021 unsigned Idx = 0; 3022 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3023 ++Idx; 3024 assert(Idx < Ops.size()); 3025 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3026 // We found two constants, fold them together! 3027 ConstantInt *Fold = ConstantInt::get(getContext(), 3028 APIntOps::smax(LHSC->getValue()->getValue(), 3029 RHSC->getValue()->getValue())); 3030 Ops[0] = getConstant(Fold); 3031 Ops.erase(Ops.begin()+1); // Erase the folded element 3032 if (Ops.size() == 1) return Ops[0]; 3033 LHSC = cast<SCEVConstant>(Ops[0]); 3034 } 3035 3036 // If we are left with a constant minimum-int, strip it off. 3037 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3038 Ops.erase(Ops.begin()); 3039 --Idx; 3040 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3041 // If we have an smax with a constant maximum-int, it will always be 3042 // maximum-int. 3043 return Ops[0]; 3044 } 3045 3046 if (Ops.size() == 1) return Ops[0]; 3047 } 3048 3049 // Find the first SMax 3050 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3051 ++Idx; 3052 3053 // Check to see if one of the operands is an SMax. If so, expand its operands 3054 // onto our operand list, and recurse to simplify. 3055 if (Idx < Ops.size()) { 3056 bool DeletedSMax = false; 3057 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3058 Ops.erase(Ops.begin()+Idx); 3059 Ops.append(SMax->op_begin(), SMax->op_end()); 3060 DeletedSMax = true; 3061 } 3062 3063 if (DeletedSMax) 3064 return getSMaxExpr(Ops); 3065 } 3066 3067 // Okay, check to see if the same value occurs in the operand list twice. If 3068 // so, delete one. Since we sorted the list, these values are required to 3069 // be adjacent. 3070 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3071 // X smax Y smax Y --> X smax Y 3072 // X smax Y --> X, if X is always greater than Y 3073 if (Ops[i] == Ops[i+1] || 3074 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3075 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3076 --i; --e; 3077 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3078 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3079 --i; --e; 3080 } 3081 3082 if (Ops.size() == 1) return Ops[0]; 3083 3084 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3085 3086 // Okay, it looks like we really DO need an smax expr. Check to see if we 3087 // already have one, otherwise create a new one. 3088 FoldingSetNodeID ID; 3089 ID.AddInteger(scSMaxExpr); 3090 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3091 ID.AddPointer(Ops[i]); 3092 void *IP = nullptr; 3093 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3094 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3095 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3096 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3097 O, Ops.size()); 3098 UniqueSCEVs.InsertNode(S, IP); 3099 return S; 3100 } 3101 3102 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3103 const SCEV *RHS) { 3104 SmallVector<const SCEV *, 2> Ops; 3105 Ops.push_back(LHS); 3106 Ops.push_back(RHS); 3107 return getUMaxExpr(Ops); 3108 } 3109 3110 const SCEV * 3111 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3112 assert(!Ops.empty() && "Cannot get empty umax!"); 3113 if (Ops.size() == 1) return Ops[0]; 3114 #ifndef NDEBUG 3115 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3116 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3117 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3118 "SCEVUMaxExpr operand types don't match!"); 3119 #endif 3120 3121 // Sort by complexity, this groups all similar expression types together. 3122 GroupByComplexity(Ops, &LI); 3123 3124 // If there are any constants, fold them together. 3125 unsigned Idx = 0; 3126 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3127 ++Idx; 3128 assert(Idx < Ops.size()); 3129 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3130 // We found two constants, fold them together! 3131 ConstantInt *Fold = ConstantInt::get(getContext(), 3132 APIntOps::umax(LHSC->getValue()->getValue(), 3133 RHSC->getValue()->getValue())); 3134 Ops[0] = getConstant(Fold); 3135 Ops.erase(Ops.begin()+1); // Erase the folded element 3136 if (Ops.size() == 1) return Ops[0]; 3137 LHSC = cast<SCEVConstant>(Ops[0]); 3138 } 3139 3140 // If we are left with a constant minimum-int, strip it off. 3141 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3142 Ops.erase(Ops.begin()); 3143 --Idx; 3144 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3145 // If we have an umax with a constant maximum-int, it will always be 3146 // maximum-int. 3147 return Ops[0]; 3148 } 3149 3150 if (Ops.size() == 1) return Ops[0]; 3151 } 3152 3153 // Find the first UMax 3154 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3155 ++Idx; 3156 3157 // Check to see if one of the operands is a UMax. If so, expand its operands 3158 // onto our operand list, and recurse to simplify. 3159 if (Idx < Ops.size()) { 3160 bool DeletedUMax = false; 3161 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3162 Ops.erase(Ops.begin()+Idx); 3163 Ops.append(UMax->op_begin(), UMax->op_end()); 3164 DeletedUMax = true; 3165 } 3166 3167 if (DeletedUMax) 3168 return getUMaxExpr(Ops); 3169 } 3170 3171 // Okay, check to see if the same value occurs in the operand list twice. If 3172 // so, delete one. Since we sorted the list, these values are required to 3173 // be adjacent. 3174 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3175 // X umax Y umax Y --> X umax Y 3176 // X umax Y --> X, if X is always greater than Y 3177 if (Ops[i] == Ops[i+1] || 3178 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3179 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3180 --i; --e; 3181 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3182 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3183 --i; --e; 3184 } 3185 3186 if (Ops.size() == 1) return Ops[0]; 3187 3188 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3189 3190 // Okay, it looks like we really DO need a umax expr. Check to see if we 3191 // already have one, otherwise create a new one. 3192 FoldingSetNodeID ID; 3193 ID.AddInteger(scUMaxExpr); 3194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3195 ID.AddPointer(Ops[i]); 3196 void *IP = nullptr; 3197 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3198 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3199 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3200 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3201 O, Ops.size()); 3202 UniqueSCEVs.InsertNode(S, IP); 3203 return S; 3204 } 3205 3206 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3207 const SCEV *RHS) { 3208 // ~smax(~x, ~y) == smin(x, y). 3209 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3210 } 3211 3212 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3213 const SCEV *RHS) { 3214 // ~umax(~x, ~y) == umin(x, y) 3215 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3216 } 3217 3218 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3219 // We can bypass creating a target-independent 3220 // constant expression and then folding it back into a ConstantInt. 3221 // This is just a compile-time optimization. 3222 return getConstant(IntTy, 3223 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3224 } 3225 3226 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3227 StructType *STy, 3228 unsigned FieldNo) { 3229 // We can bypass creating a target-independent 3230 // constant expression and then folding it back into a ConstantInt. 3231 // This is just a compile-time optimization. 3232 return getConstant( 3233 IntTy, 3234 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3235 FieldNo)); 3236 } 3237 3238 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3239 // Don't attempt to do anything other than create a SCEVUnknown object 3240 // here. createSCEV only calls getUnknown after checking for all other 3241 // interesting possibilities, and any other code that calls getUnknown 3242 // is doing so in order to hide a value from SCEV canonicalization. 3243 3244 FoldingSetNodeID ID; 3245 ID.AddInteger(scUnknown); 3246 ID.AddPointer(V); 3247 void *IP = nullptr; 3248 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3249 assert(cast<SCEVUnknown>(S)->getValue() == V && 3250 "Stale SCEVUnknown in uniquing map!"); 3251 return S; 3252 } 3253 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3254 FirstUnknown); 3255 FirstUnknown = cast<SCEVUnknown>(S); 3256 UniqueSCEVs.InsertNode(S, IP); 3257 return S; 3258 } 3259 3260 //===----------------------------------------------------------------------===// 3261 // Basic SCEV Analysis and PHI Idiom Recognition Code 3262 // 3263 3264 /// isSCEVable - Test if values of the given type are analyzable within 3265 /// the SCEV framework. This primarily includes integer types, and it 3266 /// can optionally include pointer types if the ScalarEvolution class 3267 /// has access to target-specific information. 3268 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3269 // Integers and pointers are always SCEVable. 3270 return Ty->isIntegerTy() || Ty->isPointerTy(); 3271 } 3272 3273 /// getTypeSizeInBits - Return the size in bits of the specified type, 3274 /// for which isSCEVable must return true. 3275 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3276 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3277 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3278 } 3279 3280 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3281 /// the given type and which represents how SCEV will treat the given 3282 /// type, for which isSCEVable must return true. For pointer types, 3283 /// this is the pointer-sized integer type. 3284 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3285 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3286 3287 if (Ty->isIntegerTy()) 3288 return Ty; 3289 3290 // The only other support type is pointer. 3291 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3292 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3293 } 3294 3295 const SCEV *ScalarEvolution::getCouldNotCompute() { 3296 return CouldNotCompute.get(); 3297 } 3298 3299 namespace { 3300 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3301 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3302 // is set iff if find such SCEVUnknown. 3303 // 3304 struct FindInvalidSCEVUnknown { 3305 bool FindOne; 3306 FindInvalidSCEVUnknown() { FindOne = false; } 3307 bool follow(const SCEV *S) { 3308 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3309 case scConstant: 3310 return false; 3311 case scUnknown: 3312 if (!cast<SCEVUnknown>(S)->getValue()) 3313 FindOne = true; 3314 return false; 3315 default: 3316 return true; 3317 } 3318 } 3319 bool isDone() const { return FindOne; } 3320 }; 3321 } 3322 3323 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3324 FindInvalidSCEVUnknown F; 3325 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3326 ST.visitAll(S); 3327 3328 return !F.FindOne; 3329 } 3330 3331 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3332 /// expression and create a new one. 3333 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3334 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3335 3336 const SCEV *S = getExistingSCEV(V); 3337 if (S == nullptr) { 3338 S = createSCEV(V); 3339 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3340 } 3341 return S; 3342 } 3343 3344 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3345 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3346 3347 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3348 if (I != ValueExprMap.end()) { 3349 const SCEV *S = I->second; 3350 if (checkValidity(S)) 3351 return S; 3352 ValueExprMap.erase(I); 3353 } 3354 return nullptr; 3355 } 3356 3357 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3358 /// 3359 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3360 SCEV::NoWrapFlags Flags) { 3361 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3362 return getConstant( 3363 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3364 3365 Type *Ty = V->getType(); 3366 Ty = getEffectiveSCEVType(Ty); 3367 return getMulExpr( 3368 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3369 } 3370 3371 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3372 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3373 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3374 return getConstant( 3375 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3376 3377 Type *Ty = V->getType(); 3378 Ty = getEffectiveSCEVType(Ty); 3379 const SCEV *AllOnes = 3380 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3381 return getMinusSCEV(AllOnes, V); 3382 } 3383 3384 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3385 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3386 SCEV::NoWrapFlags Flags) { 3387 // Fast path: X - X --> 0. 3388 if (LHS == RHS) 3389 return getZero(LHS->getType()); 3390 3391 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3392 // makes it so that we cannot make much use of NUW. 3393 auto AddFlags = SCEV::FlagAnyWrap; 3394 const bool RHSIsNotMinSigned = 3395 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3396 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3397 // Let M be the minimum representable signed value. Then (-1)*RHS 3398 // signed-wraps if and only if RHS is M. That can happen even for 3399 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3400 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3401 // (-1)*RHS, we need to prove that RHS != M. 3402 // 3403 // If LHS is non-negative and we know that LHS - RHS does not 3404 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3405 // either by proving that RHS > M or that LHS >= 0. 3406 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3407 AddFlags = SCEV::FlagNSW; 3408 } 3409 } 3410 3411 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3412 // RHS is NSW and LHS >= 0. 3413 // 3414 // The difficulty here is that the NSW flag may have been proven 3415 // relative to a loop that is to be found in a recurrence in LHS and 3416 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3417 // larger scope than intended. 3418 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3419 3420 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3421 } 3422 3423 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3424 /// input value to the specified type. If the type must be extended, it is zero 3425 /// extended. 3426 const SCEV * 3427 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3428 Type *SrcTy = V->getType(); 3429 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3430 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3431 "Cannot truncate or zero extend with non-integer arguments!"); 3432 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3433 return V; // No conversion 3434 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3435 return getTruncateExpr(V, Ty); 3436 return getZeroExtendExpr(V, Ty); 3437 } 3438 3439 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3440 /// input value to the specified type. If the type must be extended, it is sign 3441 /// extended. 3442 const SCEV * 3443 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3444 Type *Ty) { 3445 Type *SrcTy = V->getType(); 3446 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3447 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3448 "Cannot truncate or zero extend with non-integer arguments!"); 3449 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3450 return V; // No conversion 3451 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3452 return getTruncateExpr(V, Ty); 3453 return getSignExtendExpr(V, Ty); 3454 } 3455 3456 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3457 /// input value to the specified type. If the type must be extended, it is zero 3458 /// extended. The conversion must not be narrowing. 3459 const SCEV * 3460 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3461 Type *SrcTy = V->getType(); 3462 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3463 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3464 "Cannot noop or zero extend with non-integer arguments!"); 3465 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3466 "getNoopOrZeroExtend cannot truncate!"); 3467 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3468 return V; // No conversion 3469 return getZeroExtendExpr(V, Ty); 3470 } 3471 3472 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3473 /// input value to the specified type. If the type must be extended, it is sign 3474 /// extended. The conversion must not be narrowing. 3475 const SCEV * 3476 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3477 Type *SrcTy = V->getType(); 3478 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3479 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3480 "Cannot noop or sign extend with non-integer arguments!"); 3481 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3482 "getNoopOrSignExtend cannot truncate!"); 3483 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3484 return V; // No conversion 3485 return getSignExtendExpr(V, Ty); 3486 } 3487 3488 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3489 /// the input value to the specified type. If the type must be extended, 3490 /// it is extended with unspecified bits. The conversion must not be 3491 /// narrowing. 3492 const SCEV * 3493 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3494 Type *SrcTy = V->getType(); 3495 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3496 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3497 "Cannot noop or any extend with non-integer arguments!"); 3498 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3499 "getNoopOrAnyExtend cannot truncate!"); 3500 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3501 return V; // No conversion 3502 return getAnyExtendExpr(V, Ty); 3503 } 3504 3505 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3506 /// input value to the specified type. The conversion must not be widening. 3507 const SCEV * 3508 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3509 Type *SrcTy = V->getType(); 3510 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3511 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3512 "Cannot truncate or noop with non-integer arguments!"); 3513 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3514 "getTruncateOrNoop cannot extend!"); 3515 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3516 return V; // No conversion 3517 return getTruncateExpr(V, Ty); 3518 } 3519 3520 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3521 /// the types using zero-extension, and then perform a umax operation 3522 /// with them. 3523 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3524 const SCEV *RHS) { 3525 const SCEV *PromotedLHS = LHS; 3526 const SCEV *PromotedRHS = RHS; 3527 3528 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3529 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3530 else 3531 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3532 3533 return getUMaxExpr(PromotedLHS, PromotedRHS); 3534 } 3535 3536 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3537 /// the types using zero-extension, and then perform a umin operation 3538 /// with them. 3539 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3540 const SCEV *RHS) { 3541 const SCEV *PromotedLHS = LHS; 3542 const SCEV *PromotedRHS = RHS; 3543 3544 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3545 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3546 else 3547 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3548 3549 return getUMinExpr(PromotedLHS, PromotedRHS); 3550 } 3551 3552 /// getPointerBase - Transitively follow the chain of pointer-type operands 3553 /// until reaching a SCEV that does not have a single pointer operand. This 3554 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3555 /// but corner cases do exist. 3556 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3557 // A pointer operand may evaluate to a nonpointer expression, such as null. 3558 if (!V->getType()->isPointerTy()) 3559 return V; 3560 3561 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3562 return getPointerBase(Cast->getOperand()); 3563 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3564 const SCEV *PtrOp = nullptr; 3565 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3566 I != E; ++I) { 3567 if ((*I)->getType()->isPointerTy()) { 3568 // Cannot find the base of an expression with multiple pointer operands. 3569 if (PtrOp) 3570 return V; 3571 PtrOp = *I; 3572 } 3573 } 3574 if (!PtrOp) 3575 return V; 3576 return getPointerBase(PtrOp); 3577 } 3578 return V; 3579 } 3580 3581 /// PushDefUseChildren - Push users of the given Instruction 3582 /// onto the given Worklist. 3583 static void 3584 PushDefUseChildren(Instruction *I, 3585 SmallVectorImpl<Instruction *> &Worklist) { 3586 // Push the def-use children onto the Worklist stack. 3587 for (User *U : I->users()) 3588 Worklist.push_back(cast<Instruction>(U)); 3589 } 3590 3591 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3592 /// instructions that depend on the given instruction and removes them from 3593 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3594 /// resolution. 3595 void 3596 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3597 SmallVector<Instruction *, 16> Worklist; 3598 PushDefUseChildren(PN, Worklist); 3599 3600 SmallPtrSet<Instruction *, 8> Visited; 3601 Visited.insert(PN); 3602 while (!Worklist.empty()) { 3603 Instruction *I = Worklist.pop_back_val(); 3604 if (!Visited.insert(I).second) 3605 continue; 3606 3607 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3608 if (It != ValueExprMap.end()) { 3609 const SCEV *Old = It->second; 3610 3611 // Short-circuit the def-use traversal if the symbolic name 3612 // ceases to appear in expressions. 3613 if (Old != SymName && !hasOperand(Old, SymName)) 3614 continue; 3615 3616 // SCEVUnknown for a PHI either means that it has an unrecognized 3617 // structure, it's a PHI that's in the progress of being computed 3618 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3619 // additional loop trip count information isn't going to change anything. 3620 // In the second case, createNodeForPHI will perform the necessary 3621 // updates on its own when it gets to that point. In the third, we do 3622 // want to forget the SCEVUnknown. 3623 if (!isa<PHINode>(I) || 3624 !isa<SCEVUnknown>(Old) || 3625 (I != PN && Old == SymName)) { 3626 forgetMemoizedResults(Old); 3627 ValueExprMap.erase(It); 3628 } 3629 } 3630 3631 PushDefUseChildren(I, Worklist); 3632 } 3633 } 3634 3635 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3636 const Loop *L = LI.getLoopFor(PN->getParent()); 3637 if (!L || L->getHeader() != PN->getParent()) 3638 return nullptr; 3639 3640 // The loop may have multiple entrances or multiple exits; we can analyze 3641 // this phi as an addrec if it has a unique entry value and a unique 3642 // backedge value. 3643 Value *BEValueV = nullptr, *StartValueV = nullptr; 3644 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3645 Value *V = PN->getIncomingValue(i); 3646 if (L->contains(PN->getIncomingBlock(i))) { 3647 if (!BEValueV) { 3648 BEValueV = V; 3649 } else if (BEValueV != V) { 3650 BEValueV = nullptr; 3651 break; 3652 } 3653 } else if (!StartValueV) { 3654 StartValueV = V; 3655 } else if (StartValueV != V) { 3656 StartValueV = nullptr; 3657 break; 3658 } 3659 } 3660 if (BEValueV && StartValueV) { 3661 // While we are analyzing this PHI node, handle its value symbolically. 3662 const SCEV *SymbolicName = getUnknown(PN); 3663 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3664 "PHI node already processed?"); 3665 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3666 3667 // Using this symbolic name for the PHI, analyze the value coming around 3668 // the back-edge. 3669 const SCEV *BEValue = getSCEV(BEValueV); 3670 3671 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3672 // has a special value for the first iteration of the loop. 3673 3674 // If the value coming around the backedge is an add with the symbolic 3675 // value we just inserted, then we found a simple induction variable! 3676 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3677 // If there is a single occurrence of the symbolic value, replace it 3678 // with a recurrence. 3679 unsigned FoundIndex = Add->getNumOperands(); 3680 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3681 if (Add->getOperand(i) == SymbolicName) 3682 if (FoundIndex == e) { 3683 FoundIndex = i; 3684 break; 3685 } 3686 3687 if (FoundIndex != Add->getNumOperands()) { 3688 // Create an add with everything but the specified operand. 3689 SmallVector<const SCEV *, 8> Ops; 3690 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3691 if (i != FoundIndex) 3692 Ops.push_back(Add->getOperand(i)); 3693 const SCEV *Accum = getAddExpr(Ops); 3694 3695 // This is not a valid addrec if the step amount is varying each 3696 // loop iteration, but is not itself an addrec in this loop. 3697 if (isLoopInvariant(Accum, L) || 3698 (isa<SCEVAddRecExpr>(Accum) && 3699 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3700 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3701 3702 // If the increment doesn't overflow, then neither the addrec nor 3703 // the post-increment will overflow. 3704 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3705 if (OBO->getOperand(0) == PN) { 3706 if (OBO->hasNoUnsignedWrap()) 3707 Flags = setFlags(Flags, SCEV::FlagNUW); 3708 if (OBO->hasNoSignedWrap()) 3709 Flags = setFlags(Flags, SCEV::FlagNSW); 3710 } 3711 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3712 // If the increment is an inbounds GEP, then we know the address 3713 // space cannot be wrapped around. We cannot make any guarantee 3714 // about signed or unsigned overflow because pointers are 3715 // unsigned but we may have a negative index from the base 3716 // pointer. We can guarantee that no unsigned wrap occurs if the 3717 // indices form a positive value. 3718 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3719 Flags = setFlags(Flags, SCEV::FlagNW); 3720 3721 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3722 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3723 Flags = setFlags(Flags, SCEV::FlagNUW); 3724 } 3725 3726 // We cannot transfer nuw and nsw flags from subtraction 3727 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3728 // for instance. 3729 } 3730 3731 const SCEV *StartVal = getSCEV(StartValueV); 3732 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3733 3734 // Since the no-wrap flags are on the increment, they apply to the 3735 // post-incremented value as well. 3736 if (isLoopInvariant(Accum, L)) 3737 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3738 3739 // Okay, for the entire analysis of this edge we assumed the PHI 3740 // to be symbolic. We now need to go back and purge all of the 3741 // entries for the scalars that use the symbolic expression. 3742 ForgetSymbolicName(PN, SymbolicName); 3743 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3744 return PHISCEV; 3745 } 3746 } 3747 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 3748 // Otherwise, this could be a loop like this: 3749 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3750 // In this case, j = {1,+,1} and BEValue is j. 3751 // Because the other in-value of i (0) fits the evolution of BEValue 3752 // i really is an addrec evolution. 3753 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3754 const SCEV *StartVal = getSCEV(StartValueV); 3755 3756 // If StartVal = j.start - j.stride, we can use StartVal as the 3757 // initial step of the addrec evolution. 3758 if (StartVal == 3759 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { 3760 // FIXME: For constant StartVal, we should be able to infer 3761 // no-wrap flags. 3762 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), 3763 L, SCEV::FlagAnyWrap); 3764 3765 // Okay, for the entire analysis of this edge we assumed the PHI 3766 // to be symbolic. We now need to go back and purge all of the 3767 // entries for the scalars that use the symbolic expression. 3768 ForgetSymbolicName(PN, SymbolicName); 3769 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3770 return PHISCEV; 3771 } 3772 } 3773 } 3774 } 3775 3776 return nullptr; 3777 } 3778 3779 // Checks if the SCEV S is available at BB. S is considered available at BB 3780 // if S can be materialized at BB without introducing a fault. 3781 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3782 BasicBlock *BB) { 3783 struct CheckAvailable { 3784 bool TraversalDone = false; 3785 bool Available = true; 3786 3787 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3788 BasicBlock *BB = nullptr; 3789 DominatorTree &DT; 3790 3791 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3792 : L(L), BB(BB), DT(DT) {} 3793 3794 bool setUnavailable() { 3795 TraversalDone = true; 3796 Available = false; 3797 return false; 3798 } 3799 3800 bool follow(const SCEV *S) { 3801 switch (S->getSCEVType()) { 3802 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3803 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3804 // These expressions are available if their operand(s) is/are. 3805 return true; 3806 3807 case scAddRecExpr: { 3808 // We allow add recurrences that are on the loop BB is in, or some 3809 // outer loop. This guarantees availability because the value of the 3810 // add recurrence at BB is simply the "current" value of the induction 3811 // variable. We can relax this in the future; for instance an add 3812 // recurrence on a sibling dominating loop is also available at BB. 3813 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3814 if (L && (ARLoop == L || ARLoop->contains(L))) 3815 return true; 3816 3817 return setUnavailable(); 3818 } 3819 3820 case scUnknown: { 3821 // For SCEVUnknown, we check for simple dominance. 3822 const auto *SU = cast<SCEVUnknown>(S); 3823 Value *V = SU->getValue(); 3824 3825 if (isa<Argument>(V)) 3826 return false; 3827 3828 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3829 return false; 3830 3831 return setUnavailable(); 3832 } 3833 3834 case scUDivExpr: 3835 case scCouldNotCompute: 3836 // We do not try to smart about these at all. 3837 return setUnavailable(); 3838 } 3839 llvm_unreachable("switch should be fully covered!"); 3840 } 3841 3842 bool isDone() { return TraversalDone; } 3843 }; 3844 3845 CheckAvailable CA(L, BB, DT); 3846 SCEVTraversal<CheckAvailable> ST(CA); 3847 3848 ST.visitAll(S); 3849 return CA.Available; 3850 } 3851 3852 // Try to match a control flow sequence that branches out at BI and merges back 3853 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3854 // match. 3855 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3856 Value *&C, Value *&LHS, Value *&RHS) { 3857 C = BI->getCondition(); 3858 3859 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3860 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3861 3862 if (!LeftEdge.isSingleEdge()) 3863 return false; 3864 3865 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3866 3867 Use &LeftUse = Merge->getOperandUse(0); 3868 Use &RightUse = Merge->getOperandUse(1); 3869 3870 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3871 LHS = LeftUse; 3872 RHS = RightUse; 3873 return true; 3874 } 3875 3876 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3877 LHS = RightUse; 3878 RHS = LeftUse; 3879 return true; 3880 } 3881 3882 return false; 3883 } 3884 3885 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3886 if (PN->getNumIncomingValues() == 2) { 3887 const Loop *L = LI.getLoopFor(PN->getParent()); 3888 3889 // Try to match 3890 // 3891 // br %cond, label %left, label %right 3892 // left: 3893 // br label %merge 3894 // right: 3895 // br label %merge 3896 // merge: 3897 // V = phi [ %x, %left ], [ %y, %right ] 3898 // 3899 // as "select %cond, %x, %y" 3900 3901 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3902 assert(IDom && "At least the entry block should dominate PN"); 3903 3904 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3905 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3906 3907 if (BI && BI->isConditional() && 3908 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3909 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3910 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3911 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3912 } 3913 3914 return nullptr; 3915 } 3916 3917 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3918 if (const SCEV *S = createAddRecFromPHI(PN)) 3919 return S; 3920 3921 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3922 return S; 3923 3924 // If the PHI has a single incoming value, follow that value, unless the 3925 // PHI's incoming blocks are in a different loop, in which case doing so 3926 // risks breaking LCSSA form. Instcombine would normally zap these, but 3927 // it doesn't have DominatorTree information, so it may miss cases. 3928 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3929 &DT, &AC)) 3930 if (LI.replacementPreservesLCSSAForm(PN, V)) 3931 return getSCEV(V); 3932 3933 // If it's not a loop phi, we can't handle it yet. 3934 return getUnknown(PN); 3935 } 3936 3937 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3938 Value *Cond, 3939 Value *TrueVal, 3940 Value *FalseVal) { 3941 // Handle "constant" branch or select. This can occur for instance when a 3942 // loop pass transforms an inner loop and moves on to process the outer loop. 3943 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 3944 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 3945 3946 // Try to match some simple smax or umax patterns. 3947 auto *ICI = dyn_cast<ICmpInst>(Cond); 3948 if (!ICI) 3949 return getUnknown(I); 3950 3951 Value *LHS = ICI->getOperand(0); 3952 Value *RHS = ICI->getOperand(1); 3953 3954 switch (ICI->getPredicate()) { 3955 case ICmpInst::ICMP_SLT: 3956 case ICmpInst::ICMP_SLE: 3957 std::swap(LHS, RHS); 3958 // fall through 3959 case ICmpInst::ICMP_SGT: 3960 case ICmpInst::ICMP_SGE: 3961 // a >s b ? a+x : b+x -> smax(a, b)+x 3962 // a >s b ? b+x : a+x -> smin(a, b)+x 3963 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3964 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 3965 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 3966 const SCEV *LA = getSCEV(TrueVal); 3967 const SCEV *RA = getSCEV(FalseVal); 3968 const SCEV *LDiff = getMinusSCEV(LA, LS); 3969 const SCEV *RDiff = getMinusSCEV(RA, RS); 3970 if (LDiff == RDiff) 3971 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3972 LDiff = getMinusSCEV(LA, RS); 3973 RDiff = getMinusSCEV(RA, LS); 3974 if (LDiff == RDiff) 3975 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3976 } 3977 break; 3978 case ICmpInst::ICMP_ULT: 3979 case ICmpInst::ICMP_ULE: 3980 std::swap(LHS, RHS); 3981 // fall through 3982 case ICmpInst::ICMP_UGT: 3983 case ICmpInst::ICMP_UGE: 3984 // a >u b ? a+x : b+x -> umax(a, b)+x 3985 // a >u b ? b+x : a+x -> umin(a, b)+x 3986 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3987 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3988 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 3989 const SCEV *LA = getSCEV(TrueVal); 3990 const SCEV *RA = getSCEV(FalseVal); 3991 const SCEV *LDiff = getMinusSCEV(LA, LS); 3992 const SCEV *RDiff = getMinusSCEV(RA, RS); 3993 if (LDiff == RDiff) 3994 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3995 LDiff = getMinusSCEV(LA, RS); 3996 RDiff = getMinusSCEV(RA, LS); 3997 if (LDiff == RDiff) 3998 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3999 } 4000 break; 4001 case ICmpInst::ICMP_NE: 4002 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4003 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4004 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4005 const SCEV *One = getOne(I->getType()); 4006 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4007 const SCEV *LA = getSCEV(TrueVal); 4008 const SCEV *RA = getSCEV(FalseVal); 4009 const SCEV *LDiff = getMinusSCEV(LA, LS); 4010 const SCEV *RDiff = getMinusSCEV(RA, One); 4011 if (LDiff == RDiff) 4012 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4013 } 4014 break; 4015 case ICmpInst::ICMP_EQ: 4016 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4017 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4018 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4019 const SCEV *One = getOne(I->getType()); 4020 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4021 const SCEV *LA = getSCEV(TrueVal); 4022 const SCEV *RA = getSCEV(FalseVal); 4023 const SCEV *LDiff = getMinusSCEV(LA, One); 4024 const SCEV *RDiff = getMinusSCEV(RA, LS); 4025 if (LDiff == RDiff) 4026 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4027 } 4028 break; 4029 default: 4030 break; 4031 } 4032 4033 return getUnknown(I); 4034 } 4035 4036 /// createNodeForGEP - Expand GEP instructions into add and multiply 4037 /// operations. This allows them to be analyzed by regular SCEV code. 4038 /// 4039 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4040 Value *Base = GEP->getOperand(0); 4041 // Don't attempt to analyze GEPs over unsized objects. 4042 if (!Base->getType()->getPointerElementType()->isSized()) 4043 return getUnknown(GEP); 4044 4045 SmallVector<const SCEV *, 4> IndexExprs; 4046 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4047 IndexExprs.push_back(getSCEV(*Index)); 4048 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4049 GEP->isInBounds()); 4050 } 4051 4052 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4053 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4054 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4055 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4056 uint32_t 4057 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4058 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4059 return C->getValue()->getValue().countTrailingZeros(); 4060 4061 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4062 return std::min(GetMinTrailingZeros(T->getOperand()), 4063 (uint32_t)getTypeSizeInBits(T->getType())); 4064 4065 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4066 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4067 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4068 getTypeSizeInBits(E->getType()) : OpRes; 4069 } 4070 4071 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4072 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4073 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4074 getTypeSizeInBits(E->getType()) : OpRes; 4075 } 4076 4077 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4078 // The result is the min of all operands results. 4079 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4080 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4081 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4082 return MinOpRes; 4083 } 4084 4085 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4086 // The result is the sum of all operands results. 4087 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4088 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4089 for (unsigned i = 1, e = M->getNumOperands(); 4090 SumOpRes != BitWidth && i != e; ++i) 4091 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4092 BitWidth); 4093 return SumOpRes; 4094 } 4095 4096 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4097 // The result is the min of all operands results. 4098 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4099 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4100 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4101 return MinOpRes; 4102 } 4103 4104 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4105 // The result is the min of all operands results. 4106 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4107 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4108 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4109 return MinOpRes; 4110 } 4111 4112 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4113 // The result is the min of all operands results. 4114 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4115 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4116 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4117 return MinOpRes; 4118 } 4119 4120 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4121 // For a SCEVUnknown, ask ValueTracking. 4122 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4123 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4124 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 4125 0, &AC, nullptr, &DT); 4126 return Zeros.countTrailingOnes(); 4127 } 4128 4129 // SCEVUDivExpr 4130 return 0; 4131 } 4132 4133 /// GetRangeFromMetadata - Helper method to assign a range to V from 4134 /// metadata present in the IR. 4135 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4136 if (Instruction *I = dyn_cast<Instruction>(V)) 4137 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4138 return getConstantRangeFromMetadata(*MD); 4139 4140 return None; 4141 } 4142 4143 /// getRange - Determine the range for a particular SCEV. If SignHint is 4144 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4145 /// with a "cleaner" unsigned (resp. signed) representation. 4146 /// 4147 ConstantRange 4148 ScalarEvolution::getRange(const SCEV *S, 4149 ScalarEvolution::RangeSignHint SignHint) { 4150 DenseMap<const SCEV *, ConstantRange> &Cache = 4151 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4152 : SignedRanges; 4153 4154 // See if we've computed this range already. 4155 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4156 if (I != Cache.end()) 4157 return I->second; 4158 4159 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4160 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4161 4162 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4163 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4164 4165 // If the value has known zeros, the maximum value will have those known zeros 4166 // as well. 4167 uint32_t TZ = GetMinTrailingZeros(S); 4168 if (TZ != 0) { 4169 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4170 ConservativeResult = 4171 ConstantRange(APInt::getMinValue(BitWidth), 4172 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4173 else 4174 ConservativeResult = ConstantRange( 4175 APInt::getSignedMinValue(BitWidth), 4176 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4177 } 4178 4179 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4180 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4181 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4182 X = X.add(getRange(Add->getOperand(i), SignHint)); 4183 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4184 } 4185 4186 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4187 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4188 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4189 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4190 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4191 } 4192 4193 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4194 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4195 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4196 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4197 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4198 } 4199 4200 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4201 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4202 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4203 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4204 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4205 } 4206 4207 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4208 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4209 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4210 return setRange(UDiv, SignHint, 4211 ConservativeResult.intersectWith(X.udiv(Y))); 4212 } 4213 4214 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4215 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4216 return setRange(ZExt, SignHint, 4217 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4218 } 4219 4220 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4221 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4222 return setRange(SExt, SignHint, 4223 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4224 } 4225 4226 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4227 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4228 return setRange(Trunc, SignHint, 4229 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4230 } 4231 4232 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4233 // If there's no unsigned wrap, the value will never be less than its 4234 // initial value. 4235 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4236 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4237 if (!C->getValue()->isZero()) 4238 ConservativeResult = 4239 ConservativeResult.intersectWith( 4240 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4241 4242 // If there's no signed wrap, and all the operands have the same sign or 4243 // zero, the value won't ever change sign. 4244 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4245 bool AllNonNeg = true; 4246 bool AllNonPos = true; 4247 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4248 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4249 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4250 } 4251 if (AllNonNeg) 4252 ConservativeResult = ConservativeResult.intersectWith( 4253 ConstantRange(APInt(BitWidth, 0), 4254 APInt::getSignedMinValue(BitWidth))); 4255 else if (AllNonPos) 4256 ConservativeResult = ConservativeResult.intersectWith( 4257 ConstantRange(APInt::getSignedMinValue(BitWidth), 4258 APInt(BitWidth, 1))); 4259 } 4260 4261 // TODO: non-affine addrec 4262 if (AddRec->isAffine()) { 4263 Type *Ty = AddRec->getType(); 4264 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4265 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4266 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4267 4268 // Check for overflow. This must be done with ConstantRange arithmetic 4269 // because we could be called from within the ScalarEvolution overflow 4270 // checking code. 4271 4272 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4273 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4274 ConstantRange ZExtMaxBECountRange = 4275 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4276 4277 const SCEV *Start = AddRec->getStart(); 4278 const SCEV *Step = AddRec->getStepRecurrence(*this); 4279 ConstantRange StepSRange = getSignedRange(Step); 4280 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4281 4282 ConstantRange StartURange = getUnsignedRange(Start); 4283 ConstantRange EndURange = 4284 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4285 4286 // Check for unsigned overflow. 4287 ConstantRange ZExtStartURange = 4288 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4289 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4290 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4291 ZExtEndURange) { 4292 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4293 EndURange.getUnsignedMin()); 4294 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4295 EndURange.getUnsignedMax()); 4296 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4297 if (!IsFullRange) 4298 ConservativeResult = 4299 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4300 } 4301 4302 ConstantRange StartSRange = getSignedRange(Start); 4303 ConstantRange EndSRange = 4304 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4305 4306 // Check for signed overflow. This must be done with ConstantRange 4307 // arithmetic because we could be called from within the ScalarEvolution 4308 // overflow checking code. 4309 ConstantRange SExtStartSRange = 4310 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4311 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4312 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4313 SExtEndSRange) { 4314 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4315 EndSRange.getSignedMin()); 4316 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4317 EndSRange.getSignedMax()); 4318 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4319 if (!IsFullRange) 4320 ConservativeResult = 4321 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4322 } 4323 } 4324 } 4325 4326 return setRange(AddRec, SignHint, ConservativeResult); 4327 } 4328 4329 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4330 // Check if the IR explicitly contains !range metadata. 4331 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4332 if (MDRange.hasValue()) 4333 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4334 4335 // Split here to avoid paying the compile-time cost of calling both 4336 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4337 // if needed. 4338 const DataLayout &DL = F.getParent()->getDataLayout(); 4339 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4340 // For a SCEVUnknown, ask ValueTracking. 4341 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4342 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4343 if (Ones != ~Zeros + 1) 4344 ConservativeResult = 4345 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4346 } else { 4347 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4348 "generalize as needed!"); 4349 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4350 if (NS > 1) 4351 ConservativeResult = ConservativeResult.intersectWith( 4352 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4353 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4354 } 4355 4356 return setRange(U, SignHint, ConservativeResult); 4357 } 4358 4359 return setRange(S, SignHint, ConservativeResult); 4360 } 4361 4362 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4363 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4364 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4365 4366 // Return early if there are no flags to propagate to the SCEV. 4367 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4368 if (BinOp->hasNoUnsignedWrap()) 4369 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4370 if (BinOp->hasNoSignedWrap()) 4371 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4372 if (Flags == SCEV::FlagAnyWrap) { 4373 return SCEV::FlagAnyWrap; 4374 } 4375 4376 // Here we check that BinOp is in the header of the innermost loop 4377 // containing BinOp, since we only deal with instructions in the loop 4378 // header. The actual loop we need to check later will come from an add 4379 // recurrence, but getting that requires computing the SCEV of the operands, 4380 // which can be expensive. This check we can do cheaply to rule out some 4381 // cases early. 4382 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4383 if (innermostContainingLoop == nullptr || 4384 innermostContainingLoop->getHeader() != BinOp->getParent()) 4385 return SCEV::FlagAnyWrap; 4386 4387 // Only proceed if we can prove that BinOp does not yield poison. 4388 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4389 4390 // At this point we know that if V is executed, then it does not wrap 4391 // according to at least one of NSW or NUW. If V is not executed, then we do 4392 // not know if the calculation that V represents would wrap. Multiple 4393 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4394 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4395 // derived from other instructions that map to the same SCEV. We cannot make 4396 // that guarantee for cases where V is not executed. So we need to find the 4397 // loop that V is considered in relation to and prove that V is executed for 4398 // every iteration of that loop. That implies that the value that V 4399 // calculates does not wrap anywhere in the loop, so then we can apply the 4400 // flags to the SCEV. 4401 // 4402 // We check isLoopInvariant to disambiguate in case we are adding two 4403 // recurrences from different loops, so that we know which loop to prove 4404 // that V is executed in. 4405 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4406 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4407 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4408 const int OtherOpIndex = 1 - OpIndex; 4409 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4410 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4411 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4412 return Flags; 4413 } 4414 } 4415 return SCEV::FlagAnyWrap; 4416 } 4417 4418 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4419 /// the expression. 4420 /// 4421 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4422 if (!isSCEVable(V->getType())) 4423 return getUnknown(V); 4424 4425 unsigned Opcode = Instruction::UserOp1; 4426 if (Instruction *I = dyn_cast<Instruction>(V)) { 4427 Opcode = I->getOpcode(); 4428 4429 // Don't attempt to analyze instructions in blocks that aren't 4430 // reachable. Such instructions don't matter, and they aren't required 4431 // to obey basic rules for definitions dominating uses which this 4432 // analysis depends on. 4433 if (!DT.isReachableFromEntry(I->getParent())) 4434 return getUnknown(V); 4435 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4436 Opcode = CE->getOpcode(); 4437 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4438 return getConstant(CI); 4439 else if (isa<ConstantPointerNull>(V)) 4440 return getZero(V->getType()); 4441 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4442 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4443 else 4444 return getUnknown(V); 4445 4446 Operator *U = cast<Operator>(V); 4447 switch (Opcode) { 4448 case Instruction::Add: { 4449 // The simple thing to do would be to just call getSCEV on both operands 4450 // and call getAddExpr with the result. However if we're looking at a 4451 // bunch of things all added together, this can be quite inefficient, 4452 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4453 // Instead, gather up all the operands and make a single getAddExpr call. 4454 // LLVM IR canonical form means we need only traverse the left operands. 4455 SmallVector<const SCEV *, 4> AddOps; 4456 for (Value *Op = U;; Op = U->getOperand(0)) { 4457 U = dyn_cast<Operator>(Op); 4458 unsigned Opcode = U ? U->getOpcode() : 0; 4459 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4460 assert(Op != V && "V should be an add"); 4461 AddOps.push_back(getSCEV(Op)); 4462 break; 4463 } 4464 4465 if (auto *OpSCEV = getExistingSCEV(U)) { 4466 AddOps.push_back(OpSCEV); 4467 break; 4468 } 4469 4470 // If a NUW or NSW flag can be applied to the SCEV for this 4471 // addition, then compute the SCEV for this addition by itself 4472 // with a separate call to getAddExpr. We need to do that 4473 // instead of pushing the operands of the addition onto AddOps, 4474 // since the flags are only known to apply to this particular 4475 // addition - they may not apply to other additions that can be 4476 // formed with operands from AddOps. 4477 const SCEV *RHS = getSCEV(U->getOperand(1)); 4478 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4479 if (Flags != SCEV::FlagAnyWrap) { 4480 const SCEV *LHS = getSCEV(U->getOperand(0)); 4481 if (Opcode == Instruction::Sub) 4482 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4483 else 4484 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4485 break; 4486 } 4487 4488 if (Opcode == Instruction::Sub) 4489 AddOps.push_back(getNegativeSCEV(RHS)); 4490 else 4491 AddOps.push_back(RHS); 4492 } 4493 return getAddExpr(AddOps); 4494 } 4495 4496 case Instruction::Mul: { 4497 SmallVector<const SCEV *, 4> MulOps; 4498 for (Value *Op = U;; Op = U->getOperand(0)) { 4499 U = dyn_cast<Operator>(Op); 4500 if (!U || U->getOpcode() != Instruction::Mul) { 4501 assert(Op != V && "V should be a mul"); 4502 MulOps.push_back(getSCEV(Op)); 4503 break; 4504 } 4505 4506 if (auto *OpSCEV = getExistingSCEV(U)) { 4507 MulOps.push_back(OpSCEV); 4508 break; 4509 } 4510 4511 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4512 if (Flags != SCEV::FlagAnyWrap) { 4513 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4514 getSCEV(U->getOperand(1)), Flags)); 4515 break; 4516 } 4517 4518 MulOps.push_back(getSCEV(U->getOperand(1))); 4519 } 4520 return getMulExpr(MulOps); 4521 } 4522 case Instruction::UDiv: 4523 return getUDivExpr(getSCEV(U->getOperand(0)), 4524 getSCEV(U->getOperand(1))); 4525 case Instruction::Sub: 4526 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4527 getNoWrapFlagsFromUB(U)); 4528 case Instruction::And: 4529 // For an expression like x&255 that merely masks off the high bits, 4530 // use zext(trunc(x)) as the SCEV expression. 4531 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4532 if (CI->isNullValue()) 4533 return getSCEV(U->getOperand(1)); 4534 if (CI->isAllOnesValue()) 4535 return getSCEV(U->getOperand(0)); 4536 const APInt &A = CI->getValue(); 4537 4538 // Instcombine's ShrinkDemandedConstant may strip bits out of 4539 // constants, obscuring what would otherwise be a low-bits mask. 4540 // Use computeKnownBits to compute what ShrinkDemandedConstant 4541 // knew about to reconstruct a low-bits mask value. 4542 unsigned LZ = A.countLeadingZeros(); 4543 unsigned TZ = A.countTrailingZeros(); 4544 unsigned BitWidth = A.getBitWidth(); 4545 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4546 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4547 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4548 4549 APInt EffectiveMask = 4550 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4551 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4552 const SCEV *MulCount = getConstant( 4553 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4554 return getMulExpr( 4555 getZeroExtendExpr( 4556 getTruncateExpr( 4557 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4558 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4559 U->getType()), 4560 MulCount); 4561 } 4562 } 4563 break; 4564 4565 case Instruction::Or: 4566 // If the RHS of the Or is a constant, we may have something like: 4567 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4568 // optimizations will transparently handle this case. 4569 // 4570 // In order for this transformation to be safe, the LHS must be of the 4571 // form X*(2^n) and the Or constant must be less than 2^n. 4572 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4573 const SCEV *LHS = getSCEV(U->getOperand(0)); 4574 const APInt &CIVal = CI->getValue(); 4575 if (GetMinTrailingZeros(LHS) >= 4576 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4577 // Build a plain add SCEV. 4578 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4579 // If the LHS of the add was an addrec and it has no-wrap flags, 4580 // transfer the no-wrap flags, since an or won't introduce a wrap. 4581 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4582 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4583 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4584 OldAR->getNoWrapFlags()); 4585 } 4586 return S; 4587 } 4588 } 4589 break; 4590 case Instruction::Xor: 4591 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4592 // If the RHS of the xor is a signbit, then this is just an add. 4593 // Instcombine turns add of signbit into xor as a strength reduction step. 4594 if (CI->getValue().isSignBit()) 4595 return getAddExpr(getSCEV(U->getOperand(0)), 4596 getSCEV(U->getOperand(1))); 4597 4598 // If the RHS of xor is -1, then this is a not operation. 4599 if (CI->isAllOnesValue()) 4600 return getNotSCEV(getSCEV(U->getOperand(0))); 4601 4602 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4603 // This is a variant of the check for xor with -1, and it handles 4604 // the case where instcombine has trimmed non-demanded bits out 4605 // of an xor with -1. 4606 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4607 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4608 if (BO->getOpcode() == Instruction::And && 4609 LCI->getValue() == CI->getValue()) 4610 if (const SCEVZeroExtendExpr *Z = 4611 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4612 Type *UTy = U->getType(); 4613 const SCEV *Z0 = Z->getOperand(); 4614 Type *Z0Ty = Z0->getType(); 4615 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4616 4617 // If C is a low-bits mask, the zero extend is serving to 4618 // mask off the high bits. Complement the operand and 4619 // re-apply the zext. 4620 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4621 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4622 4623 // If C is a single bit, it may be in the sign-bit position 4624 // before the zero-extend. In this case, represent the xor 4625 // using an add, which is equivalent, and re-apply the zext. 4626 APInt Trunc = CI->getValue().trunc(Z0TySize); 4627 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4628 Trunc.isSignBit()) 4629 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4630 UTy); 4631 } 4632 } 4633 break; 4634 4635 case Instruction::Shl: 4636 // Turn shift left of a constant amount into a multiply. 4637 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4638 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4639 4640 // If the shift count is not less than the bitwidth, the result of 4641 // the shift is undefined. Don't try to analyze it, because the 4642 // resolution chosen here may differ from the resolution chosen in 4643 // other parts of the compiler. 4644 if (SA->getValue().uge(BitWidth)) 4645 break; 4646 4647 // It is currently not resolved how to interpret NSW for left 4648 // shift by BitWidth - 1, so we avoid applying flags in that 4649 // case. Remove this check (or this comment) once the situation 4650 // is resolved. See 4651 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4652 // and http://reviews.llvm.org/D8890 . 4653 auto Flags = SCEV::FlagAnyWrap; 4654 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4655 4656 Constant *X = ConstantInt::get(getContext(), 4657 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4658 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4659 } 4660 break; 4661 4662 case Instruction::LShr: 4663 // Turn logical shift right of a constant into a unsigned divide. 4664 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4665 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4666 4667 // If the shift count is not less than the bitwidth, the result of 4668 // the shift is undefined. Don't try to analyze it, because the 4669 // resolution chosen here may differ from the resolution chosen in 4670 // other parts of the compiler. 4671 if (SA->getValue().uge(BitWidth)) 4672 break; 4673 4674 Constant *X = ConstantInt::get(getContext(), 4675 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4676 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4677 } 4678 break; 4679 4680 case Instruction::AShr: 4681 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4682 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4683 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4684 if (L->getOpcode() == Instruction::Shl && 4685 L->getOperand(1) == U->getOperand(1)) { 4686 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4687 4688 // If the shift count is not less than the bitwidth, the result of 4689 // the shift is undefined. Don't try to analyze it, because the 4690 // resolution chosen here may differ from the resolution chosen in 4691 // other parts of the compiler. 4692 if (CI->getValue().uge(BitWidth)) 4693 break; 4694 4695 uint64_t Amt = BitWidth - CI->getZExtValue(); 4696 if (Amt == BitWidth) 4697 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4698 return 4699 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4700 IntegerType::get(getContext(), 4701 Amt)), 4702 U->getType()); 4703 } 4704 break; 4705 4706 case Instruction::Trunc: 4707 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4708 4709 case Instruction::ZExt: 4710 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4711 4712 case Instruction::SExt: 4713 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4714 4715 case Instruction::BitCast: 4716 // BitCasts are no-op casts so we just eliminate the cast. 4717 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4718 return getSCEV(U->getOperand(0)); 4719 break; 4720 4721 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4722 // lead to pointer expressions which cannot safely be expanded to GEPs, 4723 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4724 // simplifying integer expressions. 4725 4726 case Instruction::GetElementPtr: 4727 return createNodeForGEP(cast<GEPOperator>(U)); 4728 4729 case Instruction::PHI: 4730 return createNodeForPHI(cast<PHINode>(U)); 4731 4732 case Instruction::Select: 4733 // U can also be a select constant expr, which let fall through. Since 4734 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4735 // constant expressions cannot have instructions as operands, we'd have 4736 // returned getUnknown for a select constant expressions anyway. 4737 if (isa<Instruction>(U)) 4738 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4739 U->getOperand(1), U->getOperand(2)); 4740 4741 default: // We cannot analyze this expression. 4742 break; 4743 } 4744 4745 return getUnknown(V); 4746 } 4747 4748 4749 4750 //===----------------------------------------------------------------------===// 4751 // Iteration Count Computation Code 4752 // 4753 4754 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4755 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4756 return getSmallConstantTripCount(L, ExitingBB); 4757 4758 // No trip count information for multiple exits. 4759 return 0; 4760 } 4761 4762 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4763 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4764 /// constant. Will also return 0 if the maximum trip count is very large (>= 4765 /// 2^32). 4766 /// 4767 /// This "trip count" assumes that control exits via ExitingBlock. More 4768 /// precisely, it is the number of times that control may reach ExitingBlock 4769 /// before taking the branch. For loops with multiple exits, it may not be the 4770 /// number times that the loop header executes because the loop may exit 4771 /// prematurely via another branch. 4772 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4773 BasicBlock *ExitingBlock) { 4774 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4775 assert(L->isLoopExiting(ExitingBlock) && 4776 "Exiting block must actually branch out of the loop!"); 4777 const SCEVConstant *ExitCount = 4778 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4779 if (!ExitCount) 4780 return 0; 4781 4782 ConstantInt *ExitConst = ExitCount->getValue(); 4783 4784 // Guard against huge trip counts. 4785 if (ExitConst->getValue().getActiveBits() > 32) 4786 return 0; 4787 4788 // In case of integer overflow, this returns 0, which is correct. 4789 return ((unsigned)ExitConst->getZExtValue()) + 1; 4790 } 4791 4792 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4793 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4794 return getSmallConstantTripMultiple(L, ExitingBB); 4795 4796 // No trip multiple information for multiple exits. 4797 return 0; 4798 } 4799 4800 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4801 /// trip count of this loop as a normal unsigned value, if possible. This 4802 /// means that the actual trip count is always a multiple of the returned 4803 /// value (don't forget the trip count could very well be zero as well!). 4804 /// 4805 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4806 /// multiple of a constant (which is also the case if the trip count is simply 4807 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4808 /// if the trip count is very large (>= 2^32). 4809 /// 4810 /// As explained in the comments for getSmallConstantTripCount, this assumes 4811 /// that control exits the loop via ExitingBlock. 4812 unsigned 4813 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4814 BasicBlock *ExitingBlock) { 4815 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4816 assert(L->isLoopExiting(ExitingBlock) && 4817 "Exiting block must actually branch out of the loop!"); 4818 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4819 if (ExitCount == getCouldNotCompute()) 4820 return 1; 4821 4822 // Get the trip count from the BE count by adding 1. 4823 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4824 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4825 // to factor simple cases. 4826 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4827 TCMul = Mul->getOperand(0); 4828 4829 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4830 if (!MulC) 4831 return 1; 4832 4833 ConstantInt *Result = MulC->getValue(); 4834 4835 // Guard against huge trip counts (this requires checking 4836 // for zero to handle the case where the trip count == -1 and the 4837 // addition wraps). 4838 if (!Result || Result->getValue().getActiveBits() > 32 || 4839 Result->getValue().getActiveBits() == 0) 4840 return 1; 4841 4842 return (unsigned)Result->getZExtValue(); 4843 } 4844 4845 // getExitCount - Get the expression for the number of loop iterations for which 4846 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4847 // SCEVCouldNotCompute. 4848 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4849 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4850 } 4851 4852 /// getBackedgeTakenCount - If the specified loop has a predictable 4853 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4854 /// object. The backedge-taken count is the number of times the loop header 4855 /// will be branched to from within the loop. This is one less than the 4856 /// trip count of the loop, since it doesn't count the first iteration, 4857 /// when the header is branched to from outside the loop. 4858 /// 4859 /// Note that it is not valid to call this method on a loop without a 4860 /// loop-invariant backedge-taken count (see 4861 /// hasLoopInvariantBackedgeTakenCount). 4862 /// 4863 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4864 return getBackedgeTakenInfo(L).getExact(this); 4865 } 4866 4867 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4868 /// return the least SCEV value that is known never to be less than the 4869 /// actual backedge taken count. 4870 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4871 return getBackedgeTakenInfo(L).getMax(this); 4872 } 4873 4874 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4875 /// onto the given Worklist. 4876 static void 4877 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4878 BasicBlock *Header = L->getHeader(); 4879 4880 // Push all Loop-header PHIs onto the Worklist stack. 4881 for (BasicBlock::iterator I = Header->begin(); 4882 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4883 Worklist.push_back(PN); 4884 } 4885 4886 const ScalarEvolution::BackedgeTakenInfo & 4887 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4888 // Initially insert an invalid entry for this loop. If the insertion 4889 // succeeds, proceed to actually compute a backedge-taken count and 4890 // update the value. The temporary CouldNotCompute value tells SCEV 4891 // code elsewhere that it shouldn't attempt to request a new 4892 // backedge-taken count, which could result in infinite recursion. 4893 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4894 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4895 if (!Pair.second) 4896 return Pair.first->second; 4897 4898 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4899 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4900 // must be cleared in this scope. 4901 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4902 4903 if (Result.getExact(this) != getCouldNotCompute()) { 4904 assert(isLoopInvariant(Result.getExact(this), L) && 4905 isLoopInvariant(Result.getMax(this), L) && 4906 "Computed backedge-taken count isn't loop invariant for loop!"); 4907 ++NumTripCountsComputed; 4908 } 4909 else if (Result.getMax(this) == getCouldNotCompute() && 4910 isa<PHINode>(L->getHeader()->begin())) { 4911 // Only count loops that have phi nodes as not being computable. 4912 ++NumTripCountsNotComputed; 4913 } 4914 4915 // Now that we know more about the trip count for this loop, forget any 4916 // existing SCEV values for PHI nodes in this loop since they are only 4917 // conservative estimates made without the benefit of trip count 4918 // information. This is similar to the code in forgetLoop, except that 4919 // it handles SCEVUnknown PHI nodes specially. 4920 if (Result.hasAnyInfo()) { 4921 SmallVector<Instruction *, 16> Worklist; 4922 PushLoopPHIs(L, Worklist); 4923 4924 SmallPtrSet<Instruction *, 8> Visited; 4925 while (!Worklist.empty()) { 4926 Instruction *I = Worklist.pop_back_val(); 4927 if (!Visited.insert(I).second) 4928 continue; 4929 4930 ValueExprMapType::iterator It = 4931 ValueExprMap.find_as(static_cast<Value *>(I)); 4932 if (It != ValueExprMap.end()) { 4933 const SCEV *Old = It->second; 4934 4935 // SCEVUnknown for a PHI either means that it has an unrecognized 4936 // structure, or it's a PHI that's in the progress of being computed 4937 // by createNodeForPHI. In the former case, additional loop trip 4938 // count information isn't going to change anything. In the later 4939 // case, createNodeForPHI will perform the necessary updates on its 4940 // own when it gets to that point. 4941 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4942 forgetMemoizedResults(Old); 4943 ValueExprMap.erase(It); 4944 } 4945 if (PHINode *PN = dyn_cast<PHINode>(I)) 4946 ConstantEvolutionLoopExitValue.erase(PN); 4947 } 4948 4949 PushDefUseChildren(I, Worklist); 4950 } 4951 } 4952 4953 // Re-lookup the insert position, since the call to 4954 // computeBackedgeTakenCount above could result in a 4955 // recusive call to getBackedgeTakenInfo (on a different 4956 // loop), which would invalidate the iterator computed 4957 // earlier. 4958 return BackedgeTakenCounts.find(L)->second = Result; 4959 } 4960 4961 /// forgetLoop - This method should be called by the client when it has 4962 /// changed a loop in a way that may effect ScalarEvolution's ability to 4963 /// compute a trip count, or if the loop is deleted. 4964 void ScalarEvolution::forgetLoop(const Loop *L) { 4965 // Drop any stored trip count value. 4966 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4967 BackedgeTakenCounts.find(L); 4968 if (BTCPos != BackedgeTakenCounts.end()) { 4969 BTCPos->second.clear(); 4970 BackedgeTakenCounts.erase(BTCPos); 4971 } 4972 4973 // Drop information about expressions based on loop-header PHIs. 4974 SmallVector<Instruction *, 16> Worklist; 4975 PushLoopPHIs(L, Worklist); 4976 4977 SmallPtrSet<Instruction *, 8> Visited; 4978 while (!Worklist.empty()) { 4979 Instruction *I = Worklist.pop_back_val(); 4980 if (!Visited.insert(I).second) 4981 continue; 4982 4983 ValueExprMapType::iterator It = 4984 ValueExprMap.find_as(static_cast<Value *>(I)); 4985 if (It != ValueExprMap.end()) { 4986 forgetMemoizedResults(It->second); 4987 ValueExprMap.erase(It); 4988 if (PHINode *PN = dyn_cast<PHINode>(I)) 4989 ConstantEvolutionLoopExitValue.erase(PN); 4990 } 4991 4992 PushDefUseChildren(I, Worklist); 4993 } 4994 4995 // Forget all contained loops too, to avoid dangling entries in the 4996 // ValuesAtScopes map. 4997 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4998 forgetLoop(*I); 4999 } 5000 5001 /// forgetValue - This method should be called by the client when it has 5002 /// changed a value in a way that may effect its value, or which may 5003 /// disconnect it from a def-use chain linking it to a loop. 5004 void ScalarEvolution::forgetValue(Value *V) { 5005 Instruction *I = dyn_cast<Instruction>(V); 5006 if (!I) return; 5007 5008 // Drop information about expressions based on loop-header PHIs. 5009 SmallVector<Instruction *, 16> Worklist; 5010 Worklist.push_back(I); 5011 5012 SmallPtrSet<Instruction *, 8> Visited; 5013 while (!Worklist.empty()) { 5014 I = Worklist.pop_back_val(); 5015 if (!Visited.insert(I).second) 5016 continue; 5017 5018 ValueExprMapType::iterator It = 5019 ValueExprMap.find_as(static_cast<Value *>(I)); 5020 if (It != ValueExprMap.end()) { 5021 forgetMemoizedResults(It->second); 5022 ValueExprMap.erase(It); 5023 if (PHINode *PN = dyn_cast<PHINode>(I)) 5024 ConstantEvolutionLoopExitValue.erase(PN); 5025 } 5026 5027 PushDefUseChildren(I, Worklist); 5028 } 5029 } 5030 5031 /// getExact - Get the exact loop backedge taken count considering all loop 5032 /// exits. A computable result can only be returned for loops with a single 5033 /// exit. Returning the minimum taken count among all exits is incorrect 5034 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5035 /// assumes that the limit of each loop test is never skipped. This is a valid 5036 /// assumption as long as the loop exits via that test. For precise results, it 5037 /// is the caller's responsibility to specify the relevant loop exit using 5038 /// getExact(ExitingBlock, SE). 5039 const SCEV * 5040 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5041 // If any exits were not computable, the loop is not computable. 5042 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5043 5044 // We need exactly one computable exit. 5045 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5046 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5047 5048 const SCEV *BECount = nullptr; 5049 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5050 ENT != nullptr; ENT = ENT->getNextExit()) { 5051 5052 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5053 5054 if (!BECount) 5055 BECount = ENT->ExactNotTaken; 5056 else if (BECount != ENT->ExactNotTaken) 5057 return SE->getCouldNotCompute(); 5058 } 5059 assert(BECount && "Invalid not taken count for loop exit"); 5060 return BECount; 5061 } 5062 5063 /// getExact - Get the exact not taken count for this loop exit. 5064 const SCEV * 5065 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5066 ScalarEvolution *SE) const { 5067 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5068 ENT != nullptr; ENT = ENT->getNextExit()) { 5069 5070 if (ENT->ExitingBlock == ExitingBlock) 5071 return ENT->ExactNotTaken; 5072 } 5073 return SE->getCouldNotCompute(); 5074 } 5075 5076 /// getMax - Get the max backedge taken count for the loop. 5077 const SCEV * 5078 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5079 return Max ? Max : SE->getCouldNotCompute(); 5080 } 5081 5082 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5083 ScalarEvolution *SE) const { 5084 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5085 return true; 5086 5087 if (!ExitNotTaken.ExitingBlock) 5088 return false; 5089 5090 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5091 ENT != nullptr; ENT = ENT->getNextExit()) { 5092 5093 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5094 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5095 return true; 5096 } 5097 } 5098 return false; 5099 } 5100 5101 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5102 /// computable exit into a persistent ExitNotTakenInfo array. 5103 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5104 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5105 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5106 5107 if (!Complete) 5108 ExitNotTaken.setIncomplete(); 5109 5110 unsigned NumExits = ExitCounts.size(); 5111 if (NumExits == 0) return; 5112 5113 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5114 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5115 if (NumExits == 1) return; 5116 5117 // Handle the rare case of multiple computable exits. 5118 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5119 5120 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5121 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5122 PrevENT->setNextExit(ENT); 5123 ENT->ExitingBlock = ExitCounts[i].first; 5124 ENT->ExactNotTaken = ExitCounts[i].second; 5125 } 5126 } 5127 5128 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5129 void ScalarEvolution::BackedgeTakenInfo::clear() { 5130 ExitNotTaken.ExitingBlock = nullptr; 5131 ExitNotTaken.ExactNotTaken = nullptr; 5132 delete[] ExitNotTaken.getNextExit(); 5133 } 5134 5135 /// computeBackedgeTakenCount - Compute the number of times the backedge 5136 /// of the specified loop will execute. 5137 ScalarEvolution::BackedgeTakenInfo 5138 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5139 SmallVector<BasicBlock *, 8> ExitingBlocks; 5140 L->getExitingBlocks(ExitingBlocks); 5141 5142 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5143 bool CouldComputeBECount = true; 5144 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5145 const SCEV *MustExitMaxBECount = nullptr; 5146 const SCEV *MayExitMaxBECount = nullptr; 5147 5148 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5149 // and compute maxBECount. 5150 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5151 BasicBlock *ExitBB = ExitingBlocks[i]; 5152 ExitLimit EL = computeExitLimit(L, ExitBB); 5153 5154 // 1. For each exit that can be computed, add an entry to ExitCounts. 5155 // CouldComputeBECount is true only if all exits can be computed. 5156 if (EL.Exact == getCouldNotCompute()) 5157 // We couldn't compute an exact value for this exit, so 5158 // we won't be able to compute an exact value for the loop. 5159 CouldComputeBECount = false; 5160 else 5161 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5162 5163 // 2. Derive the loop's MaxBECount from each exit's max number of 5164 // non-exiting iterations. Partition the loop exits into two kinds: 5165 // LoopMustExits and LoopMayExits. 5166 // 5167 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5168 // is a LoopMayExit. If any computable LoopMustExit is found, then 5169 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5170 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5171 // considered greater than any computable EL.Max. 5172 if (EL.Max != getCouldNotCompute() && Latch && 5173 DT.dominates(ExitBB, Latch)) { 5174 if (!MustExitMaxBECount) 5175 MustExitMaxBECount = EL.Max; 5176 else { 5177 MustExitMaxBECount = 5178 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5179 } 5180 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5181 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5182 MayExitMaxBECount = EL.Max; 5183 else { 5184 MayExitMaxBECount = 5185 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5186 } 5187 } 5188 } 5189 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5190 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5191 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5192 } 5193 5194 ScalarEvolution::ExitLimit 5195 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5196 5197 // Okay, we've chosen an exiting block. See what condition causes us to exit 5198 // at this block and remember the exit block and whether all other targets 5199 // lead to the loop header. 5200 bool MustExecuteLoopHeader = true; 5201 BasicBlock *Exit = nullptr; 5202 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5203 SI != SE; ++SI) 5204 if (!L->contains(*SI)) { 5205 if (Exit) // Multiple exit successors. 5206 return getCouldNotCompute(); 5207 Exit = *SI; 5208 } else if (*SI != L->getHeader()) { 5209 MustExecuteLoopHeader = false; 5210 } 5211 5212 // At this point, we know we have a conditional branch that determines whether 5213 // the loop is exited. However, we don't know if the branch is executed each 5214 // time through the loop. If not, then the execution count of the branch will 5215 // not be equal to the trip count of the loop. 5216 // 5217 // Currently we check for this by checking to see if the Exit branch goes to 5218 // the loop header. If so, we know it will always execute the same number of 5219 // times as the loop. We also handle the case where the exit block *is* the 5220 // loop header. This is common for un-rotated loops. 5221 // 5222 // If both of those tests fail, walk up the unique predecessor chain to the 5223 // header, stopping if there is an edge that doesn't exit the loop. If the 5224 // header is reached, the execution count of the branch will be equal to the 5225 // trip count of the loop. 5226 // 5227 // More extensive analysis could be done to handle more cases here. 5228 // 5229 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5230 // The simple checks failed, try climbing the unique predecessor chain 5231 // up to the header. 5232 bool Ok = false; 5233 for (BasicBlock *BB = ExitingBlock; BB; ) { 5234 BasicBlock *Pred = BB->getUniquePredecessor(); 5235 if (!Pred) 5236 return getCouldNotCompute(); 5237 TerminatorInst *PredTerm = Pred->getTerminator(); 5238 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5239 if (PredSucc == BB) 5240 continue; 5241 // If the predecessor has a successor that isn't BB and isn't 5242 // outside the loop, assume the worst. 5243 if (L->contains(PredSucc)) 5244 return getCouldNotCompute(); 5245 } 5246 if (Pred == L->getHeader()) { 5247 Ok = true; 5248 break; 5249 } 5250 BB = Pred; 5251 } 5252 if (!Ok) 5253 return getCouldNotCompute(); 5254 } 5255 5256 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5257 TerminatorInst *Term = ExitingBlock->getTerminator(); 5258 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5259 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5260 // Proceed to the next level to examine the exit condition expression. 5261 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5262 BI->getSuccessor(1), 5263 /*ControlsExit=*/IsOnlyExit); 5264 } 5265 5266 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5267 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5268 /*ControlsExit=*/IsOnlyExit); 5269 5270 return getCouldNotCompute(); 5271 } 5272 5273 /// computeExitLimitFromCond - Compute the number of times the 5274 /// backedge of the specified loop will execute if its exit condition 5275 /// were a conditional branch of ExitCond, TBB, and FBB. 5276 /// 5277 /// @param ControlsExit is true if ExitCond directly controls the exit 5278 /// branch. In this case, we can assume that the loop exits only if the 5279 /// condition is true and can infer that failing to meet the condition prior to 5280 /// integer wraparound results in undefined behavior. 5281 ScalarEvolution::ExitLimit 5282 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5283 Value *ExitCond, 5284 BasicBlock *TBB, 5285 BasicBlock *FBB, 5286 bool ControlsExit) { 5287 // Check if the controlling expression for this loop is an And or Or. 5288 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5289 if (BO->getOpcode() == Instruction::And) { 5290 // Recurse on the operands of the and. 5291 bool EitherMayExit = L->contains(TBB); 5292 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5293 ControlsExit && !EitherMayExit); 5294 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5295 ControlsExit && !EitherMayExit); 5296 const SCEV *BECount = getCouldNotCompute(); 5297 const SCEV *MaxBECount = getCouldNotCompute(); 5298 if (EitherMayExit) { 5299 // Both conditions must be true for the loop to continue executing. 5300 // Choose the less conservative count. 5301 if (EL0.Exact == getCouldNotCompute() || 5302 EL1.Exact == getCouldNotCompute()) 5303 BECount = getCouldNotCompute(); 5304 else 5305 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5306 if (EL0.Max == getCouldNotCompute()) 5307 MaxBECount = EL1.Max; 5308 else if (EL1.Max == getCouldNotCompute()) 5309 MaxBECount = EL0.Max; 5310 else 5311 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5312 } else { 5313 // Both conditions must be true at the same time for the loop to exit. 5314 // For now, be conservative. 5315 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5316 if (EL0.Max == EL1.Max) 5317 MaxBECount = EL0.Max; 5318 if (EL0.Exact == EL1.Exact) 5319 BECount = EL0.Exact; 5320 } 5321 5322 return ExitLimit(BECount, MaxBECount); 5323 } 5324 if (BO->getOpcode() == Instruction::Or) { 5325 // Recurse on the operands of the or. 5326 bool EitherMayExit = L->contains(FBB); 5327 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5328 ControlsExit && !EitherMayExit); 5329 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5330 ControlsExit && !EitherMayExit); 5331 const SCEV *BECount = getCouldNotCompute(); 5332 const SCEV *MaxBECount = getCouldNotCompute(); 5333 if (EitherMayExit) { 5334 // Both conditions must be false for the loop to continue executing. 5335 // Choose the less conservative count. 5336 if (EL0.Exact == getCouldNotCompute() || 5337 EL1.Exact == getCouldNotCompute()) 5338 BECount = getCouldNotCompute(); 5339 else 5340 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5341 if (EL0.Max == getCouldNotCompute()) 5342 MaxBECount = EL1.Max; 5343 else if (EL1.Max == getCouldNotCompute()) 5344 MaxBECount = EL0.Max; 5345 else 5346 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5347 } else { 5348 // Both conditions must be false at the same time for the loop to exit. 5349 // For now, be conservative. 5350 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5351 if (EL0.Max == EL1.Max) 5352 MaxBECount = EL0.Max; 5353 if (EL0.Exact == EL1.Exact) 5354 BECount = EL0.Exact; 5355 } 5356 5357 return ExitLimit(BECount, MaxBECount); 5358 } 5359 } 5360 5361 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5362 // Proceed to the next level to examine the icmp. 5363 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5364 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5365 5366 // Check for a constant condition. These are normally stripped out by 5367 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5368 // preserve the CFG and is temporarily leaving constant conditions 5369 // in place. 5370 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5371 if (L->contains(FBB) == !CI->getZExtValue()) 5372 // The backedge is always taken. 5373 return getCouldNotCompute(); 5374 else 5375 // The backedge is never taken. 5376 return getZero(CI->getType()); 5377 } 5378 5379 // If it's not an integer or pointer comparison then compute it the hard way. 5380 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5381 } 5382 5383 ScalarEvolution::ExitLimit 5384 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5385 ICmpInst *ExitCond, 5386 BasicBlock *TBB, 5387 BasicBlock *FBB, 5388 bool ControlsExit) { 5389 5390 // If the condition was exit on true, convert the condition to exit on false 5391 ICmpInst::Predicate Cond; 5392 if (!L->contains(FBB)) 5393 Cond = ExitCond->getPredicate(); 5394 else 5395 Cond = ExitCond->getInversePredicate(); 5396 5397 // Handle common loops like: for (X = "string"; *X; ++X) 5398 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5399 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5400 ExitLimit ItCnt = 5401 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5402 if (ItCnt.hasAnyInfo()) 5403 return ItCnt; 5404 } 5405 5406 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5407 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5408 5409 // Try to evaluate any dependencies out of the loop. 5410 LHS = getSCEVAtScope(LHS, L); 5411 RHS = getSCEVAtScope(RHS, L); 5412 5413 // At this point, we would like to compute how many iterations of the 5414 // loop the predicate will return true for these inputs. 5415 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5416 // If there is a loop-invariant, force it into the RHS. 5417 std::swap(LHS, RHS); 5418 Cond = ICmpInst::getSwappedPredicate(Cond); 5419 } 5420 5421 // Simplify the operands before analyzing them. 5422 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5423 5424 // If we have a comparison of a chrec against a constant, try to use value 5425 // ranges to answer this query. 5426 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5427 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5428 if (AddRec->getLoop() == L) { 5429 // Form the constant range. 5430 ConstantRange CompRange( 5431 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5432 5433 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5434 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5435 } 5436 5437 switch (Cond) { 5438 case ICmpInst::ICMP_NE: { // while (X != Y) 5439 // Convert to: while (X-Y != 0) 5440 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5441 if (EL.hasAnyInfo()) return EL; 5442 break; 5443 } 5444 case ICmpInst::ICMP_EQ: { // while (X == Y) 5445 // Convert to: while (X-Y == 0) 5446 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5447 if (EL.hasAnyInfo()) return EL; 5448 break; 5449 } 5450 case ICmpInst::ICMP_SLT: 5451 case ICmpInst::ICMP_ULT: { // while (X < Y) 5452 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5453 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5454 if (EL.hasAnyInfo()) return EL; 5455 break; 5456 } 5457 case ICmpInst::ICMP_SGT: 5458 case ICmpInst::ICMP_UGT: { // while (X > Y) 5459 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5460 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5461 if (EL.hasAnyInfo()) return EL; 5462 break; 5463 } 5464 default: 5465 #if 0 5466 dbgs() << "computeBackedgeTakenCount "; 5467 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5468 dbgs() << "[unsigned] "; 5469 dbgs() << *LHS << " " 5470 << Instruction::getOpcodeName(Instruction::ICmp) 5471 << " " << *RHS << "\n"; 5472 #endif 5473 break; 5474 } 5475 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5476 } 5477 5478 ScalarEvolution::ExitLimit 5479 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5480 SwitchInst *Switch, 5481 BasicBlock *ExitingBlock, 5482 bool ControlsExit) { 5483 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5484 5485 // Give up if the exit is the default dest of a switch. 5486 if (Switch->getDefaultDest() == ExitingBlock) 5487 return getCouldNotCompute(); 5488 5489 assert(L->contains(Switch->getDefaultDest()) && 5490 "Default case must not exit the loop!"); 5491 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5492 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5493 5494 // while (X != Y) --> while (X-Y != 0) 5495 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5496 if (EL.hasAnyInfo()) 5497 return EL; 5498 5499 return getCouldNotCompute(); 5500 } 5501 5502 static ConstantInt * 5503 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5504 ScalarEvolution &SE) { 5505 const SCEV *InVal = SE.getConstant(C); 5506 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5507 assert(isa<SCEVConstant>(Val) && 5508 "Evaluation of SCEV at constant didn't fold correctly?"); 5509 return cast<SCEVConstant>(Val)->getValue(); 5510 } 5511 5512 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5513 /// 'icmp op load X, cst', try to see if we can compute the backedge 5514 /// execution count. 5515 ScalarEvolution::ExitLimit 5516 ScalarEvolution::computeLoadConstantCompareExitLimit( 5517 LoadInst *LI, 5518 Constant *RHS, 5519 const Loop *L, 5520 ICmpInst::Predicate predicate) { 5521 5522 if (LI->isVolatile()) return getCouldNotCompute(); 5523 5524 // Check to see if the loaded pointer is a getelementptr of a global. 5525 // TODO: Use SCEV instead of manually grubbing with GEPs. 5526 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5527 if (!GEP) return getCouldNotCompute(); 5528 5529 // Make sure that it is really a constant global we are gepping, with an 5530 // initializer, and make sure the first IDX is really 0. 5531 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5532 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5533 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5534 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5535 return getCouldNotCompute(); 5536 5537 // Okay, we allow one non-constant index into the GEP instruction. 5538 Value *VarIdx = nullptr; 5539 std::vector<Constant*> Indexes; 5540 unsigned VarIdxNum = 0; 5541 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5542 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5543 Indexes.push_back(CI); 5544 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5545 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5546 VarIdx = GEP->getOperand(i); 5547 VarIdxNum = i-2; 5548 Indexes.push_back(nullptr); 5549 } 5550 5551 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5552 if (!VarIdx) 5553 return getCouldNotCompute(); 5554 5555 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5556 // Check to see if X is a loop variant variable value now. 5557 const SCEV *Idx = getSCEV(VarIdx); 5558 Idx = getSCEVAtScope(Idx, L); 5559 5560 // We can only recognize very limited forms of loop index expressions, in 5561 // particular, only affine AddRec's like {C1,+,C2}. 5562 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5563 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5564 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5565 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5566 return getCouldNotCompute(); 5567 5568 unsigned MaxSteps = MaxBruteForceIterations; 5569 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5570 ConstantInt *ItCst = ConstantInt::get( 5571 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5572 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5573 5574 // Form the GEP offset. 5575 Indexes[VarIdxNum] = Val; 5576 5577 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5578 Indexes); 5579 if (!Result) break; // Cannot compute! 5580 5581 // Evaluate the condition for this iteration. 5582 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5583 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5584 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5585 #if 0 5586 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5587 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5588 << "***\n"; 5589 #endif 5590 ++NumArrayLenItCounts; 5591 return getConstant(ItCst); // Found terminating iteration! 5592 } 5593 } 5594 return getCouldNotCompute(); 5595 } 5596 5597 5598 /// CanConstantFold - Return true if we can constant fold an instruction of the 5599 /// specified type, assuming that all operands were constants. 5600 static bool CanConstantFold(const Instruction *I) { 5601 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5602 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5603 isa<LoadInst>(I)) 5604 return true; 5605 5606 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5607 if (const Function *F = CI->getCalledFunction()) 5608 return canConstantFoldCallTo(F); 5609 return false; 5610 } 5611 5612 /// Determine whether this instruction can constant evolve within this loop 5613 /// assuming its operands can all constant evolve. 5614 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5615 // An instruction outside of the loop can't be derived from a loop PHI. 5616 if (!L->contains(I)) return false; 5617 5618 if (isa<PHINode>(I)) { 5619 // We don't currently keep track of the control flow needed to evaluate 5620 // PHIs, so we cannot handle PHIs inside of loops. 5621 return L->getHeader() == I->getParent(); 5622 } 5623 5624 // If we won't be able to constant fold this expression even if the operands 5625 // are constants, bail early. 5626 return CanConstantFold(I); 5627 } 5628 5629 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5630 /// recursing through each instruction operand until reaching a loop header phi. 5631 static PHINode * 5632 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5633 DenseMap<Instruction *, PHINode *> &PHIMap) { 5634 5635 // Otherwise, we can evaluate this instruction if all of its operands are 5636 // constant or derived from a PHI node themselves. 5637 PHINode *PHI = nullptr; 5638 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5639 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5640 5641 if (isa<Constant>(*OpI)) continue; 5642 5643 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5644 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5645 5646 PHINode *P = dyn_cast<PHINode>(OpInst); 5647 if (!P) 5648 // If this operand is already visited, reuse the prior result. 5649 // We may have P != PHI if this is the deepest point at which the 5650 // inconsistent paths meet. 5651 P = PHIMap.lookup(OpInst); 5652 if (!P) { 5653 // Recurse and memoize the results, whether a phi is found or not. 5654 // This recursive call invalidates pointers into PHIMap. 5655 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5656 PHIMap[OpInst] = P; 5657 } 5658 if (!P) 5659 return nullptr; // Not evolving from PHI 5660 if (PHI && PHI != P) 5661 return nullptr; // Evolving from multiple different PHIs. 5662 PHI = P; 5663 } 5664 // This is a expression evolving from a constant PHI! 5665 return PHI; 5666 } 5667 5668 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5669 /// in the loop that V is derived from. We allow arbitrary operations along the 5670 /// way, but the operands of an operation must either be constants or a value 5671 /// derived from a constant PHI. If this expression does not fit with these 5672 /// constraints, return null. 5673 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5674 Instruction *I = dyn_cast<Instruction>(V); 5675 if (!I || !canConstantEvolve(I, L)) return nullptr; 5676 5677 if (PHINode *PN = dyn_cast<PHINode>(I)) 5678 return PN; 5679 5680 // Record non-constant instructions contained by the loop. 5681 DenseMap<Instruction *, PHINode *> PHIMap; 5682 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5683 } 5684 5685 /// EvaluateExpression - Given an expression that passes the 5686 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5687 /// in the loop has the value PHIVal. If we can't fold this expression for some 5688 /// reason, return null. 5689 static Constant *EvaluateExpression(Value *V, const Loop *L, 5690 DenseMap<Instruction *, Constant *> &Vals, 5691 const DataLayout &DL, 5692 const TargetLibraryInfo *TLI) { 5693 // Convenient constant check, but redundant for recursive calls. 5694 if (Constant *C = dyn_cast<Constant>(V)) return C; 5695 Instruction *I = dyn_cast<Instruction>(V); 5696 if (!I) return nullptr; 5697 5698 if (Constant *C = Vals.lookup(I)) return C; 5699 5700 // An instruction inside the loop depends on a value outside the loop that we 5701 // weren't given a mapping for, or a value such as a call inside the loop. 5702 if (!canConstantEvolve(I, L)) return nullptr; 5703 5704 // An unmapped PHI can be due to a branch or another loop inside this loop, 5705 // or due to this not being the initial iteration through a loop where we 5706 // couldn't compute the evolution of this particular PHI last time. 5707 if (isa<PHINode>(I)) return nullptr; 5708 5709 std::vector<Constant*> Operands(I->getNumOperands()); 5710 5711 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5712 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5713 if (!Operand) { 5714 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5715 if (!Operands[i]) return nullptr; 5716 continue; 5717 } 5718 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5719 Vals[Operand] = C; 5720 if (!C) return nullptr; 5721 Operands[i] = C; 5722 } 5723 5724 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5725 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5726 Operands[1], DL, TLI); 5727 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5728 if (!LI->isVolatile()) 5729 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5730 } 5731 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5732 TLI); 5733 } 5734 5735 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5736 /// in the header of its containing loop, we know the loop executes a 5737 /// constant number of times, and the PHI node is just a recurrence 5738 /// involving constants, fold it. 5739 Constant * 5740 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5741 const APInt &BEs, 5742 const Loop *L) { 5743 auto I = ConstantEvolutionLoopExitValue.find(PN); 5744 if (I != ConstantEvolutionLoopExitValue.end()) 5745 return I->second; 5746 5747 if (BEs.ugt(MaxBruteForceIterations)) 5748 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5749 5750 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5751 5752 DenseMap<Instruction *, Constant *> CurrentIterVals; 5753 BasicBlock *Header = L->getHeader(); 5754 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5755 5756 BasicBlock *Latch = L->getLoopLatch(); 5757 if (!Latch) 5758 return nullptr; 5759 5760 // Since the loop has one latch, the PHI node must have two entries. One 5761 // entry must be a constant (coming in from outside of the loop), and the 5762 // second must be derived from the same PHI. 5763 5764 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5765 ? PN->getIncomingBlock(1) 5766 : PN->getIncomingBlock(0); 5767 5768 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!"); 5769 5770 // Note: not all PHI nodes in the same block have to have their incoming 5771 // values in the same order, so we use the basic block to look up the incoming 5772 // value, not an index. 5773 5774 for (auto &I : *Header) { 5775 PHINode *PHI = dyn_cast<PHINode>(&I); 5776 if (!PHI) break; 5777 auto *StartCST = 5778 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5779 if (!StartCST) continue; 5780 CurrentIterVals[PHI] = StartCST; 5781 } 5782 if (!CurrentIterVals.count(PN)) 5783 return RetVal = nullptr; 5784 5785 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5786 5787 // Execute the loop symbolically to determine the exit value. 5788 if (BEs.getActiveBits() >= 32) 5789 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5790 5791 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5792 unsigned IterationNum = 0; 5793 const DataLayout &DL = F.getParent()->getDataLayout(); 5794 for (; ; ++IterationNum) { 5795 if (IterationNum == NumIterations) 5796 return RetVal = CurrentIterVals[PN]; // Got exit value! 5797 5798 // Compute the value of the PHIs for the next iteration. 5799 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5800 DenseMap<Instruction *, Constant *> NextIterVals; 5801 Constant *NextPHI = 5802 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5803 if (!NextPHI) 5804 return nullptr; // Couldn't evaluate! 5805 NextIterVals[PN] = NextPHI; 5806 5807 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5808 5809 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5810 // cease to be able to evaluate one of them or if they stop evolving, 5811 // because that doesn't necessarily prevent us from computing PN. 5812 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5813 for (const auto &I : CurrentIterVals) { 5814 PHINode *PHI = dyn_cast<PHINode>(I.first); 5815 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5816 PHIsToCompute.emplace_back(PHI, I.second); 5817 } 5818 // We use two distinct loops because EvaluateExpression may invalidate any 5819 // iterators into CurrentIterVals. 5820 for (const auto &I : PHIsToCompute) { 5821 PHINode *PHI = I.first; 5822 Constant *&NextPHI = NextIterVals[PHI]; 5823 if (!NextPHI) { // Not already computed. 5824 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5825 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5826 } 5827 if (NextPHI != I.second) 5828 StoppedEvolving = false; 5829 } 5830 5831 // If all entries in CurrentIterVals == NextIterVals then we can stop 5832 // iterating, the loop can't continue to change. 5833 if (StoppedEvolving) 5834 return RetVal = CurrentIterVals[PN]; 5835 5836 CurrentIterVals.swap(NextIterVals); 5837 } 5838 } 5839 5840 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 5841 Value *Cond, 5842 bool ExitWhen) { 5843 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5844 if (!PN) return getCouldNotCompute(); 5845 5846 // If the loop is canonicalized, the PHI will have exactly two entries. 5847 // That's the only form we support here. 5848 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5849 5850 DenseMap<Instruction *, Constant *> CurrentIterVals; 5851 BasicBlock *Header = L->getHeader(); 5852 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5853 5854 BasicBlock *Latch = L->getLoopLatch(); 5855 assert(Latch && "Should follow from NumIncomingValues == 2!"); 5856 5857 // NonLatch is the preheader, or something equivalent. 5858 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5859 ? PN->getIncomingBlock(1) 5860 : PN->getIncomingBlock(0); 5861 5862 // Note: not all PHI nodes in the same block have to have their incoming 5863 // values in the same order, so we use the basic block to look up the incoming 5864 // value, not an index. 5865 5866 for (auto &I : *Header) { 5867 PHINode *PHI = dyn_cast<PHINode>(&I); 5868 if (!PHI) 5869 break; 5870 auto *StartCST = 5871 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5872 if (!StartCST) continue; 5873 CurrentIterVals[PHI] = StartCST; 5874 } 5875 if (!CurrentIterVals.count(PN)) 5876 return getCouldNotCompute(); 5877 5878 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5879 // the loop symbolically to determine when the condition gets a value of 5880 // "ExitWhen". 5881 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5882 const DataLayout &DL = F.getParent()->getDataLayout(); 5883 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5884 auto *CondVal = dyn_cast_or_null<ConstantInt>( 5885 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5886 5887 // Couldn't symbolically evaluate. 5888 if (!CondVal) return getCouldNotCompute(); 5889 5890 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5891 ++NumBruteForceTripCountsComputed; 5892 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5893 } 5894 5895 // Update all the PHI nodes for the next iteration. 5896 DenseMap<Instruction *, Constant *> NextIterVals; 5897 5898 // Create a list of which PHIs we need to compute. We want to do this before 5899 // calling EvaluateExpression on them because that may invalidate iterators 5900 // into CurrentIterVals. 5901 SmallVector<PHINode *, 8> PHIsToCompute; 5902 for (const auto &I : CurrentIterVals) { 5903 PHINode *PHI = dyn_cast<PHINode>(I.first); 5904 if (!PHI || PHI->getParent() != Header) continue; 5905 PHIsToCompute.push_back(PHI); 5906 } 5907 for (PHINode *PHI : PHIsToCompute) { 5908 Constant *&NextPHI = NextIterVals[PHI]; 5909 if (NextPHI) continue; // Already computed! 5910 5911 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5912 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5913 } 5914 CurrentIterVals.swap(NextIterVals); 5915 } 5916 5917 // Too many iterations were needed to evaluate. 5918 return getCouldNotCompute(); 5919 } 5920 5921 /// getSCEVAtScope - Return a SCEV expression for the specified value 5922 /// at the specified scope in the program. The L value specifies a loop 5923 /// nest to evaluate the expression at, where null is the top-level or a 5924 /// specified loop is immediately inside of the loop. 5925 /// 5926 /// This method can be used to compute the exit value for a variable defined 5927 /// in a loop by querying what the value will hold in the parent loop. 5928 /// 5929 /// In the case that a relevant loop exit value cannot be computed, the 5930 /// original value V is returned. 5931 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5932 // Check to see if we've folded this expression at this loop before. 5933 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5934 for (unsigned u = 0; u < Values.size(); u++) { 5935 if (Values[u].first == L) 5936 return Values[u].second ? Values[u].second : V; 5937 } 5938 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5939 // Otherwise compute it. 5940 const SCEV *C = computeSCEVAtScope(V, L); 5941 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5942 for (unsigned u = Values2.size(); u > 0; u--) { 5943 if (Values2[u - 1].first == L) { 5944 Values2[u - 1].second = C; 5945 break; 5946 } 5947 } 5948 return C; 5949 } 5950 5951 /// This builds up a Constant using the ConstantExpr interface. That way, we 5952 /// will return Constants for objects which aren't represented by a 5953 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5954 /// Returns NULL if the SCEV isn't representable as a Constant. 5955 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5956 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5957 case scCouldNotCompute: 5958 case scAddRecExpr: 5959 break; 5960 case scConstant: 5961 return cast<SCEVConstant>(V)->getValue(); 5962 case scUnknown: 5963 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5964 case scSignExtend: { 5965 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5966 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5967 return ConstantExpr::getSExt(CastOp, SS->getType()); 5968 break; 5969 } 5970 case scZeroExtend: { 5971 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5972 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5973 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5974 break; 5975 } 5976 case scTruncate: { 5977 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5978 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5979 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5980 break; 5981 } 5982 case scAddExpr: { 5983 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5984 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5985 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5986 unsigned AS = PTy->getAddressSpace(); 5987 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5988 C = ConstantExpr::getBitCast(C, DestPtrTy); 5989 } 5990 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5991 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5992 if (!C2) return nullptr; 5993 5994 // First pointer! 5995 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5996 unsigned AS = C2->getType()->getPointerAddressSpace(); 5997 std::swap(C, C2); 5998 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5999 // The offsets have been converted to bytes. We can add bytes to an 6000 // i8* by GEP with the byte count in the first index. 6001 C = ConstantExpr::getBitCast(C, DestPtrTy); 6002 } 6003 6004 // Don't bother trying to sum two pointers. We probably can't 6005 // statically compute a load that results from it anyway. 6006 if (C2->getType()->isPointerTy()) 6007 return nullptr; 6008 6009 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6010 if (PTy->getElementType()->isStructTy()) 6011 C2 = ConstantExpr::getIntegerCast( 6012 C2, Type::getInt32Ty(C->getContext()), true); 6013 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6014 } else 6015 C = ConstantExpr::getAdd(C, C2); 6016 } 6017 return C; 6018 } 6019 break; 6020 } 6021 case scMulExpr: { 6022 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6023 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6024 // Don't bother with pointers at all. 6025 if (C->getType()->isPointerTy()) return nullptr; 6026 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6027 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6028 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6029 C = ConstantExpr::getMul(C, C2); 6030 } 6031 return C; 6032 } 6033 break; 6034 } 6035 case scUDivExpr: { 6036 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6037 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6038 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6039 if (LHS->getType() == RHS->getType()) 6040 return ConstantExpr::getUDiv(LHS, RHS); 6041 break; 6042 } 6043 case scSMaxExpr: 6044 case scUMaxExpr: 6045 break; // TODO: smax, umax. 6046 } 6047 return nullptr; 6048 } 6049 6050 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6051 if (isa<SCEVConstant>(V)) return V; 6052 6053 // If this instruction is evolved from a constant-evolving PHI, compute the 6054 // exit value from the loop without using SCEVs. 6055 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6056 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6057 const Loop *LI = this->LI[I->getParent()]; 6058 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6059 if (PHINode *PN = dyn_cast<PHINode>(I)) 6060 if (PN->getParent() == LI->getHeader()) { 6061 // Okay, there is no closed form solution for the PHI node. Check 6062 // to see if the loop that contains it has a known backedge-taken 6063 // count. If so, we may be able to force computation of the exit 6064 // value. 6065 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6066 if (const SCEVConstant *BTCC = 6067 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6068 // Okay, we know how many times the containing loop executes. If 6069 // this is a constant evolving PHI node, get the final value at 6070 // the specified iteration number. 6071 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6072 BTCC->getValue()->getValue(), 6073 LI); 6074 if (RV) return getSCEV(RV); 6075 } 6076 } 6077 6078 // Okay, this is an expression that we cannot symbolically evaluate 6079 // into a SCEV. Check to see if it's possible to symbolically evaluate 6080 // the arguments into constants, and if so, try to constant propagate the 6081 // result. This is particularly useful for computing loop exit values. 6082 if (CanConstantFold(I)) { 6083 SmallVector<Constant *, 4> Operands; 6084 bool MadeImprovement = false; 6085 for (Value *Op : I->operands()) { 6086 if (Constant *C = dyn_cast<Constant>(Op)) { 6087 Operands.push_back(C); 6088 continue; 6089 } 6090 6091 // If any of the operands is non-constant and if they are 6092 // non-integer and non-pointer, don't even try to analyze them 6093 // with scev techniques. 6094 if (!isSCEVable(Op->getType())) 6095 return V; 6096 6097 const SCEV *OrigV = getSCEV(Op); 6098 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6099 MadeImprovement |= OrigV != OpV; 6100 6101 Constant *C = BuildConstantFromSCEV(OpV); 6102 if (!C) return V; 6103 if (C->getType() != Op->getType()) 6104 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6105 Op->getType(), 6106 false), 6107 C, Op->getType()); 6108 Operands.push_back(C); 6109 } 6110 6111 // Check to see if getSCEVAtScope actually made an improvement. 6112 if (MadeImprovement) { 6113 Constant *C = nullptr; 6114 const DataLayout &DL = F.getParent()->getDataLayout(); 6115 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6116 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6117 Operands[1], DL, &TLI); 6118 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6119 if (!LI->isVolatile()) 6120 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6121 } else 6122 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6123 DL, &TLI); 6124 if (!C) return V; 6125 return getSCEV(C); 6126 } 6127 } 6128 } 6129 6130 // This is some other type of SCEVUnknown, just return it. 6131 return V; 6132 } 6133 6134 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6135 // Avoid performing the look-up in the common case where the specified 6136 // expression has no loop-variant portions. 6137 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6138 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6139 if (OpAtScope != Comm->getOperand(i)) { 6140 // Okay, at least one of these operands is loop variant but might be 6141 // foldable. Build a new instance of the folded commutative expression. 6142 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6143 Comm->op_begin()+i); 6144 NewOps.push_back(OpAtScope); 6145 6146 for (++i; i != e; ++i) { 6147 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6148 NewOps.push_back(OpAtScope); 6149 } 6150 if (isa<SCEVAddExpr>(Comm)) 6151 return getAddExpr(NewOps); 6152 if (isa<SCEVMulExpr>(Comm)) 6153 return getMulExpr(NewOps); 6154 if (isa<SCEVSMaxExpr>(Comm)) 6155 return getSMaxExpr(NewOps); 6156 if (isa<SCEVUMaxExpr>(Comm)) 6157 return getUMaxExpr(NewOps); 6158 llvm_unreachable("Unknown commutative SCEV type!"); 6159 } 6160 } 6161 // If we got here, all operands are loop invariant. 6162 return Comm; 6163 } 6164 6165 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6166 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6167 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6168 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6169 return Div; // must be loop invariant 6170 return getUDivExpr(LHS, RHS); 6171 } 6172 6173 // If this is a loop recurrence for a loop that does not contain L, then we 6174 // are dealing with the final value computed by the loop. 6175 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6176 // First, attempt to evaluate each operand. 6177 // Avoid performing the look-up in the common case where the specified 6178 // expression has no loop-variant portions. 6179 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6180 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6181 if (OpAtScope == AddRec->getOperand(i)) 6182 continue; 6183 6184 // Okay, at least one of these operands is loop variant but might be 6185 // foldable. Build a new instance of the folded commutative expression. 6186 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6187 AddRec->op_begin()+i); 6188 NewOps.push_back(OpAtScope); 6189 for (++i; i != e; ++i) 6190 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6191 6192 const SCEV *FoldedRec = 6193 getAddRecExpr(NewOps, AddRec->getLoop(), 6194 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6195 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6196 // The addrec may be folded to a nonrecurrence, for example, if the 6197 // induction variable is multiplied by zero after constant folding. Go 6198 // ahead and return the folded value. 6199 if (!AddRec) 6200 return FoldedRec; 6201 break; 6202 } 6203 6204 // If the scope is outside the addrec's loop, evaluate it by using the 6205 // loop exit value of the addrec. 6206 if (!AddRec->getLoop()->contains(L)) { 6207 // To evaluate this recurrence, we need to know how many times the AddRec 6208 // loop iterates. Compute this now. 6209 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6210 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6211 6212 // Then, evaluate the AddRec. 6213 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6214 } 6215 6216 return AddRec; 6217 } 6218 6219 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6220 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6221 if (Op == Cast->getOperand()) 6222 return Cast; // must be loop invariant 6223 return getZeroExtendExpr(Op, Cast->getType()); 6224 } 6225 6226 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6227 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6228 if (Op == Cast->getOperand()) 6229 return Cast; // must be loop invariant 6230 return getSignExtendExpr(Op, Cast->getType()); 6231 } 6232 6233 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6234 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6235 if (Op == Cast->getOperand()) 6236 return Cast; // must be loop invariant 6237 return getTruncateExpr(Op, Cast->getType()); 6238 } 6239 6240 llvm_unreachable("Unknown SCEV type!"); 6241 } 6242 6243 /// getSCEVAtScope - This is a convenience function which does 6244 /// getSCEVAtScope(getSCEV(V), L). 6245 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6246 return getSCEVAtScope(getSCEV(V), L); 6247 } 6248 6249 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6250 /// following equation: 6251 /// 6252 /// A * X = B (mod N) 6253 /// 6254 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6255 /// A and B isn't important. 6256 /// 6257 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6258 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6259 ScalarEvolution &SE) { 6260 uint32_t BW = A.getBitWidth(); 6261 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6262 assert(A != 0 && "A must be non-zero."); 6263 6264 // 1. D = gcd(A, N) 6265 // 6266 // The gcd of A and N may have only one prime factor: 2. The number of 6267 // trailing zeros in A is its multiplicity 6268 uint32_t Mult2 = A.countTrailingZeros(); 6269 // D = 2^Mult2 6270 6271 // 2. Check if B is divisible by D. 6272 // 6273 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6274 // is not less than multiplicity of this prime factor for D. 6275 if (B.countTrailingZeros() < Mult2) 6276 return SE.getCouldNotCompute(); 6277 6278 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6279 // modulo (N / D). 6280 // 6281 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6282 // bit width during computations. 6283 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6284 APInt Mod(BW + 1, 0); 6285 Mod.setBit(BW - Mult2); // Mod = N / D 6286 APInt I = AD.multiplicativeInverse(Mod); 6287 6288 // 4. Compute the minimum unsigned root of the equation: 6289 // I * (B / D) mod (N / D) 6290 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6291 6292 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6293 // bits. 6294 return SE.getConstant(Result.trunc(BW)); 6295 } 6296 6297 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6298 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6299 /// might be the same) or two SCEVCouldNotCompute objects. 6300 /// 6301 static std::pair<const SCEV *,const SCEV *> 6302 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6303 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6304 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6305 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6306 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6307 6308 // We currently can only solve this if the coefficients are constants. 6309 if (!LC || !MC || !NC) { 6310 const SCEV *CNC = SE.getCouldNotCompute(); 6311 return std::make_pair(CNC, CNC); 6312 } 6313 6314 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6315 const APInt &L = LC->getValue()->getValue(); 6316 const APInt &M = MC->getValue()->getValue(); 6317 const APInt &N = NC->getValue()->getValue(); 6318 APInt Two(BitWidth, 2); 6319 APInt Four(BitWidth, 4); 6320 6321 { 6322 using namespace APIntOps; 6323 const APInt& C = L; 6324 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6325 // The B coefficient is M-N/2 6326 APInt B(M); 6327 B -= sdiv(N,Two); 6328 6329 // The A coefficient is N/2 6330 APInt A(N.sdiv(Two)); 6331 6332 // Compute the B^2-4ac term. 6333 APInt SqrtTerm(B); 6334 SqrtTerm *= B; 6335 SqrtTerm -= Four * (A * C); 6336 6337 if (SqrtTerm.isNegative()) { 6338 // The loop is provably infinite. 6339 const SCEV *CNC = SE.getCouldNotCompute(); 6340 return std::make_pair(CNC, CNC); 6341 } 6342 6343 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6344 // integer value or else APInt::sqrt() will assert. 6345 APInt SqrtVal(SqrtTerm.sqrt()); 6346 6347 // Compute the two solutions for the quadratic formula. 6348 // The divisions must be performed as signed divisions. 6349 APInt NegB(-B); 6350 APInt TwoA(A << 1); 6351 if (TwoA.isMinValue()) { 6352 const SCEV *CNC = SE.getCouldNotCompute(); 6353 return std::make_pair(CNC, CNC); 6354 } 6355 6356 LLVMContext &Context = SE.getContext(); 6357 6358 ConstantInt *Solution1 = 6359 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6360 ConstantInt *Solution2 = 6361 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6362 6363 return std::make_pair(SE.getConstant(Solution1), 6364 SE.getConstant(Solution2)); 6365 } // end APIntOps namespace 6366 } 6367 6368 /// HowFarToZero - Return the number of times a backedge comparing the specified 6369 /// value to zero will execute. If not computable, return CouldNotCompute. 6370 /// 6371 /// This is only used for loops with a "x != y" exit test. The exit condition is 6372 /// now expressed as a single expression, V = x-y. So the exit test is 6373 /// effectively V != 0. We know and take advantage of the fact that this 6374 /// expression only being used in a comparison by zero context. 6375 ScalarEvolution::ExitLimit 6376 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6377 // If the value is a constant 6378 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6379 // If the value is already zero, the branch will execute zero times. 6380 if (C->getValue()->isZero()) return C; 6381 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6382 } 6383 6384 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6385 if (!AddRec || AddRec->getLoop() != L) 6386 return getCouldNotCompute(); 6387 6388 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6389 // the quadratic equation to solve it. 6390 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6391 std::pair<const SCEV *,const SCEV *> Roots = 6392 SolveQuadraticEquation(AddRec, *this); 6393 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6394 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6395 if (R1 && R2) { 6396 #if 0 6397 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6398 << " sol#2: " << *R2 << "\n"; 6399 #endif 6400 // Pick the smallest positive root value. 6401 if (ConstantInt *CB = 6402 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6403 R1->getValue(), 6404 R2->getValue()))) { 6405 if (!CB->getZExtValue()) 6406 std::swap(R1, R2); // R1 is the minimum root now. 6407 6408 // We can only use this value if the chrec ends up with an exact zero 6409 // value at this index. When solving for "X*X != 5", for example, we 6410 // should not accept a root of 2. 6411 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6412 if (Val->isZero()) 6413 return R1; // We found a quadratic root! 6414 } 6415 } 6416 return getCouldNotCompute(); 6417 } 6418 6419 // Otherwise we can only handle this if it is affine. 6420 if (!AddRec->isAffine()) 6421 return getCouldNotCompute(); 6422 6423 // If this is an affine expression, the execution count of this branch is 6424 // the minimum unsigned root of the following equation: 6425 // 6426 // Start + Step*N = 0 (mod 2^BW) 6427 // 6428 // equivalent to: 6429 // 6430 // Step*N = -Start (mod 2^BW) 6431 // 6432 // where BW is the common bit width of Start and Step. 6433 6434 // Get the initial value for the loop. 6435 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6436 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6437 6438 // For now we handle only constant steps. 6439 // 6440 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6441 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6442 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6443 // We have not yet seen any such cases. 6444 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6445 if (!StepC || StepC->getValue()->equalsInt(0)) 6446 return getCouldNotCompute(); 6447 6448 // For positive steps (counting up until unsigned overflow): 6449 // N = -Start/Step (as unsigned) 6450 // For negative steps (counting down to zero): 6451 // N = Start/-Step 6452 // First compute the unsigned distance from zero in the direction of Step. 6453 bool CountDown = StepC->getValue()->getValue().isNegative(); 6454 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6455 6456 // Handle unitary steps, which cannot wraparound. 6457 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6458 // N = Distance (as unsigned) 6459 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6460 ConstantRange CR = getUnsignedRange(Start); 6461 const SCEV *MaxBECount; 6462 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6463 // When counting up, the worst starting value is 1, not 0. 6464 MaxBECount = CR.getUnsignedMax().isMinValue() 6465 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6466 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6467 else 6468 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6469 : -CR.getUnsignedMin()); 6470 return ExitLimit(Distance, MaxBECount); 6471 } 6472 6473 // As a special case, handle the instance where Step is a positive power of 6474 // two. In this case, determining whether Step divides Distance evenly can be 6475 // done by counting and comparing the number of trailing zeros of Step and 6476 // Distance. 6477 if (!CountDown) { 6478 const APInt &StepV = StepC->getValue()->getValue(); 6479 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6480 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6481 // case is not handled as this code is guarded by !CountDown. 6482 if (StepV.isPowerOf2() && 6483 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6484 // Here we've constrained the equation to be of the form 6485 // 6486 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6487 // 6488 // where we're operating on a W bit wide integer domain and k is 6489 // non-negative. The smallest unsigned solution for X is the trip count. 6490 // 6491 // (0) is equivalent to: 6492 // 6493 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6494 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6495 // <=> 2^k * Distance' - X = L * 2^(W - N) 6496 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6497 // 6498 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6499 // by 2^(W - N). 6500 // 6501 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6502 // 6503 // E.g. say we're solving 6504 // 6505 // 2 * Val = 2 * X (in i8) ... (3) 6506 // 6507 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6508 // 6509 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6510 // necessarily the smallest unsigned value of X that satisfies (3). 6511 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6512 // is i8 1, not i8 -127 6513 6514 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6515 6516 // Since SCEV does not have a URem node, we construct one using a truncate 6517 // and a zero extend. 6518 6519 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6520 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6521 auto *WideTy = Distance->getType(); 6522 6523 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6524 } 6525 } 6526 6527 // If the condition controls loop exit (the loop exits only if the expression 6528 // is true) and the addition is no-wrap we can use unsigned divide to 6529 // compute the backedge count. In this case, the step may not divide the 6530 // distance, but we don't care because if the condition is "missed" the loop 6531 // will have undefined behavior due to wrapping. 6532 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6533 const SCEV *Exact = 6534 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6535 return ExitLimit(Exact, Exact); 6536 } 6537 6538 // Then, try to solve the above equation provided that Start is constant. 6539 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6540 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6541 -StartC->getValue()->getValue(), 6542 *this); 6543 return getCouldNotCompute(); 6544 } 6545 6546 /// HowFarToNonZero - Return the number of times a backedge checking the 6547 /// specified value for nonzero will execute. If not computable, return 6548 /// CouldNotCompute 6549 ScalarEvolution::ExitLimit 6550 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6551 // Loops that look like: while (X == 0) are very strange indeed. We don't 6552 // handle them yet except for the trivial case. This could be expanded in the 6553 // future as needed. 6554 6555 // If the value is a constant, check to see if it is known to be non-zero 6556 // already. If so, the backedge will execute zero times. 6557 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6558 if (!C->getValue()->isNullValue()) 6559 return getZero(C->getType()); 6560 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6561 } 6562 6563 // We could implement others, but I really doubt anyone writes loops like 6564 // this, and if they did, they would already be constant folded. 6565 return getCouldNotCompute(); 6566 } 6567 6568 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6569 /// (which may not be an immediate predecessor) which has exactly one 6570 /// successor from which BB is reachable, or null if no such block is 6571 /// found. 6572 /// 6573 std::pair<BasicBlock *, BasicBlock *> 6574 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6575 // If the block has a unique predecessor, then there is no path from the 6576 // predecessor to the block that does not go through the direct edge 6577 // from the predecessor to the block. 6578 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6579 return std::make_pair(Pred, BB); 6580 6581 // A loop's header is defined to be a block that dominates the loop. 6582 // If the header has a unique predecessor outside the loop, it must be 6583 // a block that has exactly one successor that can reach the loop. 6584 if (Loop *L = LI.getLoopFor(BB)) 6585 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6586 6587 return std::pair<BasicBlock *, BasicBlock *>(); 6588 } 6589 6590 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6591 /// testing whether two expressions are equal, however for the purposes of 6592 /// looking for a condition guarding a loop, it can be useful to be a little 6593 /// more general, since a front-end may have replicated the controlling 6594 /// expression. 6595 /// 6596 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6597 // Quick check to see if they are the same SCEV. 6598 if (A == B) return true; 6599 6600 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6601 // Not all instructions that are "identical" compute the same value. For 6602 // instance, two distinct alloca instructions allocating the same type are 6603 // identical and do not read memory; but compute distinct values. 6604 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6605 }; 6606 6607 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6608 // two different instructions with the same value. Check for this case. 6609 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6610 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6611 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6612 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6613 if (ComputesEqualValues(AI, BI)) 6614 return true; 6615 6616 // Otherwise assume they may have a different value. 6617 return false; 6618 } 6619 6620 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6621 /// predicate Pred. Return true iff any changes were made. 6622 /// 6623 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6624 const SCEV *&LHS, const SCEV *&RHS, 6625 unsigned Depth) { 6626 bool Changed = false; 6627 6628 // If we hit the max recursion limit bail out. 6629 if (Depth >= 3) 6630 return false; 6631 6632 // Canonicalize a constant to the right side. 6633 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6634 // Check for both operands constant. 6635 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6636 if (ConstantExpr::getICmp(Pred, 6637 LHSC->getValue(), 6638 RHSC->getValue())->isNullValue()) 6639 goto trivially_false; 6640 else 6641 goto trivially_true; 6642 } 6643 // Otherwise swap the operands to put the constant on the right. 6644 std::swap(LHS, RHS); 6645 Pred = ICmpInst::getSwappedPredicate(Pred); 6646 Changed = true; 6647 } 6648 6649 // If we're comparing an addrec with a value which is loop-invariant in the 6650 // addrec's loop, put the addrec on the left. Also make a dominance check, 6651 // as both operands could be addrecs loop-invariant in each other's loop. 6652 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6653 const Loop *L = AR->getLoop(); 6654 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6655 std::swap(LHS, RHS); 6656 Pred = ICmpInst::getSwappedPredicate(Pred); 6657 Changed = true; 6658 } 6659 } 6660 6661 // If there's a constant operand, canonicalize comparisons with boundary 6662 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6663 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6664 const APInt &RA = RC->getValue()->getValue(); 6665 switch (Pred) { 6666 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6667 case ICmpInst::ICMP_EQ: 6668 case ICmpInst::ICMP_NE: 6669 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6670 if (!RA) 6671 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6672 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6673 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6674 ME->getOperand(0)->isAllOnesValue()) { 6675 RHS = AE->getOperand(1); 6676 LHS = ME->getOperand(1); 6677 Changed = true; 6678 } 6679 break; 6680 case ICmpInst::ICMP_UGE: 6681 if ((RA - 1).isMinValue()) { 6682 Pred = ICmpInst::ICMP_NE; 6683 RHS = getConstant(RA - 1); 6684 Changed = true; 6685 break; 6686 } 6687 if (RA.isMaxValue()) { 6688 Pred = ICmpInst::ICMP_EQ; 6689 Changed = true; 6690 break; 6691 } 6692 if (RA.isMinValue()) goto trivially_true; 6693 6694 Pred = ICmpInst::ICMP_UGT; 6695 RHS = getConstant(RA - 1); 6696 Changed = true; 6697 break; 6698 case ICmpInst::ICMP_ULE: 6699 if ((RA + 1).isMaxValue()) { 6700 Pred = ICmpInst::ICMP_NE; 6701 RHS = getConstant(RA + 1); 6702 Changed = true; 6703 break; 6704 } 6705 if (RA.isMinValue()) { 6706 Pred = ICmpInst::ICMP_EQ; 6707 Changed = true; 6708 break; 6709 } 6710 if (RA.isMaxValue()) goto trivially_true; 6711 6712 Pred = ICmpInst::ICMP_ULT; 6713 RHS = getConstant(RA + 1); 6714 Changed = true; 6715 break; 6716 case ICmpInst::ICMP_SGE: 6717 if ((RA - 1).isMinSignedValue()) { 6718 Pred = ICmpInst::ICMP_NE; 6719 RHS = getConstant(RA - 1); 6720 Changed = true; 6721 break; 6722 } 6723 if (RA.isMaxSignedValue()) { 6724 Pred = ICmpInst::ICMP_EQ; 6725 Changed = true; 6726 break; 6727 } 6728 if (RA.isMinSignedValue()) goto trivially_true; 6729 6730 Pred = ICmpInst::ICMP_SGT; 6731 RHS = getConstant(RA - 1); 6732 Changed = true; 6733 break; 6734 case ICmpInst::ICMP_SLE: 6735 if ((RA + 1).isMaxSignedValue()) { 6736 Pred = ICmpInst::ICMP_NE; 6737 RHS = getConstant(RA + 1); 6738 Changed = true; 6739 break; 6740 } 6741 if (RA.isMinSignedValue()) { 6742 Pred = ICmpInst::ICMP_EQ; 6743 Changed = true; 6744 break; 6745 } 6746 if (RA.isMaxSignedValue()) goto trivially_true; 6747 6748 Pred = ICmpInst::ICMP_SLT; 6749 RHS = getConstant(RA + 1); 6750 Changed = true; 6751 break; 6752 case ICmpInst::ICMP_UGT: 6753 if (RA.isMinValue()) { 6754 Pred = ICmpInst::ICMP_NE; 6755 Changed = true; 6756 break; 6757 } 6758 if ((RA + 1).isMaxValue()) { 6759 Pred = ICmpInst::ICMP_EQ; 6760 RHS = getConstant(RA + 1); 6761 Changed = true; 6762 break; 6763 } 6764 if (RA.isMaxValue()) goto trivially_false; 6765 break; 6766 case ICmpInst::ICMP_ULT: 6767 if (RA.isMaxValue()) { 6768 Pred = ICmpInst::ICMP_NE; 6769 Changed = true; 6770 break; 6771 } 6772 if ((RA - 1).isMinValue()) { 6773 Pred = ICmpInst::ICMP_EQ; 6774 RHS = getConstant(RA - 1); 6775 Changed = true; 6776 break; 6777 } 6778 if (RA.isMinValue()) goto trivially_false; 6779 break; 6780 case ICmpInst::ICMP_SGT: 6781 if (RA.isMinSignedValue()) { 6782 Pred = ICmpInst::ICMP_NE; 6783 Changed = true; 6784 break; 6785 } 6786 if ((RA + 1).isMaxSignedValue()) { 6787 Pred = ICmpInst::ICMP_EQ; 6788 RHS = getConstant(RA + 1); 6789 Changed = true; 6790 break; 6791 } 6792 if (RA.isMaxSignedValue()) goto trivially_false; 6793 break; 6794 case ICmpInst::ICMP_SLT: 6795 if (RA.isMaxSignedValue()) { 6796 Pred = ICmpInst::ICMP_NE; 6797 Changed = true; 6798 break; 6799 } 6800 if ((RA - 1).isMinSignedValue()) { 6801 Pred = ICmpInst::ICMP_EQ; 6802 RHS = getConstant(RA - 1); 6803 Changed = true; 6804 break; 6805 } 6806 if (RA.isMinSignedValue()) goto trivially_false; 6807 break; 6808 } 6809 } 6810 6811 // Check for obvious equality. 6812 if (HasSameValue(LHS, RHS)) { 6813 if (ICmpInst::isTrueWhenEqual(Pred)) 6814 goto trivially_true; 6815 if (ICmpInst::isFalseWhenEqual(Pred)) 6816 goto trivially_false; 6817 } 6818 6819 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6820 // adding or subtracting 1 from one of the operands. 6821 switch (Pred) { 6822 case ICmpInst::ICMP_SLE: 6823 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6824 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6825 SCEV::FlagNSW); 6826 Pred = ICmpInst::ICMP_SLT; 6827 Changed = true; 6828 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6829 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6830 SCEV::FlagNSW); 6831 Pred = ICmpInst::ICMP_SLT; 6832 Changed = true; 6833 } 6834 break; 6835 case ICmpInst::ICMP_SGE: 6836 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6837 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6838 SCEV::FlagNSW); 6839 Pred = ICmpInst::ICMP_SGT; 6840 Changed = true; 6841 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6842 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6843 SCEV::FlagNSW); 6844 Pred = ICmpInst::ICMP_SGT; 6845 Changed = true; 6846 } 6847 break; 6848 case ICmpInst::ICMP_ULE: 6849 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6850 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6851 SCEV::FlagNUW); 6852 Pred = ICmpInst::ICMP_ULT; 6853 Changed = true; 6854 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6855 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6856 SCEV::FlagNUW); 6857 Pred = ICmpInst::ICMP_ULT; 6858 Changed = true; 6859 } 6860 break; 6861 case ICmpInst::ICMP_UGE: 6862 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6863 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6864 SCEV::FlagNUW); 6865 Pred = ICmpInst::ICMP_UGT; 6866 Changed = true; 6867 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6868 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6869 SCEV::FlagNUW); 6870 Pred = ICmpInst::ICMP_UGT; 6871 Changed = true; 6872 } 6873 break; 6874 default: 6875 break; 6876 } 6877 6878 // TODO: More simplifications are possible here. 6879 6880 // Recursively simplify until we either hit a recursion limit or nothing 6881 // changes. 6882 if (Changed) 6883 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6884 6885 return Changed; 6886 6887 trivially_true: 6888 // Return 0 == 0. 6889 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6890 Pred = ICmpInst::ICMP_EQ; 6891 return true; 6892 6893 trivially_false: 6894 // Return 0 != 0. 6895 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6896 Pred = ICmpInst::ICMP_NE; 6897 return true; 6898 } 6899 6900 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6901 return getSignedRange(S).getSignedMax().isNegative(); 6902 } 6903 6904 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6905 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6906 } 6907 6908 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6909 return !getSignedRange(S).getSignedMin().isNegative(); 6910 } 6911 6912 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6913 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6914 } 6915 6916 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6917 return isKnownNegative(S) || isKnownPositive(S); 6918 } 6919 6920 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6921 const SCEV *LHS, const SCEV *RHS) { 6922 // Canonicalize the inputs first. 6923 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6924 6925 // If LHS or RHS is an addrec, check to see if the condition is true in 6926 // every iteration of the loop. 6927 // If LHS and RHS are both addrec, both conditions must be true in 6928 // every iteration of the loop. 6929 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6930 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6931 bool LeftGuarded = false; 6932 bool RightGuarded = false; 6933 if (LAR) { 6934 const Loop *L = LAR->getLoop(); 6935 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6936 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6937 if (!RAR) return true; 6938 LeftGuarded = true; 6939 } 6940 } 6941 if (RAR) { 6942 const Loop *L = RAR->getLoop(); 6943 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6944 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6945 if (!LAR) return true; 6946 RightGuarded = true; 6947 } 6948 } 6949 if (LeftGuarded && RightGuarded) 6950 return true; 6951 6952 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 6953 return true; 6954 6955 // Otherwise see what can be done with known constant ranges. 6956 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6957 } 6958 6959 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6960 ICmpInst::Predicate Pred, 6961 bool &Increasing) { 6962 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6963 6964 #ifndef NDEBUG 6965 // Verify an invariant: inverting the predicate should turn a monotonically 6966 // increasing change to a monotonically decreasing one, and vice versa. 6967 bool IncreasingSwapped; 6968 bool ResultSwapped = isMonotonicPredicateImpl( 6969 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6970 6971 assert(Result == ResultSwapped && "should be able to analyze both!"); 6972 if (ResultSwapped) 6973 assert(Increasing == !IncreasingSwapped && 6974 "monotonicity should flip as we flip the predicate"); 6975 #endif 6976 6977 return Result; 6978 } 6979 6980 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6981 ICmpInst::Predicate Pred, 6982 bool &Increasing) { 6983 6984 // A zero step value for LHS means the induction variable is essentially a 6985 // loop invariant value. We don't really depend on the predicate actually 6986 // flipping from false to true (for increasing predicates, and the other way 6987 // around for decreasing predicates), all we care about is that *if* the 6988 // predicate changes then it only changes from false to true. 6989 // 6990 // A zero step value in itself is not very useful, but there may be places 6991 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6992 // as general as possible. 6993 6994 switch (Pred) { 6995 default: 6996 return false; // Conservative answer 6997 6998 case ICmpInst::ICMP_UGT: 6999 case ICmpInst::ICMP_UGE: 7000 case ICmpInst::ICMP_ULT: 7001 case ICmpInst::ICMP_ULE: 7002 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 7003 return false; 7004 7005 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7006 return true; 7007 7008 case ICmpInst::ICMP_SGT: 7009 case ICmpInst::ICMP_SGE: 7010 case ICmpInst::ICMP_SLT: 7011 case ICmpInst::ICMP_SLE: { 7012 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 7013 return false; 7014 7015 const SCEV *Step = LHS->getStepRecurrence(*this); 7016 7017 if (isKnownNonNegative(Step)) { 7018 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7019 return true; 7020 } 7021 7022 if (isKnownNonPositive(Step)) { 7023 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7024 return true; 7025 } 7026 7027 return false; 7028 } 7029 7030 } 7031 7032 llvm_unreachable("switch has default clause!"); 7033 } 7034 7035 bool ScalarEvolution::isLoopInvariantPredicate( 7036 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7037 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7038 const SCEV *&InvariantRHS) { 7039 7040 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7041 if (!isLoopInvariant(RHS, L)) { 7042 if (!isLoopInvariant(LHS, L)) 7043 return false; 7044 7045 std::swap(LHS, RHS); 7046 Pred = ICmpInst::getSwappedPredicate(Pred); 7047 } 7048 7049 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7050 if (!ArLHS || ArLHS->getLoop() != L) 7051 return false; 7052 7053 bool Increasing; 7054 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7055 return false; 7056 7057 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7058 // true as the loop iterates, and the backedge is control dependent on 7059 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7060 // 7061 // * if the predicate was false in the first iteration then the predicate 7062 // is never evaluated again, since the loop exits without taking the 7063 // backedge. 7064 // * if the predicate was true in the first iteration then it will 7065 // continue to be true for all future iterations since it is 7066 // monotonically increasing. 7067 // 7068 // For both the above possibilities, we can replace the loop varying 7069 // predicate with its value on the first iteration of the loop (which is 7070 // loop invariant). 7071 // 7072 // A similar reasoning applies for a monotonically decreasing predicate, by 7073 // replacing true with false and false with true in the above two bullets. 7074 7075 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7076 7077 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7078 return false; 7079 7080 InvariantPred = Pred; 7081 InvariantLHS = ArLHS->getStart(); 7082 InvariantRHS = RHS; 7083 return true; 7084 } 7085 7086 bool 7087 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7088 const SCEV *LHS, const SCEV *RHS) { 7089 if (HasSameValue(LHS, RHS)) 7090 return ICmpInst::isTrueWhenEqual(Pred); 7091 7092 // This code is split out from isKnownPredicate because it is called from 7093 // within isLoopEntryGuardedByCond. 7094 switch (Pred) { 7095 default: 7096 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7097 case ICmpInst::ICMP_SGT: 7098 std::swap(LHS, RHS); 7099 case ICmpInst::ICMP_SLT: { 7100 ConstantRange LHSRange = getSignedRange(LHS); 7101 ConstantRange RHSRange = getSignedRange(RHS); 7102 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7103 return true; 7104 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7105 return false; 7106 break; 7107 } 7108 case ICmpInst::ICMP_SGE: 7109 std::swap(LHS, RHS); 7110 case ICmpInst::ICMP_SLE: { 7111 ConstantRange LHSRange = getSignedRange(LHS); 7112 ConstantRange RHSRange = getSignedRange(RHS); 7113 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7114 return true; 7115 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7116 return false; 7117 break; 7118 } 7119 case ICmpInst::ICMP_UGT: 7120 std::swap(LHS, RHS); 7121 case ICmpInst::ICMP_ULT: { 7122 ConstantRange LHSRange = getUnsignedRange(LHS); 7123 ConstantRange RHSRange = getUnsignedRange(RHS); 7124 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7125 return true; 7126 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7127 return false; 7128 break; 7129 } 7130 case ICmpInst::ICMP_UGE: 7131 std::swap(LHS, RHS); 7132 case ICmpInst::ICMP_ULE: { 7133 ConstantRange LHSRange = getUnsignedRange(LHS); 7134 ConstantRange RHSRange = getUnsignedRange(RHS); 7135 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7136 return true; 7137 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7138 return false; 7139 break; 7140 } 7141 case ICmpInst::ICMP_NE: { 7142 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7143 return true; 7144 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7145 return true; 7146 7147 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7148 if (isKnownNonZero(Diff)) 7149 return true; 7150 break; 7151 } 7152 case ICmpInst::ICMP_EQ: 7153 // The check at the top of the function catches the case where 7154 // the values are known to be equal. 7155 break; 7156 } 7157 return false; 7158 } 7159 7160 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7161 const SCEV *LHS, 7162 const SCEV *RHS) { 7163 7164 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7165 // Return Y via OutY. 7166 auto MatchBinaryAddToConst = 7167 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7168 SCEV::NoWrapFlags ExpectedFlags) { 7169 const SCEV *NonConstOp, *ConstOp; 7170 SCEV::NoWrapFlags FlagsPresent; 7171 7172 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7173 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7174 return false; 7175 7176 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue(); 7177 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7178 }; 7179 7180 APInt C; 7181 7182 switch (Pred) { 7183 default: 7184 break; 7185 7186 case ICmpInst::ICMP_SGE: 7187 std::swap(LHS, RHS); 7188 case ICmpInst::ICMP_SLE: 7189 // X s<= (X + C)<nsw> if C >= 0 7190 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7191 return true; 7192 7193 // (X + C)<nsw> s<= X if C <= 0 7194 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7195 !C.isStrictlyPositive()) 7196 return true; 7197 7198 case ICmpInst::ICMP_SGT: 7199 std::swap(LHS, RHS); 7200 case ICmpInst::ICMP_SLT: 7201 // X s< (X + C)<nsw> if C > 0 7202 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7203 C.isStrictlyPositive()) 7204 return true; 7205 7206 // (X + C)<nsw> s< X if C < 0 7207 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7208 return true; 7209 } 7210 7211 return false; 7212 } 7213 7214 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7215 const SCEV *LHS, 7216 const SCEV *RHS) { 7217 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7218 return false; 7219 7220 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7221 // the stack can result in exponential time complexity. 7222 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7223 7224 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7225 // 7226 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7227 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7228 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7229 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7230 // use isKnownPredicate later if needed. 7231 if (isKnownNonNegative(RHS) && 7232 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7233 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7234 return true; 7235 7236 return false; 7237 } 7238 7239 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7240 /// protected by a conditional between LHS and RHS. This is used to 7241 /// to eliminate casts. 7242 bool 7243 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7244 ICmpInst::Predicate Pred, 7245 const SCEV *LHS, const SCEV *RHS) { 7246 // Interpret a null as meaning no loop, where there is obviously no guard 7247 // (interprocedural conditions notwithstanding). 7248 if (!L) return true; 7249 7250 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7251 7252 BasicBlock *Latch = L->getLoopLatch(); 7253 if (!Latch) 7254 return false; 7255 7256 BranchInst *LoopContinuePredicate = 7257 dyn_cast<BranchInst>(Latch->getTerminator()); 7258 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7259 isImpliedCond(Pred, LHS, RHS, 7260 LoopContinuePredicate->getCondition(), 7261 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7262 return true; 7263 7264 // We don't want more than one activation of the following loops on the stack 7265 // -- that can lead to O(n!) time complexity. 7266 if (WalkingBEDominatingConds) 7267 return false; 7268 7269 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7270 7271 // See if we can exploit a trip count to prove the predicate. 7272 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7273 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7274 if (LatchBECount != getCouldNotCompute()) { 7275 // We know that Latch branches back to the loop header exactly 7276 // LatchBECount times. This means the backdege condition at Latch is 7277 // equivalent to "{0,+,1} u< LatchBECount". 7278 Type *Ty = LatchBECount->getType(); 7279 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7280 const SCEV *LoopCounter = 7281 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7282 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7283 LatchBECount)) 7284 return true; 7285 } 7286 7287 // Check conditions due to any @llvm.assume intrinsics. 7288 for (auto &AssumeVH : AC.assumptions()) { 7289 if (!AssumeVH) 7290 continue; 7291 auto *CI = cast<CallInst>(AssumeVH); 7292 if (!DT.dominates(CI, Latch->getTerminator())) 7293 continue; 7294 7295 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7296 return true; 7297 } 7298 7299 // If the loop is not reachable from the entry block, we risk running into an 7300 // infinite loop as we walk up into the dom tree. These loops do not matter 7301 // anyway, so we just return a conservative answer when we see them. 7302 if (!DT.isReachableFromEntry(L->getHeader())) 7303 return false; 7304 7305 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7306 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7307 7308 assert(DTN && "should reach the loop header before reaching the root!"); 7309 7310 BasicBlock *BB = DTN->getBlock(); 7311 BasicBlock *PBB = BB->getSinglePredecessor(); 7312 if (!PBB) 7313 continue; 7314 7315 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7316 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7317 continue; 7318 7319 Value *Condition = ContinuePredicate->getCondition(); 7320 7321 // If we have an edge `E` within the loop body that dominates the only 7322 // latch, the condition guarding `E` also guards the backedge. This 7323 // reasoning works only for loops with a single latch. 7324 7325 BasicBlockEdge DominatingEdge(PBB, BB); 7326 if (DominatingEdge.isSingleEdge()) { 7327 // We're constructively (and conservatively) enumerating edges within the 7328 // loop body that dominate the latch. The dominator tree better agree 7329 // with us on this: 7330 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7331 7332 if (isImpliedCond(Pred, LHS, RHS, Condition, 7333 BB != ContinuePredicate->getSuccessor(0))) 7334 return true; 7335 } 7336 } 7337 7338 return false; 7339 } 7340 7341 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7342 /// by a conditional between LHS and RHS. This is used to help avoid max 7343 /// expressions in loop trip counts, and to eliminate casts. 7344 bool 7345 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7346 ICmpInst::Predicate Pred, 7347 const SCEV *LHS, const SCEV *RHS) { 7348 // Interpret a null as meaning no loop, where there is obviously no guard 7349 // (interprocedural conditions notwithstanding). 7350 if (!L) return false; 7351 7352 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7353 7354 // Starting at the loop predecessor, climb up the predecessor chain, as long 7355 // as there are predecessors that can be found that have unique successors 7356 // leading to the original header. 7357 for (std::pair<BasicBlock *, BasicBlock *> 7358 Pair(L->getLoopPredecessor(), L->getHeader()); 7359 Pair.first; 7360 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7361 7362 BranchInst *LoopEntryPredicate = 7363 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7364 if (!LoopEntryPredicate || 7365 LoopEntryPredicate->isUnconditional()) 7366 continue; 7367 7368 if (isImpliedCond(Pred, LHS, RHS, 7369 LoopEntryPredicate->getCondition(), 7370 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7371 return true; 7372 } 7373 7374 // Check conditions due to any @llvm.assume intrinsics. 7375 for (auto &AssumeVH : AC.assumptions()) { 7376 if (!AssumeVH) 7377 continue; 7378 auto *CI = cast<CallInst>(AssumeVH); 7379 if (!DT.dominates(CI, L->getHeader())) 7380 continue; 7381 7382 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7383 return true; 7384 } 7385 7386 return false; 7387 } 7388 7389 /// RAII wrapper to prevent recursive application of isImpliedCond. 7390 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7391 /// currently evaluating isImpliedCond. 7392 struct MarkPendingLoopPredicate { 7393 Value *Cond; 7394 DenseSet<Value*> &LoopPreds; 7395 bool Pending; 7396 7397 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7398 : Cond(C), LoopPreds(LP) { 7399 Pending = !LoopPreds.insert(Cond).second; 7400 } 7401 ~MarkPendingLoopPredicate() { 7402 if (!Pending) 7403 LoopPreds.erase(Cond); 7404 } 7405 }; 7406 7407 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7408 /// and RHS is true whenever the given Cond value evaluates to true. 7409 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7410 const SCEV *LHS, const SCEV *RHS, 7411 Value *FoundCondValue, 7412 bool Inverse) { 7413 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7414 if (Mark.Pending) 7415 return false; 7416 7417 // Recursively handle And and Or conditions. 7418 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7419 if (BO->getOpcode() == Instruction::And) { 7420 if (!Inverse) 7421 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7422 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7423 } else if (BO->getOpcode() == Instruction::Or) { 7424 if (Inverse) 7425 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7426 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7427 } 7428 } 7429 7430 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7431 if (!ICI) return false; 7432 7433 // Now that we found a conditional branch that dominates the loop or controls 7434 // the loop latch. Check to see if it is the comparison we are looking for. 7435 ICmpInst::Predicate FoundPred; 7436 if (Inverse) 7437 FoundPred = ICI->getInversePredicate(); 7438 else 7439 FoundPred = ICI->getPredicate(); 7440 7441 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7442 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7443 7444 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7445 } 7446 7447 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7448 const SCEV *RHS, 7449 ICmpInst::Predicate FoundPred, 7450 const SCEV *FoundLHS, 7451 const SCEV *FoundRHS) { 7452 // Balance the types. 7453 if (getTypeSizeInBits(LHS->getType()) < 7454 getTypeSizeInBits(FoundLHS->getType())) { 7455 if (CmpInst::isSigned(Pred)) { 7456 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7457 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7458 } else { 7459 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7460 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7461 } 7462 } else if (getTypeSizeInBits(LHS->getType()) > 7463 getTypeSizeInBits(FoundLHS->getType())) { 7464 if (CmpInst::isSigned(FoundPred)) { 7465 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7466 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7467 } else { 7468 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7469 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7470 } 7471 } 7472 7473 // Canonicalize the query to match the way instcombine will have 7474 // canonicalized the comparison. 7475 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7476 if (LHS == RHS) 7477 return CmpInst::isTrueWhenEqual(Pred); 7478 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7479 if (FoundLHS == FoundRHS) 7480 return CmpInst::isFalseWhenEqual(FoundPred); 7481 7482 // Check to see if we can make the LHS or RHS match. 7483 if (LHS == FoundRHS || RHS == FoundLHS) { 7484 if (isa<SCEVConstant>(RHS)) { 7485 std::swap(FoundLHS, FoundRHS); 7486 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7487 } else { 7488 std::swap(LHS, RHS); 7489 Pred = ICmpInst::getSwappedPredicate(Pred); 7490 } 7491 } 7492 7493 // Check whether the found predicate is the same as the desired predicate. 7494 if (FoundPred == Pred) 7495 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7496 7497 // Check whether swapping the found predicate makes it the same as the 7498 // desired predicate. 7499 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7500 if (isa<SCEVConstant>(RHS)) 7501 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7502 else 7503 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7504 RHS, LHS, FoundLHS, FoundRHS); 7505 } 7506 7507 // Unsigned comparison is the same as signed comparison when both the operands 7508 // are non-negative. 7509 if (CmpInst::isUnsigned(FoundPred) && 7510 CmpInst::getSignedPredicate(FoundPred) == Pred && 7511 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7512 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7513 7514 // Check if we can make progress by sharpening ranges. 7515 if (FoundPred == ICmpInst::ICMP_NE && 7516 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7517 7518 const SCEVConstant *C = nullptr; 7519 const SCEV *V = nullptr; 7520 7521 if (isa<SCEVConstant>(FoundLHS)) { 7522 C = cast<SCEVConstant>(FoundLHS); 7523 V = FoundRHS; 7524 } else { 7525 C = cast<SCEVConstant>(FoundRHS); 7526 V = FoundLHS; 7527 } 7528 7529 // The guarding predicate tells us that C != V. If the known range 7530 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7531 // range we consider has to correspond to same signedness as the 7532 // predicate we're interested in folding. 7533 7534 APInt Min = ICmpInst::isSigned(Pred) ? 7535 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7536 7537 if (Min == C->getValue()->getValue()) { 7538 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7539 // This is true even if (Min + 1) wraps around -- in case of 7540 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7541 7542 APInt SharperMin = Min + 1; 7543 7544 switch (Pred) { 7545 case ICmpInst::ICMP_SGE: 7546 case ICmpInst::ICMP_UGE: 7547 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7548 // RHS, we're done. 7549 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7550 getConstant(SharperMin))) 7551 return true; 7552 7553 case ICmpInst::ICMP_SGT: 7554 case ICmpInst::ICMP_UGT: 7555 // We know from the range information that (V `Pred` Min || 7556 // V == Min). We know from the guarding condition that !(V 7557 // == Min). This gives us 7558 // 7559 // V `Pred` Min || V == Min && !(V == Min) 7560 // => V `Pred` Min 7561 // 7562 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7563 7564 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7565 return true; 7566 7567 default: 7568 // No change 7569 break; 7570 } 7571 } 7572 } 7573 7574 // Check whether the actual condition is beyond sufficient. 7575 if (FoundPred == ICmpInst::ICMP_EQ) 7576 if (ICmpInst::isTrueWhenEqual(Pred)) 7577 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7578 return true; 7579 if (Pred == ICmpInst::ICMP_NE) 7580 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7581 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7582 return true; 7583 7584 // Otherwise assume the worst. 7585 return false; 7586 } 7587 7588 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7589 const SCEV *&L, const SCEV *&R, 7590 SCEV::NoWrapFlags &Flags) { 7591 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7592 if (!AE || AE->getNumOperands() != 2) 7593 return false; 7594 7595 L = AE->getOperand(0); 7596 R = AE->getOperand(1); 7597 Flags = AE->getNoWrapFlags(); 7598 return true; 7599 } 7600 7601 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7602 const SCEV *More, 7603 APInt &C) { 7604 // We avoid subtracting expressions here because this function is usually 7605 // fairly deep in the call stack (i.e. is called many times). 7606 7607 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7608 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7609 const auto *MAR = cast<SCEVAddRecExpr>(More); 7610 7611 if (LAR->getLoop() != MAR->getLoop()) 7612 return false; 7613 7614 // We look at affine expressions only; not for correctness but to keep 7615 // getStepRecurrence cheap. 7616 if (!LAR->isAffine() || !MAR->isAffine()) 7617 return false; 7618 7619 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7620 return false; 7621 7622 Less = LAR->getStart(); 7623 More = MAR->getStart(); 7624 7625 // fall through 7626 } 7627 7628 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7629 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7630 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7631 C = M - L; 7632 return true; 7633 } 7634 7635 const SCEV *L, *R; 7636 SCEV::NoWrapFlags Flags; 7637 if (splitBinaryAdd(Less, L, R, Flags)) 7638 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7639 if (R == More) { 7640 C = -(LC->getValue()->getValue()); 7641 return true; 7642 } 7643 7644 if (splitBinaryAdd(More, L, R, Flags)) 7645 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7646 if (R == Less) { 7647 C = LC->getValue()->getValue(); 7648 return true; 7649 } 7650 7651 return false; 7652 } 7653 7654 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7655 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7656 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7657 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7658 return false; 7659 7660 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7661 if (!AddRecLHS) 7662 return false; 7663 7664 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7665 if (!AddRecFoundLHS) 7666 return false; 7667 7668 // We'd like to let SCEV reason about control dependencies, so we constrain 7669 // both the inequalities to be about add recurrences on the same loop. This 7670 // way we can use isLoopEntryGuardedByCond later. 7671 7672 const Loop *L = AddRecFoundLHS->getLoop(); 7673 if (L != AddRecLHS->getLoop()) 7674 return false; 7675 7676 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7677 // 7678 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7679 // ... (2) 7680 // 7681 // Informal proof for (2), assuming (1) [*]: 7682 // 7683 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7684 // 7685 // Then 7686 // 7687 // FoundLHS s< FoundRHS s< INT_MIN - C 7688 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7689 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7690 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7691 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7692 // <=> FoundLHS + C s< FoundRHS + C 7693 // 7694 // [*]: (1) can be proved by ruling out overflow. 7695 // 7696 // [**]: This can be proved by analyzing all the four possibilities: 7697 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7698 // (A s>= 0, B s>= 0). 7699 // 7700 // Note: 7701 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7702 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7703 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7704 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7705 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7706 // C)". 7707 7708 APInt LDiff, RDiff; 7709 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7710 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7711 LDiff != RDiff) 7712 return false; 7713 7714 if (LDiff == 0) 7715 return true; 7716 7717 APInt FoundRHSLimit; 7718 7719 if (Pred == CmpInst::ICMP_ULT) { 7720 FoundRHSLimit = -RDiff; 7721 } else { 7722 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7723 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7724 } 7725 7726 // Try to prove (1) or (2), as needed. 7727 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7728 getConstant(FoundRHSLimit)); 7729 } 7730 7731 /// isImpliedCondOperands - Test whether the condition described by Pred, 7732 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7733 /// and FoundRHS is true. 7734 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7735 const SCEV *LHS, const SCEV *RHS, 7736 const SCEV *FoundLHS, 7737 const SCEV *FoundRHS) { 7738 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7739 return true; 7740 7741 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7742 return true; 7743 7744 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7745 FoundLHS, FoundRHS) || 7746 // ~x < ~y --> x > y 7747 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7748 getNotSCEV(FoundRHS), 7749 getNotSCEV(FoundLHS)); 7750 } 7751 7752 7753 /// If Expr computes ~A, return A else return nullptr 7754 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7755 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7756 if (!Add || Add->getNumOperands() != 2 || 7757 !Add->getOperand(0)->isAllOnesValue()) 7758 return nullptr; 7759 7760 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7761 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7762 !AddRHS->getOperand(0)->isAllOnesValue()) 7763 return nullptr; 7764 7765 return AddRHS->getOperand(1); 7766 } 7767 7768 7769 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7770 template<typename MaxExprType> 7771 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7772 const SCEV *Candidate) { 7773 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7774 if (!MaxExpr) return false; 7775 7776 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7777 return It != MaxExpr->op_end(); 7778 } 7779 7780 7781 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7782 template<typename MaxExprType> 7783 static bool IsMinConsistingOf(ScalarEvolution &SE, 7784 const SCEV *MaybeMinExpr, 7785 const SCEV *Candidate) { 7786 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7787 if (!MaybeMaxExpr) 7788 return false; 7789 7790 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7791 } 7792 7793 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7794 ICmpInst::Predicate Pred, 7795 const SCEV *LHS, const SCEV *RHS) { 7796 7797 // If both sides are affine addrecs for the same loop, with equal 7798 // steps, and we know the recurrences don't wrap, then we only 7799 // need to check the predicate on the starting values. 7800 7801 if (!ICmpInst::isRelational(Pred)) 7802 return false; 7803 7804 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7805 if (!LAR) 7806 return false; 7807 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7808 if (!RAR) 7809 return false; 7810 if (LAR->getLoop() != RAR->getLoop()) 7811 return false; 7812 if (!LAR->isAffine() || !RAR->isAffine()) 7813 return false; 7814 7815 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7816 return false; 7817 7818 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7819 SCEV::FlagNSW : SCEV::FlagNUW; 7820 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7821 return false; 7822 7823 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7824 } 7825 7826 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7827 /// expression? 7828 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7829 ICmpInst::Predicate Pred, 7830 const SCEV *LHS, const SCEV *RHS) { 7831 switch (Pred) { 7832 default: 7833 return false; 7834 7835 case ICmpInst::ICMP_SGE: 7836 std::swap(LHS, RHS); 7837 // fall through 7838 case ICmpInst::ICMP_SLE: 7839 return 7840 // min(A, ...) <= A 7841 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7842 // A <= max(A, ...) 7843 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7844 7845 case ICmpInst::ICMP_UGE: 7846 std::swap(LHS, RHS); 7847 // fall through 7848 case ICmpInst::ICMP_ULE: 7849 return 7850 // min(A, ...) <= A 7851 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7852 // A <= max(A, ...) 7853 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7854 } 7855 7856 llvm_unreachable("covered switch fell through?!"); 7857 } 7858 7859 /// isImpliedCondOperandsHelper - Test whether the condition described by 7860 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7861 /// FoundLHS, and FoundRHS is true. 7862 bool 7863 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7864 const SCEV *LHS, const SCEV *RHS, 7865 const SCEV *FoundLHS, 7866 const SCEV *FoundRHS) { 7867 auto IsKnownPredicateFull = 7868 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7869 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7870 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7871 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 7872 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 7873 }; 7874 7875 switch (Pred) { 7876 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7877 case ICmpInst::ICMP_EQ: 7878 case ICmpInst::ICMP_NE: 7879 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7880 return true; 7881 break; 7882 case ICmpInst::ICMP_SLT: 7883 case ICmpInst::ICMP_SLE: 7884 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7885 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7886 return true; 7887 break; 7888 case ICmpInst::ICMP_SGT: 7889 case ICmpInst::ICMP_SGE: 7890 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7891 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7892 return true; 7893 break; 7894 case ICmpInst::ICMP_ULT: 7895 case ICmpInst::ICMP_ULE: 7896 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7897 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7898 return true; 7899 break; 7900 case ICmpInst::ICMP_UGT: 7901 case ICmpInst::ICMP_UGE: 7902 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7903 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7904 return true; 7905 break; 7906 } 7907 7908 return false; 7909 } 7910 7911 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7912 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7913 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7914 const SCEV *LHS, 7915 const SCEV *RHS, 7916 const SCEV *FoundLHS, 7917 const SCEV *FoundRHS) { 7918 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7919 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7920 // reduce the compile time impact of this optimization. 7921 return false; 7922 7923 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7924 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7925 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7926 return false; 7927 7928 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7929 7930 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7931 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7932 ConstantRange FoundLHSRange = 7933 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7934 7935 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7936 // for `LHS`: 7937 APInt Addend = 7938 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7939 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7940 7941 // We can also compute the range of values for `LHS` that satisfy the 7942 // consequent, "`LHS` `Pred` `RHS`": 7943 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7944 ConstantRange SatisfyingLHSRange = 7945 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7946 7947 // The antecedent implies the consequent if every value of `LHS` that 7948 // satisfies the antecedent also satisfies the consequent. 7949 return SatisfyingLHSRange.contains(LHSRange); 7950 } 7951 7952 // Verify if an linear IV with positive stride can overflow when in a 7953 // less-than comparison, knowing the invariant term of the comparison, the 7954 // stride and the knowledge of NSW/NUW flags on the recurrence. 7955 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7956 bool IsSigned, bool NoWrap) { 7957 if (NoWrap) return false; 7958 7959 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7960 const SCEV *One = getOne(Stride->getType()); 7961 7962 if (IsSigned) { 7963 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7964 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7965 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7966 .getSignedMax(); 7967 7968 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7969 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7970 } 7971 7972 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7973 APInt MaxValue = APInt::getMaxValue(BitWidth); 7974 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7975 .getUnsignedMax(); 7976 7977 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7978 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7979 } 7980 7981 // Verify if an linear IV with negative stride can overflow when in a 7982 // greater-than comparison, knowing the invariant term of the comparison, 7983 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7984 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7985 bool IsSigned, bool NoWrap) { 7986 if (NoWrap) return false; 7987 7988 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7989 const SCEV *One = getOne(Stride->getType()); 7990 7991 if (IsSigned) { 7992 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7993 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7994 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7995 .getSignedMax(); 7996 7997 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7998 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7999 } 8000 8001 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8002 APInt MinValue = APInt::getMinValue(BitWidth); 8003 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8004 .getUnsignedMax(); 8005 8006 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8007 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8008 } 8009 8010 // Compute the backedge taken count knowing the interval difference, the 8011 // stride and presence of the equality in the comparison. 8012 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8013 bool Equality) { 8014 const SCEV *One = getOne(Step->getType()); 8015 Delta = Equality ? getAddExpr(Delta, Step) 8016 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8017 return getUDivExpr(Delta, Step); 8018 } 8019 8020 /// HowManyLessThans - Return the number of times a backedge containing the 8021 /// specified less-than comparison will execute. If not computable, return 8022 /// CouldNotCompute. 8023 /// 8024 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8025 /// the branch (loops exits only if condition is true). In this case, we can use 8026 /// NoWrapFlags to skip overflow checks. 8027 ScalarEvolution::ExitLimit 8028 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8029 const Loop *L, bool IsSigned, 8030 bool ControlsExit) { 8031 // We handle only IV < Invariant 8032 if (!isLoopInvariant(RHS, L)) 8033 return getCouldNotCompute(); 8034 8035 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8036 8037 // Avoid weird loops 8038 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8039 return getCouldNotCompute(); 8040 8041 bool NoWrap = ControlsExit && 8042 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8043 8044 const SCEV *Stride = IV->getStepRecurrence(*this); 8045 8046 // Avoid negative or zero stride values 8047 if (!isKnownPositive(Stride)) 8048 return getCouldNotCompute(); 8049 8050 // Avoid proven overflow cases: this will ensure that the backedge taken count 8051 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8052 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8053 // behaviors like the case of C language. 8054 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8055 return getCouldNotCompute(); 8056 8057 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8058 : ICmpInst::ICMP_ULT; 8059 const SCEV *Start = IV->getStart(); 8060 const SCEV *End = RHS; 8061 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8062 const SCEV *Diff = getMinusSCEV(RHS, Start); 8063 // If we have NoWrap set, then we can assume that the increment won't 8064 // overflow, in which case if RHS - Start is a constant, we don't need to 8065 // do a max operation since we can just figure it out statically 8066 if (NoWrap && isa<SCEVConstant>(Diff)) { 8067 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8068 if (D.isNegative()) 8069 End = Start; 8070 } else 8071 End = IsSigned ? getSMaxExpr(RHS, Start) 8072 : getUMaxExpr(RHS, Start); 8073 } 8074 8075 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8076 8077 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8078 : getUnsignedRange(Start).getUnsignedMin(); 8079 8080 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8081 : getUnsignedRange(Stride).getUnsignedMin(); 8082 8083 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8084 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8085 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8086 8087 // Although End can be a MAX expression we estimate MaxEnd considering only 8088 // the case End = RHS. This is safe because in the other case (End - Start) 8089 // is zero, leading to a zero maximum backedge taken count. 8090 APInt MaxEnd = 8091 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8092 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8093 8094 const SCEV *MaxBECount; 8095 if (isa<SCEVConstant>(BECount)) 8096 MaxBECount = BECount; 8097 else 8098 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8099 getConstant(MinStride), false); 8100 8101 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8102 MaxBECount = BECount; 8103 8104 return ExitLimit(BECount, MaxBECount); 8105 } 8106 8107 ScalarEvolution::ExitLimit 8108 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8109 const Loop *L, bool IsSigned, 8110 bool ControlsExit) { 8111 // We handle only IV > Invariant 8112 if (!isLoopInvariant(RHS, L)) 8113 return getCouldNotCompute(); 8114 8115 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8116 8117 // Avoid weird loops 8118 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8119 return getCouldNotCompute(); 8120 8121 bool NoWrap = ControlsExit && 8122 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8123 8124 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8125 8126 // Avoid negative or zero stride values 8127 if (!isKnownPositive(Stride)) 8128 return getCouldNotCompute(); 8129 8130 // Avoid proven overflow cases: this will ensure that the backedge taken count 8131 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8132 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8133 // behaviors like the case of C language. 8134 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8135 return getCouldNotCompute(); 8136 8137 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8138 : ICmpInst::ICMP_UGT; 8139 8140 const SCEV *Start = IV->getStart(); 8141 const SCEV *End = RHS; 8142 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8143 const SCEV *Diff = getMinusSCEV(RHS, Start); 8144 // If we have NoWrap set, then we can assume that the increment won't 8145 // overflow, in which case if RHS - Start is a constant, we don't need to 8146 // do a max operation since we can just figure it out statically 8147 if (NoWrap && isa<SCEVConstant>(Diff)) { 8148 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8149 if (!D.isNegative()) 8150 End = Start; 8151 } else 8152 End = IsSigned ? getSMinExpr(RHS, Start) 8153 : getUMinExpr(RHS, Start); 8154 } 8155 8156 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8157 8158 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8159 : getUnsignedRange(Start).getUnsignedMax(); 8160 8161 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8162 : getUnsignedRange(Stride).getUnsignedMin(); 8163 8164 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8165 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8166 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8167 8168 // Although End can be a MIN expression we estimate MinEnd considering only 8169 // the case End = RHS. This is safe because in the other case (Start - End) 8170 // is zero, leading to a zero maximum backedge taken count. 8171 APInt MinEnd = 8172 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8173 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8174 8175 8176 const SCEV *MaxBECount = getCouldNotCompute(); 8177 if (isa<SCEVConstant>(BECount)) 8178 MaxBECount = BECount; 8179 else 8180 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8181 getConstant(MinStride), false); 8182 8183 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8184 MaxBECount = BECount; 8185 8186 return ExitLimit(BECount, MaxBECount); 8187 } 8188 8189 /// getNumIterationsInRange - Return the number of iterations of this loop that 8190 /// produce values in the specified constant range. Another way of looking at 8191 /// this is that it returns the first iteration number where the value is not in 8192 /// the condition, thus computing the exit count. If the iteration count can't 8193 /// be computed, an instance of SCEVCouldNotCompute is returned. 8194 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8195 ScalarEvolution &SE) const { 8196 if (Range.isFullSet()) // Infinite loop. 8197 return SE.getCouldNotCompute(); 8198 8199 // If the start is a non-zero constant, shift the range to simplify things. 8200 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8201 if (!SC->getValue()->isZero()) { 8202 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8203 Operands[0] = SE.getZero(SC->getType()); 8204 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8205 getNoWrapFlags(FlagNW)); 8206 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8207 return ShiftedAddRec->getNumIterationsInRange( 8208 Range.subtract(SC->getValue()->getValue()), SE); 8209 // This is strange and shouldn't happen. 8210 return SE.getCouldNotCompute(); 8211 } 8212 8213 // The only time we can solve this is when we have all constant indices. 8214 // Otherwise, we cannot determine the overflow conditions. 8215 if (std::any_of(op_begin(), op_end(), 8216 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);})) 8217 return SE.getCouldNotCompute(); 8218 8219 // Okay at this point we know that all elements of the chrec are constants and 8220 // that the start element is zero. 8221 8222 // First check to see if the range contains zero. If not, the first 8223 // iteration exits. 8224 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8225 if (!Range.contains(APInt(BitWidth, 0))) 8226 return SE.getZero(getType()); 8227 8228 if (isAffine()) { 8229 // If this is an affine expression then we have this situation: 8230 // Solve {0,+,A} in Range === Ax in Range 8231 8232 // We know that zero is in the range. If A is positive then we know that 8233 // the upper value of the range must be the first possible exit value. 8234 // If A is negative then the lower of the range is the last possible loop 8235 // value. Also note that we already checked for a full range. 8236 APInt One(BitWidth,1); 8237 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8238 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8239 8240 // The exit value should be (End+A)/A. 8241 APInt ExitVal = (End + A).udiv(A); 8242 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8243 8244 // Evaluate at the exit value. If we really did fall out of the valid 8245 // range, then we computed our trip count, otherwise wrap around or other 8246 // things must have happened. 8247 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8248 if (Range.contains(Val->getValue())) 8249 return SE.getCouldNotCompute(); // Something strange happened 8250 8251 // Ensure that the previous value is in the range. This is a sanity check. 8252 assert(Range.contains( 8253 EvaluateConstantChrecAtConstant(this, 8254 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8255 "Linear scev computation is off in a bad way!"); 8256 return SE.getConstant(ExitValue); 8257 } else if (isQuadratic()) { 8258 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8259 // quadratic equation to solve it. To do this, we must frame our problem in 8260 // terms of figuring out when zero is crossed, instead of when 8261 // Range.getUpper() is crossed. 8262 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8263 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8264 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8265 // getNoWrapFlags(FlagNW) 8266 FlagAnyWrap); 8267 8268 // Next, solve the constructed addrec 8269 std::pair<const SCEV *,const SCEV *> Roots = 8270 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8271 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8272 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8273 if (R1) { 8274 // Pick the smallest positive root value. 8275 if (ConstantInt *CB = 8276 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8277 R1->getValue(), R2->getValue()))) { 8278 if (!CB->getZExtValue()) 8279 std::swap(R1, R2); // R1 is the minimum root now. 8280 8281 // Make sure the root is not off by one. The returned iteration should 8282 // not be in the range, but the previous one should be. When solving 8283 // for "X*X < 5", for example, we should not return a root of 2. 8284 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8285 R1->getValue(), 8286 SE); 8287 if (Range.contains(R1Val->getValue())) { 8288 // The next iteration must be out of the range... 8289 ConstantInt *NextVal = 8290 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8291 8292 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8293 if (!Range.contains(R1Val->getValue())) 8294 return SE.getConstant(NextVal); 8295 return SE.getCouldNotCompute(); // Something strange happened 8296 } 8297 8298 // If R1 was not in the range, then it is a good return value. Make 8299 // sure that R1-1 WAS in the range though, just in case. 8300 ConstantInt *NextVal = 8301 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8302 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8303 if (Range.contains(R1Val->getValue())) 8304 return R1; 8305 return SE.getCouldNotCompute(); // Something strange happened 8306 } 8307 } 8308 } 8309 8310 return SE.getCouldNotCompute(); 8311 } 8312 8313 namespace { 8314 struct FindUndefs { 8315 bool Found; 8316 FindUndefs() : Found(false) {} 8317 8318 bool follow(const SCEV *S) { 8319 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8320 if (isa<UndefValue>(C->getValue())) 8321 Found = true; 8322 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8323 if (isa<UndefValue>(C->getValue())) 8324 Found = true; 8325 } 8326 8327 // Keep looking if we haven't found it yet. 8328 return !Found; 8329 } 8330 bool isDone() const { 8331 // Stop recursion if we have found an undef. 8332 return Found; 8333 } 8334 }; 8335 } 8336 8337 // Return true when S contains at least an undef value. 8338 static inline bool 8339 containsUndefs(const SCEV *S) { 8340 FindUndefs F; 8341 SCEVTraversal<FindUndefs> ST(F); 8342 ST.visitAll(S); 8343 8344 return F.Found; 8345 } 8346 8347 namespace { 8348 // Collect all steps of SCEV expressions. 8349 struct SCEVCollectStrides { 8350 ScalarEvolution &SE; 8351 SmallVectorImpl<const SCEV *> &Strides; 8352 8353 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8354 : SE(SE), Strides(S) {} 8355 8356 bool follow(const SCEV *S) { 8357 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8358 Strides.push_back(AR->getStepRecurrence(SE)); 8359 return true; 8360 } 8361 bool isDone() const { return false; } 8362 }; 8363 8364 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8365 struct SCEVCollectTerms { 8366 SmallVectorImpl<const SCEV *> &Terms; 8367 8368 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8369 : Terms(T) {} 8370 8371 bool follow(const SCEV *S) { 8372 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8373 if (!containsUndefs(S)) 8374 Terms.push_back(S); 8375 8376 // Stop recursion: once we collected a term, do not walk its operands. 8377 return false; 8378 } 8379 8380 // Keep looking. 8381 return true; 8382 } 8383 bool isDone() const { return false; } 8384 }; 8385 8386 // Check if a SCEV contains an AddRecExpr. 8387 struct SCEVHasAddRec { 8388 bool &ContainsAddRec; 8389 8390 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8391 ContainsAddRec = false; 8392 } 8393 8394 bool follow(const SCEV *S) { 8395 if (isa<SCEVAddRecExpr>(S)) { 8396 ContainsAddRec = true; 8397 8398 // Stop recursion: once we collected a term, do not walk its operands. 8399 return false; 8400 } 8401 8402 // Keep looking. 8403 return true; 8404 } 8405 bool isDone() const { return false; } 8406 }; 8407 8408 // Find factors that are multiplied with an expression that (possibly as a 8409 // subexpression) contains an AddRecExpr. In the expression: 8410 // 8411 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8412 // 8413 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8414 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8415 // parameters as they form a product with an induction variable. 8416 // 8417 // This collector expects all array size parameters to be in the same MulExpr. 8418 // It might be necessary to later add support for collecting parameters that are 8419 // spread over different nested MulExpr. 8420 struct SCEVCollectAddRecMultiplies { 8421 SmallVectorImpl<const SCEV *> &Terms; 8422 ScalarEvolution &SE; 8423 8424 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8425 : Terms(T), SE(SE) {} 8426 8427 bool follow(const SCEV *S) { 8428 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8429 bool HasAddRec = false; 8430 SmallVector<const SCEV *, 0> Operands; 8431 for (auto Op : Mul->operands()) { 8432 if (isa<SCEVUnknown>(Op)) { 8433 Operands.push_back(Op); 8434 } else { 8435 bool ContainsAddRec; 8436 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8437 visitAll(Op, ContiansAddRec); 8438 HasAddRec |= ContainsAddRec; 8439 } 8440 } 8441 if (Operands.size() == 0) 8442 return true; 8443 8444 if (!HasAddRec) 8445 return false; 8446 8447 Terms.push_back(SE.getMulExpr(Operands)); 8448 // Stop recursion: once we collected a term, do not walk its operands. 8449 return false; 8450 } 8451 8452 // Keep looking. 8453 return true; 8454 } 8455 bool isDone() const { return false; } 8456 }; 8457 } 8458 8459 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8460 /// two places: 8461 /// 1) The strides of AddRec expressions. 8462 /// 2) Unknowns that are multiplied with AddRec expressions. 8463 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8464 SmallVectorImpl<const SCEV *> &Terms) { 8465 SmallVector<const SCEV *, 4> Strides; 8466 SCEVCollectStrides StrideCollector(*this, Strides); 8467 visitAll(Expr, StrideCollector); 8468 8469 DEBUG({ 8470 dbgs() << "Strides:\n"; 8471 for (const SCEV *S : Strides) 8472 dbgs() << *S << "\n"; 8473 }); 8474 8475 for (const SCEV *S : Strides) { 8476 SCEVCollectTerms TermCollector(Terms); 8477 visitAll(S, TermCollector); 8478 } 8479 8480 DEBUG({ 8481 dbgs() << "Terms:\n"; 8482 for (const SCEV *T : Terms) 8483 dbgs() << *T << "\n"; 8484 }); 8485 8486 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8487 visitAll(Expr, MulCollector); 8488 } 8489 8490 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8491 SmallVectorImpl<const SCEV *> &Terms, 8492 SmallVectorImpl<const SCEV *> &Sizes) { 8493 int Last = Terms.size() - 1; 8494 const SCEV *Step = Terms[Last]; 8495 8496 // End of recursion. 8497 if (Last == 0) { 8498 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8499 SmallVector<const SCEV *, 2> Qs; 8500 for (const SCEV *Op : M->operands()) 8501 if (!isa<SCEVConstant>(Op)) 8502 Qs.push_back(Op); 8503 8504 Step = SE.getMulExpr(Qs); 8505 } 8506 8507 Sizes.push_back(Step); 8508 return true; 8509 } 8510 8511 for (const SCEV *&Term : Terms) { 8512 // Normalize the terms before the next call to findArrayDimensionsRec. 8513 const SCEV *Q, *R; 8514 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8515 8516 // Bail out when GCD does not evenly divide one of the terms. 8517 if (!R->isZero()) 8518 return false; 8519 8520 Term = Q; 8521 } 8522 8523 // Remove all SCEVConstants. 8524 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8525 return isa<SCEVConstant>(E); 8526 }), 8527 Terms.end()); 8528 8529 if (Terms.size() > 0) 8530 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8531 return false; 8532 8533 Sizes.push_back(Step); 8534 return true; 8535 } 8536 8537 namespace { 8538 struct FindParameter { 8539 bool FoundParameter; 8540 FindParameter() : FoundParameter(false) {} 8541 8542 bool follow(const SCEV *S) { 8543 if (isa<SCEVUnknown>(S)) { 8544 FoundParameter = true; 8545 // Stop recursion: we found a parameter. 8546 return false; 8547 } 8548 // Keep looking. 8549 return true; 8550 } 8551 bool isDone() const { 8552 // Stop recursion if we have found a parameter. 8553 return FoundParameter; 8554 } 8555 }; 8556 } 8557 8558 // Returns true when S contains at least a SCEVUnknown parameter. 8559 static inline bool 8560 containsParameters(const SCEV *S) { 8561 FindParameter F; 8562 SCEVTraversal<FindParameter> ST(F); 8563 ST.visitAll(S); 8564 8565 return F.FoundParameter; 8566 } 8567 8568 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8569 static inline bool 8570 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8571 for (const SCEV *T : Terms) 8572 if (containsParameters(T)) 8573 return true; 8574 return false; 8575 } 8576 8577 // Return the number of product terms in S. 8578 static inline int numberOfTerms(const SCEV *S) { 8579 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8580 return Expr->getNumOperands(); 8581 return 1; 8582 } 8583 8584 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8585 if (isa<SCEVConstant>(T)) 8586 return nullptr; 8587 8588 if (isa<SCEVUnknown>(T)) 8589 return T; 8590 8591 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8592 SmallVector<const SCEV *, 2> Factors; 8593 for (const SCEV *Op : M->operands()) 8594 if (!isa<SCEVConstant>(Op)) 8595 Factors.push_back(Op); 8596 8597 return SE.getMulExpr(Factors); 8598 } 8599 8600 return T; 8601 } 8602 8603 /// Return the size of an element read or written by Inst. 8604 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8605 Type *Ty; 8606 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8607 Ty = Store->getValueOperand()->getType(); 8608 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8609 Ty = Load->getType(); 8610 else 8611 return nullptr; 8612 8613 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8614 return getSizeOfExpr(ETy, Ty); 8615 } 8616 8617 /// Second step of delinearization: compute the array dimensions Sizes from the 8618 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8619 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8620 SmallVectorImpl<const SCEV *> &Sizes, 8621 const SCEV *ElementSize) const { 8622 8623 if (Terms.size() < 1 || !ElementSize) 8624 return; 8625 8626 // Early return when Terms do not contain parameters: we do not delinearize 8627 // non parametric SCEVs. 8628 if (!containsParameters(Terms)) 8629 return; 8630 8631 DEBUG({ 8632 dbgs() << "Terms:\n"; 8633 for (const SCEV *T : Terms) 8634 dbgs() << *T << "\n"; 8635 }); 8636 8637 // Remove duplicates. 8638 std::sort(Terms.begin(), Terms.end()); 8639 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8640 8641 // Put larger terms first. 8642 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8643 return numberOfTerms(LHS) > numberOfTerms(RHS); 8644 }); 8645 8646 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8647 8648 // Try to divide all terms by the element size. If term is not divisible by 8649 // element size, proceed with the original term. 8650 for (const SCEV *&Term : Terms) { 8651 const SCEV *Q, *R; 8652 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8653 if (!Q->isZero()) 8654 Term = Q; 8655 } 8656 8657 SmallVector<const SCEV *, 4> NewTerms; 8658 8659 // Remove constant factors. 8660 for (const SCEV *T : Terms) 8661 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8662 NewTerms.push_back(NewT); 8663 8664 DEBUG({ 8665 dbgs() << "Terms after sorting:\n"; 8666 for (const SCEV *T : NewTerms) 8667 dbgs() << *T << "\n"; 8668 }); 8669 8670 if (NewTerms.empty() || 8671 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8672 Sizes.clear(); 8673 return; 8674 } 8675 8676 // The last element to be pushed into Sizes is the size of an element. 8677 Sizes.push_back(ElementSize); 8678 8679 DEBUG({ 8680 dbgs() << "Sizes:\n"; 8681 for (const SCEV *S : Sizes) 8682 dbgs() << *S << "\n"; 8683 }); 8684 } 8685 8686 /// Third step of delinearization: compute the access functions for the 8687 /// Subscripts based on the dimensions in Sizes. 8688 void ScalarEvolution::computeAccessFunctions( 8689 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8690 SmallVectorImpl<const SCEV *> &Sizes) { 8691 8692 // Early exit in case this SCEV is not an affine multivariate function. 8693 if (Sizes.empty()) 8694 return; 8695 8696 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8697 if (!AR->isAffine()) 8698 return; 8699 8700 const SCEV *Res = Expr; 8701 int Last = Sizes.size() - 1; 8702 for (int i = Last; i >= 0; i--) { 8703 const SCEV *Q, *R; 8704 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8705 8706 DEBUG({ 8707 dbgs() << "Res: " << *Res << "\n"; 8708 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8709 dbgs() << "Res divided by Sizes[i]:\n"; 8710 dbgs() << "Quotient: " << *Q << "\n"; 8711 dbgs() << "Remainder: " << *R << "\n"; 8712 }); 8713 8714 Res = Q; 8715 8716 // Do not record the last subscript corresponding to the size of elements in 8717 // the array. 8718 if (i == Last) { 8719 8720 // Bail out if the remainder is too complex. 8721 if (isa<SCEVAddRecExpr>(R)) { 8722 Subscripts.clear(); 8723 Sizes.clear(); 8724 return; 8725 } 8726 8727 continue; 8728 } 8729 8730 // Record the access function for the current subscript. 8731 Subscripts.push_back(R); 8732 } 8733 8734 // Also push in last position the remainder of the last division: it will be 8735 // the access function of the innermost dimension. 8736 Subscripts.push_back(Res); 8737 8738 std::reverse(Subscripts.begin(), Subscripts.end()); 8739 8740 DEBUG({ 8741 dbgs() << "Subscripts:\n"; 8742 for (const SCEV *S : Subscripts) 8743 dbgs() << *S << "\n"; 8744 }); 8745 } 8746 8747 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8748 /// sizes of an array access. Returns the remainder of the delinearization that 8749 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8750 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8751 /// expressions in the stride and base of a SCEV corresponding to the 8752 /// computation of a GCD (greatest common divisor) of base and stride. When 8753 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8754 /// 8755 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8756 /// 8757 /// void foo(long n, long m, long o, double A[n][m][o]) { 8758 /// 8759 /// for (long i = 0; i < n; i++) 8760 /// for (long j = 0; j < m; j++) 8761 /// for (long k = 0; k < o; k++) 8762 /// A[i][j][k] = 1.0; 8763 /// } 8764 /// 8765 /// the delinearization input is the following AddRec SCEV: 8766 /// 8767 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8768 /// 8769 /// From this SCEV, we are able to say that the base offset of the access is %A 8770 /// because it appears as an offset that does not divide any of the strides in 8771 /// the loops: 8772 /// 8773 /// CHECK: Base offset: %A 8774 /// 8775 /// and then SCEV->delinearize determines the size of some of the dimensions of 8776 /// the array as these are the multiples by which the strides are happening: 8777 /// 8778 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8779 /// 8780 /// Note that the outermost dimension remains of UnknownSize because there are 8781 /// no strides that would help identifying the size of the last dimension: when 8782 /// the array has been statically allocated, one could compute the size of that 8783 /// dimension by dividing the overall size of the array by the size of the known 8784 /// dimensions: %m * %o * 8. 8785 /// 8786 /// Finally delinearize provides the access functions for the array reference 8787 /// that does correspond to A[i][j][k] of the above C testcase: 8788 /// 8789 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8790 /// 8791 /// The testcases are checking the output of a function pass: 8792 /// DelinearizationPass that walks through all loads and stores of a function 8793 /// asking for the SCEV of the memory access with respect to all enclosing 8794 /// loops, calling SCEV->delinearize on that and printing the results. 8795 8796 void ScalarEvolution::delinearize(const SCEV *Expr, 8797 SmallVectorImpl<const SCEV *> &Subscripts, 8798 SmallVectorImpl<const SCEV *> &Sizes, 8799 const SCEV *ElementSize) { 8800 // First step: collect parametric terms. 8801 SmallVector<const SCEV *, 4> Terms; 8802 collectParametricTerms(Expr, Terms); 8803 8804 if (Terms.empty()) 8805 return; 8806 8807 // Second step: find subscript sizes. 8808 findArrayDimensions(Terms, Sizes, ElementSize); 8809 8810 if (Sizes.empty()) 8811 return; 8812 8813 // Third step: compute the access functions for each subscript. 8814 computeAccessFunctions(Expr, Subscripts, Sizes); 8815 8816 if (Subscripts.empty()) 8817 return; 8818 8819 DEBUG({ 8820 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8821 dbgs() << "ArrayDecl[UnknownSize]"; 8822 for (const SCEV *S : Sizes) 8823 dbgs() << "[" << *S << "]"; 8824 8825 dbgs() << "\nArrayRef"; 8826 for (const SCEV *S : Subscripts) 8827 dbgs() << "[" << *S << "]"; 8828 dbgs() << "\n"; 8829 }); 8830 } 8831 8832 //===----------------------------------------------------------------------===// 8833 // SCEVCallbackVH Class Implementation 8834 //===----------------------------------------------------------------------===// 8835 8836 void ScalarEvolution::SCEVCallbackVH::deleted() { 8837 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8838 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8839 SE->ConstantEvolutionLoopExitValue.erase(PN); 8840 SE->ValueExprMap.erase(getValPtr()); 8841 // this now dangles! 8842 } 8843 8844 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8845 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8846 8847 // Forget all the expressions associated with users of the old value, 8848 // so that future queries will recompute the expressions using the new 8849 // value. 8850 Value *Old = getValPtr(); 8851 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8852 SmallPtrSet<User *, 8> Visited; 8853 while (!Worklist.empty()) { 8854 User *U = Worklist.pop_back_val(); 8855 // Deleting the Old value will cause this to dangle. Postpone 8856 // that until everything else is done. 8857 if (U == Old) 8858 continue; 8859 if (!Visited.insert(U).second) 8860 continue; 8861 if (PHINode *PN = dyn_cast<PHINode>(U)) 8862 SE->ConstantEvolutionLoopExitValue.erase(PN); 8863 SE->ValueExprMap.erase(U); 8864 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8865 } 8866 // Delete the Old value. 8867 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8868 SE->ConstantEvolutionLoopExitValue.erase(PN); 8869 SE->ValueExprMap.erase(Old); 8870 // this now dangles! 8871 } 8872 8873 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8874 : CallbackVH(V), SE(se) {} 8875 8876 //===----------------------------------------------------------------------===// 8877 // ScalarEvolution Class Implementation 8878 //===----------------------------------------------------------------------===// 8879 8880 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8881 AssumptionCache &AC, DominatorTree &DT, 8882 LoopInfo &LI) 8883 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8884 CouldNotCompute(new SCEVCouldNotCompute()), 8885 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8886 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 8887 FirstUnknown(nullptr) {} 8888 8889 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8890 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8891 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8892 ValueExprMap(std::move(Arg.ValueExprMap)), 8893 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8894 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8895 ConstantEvolutionLoopExitValue( 8896 std::move(Arg.ConstantEvolutionLoopExitValue)), 8897 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8898 LoopDispositions(std::move(Arg.LoopDispositions)), 8899 BlockDispositions(std::move(Arg.BlockDispositions)), 8900 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8901 SignedRanges(std::move(Arg.SignedRanges)), 8902 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8903 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8904 FirstUnknown(Arg.FirstUnknown) { 8905 Arg.FirstUnknown = nullptr; 8906 } 8907 8908 ScalarEvolution::~ScalarEvolution() { 8909 // Iterate through all the SCEVUnknown instances and call their 8910 // destructors, so that they release their references to their values. 8911 for (SCEVUnknown *U = FirstUnknown; U;) { 8912 SCEVUnknown *Tmp = U; 8913 U = U->Next; 8914 Tmp->~SCEVUnknown(); 8915 } 8916 FirstUnknown = nullptr; 8917 8918 ValueExprMap.clear(); 8919 8920 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8921 // that a loop had multiple computable exits. 8922 for (auto &BTCI : BackedgeTakenCounts) 8923 BTCI.second.clear(); 8924 8925 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8926 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8927 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 8928 } 8929 8930 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8931 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8932 } 8933 8934 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8935 const Loop *L) { 8936 // Print all inner loops first 8937 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8938 PrintLoopInfo(OS, SE, *I); 8939 8940 OS << "Loop "; 8941 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8942 OS << ": "; 8943 8944 SmallVector<BasicBlock *, 8> ExitBlocks; 8945 L->getExitBlocks(ExitBlocks); 8946 if (ExitBlocks.size() != 1) 8947 OS << "<multiple exits> "; 8948 8949 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8950 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8951 } else { 8952 OS << "Unpredictable backedge-taken count. "; 8953 } 8954 8955 OS << "\n" 8956 "Loop "; 8957 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8958 OS << ": "; 8959 8960 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8961 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8962 } else { 8963 OS << "Unpredictable max backedge-taken count. "; 8964 } 8965 8966 OS << "\n"; 8967 } 8968 8969 void ScalarEvolution::print(raw_ostream &OS) const { 8970 // ScalarEvolution's implementation of the print method is to print 8971 // out SCEV values of all instructions that are interesting. Doing 8972 // this potentially causes it to create new SCEV objects though, 8973 // which technically conflicts with the const qualifier. This isn't 8974 // observable from outside the class though, so casting away the 8975 // const isn't dangerous. 8976 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8977 8978 OS << "Classifying expressions for: "; 8979 F.printAsOperand(OS, /*PrintType=*/false); 8980 OS << "\n"; 8981 for (Instruction &I : instructions(F)) 8982 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 8983 OS << I << '\n'; 8984 OS << " --> "; 8985 const SCEV *SV = SE.getSCEV(&I); 8986 SV->print(OS); 8987 if (!isa<SCEVCouldNotCompute>(SV)) { 8988 OS << " U: "; 8989 SE.getUnsignedRange(SV).print(OS); 8990 OS << " S: "; 8991 SE.getSignedRange(SV).print(OS); 8992 } 8993 8994 const Loop *L = LI.getLoopFor(I.getParent()); 8995 8996 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8997 if (AtUse != SV) { 8998 OS << " --> "; 8999 AtUse->print(OS); 9000 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9001 OS << " U: "; 9002 SE.getUnsignedRange(AtUse).print(OS); 9003 OS << " S: "; 9004 SE.getSignedRange(AtUse).print(OS); 9005 } 9006 } 9007 9008 if (L) { 9009 OS << "\t\t" "Exits: "; 9010 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9011 if (!SE.isLoopInvariant(ExitValue, L)) { 9012 OS << "<<Unknown>>"; 9013 } else { 9014 OS << *ExitValue; 9015 } 9016 } 9017 9018 OS << "\n"; 9019 } 9020 9021 OS << "Determining loop execution counts for: "; 9022 F.printAsOperand(OS, /*PrintType=*/false); 9023 OS << "\n"; 9024 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9025 PrintLoopInfo(OS, &SE, *I); 9026 } 9027 9028 ScalarEvolution::LoopDisposition 9029 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9030 auto &Values = LoopDispositions[S]; 9031 for (auto &V : Values) { 9032 if (V.getPointer() == L) 9033 return V.getInt(); 9034 } 9035 Values.emplace_back(L, LoopVariant); 9036 LoopDisposition D = computeLoopDisposition(S, L); 9037 auto &Values2 = LoopDispositions[S]; 9038 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9039 if (V.getPointer() == L) { 9040 V.setInt(D); 9041 break; 9042 } 9043 } 9044 return D; 9045 } 9046 9047 ScalarEvolution::LoopDisposition 9048 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9049 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9050 case scConstant: 9051 return LoopInvariant; 9052 case scTruncate: 9053 case scZeroExtend: 9054 case scSignExtend: 9055 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9056 case scAddRecExpr: { 9057 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9058 9059 // If L is the addrec's loop, it's computable. 9060 if (AR->getLoop() == L) 9061 return LoopComputable; 9062 9063 // Add recurrences are never invariant in the function-body (null loop). 9064 if (!L) 9065 return LoopVariant; 9066 9067 // This recurrence is variant w.r.t. L if L contains AR's loop. 9068 if (L->contains(AR->getLoop())) 9069 return LoopVariant; 9070 9071 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9072 if (AR->getLoop()->contains(L)) 9073 return LoopInvariant; 9074 9075 // This recurrence is variant w.r.t. L if any of its operands 9076 // are variant. 9077 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 9078 I != E; ++I) 9079 if (!isLoopInvariant(*I, L)) 9080 return LoopVariant; 9081 9082 // Otherwise it's loop-invariant. 9083 return LoopInvariant; 9084 } 9085 case scAddExpr: 9086 case scMulExpr: 9087 case scUMaxExpr: 9088 case scSMaxExpr: { 9089 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9090 bool HasVarying = false; 9091 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9092 I != E; ++I) { 9093 LoopDisposition D = getLoopDisposition(*I, L); 9094 if (D == LoopVariant) 9095 return LoopVariant; 9096 if (D == LoopComputable) 9097 HasVarying = true; 9098 } 9099 return HasVarying ? LoopComputable : LoopInvariant; 9100 } 9101 case scUDivExpr: { 9102 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9103 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9104 if (LD == LoopVariant) 9105 return LoopVariant; 9106 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9107 if (RD == LoopVariant) 9108 return LoopVariant; 9109 return (LD == LoopInvariant && RD == LoopInvariant) ? 9110 LoopInvariant : LoopComputable; 9111 } 9112 case scUnknown: 9113 // All non-instruction values are loop invariant. All instructions are loop 9114 // invariant if they are not contained in the specified loop. 9115 // Instructions are never considered invariant in the function body 9116 // (null loop) because they are defined within the "loop". 9117 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9118 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9119 return LoopInvariant; 9120 case scCouldNotCompute: 9121 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9122 } 9123 llvm_unreachable("Unknown SCEV kind!"); 9124 } 9125 9126 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9127 return getLoopDisposition(S, L) == LoopInvariant; 9128 } 9129 9130 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9131 return getLoopDisposition(S, L) == LoopComputable; 9132 } 9133 9134 ScalarEvolution::BlockDisposition 9135 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9136 auto &Values = BlockDispositions[S]; 9137 for (auto &V : Values) { 9138 if (V.getPointer() == BB) 9139 return V.getInt(); 9140 } 9141 Values.emplace_back(BB, DoesNotDominateBlock); 9142 BlockDisposition D = computeBlockDisposition(S, BB); 9143 auto &Values2 = BlockDispositions[S]; 9144 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9145 if (V.getPointer() == BB) { 9146 V.setInt(D); 9147 break; 9148 } 9149 } 9150 return D; 9151 } 9152 9153 ScalarEvolution::BlockDisposition 9154 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9155 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9156 case scConstant: 9157 return ProperlyDominatesBlock; 9158 case scTruncate: 9159 case scZeroExtend: 9160 case scSignExtend: 9161 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9162 case scAddRecExpr: { 9163 // This uses a "dominates" query instead of "properly dominates" query 9164 // to test for proper dominance too, because the instruction which 9165 // produces the addrec's value is a PHI, and a PHI effectively properly 9166 // dominates its entire containing block. 9167 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9168 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9169 return DoesNotDominateBlock; 9170 } 9171 // FALL THROUGH into SCEVNAryExpr handling. 9172 case scAddExpr: 9173 case scMulExpr: 9174 case scUMaxExpr: 9175 case scSMaxExpr: { 9176 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9177 bool Proper = true; 9178 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9179 I != E; ++I) { 9180 BlockDisposition D = getBlockDisposition(*I, BB); 9181 if (D == DoesNotDominateBlock) 9182 return DoesNotDominateBlock; 9183 if (D == DominatesBlock) 9184 Proper = false; 9185 } 9186 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9187 } 9188 case scUDivExpr: { 9189 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9190 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9191 BlockDisposition LD = getBlockDisposition(LHS, BB); 9192 if (LD == DoesNotDominateBlock) 9193 return DoesNotDominateBlock; 9194 BlockDisposition RD = getBlockDisposition(RHS, BB); 9195 if (RD == DoesNotDominateBlock) 9196 return DoesNotDominateBlock; 9197 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9198 ProperlyDominatesBlock : DominatesBlock; 9199 } 9200 case scUnknown: 9201 if (Instruction *I = 9202 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9203 if (I->getParent() == BB) 9204 return DominatesBlock; 9205 if (DT.properlyDominates(I->getParent(), BB)) 9206 return ProperlyDominatesBlock; 9207 return DoesNotDominateBlock; 9208 } 9209 return ProperlyDominatesBlock; 9210 case scCouldNotCompute: 9211 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9212 } 9213 llvm_unreachable("Unknown SCEV kind!"); 9214 } 9215 9216 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9217 return getBlockDisposition(S, BB) >= DominatesBlock; 9218 } 9219 9220 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9221 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9222 } 9223 9224 namespace { 9225 // Search for a SCEV expression node within an expression tree. 9226 // Implements SCEVTraversal::Visitor. 9227 struct SCEVSearch { 9228 const SCEV *Node; 9229 bool IsFound; 9230 9231 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9232 9233 bool follow(const SCEV *S) { 9234 IsFound |= (S == Node); 9235 return !IsFound; 9236 } 9237 bool isDone() const { return IsFound; } 9238 }; 9239 } 9240 9241 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9242 SCEVSearch Search(Op); 9243 visitAll(S, Search); 9244 return Search.IsFound; 9245 } 9246 9247 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9248 ValuesAtScopes.erase(S); 9249 LoopDispositions.erase(S); 9250 BlockDispositions.erase(S); 9251 UnsignedRanges.erase(S); 9252 SignedRanges.erase(S); 9253 9254 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9255 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9256 BackedgeTakenInfo &BEInfo = I->second; 9257 if (BEInfo.hasOperand(S, this)) { 9258 BEInfo.clear(); 9259 BackedgeTakenCounts.erase(I++); 9260 } 9261 else 9262 ++I; 9263 } 9264 } 9265 9266 typedef DenseMap<const Loop *, std::string> VerifyMap; 9267 9268 /// replaceSubString - Replaces all occurrences of From in Str with To. 9269 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9270 size_t Pos = 0; 9271 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9272 Str.replace(Pos, From.size(), To.data(), To.size()); 9273 Pos += To.size(); 9274 } 9275 } 9276 9277 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9278 static void 9279 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9280 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9281 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9282 9283 std::string &S = Map[L]; 9284 if (S.empty()) { 9285 raw_string_ostream OS(S); 9286 SE.getBackedgeTakenCount(L)->print(OS); 9287 9288 // false and 0 are semantically equivalent. This can happen in dead loops. 9289 replaceSubString(OS.str(), "false", "0"); 9290 // Remove wrap flags, their use in SCEV is highly fragile. 9291 // FIXME: Remove this when SCEV gets smarter about them. 9292 replaceSubString(OS.str(), "<nw>", ""); 9293 replaceSubString(OS.str(), "<nsw>", ""); 9294 replaceSubString(OS.str(), "<nuw>", ""); 9295 } 9296 } 9297 } 9298 9299 void ScalarEvolution::verify() const { 9300 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9301 9302 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9303 // FIXME: It would be much better to store actual values instead of strings, 9304 // but SCEV pointers will change if we drop the caches. 9305 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9306 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9307 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9308 9309 // Gather stringified backedge taken counts for all loops using a fresh 9310 // ScalarEvolution object. 9311 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9312 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9313 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9314 9315 // Now compare whether they're the same with and without caches. This allows 9316 // verifying that no pass changed the cache. 9317 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9318 "New loops suddenly appeared!"); 9319 9320 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9321 OldE = BackedgeDumpsOld.end(), 9322 NewI = BackedgeDumpsNew.begin(); 9323 OldI != OldE; ++OldI, ++NewI) { 9324 assert(OldI->first == NewI->first && "Loop order changed!"); 9325 9326 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9327 // changes. 9328 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9329 // means that a pass is buggy or SCEV has to learn a new pattern but is 9330 // usually not harmful. 9331 if (OldI->second != NewI->second && 9332 OldI->second.find("undef") == std::string::npos && 9333 NewI->second.find("undef") == std::string::npos && 9334 OldI->second != "***COULDNOTCOMPUTE***" && 9335 NewI->second != "***COULDNOTCOMPUTE***") { 9336 dbgs() << "SCEVValidator: SCEV for loop '" 9337 << OldI->first->getHeader()->getName() 9338 << "' changed from '" << OldI->second 9339 << "' to '" << NewI->second << "'!\n"; 9340 std::abort(); 9341 } 9342 } 9343 9344 // TODO: Verify more things. 9345 } 9346 9347 char ScalarEvolutionAnalysis::PassID; 9348 9349 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9350 AnalysisManager<Function> *AM) { 9351 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9352 AM->getResult<AssumptionAnalysis>(F), 9353 AM->getResult<DominatorTreeAnalysis>(F), 9354 AM->getResult<LoopAnalysis>(F)); 9355 } 9356 9357 PreservedAnalyses 9358 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9359 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9360 return PreservedAnalyses::all(); 9361 } 9362 9363 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9364 "Scalar Evolution Analysis", false, true) 9365 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9366 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9367 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9368 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9369 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9370 "Scalar Evolution Analysis", false, true) 9371 char ScalarEvolutionWrapperPass::ID = 0; 9372 9373 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9374 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9375 } 9376 9377 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9378 SE.reset(new ScalarEvolution( 9379 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9380 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9381 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9382 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9383 return false; 9384 } 9385 9386 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9387 9388 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9389 SE->print(OS); 9390 } 9391 9392 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9393 if (!VerifySCEV) 9394 return; 9395 9396 SE->verify(); 9397 } 9398 9399 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9400 AU.setPreservesAll(); 9401 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9402 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9403 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9404 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9405 } 9406