1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 INITIALIZE_PASS(ScalarEvolution, "scalar-evolution", 107 "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 181 UniqueSCEVs.InsertNode(S, IP); 182 return S; 183 } 184 185 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(getContext(), Val)); 187 } 188 189 const SCEV * 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 192 return getConstant(ConstantInt::get(ITy, V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 202 unsigned SCEVTy, const SCEV *op, const Type *ty) 203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 204 205 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 206 return Op->dominates(BB, DT); 207 } 208 209 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->properlyDominates(BB, DT); 211 } 212 213 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 214 const SCEV *op, const Type *ty) 215 : SCEVCastExpr(ID, scTruncate, op, ty) { 216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 217 (Ty->isIntegerTy() || Ty->isPointerTy()) && 218 "Cannot truncate non-integer value!"); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 226 const SCEV *op, const Type *ty) 227 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 229 (Ty->isIntegerTy() || Ty->isPointerTy()) && 230 "Cannot zero extend non-integer value!"); 231 } 232 233 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 235 } 236 237 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 238 const SCEV *op, const Type *ty) 239 : SCEVCastExpr(ID, scSignExtend, op, ty) { 240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 241 (Ty->isIntegerTy() || Ty->isPointerTy()) && 242 "Cannot sign extend non-integer value!"); 243 } 244 245 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 247 } 248 249 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 250 const char *OpStr = getOperationStr(); 251 OS << "("; 252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 253 OS << **I; 254 if (next(I) != E) 255 OS << OpStr; 256 } 257 OS << ")"; 258 } 259 260 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 262 if (!getOperand(i)->dominates(BB, DT)) 263 return false; 264 } 265 return true; 266 } 267 268 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 270 if (!getOperand(i)->properlyDominates(BB, DT)) 271 return false; 272 } 273 return true; 274 } 275 276 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 278 } 279 280 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 282 } 283 284 void SCEVUDivExpr::print(raw_ostream &OS) const { 285 OS << "(" << *LHS << " /u " << *RHS << ")"; 286 } 287 288 const Type *SCEVUDivExpr::getType() const { 289 // In most cases the types of LHS and RHS will be the same, but in some 290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 291 // depend on the type for correctness, but handling types carefully can 292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 293 // a pointer type than the RHS, so use the RHS' type here. 294 return RHS->getType(); 295 } 296 297 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 298 // Add recurrences are never invariant in the function-body (null loop). 299 if (!QueryLoop) 300 return false; 301 302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 303 if (QueryLoop->contains(L)) 304 return false; 305 306 // This recurrence is variant w.r.t. QueryLoop if any of its operands 307 // are variant. 308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 309 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 310 return false; 311 312 // Otherwise it's loop-invariant. 313 return true; 314 } 315 316 bool 317 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 318 return DT->dominates(L->getHeader(), BB) && 319 SCEVNAryExpr::dominates(BB, DT); 320 } 321 322 bool 323 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 324 // This uses a "dominates" query instead of "properly dominates" query because 325 // the instruction which produces the addrec's value is a PHI, and a PHI 326 // effectively properly dominates its entire containing block. 327 return DT->dominates(L->getHeader(), BB) && 328 SCEVNAryExpr::properlyDominates(BB, DT); 329 } 330 331 void SCEVAddRecExpr::print(raw_ostream &OS) const { 332 OS << "{" << *Operands[0]; 333 for (unsigned i = 1, e = NumOperands; i != e; ++i) 334 OS << ",+," << *Operands[i]; 335 OS << "}<"; 336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 337 OS << ">"; 338 } 339 340 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 341 // All non-instruction values are loop invariant. All instructions are loop 342 // invariant if they are not contained in the specified loop. 343 // Instructions are never considered invariant in the function body 344 // (null loop) because they are defined within the "loop". 345 if (Instruction *I = dyn_cast<Instruction>(V)) 346 return L && !L->contains(I); 347 return true; 348 } 349 350 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 351 if (Instruction *I = dyn_cast<Instruction>(getValue())) 352 return DT->dominates(I->getParent(), BB); 353 return true; 354 } 355 356 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 357 if (Instruction *I = dyn_cast<Instruction>(getValue())) 358 return DT->properlyDominates(I->getParent(), BB); 359 return true; 360 } 361 362 const Type *SCEVUnknown::getType() const { 363 return V->getType(); 364 } 365 366 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 368 if (VCE->getOpcode() == Instruction::PtrToInt) 369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 370 if (CE->getOpcode() == Instruction::GetElementPtr && 371 CE->getOperand(0)->isNullValue() && 372 CE->getNumOperands() == 2) 373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 374 if (CI->isOne()) { 375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 376 ->getElementType(); 377 return true; 378 } 379 380 return false; 381 } 382 383 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 385 if (VCE->getOpcode() == Instruction::PtrToInt) 386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 387 if (CE->getOpcode() == Instruction::GetElementPtr && 388 CE->getOperand(0)->isNullValue()) { 389 const Type *Ty = 390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 391 if (const StructType *STy = dyn_cast<StructType>(Ty)) 392 if (!STy->isPacked() && 393 CE->getNumOperands() == 3 && 394 CE->getOperand(1)->isNullValue()) { 395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 396 if (CI->isOne() && 397 STy->getNumElements() == 2 && 398 STy->getElementType(0)->isIntegerTy(1)) { 399 AllocTy = STy->getElementType(1); 400 return true; 401 } 402 } 403 } 404 405 return false; 406 } 407 408 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 410 if (VCE->getOpcode() == Instruction::PtrToInt) 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 412 if (CE->getOpcode() == Instruction::GetElementPtr && 413 CE->getNumOperands() == 3 && 414 CE->getOperand(0)->isNullValue() && 415 CE->getOperand(1)->isNullValue()) { 416 const Type *Ty = 417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 418 // Ignore vector types here so that ScalarEvolutionExpander doesn't 419 // emit getelementptrs that index into vectors. 420 if (Ty->isStructTy() || Ty->isArrayTy()) { 421 CTy = Ty; 422 FieldNo = CE->getOperand(2); 423 return true; 424 } 425 } 426 427 return false; 428 } 429 430 void SCEVUnknown::print(raw_ostream &OS) const { 431 const Type *AllocTy; 432 if (isSizeOf(AllocTy)) { 433 OS << "sizeof(" << *AllocTy << ")"; 434 return; 435 } 436 if (isAlignOf(AllocTy)) { 437 OS << "alignof(" << *AllocTy << ")"; 438 return; 439 } 440 441 const Type *CTy; 442 Constant *FieldNo; 443 if (isOffsetOf(CTy, FieldNo)) { 444 OS << "offsetof(" << *CTy << ", "; 445 WriteAsOperand(OS, FieldNo, false); 446 OS << ")"; 447 return; 448 } 449 450 // Otherwise just print it normally. 451 WriteAsOperand(OS, V, false); 452 } 453 454 //===----------------------------------------------------------------------===// 455 // SCEV Utilities 456 //===----------------------------------------------------------------------===// 457 458 static bool CompareTypes(const Type *A, const Type *B) { 459 if (A->getTypeID() != B->getTypeID()) 460 return A->getTypeID() < B->getTypeID(); 461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 462 const IntegerType *BI = cast<IntegerType>(B); 463 return AI->getBitWidth() < BI->getBitWidth(); 464 } 465 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 466 const PointerType *BI = cast<PointerType>(B); 467 return CompareTypes(AI->getElementType(), BI->getElementType()); 468 } 469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 470 const ArrayType *BI = cast<ArrayType>(B); 471 if (AI->getNumElements() != BI->getNumElements()) 472 return AI->getNumElements() < BI->getNumElements(); 473 return CompareTypes(AI->getElementType(), BI->getElementType()); 474 } 475 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 476 const VectorType *BI = cast<VectorType>(B); 477 if (AI->getNumElements() != BI->getNumElements()) 478 return AI->getNumElements() < BI->getNumElements(); 479 return CompareTypes(AI->getElementType(), BI->getElementType()); 480 } 481 if (const StructType *AI = dyn_cast<StructType>(A)) { 482 const StructType *BI = cast<StructType>(B); 483 if (AI->getNumElements() != BI->getNumElements()) 484 return AI->getNumElements() < BI->getNumElements(); 485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 487 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 488 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 489 } 490 return false; 491 } 492 493 namespace { 494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 495 /// than the complexity of the RHS. This comparator is used to canonicalize 496 /// expressions. 497 class SCEVComplexityCompare { 498 LoopInfo *LI; 499 public: 500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 501 502 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 503 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 504 if (LHS == RHS) 505 return false; 506 507 // Primarily, sort the SCEVs by their getSCEVType(). 508 if (LHS->getSCEVType() != RHS->getSCEVType()) 509 return LHS->getSCEVType() < RHS->getSCEVType(); 510 511 // Aside from the getSCEVType() ordering, the particular ordering 512 // isn't very important except that it's beneficial to be consistent, 513 // so that (a + b) and (b + a) don't end up as different expressions. 514 515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 516 // not as complete as it could be. 517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 519 520 // Order pointer values after integer values. This helps SCEVExpander 521 // form GEPs. 522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy()) 523 return false; 524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy()) 525 return true; 526 527 // Compare getValueID values. 528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 529 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 530 531 // Sort arguments by their position. 532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 533 const Argument *RA = cast<Argument>(RU->getValue()); 534 return LA->getArgNo() < RA->getArgNo(); 535 } 536 537 // For instructions, compare their loop depth, and their opcode. 538 // This is pretty loose. 539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 540 Instruction *RV = cast<Instruction>(RU->getValue()); 541 542 // Compare loop depths. 543 if (LI->getLoopDepth(LV->getParent()) != 544 LI->getLoopDepth(RV->getParent())) 545 return LI->getLoopDepth(LV->getParent()) < 546 LI->getLoopDepth(RV->getParent()); 547 548 // Compare opcodes. 549 if (LV->getOpcode() != RV->getOpcode()) 550 return LV->getOpcode() < RV->getOpcode(); 551 552 // Compare the number of operands. 553 if (LV->getNumOperands() != RV->getNumOperands()) 554 return LV->getNumOperands() < RV->getNumOperands(); 555 } 556 557 return false; 558 } 559 560 // Compare constant values. 561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 562 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) 564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); 565 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 566 } 567 568 // Compare addrec loop depths. 569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 573 } 574 575 // Lexicographically compare n-ary expressions. 576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 579 if (i >= RC->getNumOperands()) 580 return false; 581 if (operator()(LC->getOperand(i), RC->getOperand(i))) 582 return true; 583 if (operator()(RC->getOperand(i), LC->getOperand(i))) 584 return false; 585 } 586 return LC->getNumOperands() < RC->getNumOperands(); 587 } 588 589 // Lexicographically compare udiv expressions. 590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 592 if (operator()(LC->getLHS(), RC->getLHS())) 593 return true; 594 if (operator()(RC->getLHS(), LC->getLHS())) 595 return false; 596 if (operator()(LC->getRHS(), RC->getRHS())) 597 return true; 598 if (operator()(RC->getRHS(), LC->getRHS())) 599 return false; 600 return false; 601 } 602 603 // Compare cast expressions by operand. 604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 606 return operator()(LC->getOperand(), RC->getOperand()); 607 } 608 609 llvm_unreachable("Unknown SCEV kind!"); 610 return false; 611 } 612 }; 613 } 614 615 /// GroupByComplexity - Given a list of SCEV objects, order them by their 616 /// complexity, and group objects of the same complexity together by value. 617 /// When this routine is finished, we know that any duplicates in the vector are 618 /// consecutive and that complexity is monotonically increasing. 619 /// 620 /// Note that we go take special precautions to ensure that we get deterministic 621 /// results from this routine. In other words, we don't want the results of 622 /// this to depend on where the addresses of various SCEV objects happened to 623 /// land in memory. 624 /// 625 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 626 LoopInfo *LI) { 627 if (Ops.size() < 2) return; // Noop 628 if (Ops.size() == 2) { 629 // This is the common case, which also happens to be trivially simple. 630 // Special case it. 631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 632 std::swap(Ops[0], Ops[1]); 633 return; 634 } 635 636 // Do the rough sort by complexity. 637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 638 639 // Now that we are sorted by complexity, group elements of the same 640 // complexity. Note that this is, at worst, N^2, but the vector is likely to 641 // be extremely short in practice. Note that we take this approach because we 642 // do not want to depend on the addresses of the objects we are grouping. 643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 644 const SCEV *S = Ops[i]; 645 unsigned Complexity = S->getSCEVType(); 646 647 // If there are any objects of the same complexity and same value as this 648 // one, group them. 649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 650 if (Ops[j] == S) { // Found a duplicate. 651 // Move it to immediately after i'th element. 652 std::swap(Ops[i+1], Ops[j]); 653 ++i; // no need to rescan it. 654 if (i == e-2) return; // Done! 655 } 656 } 657 } 658 } 659 660 661 662 //===----------------------------------------------------------------------===// 663 // Simple SCEV method implementations 664 //===----------------------------------------------------------------------===// 665 666 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 667 /// Assume, K > 0. 668 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 669 ScalarEvolution &SE, 670 const Type* ResultTy) { 671 // Handle the simplest case efficiently. 672 if (K == 1) 673 return SE.getTruncateOrZeroExtend(It, ResultTy); 674 675 // We are using the following formula for BC(It, K): 676 // 677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 678 // 679 // Suppose, W is the bitwidth of the return value. We must be prepared for 680 // overflow. Hence, we must assure that the result of our computation is 681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 682 // safe in modular arithmetic. 683 // 684 // However, this code doesn't use exactly that formula; the formula it uses 685 // is something like the following, where T is the number of factors of 2 in 686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 687 // exponentiation: 688 // 689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 690 // 691 // This formula is trivially equivalent to the previous formula. However, 692 // this formula can be implemented much more efficiently. The trick is that 693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 694 // arithmetic. To do exact division in modular arithmetic, all we have 695 // to do is multiply by the inverse. Therefore, this step can be done at 696 // width W. 697 // 698 // The next issue is how to safely do the division by 2^T. The way this 699 // is done is by doing the multiplication step at a width of at least W + T 700 // bits. This way, the bottom W+T bits of the product are accurate. Then, 701 // when we perform the division by 2^T (which is equivalent to a right shift 702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 703 // truncated out after the division by 2^T. 704 // 705 // In comparison to just directly using the first formula, this technique 706 // is much more efficient; using the first formula requires W * K bits, 707 // but this formula less than W + K bits. Also, the first formula requires 708 // a division step, whereas this formula only requires multiplies and shifts. 709 // 710 // It doesn't matter whether the subtraction step is done in the calculation 711 // width or the input iteration count's width; if the subtraction overflows, 712 // the result must be zero anyway. We prefer here to do it in the width of 713 // the induction variable because it helps a lot for certain cases; CodeGen 714 // isn't smart enough to ignore the overflow, which leads to much less 715 // efficient code if the width of the subtraction is wider than the native 716 // register width. 717 // 718 // (It's possible to not widen at all by pulling out factors of 2 before 719 // the multiplication; for example, K=2 can be calculated as 720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 721 // extra arithmetic, so it's not an obvious win, and it gets 722 // much more complicated for K > 3.) 723 724 // Protection from insane SCEVs; this bound is conservative, 725 // but it probably doesn't matter. 726 if (K > 1000) 727 return SE.getCouldNotCompute(); 728 729 unsigned W = SE.getTypeSizeInBits(ResultTy); 730 731 // Calculate K! / 2^T and T; we divide out the factors of two before 732 // multiplying for calculating K! / 2^T to avoid overflow. 733 // Other overflow doesn't matter because we only care about the bottom 734 // W bits of the result. 735 APInt OddFactorial(W, 1); 736 unsigned T = 1; 737 for (unsigned i = 3; i <= K; ++i) { 738 APInt Mult(W, i); 739 unsigned TwoFactors = Mult.countTrailingZeros(); 740 T += TwoFactors; 741 Mult = Mult.lshr(TwoFactors); 742 OddFactorial *= Mult; 743 } 744 745 // We need at least W + T bits for the multiplication step 746 unsigned CalculationBits = W + T; 747 748 // Calculate 2^T, at width T+W. 749 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 750 751 // Calculate the multiplicative inverse of K! / 2^T; 752 // this multiplication factor will perform the exact division by 753 // K! / 2^T. 754 APInt Mod = APInt::getSignedMinValue(W+1); 755 APInt MultiplyFactor = OddFactorial.zext(W+1); 756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 757 MultiplyFactor = MultiplyFactor.trunc(W); 758 759 // Calculate the product, at width T+W 760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 761 CalculationBits); 762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 763 for (unsigned i = 1; i != K; ++i) { 764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 765 Dividend = SE.getMulExpr(Dividend, 766 SE.getTruncateOrZeroExtend(S, CalculationTy)); 767 } 768 769 // Divide by 2^T 770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 771 772 // Truncate the result, and divide by K! / 2^T. 773 774 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 775 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 776 } 777 778 /// evaluateAtIteration - Return the value of this chain of recurrences at 779 /// the specified iteration number. We can evaluate this recurrence by 780 /// multiplying each element in the chain by the binomial coefficient 781 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 782 /// 783 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 784 /// 785 /// where BC(It, k) stands for binomial coefficient. 786 /// 787 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 788 ScalarEvolution &SE) const { 789 const SCEV *Result = getStart(); 790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 791 // The computation is correct in the face of overflow provided that the 792 // multiplication is performed _after_ the evaluation of the binomial 793 // coefficient. 794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 795 if (isa<SCEVCouldNotCompute>(Coeff)) 796 return Coeff; 797 798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 799 } 800 return Result; 801 } 802 803 //===----------------------------------------------------------------------===// 804 // SCEV Expression folder implementations 805 //===----------------------------------------------------------------------===// 806 807 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 808 const Type *Ty) { 809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 810 "This is not a truncating conversion!"); 811 assert(isSCEVable(Ty) && 812 "This is not a conversion to a SCEVable type!"); 813 Ty = getEffectiveSCEVType(Ty); 814 815 FoldingSetNodeID ID; 816 ID.AddInteger(scTruncate); 817 ID.AddPointer(Op); 818 ID.AddPointer(Ty); 819 void *IP = 0; 820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 821 822 // Fold if the operand is constant. 823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 824 return getConstant( 825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 826 getEffectiveSCEVType(Ty)))); 827 828 // trunc(trunc(x)) --> trunc(x) 829 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 830 return getTruncateExpr(ST->getOperand(), Ty); 831 832 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 833 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 834 return getTruncateOrSignExtend(SS->getOperand(), Ty); 835 836 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 837 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 838 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 839 840 // If the input value is a chrec scev, truncate the chrec's operands. 841 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 842 SmallVector<const SCEV *, 4> Operands; 843 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 844 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 845 return getAddRecExpr(Operands, AddRec->getLoop()); 846 } 847 848 // As a special case, fold trunc(undef) to undef. We don't want to 849 // know too much about SCEVUnknowns, but this special case is handy 850 // and harmless. 851 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 852 if (isa<UndefValue>(U->getValue())) 853 return getSCEV(UndefValue::get(Ty)); 854 855 // The cast wasn't folded; create an explicit cast node. We can reuse 856 // the existing insert position since if we get here, we won't have 857 // made any changes which would invalidate it. 858 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 859 Op, Ty); 860 UniqueSCEVs.InsertNode(S, IP); 861 return S; 862 } 863 864 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 865 const Type *Ty) { 866 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 867 "This is not an extending conversion!"); 868 assert(isSCEVable(Ty) && 869 "This is not a conversion to a SCEVable type!"); 870 Ty = getEffectiveSCEVType(Ty); 871 872 // Fold if the operand is constant. 873 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 874 return getConstant( 875 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 876 getEffectiveSCEVType(Ty)))); 877 878 // zext(zext(x)) --> zext(x) 879 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 880 return getZeroExtendExpr(SZ->getOperand(), Ty); 881 882 // Before doing any expensive analysis, check to see if we've already 883 // computed a SCEV for this Op and Ty. 884 FoldingSetNodeID ID; 885 ID.AddInteger(scZeroExtend); 886 ID.AddPointer(Op); 887 ID.AddPointer(Ty); 888 void *IP = 0; 889 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 890 891 // If the input value is a chrec scev, and we can prove that the value 892 // did not overflow the old, smaller, value, we can zero extend all of the 893 // operands (often constants). This allows analysis of something like 894 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 895 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 896 if (AR->isAffine()) { 897 const SCEV *Start = AR->getStart(); 898 const SCEV *Step = AR->getStepRecurrence(*this); 899 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 900 const Loop *L = AR->getLoop(); 901 902 // If we have special knowledge that this addrec won't overflow, 903 // we don't need to do any further analysis. 904 if (AR->hasNoUnsignedWrap()) 905 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 906 getZeroExtendExpr(Step, Ty), 907 L); 908 909 // Check whether the backedge-taken count is SCEVCouldNotCompute. 910 // Note that this serves two purposes: It filters out loops that are 911 // simply not analyzable, and it covers the case where this code is 912 // being called from within backedge-taken count analysis, such that 913 // attempting to ask for the backedge-taken count would likely result 914 // in infinite recursion. In the later case, the analysis code will 915 // cope with a conservative value, and it will take care to purge 916 // that value once it has finished. 917 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 918 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 919 // Manually compute the final value for AR, checking for 920 // overflow. 921 922 // Check whether the backedge-taken count can be losslessly casted to 923 // the addrec's type. The count is always unsigned. 924 const SCEV *CastedMaxBECount = 925 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 926 const SCEV *RecastedMaxBECount = 927 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 928 if (MaxBECount == RecastedMaxBECount) { 929 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 930 // Check whether Start+Step*MaxBECount has no unsigned overflow. 931 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 932 const SCEV *Add = getAddExpr(Start, ZMul); 933 const SCEV *OperandExtendedAdd = 934 getAddExpr(getZeroExtendExpr(Start, WideTy), 935 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 936 getZeroExtendExpr(Step, WideTy))); 937 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 938 // Return the expression with the addrec on the outside. 939 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 940 getZeroExtendExpr(Step, Ty), 941 L); 942 943 // Similar to above, only this time treat the step value as signed. 944 // This covers loops that count down. 945 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 946 Add = getAddExpr(Start, SMul); 947 OperandExtendedAdd = 948 getAddExpr(getZeroExtendExpr(Start, WideTy), 949 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 950 getSignExtendExpr(Step, WideTy))); 951 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 952 // Return the expression with the addrec on the outside. 953 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 954 getSignExtendExpr(Step, Ty), 955 L); 956 } 957 958 // If the backedge is guarded by a comparison with the pre-inc value 959 // the addrec is safe. Also, if the entry is guarded by a comparison 960 // with the start value and the backedge is guarded by a comparison 961 // with the post-inc value, the addrec is safe. 962 if (isKnownPositive(Step)) { 963 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 964 getUnsignedRange(Step).getUnsignedMax()); 965 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 966 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 967 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 968 AR->getPostIncExpr(*this), N))) 969 // Return the expression with the addrec on the outside. 970 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 971 getZeroExtendExpr(Step, Ty), 972 L); 973 } else if (isKnownNegative(Step)) { 974 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 975 getSignedRange(Step).getSignedMin()); 976 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 977 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 978 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 979 AR->getPostIncExpr(*this), N))) 980 // Return the expression with the addrec on the outside. 981 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 982 getSignExtendExpr(Step, Ty), 983 L); 984 } 985 } 986 } 987 988 // The cast wasn't folded; create an explicit cast node. 989 // Recompute the insert position, as it may have been invalidated. 990 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 991 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 992 Op, Ty); 993 UniqueSCEVs.InsertNode(S, IP); 994 return S; 995 } 996 997 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 998 const Type *Ty) { 999 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1000 "This is not an extending conversion!"); 1001 assert(isSCEVable(Ty) && 1002 "This is not a conversion to a SCEVable type!"); 1003 Ty = getEffectiveSCEVType(Ty); 1004 1005 // Fold if the operand is constant. 1006 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1007 return getConstant( 1008 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1009 getEffectiveSCEVType(Ty)))); 1010 1011 // sext(sext(x)) --> sext(x) 1012 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1013 return getSignExtendExpr(SS->getOperand(), Ty); 1014 1015 // Before doing any expensive analysis, check to see if we've already 1016 // computed a SCEV for this Op and Ty. 1017 FoldingSetNodeID ID; 1018 ID.AddInteger(scSignExtend); 1019 ID.AddPointer(Op); 1020 ID.AddPointer(Ty); 1021 void *IP = 0; 1022 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1023 1024 // If the input value is a chrec scev, and we can prove that the value 1025 // did not overflow the old, smaller, value, we can sign extend all of the 1026 // operands (often constants). This allows analysis of something like 1027 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1028 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1029 if (AR->isAffine()) { 1030 const SCEV *Start = AR->getStart(); 1031 const SCEV *Step = AR->getStepRecurrence(*this); 1032 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1033 const Loop *L = AR->getLoop(); 1034 1035 // If we have special knowledge that this addrec won't overflow, 1036 // we don't need to do any further analysis. 1037 if (AR->hasNoSignedWrap()) 1038 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1039 getSignExtendExpr(Step, Ty), 1040 L); 1041 1042 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1043 // Note that this serves two purposes: It filters out loops that are 1044 // simply not analyzable, and it covers the case where this code is 1045 // being called from within backedge-taken count analysis, such that 1046 // attempting to ask for the backedge-taken count would likely result 1047 // in infinite recursion. In the later case, the analysis code will 1048 // cope with a conservative value, and it will take care to purge 1049 // that value once it has finished. 1050 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1051 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1052 // Manually compute the final value for AR, checking for 1053 // overflow. 1054 1055 // Check whether the backedge-taken count can be losslessly casted to 1056 // the addrec's type. The count is always unsigned. 1057 const SCEV *CastedMaxBECount = 1058 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1059 const SCEV *RecastedMaxBECount = 1060 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1061 if (MaxBECount == RecastedMaxBECount) { 1062 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1063 // Check whether Start+Step*MaxBECount has no signed overflow. 1064 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1065 const SCEV *Add = getAddExpr(Start, SMul); 1066 const SCEV *OperandExtendedAdd = 1067 getAddExpr(getSignExtendExpr(Start, WideTy), 1068 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1069 getSignExtendExpr(Step, WideTy))); 1070 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1071 // Return the expression with the addrec on the outside. 1072 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1073 getSignExtendExpr(Step, Ty), 1074 L); 1075 1076 // Similar to above, only this time treat the step value as unsigned. 1077 // This covers loops that count up with an unsigned step. 1078 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1079 Add = getAddExpr(Start, UMul); 1080 OperandExtendedAdd = 1081 getAddExpr(getSignExtendExpr(Start, WideTy), 1082 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1083 getZeroExtendExpr(Step, WideTy))); 1084 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1085 // Return the expression with the addrec on the outside. 1086 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1087 getZeroExtendExpr(Step, Ty), 1088 L); 1089 } 1090 1091 // If the backedge is guarded by a comparison with the pre-inc value 1092 // the addrec is safe. Also, if the entry is guarded by a comparison 1093 // with the start value and the backedge is guarded by a comparison 1094 // with the post-inc value, the addrec is safe. 1095 if (isKnownPositive(Step)) { 1096 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1097 getSignedRange(Step).getSignedMax()); 1098 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1099 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1100 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1101 AR->getPostIncExpr(*this), N))) 1102 // Return the expression with the addrec on the outside. 1103 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1104 getSignExtendExpr(Step, Ty), 1105 L); 1106 } else if (isKnownNegative(Step)) { 1107 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1108 getSignedRange(Step).getSignedMin()); 1109 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1110 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1111 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1112 AR->getPostIncExpr(*this), N))) 1113 // Return the expression with the addrec on the outside. 1114 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1115 getSignExtendExpr(Step, Ty), 1116 L); 1117 } 1118 } 1119 } 1120 1121 // The cast wasn't folded; create an explicit cast node. 1122 // Recompute the insert position, as it may have been invalidated. 1123 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1124 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1125 Op, Ty); 1126 UniqueSCEVs.InsertNode(S, IP); 1127 return S; 1128 } 1129 1130 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1131 /// unspecified bits out to the given type. 1132 /// 1133 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1134 const Type *Ty) { 1135 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1136 "This is not an extending conversion!"); 1137 assert(isSCEVable(Ty) && 1138 "This is not a conversion to a SCEVable type!"); 1139 Ty = getEffectiveSCEVType(Ty); 1140 1141 // Sign-extend negative constants. 1142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1143 if (SC->getValue()->getValue().isNegative()) 1144 return getSignExtendExpr(Op, Ty); 1145 1146 // Peel off a truncate cast. 1147 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1148 const SCEV *NewOp = T->getOperand(); 1149 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1150 return getAnyExtendExpr(NewOp, Ty); 1151 return getTruncateOrNoop(NewOp, Ty); 1152 } 1153 1154 // Next try a zext cast. If the cast is folded, use it. 1155 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1156 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1157 return ZExt; 1158 1159 // Next try a sext cast. If the cast is folded, use it. 1160 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1161 if (!isa<SCEVSignExtendExpr>(SExt)) 1162 return SExt; 1163 1164 // Force the cast to be folded into the operands of an addrec. 1165 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1166 SmallVector<const SCEV *, 4> Ops; 1167 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1168 I != E; ++I) 1169 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1170 return getAddRecExpr(Ops, AR->getLoop()); 1171 } 1172 1173 // As a special case, fold anyext(undef) to undef. We don't want to 1174 // know too much about SCEVUnknowns, but this special case is handy 1175 // and harmless. 1176 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1177 if (isa<UndefValue>(U->getValue())) 1178 return getSCEV(UndefValue::get(Ty)); 1179 1180 // If the expression is obviously signed, use the sext cast value. 1181 if (isa<SCEVSMaxExpr>(Op)) 1182 return SExt; 1183 1184 // Absent any other information, use the zext cast value. 1185 return ZExt; 1186 } 1187 1188 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1189 /// a list of operands to be added under the given scale, update the given 1190 /// map. This is a helper function for getAddRecExpr. As an example of 1191 /// what it does, given a sequence of operands that would form an add 1192 /// expression like this: 1193 /// 1194 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1195 /// 1196 /// where A and B are constants, update the map with these values: 1197 /// 1198 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1199 /// 1200 /// and add 13 + A*B*29 to AccumulatedConstant. 1201 /// This will allow getAddRecExpr to produce this: 1202 /// 1203 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1204 /// 1205 /// This form often exposes folding opportunities that are hidden in 1206 /// the original operand list. 1207 /// 1208 /// Return true iff it appears that any interesting folding opportunities 1209 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1210 /// the common case where no interesting opportunities are present, and 1211 /// is also used as a check to avoid infinite recursion. 1212 /// 1213 static bool 1214 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1215 SmallVector<const SCEV *, 8> &NewOps, 1216 APInt &AccumulatedConstant, 1217 const SCEV *const *Ops, size_t NumOperands, 1218 const APInt &Scale, 1219 ScalarEvolution &SE) { 1220 bool Interesting = false; 1221 1222 // Iterate over the add operands. They are sorted, with constants first. 1223 unsigned i = 0; 1224 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1225 ++i; 1226 // Pull a buried constant out to the outside. 1227 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1228 Interesting = true; 1229 AccumulatedConstant += Scale * C->getValue()->getValue(); 1230 } 1231 1232 // Next comes everything else. We're especially interested in multiplies 1233 // here, but they're in the middle, so just visit the rest with one loop. 1234 for (; i != NumOperands; ++i) { 1235 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1236 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1237 APInt NewScale = 1238 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1239 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1240 // A multiplication of a constant with another add; recurse. 1241 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1242 Interesting |= 1243 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1244 Add->op_begin(), Add->getNumOperands(), 1245 NewScale, SE); 1246 } else { 1247 // A multiplication of a constant with some other value. Update 1248 // the map. 1249 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1250 const SCEV *Key = SE.getMulExpr(MulOps); 1251 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1252 M.insert(std::make_pair(Key, NewScale)); 1253 if (Pair.second) { 1254 NewOps.push_back(Pair.first->first); 1255 } else { 1256 Pair.first->second += NewScale; 1257 // The map already had an entry for this value, which may indicate 1258 // a folding opportunity. 1259 Interesting = true; 1260 } 1261 } 1262 } else { 1263 // An ordinary operand. Update the map. 1264 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1265 M.insert(std::make_pair(Ops[i], Scale)); 1266 if (Pair.second) { 1267 NewOps.push_back(Pair.first->first); 1268 } else { 1269 Pair.first->second += Scale; 1270 // The map already had an entry for this value, which may indicate 1271 // a folding opportunity. 1272 Interesting = true; 1273 } 1274 } 1275 } 1276 1277 return Interesting; 1278 } 1279 1280 namespace { 1281 struct APIntCompare { 1282 bool operator()(const APInt &LHS, const APInt &RHS) const { 1283 return LHS.ult(RHS); 1284 } 1285 }; 1286 } 1287 1288 /// getAddExpr - Get a canonical add expression, or something simpler if 1289 /// possible. 1290 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1291 bool HasNUW, bool HasNSW) { 1292 assert(!Ops.empty() && "Cannot get empty add!"); 1293 if (Ops.size() == 1) return Ops[0]; 1294 #ifndef NDEBUG 1295 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1296 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1297 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1298 "SCEVAddExpr operand types don't match!"); 1299 #endif 1300 1301 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1302 if (!HasNUW && HasNSW) { 1303 bool All = true; 1304 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1305 if (!isKnownNonNegative(Ops[i])) { 1306 All = false; 1307 break; 1308 } 1309 if (All) HasNUW = true; 1310 } 1311 1312 // Sort by complexity, this groups all similar expression types together. 1313 GroupByComplexity(Ops, LI); 1314 1315 // If there are any constants, fold them together. 1316 unsigned Idx = 0; 1317 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1318 ++Idx; 1319 assert(Idx < Ops.size()); 1320 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1321 // We found two constants, fold them together! 1322 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1323 RHSC->getValue()->getValue()); 1324 if (Ops.size() == 2) return Ops[0]; 1325 Ops.erase(Ops.begin()+1); // Erase the folded element 1326 LHSC = cast<SCEVConstant>(Ops[0]); 1327 } 1328 1329 // If we are left with a constant zero being added, strip it off. 1330 if (LHSC->getValue()->isZero()) { 1331 Ops.erase(Ops.begin()); 1332 --Idx; 1333 } 1334 1335 if (Ops.size() == 1) return Ops[0]; 1336 } 1337 1338 // Okay, check to see if the same value occurs in the operand list twice. If 1339 // so, merge them together into an multiply expression. Since we sorted the 1340 // list, these values are required to be adjacent. 1341 const Type *Ty = Ops[0]->getType(); 1342 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1343 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1344 // Found a match, merge the two values into a multiply, and add any 1345 // remaining values to the result. 1346 const SCEV *Two = getConstant(Ty, 2); 1347 const SCEV *Mul = getMulExpr(Ops[i], Two); 1348 if (Ops.size() == 2) 1349 return Mul; 1350 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1351 Ops.push_back(Mul); 1352 return getAddExpr(Ops, HasNUW, HasNSW); 1353 } 1354 1355 // Check for truncates. If all the operands are truncated from the same 1356 // type, see if factoring out the truncate would permit the result to be 1357 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1358 // if the contents of the resulting outer trunc fold to something simple. 1359 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1360 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1361 const Type *DstType = Trunc->getType(); 1362 const Type *SrcType = Trunc->getOperand()->getType(); 1363 SmallVector<const SCEV *, 8> LargeOps; 1364 bool Ok = true; 1365 // Check all the operands to see if they can be represented in the 1366 // source type of the truncate. 1367 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1368 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1369 if (T->getOperand()->getType() != SrcType) { 1370 Ok = false; 1371 break; 1372 } 1373 LargeOps.push_back(T->getOperand()); 1374 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1375 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1376 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1377 SmallVector<const SCEV *, 8> LargeMulOps; 1378 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1379 if (const SCEVTruncateExpr *T = 1380 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1381 if (T->getOperand()->getType() != SrcType) { 1382 Ok = false; 1383 break; 1384 } 1385 LargeMulOps.push_back(T->getOperand()); 1386 } else if (const SCEVConstant *C = 1387 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1388 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1389 } else { 1390 Ok = false; 1391 break; 1392 } 1393 } 1394 if (Ok) 1395 LargeOps.push_back(getMulExpr(LargeMulOps)); 1396 } else { 1397 Ok = false; 1398 break; 1399 } 1400 } 1401 if (Ok) { 1402 // Evaluate the expression in the larger type. 1403 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1404 // If it folds to something simple, use it. Otherwise, don't. 1405 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1406 return getTruncateExpr(Fold, DstType); 1407 } 1408 } 1409 1410 // Skip past any other cast SCEVs. 1411 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1412 ++Idx; 1413 1414 // If there are add operands they would be next. 1415 if (Idx < Ops.size()) { 1416 bool DeletedAdd = false; 1417 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1418 // If we have an add, expand the add operands onto the end of the operands 1419 // list. 1420 Ops.erase(Ops.begin()+Idx); 1421 Ops.append(Add->op_begin(), Add->op_end()); 1422 DeletedAdd = true; 1423 } 1424 1425 // If we deleted at least one add, we added operands to the end of the list, 1426 // and they are not necessarily sorted. Recurse to resort and resimplify 1427 // any operands we just acquired. 1428 if (DeletedAdd) 1429 return getAddExpr(Ops); 1430 } 1431 1432 // Skip over the add expression until we get to a multiply. 1433 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1434 ++Idx; 1435 1436 // Check to see if there are any folding opportunities present with 1437 // operands multiplied by constant values. 1438 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1439 uint64_t BitWidth = getTypeSizeInBits(Ty); 1440 DenseMap<const SCEV *, APInt> M; 1441 SmallVector<const SCEV *, 8> NewOps; 1442 APInt AccumulatedConstant(BitWidth, 0); 1443 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1444 Ops.data(), Ops.size(), 1445 APInt(BitWidth, 1), *this)) { 1446 // Some interesting folding opportunity is present, so its worthwhile to 1447 // re-generate the operands list. Group the operands by constant scale, 1448 // to avoid multiplying by the same constant scale multiple times. 1449 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1450 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1451 E = NewOps.end(); I != E; ++I) 1452 MulOpLists[M.find(*I)->second].push_back(*I); 1453 // Re-generate the operands list. 1454 Ops.clear(); 1455 if (AccumulatedConstant != 0) 1456 Ops.push_back(getConstant(AccumulatedConstant)); 1457 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1458 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1459 if (I->first != 0) 1460 Ops.push_back(getMulExpr(getConstant(I->first), 1461 getAddExpr(I->second))); 1462 if (Ops.empty()) 1463 return getConstant(Ty, 0); 1464 if (Ops.size() == 1) 1465 return Ops[0]; 1466 return getAddExpr(Ops); 1467 } 1468 } 1469 1470 // If we are adding something to a multiply expression, make sure the 1471 // something is not already an operand of the multiply. If so, merge it into 1472 // the multiply. 1473 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1474 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1475 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1476 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1477 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1478 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1479 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1480 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1481 if (Mul->getNumOperands() != 2) { 1482 // If the multiply has more than two operands, we must get the 1483 // Y*Z term. 1484 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1485 MulOps.erase(MulOps.begin()+MulOp); 1486 InnerMul = getMulExpr(MulOps); 1487 } 1488 const SCEV *One = getConstant(Ty, 1); 1489 const SCEV *AddOne = getAddExpr(InnerMul, One); 1490 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1491 if (Ops.size() == 2) return OuterMul; 1492 if (AddOp < Idx) { 1493 Ops.erase(Ops.begin()+AddOp); 1494 Ops.erase(Ops.begin()+Idx-1); 1495 } else { 1496 Ops.erase(Ops.begin()+Idx); 1497 Ops.erase(Ops.begin()+AddOp-1); 1498 } 1499 Ops.push_back(OuterMul); 1500 return getAddExpr(Ops); 1501 } 1502 1503 // Check this multiply against other multiplies being added together. 1504 for (unsigned OtherMulIdx = Idx+1; 1505 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1506 ++OtherMulIdx) { 1507 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1508 // If MulOp occurs in OtherMul, we can fold the two multiplies 1509 // together. 1510 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1511 OMulOp != e; ++OMulOp) 1512 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1513 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1514 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1515 if (Mul->getNumOperands() != 2) { 1516 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1517 Mul->op_end()); 1518 MulOps.erase(MulOps.begin()+MulOp); 1519 InnerMul1 = getMulExpr(MulOps); 1520 } 1521 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1522 if (OtherMul->getNumOperands() != 2) { 1523 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1524 OtherMul->op_end()); 1525 MulOps.erase(MulOps.begin()+OMulOp); 1526 InnerMul2 = getMulExpr(MulOps); 1527 } 1528 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1529 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1530 if (Ops.size() == 2) return OuterMul; 1531 Ops.erase(Ops.begin()+Idx); 1532 Ops.erase(Ops.begin()+OtherMulIdx-1); 1533 Ops.push_back(OuterMul); 1534 return getAddExpr(Ops); 1535 } 1536 } 1537 } 1538 } 1539 1540 // If there are any add recurrences in the operands list, see if any other 1541 // added values are loop invariant. If so, we can fold them into the 1542 // recurrence. 1543 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1544 ++Idx; 1545 1546 // Scan over all recurrences, trying to fold loop invariants into them. 1547 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1548 // Scan all of the other operands to this add and add them to the vector if 1549 // they are loop invariant w.r.t. the recurrence. 1550 SmallVector<const SCEV *, 8> LIOps; 1551 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1552 const Loop *AddRecLoop = AddRec->getLoop(); 1553 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1554 if (Ops[i]->isLoopInvariant(AddRecLoop)) { 1555 LIOps.push_back(Ops[i]); 1556 Ops.erase(Ops.begin()+i); 1557 --i; --e; 1558 } 1559 1560 // If we found some loop invariants, fold them into the recurrence. 1561 if (!LIOps.empty()) { 1562 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1563 LIOps.push_back(AddRec->getStart()); 1564 1565 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1566 AddRec->op_end()); 1567 AddRecOps[0] = getAddExpr(LIOps); 1568 1569 // Build the new addrec. Propagate the NUW and NSW flags if both the 1570 // outer add and the inner addrec are guaranteed to have no overflow. 1571 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1572 HasNUW && AddRec->hasNoUnsignedWrap(), 1573 HasNSW && AddRec->hasNoSignedWrap()); 1574 1575 // If all of the other operands were loop invariant, we are done. 1576 if (Ops.size() == 1) return NewRec; 1577 1578 // Otherwise, add the folded AddRec by the non-liv parts. 1579 for (unsigned i = 0;; ++i) 1580 if (Ops[i] == AddRec) { 1581 Ops[i] = NewRec; 1582 break; 1583 } 1584 return getAddExpr(Ops); 1585 } 1586 1587 // Okay, if there weren't any loop invariants to be folded, check to see if 1588 // there are multiple AddRec's with the same loop induction variable being 1589 // added together. If so, we can fold them. 1590 for (unsigned OtherIdx = Idx+1; 1591 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1592 if (OtherIdx != Idx) { 1593 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1594 if (AddRecLoop == OtherAddRec->getLoop()) { 1595 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1596 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1597 AddRec->op_end()); 1598 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1599 if (i >= NewOps.size()) { 1600 NewOps.append(OtherAddRec->op_begin()+i, 1601 OtherAddRec->op_end()); 1602 break; 1603 } 1604 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1605 } 1606 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop); 1607 1608 if (Ops.size() == 2) return NewAddRec; 1609 1610 Ops.erase(Ops.begin()+Idx); 1611 Ops.erase(Ops.begin()+OtherIdx-1); 1612 Ops.push_back(NewAddRec); 1613 return getAddExpr(Ops); 1614 } 1615 } 1616 1617 // Otherwise couldn't fold anything into this recurrence. Move onto the 1618 // next one. 1619 } 1620 1621 // Okay, it looks like we really DO need an add expr. Check to see if we 1622 // already have one, otherwise create a new one. 1623 FoldingSetNodeID ID; 1624 ID.AddInteger(scAddExpr); 1625 ID.AddInteger(Ops.size()); 1626 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1627 ID.AddPointer(Ops[i]); 1628 void *IP = 0; 1629 SCEVAddExpr *S = 1630 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1631 if (!S) { 1632 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1633 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1634 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1635 O, Ops.size()); 1636 UniqueSCEVs.InsertNode(S, IP); 1637 } 1638 if (HasNUW) S->setHasNoUnsignedWrap(true); 1639 if (HasNSW) S->setHasNoSignedWrap(true); 1640 return S; 1641 } 1642 1643 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1644 /// possible. 1645 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1646 bool HasNUW, bool HasNSW) { 1647 assert(!Ops.empty() && "Cannot get empty mul!"); 1648 if (Ops.size() == 1) return Ops[0]; 1649 #ifndef NDEBUG 1650 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1651 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1652 getEffectiveSCEVType(Ops[0]->getType()) && 1653 "SCEVMulExpr operand types don't match!"); 1654 #endif 1655 1656 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1657 if (!HasNUW && HasNSW) { 1658 bool All = true; 1659 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1660 if (!isKnownNonNegative(Ops[i])) { 1661 All = false; 1662 break; 1663 } 1664 if (All) HasNUW = true; 1665 } 1666 1667 // Sort by complexity, this groups all similar expression types together. 1668 GroupByComplexity(Ops, LI); 1669 1670 // If there are any constants, fold them together. 1671 unsigned Idx = 0; 1672 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1673 1674 // C1*(C2+V) -> C1*C2 + C1*V 1675 if (Ops.size() == 2) 1676 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1677 if (Add->getNumOperands() == 2 && 1678 isa<SCEVConstant>(Add->getOperand(0))) 1679 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1680 getMulExpr(LHSC, Add->getOperand(1))); 1681 1682 ++Idx; 1683 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1684 // We found two constants, fold them together! 1685 ConstantInt *Fold = ConstantInt::get(getContext(), 1686 LHSC->getValue()->getValue() * 1687 RHSC->getValue()->getValue()); 1688 Ops[0] = getConstant(Fold); 1689 Ops.erase(Ops.begin()+1); // Erase the folded element 1690 if (Ops.size() == 1) return Ops[0]; 1691 LHSC = cast<SCEVConstant>(Ops[0]); 1692 } 1693 1694 // If we are left with a constant one being multiplied, strip it off. 1695 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1696 Ops.erase(Ops.begin()); 1697 --Idx; 1698 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1699 // If we have a multiply of zero, it will always be zero. 1700 return Ops[0]; 1701 } else if (Ops[0]->isAllOnesValue()) { 1702 // If we have a mul by -1 of an add, try distributing the -1 among the 1703 // add operands. 1704 if (Ops.size() == 2) 1705 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1706 SmallVector<const SCEV *, 4> NewOps; 1707 bool AnyFolded = false; 1708 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1709 I != E; ++I) { 1710 const SCEV *Mul = getMulExpr(Ops[0], *I); 1711 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1712 NewOps.push_back(Mul); 1713 } 1714 if (AnyFolded) 1715 return getAddExpr(NewOps); 1716 } 1717 } 1718 1719 if (Ops.size() == 1) 1720 return Ops[0]; 1721 } 1722 1723 // Skip over the add expression until we get to a multiply. 1724 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1725 ++Idx; 1726 1727 // If there are mul operands inline them all into this expression. 1728 if (Idx < Ops.size()) { 1729 bool DeletedMul = false; 1730 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1731 // If we have an mul, expand the mul operands onto the end of the operands 1732 // list. 1733 Ops.erase(Ops.begin()+Idx); 1734 Ops.append(Mul->op_begin(), Mul->op_end()); 1735 DeletedMul = true; 1736 } 1737 1738 // If we deleted at least one mul, we added operands to the end of the list, 1739 // and they are not necessarily sorted. Recurse to resort and resimplify 1740 // any operands we just acquired. 1741 if (DeletedMul) 1742 return getMulExpr(Ops); 1743 } 1744 1745 // If there are any add recurrences in the operands list, see if any other 1746 // added values are loop invariant. If so, we can fold them into the 1747 // recurrence. 1748 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1749 ++Idx; 1750 1751 // Scan over all recurrences, trying to fold loop invariants into them. 1752 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1753 // Scan all of the other operands to this mul and add them to the vector if 1754 // they are loop invariant w.r.t. the recurrence. 1755 SmallVector<const SCEV *, 8> LIOps; 1756 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1757 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1758 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1759 LIOps.push_back(Ops[i]); 1760 Ops.erase(Ops.begin()+i); 1761 --i; --e; 1762 } 1763 1764 // If we found some loop invariants, fold them into the recurrence. 1765 if (!LIOps.empty()) { 1766 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1767 SmallVector<const SCEV *, 4> NewOps; 1768 NewOps.reserve(AddRec->getNumOperands()); 1769 const SCEV *Scale = getMulExpr(LIOps); 1770 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1771 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1772 1773 // Build the new addrec. Propagate the NUW and NSW flags if both the 1774 // outer mul and the inner addrec are guaranteed to have no overflow. 1775 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1776 HasNUW && AddRec->hasNoUnsignedWrap(), 1777 HasNSW && AddRec->hasNoSignedWrap()); 1778 1779 // If all of the other operands were loop invariant, we are done. 1780 if (Ops.size() == 1) return NewRec; 1781 1782 // Otherwise, multiply the folded AddRec by the non-liv parts. 1783 for (unsigned i = 0;; ++i) 1784 if (Ops[i] == AddRec) { 1785 Ops[i] = NewRec; 1786 break; 1787 } 1788 return getMulExpr(Ops); 1789 } 1790 1791 // Okay, if there weren't any loop invariants to be folded, check to see if 1792 // there are multiple AddRec's with the same loop induction variable being 1793 // multiplied together. If so, we can fold them. 1794 for (unsigned OtherIdx = Idx+1; 1795 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1796 if (OtherIdx != Idx) { 1797 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1798 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1799 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1800 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1801 const SCEV *NewStart = getMulExpr(F->getStart(), 1802 G->getStart()); 1803 const SCEV *B = F->getStepRecurrence(*this); 1804 const SCEV *D = G->getStepRecurrence(*this); 1805 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1806 getMulExpr(G, B), 1807 getMulExpr(B, D)); 1808 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1809 F->getLoop()); 1810 if (Ops.size() == 2) return NewAddRec; 1811 1812 Ops.erase(Ops.begin()+Idx); 1813 Ops.erase(Ops.begin()+OtherIdx-1); 1814 Ops.push_back(NewAddRec); 1815 return getMulExpr(Ops); 1816 } 1817 } 1818 1819 // Otherwise couldn't fold anything into this recurrence. Move onto the 1820 // next one. 1821 } 1822 1823 // Okay, it looks like we really DO need an mul expr. Check to see if we 1824 // already have one, otherwise create a new one. 1825 FoldingSetNodeID ID; 1826 ID.AddInteger(scMulExpr); 1827 ID.AddInteger(Ops.size()); 1828 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1829 ID.AddPointer(Ops[i]); 1830 void *IP = 0; 1831 SCEVMulExpr *S = 1832 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1833 if (!S) { 1834 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1835 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1836 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1837 O, Ops.size()); 1838 UniqueSCEVs.InsertNode(S, IP); 1839 } 1840 if (HasNUW) S->setHasNoUnsignedWrap(true); 1841 if (HasNSW) S->setHasNoSignedWrap(true); 1842 return S; 1843 } 1844 1845 /// getUDivExpr - Get a canonical unsigned division expression, or something 1846 /// simpler if possible. 1847 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1848 const SCEV *RHS) { 1849 assert(getEffectiveSCEVType(LHS->getType()) == 1850 getEffectiveSCEVType(RHS->getType()) && 1851 "SCEVUDivExpr operand types don't match!"); 1852 1853 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1854 if (RHSC->getValue()->equalsInt(1)) 1855 return LHS; // X udiv 1 --> x 1856 // If the denominator is zero, the result of the udiv is undefined. Don't 1857 // try to analyze it, because the resolution chosen here may differ from 1858 // the resolution chosen in other parts of the compiler. 1859 if (!RHSC->getValue()->isZero()) { 1860 // Determine if the division can be folded into the operands of 1861 // its operands. 1862 // TODO: Generalize this to non-constants by using known-bits information. 1863 const Type *Ty = LHS->getType(); 1864 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1865 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1866 // For non-power-of-two values, effectively round the value up to the 1867 // nearest power of two. 1868 if (!RHSC->getValue()->getValue().isPowerOf2()) 1869 ++MaxShiftAmt; 1870 const IntegerType *ExtTy = 1871 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1872 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1874 if (const SCEVConstant *Step = 1875 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1876 if (!Step->getValue()->getValue() 1877 .urem(RHSC->getValue()->getValue()) && 1878 getZeroExtendExpr(AR, ExtTy) == 1879 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1880 getZeroExtendExpr(Step, ExtTy), 1881 AR->getLoop())) { 1882 SmallVector<const SCEV *, 4> Operands; 1883 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1884 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1885 return getAddRecExpr(Operands, AR->getLoop()); 1886 } 1887 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1888 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1889 SmallVector<const SCEV *, 4> Operands; 1890 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1891 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1892 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1893 // Find an operand that's safely divisible. 1894 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1895 const SCEV *Op = M->getOperand(i); 1896 const SCEV *Div = getUDivExpr(Op, RHSC); 1897 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1898 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1899 M->op_end()); 1900 Operands[i] = Div; 1901 return getMulExpr(Operands); 1902 } 1903 } 1904 } 1905 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1906 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1907 SmallVector<const SCEV *, 4> Operands; 1908 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1909 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1910 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1911 Operands.clear(); 1912 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1913 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1914 if (isa<SCEVUDivExpr>(Op) || 1915 getMulExpr(Op, RHS) != A->getOperand(i)) 1916 break; 1917 Operands.push_back(Op); 1918 } 1919 if (Operands.size() == A->getNumOperands()) 1920 return getAddExpr(Operands); 1921 } 1922 } 1923 1924 // Fold if both operands are constant. 1925 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1926 Constant *LHSCV = LHSC->getValue(); 1927 Constant *RHSCV = RHSC->getValue(); 1928 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1929 RHSCV))); 1930 } 1931 } 1932 } 1933 1934 FoldingSetNodeID ID; 1935 ID.AddInteger(scUDivExpr); 1936 ID.AddPointer(LHS); 1937 ID.AddPointer(RHS); 1938 void *IP = 0; 1939 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1940 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 1941 LHS, RHS); 1942 UniqueSCEVs.InsertNode(S, IP); 1943 return S; 1944 } 1945 1946 1947 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1948 /// Simplify the expression as much as possible. 1949 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1950 const SCEV *Step, const Loop *L, 1951 bool HasNUW, bool HasNSW) { 1952 SmallVector<const SCEV *, 4> Operands; 1953 Operands.push_back(Start); 1954 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1955 if (StepChrec->getLoop() == L) { 1956 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 1957 return getAddRecExpr(Operands, L); 1958 } 1959 1960 Operands.push_back(Step); 1961 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1962 } 1963 1964 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1965 /// Simplify the expression as much as possible. 1966 const SCEV * 1967 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1968 const Loop *L, 1969 bool HasNUW, bool HasNSW) { 1970 if (Operands.size() == 1) return Operands[0]; 1971 #ifndef NDEBUG 1972 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1973 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1974 getEffectiveSCEVType(Operands[0]->getType()) && 1975 "SCEVAddRecExpr operand types don't match!"); 1976 #endif 1977 1978 if (Operands.back()->isZero()) { 1979 Operands.pop_back(); 1980 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 1981 } 1982 1983 // It's tempting to want to call getMaxBackedgeTakenCount count here and 1984 // use that information to infer NUW and NSW flags. However, computing a 1985 // BE count requires calling getAddRecExpr, so we may not yet have a 1986 // meaningful BE count at this point (and if we don't, we'd be stuck 1987 // with a SCEVCouldNotCompute as the cached BE count). 1988 1989 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1990 if (!HasNUW && HasNSW) { 1991 bool All = true; 1992 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1993 if (!isKnownNonNegative(Operands[i])) { 1994 All = false; 1995 break; 1996 } 1997 if (All) HasNUW = true; 1998 } 1999 2000 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2001 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2002 const Loop *NestedLoop = NestedAR->getLoop(); 2003 if (L->contains(NestedLoop->getHeader()) ? 2004 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2005 (!NestedLoop->contains(L->getHeader()) && 2006 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2007 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2008 NestedAR->op_end()); 2009 Operands[0] = NestedAR->getStart(); 2010 // AddRecs require their operands be loop-invariant with respect to their 2011 // loops. Don't perform this transformation if it would break this 2012 // requirement. 2013 bool AllInvariant = true; 2014 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2015 if (!Operands[i]->isLoopInvariant(L)) { 2016 AllInvariant = false; 2017 break; 2018 } 2019 if (AllInvariant) { 2020 NestedOperands[0] = getAddRecExpr(Operands, L); 2021 AllInvariant = true; 2022 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2023 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 2024 AllInvariant = false; 2025 break; 2026 } 2027 if (AllInvariant) 2028 // Ok, both add recurrences are valid after the transformation. 2029 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2030 } 2031 // Reset Operands to its original state. 2032 Operands[0] = NestedAR; 2033 } 2034 } 2035 2036 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2037 // already have one, otherwise create a new one. 2038 FoldingSetNodeID ID; 2039 ID.AddInteger(scAddRecExpr); 2040 ID.AddInteger(Operands.size()); 2041 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2042 ID.AddPointer(Operands[i]); 2043 ID.AddPointer(L); 2044 void *IP = 0; 2045 SCEVAddRecExpr *S = 2046 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2047 if (!S) { 2048 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2049 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2050 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2051 O, Operands.size(), L); 2052 UniqueSCEVs.InsertNode(S, IP); 2053 } 2054 if (HasNUW) S->setHasNoUnsignedWrap(true); 2055 if (HasNSW) S->setHasNoSignedWrap(true); 2056 return S; 2057 } 2058 2059 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2060 const SCEV *RHS) { 2061 SmallVector<const SCEV *, 2> Ops; 2062 Ops.push_back(LHS); 2063 Ops.push_back(RHS); 2064 return getSMaxExpr(Ops); 2065 } 2066 2067 const SCEV * 2068 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2069 assert(!Ops.empty() && "Cannot get empty smax!"); 2070 if (Ops.size() == 1) return Ops[0]; 2071 #ifndef NDEBUG 2072 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2073 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2074 getEffectiveSCEVType(Ops[0]->getType()) && 2075 "SCEVSMaxExpr operand types don't match!"); 2076 #endif 2077 2078 // Sort by complexity, this groups all similar expression types together. 2079 GroupByComplexity(Ops, LI); 2080 2081 // If there are any constants, fold them together. 2082 unsigned Idx = 0; 2083 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2084 ++Idx; 2085 assert(Idx < Ops.size()); 2086 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2087 // We found two constants, fold them together! 2088 ConstantInt *Fold = ConstantInt::get(getContext(), 2089 APIntOps::smax(LHSC->getValue()->getValue(), 2090 RHSC->getValue()->getValue())); 2091 Ops[0] = getConstant(Fold); 2092 Ops.erase(Ops.begin()+1); // Erase the folded element 2093 if (Ops.size() == 1) return Ops[0]; 2094 LHSC = cast<SCEVConstant>(Ops[0]); 2095 } 2096 2097 // If we are left with a constant minimum-int, strip it off. 2098 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2099 Ops.erase(Ops.begin()); 2100 --Idx; 2101 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2102 // If we have an smax with a constant maximum-int, it will always be 2103 // maximum-int. 2104 return Ops[0]; 2105 } 2106 2107 if (Ops.size() == 1) return Ops[0]; 2108 } 2109 2110 // Find the first SMax 2111 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2112 ++Idx; 2113 2114 // Check to see if one of the operands is an SMax. If so, expand its operands 2115 // onto our operand list, and recurse to simplify. 2116 if (Idx < Ops.size()) { 2117 bool DeletedSMax = false; 2118 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2119 Ops.erase(Ops.begin()+Idx); 2120 Ops.append(SMax->op_begin(), SMax->op_end()); 2121 DeletedSMax = true; 2122 } 2123 2124 if (DeletedSMax) 2125 return getSMaxExpr(Ops); 2126 } 2127 2128 // Okay, check to see if the same value occurs in the operand list twice. If 2129 // so, delete one. Since we sorted the list, these values are required to 2130 // be adjacent. 2131 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2132 // X smax Y smax Y --> X smax Y 2133 // X smax Y --> X, if X is always greater than Y 2134 if (Ops[i] == Ops[i+1] || 2135 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2136 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2137 --i; --e; 2138 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2139 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2140 --i; --e; 2141 } 2142 2143 if (Ops.size() == 1) return Ops[0]; 2144 2145 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2146 2147 // Okay, it looks like we really DO need an smax expr. Check to see if we 2148 // already have one, otherwise create a new one. 2149 FoldingSetNodeID ID; 2150 ID.AddInteger(scSMaxExpr); 2151 ID.AddInteger(Ops.size()); 2152 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2153 ID.AddPointer(Ops[i]); 2154 void *IP = 0; 2155 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2156 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2157 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2158 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2159 O, Ops.size()); 2160 UniqueSCEVs.InsertNode(S, IP); 2161 return S; 2162 } 2163 2164 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2165 const SCEV *RHS) { 2166 SmallVector<const SCEV *, 2> Ops; 2167 Ops.push_back(LHS); 2168 Ops.push_back(RHS); 2169 return getUMaxExpr(Ops); 2170 } 2171 2172 const SCEV * 2173 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2174 assert(!Ops.empty() && "Cannot get empty umax!"); 2175 if (Ops.size() == 1) return Ops[0]; 2176 #ifndef NDEBUG 2177 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2178 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2179 getEffectiveSCEVType(Ops[0]->getType()) && 2180 "SCEVUMaxExpr operand types don't match!"); 2181 #endif 2182 2183 // Sort by complexity, this groups all similar expression types together. 2184 GroupByComplexity(Ops, LI); 2185 2186 // If there are any constants, fold them together. 2187 unsigned Idx = 0; 2188 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2189 ++Idx; 2190 assert(Idx < Ops.size()); 2191 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2192 // We found two constants, fold them together! 2193 ConstantInt *Fold = ConstantInt::get(getContext(), 2194 APIntOps::umax(LHSC->getValue()->getValue(), 2195 RHSC->getValue()->getValue())); 2196 Ops[0] = getConstant(Fold); 2197 Ops.erase(Ops.begin()+1); // Erase the folded element 2198 if (Ops.size() == 1) return Ops[0]; 2199 LHSC = cast<SCEVConstant>(Ops[0]); 2200 } 2201 2202 // If we are left with a constant minimum-int, strip it off. 2203 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2204 Ops.erase(Ops.begin()); 2205 --Idx; 2206 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2207 // If we have an umax with a constant maximum-int, it will always be 2208 // maximum-int. 2209 return Ops[0]; 2210 } 2211 2212 if (Ops.size() == 1) return Ops[0]; 2213 } 2214 2215 // Find the first UMax 2216 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2217 ++Idx; 2218 2219 // Check to see if one of the operands is a UMax. If so, expand its operands 2220 // onto our operand list, and recurse to simplify. 2221 if (Idx < Ops.size()) { 2222 bool DeletedUMax = false; 2223 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2224 Ops.erase(Ops.begin()+Idx); 2225 Ops.append(UMax->op_begin(), UMax->op_end()); 2226 DeletedUMax = true; 2227 } 2228 2229 if (DeletedUMax) 2230 return getUMaxExpr(Ops); 2231 } 2232 2233 // Okay, check to see if the same value occurs in the operand list twice. If 2234 // so, delete one. Since we sorted the list, these values are required to 2235 // be adjacent. 2236 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2237 // X umax Y umax Y --> X umax Y 2238 // X umax Y --> X, if X is always greater than Y 2239 if (Ops[i] == Ops[i+1] || 2240 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2241 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2242 --i; --e; 2243 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2244 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2245 --i; --e; 2246 } 2247 2248 if (Ops.size() == 1) return Ops[0]; 2249 2250 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2251 2252 // Okay, it looks like we really DO need a umax expr. Check to see if we 2253 // already have one, otherwise create a new one. 2254 FoldingSetNodeID ID; 2255 ID.AddInteger(scUMaxExpr); 2256 ID.AddInteger(Ops.size()); 2257 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2258 ID.AddPointer(Ops[i]); 2259 void *IP = 0; 2260 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2261 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2262 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2263 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2264 O, Ops.size()); 2265 UniqueSCEVs.InsertNode(S, IP); 2266 return S; 2267 } 2268 2269 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2270 const SCEV *RHS) { 2271 // ~smax(~x, ~y) == smin(x, y). 2272 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2273 } 2274 2275 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2276 const SCEV *RHS) { 2277 // ~umax(~x, ~y) == umin(x, y) 2278 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2279 } 2280 2281 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2282 // If we have TargetData, we can bypass creating a target-independent 2283 // constant expression and then folding it back into a ConstantInt. 2284 // This is just a compile-time optimization. 2285 if (TD) 2286 return getConstant(TD->getIntPtrType(getContext()), 2287 TD->getTypeAllocSize(AllocTy)); 2288 2289 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2290 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2291 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2292 C = Folded; 2293 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2294 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2295 } 2296 2297 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2298 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2300 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2301 C = Folded; 2302 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2303 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2304 } 2305 2306 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2307 unsigned FieldNo) { 2308 // If we have TargetData, we can bypass creating a target-independent 2309 // constant expression and then folding it back into a ConstantInt. 2310 // This is just a compile-time optimization. 2311 if (TD) 2312 return getConstant(TD->getIntPtrType(getContext()), 2313 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2314 2315 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2316 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2317 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2318 C = Folded; 2319 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2320 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2321 } 2322 2323 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2324 Constant *FieldNo) { 2325 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2326 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2327 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2328 C = Folded; 2329 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2330 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2331 } 2332 2333 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2334 // Don't attempt to do anything other than create a SCEVUnknown object 2335 // here. createSCEV only calls getUnknown after checking for all other 2336 // interesting possibilities, and any other code that calls getUnknown 2337 // is doing so in order to hide a value from SCEV canonicalization. 2338 2339 FoldingSetNodeID ID; 2340 ID.AddInteger(scUnknown); 2341 ID.AddPointer(V); 2342 void *IP = 0; 2343 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2344 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V); 2345 UniqueSCEVs.InsertNode(S, IP); 2346 return S; 2347 } 2348 2349 //===----------------------------------------------------------------------===// 2350 // Basic SCEV Analysis and PHI Idiom Recognition Code 2351 // 2352 2353 /// isSCEVable - Test if values of the given type are analyzable within 2354 /// the SCEV framework. This primarily includes integer types, and it 2355 /// can optionally include pointer types if the ScalarEvolution class 2356 /// has access to target-specific information. 2357 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2358 // Integers and pointers are always SCEVable. 2359 return Ty->isIntegerTy() || Ty->isPointerTy(); 2360 } 2361 2362 /// getTypeSizeInBits - Return the size in bits of the specified type, 2363 /// for which isSCEVable must return true. 2364 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2365 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2366 2367 // If we have a TargetData, use it! 2368 if (TD) 2369 return TD->getTypeSizeInBits(Ty); 2370 2371 // Integer types have fixed sizes. 2372 if (Ty->isIntegerTy()) 2373 return Ty->getPrimitiveSizeInBits(); 2374 2375 // The only other support type is pointer. Without TargetData, conservatively 2376 // assume pointers are 64-bit. 2377 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2378 return 64; 2379 } 2380 2381 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2382 /// the given type and which represents how SCEV will treat the given 2383 /// type, for which isSCEVable must return true. For pointer types, 2384 /// this is the pointer-sized integer type. 2385 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2386 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2387 2388 if (Ty->isIntegerTy()) 2389 return Ty; 2390 2391 // The only other support type is pointer. 2392 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2393 if (TD) return TD->getIntPtrType(getContext()); 2394 2395 // Without TargetData, conservatively assume pointers are 64-bit. 2396 return Type::getInt64Ty(getContext()); 2397 } 2398 2399 const SCEV *ScalarEvolution::getCouldNotCompute() { 2400 return &CouldNotCompute; 2401 } 2402 2403 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2404 /// expression and create a new one. 2405 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2406 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2407 2408 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2409 if (I != Scalars.end()) return I->second; 2410 const SCEV *S = createSCEV(V); 2411 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2412 return S; 2413 } 2414 2415 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2416 /// 2417 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2418 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2419 return getConstant( 2420 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2421 2422 const Type *Ty = V->getType(); 2423 Ty = getEffectiveSCEVType(Ty); 2424 return getMulExpr(V, 2425 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2426 } 2427 2428 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2429 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2430 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2431 return getConstant( 2432 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2433 2434 const Type *Ty = V->getType(); 2435 Ty = getEffectiveSCEVType(Ty); 2436 const SCEV *AllOnes = 2437 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2438 return getMinusSCEV(AllOnes, V); 2439 } 2440 2441 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2442 /// 2443 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2444 const SCEV *RHS) { 2445 // Fast path: X - X --> 0. 2446 if (LHS == RHS) 2447 return getConstant(LHS->getType(), 0); 2448 2449 // X - Y --> X + -Y 2450 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2451 } 2452 2453 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2454 /// input value to the specified type. If the type must be extended, it is zero 2455 /// extended. 2456 const SCEV * 2457 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2458 const Type *Ty) { 2459 const Type *SrcTy = V->getType(); 2460 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2461 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2462 "Cannot truncate or zero extend with non-integer arguments!"); 2463 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2464 return V; // No conversion 2465 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2466 return getTruncateExpr(V, Ty); 2467 return getZeroExtendExpr(V, Ty); 2468 } 2469 2470 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2471 /// input value to the specified type. If the type must be extended, it is sign 2472 /// extended. 2473 const SCEV * 2474 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2475 const Type *Ty) { 2476 const Type *SrcTy = V->getType(); 2477 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2478 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2479 "Cannot truncate or zero extend with non-integer arguments!"); 2480 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2481 return V; // No conversion 2482 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2483 return getTruncateExpr(V, Ty); 2484 return getSignExtendExpr(V, Ty); 2485 } 2486 2487 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2488 /// input value to the specified type. If the type must be extended, it is zero 2489 /// extended. The conversion must not be narrowing. 2490 const SCEV * 2491 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2492 const Type *SrcTy = V->getType(); 2493 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2494 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2495 "Cannot noop or zero extend with non-integer arguments!"); 2496 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2497 "getNoopOrZeroExtend cannot truncate!"); 2498 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2499 return V; // No conversion 2500 return getZeroExtendExpr(V, Ty); 2501 } 2502 2503 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2504 /// input value to the specified type. If the type must be extended, it is sign 2505 /// extended. The conversion must not be narrowing. 2506 const SCEV * 2507 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2508 const Type *SrcTy = V->getType(); 2509 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2510 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2511 "Cannot noop or sign extend with non-integer arguments!"); 2512 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2513 "getNoopOrSignExtend cannot truncate!"); 2514 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2515 return V; // No conversion 2516 return getSignExtendExpr(V, Ty); 2517 } 2518 2519 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2520 /// the input value to the specified type. If the type must be extended, 2521 /// it is extended with unspecified bits. The conversion must not be 2522 /// narrowing. 2523 const SCEV * 2524 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2525 const Type *SrcTy = V->getType(); 2526 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2527 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2528 "Cannot noop or any extend with non-integer arguments!"); 2529 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2530 "getNoopOrAnyExtend cannot truncate!"); 2531 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2532 return V; // No conversion 2533 return getAnyExtendExpr(V, Ty); 2534 } 2535 2536 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2537 /// input value to the specified type. The conversion must not be widening. 2538 const SCEV * 2539 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2540 const Type *SrcTy = V->getType(); 2541 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2542 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2543 "Cannot truncate or noop with non-integer arguments!"); 2544 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2545 "getTruncateOrNoop cannot extend!"); 2546 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2547 return V; // No conversion 2548 return getTruncateExpr(V, Ty); 2549 } 2550 2551 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2552 /// the types using zero-extension, and then perform a umax operation 2553 /// with them. 2554 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2555 const SCEV *RHS) { 2556 const SCEV *PromotedLHS = LHS; 2557 const SCEV *PromotedRHS = RHS; 2558 2559 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2560 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2561 else 2562 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2563 2564 return getUMaxExpr(PromotedLHS, PromotedRHS); 2565 } 2566 2567 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2568 /// the types using zero-extension, and then perform a umin operation 2569 /// with them. 2570 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2571 const SCEV *RHS) { 2572 const SCEV *PromotedLHS = LHS; 2573 const SCEV *PromotedRHS = RHS; 2574 2575 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2576 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2577 else 2578 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2579 2580 return getUMinExpr(PromotedLHS, PromotedRHS); 2581 } 2582 2583 /// PushDefUseChildren - Push users of the given Instruction 2584 /// onto the given Worklist. 2585 static void 2586 PushDefUseChildren(Instruction *I, 2587 SmallVectorImpl<Instruction *> &Worklist) { 2588 // Push the def-use children onto the Worklist stack. 2589 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2590 UI != UE; ++UI) 2591 Worklist.push_back(cast<Instruction>(UI)); 2592 } 2593 2594 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2595 /// instructions that depend on the given instruction and removes them from 2596 /// the Scalars map if they reference SymName. This is used during PHI 2597 /// resolution. 2598 void 2599 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2600 SmallVector<Instruction *, 16> Worklist; 2601 PushDefUseChildren(PN, Worklist); 2602 2603 SmallPtrSet<Instruction *, 8> Visited; 2604 Visited.insert(PN); 2605 while (!Worklist.empty()) { 2606 Instruction *I = Worklist.pop_back_val(); 2607 if (!Visited.insert(I)) continue; 2608 2609 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 2610 Scalars.find(static_cast<Value *>(I)); 2611 if (It != Scalars.end()) { 2612 // Short-circuit the def-use traversal if the symbolic name 2613 // ceases to appear in expressions. 2614 if (It->second != SymName && !It->second->hasOperand(SymName)) 2615 continue; 2616 2617 // SCEVUnknown for a PHI either means that it has an unrecognized 2618 // structure, it's a PHI that's in the progress of being computed 2619 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2620 // additional loop trip count information isn't going to change anything. 2621 // In the second case, createNodeForPHI will perform the necessary 2622 // updates on its own when it gets to that point. In the third, we do 2623 // want to forget the SCEVUnknown. 2624 if (!isa<PHINode>(I) || 2625 !isa<SCEVUnknown>(It->second) || 2626 (I != PN && It->second == SymName)) { 2627 ValuesAtScopes.erase(It->second); 2628 Scalars.erase(It); 2629 } 2630 } 2631 2632 PushDefUseChildren(I, Worklist); 2633 } 2634 } 2635 2636 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2637 /// a loop header, making it a potential recurrence, or it doesn't. 2638 /// 2639 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2640 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2641 if (L->getHeader() == PN->getParent()) { 2642 // The loop may have multiple entrances or multiple exits; we can analyze 2643 // this phi as an addrec if it has a unique entry value and a unique 2644 // backedge value. 2645 Value *BEValueV = 0, *StartValueV = 0; 2646 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2647 Value *V = PN->getIncomingValue(i); 2648 if (L->contains(PN->getIncomingBlock(i))) { 2649 if (!BEValueV) { 2650 BEValueV = V; 2651 } else if (BEValueV != V) { 2652 BEValueV = 0; 2653 break; 2654 } 2655 } else if (!StartValueV) { 2656 StartValueV = V; 2657 } else if (StartValueV != V) { 2658 StartValueV = 0; 2659 break; 2660 } 2661 } 2662 if (BEValueV && StartValueV) { 2663 // While we are analyzing this PHI node, handle its value symbolically. 2664 const SCEV *SymbolicName = getUnknown(PN); 2665 assert(Scalars.find(PN) == Scalars.end() && 2666 "PHI node already processed?"); 2667 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2668 2669 // Using this symbolic name for the PHI, analyze the value coming around 2670 // the back-edge. 2671 const SCEV *BEValue = getSCEV(BEValueV); 2672 2673 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2674 // has a special value for the first iteration of the loop. 2675 2676 // If the value coming around the backedge is an add with the symbolic 2677 // value we just inserted, then we found a simple induction variable! 2678 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2679 // If there is a single occurrence of the symbolic value, replace it 2680 // with a recurrence. 2681 unsigned FoundIndex = Add->getNumOperands(); 2682 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2683 if (Add->getOperand(i) == SymbolicName) 2684 if (FoundIndex == e) { 2685 FoundIndex = i; 2686 break; 2687 } 2688 2689 if (FoundIndex != Add->getNumOperands()) { 2690 // Create an add with everything but the specified operand. 2691 SmallVector<const SCEV *, 8> Ops; 2692 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2693 if (i != FoundIndex) 2694 Ops.push_back(Add->getOperand(i)); 2695 const SCEV *Accum = getAddExpr(Ops); 2696 2697 // This is not a valid addrec if the step amount is varying each 2698 // loop iteration, but is not itself an addrec in this loop. 2699 if (Accum->isLoopInvariant(L) || 2700 (isa<SCEVAddRecExpr>(Accum) && 2701 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2702 bool HasNUW = false; 2703 bool HasNSW = false; 2704 2705 // If the increment doesn't overflow, then neither the addrec nor 2706 // the post-increment will overflow. 2707 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2708 if (OBO->hasNoUnsignedWrap()) 2709 HasNUW = true; 2710 if (OBO->hasNoSignedWrap()) 2711 HasNSW = true; 2712 } 2713 2714 const SCEV *StartVal = getSCEV(StartValueV); 2715 const SCEV *PHISCEV = 2716 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2717 2718 // Since the no-wrap flags are on the increment, they apply to the 2719 // post-incremented value as well. 2720 if (Accum->isLoopInvariant(L)) 2721 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2722 Accum, L, HasNUW, HasNSW); 2723 2724 // Okay, for the entire analysis of this edge we assumed the PHI 2725 // to be symbolic. We now need to go back and purge all of the 2726 // entries for the scalars that use the symbolic expression. 2727 ForgetSymbolicName(PN, SymbolicName); 2728 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2729 return PHISCEV; 2730 } 2731 } 2732 } else if (const SCEVAddRecExpr *AddRec = 2733 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2734 // Otherwise, this could be a loop like this: 2735 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2736 // In this case, j = {1,+,1} and BEValue is j. 2737 // Because the other in-value of i (0) fits the evolution of BEValue 2738 // i really is an addrec evolution. 2739 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2740 const SCEV *StartVal = getSCEV(StartValueV); 2741 2742 // If StartVal = j.start - j.stride, we can use StartVal as the 2743 // initial step of the addrec evolution. 2744 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2745 AddRec->getOperand(1))) { 2746 const SCEV *PHISCEV = 2747 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2748 2749 // Okay, for the entire analysis of this edge we assumed the PHI 2750 // to be symbolic. We now need to go back and purge all of the 2751 // entries for the scalars that use the symbolic expression. 2752 ForgetSymbolicName(PN, SymbolicName); 2753 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2754 return PHISCEV; 2755 } 2756 } 2757 } 2758 } 2759 } 2760 2761 // If the PHI has a single incoming value, follow that value, unless the 2762 // PHI's incoming blocks are in a different loop, in which case doing so 2763 // risks breaking LCSSA form. Instcombine would normally zap these, but 2764 // it doesn't have DominatorTree information, so it may miss cases. 2765 if (Value *V = PN->hasConstantValue(DT)) { 2766 bool AllSameLoop = true; 2767 Loop *PNLoop = LI->getLoopFor(PN->getParent()); 2768 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2769 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) { 2770 AllSameLoop = false; 2771 break; 2772 } 2773 if (AllSameLoop) 2774 return getSCEV(V); 2775 } 2776 2777 // If it's not a loop phi, we can't handle it yet. 2778 return getUnknown(PN); 2779 } 2780 2781 /// createNodeForGEP - Expand GEP instructions into add and multiply 2782 /// operations. This allows them to be analyzed by regular SCEV code. 2783 /// 2784 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2785 2786 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2787 // Add expression, because the Instruction may be guarded by control flow 2788 // and the no-overflow bits may not be valid for the expression in any 2789 // context. 2790 2791 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2792 Value *Base = GEP->getOperand(0); 2793 // Don't attempt to analyze GEPs over unsized objects. 2794 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2795 return getUnknown(GEP); 2796 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2797 gep_type_iterator GTI = gep_type_begin(GEP); 2798 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2799 E = GEP->op_end(); 2800 I != E; ++I) { 2801 Value *Index = *I; 2802 // Compute the (potentially symbolic) offset in bytes for this index. 2803 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2804 // For a struct, add the member offset. 2805 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2806 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2807 2808 // Add the field offset to the running total offset. 2809 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2810 } else { 2811 // For an array, add the element offset, explicitly scaled. 2812 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2813 const SCEV *IndexS = getSCEV(Index); 2814 // Getelementptr indices are signed. 2815 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2816 2817 // Multiply the index by the element size to compute the element offset. 2818 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2819 2820 // Add the element offset to the running total offset. 2821 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2822 } 2823 } 2824 2825 // Get the SCEV for the GEP base. 2826 const SCEV *BaseS = getSCEV(Base); 2827 2828 // Add the total offset from all the GEP indices to the base. 2829 return getAddExpr(BaseS, TotalOffset); 2830 } 2831 2832 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2833 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2834 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2835 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2836 uint32_t 2837 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2838 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2839 return C->getValue()->getValue().countTrailingZeros(); 2840 2841 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2842 return std::min(GetMinTrailingZeros(T->getOperand()), 2843 (uint32_t)getTypeSizeInBits(T->getType())); 2844 2845 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2846 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2847 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2848 getTypeSizeInBits(E->getType()) : OpRes; 2849 } 2850 2851 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2852 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2853 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2854 getTypeSizeInBits(E->getType()) : OpRes; 2855 } 2856 2857 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2858 // The result is the min of all operands results. 2859 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2860 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2861 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2862 return MinOpRes; 2863 } 2864 2865 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2866 // The result is the sum of all operands results. 2867 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2868 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2869 for (unsigned i = 1, e = M->getNumOperands(); 2870 SumOpRes != BitWidth && i != e; ++i) 2871 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2872 BitWidth); 2873 return SumOpRes; 2874 } 2875 2876 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2877 // The result is the min of all operands results. 2878 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2879 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2880 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2881 return MinOpRes; 2882 } 2883 2884 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2885 // The result is the min of all operands results. 2886 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2887 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2888 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2889 return MinOpRes; 2890 } 2891 2892 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2893 // The result is the min of all operands results. 2894 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2895 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2896 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2897 return MinOpRes; 2898 } 2899 2900 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2901 // For a SCEVUnknown, ask ValueTracking. 2902 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2903 APInt Mask = APInt::getAllOnesValue(BitWidth); 2904 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2905 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2906 return Zeros.countTrailingOnes(); 2907 } 2908 2909 // SCEVUDivExpr 2910 return 0; 2911 } 2912 2913 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2914 /// 2915 ConstantRange 2916 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2917 2918 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2919 return ConstantRange(C->getValue()->getValue()); 2920 2921 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2922 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2923 2924 // If the value has known zeros, the maximum unsigned value will have those 2925 // known zeros as well. 2926 uint32_t TZ = GetMinTrailingZeros(S); 2927 if (TZ != 0) 2928 ConservativeResult = 2929 ConstantRange(APInt::getMinValue(BitWidth), 2930 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2931 2932 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2933 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2934 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2935 X = X.add(getUnsignedRange(Add->getOperand(i))); 2936 return ConservativeResult.intersectWith(X); 2937 } 2938 2939 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2940 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2941 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2942 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2943 return ConservativeResult.intersectWith(X); 2944 } 2945 2946 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2947 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2948 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2949 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2950 return ConservativeResult.intersectWith(X); 2951 } 2952 2953 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2954 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2955 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2956 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2957 return ConservativeResult.intersectWith(X); 2958 } 2959 2960 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2961 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2962 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2963 return ConservativeResult.intersectWith(X.udiv(Y)); 2964 } 2965 2966 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2967 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2968 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 2969 } 2970 2971 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2972 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2973 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 2974 } 2975 2976 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2977 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2978 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 2979 } 2980 2981 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2982 // If there's no unsigned wrap, the value will never be less than its 2983 // initial value. 2984 if (AddRec->hasNoUnsignedWrap()) 2985 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 2986 if (!C->getValue()->isZero()) 2987 ConservativeResult = 2988 ConservativeResult.intersectWith( 2989 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 2990 2991 // TODO: non-affine addrec 2992 if (AddRec->isAffine()) { 2993 const Type *Ty = AddRec->getType(); 2994 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2995 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 2996 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 2997 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2998 2999 const SCEV *Start = AddRec->getStart(); 3000 const SCEV *Step = AddRec->getStepRecurrence(*this); 3001 3002 ConstantRange StartRange = getUnsignedRange(Start); 3003 ConstantRange StepRange = getSignedRange(Step); 3004 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3005 ConstantRange EndRange = 3006 StartRange.add(MaxBECountRange.multiply(StepRange)); 3007 3008 // Check for overflow. This must be done with ConstantRange arithmetic 3009 // because we could be called from within the ScalarEvolution overflow 3010 // checking code. 3011 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3012 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3013 ConstantRange ExtMaxBECountRange = 3014 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3015 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3016 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3017 ExtEndRange) 3018 return ConservativeResult; 3019 3020 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3021 EndRange.getUnsignedMin()); 3022 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3023 EndRange.getUnsignedMax()); 3024 if (Min.isMinValue() && Max.isMaxValue()) 3025 return ConservativeResult; 3026 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3027 } 3028 } 3029 3030 return ConservativeResult; 3031 } 3032 3033 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3034 // For a SCEVUnknown, ask ValueTracking. 3035 APInt Mask = APInt::getAllOnesValue(BitWidth); 3036 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3037 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3038 if (Ones == ~Zeros + 1) 3039 return ConservativeResult; 3040 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 3041 } 3042 3043 return ConservativeResult; 3044 } 3045 3046 /// getSignedRange - Determine the signed range for a particular SCEV. 3047 /// 3048 ConstantRange 3049 ScalarEvolution::getSignedRange(const SCEV *S) { 3050 3051 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3052 return ConstantRange(C->getValue()->getValue()); 3053 3054 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3055 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3056 3057 // If the value has known zeros, the maximum signed value will have those 3058 // known zeros as well. 3059 uint32_t TZ = GetMinTrailingZeros(S); 3060 if (TZ != 0) 3061 ConservativeResult = 3062 ConstantRange(APInt::getSignedMinValue(BitWidth), 3063 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3064 3065 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3066 ConstantRange X = getSignedRange(Add->getOperand(0)); 3067 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3068 X = X.add(getSignedRange(Add->getOperand(i))); 3069 return ConservativeResult.intersectWith(X); 3070 } 3071 3072 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3073 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3074 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3075 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3076 return ConservativeResult.intersectWith(X); 3077 } 3078 3079 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3080 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3081 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3082 X = X.smax(getSignedRange(SMax->getOperand(i))); 3083 return ConservativeResult.intersectWith(X); 3084 } 3085 3086 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3087 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3088 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3089 X = X.umax(getSignedRange(UMax->getOperand(i))); 3090 return ConservativeResult.intersectWith(X); 3091 } 3092 3093 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3094 ConstantRange X = getSignedRange(UDiv->getLHS()); 3095 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3096 return ConservativeResult.intersectWith(X.udiv(Y)); 3097 } 3098 3099 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3100 ConstantRange X = getSignedRange(ZExt->getOperand()); 3101 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3102 } 3103 3104 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3105 ConstantRange X = getSignedRange(SExt->getOperand()); 3106 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3107 } 3108 3109 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3110 ConstantRange X = getSignedRange(Trunc->getOperand()); 3111 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3112 } 3113 3114 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3115 // If there's no signed wrap, and all the operands have the same sign or 3116 // zero, the value won't ever change sign. 3117 if (AddRec->hasNoSignedWrap()) { 3118 bool AllNonNeg = true; 3119 bool AllNonPos = true; 3120 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3121 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3122 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3123 } 3124 if (AllNonNeg) 3125 ConservativeResult = ConservativeResult.intersectWith( 3126 ConstantRange(APInt(BitWidth, 0), 3127 APInt::getSignedMinValue(BitWidth))); 3128 else if (AllNonPos) 3129 ConservativeResult = ConservativeResult.intersectWith( 3130 ConstantRange(APInt::getSignedMinValue(BitWidth), 3131 APInt(BitWidth, 1))); 3132 } 3133 3134 // TODO: non-affine addrec 3135 if (AddRec->isAffine()) { 3136 const Type *Ty = AddRec->getType(); 3137 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3138 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3139 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3140 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3141 3142 const SCEV *Start = AddRec->getStart(); 3143 const SCEV *Step = AddRec->getStepRecurrence(*this); 3144 3145 ConstantRange StartRange = getSignedRange(Start); 3146 ConstantRange StepRange = getSignedRange(Step); 3147 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3148 ConstantRange EndRange = 3149 StartRange.add(MaxBECountRange.multiply(StepRange)); 3150 3151 // Check for overflow. This must be done with ConstantRange arithmetic 3152 // because we could be called from within the ScalarEvolution overflow 3153 // checking code. 3154 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3155 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3156 ConstantRange ExtMaxBECountRange = 3157 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3158 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3159 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3160 ExtEndRange) 3161 return ConservativeResult; 3162 3163 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3164 EndRange.getSignedMin()); 3165 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3166 EndRange.getSignedMax()); 3167 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3168 return ConservativeResult; 3169 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3170 } 3171 } 3172 3173 return ConservativeResult; 3174 } 3175 3176 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3177 // For a SCEVUnknown, ask ValueTracking. 3178 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3179 return ConservativeResult; 3180 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3181 if (NS == 1) 3182 return ConservativeResult; 3183 return ConservativeResult.intersectWith( 3184 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3185 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3186 } 3187 3188 return ConservativeResult; 3189 } 3190 3191 /// createSCEV - We know that there is no SCEV for the specified value. 3192 /// Analyze the expression. 3193 /// 3194 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3195 if (!isSCEVable(V->getType())) 3196 return getUnknown(V); 3197 3198 unsigned Opcode = Instruction::UserOp1; 3199 if (Instruction *I = dyn_cast<Instruction>(V)) { 3200 Opcode = I->getOpcode(); 3201 3202 // Don't attempt to analyze instructions in blocks that aren't 3203 // reachable. Such instructions don't matter, and they aren't required 3204 // to obey basic rules for definitions dominating uses which this 3205 // analysis depends on. 3206 if (!DT->isReachableFromEntry(I->getParent())) 3207 return getUnknown(V); 3208 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3209 Opcode = CE->getOpcode(); 3210 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3211 return getConstant(CI); 3212 else if (isa<ConstantPointerNull>(V)) 3213 return getConstant(V->getType(), 0); 3214 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3215 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3216 else 3217 return getUnknown(V); 3218 3219 Operator *U = cast<Operator>(V); 3220 switch (Opcode) { 3221 case Instruction::Add: 3222 return getAddExpr(getSCEV(U->getOperand(0)), 3223 getSCEV(U->getOperand(1))); 3224 case Instruction::Mul: 3225 return getMulExpr(getSCEV(U->getOperand(0)), 3226 getSCEV(U->getOperand(1))); 3227 case Instruction::UDiv: 3228 return getUDivExpr(getSCEV(U->getOperand(0)), 3229 getSCEV(U->getOperand(1))); 3230 case Instruction::Sub: 3231 return getMinusSCEV(getSCEV(U->getOperand(0)), 3232 getSCEV(U->getOperand(1))); 3233 case Instruction::And: 3234 // For an expression like x&255 that merely masks off the high bits, 3235 // use zext(trunc(x)) as the SCEV expression. 3236 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3237 if (CI->isNullValue()) 3238 return getSCEV(U->getOperand(1)); 3239 if (CI->isAllOnesValue()) 3240 return getSCEV(U->getOperand(0)); 3241 const APInt &A = CI->getValue(); 3242 3243 // Instcombine's ShrinkDemandedConstant may strip bits out of 3244 // constants, obscuring what would otherwise be a low-bits mask. 3245 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3246 // knew about to reconstruct a low-bits mask value. 3247 unsigned LZ = A.countLeadingZeros(); 3248 unsigned BitWidth = A.getBitWidth(); 3249 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3250 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3251 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3252 3253 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3254 3255 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3256 return 3257 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3258 IntegerType::get(getContext(), BitWidth - LZ)), 3259 U->getType()); 3260 } 3261 break; 3262 3263 case Instruction::Or: 3264 // If the RHS of the Or is a constant, we may have something like: 3265 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3266 // optimizations will transparently handle this case. 3267 // 3268 // In order for this transformation to be safe, the LHS must be of the 3269 // form X*(2^n) and the Or constant must be less than 2^n. 3270 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3271 const SCEV *LHS = getSCEV(U->getOperand(0)); 3272 const APInt &CIVal = CI->getValue(); 3273 if (GetMinTrailingZeros(LHS) >= 3274 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3275 // Build a plain add SCEV. 3276 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3277 // If the LHS of the add was an addrec and it has no-wrap flags, 3278 // transfer the no-wrap flags, since an or won't introduce a wrap. 3279 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3280 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3281 if (OldAR->hasNoUnsignedWrap()) 3282 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3283 if (OldAR->hasNoSignedWrap()) 3284 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3285 } 3286 return S; 3287 } 3288 } 3289 break; 3290 case Instruction::Xor: 3291 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3292 // If the RHS of the xor is a signbit, then this is just an add. 3293 // Instcombine turns add of signbit into xor as a strength reduction step. 3294 if (CI->getValue().isSignBit()) 3295 return getAddExpr(getSCEV(U->getOperand(0)), 3296 getSCEV(U->getOperand(1))); 3297 3298 // If the RHS of xor is -1, then this is a not operation. 3299 if (CI->isAllOnesValue()) 3300 return getNotSCEV(getSCEV(U->getOperand(0))); 3301 3302 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3303 // This is a variant of the check for xor with -1, and it handles 3304 // the case where instcombine has trimmed non-demanded bits out 3305 // of an xor with -1. 3306 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3307 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3308 if (BO->getOpcode() == Instruction::And && 3309 LCI->getValue() == CI->getValue()) 3310 if (const SCEVZeroExtendExpr *Z = 3311 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3312 const Type *UTy = U->getType(); 3313 const SCEV *Z0 = Z->getOperand(); 3314 const Type *Z0Ty = Z0->getType(); 3315 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3316 3317 // If C is a low-bits mask, the zero extend is serving to 3318 // mask off the high bits. Complement the operand and 3319 // re-apply the zext. 3320 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3321 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3322 3323 // If C is a single bit, it may be in the sign-bit position 3324 // before the zero-extend. In this case, represent the xor 3325 // using an add, which is equivalent, and re-apply the zext. 3326 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3327 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3328 Trunc.isSignBit()) 3329 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3330 UTy); 3331 } 3332 } 3333 break; 3334 3335 case Instruction::Shl: 3336 // Turn shift left of a constant amount into a multiply. 3337 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3338 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3339 3340 // If the shift count is not less than the bitwidth, the result of 3341 // the shift is undefined. Don't try to analyze it, because the 3342 // resolution chosen here may differ from the resolution chosen in 3343 // other parts of the compiler. 3344 if (SA->getValue().uge(BitWidth)) 3345 break; 3346 3347 Constant *X = ConstantInt::get(getContext(), 3348 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3349 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3350 } 3351 break; 3352 3353 case Instruction::LShr: 3354 // Turn logical shift right of a constant into a unsigned divide. 3355 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3356 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3357 3358 // If the shift count is not less than the bitwidth, the result of 3359 // the shift is undefined. Don't try to analyze it, because the 3360 // resolution chosen here may differ from the resolution chosen in 3361 // other parts of the compiler. 3362 if (SA->getValue().uge(BitWidth)) 3363 break; 3364 3365 Constant *X = ConstantInt::get(getContext(), 3366 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3367 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3368 } 3369 break; 3370 3371 case Instruction::AShr: 3372 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3373 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3374 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3375 if (L->getOpcode() == Instruction::Shl && 3376 L->getOperand(1) == U->getOperand(1)) { 3377 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3378 3379 // If the shift count is not less than the bitwidth, the result of 3380 // the shift is undefined. Don't try to analyze it, because the 3381 // resolution chosen here may differ from the resolution chosen in 3382 // other parts of the compiler. 3383 if (CI->getValue().uge(BitWidth)) 3384 break; 3385 3386 uint64_t Amt = BitWidth - CI->getZExtValue(); 3387 if (Amt == BitWidth) 3388 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3389 return 3390 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3391 IntegerType::get(getContext(), 3392 Amt)), 3393 U->getType()); 3394 } 3395 break; 3396 3397 case Instruction::Trunc: 3398 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3399 3400 case Instruction::ZExt: 3401 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3402 3403 case Instruction::SExt: 3404 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3405 3406 case Instruction::BitCast: 3407 // BitCasts are no-op casts so we just eliminate the cast. 3408 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3409 return getSCEV(U->getOperand(0)); 3410 break; 3411 3412 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3413 // lead to pointer expressions which cannot safely be expanded to GEPs, 3414 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3415 // simplifying integer expressions. 3416 3417 case Instruction::GetElementPtr: 3418 return createNodeForGEP(cast<GEPOperator>(U)); 3419 3420 case Instruction::PHI: 3421 return createNodeForPHI(cast<PHINode>(U)); 3422 3423 case Instruction::Select: 3424 // This could be a smax or umax that was lowered earlier. 3425 // Try to recover it. 3426 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3427 Value *LHS = ICI->getOperand(0); 3428 Value *RHS = ICI->getOperand(1); 3429 switch (ICI->getPredicate()) { 3430 case ICmpInst::ICMP_SLT: 3431 case ICmpInst::ICMP_SLE: 3432 std::swap(LHS, RHS); 3433 // fall through 3434 case ICmpInst::ICMP_SGT: 3435 case ICmpInst::ICMP_SGE: 3436 // a >s b ? a+x : b+x -> smax(a, b)+x 3437 // a >s b ? b+x : a+x -> smin(a, b)+x 3438 if (LHS->getType() == U->getType()) { 3439 const SCEV *LS = getSCEV(LHS); 3440 const SCEV *RS = getSCEV(RHS); 3441 const SCEV *LA = getSCEV(U->getOperand(1)); 3442 const SCEV *RA = getSCEV(U->getOperand(2)); 3443 const SCEV *LDiff = getMinusSCEV(LA, LS); 3444 const SCEV *RDiff = getMinusSCEV(RA, RS); 3445 if (LDiff == RDiff) 3446 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3447 LDiff = getMinusSCEV(LA, RS); 3448 RDiff = getMinusSCEV(RA, LS); 3449 if (LDiff == RDiff) 3450 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3451 } 3452 break; 3453 case ICmpInst::ICMP_ULT: 3454 case ICmpInst::ICMP_ULE: 3455 std::swap(LHS, RHS); 3456 // fall through 3457 case ICmpInst::ICMP_UGT: 3458 case ICmpInst::ICMP_UGE: 3459 // a >u b ? a+x : b+x -> umax(a, b)+x 3460 // a >u b ? b+x : a+x -> umin(a, b)+x 3461 if (LHS->getType() == U->getType()) { 3462 const SCEV *LS = getSCEV(LHS); 3463 const SCEV *RS = getSCEV(RHS); 3464 const SCEV *LA = getSCEV(U->getOperand(1)); 3465 const SCEV *RA = getSCEV(U->getOperand(2)); 3466 const SCEV *LDiff = getMinusSCEV(LA, LS); 3467 const SCEV *RDiff = getMinusSCEV(RA, RS); 3468 if (LDiff == RDiff) 3469 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3470 LDiff = getMinusSCEV(LA, RS); 3471 RDiff = getMinusSCEV(RA, LS); 3472 if (LDiff == RDiff) 3473 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3474 } 3475 break; 3476 case ICmpInst::ICMP_NE: 3477 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3478 if (LHS->getType() == U->getType() && 3479 isa<ConstantInt>(RHS) && 3480 cast<ConstantInt>(RHS)->isZero()) { 3481 const SCEV *One = getConstant(LHS->getType(), 1); 3482 const SCEV *LS = getSCEV(LHS); 3483 const SCEV *LA = getSCEV(U->getOperand(1)); 3484 const SCEV *RA = getSCEV(U->getOperand(2)); 3485 const SCEV *LDiff = getMinusSCEV(LA, LS); 3486 const SCEV *RDiff = getMinusSCEV(RA, One); 3487 if (LDiff == RDiff) 3488 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3489 } 3490 break; 3491 case ICmpInst::ICMP_EQ: 3492 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3493 if (LHS->getType() == U->getType() && 3494 isa<ConstantInt>(RHS) && 3495 cast<ConstantInt>(RHS)->isZero()) { 3496 const SCEV *One = getConstant(LHS->getType(), 1); 3497 const SCEV *LS = getSCEV(LHS); 3498 const SCEV *LA = getSCEV(U->getOperand(1)); 3499 const SCEV *RA = getSCEV(U->getOperand(2)); 3500 const SCEV *LDiff = getMinusSCEV(LA, One); 3501 const SCEV *RDiff = getMinusSCEV(RA, LS); 3502 if (LDiff == RDiff) 3503 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3504 } 3505 break; 3506 default: 3507 break; 3508 } 3509 } 3510 3511 default: // We cannot analyze this expression. 3512 break; 3513 } 3514 3515 return getUnknown(V); 3516 } 3517 3518 3519 3520 //===----------------------------------------------------------------------===// 3521 // Iteration Count Computation Code 3522 // 3523 3524 /// getBackedgeTakenCount - If the specified loop has a predictable 3525 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3526 /// object. The backedge-taken count is the number of times the loop header 3527 /// will be branched to from within the loop. This is one less than the 3528 /// trip count of the loop, since it doesn't count the first iteration, 3529 /// when the header is branched to from outside the loop. 3530 /// 3531 /// Note that it is not valid to call this method on a loop without a 3532 /// loop-invariant backedge-taken count (see 3533 /// hasLoopInvariantBackedgeTakenCount). 3534 /// 3535 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3536 return getBackedgeTakenInfo(L).Exact; 3537 } 3538 3539 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3540 /// return the least SCEV value that is known never to be less than the 3541 /// actual backedge taken count. 3542 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3543 return getBackedgeTakenInfo(L).Max; 3544 } 3545 3546 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3547 /// onto the given Worklist. 3548 static void 3549 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3550 BasicBlock *Header = L->getHeader(); 3551 3552 // Push all Loop-header PHIs onto the Worklist stack. 3553 for (BasicBlock::iterator I = Header->begin(); 3554 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3555 Worklist.push_back(PN); 3556 } 3557 3558 const ScalarEvolution::BackedgeTakenInfo & 3559 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3560 // Initially insert a CouldNotCompute for this loop. If the insertion 3561 // succeeds, proceed to actually compute a backedge-taken count and 3562 // update the value. The temporary CouldNotCompute value tells SCEV 3563 // code elsewhere that it shouldn't attempt to request a new 3564 // backedge-taken count, which could result in infinite recursion. 3565 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3566 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3567 if (Pair.second) { 3568 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3569 if (BECount.Exact != getCouldNotCompute()) { 3570 assert(BECount.Exact->isLoopInvariant(L) && 3571 BECount.Max->isLoopInvariant(L) && 3572 "Computed backedge-taken count isn't loop invariant for loop!"); 3573 ++NumTripCountsComputed; 3574 3575 // Update the value in the map. 3576 Pair.first->second = BECount; 3577 } else { 3578 if (BECount.Max != getCouldNotCompute()) 3579 // Update the value in the map. 3580 Pair.first->second = BECount; 3581 if (isa<PHINode>(L->getHeader()->begin())) 3582 // Only count loops that have phi nodes as not being computable. 3583 ++NumTripCountsNotComputed; 3584 } 3585 3586 // Now that we know more about the trip count for this loop, forget any 3587 // existing SCEV values for PHI nodes in this loop since they are only 3588 // conservative estimates made without the benefit of trip count 3589 // information. This is similar to the code in forgetLoop, except that 3590 // it handles SCEVUnknown PHI nodes specially. 3591 if (BECount.hasAnyInfo()) { 3592 SmallVector<Instruction *, 16> Worklist; 3593 PushLoopPHIs(L, Worklist); 3594 3595 SmallPtrSet<Instruction *, 8> Visited; 3596 while (!Worklist.empty()) { 3597 Instruction *I = Worklist.pop_back_val(); 3598 if (!Visited.insert(I)) continue; 3599 3600 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3601 Scalars.find(static_cast<Value *>(I)); 3602 if (It != Scalars.end()) { 3603 // SCEVUnknown for a PHI either means that it has an unrecognized 3604 // structure, or it's a PHI that's in the progress of being computed 3605 // by createNodeForPHI. In the former case, additional loop trip 3606 // count information isn't going to change anything. In the later 3607 // case, createNodeForPHI will perform the necessary updates on its 3608 // own when it gets to that point. 3609 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3610 ValuesAtScopes.erase(It->second); 3611 Scalars.erase(It); 3612 } 3613 if (PHINode *PN = dyn_cast<PHINode>(I)) 3614 ConstantEvolutionLoopExitValue.erase(PN); 3615 } 3616 3617 PushDefUseChildren(I, Worklist); 3618 } 3619 } 3620 } 3621 return Pair.first->second; 3622 } 3623 3624 /// forgetLoop - This method should be called by the client when it has 3625 /// changed a loop in a way that may effect ScalarEvolution's ability to 3626 /// compute a trip count, or if the loop is deleted. 3627 void ScalarEvolution::forgetLoop(const Loop *L) { 3628 // Drop any stored trip count value. 3629 BackedgeTakenCounts.erase(L); 3630 3631 // Drop information about expressions based on loop-header PHIs. 3632 SmallVector<Instruction *, 16> Worklist; 3633 PushLoopPHIs(L, Worklist); 3634 3635 SmallPtrSet<Instruction *, 8> Visited; 3636 while (!Worklist.empty()) { 3637 Instruction *I = Worklist.pop_back_val(); 3638 if (!Visited.insert(I)) continue; 3639 3640 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3641 Scalars.find(static_cast<Value *>(I)); 3642 if (It != Scalars.end()) { 3643 ValuesAtScopes.erase(It->second); 3644 Scalars.erase(It); 3645 if (PHINode *PN = dyn_cast<PHINode>(I)) 3646 ConstantEvolutionLoopExitValue.erase(PN); 3647 } 3648 3649 PushDefUseChildren(I, Worklist); 3650 } 3651 } 3652 3653 /// forgetValue - This method should be called by the client when it has 3654 /// changed a value in a way that may effect its value, or which may 3655 /// disconnect it from a def-use chain linking it to a loop. 3656 void ScalarEvolution::forgetValue(Value *V) { 3657 Instruction *I = dyn_cast<Instruction>(V); 3658 if (!I) return; 3659 3660 // Drop information about expressions based on loop-header PHIs. 3661 SmallVector<Instruction *, 16> Worklist; 3662 Worklist.push_back(I); 3663 3664 SmallPtrSet<Instruction *, 8> Visited; 3665 while (!Worklist.empty()) { 3666 I = Worklist.pop_back_val(); 3667 if (!Visited.insert(I)) continue; 3668 3669 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3670 Scalars.find(static_cast<Value *>(I)); 3671 if (It != Scalars.end()) { 3672 ValuesAtScopes.erase(It->second); 3673 Scalars.erase(It); 3674 if (PHINode *PN = dyn_cast<PHINode>(I)) 3675 ConstantEvolutionLoopExitValue.erase(PN); 3676 } 3677 3678 // If there's a SCEVUnknown tying this value into the SCEV 3679 // space, remove it from the folding set map. The SCEVUnknown 3680 // object and any other SCEV objects which reference it 3681 // (transitively) remain allocated, effectively leaked until 3682 // the underlying BumpPtrAllocator is freed. 3683 // 3684 // This permits SCEV pointers to be used as keys in maps 3685 // such as the ValuesAtScopes map. 3686 FoldingSetNodeID ID; 3687 ID.AddInteger(scUnknown); 3688 ID.AddPointer(I); 3689 void *IP; 3690 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3691 UniqueSCEVs.RemoveNode(S); 3692 3693 // This isn't necessary, but we might as well remove the 3694 // value from the ValuesAtScopes map too. 3695 ValuesAtScopes.erase(S); 3696 } 3697 3698 PushDefUseChildren(I, Worklist); 3699 } 3700 } 3701 3702 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3703 /// of the specified loop will execute. 3704 ScalarEvolution::BackedgeTakenInfo 3705 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3706 SmallVector<BasicBlock *, 8> ExitingBlocks; 3707 L->getExitingBlocks(ExitingBlocks); 3708 3709 // Examine all exits and pick the most conservative values. 3710 const SCEV *BECount = getCouldNotCompute(); 3711 const SCEV *MaxBECount = getCouldNotCompute(); 3712 bool CouldNotComputeBECount = false; 3713 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3714 BackedgeTakenInfo NewBTI = 3715 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3716 3717 if (NewBTI.Exact == getCouldNotCompute()) { 3718 // We couldn't compute an exact value for this exit, so 3719 // we won't be able to compute an exact value for the loop. 3720 CouldNotComputeBECount = true; 3721 BECount = getCouldNotCompute(); 3722 } else if (!CouldNotComputeBECount) { 3723 if (BECount == getCouldNotCompute()) 3724 BECount = NewBTI.Exact; 3725 else 3726 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3727 } 3728 if (MaxBECount == getCouldNotCompute()) 3729 MaxBECount = NewBTI.Max; 3730 else if (NewBTI.Max != getCouldNotCompute()) 3731 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3732 } 3733 3734 return BackedgeTakenInfo(BECount, MaxBECount); 3735 } 3736 3737 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3738 /// of the specified loop will execute if it exits via the specified block. 3739 ScalarEvolution::BackedgeTakenInfo 3740 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3741 BasicBlock *ExitingBlock) { 3742 3743 // Okay, we've chosen an exiting block. See what condition causes us to 3744 // exit at this block. 3745 // 3746 // FIXME: we should be able to handle switch instructions (with a single exit) 3747 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3748 if (ExitBr == 0) return getCouldNotCompute(); 3749 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3750 3751 // At this point, we know we have a conditional branch that determines whether 3752 // the loop is exited. However, we don't know if the branch is executed each 3753 // time through the loop. If not, then the execution count of the branch will 3754 // not be equal to the trip count of the loop. 3755 // 3756 // Currently we check for this by checking to see if the Exit branch goes to 3757 // the loop header. If so, we know it will always execute the same number of 3758 // times as the loop. We also handle the case where the exit block *is* the 3759 // loop header. This is common for un-rotated loops. 3760 // 3761 // If both of those tests fail, walk up the unique predecessor chain to the 3762 // header, stopping if there is an edge that doesn't exit the loop. If the 3763 // header is reached, the execution count of the branch will be equal to the 3764 // trip count of the loop. 3765 // 3766 // More extensive analysis could be done to handle more cases here. 3767 // 3768 if (ExitBr->getSuccessor(0) != L->getHeader() && 3769 ExitBr->getSuccessor(1) != L->getHeader() && 3770 ExitBr->getParent() != L->getHeader()) { 3771 // The simple checks failed, try climbing the unique predecessor chain 3772 // up to the header. 3773 bool Ok = false; 3774 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3775 BasicBlock *Pred = BB->getUniquePredecessor(); 3776 if (!Pred) 3777 return getCouldNotCompute(); 3778 TerminatorInst *PredTerm = Pred->getTerminator(); 3779 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3780 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3781 if (PredSucc == BB) 3782 continue; 3783 // If the predecessor has a successor that isn't BB and isn't 3784 // outside the loop, assume the worst. 3785 if (L->contains(PredSucc)) 3786 return getCouldNotCompute(); 3787 } 3788 if (Pred == L->getHeader()) { 3789 Ok = true; 3790 break; 3791 } 3792 BB = Pred; 3793 } 3794 if (!Ok) 3795 return getCouldNotCompute(); 3796 } 3797 3798 // Proceed to the next level to examine the exit condition expression. 3799 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3800 ExitBr->getSuccessor(0), 3801 ExitBr->getSuccessor(1)); 3802 } 3803 3804 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3805 /// backedge of the specified loop will execute if its exit condition 3806 /// were a conditional branch of ExitCond, TBB, and FBB. 3807 ScalarEvolution::BackedgeTakenInfo 3808 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3809 Value *ExitCond, 3810 BasicBlock *TBB, 3811 BasicBlock *FBB) { 3812 // Check if the controlling expression for this loop is an And or Or. 3813 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3814 if (BO->getOpcode() == Instruction::And) { 3815 // Recurse on the operands of the and. 3816 BackedgeTakenInfo BTI0 = 3817 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3818 BackedgeTakenInfo BTI1 = 3819 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3820 const SCEV *BECount = getCouldNotCompute(); 3821 const SCEV *MaxBECount = getCouldNotCompute(); 3822 if (L->contains(TBB)) { 3823 // Both conditions must be true for the loop to continue executing. 3824 // Choose the less conservative count. 3825 if (BTI0.Exact == getCouldNotCompute() || 3826 BTI1.Exact == getCouldNotCompute()) 3827 BECount = getCouldNotCompute(); 3828 else 3829 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3830 if (BTI0.Max == getCouldNotCompute()) 3831 MaxBECount = BTI1.Max; 3832 else if (BTI1.Max == getCouldNotCompute()) 3833 MaxBECount = BTI0.Max; 3834 else 3835 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3836 } else { 3837 // Both conditions must be true for the loop to exit. 3838 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3839 if (BTI0.Exact != getCouldNotCompute() && 3840 BTI1.Exact != getCouldNotCompute()) 3841 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3842 if (BTI0.Max != getCouldNotCompute() && 3843 BTI1.Max != getCouldNotCompute()) 3844 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3845 } 3846 3847 return BackedgeTakenInfo(BECount, MaxBECount); 3848 } 3849 if (BO->getOpcode() == Instruction::Or) { 3850 // Recurse on the operands of the or. 3851 BackedgeTakenInfo BTI0 = 3852 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3853 BackedgeTakenInfo BTI1 = 3854 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3855 const SCEV *BECount = getCouldNotCompute(); 3856 const SCEV *MaxBECount = getCouldNotCompute(); 3857 if (L->contains(FBB)) { 3858 // Both conditions must be false for the loop to continue executing. 3859 // Choose the less conservative count. 3860 if (BTI0.Exact == getCouldNotCompute() || 3861 BTI1.Exact == getCouldNotCompute()) 3862 BECount = getCouldNotCompute(); 3863 else 3864 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3865 if (BTI0.Max == getCouldNotCompute()) 3866 MaxBECount = BTI1.Max; 3867 else if (BTI1.Max == getCouldNotCompute()) 3868 MaxBECount = BTI0.Max; 3869 else 3870 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3871 } else { 3872 // Both conditions must be false for the loop to exit. 3873 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3874 if (BTI0.Exact != getCouldNotCompute() && 3875 BTI1.Exact != getCouldNotCompute()) 3876 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3877 if (BTI0.Max != getCouldNotCompute() && 3878 BTI1.Max != getCouldNotCompute()) 3879 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3880 } 3881 3882 return BackedgeTakenInfo(BECount, MaxBECount); 3883 } 3884 } 3885 3886 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3887 // Proceed to the next level to examine the icmp. 3888 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3889 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3890 3891 // Check for a constant condition. These are normally stripped out by 3892 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3893 // preserve the CFG and is temporarily leaving constant conditions 3894 // in place. 3895 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3896 if (L->contains(FBB) == !CI->getZExtValue()) 3897 // The backedge is always taken. 3898 return getCouldNotCompute(); 3899 else 3900 // The backedge is never taken. 3901 return getConstant(CI->getType(), 0); 3902 } 3903 3904 // If it's not an integer or pointer comparison then compute it the hard way. 3905 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3906 } 3907 3908 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3909 /// backedge of the specified loop will execute if its exit condition 3910 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3911 ScalarEvolution::BackedgeTakenInfo 3912 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3913 ICmpInst *ExitCond, 3914 BasicBlock *TBB, 3915 BasicBlock *FBB) { 3916 3917 // If the condition was exit on true, convert the condition to exit on false 3918 ICmpInst::Predicate Cond; 3919 if (!L->contains(FBB)) 3920 Cond = ExitCond->getPredicate(); 3921 else 3922 Cond = ExitCond->getInversePredicate(); 3923 3924 // Handle common loops like: for (X = "string"; *X; ++X) 3925 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3926 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3927 BackedgeTakenInfo ItCnt = 3928 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3929 if (ItCnt.hasAnyInfo()) 3930 return ItCnt; 3931 } 3932 3933 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3934 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3935 3936 // Try to evaluate any dependencies out of the loop. 3937 LHS = getSCEVAtScope(LHS, L); 3938 RHS = getSCEVAtScope(RHS, L); 3939 3940 // At this point, we would like to compute how many iterations of the 3941 // loop the predicate will return true for these inputs. 3942 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3943 // If there is a loop-invariant, force it into the RHS. 3944 std::swap(LHS, RHS); 3945 Cond = ICmpInst::getSwappedPredicate(Cond); 3946 } 3947 3948 // Simplify the operands before analyzing them. 3949 (void)SimplifyICmpOperands(Cond, LHS, RHS); 3950 3951 // If we have a comparison of a chrec against a constant, try to use value 3952 // ranges to answer this query. 3953 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3954 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3955 if (AddRec->getLoop() == L) { 3956 // Form the constant range. 3957 ConstantRange CompRange( 3958 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3959 3960 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3961 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3962 } 3963 3964 switch (Cond) { 3965 case ICmpInst::ICMP_NE: { // while (X != Y) 3966 // Convert to: while (X-Y != 0) 3967 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3968 if (BTI.hasAnyInfo()) return BTI; 3969 break; 3970 } 3971 case ICmpInst::ICMP_EQ: { // while (X == Y) 3972 // Convert to: while (X-Y == 0) 3973 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3974 if (BTI.hasAnyInfo()) return BTI; 3975 break; 3976 } 3977 case ICmpInst::ICMP_SLT: { 3978 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3979 if (BTI.hasAnyInfo()) return BTI; 3980 break; 3981 } 3982 case ICmpInst::ICMP_SGT: { 3983 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3984 getNotSCEV(RHS), L, true); 3985 if (BTI.hasAnyInfo()) return BTI; 3986 break; 3987 } 3988 case ICmpInst::ICMP_ULT: { 3989 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3990 if (BTI.hasAnyInfo()) return BTI; 3991 break; 3992 } 3993 case ICmpInst::ICMP_UGT: { 3994 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3995 getNotSCEV(RHS), L, false); 3996 if (BTI.hasAnyInfo()) return BTI; 3997 break; 3998 } 3999 default: 4000 #if 0 4001 dbgs() << "ComputeBackedgeTakenCount "; 4002 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4003 dbgs() << "[unsigned] "; 4004 dbgs() << *LHS << " " 4005 << Instruction::getOpcodeName(Instruction::ICmp) 4006 << " " << *RHS << "\n"; 4007 #endif 4008 break; 4009 } 4010 return 4011 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4012 } 4013 4014 static ConstantInt * 4015 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4016 ScalarEvolution &SE) { 4017 const SCEV *InVal = SE.getConstant(C); 4018 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4019 assert(isa<SCEVConstant>(Val) && 4020 "Evaluation of SCEV at constant didn't fold correctly?"); 4021 return cast<SCEVConstant>(Val)->getValue(); 4022 } 4023 4024 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4025 /// and a GEP expression (missing the pointer index) indexing into it, return 4026 /// the addressed element of the initializer or null if the index expression is 4027 /// invalid. 4028 static Constant * 4029 GetAddressedElementFromGlobal(GlobalVariable *GV, 4030 const std::vector<ConstantInt*> &Indices) { 4031 Constant *Init = GV->getInitializer(); 4032 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4033 uint64_t Idx = Indices[i]->getZExtValue(); 4034 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4035 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4036 Init = cast<Constant>(CS->getOperand(Idx)); 4037 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4038 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4039 Init = cast<Constant>(CA->getOperand(Idx)); 4040 } else if (isa<ConstantAggregateZero>(Init)) { 4041 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4042 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4043 Init = Constant::getNullValue(STy->getElementType(Idx)); 4044 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4045 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4046 Init = Constant::getNullValue(ATy->getElementType()); 4047 } else { 4048 llvm_unreachable("Unknown constant aggregate type!"); 4049 } 4050 return 0; 4051 } else { 4052 return 0; // Unknown initializer type 4053 } 4054 } 4055 return Init; 4056 } 4057 4058 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4059 /// 'icmp op load X, cst', try to see if we can compute the backedge 4060 /// execution count. 4061 ScalarEvolution::BackedgeTakenInfo 4062 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4063 LoadInst *LI, 4064 Constant *RHS, 4065 const Loop *L, 4066 ICmpInst::Predicate predicate) { 4067 if (LI->isVolatile()) return getCouldNotCompute(); 4068 4069 // Check to see if the loaded pointer is a getelementptr of a global. 4070 // TODO: Use SCEV instead of manually grubbing with GEPs. 4071 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4072 if (!GEP) return getCouldNotCompute(); 4073 4074 // Make sure that it is really a constant global we are gepping, with an 4075 // initializer, and make sure the first IDX is really 0. 4076 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4077 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4078 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4079 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4080 return getCouldNotCompute(); 4081 4082 // Okay, we allow one non-constant index into the GEP instruction. 4083 Value *VarIdx = 0; 4084 std::vector<ConstantInt*> Indexes; 4085 unsigned VarIdxNum = 0; 4086 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4087 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4088 Indexes.push_back(CI); 4089 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4090 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4091 VarIdx = GEP->getOperand(i); 4092 VarIdxNum = i-2; 4093 Indexes.push_back(0); 4094 } 4095 4096 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4097 // Check to see if X is a loop variant variable value now. 4098 const SCEV *Idx = getSCEV(VarIdx); 4099 Idx = getSCEVAtScope(Idx, L); 4100 4101 // We can only recognize very limited forms of loop index expressions, in 4102 // particular, only affine AddRec's like {C1,+,C2}. 4103 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4104 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 4105 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4106 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4107 return getCouldNotCompute(); 4108 4109 unsigned MaxSteps = MaxBruteForceIterations; 4110 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4111 ConstantInt *ItCst = ConstantInt::get( 4112 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4113 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4114 4115 // Form the GEP offset. 4116 Indexes[VarIdxNum] = Val; 4117 4118 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4119 if (Result == 0) break; // Cannot compute! 4120 4121 // Evaluate the condition for this iteration. 4122 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4123 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4124 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4125 #if 0 4126 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4127 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4128 << "***\n"; 4129 #endif 4130 ++NumArrayLenItCounts; 4131 return getConstant(ItCst); // Found terminating iteration! 4132 } 4133 } 4134 return getCouldNotCompute(); 4135 } 4136 4137 4138 /// CanConstantFold - Return true if we can constant fold an instruction of the 4139 /// specified type, assuming that all operands were constants. 4140 static bool CanConstantFold(const Instruction *I) { 4141 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4142 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4143 return true; 4144 4145 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4146 if (const Function *F = CI->getCalledFunction()) 4147 return canConstantFoldCallTo(F); 4148 return false; 4149 } 4150 4151 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4152 /// in the loop that V is derived from. We allow arbitrary operations along the 4153 /// way, but the operands of an operation must either be constants or a value 4154 /// derived from a constant PHI. If this expression does not fit with these 4155 /// constraints, return null. 4156 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4157 // If this is not an instruction, or if this is an instruction outside of the 4158 // loop, it can't be derived from a loop PHI. 4159 Instruction *I = dyn_cast<Instruction>(V); 4160 if (I == 0 || !L->contains(I)) return 0; 4161 4162 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4163 if (L->getHeader() == I->getParent()) 4164 return PN; 4165 else 4166 // We don't currently keep track of the control flow needed to evaluate 4167 // PHIs, so we cannot handle PHIs inside of loops. 4168 return 0; 4169 } 4170 4171 // If we won't be able to constant fold this expression even if the operands 4172 // are constants, return early. 4173 if (!CanConstantFold(I)) return 0; 4174 4175 // Otherwise, we can evaluate this instruction if all of its operands are 4176 // constant or derived from a PHI node themselves. 4177 PHINode *PHI = 0; 4178 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4179 if (!isa<Constant>(I->getOperand(Op))) { 4180 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4181 if (P == 0) return 0; // Not evolving from PHI 4182 if (PHI == 0) 4183 PHI = P; 4184 else if (PHI != P) 4185 return 0; // Evolving from multiple different PHIs. 4186 } 4187 4188 // This is a expression evolving from a constant PHI! 4189 return PHI; 4190 } 4191 4192 /// EvaluateExpression - Given an expression that passes the 4193 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4194 /// in the loop has the value PHIVal. If we can't fold this expression for some 4195 /// reason, return null. 4196 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4197 const TargetData *TD) { 4198 if (isa<PHINode>(V)) return PHIVal; 4199 if (Constant *C = dyn_cast<Constant>(V)) return C; 4200 Instruction *I = cast<Instruction>(V); 4201 4202 std::vector<Constant*> Operands(I->getNumOperands()); 4203 4204 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4205 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4206 if (Operands[i] == 0) return 0; 4207 } 4208 4209 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4210 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4211 Operands[1], TD); 4212 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4213 &Operands[0], Operands.size(), TD); 4214 } 4215 4216 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4217 /// in the header of its containing loop, we know the loop executes a 4218 /// constant number of times, and the PHI node is just a recurrence 4219 /// involving constants, fold it. 4220 Constant * 4221 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4222 const APInt &BEs, 4223 const Loop *L) { 4224 std::map<PHINode*, Constant*>::iterator I = 4225 ConstantEvolutionLoopExitValue.find(PN); 4226 if (I != ConstantEvolutionLoopExitValue.end()) 4227 return I->second; 4228 4229 if (BEs.ugt(MaxBruteForceIterations)) 4230 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4231 4232 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4233 4234 // Since the loop is canonicalized, the PHI node must have two entries. One 4235 // entry must be a constant (coming in from outside of the loop), and the 4236 // second must be derived from the same PHI. 4237 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4238 Constant *StartCST = 4239 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4240 if (StartCST == 0) 4241 return RetVal = 0; // Must be a constant. 4242 4243 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4244 if (getConstantEvolvingPHI(BEValue, L) != PN && 4245 !isa<Constant>(BEValue)) 4246 return RetVal = 0; // Not derived from same PHI. 4247 4248 // Execute the loop symbolically to determine the exit value. 4249 if (BEs.getActiveBits() >= 32) 4250 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4251 4252 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4253 unsigned IterationNum = 0; 4254 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4255 if (IterationNum == NumIterations) 4256 return RetVal = PHIVal; // Got exit value! 4257 4258 // Compute the value of the PHI node for the next iteration. 4259 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4260 if (NextPHI == PHIVal) 4261 return RetVal = NextPHI; // Stopped evolving! 4262 if (NextPHI == 0) 4263 return 0; // Couldn't evaluate! 4264 PHIVal = NextPHI; 4265 } 4266 } 4267 4268 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4269 /// constant number of times (the condition evolves only from constants), 4270 /// try to evaluate a few iterations of the loop until we get the exit 4271 /// condition gets a value of ExitWhen (true or false). If we cannot 4272 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4273 const SCEV * 4274 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4275 Value *Cond, 4276 bool ExitWhen) { 4277 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4278 if (PN == 0) return getCouldNotCompute(); 4279 4280 // If the loop is canonicalized, the PHI will have exactly two entries. 4281 // That's the only form we support here. 4282 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4283 4284 // One entry must be a constant (coming in from outside of the loop), and the 4285 // second must be derived from the same PHI. 4286 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4287 Constant *StartCST = 4288 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4289 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4290 4291 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4292 if (getConstantEvolvingPHI(BEValue, L) != PN && 4293 !isa<Constant>(BEValue)) 4294 return getCouldNotCompute(); // Not derived from same PHI. 4295 4296 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4297 // the loop symbolically to determine when the condition gets a value of 4298 // "ExitWhen". 4299 unsigned IterationNum = 0; 4300 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4301 for (Constant *PHIVal = StartCST; 4302 IterationNum != MaxIterations; ++IterationNum) { 4303 ConstantInt *CondVal = 4304 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4305 4306 // Couldn't symbolically evaluate. 4307 if (!CondVal) return getCouldNotCompute(); 4308 4309 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4310 ++NumBruteForceTripCountsComputed; 4311 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4312 } 4313 4314 // Compute the value of the PHI node for the next iteration. 4315 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4316 if (NextPHI == 0 || NextPHI == PHIVal) 4317 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4318 PHIVal = NextPHI; 4319 } 4320 4321 // Too many iterations were needed to evaluate. 4322 return getCouldNotCompute(); 4323 } 4324 4325 /// getSCEVAtScope - Return a SCEV expression for the specified value 4326 /// at the specified scope in the program. The L value specifies a loop 4327 /// nest to evaluate the expression at, where null is the top-level or a 4328 /// specified loop is immediately inside of the loop. 4329 /// 4330 /// This method can be used to compute the exit value for a variable defined 4331 /// in a loop by querying what the value will hold in the parent loop. 4332 /// 4333 /// In the case that a relevant loop exit value cannot be computed, the 4334 /// original value V is returned. 4335 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4336 // Check to see if we've folded this expression at this loop before. 4337 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4338 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4339 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4340 if (!Pair.second) 4341 return Pair.first->second ? Pair.first->second : V; 4342 4343 // Otherwise compute it. 4344 const SCEV *C = computeSCEVAtScope(V, L); 4345 ValuesAtScopes[V][L] = C; 4346 return C; 4347 } 4348 4349 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4350 if (isa<SCEVConstant>(V)) return V; 4351 4352 // If this instruction is evolved from a constant-evolving PHI, compute the 4353 // exit value from the loop without using SCEVs. 4354 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4355 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4356 const Loop *LI = (*this->LI)[I->getParent()]; 4357 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4358 if (PHINode *PN = dyn_cast<PHINode>(I)) 4359 if (PN->getParent() == LI->getHeader()) { 4360 // Okay, there is no closed form solution for the PHI node. Check 4361 // to see if the loop that contains it has a known backedge-taken 4362 // count. If so, we may be able to force computation of the exit 4363 // value. 4364 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4365 if (const SCEVConstant *BTCC = 4366 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4367 // Okay, we know how many times the containing loop executes. If 4368 // this is a constant evolving PHI node, get the final value at 4369 // the specified iteration number. 4370 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4371 BTCC->getValue()->getValue(), 4372 LI); 4373 if (RV) return getSCEV(RV); 4374 } 4375 } 4376 4377 // Okay, this is an expression that we cannot symbolically evaluate 4378 // into a SCEV. Check to see if it's possible to symbolically evaluate 4379 // the arguments into constants, and if so, try to constant propagate the 4380 // result. This is particularly useful for computing loop exit values. 4381 if (CanConstantFold(I)) { 4382 SmallVector<Constant *, 4> Operands; 4383 bool MadeImprovement = false; 4384 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4385 Value *Op = I->getOperand(i); 4386 if (Constant *C = dyn_cast<Constant>(Op)) { 4387 Operands.push_back(C); 4388 continue; 4389 } 4390 4391 // If any of the operands is non-constant and if they are 4392 // non-integer and non-pointer, don't even try to analyze them 4393 // with scev techniques. 4394 if (!isSCEVable(Op->getType())) 4395 return V; 4396 4397 const SCEV *OrigV = getSCEV(Op); 4398 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4399 MadeImprovement |= OrigV != OpV; 4400 4401 Constant *C = 0; 4402 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4403 C = SC->getValue(); 4404 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4405 C = dyn_cast<Constant>(SU->getValue()); 4406 if (!C) return V; 4407 if (C->getType() != Op->getType()) 4408 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4409 Op->getType(), 4410 false), 4411 C, Op->getType()); 4412 Operands.push_back(C); 4413 } 4414 4415 // Check to see if getSCEVAtScope actually made an improvement. 4416 if (MadeImprovement) { 4417 Constant *C = 0; 4418 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4419 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4420 Operands[0], Operands[1], TD); 4421 else 4422 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4423 &Operands[0], Operands.size(), TD); 4424 if (!C) return V; 4425 return getSCEV(C); 4426 } 4427 } 4428 } 4429 4430 // This is some other type of SCEVUnknown, just return it. 4431 return V; 4432 } 4433 4434 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4435 // Avoid performing the look-up in the common case where the specified 4436 // expression has no loop-variant portions. 4437 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4438 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4439 if (OpAtScope != Comm->getOperand(i)) { 4440 // Okay, at least one of these operands is loop variant but might be 4441 // foldable. Build a new instance of the folded commutative expression. 4442 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4443 Comm->op_begin()+i); 4444 NewOps.push_back(OpAtScope); 4445 4446 for (++i; i != e; ++i) { 4447 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4448 NewOps.push_back(OpAtScope); 4449 } 4450 if (isa<SCEVAddExpr>(Comm)) 4451 return getAddExpr(NewOps); 4452 if (isa<SCEVMulExpr>(Comm)) 4453 return getMulExpr(NewOps); 4454 if (isa<SCEVSMaxExpr>(Comm)) 4455 return getSMaxExpr(NewOps); 4456 if (isa<SCEVUMaxExpr>(Comm)) 4457 return getUMaxExpr(NewOps); 4458 llvm_unreachable("Unknown commutative SCEV type!"); 4459 } 4460 } 4461 // If we got here, all operands are loop invariant. 4462 return Comm; 4463 } 4464 4465 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4466 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4467 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4468 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4469 return Div; // must be loop invariant 4470 return getUDivExpr(LHS, RHS); 4471 } 4472 4473 // If this is a loop recurrence for a loop that does not contain L, then we 4474 // are dealing with the final value computed by the loop. 4475 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4476 // First, attempt to evaluate each operand. 4477 // Avoid performing the look-up in the common case where the specified 4478 // expression has no loop-variant portions. 4479 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4480 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4481 if (OpAtScope == AddRec->getOperand(i)) 4482 continue; 4483 4484 // Okay, at least one of these operands is loop variant but might be 4485 // foldable. Build a new instance of the folded commutative expression. 4486 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4487 AddRec->op_begin()+i); 4488 NewOps.push_back(OpAtScope); 4489 for (++i; i != e; ++i) 4490 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4491 4492 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4493 break; 4494 } 4495 4496 // If the scope is outside the addrec's loop, evaluate it by using the 4497 // loop exit value of the addrec. 4498 if (!AddRec->getLoop()->contains(L)) { 4499 // To evaluate this recurrence, we need to know how many times the AddRec 4500 // loop iterates. Compute this now. 4501 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4502 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4503 4504 // Then, evaluate the AddRec. 4505 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4506 } 4507 4508 return AddRec; 4509 } 4510 4511 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4512 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4513 if (Op == Cast->getOperand()) 4514 return Cast; // must be loop invariant 4515 return getZeroExtendExpr(Op, Cast->getType()); 4516 } 4517 4518 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4519 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4520 if (Op == Cast->getOperand()) 4521 return Cast; // must be loop invariant 4522 return getSignExtendExpr(Op, Cast->getType()); 4523 } 4524 4525 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4526 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4527 if (Op == Cast->getOperand()) 4528 return Cast; // must be loop invariant 4529 return getTruncateExpr(Op, Cast->getType()); 4530 } 4531 4532 llvm_unreachable("Unknown SCEV type!"); 4533 return 0; 4534 } 4535 4536 /// getSCEVAtScope - This is a convenience function which does 4537 /// getSCEVAtScope(getSCEV(V), L). 4538 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4539 return getSCEVAtScope(getSCEV(V), L); 4540 } 4541 4542 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4543 /// following equation: 4544 /// 4545 /// A * X = B (mod N) 4546 /// 4547 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4548 /// A and B isn't important. 4549 /// 4550 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4551 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4552 ScalarEvolution &SE) { 4553 uint32_t BW = A.getBitWidth(); 4554 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4555 assert(A != 0 && "A must be non-zero."); 4556 4557 // 1. D = gcd(A, N) 4558 // 4559 // The gcd of A and N may have only one prime factor: 2. The number of 4560 // trailing zeros in A is its multiplicity 4561 uint32_t Mult2 = A.countTrailingZeros(); 4562 // D = 2^Mult2 4563 4564 // 2. Check if B is divisible by D. 4565 // 4566 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4567 // is not less than multiplicity of this prime factor for D. 4568 if (B.countTrailingZeros() < Mult2) 4569 return SE.getCouldNotCompute(); 4570 4571 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4572 // modulo (N / D). 4573 // 4574 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4575 // bit width during computations. 4576 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4577 APInt Mod(BW + 1, 0); 4578 Mod.set(BW - Mult2); // Mod = N / D 4579 APInt I = AD.multiplicativeInverse(Mod); 4580 4581 // 4. Compute the minimum unsigned root of the equation: 4582 // I * (B / D) mod (N / D) 4583 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4584 4585 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4586 // bits. 4587 return SE.getConstant(Result.trunc(BW)); 4588 } 4589 4590 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4591 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4592 /// might be the same) or two SCEVCouldNotCompute objects. 4593 /// 4594 static std::pair<const SCEV *,const SCEV *> 4595 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4596 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4597 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4598 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4599 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4600 4601 // We currently can only solve this if the coefficients are constants. 4602 if (!LC || !MC || !NC) { 4603 const SCEV *CNC = SE.getCouldNotCompute(); 4604 return std::make_pair(CNC, CNC); 4605 } 4606 4607 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4608 const APInt &L = LC->getValue()->getValue(); 4609 const APInt &M = MC->getValue()->getValue(); 4610 const APInt &N = NC->getValue()->getValue(); 4611 APInt Two(BitWidth, 2); 4612 APInt Four(BitWidth, 4); 4613 4614 { 4615 using namespace APIntOps; 4616 const APInt& C = L; 4617 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4618 // The B coefficient is M-N/2 4619 APInt B(M); 4620 B -= sdiv(N,Two); 4621 4622 // The A coefficient is N/2 4623 APInt A(N.sdiv(Two)); 4624 4625 // Compute the B^2-4ac term. 4626 APInt SqrtTerm(B); 4627 SqrtTerm *= B; 4628 SqrtTerm -= Four * (A * C); 4629 4630 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4631 // integer value or else APInt::sqrt() will assert. 4632 APInt SqrtVal(SqrtTerm.sqrt()); 4633 4634 // Compute the two solutions for the quadratic formula. 4635 // The divisions must be performed as signed divisions. 4636 APInt NegB(-B); 4637 APInt TwoA( A << 1 ); 4638 if (TwoA.isMinValue()) { 4639 const SCEV *CNC = SE.getCouldNotCompute(); 4640 return std::make_pair(CNC, CNC); 4641 } 4642 4643 LLVMContext &Context = SE.getContext(); 4644 4645 ConstantInt *Solution1 = 4646 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4647 ConstantInt *Solution2 = 4648 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4649 4650 return std::make_pair(SE.getConstant(Solution1), 4651 SE.getConstant(Solution2)); 4652 } // end APIntOps namespace 4653 } 4654 4655 /// HowFarToZero - Return the number of times a backedge comparing the specified 4656 /// value to zero will execute. If not computable, return CouldNotCompute. 4657 ScalarEvolution::BackedgeTakenInfo 4658 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4659 // If the value is a constant 4660 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4661 // If the value is already zero, the branch will execute zero times. 4662 if (C->getValue()->isZero()) return C; 4663 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4664 } 4665 4666 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4667 if (!AddRec || AddRec->getLoop() != L) 4668 return getCouldNotCompute(); 4669 4670 if (AddRec->isAffine()) { 4671 // If this is an affine expression, the execution count of this branch is 4672 // the minimum unsigned root of the following equation: 4673 // 4674 // Start + Step*N = 0 (mod 2^BW) 4675 // 4676 // equivalent to: 4677 // 4678 // Step*N = -Start (mod 2^BW) 4679 // 4680 // where BW is the common bit width of Start and Step. 4681 4682 // Get the initial value for the loop. 4683 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4684 L->getParentLoop()); 4685 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4686 L->getParentLoop()); 4687 4688 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4689 // For now we handle only constant steps. 4690 4691 // First, handle unitary steps. 4692 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4693 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4694 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4695 return Start; // N = Start (as unsigned) 4696 4697 // Then, try to solve the above equation provided that Start is constant. 4698 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4699 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4700 -StartC->getValue()->getValue(), 4701 *this); 4702 } 4703 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4704 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4705 // the quadratic equation to solve it. 4706 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4707 *this); 4708 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4709 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4710 if (R1) { 4711 #if 0 4712 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4713 << " sol#2: " << *R2 << "\n"; 4714 #endif 4715 // Pick the smallest positive root value. 4716 if (ConstantInt *CB = 4717 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4718 R1->getValue(), R2->getValue()))) { 4719 if (CB->getZExtValue() == false) 4720 std::swap(R1, R2); // R1 is the minimum root now. 4721 4722 // We can only use this value if the chrec ends up with an exact zero 4723 // value at this index. When solving for "X*X != 5", for example, we 4724 // should not accept a root of 2. 4725 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4726 if (Val->isZero()) 4727 return R1; // We found a quadratic root! 4728 } 4729 } 4730 } 4731 4732 return getCouldNotCompute(); 4733 } 4734 4735 /// HowFarToNonZero - Return the number of times a backedge checking the 4736 /// specified value for nonzero will execute. If not computable, return 4737 /// CouldNotCompute 4738 ScalarEvolution::BackedgeTakenInfo 4739 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4740 // Loops that look like: while (X == 0) are very strange indeed. We don't 4741 // handle them yet except for the trivial case. This could be expanded in the 4742 // future as needed. 4743 4744 // If the value is a constant, check to see if it is known to be non-zero 4745 // already. If so, the backedge will execute zero times. 4746 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4747 if (!C->getValue()->isNullValue()) 4748 return getConstant(C->getType(), 0); 4749 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4750 } 4751 4752 // We could implement others, but I really doubt anyone writes loops like 4753 // this, and if they did, they would already be constant folded. 4754 return getCouldNotCompute(); 4755 } 4756 4757 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4758 /// (which may not be an immediate predecessor) which has exactly one 4759 /// successor from which BB is reachable, or null if no such block is 4760 /// found. 4761 /// 4762 std::pair<BasicBlock *, BasicBlock *> 4763 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4764 // If the block has a unique predecessor, then there is no path from the 4765 // predecessor to the block that does not go through the direct edge 4766 // from the predecessor to the block. 4767 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4768 return std::make_pair(Pred, BB); 4769 4770 // A loop's header is defined to be a block that dominates the loop. 4771 // If the header has a unique predecessor outside the loop, it must be 4772 // a block that has exactly one successor that can reach the loop. 4773 if (Loop *L = LI->getLoopFor(BB)) 4774 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4775 4776 return std::pair<BasicBlock *, BasicBlock *>(); 4777 } 4778 4779 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4780 /// testing whether two expressions are equal, however for the purposes of 4781 /// looking for a condition guarding a loop, it can be useful to be a little 4782 /// more general, since a front-end may have replicated the controlling 4783 /// expression. 4784 /// 4785 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4786 // Quick check to see if they are the same SCEV. 4787 if (A == B) return true; 4788 4789 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4790 // two different instructions with the same value. Check for this case. 4791 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4792 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4793 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4794 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4795 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4796 return true; 4797 4798 // Otherwise assume they may have a different value. 4799 return false; 4800 } 4801 4802 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4803 /// predicate Pred. Return true iff any changes were made. 4804 /// 4805 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4806 const SCEV *&LHS, const SCEV *&RHS) { 4807 bool Changed = false; 4808 4809 // Canonicalize a constant to the right side. 4810 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4811 // Check for both operands constant. 4812 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 4813 if (ConstantExpr::getICmp(Pred, 4814 LHSC->getValue(), 4815 RHSC->getValue())->isNullValue()) 4816 goto trivially_false; 4817 else 4818 goto trivially_true; 4819 } 4820 // Otherwise swap the operands to put the constant on the right. 4821 std::swap(LHS, RHS); 4822 Pred = ICmpInst::getSwappedPredicate(Pred); 4823 Changed = true; 4824 } 4825 4826 // If we're comparing an addrec with a value which is loop-invariant in the 4827 // addrec's loop, put the addrec on the left. Also make a dominance check, 4828 // as both operands could be addrecs loop-invariant in each other's loop. 4829 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 4830 const Loop *L = AR->getLoop(); 4831 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) { 4832 std::swap(LHS, RHS); 4833 Pred = ICmpInst::getSwappedPredicate(Pred); 4834 Changed = true; 4835 } 4836 } 4837 4838 // If there's a constant operand, canonicalize comparisons with boundary 4839 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 4840 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4841 const APInt &RA = RC->getValue()->getValue(); 4842 switch (Pred) { 4843 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4844 case ICmpInst::ICMP_EQ: 4845 case ICmpInst::ICMP_NE: 4846 break; 4847 case ICmpInst::ICMP_UGE: 4848 if ((RA - 1).isMinValue()) { 4849 Pred = ICmpInst::ICMP_NE; 4850 RHS = getConstant(RA - 1); 4851 Changed = true; 4852 break; 4853 } 4854 if (RA.isMaxValue()) { 4855 Pred = ICmpInst::ICMP_EQ; 4856 Changed = true; 4857 break; 4858 } 4859 if (RA.isMinValue()) goto trivially_true; 4860 4861 Pred = ICmpInst::ICMP_UGT; 4862 RHS = getConstant(RA - 1); 4863 Changed = true; 4864 break; 4865 case ICmpInst::ICMP_ULE: 4866 if ((RA + 1).isMaxValue()) { 4867 Pred = ICmpInst::ICMP_NE; 4868 RHS = getConstant(RA + 1); 4869 Changed = true; 4870 break; 4871 } 4872 if (RA.isMinValue()) { 4873 Pred = ICmpInst::ICMP_EQ; 4874 Changed = true; 4875 break; 4876 } 4877 if (RA.isMaxValue()) goto trivially_true; 4878 4879 Pred = ICmpInst::ICMP_ULT; 4880 RHS = getConstant(RA + 1); 4881 Changed = true; 4882 break; 4883 case ICmpInst::ICMP_SGE: 4884 if ((RA - 1).isMinSignedValue()) { 4885 Pred = ICmpInst::ICMP_NE; 4886 RHS = getConstant(RA - 1); 4887 Changed = true; 4888 break; 4889 } 4890 if (RA.isMaxSignedValue()) { 4891 Pred = ICmpInst::ICMP_EQ; 4892 Changed = true; 4893 break; 4894 } 4895 if (RA.isMinSignedValue()) goto trivially_true; 4896 4897 Pred = ICmpInst::ICMP_SGT; 4898 RHS = getConstant(RA - 1); 4899 Changed = true; 4900 break; 4901 case ICmpInst::ICMP_SLE: 4902 if ((RA + 1).isMaxSignedValue()) { 4903 Pred = ICmpInst::ICMP_NE; 4904 RHS = getConstant(RA + 1); 4905 Changed = true; 4906 break; 4907 } 4908 if (RA.isMinSignedValue()) { 4909 Pred = ICmpInst::ICMP_EQ; 4910 Changed = true; 4911 break; 4912 } 4913 if (RA.isMaxSignedValue()) goto trivially_true; 4914 4915 Pred = ICmpInst::ICMP_SLT; 4916 RHS = getConstant(RA + 1); 4917 Changed = true; 4918 break; 4919 case ICmpInst::ICMP_UGT: 4920 if (RA.isMinValue()) { 4921 Pred = ICmpInst::ICMP_NE; 4922 Changed = true; 4923 break; 4924 } 4925 if ((RA + 1).isMaxValue()) { 4926 Pred = ICmpInst::ICMP_EQ; 4927 RHS = getConstant(RA + 1); 4928 Changed = true; 4929 break; 4930 } 4931 if (RA.isMaxValue()) goto trivially_false; 4932 break; 4933 case ICmpInst::ICMP_ULT: 4934 if (RA.isMaxValue()) { 4935 Pred = ICmpInst::ICMP_NE; 4936 Changed = true; 4937 break; 4938 } 4939 if ((RA - 1).isMinValue()) { 4940 Pred = ICmpInst::ICMP_EQ; 4941 RHS = getConstant(RA - 1); 4942 Changed = true; 4943 break; 4944 } 4945 if (RA.isMinValue()) goto trivially_false; 4946 break; 4947 case ICmpInst::ICMP_SGT: 4948 if (RA.isMinSignedValue()) { 4949 Pred = ICmpInst::ICMP_NE; 4950 Changed = true; 4951 break; 4952 } 4953 if ((RA + 1).isMaxSignedValue()) { 4954 Pred = ICmpInst::ICMP_EQ; 4955 RHS = getConstant(RA + 1); 4956 Changed = true; 4957 break; 4958 } 4959 if (RA.isMaxSignedValue()) goto trivially_false; 4960 break; 4961 case ICmpInst::ICMP_SLT: 4962 if (RA.isMaxSignedValue()) { 4963 Pred = ICmpInst::ICMP_NE; 4964 Changed = true; 4965 break; 4966 } 4967 if ((RA - 1).isMinSignedValue()) { 4968 Pred = ICmpInst::ICMP_EQ; 4969 RHS = getConstant(RA - 1); 4970 Changed = true; 4971 break; 4972 } 4973 if (RA.isMinSignedValue()) goto trivially_false; 4974 break; 4975 } 4976 } 4977 4978 // Check for obvious equality. 4979 if (HasSameValue(LHS, RHS)) { 4980 if (ICmpInst::isTrueWhenEqual(Pred)) 4981 goto trivially_true; 4982 if (ICmpInst::isFalseWhenEqual(Pred)) 4983 goto trivially_false; 4984 } 4985 4986 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 4987 // adding or subtracting 1 from one of the operands. 4988 switch (Pred) { 4989 case ICmpInst::ICMP_SLE: 4990 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 4991 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 4992 /*HasNUW=*/false, /*HasNSW=*/true); 4993 Pred = ICmpInst::ICMP_SLT; 4994 Changed = true; 4995 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 4996 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 4997 /*HasNUW=*/false, /*HasNSW=*/true); 4998 Pred = ICmpInst::ICMP_SLT; 4999 Changed = true; 5000 } 5001 break; 5002 case ICmpInst::ICMP_SGE: 5003 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5004 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5005 /*HasNUW=*/false, /*HasNSW=*/true); 5006 Pred = ICmpInst::ICMP_SGT; 5007 Changed = true; 5008 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5009 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5010 /*HasNUW=*/false, /*HasNSW=*/true); 5011 Pred = ICmpInst::ICMP_SGT; 5012 Changed = true; 5013 } 5014 break; 5015 case ICmpInst::ICMP_ULE: 5016 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5017 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5018 /*HasNUW=*/true, /*HasNSW=*/false); 5019 Pred = ICmpInst::ICMP_ULT; 5020 Changed = true; 5021 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5022 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5023 /*HasNUW=*/true, /*HasNSW=*/false); 5024 Pred = ICmpInst::ICMP_ULT; 5025 Changed = true; 5026 } 5027 break; 5028 case ICmpInst::ICMP_UGE: 5029 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5030 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5031 /*HasNUW=*/true, /*HasNSW=*/false); 5032 Pred = ICmpInst::ICMP_UGT; 5033 Changed = true; 5034 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5035 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5036 /*HasNUW=*/true, /*HasNSW=*/false); 5037 Pred = ICmpInst::ICMP_UGT; 5038 Changed = true; 5039 } 5040 break; 5041 default: 5042 break; 5043 } 5044 5045 // TODO: More simplifications are possible here. 5046 5047 return Changed; 5048 5049 trivially_true: 5050 // Return 0 == 0. 5051 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5052 Pred = ICmpInst::ICMP_EQ; 5053 return true; 5054 5055 trivially_false: 5056 // Return 0 != 0. 5057 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5058 Pred = ICmpInst::ICMP_NE; 5059 return true; 5060 } 5061 5062 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5063 return getSignedRange(S).getSignedMax().isNegative(); 5064 } 5065 5066 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5067 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5068 } 5069 5070 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5071 return !getSignedRange(S).getSignedMin().isNegative(); 5072 } 5073 5074 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5075 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5076 } 5077 5078 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5079 return isKnownNegative(S) || isKnownPositive(S); 5080 } 5081 5082 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5083 const SCEV *LHS, const SCEV *RHS) { 5084 // Canonicalize the inputs first. 5085 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5086 5087 // If LHS or RHS is an addrec, check to see if the condition is true in 5088 // every iteration of the loop. 5089 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5090 if (isLoopEntryGuardedByCond( 5091 AR->getLoop(), Pred, AR->getStart(), RHS) && 5092 isLoopBackedgeGuardedByCond( 5093 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5094 return true; 5095 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5096 if (isLoopEntryGuardedByCond( 5097 AR->getLoop(), Pred, LHS, AR->getStart()) && 5098 isLoopBackedgeGuardedByCond( 5099 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5100 return true; 5101 5102 // Otherwise see what can be done with known constant ranges. 5103 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5104 } 5105 5106 bool 5107 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5108 const SCEV *LHS, const SCEV *RHS) { 5109 if (HasSameValue(LHS, RHS)) 5110 return ICmpInst::isTrueWhenEqual(Pred); 5111 5112 // This code is split out from isKnownPredicate because it is called from 5113 // within isLoopEntryGuardedByCond. 5114 switch (Pred) { 5115 default: 5116 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5117 break; 5118 case ICmpInst::ICMP_SGT: 5119 Pred = ICmpInst::ICMP_SLT; 5120 std::swap(LHS, RHS); 5121 case ICmpInst::ICMP_SLT: { 5122 ConstantRange LHSRange = getSignedRange(LHS); 5123 ConstantRange RHSRange = getSignedRange(RHS); 5124 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5125 return true; 5126 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5127 return false; 5128 break; 5129 } 5130 case ICmpInst::ICMP_SGE: 5131 Pred = ICmpInst::ICMP_SLE; 5132 std::swap(LHS, RHS); 5133 case ICmpInst::ICMP_SLE: { 5134 ConstantRange LHSRange = getSignedRange(LHS); 5135 ConstantRange RHSRange = getSignedRange(RHS); 5136 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5137 return true; 5138 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5139 return false; 5140 break; 5141 } 5142 case ICmpInst::ICMP_UGT: 5143 Pred = ICmpInst::ICMP_ULT; 5144 std::swap(LHS, RHS); 5145 case ICmpInst::ICMP_ULT: { 5146 ConstantRange LHSRange = getUnsignedRange(LHS); 5147 ConstantRange RHSRange = getUnsignedRange(RHS); 5148 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5149 return true; 5150 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5151 return false; 5152 break; 5153 } 5154 case ICmpInst::ICMP_UGE: 5155 Pred = ICmpInst::ICMP_ULE; 5156 std::swap(LHS, RHS); 5157 case ICmpInst::ICMP_ULE: { 5158 ConstantRange LHSRange = getUnsignedRange(LHS); 5159 ConstantRange RHSRange = getUnsignedRange(RHS); 5160 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5161 return true; 5162 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5163 return false; 5164 break; 5165 } 5166 case ICmpInst::ICMP_NE: { 5167 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5168 return true; 5169 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5170 return true; 5171 5172 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5173 if (isKnownNonZero(Diff)) 5174 return true; 5175 break; 5176 } 5177 case ICmpInst::ICMP_EQ: 5178 // The check at the top of the function catches the case where 5179 // the values are known to be equal. 5180 break; 5181 } 5182 return false; 5183 } 5184 5185 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5186 /// protected by a conditional between LHS and RHS. This is used to 5187 /// to eliminate casts. 5188 bool 5189 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5190 ICmpInst::Predicate Pred, 5191 const SCEV *LHS, const SCEV *RHS) { 5192 // Interpret a null as meaning no loop, where there is obviously no guard 5193 // (interprocedural conditions notwithstanding). 5194 if (!L) return true; 5195 5196 BasicBlock *Latch = L->getLoopLatch(); 5197 if (!Latch) 5198 return false; 5199 5200 BranchInst *LoopContinuePredicate = 5201 dyn_cast<BranchInst>(Latch->getTerminator()); 5202 if (!LoopContinuePredicate || 5203 LoopContinuePredicate->isUnconditional()) 5204 return false; 5205 5206 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, 5207 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5208 } 5209 5210 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5211 /// by a conditional between LHS and RHS. This is used to help avoid max 5212 /// expressions in loop trip counts, and to eliminate casts. 5213 bool 5214 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5215 ICmpInst::Predicate Pred, 5216 const SCEV *LHS, const SCEV *RHS) { 5217 // Interpret a null as meaning no loop, where there is obviously no guard 5218 // (interprocedural conditions notwithstanding). 5219 if (!L) return false; 5220 5221 // Starting at the loop predecessor, climb up the predecessor chain, as long 5222 // as there are predecessors that can be found that have unique successors 5223 // leading to the original header. 5224 for (std::pair<BasicBlock *, BasicBlock *> 5225 Pair(L->getLoopPredecessor(), L->getHeader()); 5226 Pair.first; 5227 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5228 5229 BranchInst *LoopEntryPredicate = 5230 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5231 if (!LoopEntryPredicate || 5232 LoopEntryPredicate->isUnconditional()) 5233 continue; 5234 5235 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 5236 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5237 return true; 5238 } 5239 5240 return false; 5241 } 5242 5243 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5244 /// and RHS is true whenever the given Cond value evaluates to true. 5245 bool ScalarEvolution::isImpliedCond(Value *CondValue, 5246 ICmpInst::Predicate Pred, 5247 const SCEV *LHS, const SCEV *RHS, 5248 bool Inverse) { 5249 // Recursively handle And and Or conditions. 5250 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 5251 if (BO->getOpcode() == Instruction::And) { 5252 if (!Inverse) 5253 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 5254 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 5255 } else if (BO->getOpcode() == Instruction::Or) { 5256 if (Inverse) 5257 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 5258 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 5259 } 5260 } 5261 5262 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 5263 if (!ICI) return false; 5264 5265 // Bail if the ICmp's operands' types are wider than the needed type 5266 // before attempting to call getSCEV on them. This avoids infinite 5267 // recursion, since the analysis of widening casts can require loop 5268 // exit condition information for overflow checking, which would 5269 // lead back here. 5270 if (getTypeSizeInBits(LHS->getType()) < 5271 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5272 return false; 5273 5274 // Now that we found a conditional branch that dominates the loop, check to 5275 // see if it is the comparison we are looking for. 5276 ICmpInst::Predicate FoundPred; 5277 if (Inverse) 5278 FoundPred = ICI->getInversePredicate(); 5279 else 5280 FoundPred = ICI->getPredicate(); 5281 5282 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5283 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5284 5285 // Balance the types. The case where FoundLHS' type is wider than 5286 // LHS' type is checked for above. 5287 if (getTypeSizeInBits(LHS->getType()) > 5288 getTypeSizeInBits(FoundLHS->getType())) { 5289 if (CmpInst::isSigned(Pred)) { 5290 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5291 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5292 } else { 5293 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5294 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5295 } 5296 } 5297 5298 // Canonicalize the query to match the way instcombine will have 5299 // canonicalized the comparison. 5300 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5301 if (LHS == RHS) 5302 return CmpInst::isTrueWhenEqual(Pred); 5303 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5304 if (FoundLHS == FoundRHS) 5305 return CmpInst::isFalseWhenEqual(Pred); 5306 5307 // Check to see if we can make the LHS or RHS match. 5308 if (LHS == FoundRHS || RHS == FoundLHS) { 5309 if (isa<SCEVConstant>(RHS)) { 5310 std::swap(FoundLHS, FoundRHS); 5311 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5312 } else { 5313 std::swap(LHS, RHS); 5314 Pred = ICmpInst::getSwappedPredicate(Pred); 5315 } 5316 } 5317 5318 // Check whether the found predicate is the same as the desired predicate. 5319 if (FoundPred == Pred) 5320 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5321 5322 // Check whether swapping the found predicate makes it the same as the 5323 // desired predicate. 5324 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5325 if (isa<SCEVConstant>(RHS)) 5326 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5327 else 5328 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5329 RHS, LHS, FoundLHS, FoundRHS); 5330 } 5331 5332 // Check whether the actual condition is beyond sufficient. 5333 if (FoundPred == ICmpInst::ICMP_EQ) 5334 if (ICmpInst::isTrueWhenEqual(Pred)) 5335 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5336 return true; 5337 if (Pred == ICmpInst::ICMP_NE) 5338 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5339 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5340 return true; 5341 5342 // Otherwise assume the worst. 5343 return false; 5344 } 5345 5346 /// isImpliedCondOperands - Test whether the condition described by Pred, 5347 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5348 /// and FoundRHS is true. 5349 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5350 const SCEV *LHS, const SCEV *RHS, 5351 const SCEV *FoundLHS, 5352 const SCEV *FoundRHS) { 5353 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5354 FoundLHS, FoundRHS) || 5355 // ~x < ~y --> x > y 5356 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5357 getNotSCEV(FoundRHS), 5358 getNotSCEV(FoundLHS)); 5359 } 5360 5361 /// isImpliedCondOperandsHelper - Test whether the condition described by 5362 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5363 /// FoundLHS, and FoundRHS is true. 5364 bool 5365 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5366 const SCEV *LHS, const SCEV *RHS, 5367 const SCEV *FoundLHS, 5368 const SCEV *FoundRHS) { 5369 switch (Pred) { 5370 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5371 case ICmpInst::ICMP_EQ: 5372 case ICmpInst::ICMP_NE: 5373 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5374 return true; 5375 break; 5376 case ICmpInst::ICMP_SLT: 5377 case ICmpInst::ICMP_SLE: 5378 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5379 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5380 return true; 5381 break; 5382 case ICmpInst::ICMP_SGT: 5383 case ICmpInst::ICMP_SGE: 5384 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5385 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5386 return true; 5387 break; 5388 case ICmpInst::ICMP_ULT: 5389 case ICmpInst::ICMP_ULE: 5390 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5391 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5392 return true; 5393 break; 5394 case ICmpInst::ICMP_UGT: 5395 case ICmpInst::ICMP_UGE: 5396 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5397 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5398 return true; 5399 break; 5400 } 5401 5402 return false; 5403 } 5404 5405 /// getBECount - Subtract the end and start values and divide by the step, 5406 /// rounding up, to get the number of times the backedge is executed. Return 5407 /// CouldNotCompute if an intermediate computation overflows. 5408 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5409 const SCEV *End, 5410 const SCEV *Step, 5411 bool NoWrap) { 5412 assert(!isKnownNegative(Step) && 5413 "This code doesn't handle negative strides yet!"); 5414 5415 const Type *Ty = Start->getType(); 5416 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5417 const SCEV *Diff = getMinusSCEV(End, Start); 5418 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5419 5420 // Add an adjustment to the difference between End and Start so that 5421 // the division will effectively round up. 5422 const SCEV *Add = getAddExpr(Diff, RoundUp); 5423 5424 if (!NoWrap) { 5425 // Check Add for unsigned overflow. 5426 // TODO: More sophisticated things could be done here. 5427 const Type *WideTy = IntegerType::get(getContext(), 5428 getTypeSizeInBits(Ty) + 1); 5429 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5430 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5431 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5432 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5433 return getCouldNotCompute(); 5434 } 5435 5436 return getUDivExpr(Add, Step); 5437 } 5438 5439 /// HowManyLessThans - Return the number of times a backedge containing the 5440 /// specified less-than comparison will execute. If not computable, return 5441 /// CouldNotCompute. 5442 ScalarEvolution::BackedgeTakenInfo 5443 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5444 const Loop *L, bool isSigned) { 5445 // Only handle: "ADDREC < LoopInvariant". 5446 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5447 5448 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5449 if (!AddRec || AddRec->getLoop() != L) 5450 return getCouldNotCompute(); 5451 5452 // Check to see if we have a flag which makes analysis easy. 5453 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5454 AddRec->hasNoUnsignedWrap(); 5455 5456 if (AddRec->isAffine()) { 5457 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5458 const SCEV *Step = AddRec->getStepRecurrence(*this); 5459 5460 if (Step->isZero()) 5461 return getCouldNotCompute(); 5462 if (Step->isOne()) { 5463 // With unit stride, the iteration never steps past the limit value. 5464 } else if (isKnownPositive(Step)) { 5465 // Test whether a positive iteration can step past the limit 5466 // value and past the maximum value for its type in a single step. 5467 // Note that it's not sufficient to check NoWrap here, because even 5468 // though the value after a wrap is undefined, it's not undefined 5469 // behavior, so if wrap does occur, the loop could either terminate or 5470 // loop infinitely, but in either case, the loop is guaranteed to 5471 // iterate at least until the iteration where the wrapping occurs. 5472 const SCEV *One = getConstant(Step->getType(), 1); 5473 if (isSigned) { 5474 APInt Max = APInt::getSignedMaxValue(BitWidth); 5475 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5476 .slt(getSignedRange(RHS).getSignedMax())) 5477 return getCouldNotCompute(); 5478 } else { 5479 APInt Max = APInt::getMaxValue(BitWidth); 5480 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5481 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5482 return getCouldNotCompute(); 5483 } 5484 } else 5485 // TODO: Handle negative strides here and below. 5486 return getCouldNotCompute(); 5487 5488 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5489 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5490 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5491 // treat m-n as signed nor unsigned due to overflow possibility. 5492 5493 // First, we get the value of the LHS in the first iteration: n 5494 const SCEV *Start = AddRec->getOperand(0); 5495 5496 // Determine the minimum constant start value. 5497 const SCEV *MinStart = getConstant(isSigned ? 5498 getSignedRange(Start).getSignedMin() : 5499 getUnsignedRange(Start).getUnsignedMin()); 5500 5501 // If we know that the condition is true in order to enter the loop, 5502 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5503 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5504 // the division must round up. 5505 const SCEV *End = RHS; 5506 if (!isLoopEntryGuardedByCond(L, 5507 isSigned ? ICmpInst::ICMP_SLT : 5508 ICmpInst::ICMP_ULT, 5509 getMinusSCEV(Start, Step), RHS)) 5510 End = isSigned ? getSMaxExpr(RHS, Start) 5511 : getUMaxExpr(RHS, Start); 5512 5513 // Determine the maximum constant end value. 5514 const SCEV *MaxEnd = getConstant(isSigned ? 5515 getSignedRange(End).getSignedMax() : 5516 getUnsignedRange(End).getUnsignedMax()); 5517 5518 // If MaxEnd is within a step of the maximum integer value in its type, 5519 // adjust it down to the minimum value which would produce the same effect. 5520 // This allows the subsequent ceiling division of (N+(step-1))/step to 5521 // compute the correct value. 5522 const SCEV *StepMinusOne = getMinusSCEV(Step, 5523 getConstant(Step->getType(), 1)); 5524 MaxEnd = isSigned ? 5525 getSMinExpr(MaxEnd, 5526 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5527 StepMinusOne)) : 5528 getUMinExpr(MaxEnd, 5529 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5530 StepMinusOne)); 5531 5532 // Finally, we subtract these two values and divide, rounding up, to get 5533 // the number of times the backedge is executed. 5534 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5535 5536 // The maximum backedge count is similar, except using the minimum start 5537 // value and the maximum end value. 5538 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5539 5540 return BackedgeTakenInfo(BECount, MaxBECount); 5541 } 5542 5543 return getCouldNotCompute(); 5544 } 5545 5546 /// getNumIterationsInRange - Return the number of iterations of this loop that 5547 /// produce values in the specified constant range. Another way of looking at 5548 /// this is that it returns the first iteration number where the value is not in 5549 /// the condition, thus computing the exit count. If the iteration count can't 5550 /// be computed, an instance of SCEVCouldNotCompute is returned. 5551 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5552 ScalarEvolution &SE) const { 5553 if (Range.isFullSet()) // Infinite loop. 5554 return SE.getCouldNotCompute(); 5555 5556 // If the start is a non-zero constant, shift the range to simplify things. 5557 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5558 if (!SC->getValue()->isZero()) { 5559 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5560 Operands[0] = SE.getConstant(SC->getType(), 0); 5561 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5562 if (const SCEVAddRecExpr *ShiftedAddRec = 5563 dyn_cast<SCEVAddRecExpr>(Shifted)) 5564 return ShiftedAddRec->getNumIterationsInRange( 5565 Range.subtract(SC->getValue()->getValue()), SE); 5566 // This is strange and shouldn't happen. 5567 return SE.getCouldNotCompute(); 5568 } 5569 5570 // The only time we can solve this is when we have all constant indices. 5571 // Otherwise, we cannot determine the overflow conditions. 5572 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5573 if (!isa<SCEVConstant>(getOperand(i))) 5574 return SE.getCouldNotCompute(); 5575 5576 5577 // Okay at this point we know that all elements of the chrec are constants and 5578 // that the start element is zero. 5579 5580 // First check to see if the range contains zero. If not, the first 5581 // iteration exits. 5582 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5583 if (!Range.contains(APInt(BitWidth, 0))) 5584 return SE.getConstant(getType(), 0); 5585 5586 if (isAffine()) { 5587 // If this is an affine expression then we have this situation: 5588 // Solve {0,+,A} in Range === Ax in Range 5589 5590 // We know that zero is in the range. If A is positive then we know that 5591 // the upper value of the range must be the first possible exit value. 5592 // If A is negative then the lower of the range is the last possible loop 5593 // value. Also note that we already checked for a full range. 5594 APInt One(BitWidth,1); 5595 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5596 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5597 5598 // The exit value should be (End+A)/A. 5599 APInt ExitVal = (End + A).udiv(A); 5600 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5601 5602 // Evaluate at the exit value. If we really did fall out of the valid 5603 // range, then we computed our trip count, otherwise wrap around or other 5604 // things must have happened. 5605 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5606 if (Range.contains(Val->getValue())) 5607 return SE.getCouldNotCompute(); // Something strange happened 5608 5609 // Ensure that the previous value is in the range. This is a sanity check. 5610 assert(Range.contains( 5611 EvaluateConstantChrecAtConstant(this, 5612 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5613 "Linear scev computation is off in a bad way!"); 5614 return SE.getConstant(ExitValue); 5615 } else if (isQuadratic()) { 5616 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5617 // quadratic equation to solve it. To do this, we must frame our problem in 5618 // terms of figuring out when zero is crossed, instead of when 5619 // Range.getUpper() is crossed. 5620 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5621 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5622 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5623 5624 // Next, solve the constructed addrec 5625 std::pair<const SCEV *,const SCEV *> Roots = 5626 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5627 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5628 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5629 if (R1) { 5630 // Pick the smallest positive root value. 5631 if (ConstantInt *CB = 5632 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5633 R1->getValue(), R2->getValue()))) { 5634 if (CB->getZExtValue() == false) 5635 std::swap(R1, R2); // R1 is the minimum root now. 5636 5637 // Make sure the root is not off by one. The returned iteration should 5638 // not be in the range, but the previous one should be. When solving 5639 // for "X*X < 5", for example, we should not return a root of 2. 5640 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5641 R1->getValue(), 5642 SE); 5643 if (Range.contains(R1Val->getValue())) { 5644 // The next iteration must be out of the range... 5645 ConstantInt *NextVal = 5646 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5647 5648 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5649 if (!Range.contains(R1Val->getValue())) 5650 return SE.getConstant(NextVal); 5651 return SE.getCouldNotCompute(); // Something strange happened 5652 } 5653 5654 // If R1 was not in the range, then it is a good return value. Make 5655 // sure that R1-1 WAS in the range though, just in case. 5656 ConstantInt *NextVal = 5657 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5658 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5659 if (Range.contains(R1Val->getValue())) 5660 return R1; 5661 return SE.getCouldNotCompute(); // Something strange happened 5662 } 5663 } 5664 } 5665 5666 return SE.getCouldNotCompute(); 5667 } 5668 5669 5670 5671 //===----------------------------------------------------------------------===// 5672 // SCEVCallbackVH Class Implementation 5673 //===----------------------------------------------------------------------===// 5674 5675 void ScalarEvolution::SCEVCallbackVH::deleted() { 5676 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5677 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5678 SE->ConstantEvolutionLoopExitValue.erase(PN); 5679 SE->Scalars.erase(getValPtr()); 5680 // this now dangles! 5681 } 5682 5683 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 5684 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5685 5686 // Forget all the expressions associated with users of the old value, 5687 // so that future queries will recompute the expressions using the new 5688 // value. 5689 SmallVector<User *, 16> Worklist; 5690 SmallPtrSet<User *, 8> Visited; 5691 Value *Old = getValPtr(); 5692 bool DeleteOld = false; 5693 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5694 UI != UE; ++UI) 5695 Worklist.push_back(*UI); 5696 while (!Worklist.empty()) { 5697 User *U = Worklist.pop_back_val(); 5698 // Deleting the Old value will cause this to dangle. Postpone 5699 // that until everything else is done. 5700 if (U == Old) { 5701 DeleteOld = true; 5702 continue; 5703 } 5704 if (!Visited.insert(U)) 5705 continue; 5706 if (PHINode *PN = dyn_cast<PHINode>(U)) 5707 SE->ConstantEvolutionLoopExitValue.erase(PN); 5708 SE->Scalars.erase(U); 5709 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5710 UI != UE; ++UI) 5711 Worklist.push_back(*UI); 5712 } 5713 // Delete the Old value if it (indirectly) references itself. 5714 if (DeleteOld) { 5715 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5716 SE->ConstantEvolutionLoopExitValue.erase(PN); 5717 SE->Scalars.erase(Old); 5718 // this now dangles! 5719 } 5720 // this may dangle! 5721 } 5722 5723 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5724 : CallbackVH(V), SE(se) {} 5725 5726 //===----------------------------------------------------------------------===// 5727 // ScalarEvolution Class Implementation 5728 //===----------------------------------------------------------------------===// 5729 5730 ScalarEvolution::ScalarEvolution() 5731 : FunctionPass(&ID) { 5732 } 5733 5734 bool ScalarEvolution::runOnFunction(Function &F) { 5735 this->F = &F; 5736 LI = &getAnalysis<LoopInfo>(); 5737 TD = getAnalysisIfAvailable<TargetData>(); 5738 DT = &getAnalysis<DominatorTree>(); 5739 return false; 5740 } 5741 5742 void ScalarEvolution::releaseMemory() { 5743 Scalars.clear(); 5744 BackedgeTakenCounts.clear(); 5745 ConstantEvolutionLoopExitValue.clear(); 5746 ValuesAtScopes.clear(); 5747 UniqueSCEVs.clear(); 5748 SCEVAllocator.Reset(); 5749 } 5750 5751 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5752 AU.setPreservesAll(); 5753 AU.addRequiredTransitive<LoopInfo>(); 5754 AU.addRequiredTransitive<DominatorTree>(); 5755 } 5756 5757 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5758 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5759 } 5760 5761 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5762 const Loop *L) { 5763 // Print all inner loops first 5764 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5765 PrintLoopInfo(OS, SE, *I); 5766 5767 OS << "Loop "; 5768 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5769 OS << ": "; 5770 5771 SmallVector<BasicBlock *, 8> ExitBlocks; 5772 L->getExitBlocks(ExitBlocks); 5773 if (ExitBlocks.size() != 1) 5774 OS << "<multiple exits> "; 5775 5776 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5777 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5778 } else { 5779 OS << "Unpredictable backedge-taken count. "; 5780 } 5781 5782 OS << "\n" 5783 "Loop "; 5784 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5785 OS << ": "; 5786 5787 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5788 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5789 } else { 5790 OS << "Unpredictable max backedge-taken count. "; 5791 } 5792 5793 OS << "\n"; 5794 } 5795 5796 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5797 // ScalarEvolution's implementation of the print method is to print 5798 // out SCEV values of all instructions that are interesting. Doing 5799 // this potentially causes it to create new SCEV objects though, 5800 // which technically conflicts with the const qualifier. This isn't 5801 // observable from outside the class though, so casting away the 5802 // const isn't dangerous. 5803 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5804 5805 OS << "Classifying expressions for: "; 5806 WriteAsOperand(OS, F, /*PrintType=*/false); 5807 OS << "\n"; 5808 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5809 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 5810 OS << *I << '\n'; 5811 OS << " --> "; 5812 const SCEV *SV = SE.getSCEV(&*I); 5813 SV->print(OS); 5814 5815 const Loop *L = LI->getLoopFor((*I).getParent()); 5816 5817 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5818 if (AtUse != SV) { 5819 OS << " --> "; 5820 AtUse->print(OS); 5821 } 5822 5823 if (L) { 5824 OS << "\t\t" "Exits: "; 5825 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5826 if (!ExitValue->isLoopInvariant(L)) { 5827 OS << "<<Unknown>>"; 5828 } else { 5829 OS << *ExitValue; 5830 } 5831 } 5832 5833 OS << "\n"; 5834 } 5835 5836 OS << "Determining loop execution counts for: "; 5837 WriteAsOperand(OS, F, /*PrintType=*/false); 5838 OS << "\n"; 5839 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5840 PrintLoopInfo(OS, &SE, *I); 5841 } 5842 5843