xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision a393baf1fdcc8a5f85de191da74446e2f1d6bb73)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "scalar-evolution"
97 
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106 
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113 
114 // FIXME: Enable this with XDEBUG when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119     VerifySCEVMap("verify-scev-maps",
120                   cl::desc("Verify no dangling value in ScalarEvolution's"
121                            "ExprValueMap (slow)"));
122 
123 //===----------------------------------------------------------------------===//
124 //                           SCEV class definitions
125 //===----------------------------------------------------------------------===//
126 
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130 
131 LLVM_DUMP_METHOD
132 void SCEV::dump() const {
133   print(dbgs());
134   dbgs() << '\n';
135 }
136 
137 void SCEV::print(raw_ostream &OS) const {
138   switch (static_cast<SCEVTypes>(getSCEVType())) {
139   case scConstant:
140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141     return;
142   case scTruncate: {
143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144     const SCEV *Op = Trunc->getOperand();
145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146        << *Trunc->getType() << ")";
147     return;
148   }
149   case scZeroExtend: {
150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151     const SCEV *Op = ZExt->getOperand();
152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
153        << *ZExt->getType() << ")";
154     return;
155   }
156   case scSignExtend: {
157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158     const SCEV *Op = SExt->getOperand();
159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
160        << *SExt->getType() << ")";
161     return;
162   }
163   case scAddRecExpr: {
164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165     OS << "{" << *AR->getOperand(0);
166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167       OS << ",+," << *AR->getOperand(i);
168     OS << "}<";
169     if (AR->hasNoUnsignedWrap())
170       OS << "nuw><";
171     if (AR->hasNoSignedWrap())
172       OS << "nsw><";
173     if (AR->hasNoSelfWrap() &&
174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175       OS << "nw><";
176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177     OS << ">";
178     return;
179   }
180   case scAddExpr:
181   case scMulExpr:
182   case scUMaxExpr:
183   case scSMaxExpr: {
184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185     const char *OpStr = nullptr;
186     switch (NAry->getSCEVType()) {
187     case scAddExpr: OpStr = " + "; break;
188     case scMulExpr: OpStr = " * "; break;
189     case scUMaxExpr: OpStr = " umax "; break;
190     case scSMaxExpr: OpStr = " smax "; break;
191     }
192     OS << "(";
193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194          I != E; ++I) {
195       OS << **I;
196       if (std::next(I) != E)
197         OS << OpStr;
198     }
199     OS << ")";
200     switch (NAry->getSCEVType()) {
201     case scAddExpr:
202     case scMulExpr:
203       if (NAry->hasNoUnsignedWrap())
204         OS << "<nuw>";
205       if (NAry->hasNoSignedWrap())
206         OS << "<nsw>";
207     }
208     return;
209   }
210   case scUDivExpr: {
211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213     return;
214   }
215   case scUnknown: {
216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
217     Type *AllocTy;
218     if (U->isSizeOf(AllocTy)) {
219       OS << "sizeof(" << *AllocTy << ")";
220       return;
221     }
222     if (U->isAlignOf(AllocTy)) {
223       OS << "alignof(" << *AllocTy << ")";
224       return;
225     }
226 
227     Type *CTy;
228     Constant *FieldNo;
229     if (U->isOffsetOf(CTy, FieldNo)) {
230       OS << "offsetof(" << *CTy << ", ";
231       FieldNo->printAsOperand(OS, false);
232       OS << ")";
233       return;
234     }
235 
236     // Otherwise just print it normally.
237     U->getValue()->printAsOperand(OS, false);
238     return;
239   }
240   case scCouldNotCompute:
241     OS << "***COULDNOTCOMPUTE***";
242     return;
243   }
244   llvm_unreachable("Unknown SCEV kind!");
245 }
246 
247 Type *SCEV::getType() const {
248   switch (static_cast<SCEVTypes>(getSCEVType())) {
249   case scConstant:
250     return cast<SCEVConstant>(this)->getType();
251   case scTruncate:
252   case scZeroExtend:
253   case scSignExtend:
254     return cast<SCEVCastExpr>(this)->getType();
255   case scAddRecExpr:
256   case scMulExpr:
257   case scUMaxExpr:
258   case scSMaxExpr:
259     return cast<SCEVNAryExpr>(this)->getType();
260   case scAddExpr:
261     return cast<SCEVAddExpr>(this)->getType();
262   case scUDivExpr:
263     return cast<SCEVUDivExpr>(this)->getType();
264   case scUnknown:
265     return cast<SCEVUnknown>(this)->getType();
266   case scCouldNotCompute:
267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268   }
269   llvm_unreachable("Unknown SCEV kind!");
270 }
271 
272 bool SCEV::isZero() const {
273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274     return SC->getValue()->isZero();
275   return false;
276 }
277 
278 bool SCEV::isOne() const {
279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280     return SC->getValue()->isOne();
281   return false;
282 }
283 
284 bool SCEV::isAllOnesValue() const {
285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286     return SC->getValue()->isAllOnesValue();
287   return false;
288 }
289 
290 /// isNonConstantNegative - Return true if the specified scev is negated, but
291 /// not a constant.
292 bool SCEV::isNonConstantNegative() const {
293   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294   if (!Mul) return false;
295 
296   // If there is a constant factor, it will be first.
297   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298   if (!SC) return false;
299 
300   // Return true if the value is negative, this matches things like (-42 * V).
301   return SC->getAPInt().isNegative();
302 }
303 
304 SCEVCouldNotCompute::SCEVCouldNotCompute() :
305   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
306 
307 bool SCEVCouldNotCompute::classof(const SCEV *S) {
308   return S->getSCEVType() == scCouldNotCompute;
309 }
310 
311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
312   FoldingSetNodeID ID;
313   ID.AddInteger(scConstant);
314   ID.AddPointer(V);
315   void *IP = nullptr;
316   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
317   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
318   UniqueSCEVs.InsertNode(S, IP);
319   return S;
320 }
321 
322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
323   return getConstant(ConstantInt::get(getContext(), Val));
324 }
325 
326 const SCEV *
327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
329   return getConstant(ConstantInt::get(ITy, V, isSigned));
330 }
331 
332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
333                            unsigned SCEVTy, const SCEV *op, Type *ty)
334   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
335 
336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
337                                    const SCEV *op, Type *ty)
338   : SCEVCastExpr(ID, scTruncate, op, ty) {
339   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
341          "Cannot truncate non-integer value!");
342 }
343 
344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
345                                        const SCEV *op, Type *ty)
346   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
347   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
349          "Cannot zero extend non-integer value!");
350 }
351 
352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
353                                        const SCEV *op, Type *ty)
354   : SCEVCastExpr(ID, scSignExtend, op, ty) {
355   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
357          "Cannot sign extend non-integer value!");
358 }
359 
360 void SCEVUnknown::deleted() {
361   // Clear this SCEVUnknown from various maps.
362   SE->forgetMemoizedResults(this);
363 
364   // Remove this SCEVUnknown from the uniquing map.
365   SE->UniqueSCEVs.RemoveNode(this);
366 
367   // Release the value.
368   setValPtr(nullptr);
369 }
370 
371 void SCEVUnknown::allUsesReplacedWith(Value *New) {
372   // Clear this SCEVUnknown from various maps.
373   SE->forgetMemoizedResults(this);
374 
375   // Remove this SCEVUnknown from the uniquing map.
376   SE->UniqueSCEVs.RemoveNode(this);
377 
378   // Update this SCEVUnknown to point to the new value. This is needed
379   // because there may still be outstanding SCEVs which still point to
380   // this SCEVUnknown.
381   setValPtr(New);
382 }
383 
384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
385   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
386     if (VCE->getOpcode() == Instruction::PtrToInt)
387       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
388         if (CE->getOpcode() == Instruction::GetElementPtr &&
389             CE->getOperand(0)->isNullValue() &&
390             CE->getNumOperands() == 2)
391           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392             if (CI->isOne()) {
393               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394                                  ->getElementType();
395               return true;
396             }
397 
398   return false;
399 }
400 
401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
402   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
403     if (VCE->getOpcode() == Instruction::PtrToInt)
404       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
405         if (CE->getOpcode() == Instruction::GetElementPtr &&
406             CE->getOperand(0)->isNullValue()) {
407           Type *Ty =
408             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409           if (StructType *STy = dyn_cast<StructType>(Ty))
410             if (!STy->isPacked() &&
411                 CE->getNumOperands() == 3 &&
412                 CE->getOperand(1)->isNullValue()) {
413               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414                 if (CI->isOne() &&
415                     STy->getNumElements() == 2 &&
416                     STy->getElementType(0)->isIntegerTy(1)) {
417                   AllocTy = STy->getElementType(1);
418                   return true;
419                 }
420             }
421         }
422 
423   return false;
424 }
425 
426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
427   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
428     if (VCE->getOpcode() == Instruction::PtrToInt)
429       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430         if (CE->getOpcode() == Instruction::GetElementPtr &&
431             CE->getNumOperands() == 3 &&
432             CE->getOperand(0)->isNullValue() &&
433             CE->getOperand(1)->isNullValue()) {
434           Type *Ty =
435             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436           // Ignore vector types here so that ScalarEvolutionExpander doesn't
437           // emit getelementptrs that index into vectors.
438           if (Ty->isStructTy() || Ty->isArrayTy()) {
439             CTy = Ty;
440             FieldNo = CE->getOperand(2);
441             return true;
442           }
443         }
444 
445   return false;
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //                               SCEV Utilities
450 //===----------------------------------------------------------------------===//
451 
452 namespace {
453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454 /// than the complexity of the RHS.  This comparator is used to canonicalize
455 /// expressions.
456 class SCEVComplexityCompare {
457   const LoopInfo *const LI;
458 public:
459   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
460 
461   // Return true or false if LHS is less than, or at least RHS, respectively.
462   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463     return compare(LHS, RHS) < 0;
464   }
465 
466   // Return negative, zero, or positive, if LHS is less than, equal to, or
467   // greater than RHS, respectively. A three-way result allows recursive
468   // comparisons to be more efficient.
469   int compare(const SCEV *LHS, const SCEV *RHS) const {
470     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471     if (LHS == RHS)
472       return 0;
473 
474     // Primarily, sort the SCEVs by their getSCEVType().
475     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476     if (LType != RType)
477       return (int)LType - (int)RType;
478 
479     // Aside from the getSCEVType() ordering, the particular ordering
480     // isn't very important except that it's beneficial to be consistent,
481     // so that (a + b) and (b + a) don't end up as different expressions.
482     switch (static_cast<SCEVTypes>(LType)) {
483     case scUnknown: {
484       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
486 
487       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488       // not as complete as it could be.
489       const Value *LV = LU->getValue(), *RV = RU->getValue();
490 
491       // Order pointer values after integer values. This helps SCEVExpander
492       // form GEPs.
493       bool LIsPointer = LV->getType()->isPointerTy(),
494         RIsPointer = RV->getType()->isPointerTy();
495       if (LIsPointer != RIsPointer)
496         return (int)LIsPointer - (int)RIsPointer;
497 
498       // Compare getValueID values.
499       unsigned LID = LV->getValueID(),
500         RID = RV->getValueID();
501       if (LID != RID)
502         return (int)LID - (int)RID;
503 
504       // Sort arguments by their position.
505       if (const Argument *LA = dyn_cast<Argument>(LV)) {
506         const Argument *RA = cast<Argument>(RV);
507         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508         return (int)LArgNo - (int)RArgNo;
509       }
510 
511       // For instructions, compare their loop depth, and their operand
512       // count.  This is pretty loose.
513       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514         const Instruction *RInst = cast<Instruction>(RV);
515 
516         // Compare loop depths.
517         const BasicBlock *LParent = LInst->getParent(),
518           *RParent = RInst->getParent();
519         if (LParent != RParent) {
520           unsigned LDepth = LI->getLoopDepth(LParent),
521             RDepth = LI->getLoopDepth(RParent);
522           if (LDepth != RDepth)
523             return (int)LDepth - (int)RDepth;
524         }
525 
526         // Compare the number of operands.
527         unsigned LNumOps = LInst->getNumOperands(),
528           RNumOps = RInst->getNumOperands();
529         return (int)LNumOps - (int)RNumOps;
530       }
531 
532       return 0;
533     }
534 
535     case scConstant: {
536       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538 
539       // Compare constant values.
540       const APInt &LA = LC->getAPInt();
541       const APInt &RA = RC->getAPInt();
542       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543       if (LBitWidth != RBitWidth)
544         return (int)LBitWidth - (int)RBitWidth;
545       return LA.ult(RA) ? -1 : 1;
546     }
547 
548     case scAddRecExpr: {
549       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551 
552       // Compare addrec loop depths.
553       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554       if (LLoop != RLoop) {
555         unsigned LDepth = LLoop->getLoopDepth(),
556           RDepth = RLoop->getLoopDepth();
557         if (LDepth != RDepth)
558           return (int)LDepth - (int)RDepth;
559       }
560 
561       // Addrec complexity grows with operand count.
562       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563       if (LNumOps != RNumOps)
564         return (int)LNumOps - (int)RNumOps;
565 
566       // Lexicographically compare.
567       for (unsigned i = 0; i != LNumOps; ++i) {
568         long X = compare(LA->getOperand(i), RA->getOperand(i));
569         if (X != 0)
570           return X;
571       }
572 
573       return 0;
574     }
575 
576     case scAddExpr:
577     case scMulExpr:
578     case scSMaxExpr:
579     case scUMaxExpr: {
580       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582 
583       // Lexicographically compare n-ary expressions.
584       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585       if (LNumOps != RNumOps)
586         return (int)LNumOps - (int)RNumOps;
587 
588       for (unsigned i = 0; i != LNumOps; ++i) {
589         if (i >= RNumOps)
590           return 1;
591         long X = compare(LC->getOperand(i), RC->getOperand(i));
592         if (X != 0)
593           return X;
594       }
595       return (int)LNumOps - (int)RNumOps;
596     }
597 
598     case scUDivExpr: {
599       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601 
602       // Lexicographically compare udiv expressions.
603       long X = compare(LC->getLHS(), RC->getLHS());
604       if (X != 0)
605         return X;
606       return compare(LC->getRHS(), RC->getRHS());
607     }
608 
609     case scTruncate:
610     case scZeroExtend:
611     case scSignExtend: {
612       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614 
615       // Compare cast expressions by operand.
616       return compare(LC->getOperand(), RC->getOperand());
617     }
618 
619     case scCouldNotCompute:
620       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
621     }
622     llvm_unreachable("Unknown SCEV kind!");
623   }
624 };
625 }  // end anonymous namespace
626 
627 /// GroupByComplexity - Given a list of SCEV objects, order them by their
628 /// complexity, and group objects of the same complexity together by value.
629 /// When this routine is finished, we know that any duplicates in the vector are
630 /// consecutive and that complexity is monotonically increasing.
631 ///
632 /// Note that we go take special precautions to ensure that we get deterministic
633 /// results from this routine.  In other words, we don't want the results of
634 /// this to depend on where the addresses of various SCEV objects happened to
635 /// land in memory.
636 ///
637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
638                               LoopInfo *LI) {
639   if (Ops.size() < 2) return;  // Noop
640   if (Ops.size() == 2) {
641     // This is the common case, which also happens to be trivially simple.
642     // Special case it.
643     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644     if (SCEVComplexityCompare(LI)(RHS, LHS))
645       std::swap(LHS, RHS);
646     return;
647   }
648 
649   // Do the rough sort by complexity.
650   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651 
652   // Now that we are sorted by complexity, group elements of the same
653   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
654   // be extremely short in practice.  Note that we take this approach because we
655   // do not want to depend on the addresses of the objects we are grouping.
656   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657     const SCEV *S = Ops[i];
658     unsigned Complexity = S->getSCEVType();
659 
660     // If there are any objects of the same complexity and same value as this
661     // one, group them.
662     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663       if (Ops[j] == S) { // Found a duplicate.
664         // Move it to immediately after i'th element.
665         std::swap(Ops[i+1], Ops[j]);
666         ++i;   // no need to rescan it.
667         if (i == e-2) return;  // Done!
668       }
669     }
670   }
671 }
672 
673 // Returns the size of the SCEV S.
674 static inline int sizeOfSCEV(const SCEV *S) {
675   struct FindSCEVSize {
676     int Size;
677     FindSCEVSize() : Size(0) {}
678 
679     bool follow(const SCEV *S) {
680       ++Size;
681       // Keep looking at all operands of S.
682       return true;
683     }
684     bool isDone() const {
685       return false;
686     }
687   };
688 
689   FindSCEVSize F;
690   SCEVTraversal<FindSCEVSize> ST(F);
691   ST.visitAll(S);
692   return F.Size;
693 }
694 
695 namespace {
696 
697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
698 public:
699   // Computes the Quotient and Remainder of the division of Numerator by
700   // Denominator.
701   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702                      const SCEV *Denominator, const SCEV **Quotient,
703                      const SCEV **Remainder) {
704     assert(Numerator && Denominator && "Uninitialized SCEV");
705 
706     SCEVDivision D(SE, Numerator, Denominator);
707 
708     // Check for the trivial case here to avoid having to check for it in the
709     // rest of the code.
710     if (Numerator == Denominator) {
711       *Quotient = D.One;
712       *Remainder = D.Zero;
713       return;
714     }
715 
716     if (Numerator->isZero()) {
717       *Quotient = D.Zero;
718       *Remainder = D.Zero;
719       return;
720     }
721 
722     // A simple case when N/1. The quotient is N.
723     if (Denominator->isOne()) {
724       *Quotient = Numerator;
725       *Remainder = D.Zero;
726       return;
727     }
728 
729     // Split the Denominator when it is a product.
730     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731       const SCEV *Q, *R;
732       *Quotient = Numerator;
733       for (const SCEV *Op : T->operands()) {
734         divide(SE, *Quotient, Op, &Q, &R);
735         *Quotient = Q;
736 
737         // Bail out when the Numerator is not divisible by one of the terms of
738         // the Denominator.
739         if (!R->isZero()) {
740           *Quotient = D.Zero;
741           *Remainder = Numerator;
742           return;
743         }
744       }
745       *Remainder = D.Zero;
746       return;
747     }
748 
749     D.visit(Numerator);
750     *Quotient = D.Quotient;
751     *Remainder = D.Remainder;
752   }
753 
754   // Except in the trivial case described above, we do not know how to divide
755   // Expr by Denominator for the following functions with empty implementation.
756   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762   void visitUnknown(const SCEVUnknown *Numerator) {}
763   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764 
765   void visitConstant(const SCEVConstant *Numerator) {
766     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767       APInt NumeratorVal = Numerator->getAPInt();
768       APInt DenominatorVal = D->getAPInt();
769       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771 
772       if (NumeratorBW > DenominatorBW)
773         DenominatorVal = DenominatorVal.sext(NumeratorBW);
774       else if (NumeratorBW < DenominatorBW)
775         NumeratorVal = NumeratorVal.sext(DenominatorBW);
776 
777       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780       Quotient = SE.getConstant(QuotientVal);
781       Remainder = SE.getConstant(RemainderVal);
782       return;
783     }
784   }
785 
786   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787     const SCEV *StartQ, *StartR, *StepQ, *StepR;
788     if (!Numerator->isAffine())
789       return cannotDivide(Numerator);
790     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
792     // Bail out if the types do not match.
793     Type *Ty = Denominator->getType();
794     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
795         Ty != StepQ->getType() || Ty != StepR->getType())
796       return cannotDivide(Numerator);
797     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798                                 Numerator->getNoWrapFlags());
799     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800                                  Numerator->getNoWrapFlags());
801   }
802 
803   void visitAddExpr(const SCEVAddExpr *Numerator) {
804     SmallVector<const SCEV *, 2> Qs, Rs;
805     Type *Ty = Denominator->getType();
806 
807     for (const SCEV *Op : Numerator->operands()) {
808       const SCEV *Q, *R;
809       divide(SE, Op, Denominator, &Q, &R);
810 
811       // Bail out if types do not match.
812       if (Ty != Q->getType() || Ty != R->getType())
813         return cannotDivide(Numerator);
814 
815       Qs.push_back(Q);
816       Rs.push_back(R);
817     }
818 
819     if (Qs.size() == 1) {
820       Quotient = Qs[0];
821       Remainder = Rs[0];
822       return;
823     }
824 
825     Quotient = SE.getAddExpr(Qs);
826     Remainder = SE.getAddExpr(Rs);
827   }
828 
829   void visitMulExpr(const SCEVMulExpr *Numerator) {
830     SmallVector<const SCEV *, 2> Qs;
831     Type *Ty = Denominator->getType();
832 
833     bool FoundDenominatorTerm = false;
834     for (const SCEV *Op : Numerator->operands()) {
835       // Bail out if types do not match.
836       if (Ty != Op->getType())
837         return cannotDivide(Numerator);
838 
839       if (FoundDenominatorTerm) {
840         Qs.push_back(Op);
841         continue;
842       }
843 
844       // Check whether Denominator divides one of the product operands.
845       const SCEV *Q, *R;
846       divide(SE, Op, Denominator, &Q, &R);
847       if (!R->isZero()) {
848         Qs.push_back(Op);
849         continue;
850       }
851 
852       // Bail out if types do not match.
853       if (Ty != Q->getType())
854         return cannotDivide(Numerator);
855 
856       FoundDenominatorTerm = true;
857       Qs.push_back(Q);
858     }
859 
860     if (FoundDenominatorTerm) {
861       Remainder = Zero;
862       if (Qs.size() == 1)
863         Quotient = Qs[0];
864       else
865         Quotient = SE.getMulExpr(Qs);
866       return;
867     }
868 
869     if (!isa<SCEVUnknown>(Denominator))
870       return cannotDivide(Numerator);
871 
872     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873     ValueToValueMap RewriteMap;
874     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875         cast<SCEVConstant>(Zero)->getValue();
876     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877 
878     if (Remainder->isZero()) {
879       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881           cast<SCEVConstant>(One)->getValue();
882       Quotient =
883           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884       return;
885     }
886 
887     // Quotient is (Numerator - Remainder) divided by Denominator.
888     const SCEV *Q, *R;
889     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
890     // This SCEV does not seem to simplify: fail the division here.
891     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892       return cannotDivide(Numerator);
893     divide(SE, Diff, Denominator, &Q, &R);
894     if (R != Zero)
895       return cannotDivide(Numerator);
896     Quotient = Q;
897   }
898 
899 private:
900   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901                const SCEV *Denominator)
902       : SE(S), Denominator(Denominator) {
903     Zero = SE.getZero(Denominator->getType());
904     One = SE.getOne(Denominator->getType());
905 
906     // We generally do not know how to divide Expr by Denominator. We
907     // initialize the division to a "cannot divide" state to simplify the rest
908     // of the code.
909     cannotDivide(Numerator);
910   }
911 
912   // Convenience function for giving up on the division. We set the quotient to
913   // be equal to zero and the remainder to be equal to the numerator.
914   void cannotDivide(const SCEV *Numerator) {
915     Quotient = Zero;
916     Remainder = Numerator;
917   }
918 
919   ScalarEvolution &SE;
920   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
921 };
922 
923 }
924 
925 //===----------------------------------------------------------------------===//
926 //                      Simple SCEV method implementations
927 //===----------------------------------------------------------------------===//
928 
929 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
930 /// Assume, K > 0.
931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
932                                        ScalarEvolution &SE,
933                                        Type *ResultTy) {
934   // Handle the simplest case efficiently.
935   if (K == 1)
936     return SE.getTruncateOrZeroExtend(It, ResultTy);
937 
938   // We are using the following formula for BC(It, K):
939   //
940   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941   //
942   // Suppose, W is the bitwidth of the return value.  We must be prepared for
943   // overflow.  Hence, we must assure that the result of our computation is
944   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
945   // safe in modular arithmetic.
946   //
947   // However, this code doesn't use exactly that formula; the formula it uses
948   // is something like the following, where T is the number of factors of 2 in
949   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950   // exponentiation:
951   //
952   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
953   //
954   // This formula is trivially equivalent to the previous formula.  However,
955   // this formula can be implemented much more efficiently.  The trick is that
956   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957   // arithmetic.  To do exact division in modular arithmetic, all we have
958   // to do is multiply by the inverse.  Therefore, this step can be done at
959   // width W.
960   //
961   // The next issue is how to safely do the division by 2^T.  The way this
962   // is done is by doing the multiplication step at a width of at least W + T
963   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
964   // when we perform the division by 2^T (which is equivalent to a right shift
965   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
966   // truncated out after the division by 2^T.
967   //
968   // In comparison to just directly using the first formula, this technique
969   // is much more efficient; using the first formula requires W * K bits,
970   // but this formula less than W + K bits. Also, the first formula requires
971   // a division step, whereas this formula only requires multiplies and shifts.
972   //
973   // It doesn't matter whether the subtraction step is done in the calculation
974   // width or the input iteration count's width; if the subtraction overflows,
975   // the result must be zero anyway.  We prefer here to do it in the width of
976   // the induction variable because it helps a lot for certain cases; CodeGen
977   // isn't smart enough to ignore the overflow, which leads to much less
978   // efficient code if the width of the subtraction is wider than the native
979   // register width.
980   //
981   // (It's possible to not widen at all by pulling out factors of 2 before
982   // the multiplication; for example, K=2 can be calculated as
983   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984   // extra arithmetic, so it's not an obvious win, and it gets
985   // much more complicated for K > 3.)
986 
987   // Protection from insane SCEVs; this bound is conservative,
988   // but it probably doesn't matter.
989   if (K > 1000)
990     return SE.getCouldNotCompute();
991 
992   unsigned W = SE.getTypeSizeInBits(ResultTy);
993 
994   // Calculate K! / 2^T and T; we divide out the factors of two before
995   // multiplying for calculating K! / 2^T to avoid overflow.
996   // Other overflow doesn't matter because we only care about the bottom
997   // W bits of the result.
998   APInt OddFactorial(W, 1);
999   unsigned T = 1;
1000   for (unsigned i = 3; i <= K; ++i) {
1001     APInt Mult(W, i);
1002     unsigned TwoFactors = Mult.countTrailingZeros();
1003     T += TwoFactors;
1004     Mult = Mult.lshr(TwoFactors);
1005     OddFactorial *= Mult;
1006   }
1007 
1008   // We need at least W + T bits for the multiplication step
1009   unsigned CalculationBits = W + T;
1010 
1011   // Calculate 2^T, at width T+W.
1012   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1013 
1014   // Calculate the multiplicative inverse of K! / 2^T;
1015   // this multiplication factor will perform the exact division by
1016   // K! / 2^T.
1017   APInt Mod = APInt::getSignedMinValue(W+1);
1018   APInt MultiplyFactor = OddFactorial.zext(W+1);
1019   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020   MultiplyFactor = MultiplyFactor.trunc(W);
1021 
1022   // Calculate the product, at width T+W
1023   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1024                                                       CalculationBits);
1025   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1026   for (unsigned i = 1; i != K; ++i) {
1027     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1028     Dividend = SE.getMulExpr(Dividend,
1029                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1030   }
1031 
1032   // Divide by 2^T
1033   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1034 
1035   // Truncate the result, and divide by K! / 2^T.
1036 
1037   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1039 }
1040 
1041 /// evaluateAtIteration - Return the value of this chain of recurrences at
1042 /// the specified iteration number.  We can evaluate this recurrence by
1043 /// multiplying each element in the chain by the binomial coefficient
1044 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045 ///
1046 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1047 ///
1048 /// where BC(It, k) stands for binomial coefficient.
1049 ///
1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1051                                                 ScalarEvolution &SE) const {
1052   const SCEV *Result = getStart();
1053   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1054     // The computation is correct in the face of overflow provided that the
1055     // multiplication is performed _after_ the evaluation of the binomial
1056     // coefficient.
1057     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1058     if (isa<SCEVCouldNotCompute>(Coeff))
1059       return Coeff;
1060 
1061     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1062   }
1063   return Result;
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                    SCEV Expression folder implementations
1068 //===----------------------------------------------------------------------===//
1069 
1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1071                                              Type *Ty) {
1072   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1073          "This is not a truncating conversion!");
1074   assert(isSCEVable(Ty) &&
1075          "This is not a conversion to a SCEVable type!");
1076   Ty = getEffectiveSCEVType(Ty);
1077 
1078   FoldingSetNodeID ID;
1079   ID.AddInteger(scTruncate);
1080   ID.AddPointer(Op);
1081   ID.AddPointer(Ty);
1082   void *IP = nullptr;
1083   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084 
1085   // Fold if the operand is constant.
1086   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1087     return getConstant(
1088       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1089 
1090   // trunc(trunc(x)) --> trunc(x)
1091   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1092     return getTruncateExpr(ST->getOperand(), Ty);
1093 
1094   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1095   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1096     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097 
1098   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1099   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1100     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101 
1102   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1103   // eliminate all the truncates, or we replace other casts with truncates.
1104   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105     SmallVector<const SCEV *, 4> Operands;
1106     bool hasTrunc = false;
1107     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1109       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110         hasTrunc = isa<SCEVTruncateExpr>(S);
1111       Operands.push_back(S);
1112     }
1113     if (!hasTrunc)
1114       return getAddExpr(Operands);
1115     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1116   }
1117 
1118   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1119   // eliminate all the truncates, or we replace other casts with truncates.
1120   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121     SmallVector<const SCEV *, 4> Operands;
1122     bool hasTrunc = false;
1123     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1125       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126         hasTrunc = isa<SCEVTruncateExpr>(S);
1127       Operands.push_back(S);
1128     }
1129     if (!hasTrunc)
1130       return getMulExpr(Operands);
1131     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1132   }
1133 
1134   // If the input value is a chrec scev, truncate the chrec's operands.
1135   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1136     SmallVector<const SCEV *, 4> Operands;
1137     for (const SCEV *Op : AddRec->operands())
1138       Operands.push_back(getTruncateExpr(Op, Ty));
1139     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1140   }
1141 
1142   // The cast wasn't folded; create an explicit cast node. We can reuse
1143   // the existing insert position since if we get here, we won't have
1144   // made any changes which would invalidate it.
1145   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146                                                  Op, Ty);
1147   UniqueSCEVs.InsertNode(S, IP);
1148   return S;
1149 }
1150 
1151 // Get the limit of a recurrence such that incrementing by Step cannot cause
1152 // signed overflow as long as the value of the recurrence within the
1153 // loop does not exceed this limit before incrementing.
1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155                                                  ICmpInst::Predicate *Pred,
1156                                                  ScalarEvolution *SE) {
1157   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158   if (SE->isKnownPositive(Step)) {
1159     *Pred = ICmpInst::ICMP_SLT;
1160     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161                            SE->getSignedRange(Step).getSignedMax());
1162   }
1163   if (SE->isKnownNegative(Step)) {
1164     *Pred = ICmpInst::ICMP_SGT;
1165     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166                            SE->getSignedRange(Step).getSignedMin());
1167   }
1168   return nullptr;
1169 }
1170 
1171 // Get the limit of a recurrence such that incrementing by Step cannot cause
1172 // unsigned overflow as long as the value of the recurrence within the loop does
1173 // not exceed this limit before incrementing.
1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175                                                    ICmpInst::Predicate *Pred,
1176                                                    ScalarEvolution *SE) {
1177   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178   *Pred = ICmpInst::ICMP_ULT;
1179 
1180   return SE->getConstant(APInt::getMinValue(BitWidth) -
1181                          SE->getUnsignedRange(Step).getUnsignedMax());
1182 }
1183 
1184 namespace {
1185 
1186 struct ExtendOpTraitsBase {
1187   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188 };
1189 
1190 // Used to make code generic over signed and unsigned overflow.
1191 template <typename ExtendOp> struct ExtendOpTraits {
1192   // Members present:
1193   //
1194   // static const SCEV::NoWrapFlags WrapType;
1195   //
1196   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197   //
1198   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199   //                                           ICmpInst::Predicate *Pred,
1200   //                                           ScalarEvolution *SE);
1201 };
1202 
1203 template <>
1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206 
1207   static const GetExtendExprTy GetExtendExpr;
1208 
1209   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210                                              ICmpInst::Predicate *Pred,
1211                                              ScalarEvolution *SE) {
1212     return getSignedOverflowLimitForStep(Step, Pred, SE);
1213   }
1214 };
1215 
1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1217     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218 
1219 template <>
1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222 
1223   static const GetExtendExprTy GetExtendExpr;
1224 
1225   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226                                              ICmpInst::Predicate *Pred,
1227                                              ScalarEvolution *SE) {
1228     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229   }
1230 };
1231 
1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1233     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234 }
1235 
1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241 // expression "Step + sext/zext(PreIncAR)" is congruent with
1242 // "sext/zext(PostIncAR)"
1243 template <typename ExtendOpTy>
1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245                                         ScalarEvolution *SE) {
1246   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248 
1249   const Loop *L = AR->getLoop();
1250   const SCEV *Start = AR->getStart();
1251   const SCEV *Step = AR->getStepRecurrence(*SE);
1252 
1253   // Check for a simple looking step prior to loop entry.
1254   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255   if (!SA)
1256     return nullptr;
1257 
1258   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259   // subtraction is expensive. For this purpose, perform a quick and dirty
1260   // difference, by checking for Step in the operand list.
1261   SmallVector<const SCEV *, 4> DiffOps;
1262   for (const SCEV *Op : SA->operands())
1263     if (Op != Step)
1264       DiffOps.push_back(Op);
1265 
1266   if (DiffOps.size() == SA->getNumOperands())
1267     return nullptr;
1268 
1269   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270   // `Step`:
1271 
1272   // 1. NSW/NUW flags on the step increment.
1273   auto PreStartFlags =
1274     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1276   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278 
1279   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280   // "S+X does not sign/unsign-overflow".
1281   //
1282 
1283   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1286     return PreStart;
1287 
1288   // 2. Direct overflow check on the step operation's expression.
1289   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291   const SCEV *OperandExtendedStart =
1292       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293                      (SE->*GetExtendExpr)(Step, WideTy));
1294   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1299       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300     }
1301     return PreStart;
1302   }
1303 
1304   // 3. Loop precondition.
1305   ICmpInst::Predicate Pred;
1306   const SCEV *OverflowLimit =
1307       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308 
1309   if (OverflowLimit &&
1310       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1311     return PreStart;
1312 
1313   return nullptr;
1314 }
1315 
1316 // Get the normalized zero or sign extended expression for this AddRec's Start.
1317 template <typename ExtendOpTy>
1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319                                         ScalarEvolution *SE) {
1320   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321 
1322   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323   if (!PreStart)
1324     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325 
1326   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327                         (SE->*GetExtendExpr)(PreStart, Ty));
1328 }
1329 
1330 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333 //
1334 // Formally:
1335 //
1336 //     {S,+,X} == {S-T,+,X} + T
1337 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338 //
1339 // If ({S-T,+,X} + T) does not overflow  ... (1)
1340 //
1341 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342 //
1343 // If {S-T,+,X} does not overflow  ... (2)
1344 //
1345 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1347 //
1348 // If (S-T)+T does not overflow  ... (3)
1349 //
1350 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351 //      == {Ext(S),+,Ext(X)} == LHS
1352 //
1353 // Thus, if (1), (2) and (3) are true for some T, then
1354 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355 //
1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1358 // to check for (1) and (2).
1359 //
1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361 // is `Delta` (defined below).
1362 //
1363 template <typename ExtendOpTy>
1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365                                                 const SCEV *Step,
1366                                                 const Loop *L) {
1367   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368 
1369   // We restrict `Start` to a constant to prevent SCEV from spending too much
1370   // time here.  It is correct (but more expensive) to continue with a
1371   // non-constant `Start` and do a general SCEV subtraction to compute
1372   // `PreStart` below.
1373   //
1374   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375   if (!StartC)
1376     return false;
1377 
1378   APInt StartAI = StartC->getAPInt();
1379 
1380   for (unsigned Delta : {-2, -1, 1, 2}) {
1381     const SCEV *PreStart = getConstant(StartAI - Delta);
1382 
1383     FoldingSetNodeID ID;
1384     ID.AddInteger(scAddRecExpr);
1385     ID.AddPointer(PreStart);
1386     ID.AddPointer(Step);
1387     ID.AddPointer(L);
1388     void *IP = nullptr;
1389     const auto *PreAR =
1390       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391 
1392     // Give up if we don't already have the add recurrence we need because
1393     // actually constructing an add recurrence is relatively expensive.
1394     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1395       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398           DeltaS, &Pred, this);
1399       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1400         return true;
1401     }
1402   }
1403 
1404   return false;
1405 }
1406 
1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1408                                                Type *Ty) {
1409   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1410          "This is not an extending conversion!");
1411   assert(isSCEVable(Ty) &&
1412          "This is not a conversion to a SCEVable type!");
1413   Ty = getEffectiveSCEVType(Ty);
1414 
1415   // Fold if the operand is constant.
1416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417     return getConstant(
1418       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1419 
1420   // zext(zext(x)) --> zext(x)
1421   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1422     return getZeroExtendExpr(SZ->getOperand(), Ty);
1423 
1424   // Before doing any expensive analysis, check to see if we've already
1425   // computed a SCEV for this Op and Ty.
1426   FoldingSetNodeID ID;
1427   ID.AddInteger(scZeroExtend);
1428   ID.AddPointer(Op);
1429   ID.AddPointer(Ty);
1430   void *IP = nullptr;
1431   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432 
1433   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435     // It's possible the bits taken off by the truncate were all zero bits. If
1436     // so, we should be able to simplify this further.
1437     const SCEV *X = ST->getOperand();
1438     ConstantRange CR = getUnsignedRange(X);
1439     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440     unsigned NewBits = getTypeSizeInBits(Ty);
1441     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1442             CR.zextOrTrunc(NewBits)))
1443       return getTruncateOrZeroExtend(X, Ty);
1444   }
1445 
1446   // If the input value is a chrec scev, and we can prove that the value
1447   // did not overflow the old, smaller, value, we can zero extend all of the
1448   // operands (often constants).  This allows analysis of something like
1449   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1450   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1451     if (AR->isAffine()) {
1452       const SCEV *Start = AR->getStart();
1453       const SCEV *Step = AR->getStepRecurrence(*this);
1454       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455       const Loop *L = AR->getLoop();
1456 
1457       if (!AR->hasNoUnsignedWrap()) {
1458         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1459         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1460       }
1461 
1462       // If we have special knowledge that this addrec won't overflow,
1463       // we don't need to do any further analysis.
1464       if (AR->hasNoUnsignedWrap())
1465         return getAddRecExpr(
1466             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1467             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1468 
1469       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1470       // Note that this serves two purposes: It filters out loops that are
1471       // simply not analyzable, and it covers the case where this code is
1472       // being called from within backedge-taken count analysis, such that
1473       // attempting to ask for the backedge-taken count would likely result
1474       // in infinite recursion. In the later case, the analysis code will
1475       // cope with a conservative value, and it will take care to purge
1476       // that value once it has finished.
1477       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1478       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1479         // Manually compute the final value for AR, checking for
1480         // overflow.
1481 
1482         // Check whether the backedge-taken count can be losslessly casted to
1483         // the addrec's type. The count is always unsigned.
1484         const SCEV *CastedMaxBECount =
1485           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1486         const SCEV *RecastedMaxBECount =
1487           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1488         if (MaxBECount == RecastedMaxBECount) {
1489           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1490           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1491           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1492           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1493           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1494           const SCEV *WideMaxBECount =
1495             getZeroExtendExpr(CastedMaxBECount, WideTy);
1496           const SCEV *OperandExtendedAdd =
1497             getAddExpr(WideStart,
1498                        getMulExpr(WideMaxBECount,
1499                                   getZeroExtendExpr(Step, WideTy)));
1500           if (ZAdd == OperandExtendedAdd) {
1501             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1502             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1503             // Return the expression with the addrec on the outside.
1504             return getAddRecExpr(
1505                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1506                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1507           }
1508           // Similar to above, only this time treat the step value as signed.
1509           // This covers loops that count down.
1510           OperandExtendedAdd =
1511             getAddExpr(WideStart,
1512                        getMulExpr(WideMaxBECount,
1513                                   getSignExtendExpr(Step, WideTy)));
1514           if (ZAdd == OperandExtendedAdd) {
1515             // Cache knowledge of AR NW, which is propagated to this AddRec.
1516             // Negative step causes unsigned wrap, but it still can't self-wrap.
1517             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1518             // Return the expression with the addrec on the outside.
1519             return getAddRecExpr(
1520                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1521                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1522           }
1523         }
1524 
1525         // If the backedge is guarded by a comparison with the pre-inc value
1526         // the addrec is safe. Also, if the entry is guarded by a comparison
1527         // with the start value and the backedge is guarded by a comparison
1528         // with the post-inc value, the addrec is safe.
1529         if (isKnownPositive(Step)) {
1530           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1531                                       getUnsignedRange(Step).getUnsignedMax());
1532           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1533               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1534                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1535                                            AR->getPostIncExpr(*this), N))) {
1536             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1537             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1538             // Return the expression with the addrec on the outside.
1539             return getAddRecExpr(
1540                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1541                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1542           }
1543         } else if (isKnownNegative(Step)) {
1544           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1545                                       getSignedRange(Step).getSignedMin());
1546           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1547               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1548                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1549                                            AR->getPostIncExpr(*this), N))) {
1550             // Cache knowledge of AR NW, which is propagated to this AddRec.
1551             // Negative step causes unsigned wrap, but it still can't self-wrap.
1552             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1553             // Return the expression with the addrec on the outside.
1554             return getAddRecExpr(
1555                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1556                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1557           }
1558         }
1559       }
1560 
1561       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1562         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1563         return getAddRecExpr(
1564             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1565             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1566       }
1567     }
1568 
1569   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1570     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1571     if (SA->hasNoUnsignedWrap()) {
1572       // If the addition does not unsign overflow then we can, by definition,
1573       // commute the zero extension with the addition operation.
1574       SmallVector<const SCEV *, 4> Ops;
1575       for (const auto *Op : SA->operands())
1576         Ops.push_back(getZeroExtendExpr(Op, Ty));
1577       return getAddExpr(Ops, SCEV::FlagNUW);
1578     }
1579   }
1580 
1581   // The cast wasn't folded; create an explicit cast node.
1582   // Recompute the insert position, as it may have been invalidated.
1583   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1584   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1585                                                    Op, Ty);
1586   UniqueSCEVs.InsertNode(S, IP);
1587   return S;
1588 }
1589 
1590 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1591                                                Type *Ty) {
1592   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1593          "This is not an extending conversion!");
1594   assert(isSCEVable(Ty) &&
1595          "This is not a conversion to a SCEVable type!");
1596   Ty = getEffectiveSCEVType(Ty);
1597 
1598   // Fold if the operand is constant.
1599   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1600     return getConstant(
1601       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1602 
1603   // sext(sext(x)) --> sext(x)
1604   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1605     return getSignExtendExpr(SS->getOperand(), Ty);
1606 
1607   // sext(zext(x)) --> zext(x)
1608   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1609     return getZeroExtendExpr(SZ->getOperand(), Ty);
1610 
1611   // Before doing any expensive analysis, check to see if we've already
1612   // computed a SCEV for this Op and Ty.
1613   FoldingSetNodeID ID;
1614   ID.AddInteger(scSignExtend);
1615   ID.AddPointer(Op);
1616   ID.AddPointer(Ty);
1617   void *IP = nullptr;
1618   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1619 
1620   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1621   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1622     // It's possible the bits taken off by the truncate were all sign bits. If
1623     // so, we should be able to simplify this further.
1624     const SCEV *X = ST->getOperand();
1625     ConstantRange CR = getSignedRange(X);
1626     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1627     unsigned NewBits = getTypeSizeInBits(Ty);
1628     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1629             CR.sextOrTrunc(NewBits)))
1630       return getTruncateOrSignExtend(X, Ty);
1631   }
1632 
1633   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1634   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1635     if (SA->getNumOperands() == 2) {
1636       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1637       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1638       if (SMul && SC1) {
1639         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1640           const APInt &C1 = SC1->getAPInt();
1641           const APInt &C2 = SC2->getAPInt();
1642           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1643               C2.ugt(C1) && C2.isPowerOf2())
1644             return getAddExpr(getSignExtendExpr(SC1, Ty),
1645                               getSignExtendExpr(SMul, Ty));
1646         }
1647       }
1648     }
1649 
1650     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1651     if (SA->hasNoSignedWrap()) {
1652       // If the addition does not sign overflow then we can, by definition,
1653       // commute the sign extension with the addition operation.
1654       SmallVector<const SCEV *, 4> Ops;
1655       for (const auto *Op : SA->operands())
1656         Ops.push_back(getSignExtendExpr(Op, Ty));
1657       return getAddExpr(Ops, SCEV::FlagNSW);
1658     }
1659   }
1660   // If the input value is a chrec scev, and we can prove that the value
1661   // did not overflow the old, smaller, value, we can sign extend all of the
1662   // operands (often constants).  This allows analysis of something like
1663   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1664   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1665     if (AR->isAffine()) {
1666       const SCEV *Start = AR->getStart();
1667       const SCEV *Step = AR->getStepRecurrence(*this);
1668       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1669       const Loop *L = AR->getLoop();
1670 
1671       if (!AR->hasNoSignedWrap()) {
1672         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1673         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1674       }
1675 
1676       // If we have special knowledge that this addrec won't overflow,
1677       // we don't need to do any further analysis.
1678       if (AR->hasNoSignedWrap())
1679         return getAddRecExpr(
1680             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1681             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1682 
1683       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1684       // Note that this serves two purposes: It filters out loops that are
1685       // simply not analyzable, and it covers the case where this code is
1686       // being called from within backedge-taken count analysis, such that
1687       // attempting to ask for the backedge-taken count would likely result
1688       // in infinite recursion. In the later case, the analysis code will
1689       // cope with a conservative value, and it will take care to purge
1690       // that value once it has finished.
1691       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1692       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1693         // Manually compute the final value for AR, checking for
1694         // overflow.
1695 
1696         // Check whether the backedge-taken count can be losslessly casted to
1697         // the addrec's type. The count is always unsigned.
1698         const SCEV *CastedMaxBECount =
1699           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1700         const SCEV *RecastedMaxBECount =
1701           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1702         if (MaxBECount == RecastedMaxBECount) {
1703           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1704           // Check whether Start+Step*MaxBECount has no signed overflow.
1705           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1706           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1707           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1708           const SCEV *WideMaxBECount =
1709             getZeroExtendExpr(CastedMaxBECount, WideTy);
1710           const SCEV *OperandExtendedAdd =
1711             getAddExpr(WideStart,
1712                        getMulExpr(WideMaxBECount,
1713                                   getSignExtendExpr(Step, WideTy)));
1714           if (SAdd == OperandExtendedAdd) {
1715             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1716             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1717             // Return the expression with the addrec on the outside.
1718             return getAddRecExpr(
1719                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1720                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1721           }
1722           // Similar to above, only this time treat the step value as unsigned.
1723           // This covers loops that count up with an unsigned step.
1724           OperandExtendedAdd =
1725             getAddExpr(WideStart,
1726                        getMulExpr(WideMaxBECount,
1727                                   getZeroExtendExpr(Step, WideTy)));
1728           if (SAdd == OperandExtendedAdd) {
1729             // If AR wraps around then
1730             //
1731             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1732             // => SAdd != OperandExtendedAdd
1733             //
1734             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1735             // (SAdd == OperandExtendedAdd => AR is NW)
1736 
1737             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1738 
1739             // Return the expression with the addrec on the outside.
1740             return getAddRecExpr(
1741                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1742                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1743           }
1744         }
1745 
1746         // If the backedge is guarded by a comparison with the pre-inc value
1747         // the addrec is safe. Also, if the entry is guarded by a comparison
1748         // with the start value and the backedge is guarded by a comparison
1749         // with the post-inc value, the addrec is safe.
1750         ICmpInst::Predicate Pred;
1751         const SCEV *OverflowLimit =
1752             getSignedOverflowLimitForStep(Step, &Pred, this);
1753         if (OverflowLimit &&
1754             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1755              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1756               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1757                                           OverflowLimit)))) {
1758           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1759           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1760           return getAddRecExpr(
1761               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1762               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1763         }
1764       }
1765       // If Start and Step are constants, check if we can apply this
1766       // transformation:
1767       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1768       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1769       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1770       if (SC1 && SC2) {
1771         const APInt &C1 = SC1->getAPInt();
1772         const APInt &C2 = SC2->getAPInt();
1773         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1774             C2.isPowerOf2()) {
1775           Start = getSignExtendExpr(Start, Ty);
1776           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1777                                             AR->getNoWrapFlags());
1778           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1779         }
1780       }
1781 
1782       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1783         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1784         return getAddRecExpr(
1785             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1786             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1787       }
1788     }
1789 
1790   // If the input value is provably positive and we could not simplify
1791   // away the sext build a zext instead.
1792   if (isKnownNonNegative(Op))
1793     return getZeroExtendExpr(Op, Ty);
1794 
1795   // The cast wasn't folded; create an explicit cast node.
1796   // Recompute the insert position, as it may have been invalidated.
1797   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1798   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1799                                                    Op, Ty);
1800   UniqueSCEVs.InsertNode(S, IP);
1801   return S;
1802 }
1803 
1804 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1805 /// unspecified bits out to the given type.
1806 ///
1807 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1808                                               Type *Ty) {
1809   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1810          "This is not an extending conversion!");
1811   assert(isSCEVable(Ty) &&
1812          "This is not a conversion to a SCEVable type!");
1813   Ty = getEffectiveSCEVType(Ty);
1814 
1815   // Sign-extend negative constants.
1816   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1817     if (SC->getAPInt().isNegative())
1818       return getSignExtendExpr(Op, Ty);
1819 
1820   // Peel off a truncate cast.
1821   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1822     const SCEV *NewOp = T->getOperand();
1823     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1824       return getAnyExtendExpr(NewOp, Ty);
1825     return getTruncateOrNoop(NewOp, Ty);
1826   }
1827 
1828   // Next try a zext cast. If the cast is folded, use it.
1829   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1830   if (!isa<SCEVZeroExtendExpr>(ZExt))
1831     return ZExt;
1832 
1833   // Next try a sext cast. If the cast is folded, use it.
1834   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1835   if (!isa<SCEVSignExtendExpr>(SExt))
1836     return SExt;
1837 
1838   // Force the cast to be folded into the operands of an addrec.
1839   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1840     SmallVector<const SCEV *, 4> Ops;
1841     for (const SCEV *Op : AR->operands())
1842       Ops.push_back(getAnyExtendExpr(Op, Ty));
1843     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1844   }
1845 
1846   // If the expression is obviously signed, use the sext cast value.
1847   if (isa<SCEVSMaxExpr>(Op))
1848     return SExt;
1849 
1850   // Absent any other information, use the zext cast value.
1851   return ZExt;
1852 }
1853 
1854 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1855 /// a list of operands to be added under the given scale, update the given
1856 /// map. This is a helper function for getAddRecExpr. As an example of
1857 /// what it does, given a sequence of operands that would form an add
1858 /// expression like this:
1859 ///
1860 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1861 ///
1862 /// where A and B are constants, update the map with these values:
1863 ///
1864 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1865 ///
1866 /// and add 13 + A*B*29 to AccumulatedConstant.
1867 /// This will allow getAddRecExpr to produce this:
1868 ///
1869 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1870 ///
1871 /// This form often exposes folding opportunities that are hidden in
1872 /// the original operand list.
1873 ///
1874 /// Return true iff it appears that any interesting folding opportunities
1875 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1876 /// the common case where no interesting opportunities are present, and
1877 /// is also used as a check to avoid infinite recursion.
1878 ///
1879 static bool
1880 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1881                              SmallVectorImpl<const SCEV *> &NewOps,
1882                              APInt &AccumulatedConstant,
1883                              const SCEV *const *Ops, size_t NumOperands,
1884                              const APInt &Scale,
1885                              ScalarEvolution &SE) {
1886   bool Interesting = false;
1887 
1888   // Iterate over the add operands. They are sorted, with constants first.
1889   unsigned i = 0;
1890   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1891     ++i;
1892     // Pull a buried constant out to the outside.
1893     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1894       Interesting = true;
1895     AccumulatedConstant += Scale * C->getAPInt();
1896   }
1897 
1898   // Next comes everything else. We're especially interested in multiplies
1899   // here, but they're in the middle, so just visit the rest with one loop.
1900   for (; i != NumOperands; ++i) {
1901     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1902     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1903       APInt NewScale =
1904           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1905       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1906         // A multiplication of a constant with another add; recurse.
1907         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1908         Interesting |=
1909           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1910                                        Add->op_begin(), Add->getNumOperands(),
1911                                        NewScale, SE);
1912       } else {
1913         // A multiplication of a constant with some other value. Update
1914         // the map.
1915         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1916         const SCEV *Key = SE.getMulExpr(MulOps);
1917         auto Pair = M.insert({Key, NewScale});
1918         if (Pair.second) {
1919           NewOps.push_back(Pair.first->first);
1920         } else {
1921           Pair.first->second += NewScale;
1922           // The map already had an entry for this value, which may indicate
1923           // a folding opportunity.
1924           Interesting = true;
1925         }
1926       }
1927     } else {
1928       // An ordinary operand. Update the map.
1929       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1930           M.insert({Ops[i], Scale});
1931       if (Pair.second) {
1932         NewOps.push_back(Pair.first->first);
1933       } else {
1934         Pair.first->second += Scale;
1935         // The map already had an entry for this value, which may indicate
1936         // a folding opportunity.
1937         Interesting = true;
1938       }
1939     }
1940   }
1941 
1942   return Interesting;
1943 }
1944 
1945 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1946 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1947 // can't-overflow flags for the operation if possible.
1948 static SCEV::NoWrapFlags
1949 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1950                       const SmallVectorImpl<const SCEV *> &Ops,
1951                       SCEV::NoWrapFlags Flags) {
1952   using namespace std::placeholders;
1953   typedef OverflowingBinaryOperator OBO;
1954 
1955   bool CanAnalyze =
1956       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1957   (void)CanAnalyze;
1958   assert(CanAnalyze && "don't call from other places!");
1959 
1960   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1961   SCEV::NoWrapFlags SignOrUnsignWrap =
1962       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1963 
1964   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1965   auto IsKnownNonNegative = [&](const SCEV *S) {
1966     return SE->isKnownNonNegative(S);
1967   };
1968 
1969   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1970     Flags =
1971         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1972 
1973   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1974 
1975   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1976       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1977 
1978     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1979     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1980 
1981     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
1982     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1983       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1984           Instruction::Add, C, OBO::NoSignedWrap);
1985       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1986         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1987     }
1988     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1989       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1990           Instruction::Add, C, OBO::NoUnsignedWrap);
1991       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1992         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1993     }
1994   }
1995 
1996   return Flags;
1997 }
1998 
1999 /// getAddExpr - Get a canonical add expression, or something simpler if
2000 /// possible.
2001 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2002                                         SCEV::NoWrapFlags Flags) {
2003   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2004          "only nuw or nsw allowed");
2005   assert(!Ops.empty() && "Cannot get empty add!");
2006   if (Ops.size() == 1) return Ops[0];
2007 #ifndef NDEBUG
2008   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2009   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2010     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2011            "SCEVAddExpr operand types don't match!");
2012 #endif
2013 
2014   // Sort by complexity, this groups all similar expression types together.
2015   GroupByComplexity(Ops, &LI);
2016 
2017   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2018 
2019   // If there are any constants, fold them together.
2020   unsigned Idx = 0;
2021   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2022     ++Idx;
2023     assert(Idx < Ops.size());
2024     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2025       // We found two constants, fold them together!
2026       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2027       if (Ops.size() == 2) return Ops[0];
2028       Ops.erase(Ops.begin()+1);  // Erase the folded element
2029       LHSC = cast<SCEVConstant>(Ops[0]);
2030     }
2031 
2032     // If we are left with a constant zero being added, strip it off.
2033     if (LHSC->getValue()->isZero()) {
2034       Ops.erase(Ops.begin());
2035       --Idx;
2036     }
2037 
2038     if (Ops.size() == 1) return Ops[0];
2039   }
2040 
2041   // Okay, check to see if the same value occurs in the operand list more than
2042   // once.  If so, merge them together into an multiply expression.  Since we
2043   // sorted the list, these values are required to be adjacent.
2044   Type *Ty = Ops[0]->getType();
2045   bool FoundMatch = false;
2046   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2047     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2048       // Scan ahead to count how many equal operands there are.
2049       unsigned Count = 2;
2050       while (i+Count != e && Ops[i+Count] == Ops[i])
2051         ++Count;
2052       // Merge the values into a multiply.
2053       const SCEV *Scale = getConstant(Ty, Count);
2054       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2055       if (Ops.size() == Count)
2056         return Mul;
2057       Ops[i] = Mul;
2058       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2059       --i; e -= Count - 1;
2060       FoundMatch = true;
2061     }
2062   if (FoundMatch)
2063     return getAddExpr(Ops, Flags);
2064 
2065   // Check for truncates. If all the operands are truncated from the same
2066   // type, see if factoring out the truncate would permit the result to be
2067   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2068   // if the contents of the resulting outer trunc fold to something simple.
2069   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2070     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2071     Type *DstType = Trunc->getType();
2072     Type *SrcType = Trunc->getOperand()->getType();
2073     SmallVector<const SCEV *, 8> LargeOps;
2074     bool Ok = true;
2075     // Check all the operands to see if they can be represented in the
2076     // source type of the truncate.
2077     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2078       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2079         if (T->getOperand()->getType() != SrcType) {
2080           Ok = false;
2081           break;
2082         }
2083         LargeOps.push_back(T->getOperand());
2084       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2085         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2086       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2087         SmallVector<const SCEV *, 8> LargeMulOps;
2088         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2089           if (const SCEVTruncateExpr *T =
2090                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2091             if (T->getOperand()->getType() != SrcType) {
2092               Ok = false;
2093               break;
2094             }
2095             LargeMulOps.push_back(T->getOperand());
2096           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2097             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2098           } else {
2099             Ok = false;
2100             break;
2101           }
2102         }
2103         if (Ok)
2104           LargeOps.push_back(getMulExpr(LargeMulOps));
2105       } else {
2106         Ok = false;
2107         break;
2108       }
2109     }
2110     if (Ok) {
2111       // Evaluate the expression in the larger type.
2112       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2113       // If it folds to something simple, use it. Otherwise, don't.
2114       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2115         return getTruncateExpr(Fold, DstType);
2116     }
2117   }
2118 
2119   // Skip past any other cast SCEVs.
2120   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2121     ++Idx;
2122 
2123   // If there are add operands they would be next.
2124   if (Idx < Ops.size()) {
2125     bool DeletedAdd = false;
2126     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2127       // If we have an add, expand the add operands onto the end of the operands
2128       // list.
2129       Ops.erase(Ops.begin()+Idx);
2130       Ops.append(Add->op_begin(), Add->op_end());
2131       DeletedAdd = true;
2132     }
2133 
2134     // If we deleted at least one add, we added operands to the end of the list,
2135     // and they are not necessarily sorted.  Recurse to resort and resimplify
2136     // any operands we just acquired.
2137     if (DeletedAdd)
2138       return getAddExpr(Ops);
2139   }
2140 
2141   // Skip over the add expression until we get to a multiply.
2142   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2143     ++Idx;
2144 
2145   // Check to see if there are any folding opportunities present with
2146   // operands multiplied by constant values.
2147   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2148     uint64_t BitWidth = getTypeSizeInBits(Ty);
2149     DenseMap<const SCEV *, APInt> M;
2150     SmallVector<const SCEV *, 8> NewOps;
2151     APInt AccumulatedConstant(BitWidth, 0);
2152     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2153                                      Ops.data(), Ops.size(),
2154                                      APInt(BitWidth, 1), *this)) {
2155       struct APIntCompare {
2156         bool operator()(const APInt &LHS, const APInt &RHS) const {
2157           return LHS.ult(RHS);
2158         }
2159       };
2160 
2161       // Some interesting folding opportunity is present, so its worthwhile to
2162       // re-generate the operands list. Group the operands by constant scale,
2163       // to avoid multiplying by the same constant scale multiple times.
2164       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2165       for (const SCEV *NewOp : NewOps)
2166         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2167       // Re-generate the operands list.
2168       Ops.clear();
2169       if (AccumulatedConstant != 0)
2170         Ops.push_back(getConstant(AccumulatedConstant));
2171       for (auto &MulOp : MulOpLists)
2172         if (MulOp.first != 0)
2173           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2174                                    getAddExpr(MulOp.second)));
2175       if (Ops.empty())
2176         return getZero(Ty);
2177       if (Ops.size() == 1)
2178         return Ops[0];
2179       return getAddExpr(Ops);
2180     }
2181   }
2182 
2183   // If we are adding something to a multiply expression, make sure the
2184   // something is not already an operand of the multiply.  If so, merge it into
2185   // the multiply.
2186   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2187     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2188     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2189       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2190       if (isa<SCEVConstant>(MulOpSCEV))
2191         continue;
2192       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2193         if (MulOpSCEV == Ops[AddOp]) {
2194           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2195           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2196           if (Mul->getNumOperands() != 2) {
2197             // If the multiply has more than two operands, we must get the
2198             // Y*Z term.
2199             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2200                                                 Mul->op_begin()+MulOp);
2201             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2202             InnerMul = getMulExpr(MulOps);
2203           }
2204           const SCEV *One = getOne(Ty);
2205           const SCEV *AddOne = getAddExpr(One, InnerMul);
2206           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2207           if (Ops.size() == 2) return OuterMul;
2208           if (AddOp < Idx) {
2209             Ops.erase(Ops.begin()+AddOp);
2210             Ops.erase(Ops.begin()+Idx-1);
2211           } else {
2212             Ops.erase(Ops.begin()+Idx);
2213             Ops.erase(Ops.begin()+AddOp-1);
2214           }
2215           Ops.push_back(OuterMul);
2216           return getAddExpr(Ops);
2217         }
2218 
2219       // Check this multiply against other multiplies being added together.
2220       for (unsigned OtherMulIdx = Idx+1;
2221            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2222            ++OtherMulIdx) {
2223         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2224         // If MulOp occurs in OtherMul, we can fold the two multiplies
2225         // together.
2226         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2227              OMulOp != e; ++OMulOp)
2228           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2229             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2230             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2231             if (Mul->getNumOperands() != 2) {
2232               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2233                                                   Mul->op_begin()+MulOp);
2234               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2235               InnerMul1 = getMulExpr(MulOps);
2236             }
2237             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2238             if (OtherMul->getNumOperands() != 2) {
2239               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2240                                                   OtherMul->op_begin()+OMulOp);
2241               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2242               InnerMul2 = getMulExpr(MulOps);
2243             }
2244             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2245             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2246             if (Ops.size() == 2) return OuterMul;
2247             Ops.erase(Ops.begin()+Idx);
2248             Ops.erase(Ops.begin()+OtherMulIdx-1);
2249             Ops.push_back(OuterMul);
2250             return getAddExpr(Ops);
2251           }
2252       }
2253     }
2254   }
2255 
2256   // If there are any add recurrences in the operands list, see if any other
2257   // added values are loop invariant.  If so, we can fold them into the
2258   // recurrence.
2259   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2260     ++Idx;
2261 
2262   // Scan over all recurrences, trying to fold loop invariants into them.
2263   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2264     // Scan all of the other operands to this add and add them to the vector if
2265     // they are loop invariant w.r.t. the recurrence.
2266     SmallVector<const SCEV *, 8> LIOps;
2267     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2268     const Loop *AddRecLoop = AddRec->getLoop();
2269     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2270       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2271         LIOps.push_back(Ops[i]);
2272         Ops.erase(Ops.begin()+i);
2273         --i; --e;
2274       }
2275 
2276     // If we found some loop invariants, fold them into the recurrence.
2277     if (!LIOps.empty()) {
2278       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2279       LIOps.push_back(AddRec->getStart());
2280 
2281       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2282                                              AddRec->op_end());
2283       AddRecOps[0] = getAddExpr(LIOps);
2284 
2285       // Build the new addrec. Propagate the NUW and NSW flags if both the
2286       // outer add and the inner addrec are guaranteed to have no overflow.
2287       // Always propagate NW.
2288       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2289       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2290 
2291       // If all of the other operands were loop invariant, we are done.
2292       if (Ops.size() == 1) return NewRec;
2293 
2294       // Otherwise, add the folded AddRec by the non-invariant parts.
2295       for (unsigned i = 0;; ++i)
2296         if (Ops[i] == AddRec) {
2297           Ops[i] = NewRec;
2298           break;
2299         }
2300       return getAddExpr(Ops);
2301     }
2302 
2303     // Okay, if there weren't any loop invariants to be folded, check to see if
2304     // there are multiple AddRec's with the same loop induction variable being
2305     // added together.  If so, we can fold them.
2306     for (unsigned OtherIdx = Idx+1;
2307          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2308          ++OtherIdx)
2309       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2310         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2311         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2312                                                AddRec->op_end());
2313         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2314              ++OtherIdx)
2315           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2316             if (OtherAddRec->getLoop() == AddRecLoop) {
2317               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2318                    i != e; ++i) {
2319                 if (i >= AddRecOps.size()) {
2320                   AddRecOps.append(OtherAddRec->op_begin()+i,
2321                                    OtherAddRec->op_end());
2322                   break;
2323                 }
2324                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2325                                           OtherAddRec->getOperand(i));
2326               }
2327               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2328             }
2329         // Step size has changed, so we cannot guarantee no self-wraparound.
2330         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2331         return getAddExpr(Ops);
2332       }
2333 
2334     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2335     // next one.
2336   }
2337 
2338   // Okay, it looks like we really DO need an add expr.  Check to see if we
2339   // already have one, otherwise create a new one.
2340   FoldingSetNodeID ID;
2341   ID.AddInteger(scAddExpr);
2342   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2343     ID.AddPointer(Ops[i]);
2344   void *IP = nullptr;
2345   SCEVAddExpr *S =
2346     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2347   if (!S) {
2348     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2349     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2350     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2351                                         O, Ops.size());
2352     UniqueSCEVs.InsertNode(S, IP);
2353   }
2354   S->setNoWrapFlags(Flags);
2355   return S;
2356 }
2357 
2358 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2359   uint64_t k = i*j;
2360   if (j > 1 && k / j != i) Overflow = true;
2361   return k;
2362 }
2363 
2364 /// Compute the result of "n choose k", the binomial coefficient.  If an
2365 /// intermediate computation overflows, Overflow will be set and the return will
2366 /// be garbage. Overflow is not cleared on absence of overflow.
2367 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2368   // We use the multiplicative formula:
2369   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2370   // At each iteration, we take the n-th term of the numeral and divide by the
2371   // (k-n)th term of the denominator.  This division will always produce an
2372   // integral result, and helps reduce the chance of overflow in the
2373   // intermediate computations. However, we can still overflow even when the
2374   // final result would fit.
2375 
2376   if (n == 0 || n == k) return 1;
2377   if (k > n) return 0;
2378 
2379   if (k > n/2)
2380     k = n-k;
2381 
2382   uint64_t r = 1;
2383   for (uint64_t i = 1; i <= k; ++i) {
2384     r = umul_ov(r, n-(i-1), Overflow);
2385     r /= i;
2386   }
2387   return r;
2388 }
2389 
2390 /// Determine if any of the operands in this SCEV are a constant or if
2391 /// any of the add or multiply expressions in this SCEV contain a constant.
2392 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2393   SmallVector<const SCEV *, 4> Ops;
2394   Ops.push_back(StartExpr);
2395   while (!Ops.empty()) {
2396     const SCEV *CurrentExpr = Ops.pop_back_val();
2397     if (isa<SCEVConstant>(*CurrentExpr))
2398       return true;
2399 
2400     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2401       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2402       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2403     }
2404   }
2405   return false;
2406 }
2407 
2408 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2409 /// possible.
2410 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2411                                         SCEV::NoWrapFlags Flags) {
2412   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2413          "only nuw or nsw allowed");
2414   assert(!Ops.empty() && "Cannot get empty mul!");
2415   if (Ops.size() == 1) return Ops[0];
2416 #ifndef NDEBUG
2417   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2418   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2419     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2420            "SCEVMulExpr operand types don't match!");
2421 #endif
2422 
2423   // Sort by complexity, this groups all similar expression types together.
2424   GroupByComplexity(Ops, &LI);
2425 
2426   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2427 
2428   // If there are any constants, fold them together.
2429   unsigned Idx = 0;
2430   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2431 
2432     // C1*(C2+V) -> C1*C2 + C1*V
2433     if (Ops.size() == 2)
2434         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2435           // If any of Add's ops are Adds or Muls with a constant,
2436           // apply this transformation as well.
2437           if (Add->getNumOperands() == 2)
2438             if (containsConstantSomewhere(Add))
2439               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2440                                 getMulExpr(LHSC, Add->getOperand(1)));
2441 
2442     ++Idx;
2443     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2444       // We found two constants, fold them together!
2445       ConstantInt *Fold =
2446           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2447       Ops[0] = getConstant(Fold);
2448       Ops.erase(Ops.begin()+1);  // Erase the folded element
2449       if (Ops.size() == 1) return Ops[0];
2450       LHSC = cast<SCEVConstant>(Ops[0]);
2451     }
2452 
2453     // If we are left with a constant one being multiplied, strip it off.
2454     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2455       Ops.erase(Ops.begin());
2456       --Idx;
2457     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2458       // If we have a multiply of zero, it will always be zero.
2459       return Ops[0];
2460     } else if (Ops[0]->isAllOnesValue()) {
2461       // If we have a mul by -1 of an add, try distributing the -1 among the
2462       // add operands.
2463       if (Ops.size() == 2) {
2464         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2465           SmallVector<const SCEV *, 4> NewOps;
2466           bool AnyFolded = false;
2467           for (const SCEV *AddOp : Add->operands()) {
2468             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2469             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2470             NewOps.push_back(Mul);
2471           }
2472           if (AnyFolded)
2473             return getAddExpr(NewOps);
2474         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2475           // Negation preserves a recurrence's no self-wrap property.
2476           SmallVector<const SCEV *, 4> Operands;
2477           for (const SCEV *AddRecOp : AddRec->operands())
2478             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2479 
2480           return getAddRecExpr(Operands, AddRec->getLoop(),
2481                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2482         }
2483       }
2484     }
2485 
2486     if (Ops.size() == 1)
2487       return Ops[0];
2488   }
2489 
2490   // Skip over the add expression until we get to a multiply.
2491   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2492     ++Idx;
2493 
2494   // If there are mul operands inline them all into this expression.
2495   if (Idx < Ops.size()) {
2496     bool DeletedMul = false;
2497     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2498       // If we have an mul, expand the mul operands onto the end of the operands
2499       // list.
2500       Ops.erase(Ops.begin()+Idx);
2501       Ops.append(Mul->op_begin(), Mul->op_end());
2502       DeletedMul = true;
2503     }
2504 
2505     // If we deleted at least one mul, we added operands to the end of the list,
2506     // and they are not necessarily sorted.  Recurse to resort and resimplify
2507     // any operands we just acquired.
2508     if (DeletedMul)
2509       return getMulExpr(Ops);
2510   }
2511 
2512   // If there are any add recurrences in the operands list, see if any other
2513   // added values are loop invariant.  If so, we can fold them into the
2514   // recurrence.
2515   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2516     ++Idx;
2517 
2518   // Scan over all recurrences, trying to fold loop invariants into them.
2519   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2520     // Scan all of the other operands to this mul and add them to the vector if
2521     // they are loop invariant w.r.t. the recurrence.
2522     SmallVector<const SCEV *, 8> LIOps;
2523     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2524     const Loop *AddRecLoop = AddRec->getLoop();
2525     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2526       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2527         LIOps.push_back(Ops[i]);
2528         Ops.erase(Ops.begin()+i);
2529         --i; --e;
2530       }
2531 
2532     // If we found some loop invariants, fold them into the recurrence.
2533     if (!LIOps.empty()) {
2534       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2535       SmallVector<const SCEV *, 4> NewOps;
2536       NewOps.reserve(AddRec->getNumOperands());
2537       const SCEV *Scale = getMulExpr(LIOps);
2538       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2539         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2540 
2541       // Build the new addrec. Propagate the NUW and NSW flags if both the
2542       // outer mul and the inner addrec are guaranteed to have no overflow.
2543       //
2544       // No self-wrap cannot be guaranteed after changing the step size, but
2545       // will be inferred if either NUW or NSW is true.
2546       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2547       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2548 
2549       // If all of the other operands were loop invariant, we are done.
2550       if (Ops.size() == 1) return NewRec;
2551 
2552       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2553       for (unsigned i = 0;; ++i)
2554         if (Ops[i] == AddRec) {
2555           Ops[i] = NewRec;
2556           break;
2557         }
2558       return getMulExpr(Ops);
2559     }
2560 
2561     // Okay, if there weren't any loop invariants to be folded, check to see if
2562     // there are multiple AddRec's with the same loop induction variable being
2563     // multiplied together.  If so, we can fold them.
2564 
2565     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2566     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2567     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2568     //   ]]],+,...up to x=2n}.
2569     // Note that the arguments to choose() are always integers with values
2570     // known at compile time, never SCEV objects.
2571     //
2572     // The implementation avoids pointless extra computations when the two
2573     // addrec's are of different length (mathematically, it's equivalent to
2574     // an infinite stream of zeros on the right).
2575     bool OpsModified = false;
2576     for (unsigned OtherIdx = Idx+1;
2577          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2578          ++OtherIdx) {
2579       const SCEVAddRecExpr *OtherAddRec =
2580         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2581       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2582         continue;
2583 
2584       bool Overflow = false;
2585       Type *Ty = AddRec->getType();
2586       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2587       SmallVector<const SCEV*, 7> AddRecOps;
2588       for (int x = 0, xe = AddRec->getNumOperands() +
2589              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2590         const SCEV *Term = getZero(Ty);
2591         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2592           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2593           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2594                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2595                z < ze && !Overflow; ++z) {
2596             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2597             uint64_t Coeff;
2598             if (LargerThan64Bits)
2599               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2600             else
2601               Coeff = Coeff1*Coeff2;
2602             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2603             const SCEV *Term1 = AddRec->getOperand(y-z);
2604             const SCEV *Term2 = OtherAddRec->getOperand(z);
2605             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2606           }
2607         }
2608         AddRecOps.push_back(Term);
2609       }
2610       if (!Overflow) {
2611         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2612                                               SCEV::FlagAnyWrap);
2613         if (Ops.size() == 2) return NewAddRec;
2614         Ops[Idx] = NewAddRec;
2615         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2616         OpsModified = true;
2617         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2618         if (!AddRec)
2619           break;
2620       }
2621     }
2622     if (OpsModified)
2623       return getMulExpr(Ops);
2624 
2625     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2626     // next one.
2627   }
2628 
2629   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2630   // already have one, otherwise create a new one.
2631   FoldingSetNodeID ID;
2632   ID.AddInteger(scMulExpr);
2633   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2634     ID.AddPointer(Ops[i]);
2635   void *IP = nullptr;
2636   SCEVMulExpr *S =
2637     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2638   if (!S) {
2639     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2640     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2641     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2642                                         O, Ops.size());
2643     UniqueSCEVs.InsertNode(S, IP);
2644   }
2645   S->setNoWrapFlags(Flags);
2646   return S;
2647 }
2648 
2649 /// getUDivExpr - Get a canonical unsigned division expression, or something
2650 /// simpler if possible.
2651 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2652                                          const SCEV *RHS) {
2653   assert(getEffectiveSCEVType(LHS->getType()) ==
2654          getEffectiveSCEVType(RHS->getType()) &&
2655          "SCEVUDivExpr operand types don't match!");
2656 
2657   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2658     if (RHSC->getValue()->equalsInt(1))
2659       return LHS;                               // X udiv 1 --> x
2660     // If the denominator is zero, the result of the udiv is undefined. Don't
2661     // try to analyze it, because the resolution chosen here may differ from
2662     // the resolution chosen in other parts of the compiler.
2663     if (!RHSC->getValue()->isZero()) {
2664       // Determine if the division can be folded into the operands of
2665       // its operands.
2666       // TODO: Generalize this to non-constants by using known-bits information.
2667       Type *Ty = LHS->getType();
2668       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2669       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2670       // For non-power-of-two values, effectively round the value up to the
2671       // nearest power of two.
2672       if (!RHSC->getAPInt().isPowerOf2())
2673         ++MaxShiftAmt;
2674       IntegerType *ExtTy =
2675         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2676       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2677         if (const SCEVConstant *Step =
2678             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2679           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2680           const APInt &StepInt = Step->getAPInt();
2681           const APInt &DivInt = RHSC->getAPInt();
2682           if (!StepInt.urem(DivInt) &&
2683               getZeroExtendExpr(AR, ExtTy) ==
2684               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2685                             getZeroExtendExpr(Step, ExtTy),
2686                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2687             SmallVector<const SCEV *, 4> Operands;
2688             for (const SCEV *Op : AR->operands())
2689               Operands.push_back(getUDivExpr(Op, RHS));
2690             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2691           }
2692           /// Get a canonical UDivExpr for a recurrence.
2693           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2694           // We can currently only fold X%N if X is constant.
2695           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2696           if (StartC && !DivInt.urem(StepInt) &&
2697               getZeroExtendExpr(AR, ExtTy) ==
2698               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2699                             getZeroExtendExpr(Step, ExtTy),
2700                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2701             const APInt &StartInt = StartC->getAPInt();
2702             const APInt &StartRem = StartInt.urem(StepInt);
2703             if (StartRem != 0)
2704               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2705                                   AR->getLoop(), SCEV::FlagNW);
2706           }
2707         }
2708       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2709       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2710         SmallVector<const SCEV *, 4> Operands;
2711         for (const SCEV *Op : M->operands())
2712           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2713         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2714           // Find an operand that's safely divisible.
2715           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2716             const SCEV *Op = M->getOperand(i);
2717             const SCEV *Div = getUDivExpr(Op, RHSC);
2718             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2719               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2720                                                       M->op_end());
2721               Operands[i] = Div;
2722               return getMulExpr(Operands);
2723             }
2724           }
2725       }
2726       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2727       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2728         SmallVector<const SCEV *, 4> Operands;
2729         for (const SCEV *Op : A->operands())
2730           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2731         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2732           Operands.clear();
2733           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2734             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2735             if (isa<SCEVUDivExpr>(Op) ||
2736                 getMulExpr(Op, RHS) != A->getOperand(i))
2737               break;
2738             Operands.push_back(Op);
2739           }
2740           if (Operands.size() == A->getNumOperands())
2741             return getAddExpr(Operands);
2742         }
2743       }
2744 
2745       // Fold if both operands are constant.
2746       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2747         Constant *LHSCV = LHSC->getValue();
2748         Constant *RHSCV = RHSC->getValue();
2749         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2750                                                                    RHSCV)));
2751       }
2752     }
2753   }
2754 
2755   FoldingSetNodeID ID;
2756   ID.AddInteger(scUDivExpr);
2757   ID.AddPointer(LHS);
2758   ID.AddPointer(RHS);
2759   void *IP = nullptr;
2760   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2761   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2762                                              LHS, RHS);
2763   UniqueSCEVs.InsertNode(S, IP);
2764   return S;
2765 }
2766 
2767 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2768   APInt A = C1->getAPInt().abs();
2769   APInt B = C2->getAPInt().abs();
2770   uint32_t ABW = A.getBitWidth();
2771   uint32_t BBW = B.getBitWidth();
2772 
2773   if (ABW > BBW)
2774     B = B.zext(ABW);
2775   else if (ABW < BBW)
2776     A = A.zext(BBW);
2777 
2778   return APIntOps::GreatestCommonDivisor(A, B);
2779 }
2780 
2781 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2782 /// something simpler if possible. There is no representation for an exact udiv
2783 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2784 /// We can't do this when it's not exact because the udiv may be clearing bits.
2785 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2786                                               const SCEV *RHS) {
2787   // TODO: we could try to find factors in all sorts of things, but for now we
2788   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2789   // end of this file for inspiration.
2790 
2791   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2792   if (!Mul)
2793     return getUDivExpr(LHS, RHS);
2794 
2795   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2796     // If the mulexpr multiplies by a constant, then that constant must be the
2797     // first element of the mulexpr.
2798     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2799       if (LHSCst == RHSCst) {
2800         SmallVector<const SCEV *, 2> Operands;
2801         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2802         return getMulExpr(Operands);
2803       }
2804 
2805       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2806       // that there's a factor provided by one of the other terms. We need to
2807       // check.
2808       APInt Factor = gcd(LHSCst, RHSCst);
2809       if (!Factor.isIntN(1)) {
2810         LHSCst =
2811             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2812         RHSCst =
2813             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2814         SmallVector<const SCEV *, 2> Operands;
2815         Operands.push_back(LHSCst);
2816         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2817         LHS = getMulExpr(Operands);
2818         RHS = RHSCst;
2819         Mul = dyn_cast<SCEVMulExpr>(LHS);
2820         if (!Mul)
2821           return getUDivExactExpr(LHS, RHS);
2822       }
2823     }
2824   }
2825 
2826   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2827     if (Mul->getOperand(i) == RHS) {
2828       SmallVector<const SCEV *, 2> Operands;
2829       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2830       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2831       return getMulExpr(Operands);
2832     }
2833   }
2834 
2835   return getUDivExpr(LHS, RHS);
2836 }
2837 
2838 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2839 /// Simplify the expression as much as possible.
2840 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2841                                            const Loop *L,
2842                                            SCEV::NoWrapFlags Flags) {
2843   SmallVector<const SCEV *, 4> Operands;
2844   Operands.push_back(Start);
2845   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2846     if (StepChrec->getLoop() == L) {
2847       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2848       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2849     }
2850 
2851   Operands.push_back(Step);
2852   return getAddRecExpr(Operands, L, Flags);
2853 }
2854 
2855 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2856 /// Simplify the expression as much as possible.
2857 const SCEV *
2858 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2859                                const Loop *L, SCEV::NoWrapFlags Flags) {
2860   if (Operands.size() == 1) return Operands[0];
2861 #ifndef NDEBUG
2862   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2863   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2864     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2865            "SCEVAddRecExpr operand types don't match!");
2866   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2867     assert(isLoopInvariant(Operands[i], L) &&
2868            "SCEVAddRecExpr operand is not loop-invariant!");
2869 #endif
2870 
2871   if (Operands.back()->isZero()) {
2872     Operands.pop_back();
2873     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2874   }
2875 
2876   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2877   // use that information to infer NUW and NSW flags. However, computing a
2878   // BE count requires calling getAddRecExpr, so we may not yet have a
2879   // meaningful BE count at this point (and if we don't, we'd be stuck
2880   // with a SCEVCouldNotCompute as the cached BE count).
2881 
2882   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2883 
2884   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2885   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2886     const Loop *NestedLoop = NestedAR->getLoop();
2887     if (L->contains(NestedLoop)
2888             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2889             : (!NestedLoop->contains(L) &&
2890                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2891       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2892                                                   NestedAR->op_end());
2893       Operands[0] = NestedAR->getStart();
2894       // AddRecs require their operands be loop-invariant with respect to their
2895       // loops. Don't perform this transformation if it would break this
2896       // requirement.
2897       bool AllInvariant = all_of(
2898           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2899 
2900       if (AllInvariant) {
2901         // Create a recurrence for the outer loop with the same step size.
2902         //
2903         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2904         // inner recurrence has the same property.
2905         SCEV::NoWrapFlags OuterFlags =
2906           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2907 
2908         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2909         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2910           return isLoopInvariant(Op, NestedLoop);
2911         });
2912 
2913         if (AllInvariant) {
2914           // Ok, both add recurrences are valid after the transformation.
2915           //
2916           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2917           // the outer recurrence has the same property.
2918           SCEV::NoWrapFlags InnerFlags =
2919             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2920           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2921         }
2922       }
2923       // Reset Operands to its original state.
2924       Operands[0] = NestedAR;
2925     }
2926   }
2927 
2928   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2929   // already have one, otherwise create a new one.
2930   FoldingSetNodeID ID;
2931   ID.AddInteger(scAddRecExpr);
2932   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2933     ID.AddPointer(Operands[i]);
2934   ID.AddPointer(L);
2935   void *IP = nullptr;
2936   SCEVAddRecExpr *S =
2937     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2938   if (!S) {
2939     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2940     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2941     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2942                                            O, Operands.size(), L);
2943     UniqueSCEVs.InsertNode(S, IP);
2944   }
2945   S->setNoWrapFlags(Flags);
2946   return S;
2947 }
2948 
2949 const SCEV *
2950 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2951                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2952                             bool InBounds) {
2953   // getSCEV(Base)->getType() has the same address space as Base->getType()
2954   // because SCEV::getType() preserves the address space.
2955   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2956   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2957   // instruction to its SCEV, because the Instruction may be guarded by control
2958   // flow and the no-overflow bits may not be valid for the expression in any
2959   // context. This can be fixed similarly to how these flags are handled for
2960   // adds.
2961   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2962 
2963   const SCEV *TotalOffset = getZero(IntPtrTy);
2964   // The address space is unimportant. The first thing we do on CurTy is getting
2965   // its element type.
2966   Type *CurTy = PointerType::getUnqual(PointeeType);
2967   for (const SCEV *IndexExpr : IndexExprs) {
2968     // Compute the (potentially symbolic) offset in bytes for this index.
2969     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2970       // For a struct, add the member offset.
2971       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2972       unsigned FieldNo = Index->getZExtValue();
2973       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2974 
2975       // Add the field offset to the running total offset.
2976       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2977 
2978       // Update CurTy to the type of the field at Index.
2979       CurTy = STy->getTypeAtIndex(Index);
2980     } else {
2981       // Update CurTy to its element type.
2982       CurTy = cast<SequentialType>(CurTy)->getElementType();
2983       // For an array, add the element offset, explicitly scaled.
2984       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2985       // Getelementptr indices are signed.
2986       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2987 
2988       // Multiply the index by the element size to compute the element offset.
2989       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2990 
2991       // Add the element offset to the running total offset.
2992       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2993     }
2994   }
2995 
2996   // Add the total offset from all the GEP indices to the base.
2997   return getAddExpr(BaseExpr, TotalOffset, Wrap);
2998 }
2999 
3000 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3001                                          const SCEV *RHS) {
3002   SmallVector<const SCEV *, 2> Ops;
3003   Ops.push_back(LHS);
3004   Ops.push_back(RHS);
3005   return getSMaxExpr(Ops);
3006 }
3007 
3008 const SCEV *
3009 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3010   assert(!Ops.empty() && "Cannot get empty smax!");
3011   if (Ops.size() == 1) return Ops[0];
3012 #ifndef NDEBUG
3013   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3014   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3015     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3016            "SCEVSMaxExpr operand types don't match!");
3017 #endif
3018 
3019   // Sort by complexity, this groups all similar expression types together.
3020   GroupByComplexity(Ops, &LI);
3021 
3022   // If there are any constants, fold them together.
3023   unsigned Idx = 0;
3024   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3025     ++Idx;
3026     assert(Idx < Ops.size());
3027     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3028       // We found two constants, fold them together!
3029       ConstantInt *Fold = ConstantInt::get(
3030           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3031       Ops[0] = getConstant(Fold);
3032       Ops.erase(Ops.begin()+1);  // Erase the folded element
3033       if (Ops.size() == 1) return Ops[0];
3034       LHSC = cast<SCEVConstant>(Ops[0]);
3035     }
3036 
3037     // If we are left with a constant minimum-int, strip it off.
3038     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3039       Ops.erase(Ops.begin());
3040       --Idx;
3041     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3042       // If we have an smax with a constant maximum-int, it will always be
3043       // maximum-int.
3044       return Ops[0];
3045     }
3046 
3047     if (Ops.size() == 1) return Ops[0];
3048   }
3049 
3050   // Find the first SMax
3051   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3052     ++Idx;
3053 
3054   // Check to see if one of the operands is an SMax. If so, expand its operands
3055   // onto our operand list, and recurse to simplify.
3056   if (Idx < Ops.size()) {
3057     bool DeletedSMax = false;
3058     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3059       Ops.erase(Ops.begin()+Idx);
3060       Ops.append(SMax->op_begin(), SMax->op_end());
3061       DeletedSMax = true;
3062     }
3063 
3064     if (DeletedSMax)
3065       return getSMaxExpr(Ops);
3066   }
3067 
3068   // Okay, check to see if the same value occurs in the operand list twice.  If
3069   // so, delete one.  Since we sorted the list, these values are required to
3070   // be adjacent.
3071   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3072     //  X smax Y smax Y  -->  X smax Y
3073     //  X smax Y         -->  X, if X is always greater than Y
3074     if (Ops[i] == Ops[i+1] ||
3075         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3076       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3077       --i; --e;
3078     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3079       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3080       --i; --e;
3081     }
3082 
3083   if (Ops.size() == 1) return Ops[0];
3084 
3085   assert(!Ops.empty() && "Reduced smax down to nothing!");
3086 
3087   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3088   // already have one, otherwise create a new one.
3089   FoldingSetNodeID ID;
3090   ID.AddInteger(scSMaxExpr);
3091   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3092     ID.AddPointer(Ops[i]);
3093   void *IP = nullptr;
3094   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3095   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3096   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3097   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3098                                              O, Ops.size());
3099   UniqueSCEVs.InsertNode(S, IP);
3100   return S;
3101 }
3102 
3103 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3104                                          const SCEV *RHS) {
3105   SmallVector<const SCEV *, 2> Ops;
3106   Ops.push_back(LHS);
3107   Ops.push_back(RHS);
3108   return getUMaxExpr(Ops);
3109 }
3110 
3111 const SCEV *
3112 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3113   assert(!Ops.empty() && "Cannot get empty umax!");
3114   if (Ops.size() == 1) return Ops[0];
3115 #ifndef NDEBUG
3116   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3117   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3118     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3119            "SCEVUMaxExpr operand types don't match!");
3120 #endif
3121 
3122   // Sort by complexity, this groups all similar expression types together.
3123   GroupByComplexity(Ops, &LI);
3124 
3125   // If there are any constants, fold them together.
3126   unsigned Idx = 0;
3127   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3128     ++Idx;
3129     assert(Idx < Ops.size());
3130     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3131       // We found two constants, fold them together!
3132       ConstantInt *Fold = ConstantInt::get(
3133           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3134       Ops[0] = getConstant(Fold);
3135       Ops.erase(Ops.begin()+1);  // Erase the folded element
3136       if (Ops.size() == 1) return Ops[0];
3137       LHSC = cast<SCEVConstant>(Ops[0]);
3138     }
3139 
3140     // If we are left with a constant minimum-int, strip it off.
3141     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3142       Ops.erase(Ops.begin());
3143       --Idx;
3144     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3145       // If we have an umax with a constant maximum-int, it will always be
3146       // maximum-int.
3147       return Ops[0];
3148     }
3149 
3150     if (Ops.size() == 1) return Ops[0];
3151   }
3152 
3153   // Find the first UMax
3154   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3155     ++Idx;
3156 
3157   // Check to see if one of the operands is a UMax. If so, expand its operands
3158   // onto our operand list, and recurse to simplify.
3159   if (Idx < Ops.size()) {
3160     bool DeletedUMax = false;
3161     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3162       Ops.erase(Ops.begin()+Idx);
3163       Ops.append(UMax->op_begin(), UMax->op_end());
3164       DeletedUMax = true;
3165     }
3166 
3167     if (DeletedUMax)
3168       return getUMaxExpr(Ops);
3169   }
3170 
3171   // Okay, check to see if the same value occurs in the operand list twice.  If
3172   // so, delete one.  Since we sorted the list, these values are required to
3173   // be adjacent.
3174   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3175     //  X umax Y umax Y  -->  X umax Y
3176     //  X umax Y         -->  X, if X is always greater than Y
3177     if (Ops[i] == Ops[i+1] ||
3178         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3179       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3180       --i; --e;
3181     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3182       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3183       --i; --e;
3184     }
3185 
3186   if (Ops.size() == 1) return Ops[0];
3187 
3188   assert(!Ops.empty() && "Reduced umax down to nothing!");
3189 
3190   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3191   // already have one, otherwise create a new one.
3192   FoldingSetNodeID ID;
3193   ID.AddInteger(scUMaxExpr);
3194   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3195     ID.AddPointer(Ops[i]);
3196   void *IP = nullptr;
3197   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3198   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3199   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3200   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3201                                              O, Ops.size());
3202   UniqueSCEVs.InsertNode(S, IP);
3203   return S;
3204 }
3205 
3206 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3207                                          const SCEV *RHS) {
3208   // ~smax(~x, ~y) == smin(x, y).
3209   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3210 }
3211 
3212 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3213                                          const SCEV *RHS) {
3214   // ~umax(~x, ~y) == umin(x, y)
3215   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3216 }
3217 
3218 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3219   // We can bypass creating a target-independent
3220   // constant expression and then folding it back into a ConstantInt.
3221   // This is just a compile-time optimization.
3222   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3223 }
3224 
3225 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3226                                              StructType *STy,
3227                                              unsigned FieldNo) {
3228   // We can bypass creating a target-independent
3229   // constant expression and then folding it back into a ConstantInt.
3230   // This is just a compile-time optimization.
3231   return getConstant(
3232       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3233 }
3234 
3235 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3236   // Don't attempt to do anything other than create a SCEVUnknown object
3237   // here.  createSCEV only calls getUnknown after checking for all other
3238   // interesting possibilities, and any other code that calls getUnknown
3239   // is doing so in order to hide a value from SCEV canonicalization.
3240 
3241   FoldingSetNodeID ID;
3242   ID.AddInteger(scUnknown);
3243   ID.AddPointer(V);
3244   void *IP = nullptr;
3245   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3246     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3247            "Stale SCEVUnknown in uniquing map!");
3248     return S;
3249   }
3250   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3251                                             FirstUnknown);
3252   FirstUnknown = cast<SCEVUnknown>(S);
3253   UniqueSCEVs.InsertNode(S, IP);
3254   return S;
3255 }
3256 
3257 //===----------------------------------------------------------------------===//
3258 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3259 //
3260 
3261 /// isSCEVable - Test if values of the given type are analyzable within
3262 /// the SCEV framework. This primarily includes integer types, and it
3263 /// can optionally include pointer types if the ScalarEvolution class
3264 /// has access to target-specific information.
3265 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3266   // Integers and pointers are always SCEVable.
3267   return Ty->isIntegerTy() || Ty->isPointerTy();
3268 }
3269 
3270 /// getTypeSizeInBits - Return the size in bits of the specified type,
3271 /// for which isSCEVable must return true.
3272 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3273   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3274   return getDataLayout().getTypeSizeInBits(Ty);
3275 }
3276 
3277 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3278 /// the given type and which represents how SCEV will treat the given
3279 /// type, for which isSCEVable must return true. For pointer types,
3280 /// this is the pointer-sized integer type.
3281 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3282   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3283 
3284   if (Ty->isIntegerTy())
3285     return Ty;
3286 
3287   // The only other support type is pointer.
3288   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3289   return getDataLayout().getIntPtrType(Ty);
3290 }
3291 
3292 const SCEV *ScalarEvolution::getCouldNotCompute() {
3293   return CouldNotCompute.get();
3294 }
3295 
3296 
3297 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3298   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3299   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3300   // is set iff if find such SCEVUnknown.
3301   //
3302   struct FindInvalidSCEVUnknown {
3303     bool FindOne;
3304     FindInvalidSCEVUnknown() { FindOne = false; }
3305     bool follow(const SCEV *S) {
3306       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3307       case scConstant:
3308         return false;
3309       case scUnknown:
3310         if (!cast<SCEVUnknown>(S)->getValue())
3311           FindOne = true;
3312         return false;
3313       default:
3314         return true;
3315       }
3316     }
3317     bool isDone() const { return FindOne; }
3318   };
3319 
3320   FindInvalidSCEVUnknown F;
3321   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3322   ST.visitAll(S);
3323 
3324   return !F.FindOne;
3325 }
3326 
3327 namespace {
3328 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3329 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
3330 // iff if such sub scAddRecExpr type SCEV is found.
3331 struct FindAddRecurrence {
3332   bool FoundOne;
3333   FindAddRecurrence() : FoundOne(false) {}
3334 
3335   bool follow(const SCEV *S) {
3336     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3337     case scAddRecExpr:
3338       FoundOne = true;
3339     case scConstant:
3340     case scUnknown:
3341     case scCouldNotCompute:
3342       return false;
3343     default:
3344       return true;
3345     }
3346   }
3347   bool isDone() const { return FoundOne; }
3348 };
3349 }
3350 
3351 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3352   HasRecMapType::iterator I = HasRecMap.find_as(S);
3353   if (I != HasRecMap.end())
3354     return I->second;
3355 
3356   FindAddRecurrence F;
3357   SCEVTraversal<FindAddRecurrence> ST(F);
3358   ST.visitAll(S);
3359   HasRecMap.insert({S, F.FoundOne});
3360   return F.FoundOne;
3361 }
3362 
3363 /// getSCEVValues - Return the Value set from S.
3364 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3365   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3366   if (SI == ExprValueMap.end())
3367     return nullptr;
3368 #ifndef NDEBUG
3369   if (VerifySCEVMap) {
3370     // Check there is no dangling Value in the set returned.
3371     for (const auto &VE : SI->second)
3372       assert(ValueExprMap.count(VE));
3373   }
3374 #endif
3375   return &SI->second;
3376 }
3377 
3378 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3379 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3380 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3381 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3382 void ScalarEvolution::eraseValueFromMap(Value *V) {
3383   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3384   if (I != ValueExprMap.end()) {
3385     const SCEV *S = I->second;
3386     SetVector<Value *> *SV = getSCEVValues(S);
3387     // Remove V from the set of ExprValueMap[S]
3388     if (SV)
3389       SV->remove(V);
3390     ValueExprMap.erase(V);
3391   }
3392 }
3393 
3394 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3395 /// expression and create a new one.
3396 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3397   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3398 
3399   const SCEV *S = getExistingSCEV(V);
3400   if (S == nullptr) {
3401     S = createSCEV(V);
3402     // During PHI resolution, it is possible to create two SCEVs for the same
3403     // V, so it is needed to double check whether V->S is inserted into
3404     // ValueExprMap before insert S->V into ExprValueMap.
3405     std::pair<ValueExprMapType::iterator, bool> Pair =
3406         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3407     if (Pair.second)
3408       ExprValueMap[S].insert(V);
3409   }
3410   return S;
3411 }
3412 
3413 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3414   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3415 
3416   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3417   if (I != ValueExprMap.end()) {
3418     const SCEV *S = I->second;
3419     if (checkValidity(S))
3420       return S;
3421     forgetMemoizedResults(S);
3422     ValueExprMap.erase(I);
3423   }
3424   return nullptr;
3425 }
3426 
3427 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3428 ///
3429 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3430                                              SCEV::NoWrapFlags Flags) {
3431   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3432     return getConstant(
3433                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3434 
3435   Type *Ty = V->getType();
3436   Ty = getEffectiveSCEVType(Ty);
3437   return getMulExpr(
3438       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3439 }
3440 
3441 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3442 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3443   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3444     return getConstant(
3445                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3446 
3447   Type *Ty = V->getType();
3448   Ty = getEffectiveSCEVType(Ty);
3449   const SCEV *AllOnes =
3450                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3451   return getMinusSCEV(AllOnes, V);
3452 }
3453 
3454 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3455 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3456                                           SCEV::NoWrapFlags Flags) {
3457   // Fast path: X - X --> 0.
3458   if (LHS == RHS)
3459     return getZero(LHS->getType());
3460 
3461   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3462   // makes it so that we cannot make much use of NUW.
3463   auto AddFlags = SCEV::FlagAnyWrap;
3464   const bool RHSIsNotMinSigned =
3465       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3466   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3467     // Let M be the minimum representable signed value. Then (-1)*RHS
3468     // signed-wraps if and only if RHS is M. That can happen even for
3469     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3470     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3471     // (-1)*RHS, we need to prove that RHS != M.
3472     //
3473     // If LHS is non-negative and we know that LHS - RHS does not
3474     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3475     // either by proving that RHS > M or that LHS >= 0.
3476     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3477       AddFlags = SCEV::FlagNSW;
3478     }
3479   }
3480 
3481   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3482   // RHS is NSW and LHS >= 0.
3483   //
3484   // The difficulty here is that the NSW flag may have been proven
3485   // relative to a loop that is to be found in a recurrence in LHS and
3486   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3487   // larger scope than intended.
3488   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3489 
3490   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3491 }
3492 
3493 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3494 /// input value to the specified type.  If the type must be extended, it is zero
3495 /// extended.
3496 const SCEV *
3497 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3498   Type *SrcTy = V->getType();
3499   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3500          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3501          "Cannot truncate or zero extend with non-integer arguments!");
3502   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3503     return V;  // No conversion
3504   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3505     return getTruncateExpr(V, Ty);
3506   return getZeroExtendExpr(V, Ty);
3507 }
3508 
3509 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3510 /// input value to the specified type.  If the type must be extended, it is sign
3511 /// extended.
3512 const SCEV *
3513 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3514                                          Type *Ty) {
3515   Type *SrcTy = V->getType();
3516   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3517          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3518          "Cannot truncate or zero extend with non-integer arguments!");
3519   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3520     return V;  // No conversion
3521   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3522     return getTruncateExpr(V, Ty);
3523   return getSignExtendExpr(V, Ty);
3524 }
3525 
3526 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3527 /// input value to the specified type.  If the type must be extended, it is zero
3528 /// extended.  The conversion must not be narrowing.
3529 const SCEV *
3530 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3531   Type *SrcTy = V->getType();
3532   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3533          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3534          "Cannot noop or zero extend with non-integer arguments!");
3535   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3536          "getNoopOrZeroExtend cannot truncate!");
3537   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3538     return V;  // No conversion
3539   return getZeroExtendExpr(V, Ty);
3540 }
3541 
3542 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3543 /// input value to the specified type.  If the type must be extended, it is sign
3544 /// extended.  The conversion must not be narrowing.
3545 const SCEV *
3546 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3547   Type *SrcTy = V->getType();
3548   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3549          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3550          "Cannot noop or sign extend with non-integer arguments!");
3551   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3552          "getNoopOrSignExtend cannot truncate!");
3553   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3554     return V;  // No conversion
3555   return getSignExtendExpr(V, Ty);
3556 }
3557 
3558 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3559 /// the input value to the specified type. If the type must be extended,
3560 /// it is extended with unspecified bits. The conversion must not be
3561 /// narrowing.
3562 const SCEV *
3563 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3564   Type *SrcTy = V->getType();
3565   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3566          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3567          "Cannot noop or any extend with non-integer arguments!");
3568   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3569          "getNoopOrAnyExtend cannot truncate!");
3570   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3571     return V;  // No conversion
3572   return getAnyExtendExpr(V, Ty);
3573 }
3574 
3575 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3576 /// input value to the specified type.  The conversion must not be widening.
3577 const SCEV *
3578 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3579   Type *SrcTy = V->getType();
3580   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3581          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3582          "Cannot truncate or noop with non-integer arguments!");
3583   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3584          "getTruncateOrNoop cannot extend!");
3585   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3586     return V;  // No conversion
3587   return getTruncateExpr(V, Ty);
3588 }
3589 
3590 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3591 /// the types using zero-extension, and then perform a umax operation
3592 /// with them.
3593 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3594                                                         const SCEV *RHS) {
3595   const SCEV *PromotedLHS = LHS;
3596   const SCEV *PromotedRHS = RHS;
3597 
3598   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3599     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3600   else
3601     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3602 
3603   return getUMaxExpr(PromotedLHS, PromotedRHS);
3604 }
3605 
3606 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3607 /// the types using zero-extension, and then perform a umin operation
3608 /// with them.
3609 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3610                                                         const SCEV *RHS) {
3611   const SCEV *PromotedLHS = LHS;
3612   const SCEV *PromotedRHS = RHS;
3613 
3614   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3615     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3616   else
3617     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3618 
3619   return getUMinExpr(PromotedLHS, PromotedRHS);
3620 }
3621 
3622 /// getPointerBase - Transitively follow the chain of pointer-type operands
3623 /// until reaching a SCEV that does not have a single pointer operand. This
3624 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3625 /// but corner cases do exist.
3626 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3627   // A pointer operand may evaluate to a nonpointer expression, such as null.
3628   if (!V->getType()->isPointerTy())
3629     return V;
3630 
3631   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3632     return getPointerBase(Cast->getOperand());
3633   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3634     const SCEV *PtrOp = nullptr;
3635     for (const SCEV *NAryOp : NAry->operands()) {
3636       if (NAryOp->getType()->isPointerTy()) {
3637         // Cannot find the base of an expression with multiple pointer operands.
3638         if (PtrOp)
3639           return V;
3640         PtrOp = NAryOp;
3641       }
3642     }
3643     if (!PtrOp)
3644       return V;
3645     return getPointerBase(PtrOp);
3646   }
3647   return V;
3648 }
3649 
3650 /// PushDefUseChildren - Push users of the given Instruction
3651 /// onto the given Worklist.
3652 static void
3653 PushDefUseChildren(Instruction *I,
3654                    SmallVectorImpl<Instruction *> &Worklist) {
3655   // Push the def-use children onto the Worklist stack.
3656   for (User *U : I->users())
3657     Worklist.push_back(cast<Instruction>(U));
3658 }
3659 
3660 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3661 /// instructions that depend on the given instruction and removes them from
3662 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3663 /// resolution.
3664 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3665   SmallVector<Instruction *, 16> Worklist;
3666   PushDefUseChildren(PN, Worklist);
3667 
3668   SmallPtrSet<Instruction *, 8> Visited;
3669   Visited.insert(PN);
3670   while (!Worklist.empty()) {
3671     Instruction *I = Worklist.pop_back_val();
3672     if (!Visited.insert(I).second)
3673       continue;
3674 
3675     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3676     if (It != ValueExprMap.end()) {
3677       const SCEV *Old = It->second;
3678 
3679       // Short-circuit the def-use traversal if the symbolic name
3680       // ceases to appear in expressions.
3681       if (Old != SymName && !hasOperand(Old, SymName))
3682         continue;
3683 
3684       // SCEVUnknown for a PHI either means that it has an unrecognized
3685       // structure, it's a PHI that's in the progress of being computed
3686       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3687       // additional loop trip count information isn't going to change anything.
3688       // In the second case, createNodeForPHI will perform the necessary
3689       // updates on its own when it gets to that point. In the third, we do
3690       // want to forget the SCEVUnknown.
3691       if (!isa<PHINode>(I) ||
3692           !isa<SCEVUnknown>(Old) ||
3693           (I != PN && Old == SymName)) {
3694         forgetMemoizedResults(Old);
3695         ValueExprMap.erase(It);
3696       }
3697     }
3698 
3699     PushDefUseChildren(I, Worklist);
3700   }
3701 }
3702 
3703 namespace {
3704 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3705 public:
3706   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3707                              ScalarEvolution &SE) {
3708     SCEVInitRewriter Rewriter(L, SE);
3709     const SCEV *Result = Rewriter.visit(S);
3710     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3711   }
3712 
3713   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3714       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3715 
3716   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3717     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3718       Valid = false;
3719     return Expr;
3720   }
3721 
3722   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3723     // Only allow AddRecExprs for this loop.
3724     if (Expr->getLoop() == L)
3725       return Expr->getStart();
3726     Valid = false;
3727     return Expr;
3728   }
3729 
3730   bool isValid() { return Valid; }
3731 
3732 private:
3733   const Loop *L;
3734   bool Valid;
3735 };
3736 
3737 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3738 public:
3739   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3740                              ScalarEvolution &SE) {
3741     SCEVShiftRewriter Rewriter(L, SE);
3742     const SCEV *Result = Rewriter.visit(S);
3743     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3744   }
3745 
3746   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3747       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3748 
3749   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3750     // Only allow AddRecExprs for this loop.
3751     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3752       Valid = false;
3753     return Expr;
3754   }
3755 
3756   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3757     if (Expr->getLoop() == L && Expr->isAffine())
3758       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3759     Valid = false;
3760     return Expr;
3761   }
3762   bool isValid() { return Valid; }
3763 
3764 private:
3765   const Loop *L;
3766   bool Valid;
3767 };
3768 } // end anonymous namespace
3769 
3770 SCEV::NoWrapFlags
3771 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3772   if (!AR->isAffine())
3773     return SCEV::FlagAnyWrap;
3774 
3775   typedef OverflowingBinaryOperator OBO;
3776   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3777 
3778   if (!AR->hasNoSignedWrap()) {
3779     ConstantRange AddRecRange = getSignedRange(AR);
3780     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3781 
3782     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3783         Instruction::Add, IncRange, OBO::NoSignedWrap);
3784     if (NSWRegion.contains(AddRecRange))
3785       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3786   }
3787 
3788   if (!AR->hasNoUnsignedWrap()) {
3789     ConstantRange AddRecRange = getUnsignedRange(AR);
3790     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3791 
3792     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3793         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3794     if (NUWRegion.contains(AddRecRange))
3795       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3796   }
3797 
3798   return Result;
3799 }
3800 
3801 namespace {
3802 /// Represents an abstract binary operation.  This may exist as a
3803 /// normal instruction or constant expression, or may have been
3804 /// derived from an expression tree.
3805 struct BinaryOp {
3806   unsigned Opcode;
3807   Value *LHS;
3808   Value *RHS;
3809   bool IsNSW;
3810   bool IsNUW;
3811 
3812   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3813   /// constant expression.
3814   Operator *Op;
3815 
3816   explicit BinaryOp(Operator *Op)
3817       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3818         IsNSW(false), IsNUW(false), Op(Op) {
3819     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3820       IsNSW = OBO->hasNoSignedWrap();
3821       IsNUW = OBO->hasNoUnsignedWrap();
3822     }
3823   }
3824 
3825   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3826                     bool IsNUW = false)
3827       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3828         Op(nullptr) {}
3829 };
3830 }
3831 
3832 
3833 /// Try to map \p V into a BinaryOp, and return \c None on failure.
3834 static Optional<BinaryOp> MatchBinaryOp(Value *V) {
3835   auto *Op = dyn_cast<Operator>(V);
3836   if (!Op)
3837     return None;
3838 
3839   // Implementation detail: all the cleverness here should happen without
3840   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3841   // SCEV expressions when possible, and we should not break that.
3842 
3843   switch (Op->getOpcode()) {
3844   case Instruction::Add:
3845   case Instruction::Sub:
3846   case Instruction::Mul:
3847   case Instruction::UDiv:
3848   case Instruction::And:
3849   case Instruction::Or:
3850   case Instruction::AShr:
3851   case Instruction::Shl:
3852     return BinaryOp(Op);
3853 
3854   case Instruction::Xor:
3855     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3856       // If the RHS of the xor is a signbit, then this is just an add.
3857       // Instcombine turns add of signbit into xor as a strength reduction step.
3858       if (RHSC->getValue().isSignBit())
3859         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3860     return BinaryOp(Op);
3861 
3862   case Instruction::LShr:
3863     // Turn logical shift right of a constant into a unsigned divide.
3864     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3865       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3866 
3867       // If the shift count is not less than the bitwidth, the result of
3868       // the shift is undefined. Don't try to analyze it, because the
3869       // resolution chosen here may differ from the resolution chosen in
3870       // other parts of the compiler.
3871       if (SA->getValue().ult(BitWidth)) {
3872         Constant *X =
3873             ConstantInt::get(SA->getContext(),
3874                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3875         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3876       }
3877     }
3878     return BinaryOp(Op);
3879 
3880   default:
3881     break;
3882   }
3883 
3884   return None;
3885 }
3886 
3887 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3888   const Loop *L = LI.getLoopFor(PN->getParent());
3889   if (!L || L->getHeader() != PN->getParent())
3890     return nullptr;
3891 
3892   // The loop may have multiple entrances or multiple exits; we can analyze
3893   // this phi as an addrec if it has a unique entry value and a unique
3894   // backedge value.
3895   Value *BEValueV = nullptr, *StartValueV = nullptr;
3896   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3897     Value *V = PN->getIncomingValue(i);
3898     if (L->contains(PN->getIncomingBlock(i))) {
3899       if (!BEValueV) {
3900         BEValueV = V;
3901       } else if (BEValueV != V) {
3902         BEValueV = nullptr;
3903         break;
3904       }
3905     } else if (!StartValueV) {
3906       StartValueV = V;
3907     } else if (StartValueV != V) {
3908       StartValueV = nullptr;
3909       break;
3910     }
3911   }
3912   if (BEValueV && StartValueV) {
3913     // While we are analyzing this PHI node, handle its value symbolically.
3914     const SCEV *SymbolicName = getUnknown(PN);
3915     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3916            "PHI node already processed?");
3917     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3918 
3919     // Using this symbolic name for the PHI, analyze the value coming around
3920     // the back-edge.
3921     const SCEV *BEValue = getSCEV(BEValueV);
3922 
3923     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3924     // has a special value for the first iteration of the loop.
3925 
3926     // If the value coming around the backedge is an add with the symbolic
3927     // value we just inserted, then we found a simple induction variable!
3928     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3929       // If there is a single occurrence of the symbolic value, replace it
3930       // with a recurrence.
3931       unsigned FoundIndex = Add->getNumOperands();
3932       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3933         if (Add->getOperand(i) == SymbolicName)
3934           if (FoundIndex == e) {
3935             FoundIndex = i;
3936             break;
3937           }
3938 
3939       if (FoundIndex != Add->getNumOperands()) {
3940         // Create an add with everything but the specified operand.
3941         SmallVector<const SCEV *, 8> Ops;
3942         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3943           if (i != FoundIndex)
3944             Ops.push_back(Add->getOperand(i));
3945         const SCEV *Accum = getAddExpr(Ops);
3946 
3947         // This is not a valid addrec if the step amount is varying each
3948         // loop iteration, but is not itself an addrec in this loop.
3949         if (isLoopInvariant(Accum, L) ||
3950             (isa<SCEVAddRecExpr>(Accum) &&
3951              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3952           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3953 
3954           // If the increment doesn't overflow, then neither the addrec nor
3955           // the post-increment will overflow.
3956           if (auto BO = MatchBinaryOp(BEValueV)) {
3957             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
3958               if (BO->IsNUW)
3959                 Flags = setFlags(Flags, SCEV::FlagNUW);
3960               if (BO->IsNSW)
3961                 Flags = setFlags(Flags, SCEV::FlagNSW);
3962             }
3963           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3964             // If the increment is an inbounds GEP, then we know the address
3965             // space cannot be wrapped around. We cannot make any guarantee
3966             // about signed or unsigned overflow because pointers are
3967             // unsigned but we may have a negative index from the base
3968             // pointer. We can guarantee that no unsigned wrap occurs if the
3969             // indices form a positive value.
3970             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3971               Flags = setFlags(Flags, SCEV::FlagNW);
3972 
3973               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3974               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3975                 Flags = setFlags(Flags, SCEV::FlagNUW);
3976             }
3977 
3978             // We cannot transfer nuw and nsw flags from subtraction
3979             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3980             // for instance.
3981           }
3982 
3983           const SCEV *StartVal = getSCEV(StartValueV);
3984           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3985 
3986           // Since the no-wrap flags are on the increment, they apply to the
3987           // post-incremented value as well.
3988           if (isLoopInvariant(Accum, L))
3989             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3990 
3991           // Okay, for the entire analysis of this edge we assumed the PHI
3992           // to be symbolic.  We now need to go back and purge all of the
3993           // entries for the scalars that use the symbolic expression.
3994           forgetSymbolicName(PN, SymbolicName);
3995           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3996           return PHISCEV;
3997         }
3998       }
3999     } else {
4000       // Otherwise, this could be a loop like this:
4001       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4002       // In this case, j = {1,+,1}  and BEValue is j.
4003       // Because the other in-value of i (0) fits the evolution of BEValue
4004       // i really is an addrec evolution.
4005       //
4006       // We can generalize this saying that i is the shifted value of BEValue
4007       // by one iteration:
4008       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4009       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4010       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4011       if (Shifted != getCouldNotCompute() &&
4012           Start != getCouldNotCompute()) {
4013         const SCEV *StartVal = getSCEV(StartValueV);
4014         if (Start == StartVal) {
4015           // Okay, for the entire analysis of this edge we assumed the PHI
4016           // to be symbolic.  We now need to go back and purge all of the
4017           // entries for the scalars that use the symbolic expression.
4018           forgetSymbolicName(PN, SymbolicName);
4019           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4020           return Shifted;
4021         }
4022       }
4023     }
4024 
4025     // Remove the temporary PHI node SCEV that has been inserted while intending
4026     // to create an AddRecExpr for this PHI node. We can not keep this temporary
4027     // as it will prevent later (possibly simpler) SCEV expressions to be added
4028     // to the ValueExprMap.
4029     ValueExprMap.erase(PN);
4030   }
4031 
4032   return nullptr;
4033 }
4034 
4035 // Checks if the SCEV S is available at BB.  S is considered available at BB
4036 // if S can be materialized at BB without introducing a fault.
4037 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4038                                BasicBlock *BB) {
4039   struct CheckAvailable {
4040     bool TraversalDone = false;
4041     bool Available = true;
4042 
4043     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4044     BasicBlock *BB = nullptr;
4045     DominatorTree &DT;
4046 
4047     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4048       : L(L), BB(BB), DT(DT) {}
4049 
4050     bool setUnavailable() {
4051       TraversalDone = true;
4052       Available = false;
4053       return false;
4054     }
4055 
4056     bool follow(const SCEV *S) {
4057       switch (S->getSCEVType()) {
4058       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4059       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4060         // These expressions are available if their operand(s) is/are.
4061         return true;
4062 
4063       case scAddRecExpr: {
4064         // We allow add recurrences that are on the loop BB is in, or some
4065         // outer loop.  This guarantees availability because the value of the
4066         // add recurrence at BB is simply the "current" value of the induction
4067         // variable.  We can relax this in the future; for instance an add
4068         // recurrence on a sibling dominating loop is also available at BB.
4069         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4070         if (L && (ARLoop == L || ARLoop->contains(L)))
4071           return true;
4072 
4073         return setUnavailable();
4074       }
4075 
4076       case scUnknown: {
4077         // For SCEVUnknown, we check for simple dominance.
4078         const auto *SU = cast<SCEVUnknown>(S);
4079         Value *V = SU->getValue();
4080 
4081         if (isa<Argument>(V))
4082           return false;
4083 
4084         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4085           return false;
4086 
4087         return setUnavailable();
4088       }
4089 
4090       case scUDivExpr:
4091       case scCouldNotCompute:
4092         // We do not try to smart about these at all.
4093         return setUnavailable();
4094       }
4095       llvm_unreachable("switch should be fully covered!");
4096     }
4097 
4098     bool isDone() { return TraversalDone; }
4099   };
4100 
4101   CheckAvailable CA(L, BB, DT);
4102   SCEVTraversal<CheckAvailable> ST(CA);
4103 
4104   ST.visitAll(S);
4105   return CA.Available;
4106 }
4107 
4108 // Try to match a control flow sequence that branches out at BI and merges back
4109 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4110 // match.
4111 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4112                           Value *&C, Value *&LHS, Value *&RHS) {
4113   C = BI->getCondition();
4114 
4115   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4116   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4117 
4118   if (!LeftEdge.isSingleEdge())
4119     return false;
4120 
4121   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4122 
4123   Use &LeftUse = Merge->getOperandUse(0);
4124   Use &RightUse = Merge->getOperandUse(1);
4125 
4126   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4127     LHS = LeftUse;
4128     RHS = RightUse;
4129     return true;
4130   }
4131 
4132   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4133     LHS = RightUse;
4134     RHS = LeftUse;
4135     return true;
4136   }
4137 
4138   return false;
4139 }
4140 
4141 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4142   if (PN->getNumIncomingValues() == 2) {
4143     const Loop *L = LI.getLoopFor(PN->getParent());
4144 
4145     // We don't want to break LCSSA, even in a SCEV expression tree.
4146     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4147       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4148         return nullptr;
4149 
4150     // Try to match
4151     //
4152     //  br %cond, label %left, label %right
4153     // left:
4154     //  br label %merge
4155     // right:
4156     //  br label %merge
4157     // merge:
4158     //  V = phi [ %x, %left ], [ %y, %right ]
4159     //
4160     // as "select %cond, %x, %y"
4161 
4162     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4163     assert(IDom && "At least the entry block should dominate PN");
4164 
4165     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4166     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4167 
4168     if (BI && BI->isConditional() &&
4169         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4170         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4171         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4172       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4173   }
4174 
4175   return nullptr;
4176 }
4177 
4178 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4179   if (const SCEV *S = createAddRecFromPHI(PN))
4180     return S;
4181 
4182   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4183     return S;
4184 
4185   // If the PHI has a single incoming value, follow that value, unless the
4186   // PHI's incoming blocks are in a different loop, in which case doing so
4187   // risks breaking LCSSA form. Instcombine would normally zap these, but
4188   // it doesn't have DominatorTree information, so it may miss cases.
4189   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4190     if (LI.replacementPreservesLCSSAForm(PN, V))
4191       return getSCEV(V);
4192 
4193   // If it's not a loop phi, we can't handle it yet.
4194   return getUnknown(PN);
4195 }
4196 
4197 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4198                                                       Value *Cond,
4199                                                       Value *TrueVal,
4200                                                       Value *FalseVal) {
4201   // Handle "constant" branch or select. This can occur for instance when a
4202   // loop pass transforms an inner loop and moves on to process the outer loop.
4203   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4204     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4205 
4206   // Try to match some simple smax or umax patterns.
4207   auto *ICI = dyn_cast<ICmpInst>(Cond);
4208   if (!ICI)
4209     return getUnknown(I);
4210 
4211   Value *LHS = ICI->getOperand(0);
4212   Value *RHS = ICI->getOperand(1);
4213 
4214   switch (ICI->getPredicate()) {
4215   case ICmpInst::ICMP_SLT:
4216   case ICmpInst::ICMP_SLE:
4217     std::swap(LHS, RHS);
4218   // fall through
4219   case ICmpInst::ICMP_SGT:
4220   case ICmpInst::ICMP_SGE:
4221     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4222     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4223     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4224       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4225       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4226       const SCEV *LA = getSCEV(TrueVal);
4227       const SCEV *RA = getSCEV(FalseVal);
4228       const SCEV *LDiff = getMinusSCEV(LA, LS);
4229       const SCEV *RDiff = getMinusSCEV(RA, RS);
4230       if (LDiff == RDiff)
4231         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4232       LDiff = getMinusSCEV(LA, RS);
4233       RDiff = getMinusSCEV(RA, LS);
4234       if (LDiff == RDiff)
4235         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4236     }
4237     break;
4238   case ICmpInst::ICMP_ULT:
4239   case ICmpInst::ICMP_ULE:
4240     std::swap(LHS, RHS);
4241   // fall through
4242   case ICmpInst::ICMP_UGT:
4243   case ICmpInst::ICMP_UGE:
4244     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4245     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4246     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4247       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4248       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4249       const SCEV *LA = getSCEV(TrueVal);
4250       const SCEV *RA = getSCEV(FalseVal);
4251       const SCEV *LDiff = getMinusSCEV(LA, LS);
4252       const SCEV *RDiff = getMinusSCEV(RA, RS);
4253       if (LDiff == RDiff)
4254         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4255       LDiff = getMinusSCEV(LA, RS);
4256       RDiff = getMinusSCEV(RA, LS);
4257       if (LDiff == RDiff)
4258         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4259     }
4260     break;
4261   case ICmpInst::ICMP_NE:
4262     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4263     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4264         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4265       const SCEV *One = getOne(I->getType());
4266       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4267       const SCEV *LA = getSCEV(TrueVal);
4268       const SCEV *RA = getSCEV(FalseVal);
4269       const SCEV *LDiff = getMinusSCEV(LA, LS);
4270       const SCEV *RDiff = getMinusSCEV(RA, One);
4271       if (LDiff == RDiff)
4272         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4273     }
4274     break;
4275   case ICmpInst::ICMP_EQ:
4276     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4277     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4278         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4279       const SCEV *One = getOne(I->getType());
4280       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4281       const SCEV *LA = getSCEV(TrueVal);
4282       const SCEV *RA = getSCEV(FalseVal);
4283       const SCEV *LDiff = getMinusSCEV(LA, One);
4284       const SCEV *RDiff = getMinusSCEV(RA, LS);
4285       if (LDiff == RDiff)
4286         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4287     }
4288     break;
4289   default:
4290     break;
4291   }
4292 
4293   return getUnknown(I);
4294 }
4295 
4296 /// createNodeForGEP - Expand GEP instructions into add and multiply
4297 /// operations. This allows them to be analyzed by regular SCEV code.
4298 ///
4299 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4300   // Don't attempt to analyze GEPs over unsized objects.
4301   if (!GEP->getSourceElementType()->isSized())
4302     return getUnknown(GEP);
4303 
4304   SmallVector<const SCEV *, 4> IndexExprs;
4305   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4306     IndexExprs.push_back(getSCEV(*Index));
4307   return getGEPExpr(GEP->getSourceElementType(),
4308                     getSCEV(GEP->getPointerOperand()),
4309                     IndexExprs, GEP->isInBounds());
4310 }
4311 
4312 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4313 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
4314 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
4315 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
4316 uint32_t
4317 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4318   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4319     return C->getAPInt().countTrailingZeros();
4320 
4321   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4322     return std::min(GetMinTrailingZeros(T->getOperand()),
4323                     (uint32_t)getTypeSizeInBits(T->getType()));
4324 
4325   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4326     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4327     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4328              getTypeSizeInBits(E->getType()) : OpRes;
4329   }
4330 
4331   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4332     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4333     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4334              getTypeSizeInBits(E->getType()) : OpRes;
4335   }
4336 
4337   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4338     // The result is the min of all operands results.
4339     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4340     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4341       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4342     return MinOpRes;
4343   }
4344 
4345   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4346     // The result is the sum of all operands results.
4347     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4348     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4349     for (unsigned i = 1, e = M->getNumOperands();
4350          SumOpRes != BitWidth && i != e; ++i)
4351       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4352                           BitWidth);
4353     return SumOpRes;
4354   }
4355 
4356   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4357     // The result is the min of all operands results.
4358     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4359     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4360       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4361     return MinOpRes;
4362   }
4363 
4364   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4365     // The result is the min of all operands results.
4366     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4367     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4368       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4369     return MinOpRes;
4370   }
4371 
4372   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4373     // The result is the min of all operands results.
4374     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4375     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4376       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4377     return MinOpRes;
4378   }
4379 
4380   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4381     // For a SCEVUnknown, ask ValueTracking.
4382     unsigned BitWidth = getTypeSizeInBits(U->getType());
4383     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4384     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4385                      nullptr, &DT);
4386     return Zeros.countTrailingOnes();
4387   }
4388 
4389   // SCEVUDivExpr
4390   return 0;
4391 }
4392 
4393 /// GetRangeFromMetadata - Helper method to assign a range to V from
4394 /// metadata present in the IR.
4395 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4396   if (Instruction *I = dyn_cast<Instruction>(V))
4397     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4398       return getConstantRangeFromMetadata(*MD);
4399 
4400   return None;
4401 }
4402 
4403 /// getRange - Determine the range for a particular SCEV.  If SignHint is
4404 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4405 /// with a "cleaner" unsigned (resp. signed) representation.
4406 ///
4407 ConstantRange
4408 ScalarEvolution::getRange(const SCEV *S,
4409                           ScalarEvolution::RangeSignHint SignHint) {
4410   DenseMap<const SCEV *, ConstantRange> &Cache =
4411       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4412                                                        : SignedRanges;
4413 
4414   // See if we've computed this range already.
4415   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4416   if (I != Cache.end())
4417     return I->second;
4418 
4419   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4420     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4421 
4422   unsigned BitWidth = getTypeSizeInBits(S->getType());
4423   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4424 
4425   // If the value has known zeros, the maximum value will have those known zeros
4426   // as well.
4427   uint32_t TZ = GetMinTrailingZeros(S);
4428   if (TZ != 0) {
4429     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4430       ConservativeResult =
4431           ConstantRange(APInt::getMinValue(BitWidth),
4432                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4433     else
4434       ConservativeResult = ConstantRange(
4435           APInt::getSignedMinValue(BitWidth),
4436           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4437   }
4438 
4439   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4440     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4441     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4442       X = X.add(getRange(Add->getOperand(i), SignHint));
4443     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4444   }
4445 
4446   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4447     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4448     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4449       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4450     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4451   }
4452 
4453   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4454     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4455     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4456       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4457     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4458   }
4459 
4460   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4461     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4462     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4463       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4464     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4465   }
4466 
4467   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4468     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4469     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4470     return setRange(UDiv, SignHint,
4471                     ConservativeResult.intersectWith(X.udiv(Y)));
4472   }
4473 
4474   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4475     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4476     return setRange(ZExt, SignHint,
4477                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4478   }
4479 
4480   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4481     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4482     return setRange(SExt, SignHint,
4483                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4484   }
4485 
4486   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4487     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4488     return setRange(Trunc, SignHint,
4489                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4490   }
4491 
4492   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4493     // If there's no unsigned wrap, the value will never be less than its
4494     // initial value.
4495     if (AddRec->hasNoUnsignedWrap())
4496       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4497         if (!C->getValue()->isZero())
4498           ConservativeResult = ConservativeResult.intersectWith(
4499               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4500 
4501     // If there's no signed wrap, and all the operands have the same sign or
4502     // zero, the value won't ever change sign.
4503     if (AddRec->hasNoSignedWrap()) {
4504       bool AllNonNeg = true;
4505       bool AllNonPos = true;
4506       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4507         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4508         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4509       }
4510       if (AllNonNeg)
4511         ConservativeResult = ConservativeResult.intersectWith(
4512           ConstantRange(APInt(BitWidth, 0),
4513                         APInt::getSignedMinValue(BitWidth)));
4514       else if (AllNonPos)
4515         ConservativeResult = ConservativeResult.intersectWith(
4516           ConstantRange(APInt::getSignedMinValue(BitWidth),
4517                         APInt(BitWidth, 1)));
4518     }
4519 
4520     // TODO: non-affine addrec
4521     if (AddRec->isAffine()) {
4522       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4523       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4524           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4525         auto RangeFromAffine = getRangeForAffineAR(
4526             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4527             BitWidth);
4528         if (!RangeFromAffine.isFullSet())
4529           ConservativeResult =
4530               ConservativeResult.intersectWith(RangeFromAffine);
4531 
4532         auto RangeFromFactoring = getRangeViaFactoring(
4533             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4534             BitWidth);
4535         if (!RangeFromFactoring.isFullSet())
4536           ConservativeResult =
4537               ConservativeResult.intersectWith(RangeFromFactoring);
4538       }
4539     }
4540 
4541     return setRange(AddRec, SignHint, ConservativeResult);
4542   }
4543 
4544   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4545     // Check if the IR explicitly contains !range metadata.
4546     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4547     if (MDRange.hasValue())
4548       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4549 
4550     // Split here to avoid paying the compile-time cost of calling both
4551     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4552     // if needed.
4553     const DataLayout &DL = getDataLayout();
4554     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4555       // For a SCEVUnknown, ask ValueTracking.
4556       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4557       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4558       if (Ones != ~Zeros + 1)
4559         ConservativeResult =
4560             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4561     } else {
4562       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4563              "generalize as needed!");
4564       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4565       if (NS > 1)
4566         ConservativeResult = ConservativeResult.intersectWith(
4567             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4568                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4569     }
4570 
4571     return setRange(U, SignHint, ConservativeResult);
4572   }
4573 
4574   return setRange(S, SignHint, ConservativeResult);
4575 }
4576 
4577 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4578                                                    const SCEV *Step,
4579                                                    const SCEV *MaxBECount,
4580                                                    unsigned BitWidth) {
4581   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4582          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4583          "Precondition!");
4584 
4585   ConstantRange Result(BitWidth, /* isFullSet = */ true);
4586 
4587   // Check for overflow.  This must be done with ConstantRange arithmetic
4588   // because we could be called from within the ScalarEvolution overflow
4589   // checking code.
4590 
4591   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4592   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4593   ConstantRange ZExtMaxBECountRange =
4594       MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4595 
4596   ConstantRange StepSRange = getSignedRange(Step);
4597   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4598 
4599   ConstantRange StartURange = getUnsignedRange(Start);
4600   ConstantRange EndURange =
4601       StartURange.add(MaxBECountRange.multiply(StepSRange));
4602 
4603   // Check for unsigned overflow.
4604   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4605   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4606   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4607       ZExtEndURange) {
4608     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4609                                EndURange.getUnsignedMin());
4610     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4611                                EndURange.getUnsignedMax());
4612     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4613     if (!IsFullRange)
4614       Result =
4615           Result.intersectWith(ConstantRange(Min, Max + 1));
4616   }
4617 
4618   ConstantRange StartSRange = getSignedRange(Start);
4619   ConstantRange EndSRange =
4620       StartSRange.add(MaxBECountRange.multiply(StepSRange));
4621 
4622   // Check for signed overflow. This must be done with ConstantRange
4623   // arithmetic because we could be called from within the ScalarEvolution
4624   // overflow checking code.
4625   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4626   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4627   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4628       SExtEndSRange) {
4629     APInt Min =
4630         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4631     APInt Max =
4632         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4633     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4634     if (!IsFullRange)
4635       Result =
4636           Result.intersectWith(ConstantRange(Min, Max + 1));
4637   }
4638 
4639   return Result;
4640 }
4641 
4642 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4643                                                     const SCEV *Step,
4644                                                     const SCEV *MaxBECount,
4645                                                     unsigned BitWidth) {
4646   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4647   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4648 
4649   struct SelectPattern {
4650     Value *Condition = nullptr;
4651     APInt TrueValue;
4652     APInt FalseValue;
4653 
4654     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4655                            const SCEV *S) {
4656       Optional<unsigned> CastOp;
4657       APInt Offset(BitWidth, 0);
4658 
4659       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4660              "Should be!");
4661 
4662       // Peel off a constant offset:
4663       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4664         // In the future we could consider being smarter here and handle
4665         // {Start+Step,+,Step} too.
4666         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4667           return;
4668 
4669         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4670         S = SA->getOperand(1);
4671       }
4672 
4673       // Peel off a cast operation
4674       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4675         CastOp = SCast->getSCEVType();
4676         S = SCast->getOperand();
4677       }
4678 
4679       using namespace llvm::PatternMatch;
4680 
4681       auto *SU = dyn_cast<SCEVUnknown>(S);
4682       const APInt *TrueVal, *FalseVal;
4683       if (!SU ||
4684           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4685                                           m_APInt(FalseVal)))) {
4686         Condition = nullptr;
4687         return;
4688       }
4689 
4690       TrueValue = *TrueVal;
4691       FalseValue = *FalseVal;
4692 
4693       // Re-apply the cast we peeled off earlier
4694       if (CastOp.hasValue())
4695         switch (*CastOp) {
4696         default:
4697           llvm_unreachable("Unknown SCEV cast type!");
4698 
4699         case scTruncate:
4700           TrueValue = TrueValue.trunc(BitWidth);
4701           FalseValue = FalseValue.trunc(BitWidth);
4702           break;
4703         case scZeroExtend:
4704           TrueValue = TrueValue.zext(BitWidth);
4705           FalseValue = FalseValue.zext(BitWidth);
4706           break;
4707         case scSignExtend:
4708           TrueValue = TrueValue.sext(BitWidth);
4709           FalseValue = FalseValue.sext(BitWidth);
4710           break;
4711         }
4712 
4713       // Re-apply the constant offset we peeled off earlier
4714       TrueValue += Offset;
4715       FalseValue += Offset;
4716     }
4717 
4718     bool isRecognized() { return Condition != nullptr; }
4719   };
4720 
4721   SelectPattern StartPattern(*this, BitWidth, Start);
4722   if (!StartPattern.isRecognized())
4723     return ConstantRange(BitWidth, /* isFullSet = */ true);
4724 
4725   SelectPattern StepPattern(*this, BitWidth, Step);
4726   if (!StepPattern.isRecognized())
4727     return ConstantRange(BitWidth, /* isFullSet = */ true);
4728 
4729   if (StartPattern.Condition != StepPattern.Condition) {
4730     // We don't handle this case today; but we could, by considering four
4731     // possibilities below instead of two. I'm not sure if there are cases where
4732     // that will help over what getRange already does, though.
4733     return ConstantRange(BitWidth, /* isFullSet = */ true);
4734   }
4735 
4736   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4737   // construct arbitrary general SCEV expressions here.  This function is called
4738   // from deep in the call stack, and calling getSCEV (on a sext instruction,
4739   // say) can end up caching a suboptimal value.
4740 
4741   // FIXME: without the explicit `this` receiver below, MSVC errors out with
4742   // C2352 and C2512 (otherwise it isn't needed).
4743 
4744   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4745   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4746   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4747   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4748 
4749   ConstantRange TrueRange =
4750       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4751   ConstantRange FalseRange =
4752       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4753 
4754   return TrueRange.unionWith(FalseRange);
4755 }
4756 
4757 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4758   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4759   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4760 
4761   // Return early if there are no flags to propagate to the SCEV.
4762   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4763   if (BinOp->hasNoUnsignedWrap())
4764     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4765   if (BinOp->hasNoSignedWrap())
4766     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4767   if (Flags == SCEV::FlagAnyWrap)
4768     return SCEV::FlagAnyWrap;
4769 
4770   // Here we check that BinOp is in the header of the innermost loop
4771   // containing BinOp, since we only deal with instructions in the loop
4772   // header. The actual loop we need to check later will come from an add
4773   // recurrence, but getting that requires computing the SCEV of the operands,
4774   // which can be expensive. This check we can do cheaply to rule out some
4775   // cases early.
4776   Loop *InnermostContainingLoop = LI.getLoopFor(BinOp->getParent());
4777   if (InnermostContainingLoop == nullptr ||
4778       InnermostContainingLoop->getHeader() != BinOp->getParent())
4779     return SCEV::FlagAnyWrap;
4780 
4781   // Only proceed if we can prove that BinOp does not yield poison.
4782   if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4783 
4784   // At this point we know that if V is executed, then it does not wrap
4785   // according to at least one of NSW or NUW. If V is not executed, then we do
4786   // not know if the calculation that V represents would wrap. Multiple
4787   // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4788   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4789   // derived from other instructions that map to the same SCEV. We cannot make
4790   // that guarantee for cases where V is not executed. So we need to find the
4791   // loop that V is considered in relation to and prove that V is executed for
4792   // every iteration of that loop. That implies that the value that V
4793   // calculates does not wrap anywhere in the loop, so then we can apply the
4794   // flags to the SCEV.
4795   //
4796   // We check isLoopInvariant to disambiguate in case we are adding two
4797   // recurrences from different loops, so that we know which loop to prove
4798   // that V is executed in.
4799   for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4800     const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4801     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4802       const int OtherOpIndex = 1 - OpIndex;
4803       const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4804       if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4805           isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4806         return Flags;
4807     }
4808   }
4809   return SCEV::FlagAnyWrap;
4810 }
4811 
4812 /// createSCEV - We know that there is no SCEV for the specified value.  Analyze
4813 /// the expression.
4814 ///
4815 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4816   if (!isSCEVable(V->getType()))
4817     return getUnknown(V);
4818 
4819   if (Instruction *I = dyn_cast<Instruction>(V)) {
4820     // Don't attempt to analyze instructions in blocks that aren't
4821     // reachable. Such instructions don't matter, and they aren't required
4822     // to obey basic rules for definitions dominating uses which this
4823     // analysis depends on.
4824     if (!DT.isReachableFromEntry(I->getParent()))
4825       return getUnknown(V);
4826   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4827     return getConstant(CI);
4828   else if (isa<ConstantPointerNull>(V))
4829     return getZero(V->getType());
4830   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4831     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4832   else if (!isa<ConstantExpr>(V))
4833     return getUnknown(V);
4834 
4835   Operator *U = cast<Operator>(V);
4836   if (auto BO = MatchBinaryOp(U)) {
4837     switch (BO->Opcode) {
4838     case Instruction::Add: {
4839       // The simple thing to do would be to just call getSCEV on both operands
4840       // and call getAddExpr with the result. However if we're looking at a
4841       // bunch of things all added together, this can be quite inefficient,
4842       // because it leads to N-1 getAddExpr calls for N ultimate operands.
4843       // Instead, gather up all the operands and make a single getAddExpr call.
4844       // LLVM IR canonical form means we need only traverse the left operands.
4845       SmallVector<const SCEV *, 4> AddOps;
4846       do {
4847         if (BO->Op) {
4848           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4849             AddOps.push_back(OpSCEV);
4850             break;
4851           }
4852 
4853           // If a NUW or NSW flag can be applied to the SCEV for this
4854           // addition, then compute the SCEV for this addition by itself
4855           // with a separate call to getAddExpr. We need to do that
4856           // instead of pushing the operands of the addition onto AddOps,
4857           // since the flags are only known to apply to this particular
4858           // addition - they may not apply to other additions that can be
4859           // formed with operands from AddOps.
4860           const SCEV *RHS = getSCEV(BO->RHS);
4861           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4862           if (Flags != SCEV::FlagAnyWrap) {
4863             const SCEV *LHS = getSCEV(BO->LHS);
4864             if (BO->Opcode == Instruction::Sub)
4865               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4866             else
4867               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4868             break;
4869           }
4870         }
4871 
4872         if (BO->Opcode == Instruction::Sub)
4873           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
4874         else
4875           AddOps.push_back(getSCEV(BO->RHS));
4876 
4877         auto NewBO = MatchBinaryOp(BO->LHS);
4878         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
4879                        NewBO->Opcode != Instruction::Sub)) {
4880           AddOps.push_back(getSCEV(BO->LHS));
4881           break;
4882         }
4883         BO = NewBO;
4884       } while (true);
4885 
4886       return getAddExpr(AddOps);
4887     }
4888 
4889     case Instruction::Mul: {
4890       SmallVector<const SCEV *, 4> MulOps;
4891       do {
4892         if (BO->Op) {
4893           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4894             MulOps.push_back(OpSCEV);
4895             break;
4896           }
4897 
4898           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4899           if (Flags != SCEV::FlagAnyWrap) {
4900             MulOps.push_back(
4901                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
4902             break;
4903           }
4904         }
4905 
4906         MulOps.push_back(getSCEV(BO->RHS));
4907         auto NewBO = MatchBinaryOp(BO->LHS);
4908         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
4909           MulOps.push_back(getSCEV(BO->LHS));
4910           break;
4911         }
4912 	BO = NewBO;
4913       } while (true);
4914 
4915       return getMulExpr(MulOps);
4916     }
4917     case Instruction::UDiv:
4918       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
4919     case Instruction::Sub: {
4920       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4921       if (BO->Op)
4922         Flags = getNoWrapFlagsFromUB(BO->Op);
4923       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
4924     }
4925     case Instruction::And:
4926       // For an expression like x&255 that merely masks off the high bits,
4927       // use zext(trunc(x)) as the SCEV expression.
4928       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4929         if (CI->isNullValue())
4930           return getSCEV(BO->RHS);
4931         if (CI->isAllOnesValue())
4932           return getSCEV(BO->LHS);
4933         const APInt &A = CI->getValue();
4934 
4935         // Instcombine's ShrinkDemandedConstant may strip bits out of
4936         // constants, obscuring what would otherwise be a low-bits mask.
4937         // Use computeKnownBits to compute what ShrinkDemandedConstant
4938         // knew about to reconstruct a low-bits mask value.
4939         unsigned LZ = A.countLeadingZeros();
4940         unsigned TZ = A.countTrailingZeros();
4941         unsigned BitWidth = A.getBitWidth();
4942         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4943         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
4944                          0, &AC, nullptr, &DT);
4945 
4946         APInt EffectiveMask =
4947             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4948         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4949           const SCEV *MulCount = getConstant(ConstantInt::get(
4950               getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4951           return getMulExpr(
4952               getZeroExtendExpr(
4953                   getTruncateExpr(
4954                       getUDivExactExpr(getSCEV(BO->LHS), MulCount),
4955                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4956                   BO->LHS->getType()),
4957               MulCount);
4958         }
4959       }
4960       break;
4961 
4962     case Instruction::Or:
4963       // If the RHS of the Or is a constant, we may have something like:
4964       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4965       // optimizations will transparently handle this case.
4966       //
4967       // In order for this transformation to be safe, the LHS must be of the
4968       // form X*(2^n) and the Or constant must be less than 2^n.
4969       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4970         const SCEV *LHS = getSCEV(BO->LHS);
4971         const APInt &CIVal = CI->getValue();
4972         if (GetMinTrailingZeros(LHS) >=
4973             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4974           // Build a plain add SCEV.
4975           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4976           // If the LHS of the add was an addrec and it has no-wrap flags,
4977           // transfer the no-wrap flags, since an or won't introduce a wrap.
4978           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4979             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4980             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4981                 OldAR->getNoWrapFlags());
4982           }
4983           return S;
4984         }
4985       }
4986       break;
4987 
4988     case Instruction::Xor:
4989       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4990         // If the RHS of xor is -1, then this is a not operation.
4991         if (CI->isAllOnesValue())
4992           return getNotSCEV(getSCEV(BO->LHS));
4993 
4994         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4995         // This is a variant of the check for xor with -1, and it handles
4996         // the case where instcombine has trimmed non-demanded bits out
4997         // of an xor with -1.
4998         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
4999           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5000             if (LBO->getOpcode() == Instruction::And &&
5001                 LCI->getValue() == CI->getValue())
5002               if (const SCEVZeroExtendExpr *Z =
5003                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5004                 Type *UTy = BO->LHS->getType();
5005                 const SCEV *Z0 = Z->getOperand();
5006                 Type *Z0Ty = Z0->getType();
5007                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5008 
5009                 // If C is a low-bits mask, the zero extend is serving to
5010                 // mask off the high bits. Complement the operand and
5011                 // re-apply the zext.
5012                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5013                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5014 
5015                 // If C is a single bit, it may be in the sign-bit position
5016                 // before the zero-extend. In this case, represent the xor
5017                 // using an add, which is equivalent, and re-apply the zext.
5018                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5019                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5020                     Trunc.isSignBit())
5021                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5022                                            UTy);
5023               }
5024       }
5025       break;
5026 
5027   case Instruction::Shl:
5028     // Turn shift left of a constant amount into a multiply.
5029     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5030       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5031 
5032       // If the shift count is not less than the bitwidth, the result of
5033       // the shift is undefined. Don't try to analyze it, because the
5034       // resolution chosen here may differ from the resolution chosen in
5035       // other parts of the compiler.
5036       if (SA->getValue().uge(BitWidth))
5037         break;
5038 
5039       // It is currently not resolved how to interpret NSW for left
5040       // shift by BitWidth - 1, so we avoid applying flags in that
5041       // case. Remove this check (or this comment) once the situation
5042       // is resolved. See
5043       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5044       // and http://reviews.llvm.org/D8890 .
5045       auto Flags = SCEV::FlagAnyWrap;
5046       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5047         Flags = getNoWrapFlagsFromUB(BO->Op);
5048 
5049       Constant *X = ConstantInt::get(getContext(),
5050         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5051       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5052     }
5053     break;
5054 
5055     case Instruction::AShr:
5056       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5057       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5058         if (Operator *L = dyn_cast<Operator>(BO->LHS))
5059           if (L->getOpcode() == Instruction::Shl &&
5060               L->getOperand(1) == BO->RHS) {
5061             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5062 
5063             // If the shift count is not less than the bitwidth, the result of
5064             // the shift is undefined. Don't try to analyze it, because the
5065             // resolution chosen here may differ from the resolution chosen in
5066             // other parts of the compiler.
5067             if (CI->getValue().uge(BitWidth))
5068               break;
5069 
5070             uint64_t Amt = BitWidth - CI->getZExtValue();
5071             if (Amt == BitWidth)
5072               return getSCEV(L->getOperand(0)); // shift by zero --> noop
5073             return getSignExtendExpr(
5074                 getTruncateExpr(getSCEV(L->getOperand(0)),
5075                                 IntegerType::get(getContext(), Amt)),
5076                 BO->LHS->getType());
5077           }
5078       break;
5079     }
5080   }
5081 
5082   switch (U->getOpcode()) {
5083   case Instruction::Trunc:
5084     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5085 
5086   case Instruction::ZExt:
5087     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5088 
5089   case Instruction::SExt:
5090     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5091 
5092   case Instruction::BitCast:
5093     // BitCasts are no-op casts so we just eliminate the cast.
5094     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5095       return getSCEV(U->getOperand(0));
5096     break;
5097 
5098   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5099   // lead to pointer expressions which cannot safely be expanded to GEPs,
5100   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5101   // simplifying integer expressions.
5102 
5103   case Instruction::GetElementPtr:
5104     return createNodeForGEP(cast<GEPOperator>(U));
5105 
5106   case Instruction::PHI:
5107     return createNodeForPHI(cast<PHINode>(U));
5108 
5109   case Instruction::Select:
5110     // U can also be a select constant expr, which let fall through.  Since
5111     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5112     // constant expressions cannot have instructions as operands, we'd have
5113     // returned getUnknown for a select constant expressions anyway.
5114     if (isa<Instruction>(U))
5115       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5116                                       U->getOperand(1), U->getOperand(2));
5117   }
5118 
5119   return getUnknown(V);
5120 }
5121 
5122 
5123 
5124 //===----------------------------------------------------------------------===//
5125 //                   Iteration Count Computation Code
5126 //
5127 
5128 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5129   if (BasicBlock *ExitingBB = L->getExitingBlock())
5130     return getSmallConstantTripCount(L, ExitingBB);
5131 
5132   // No trip count information for multiple exits.
5133   return 0;
5134 }
5135 
5136 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
5137 /// normal unsigned value. Returns 0 if the trip count is unknown or not
5138 /// constant. Will also return 0 if the maximum trip count is very large (>=
5139 /// 2^32).
5140 ///
5141 /// This "trip count" assumes that control exits via ExitingBlock. More
5142 /// precisely, it is the number of times that control may reach ExitingBlock
5143 /// before taking the branch. For loops with multiple exits, it may not be the
5144 /// number times that the loop header executes because the loop may exit
5145 /// prematurely via another branch.
5146 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5147                                                     BasicBlock *ExitingBlock) {
5148   assert(ExitingBlock && "Must pass a non-null exiting block!");
5149   assert(L->isLoopExiting(ExitingBlock) &&
5150          "Exiting block must actually branch out of the loop!");
5151   const SCEVConstant *ExitCount =
5152       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5153   if (!ExitCount)
5154     return 0;
5155 
5156   ConstantInt *ExitConst = ExitCount->getValue();
5157 
5158   // Guard against huge trip counts.
5159   if (ExitConst->getValue().getActiveBits() > 32)
5160     return 0;
5161 
5162   // In case of integer overflow, this returns 0, which is correct.
5163   return ((unsigned)ExitConst->getZExtValue()) + 1;
5164 }
5165 
5166 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5167   if (BasicBlock *ExitingBB = L->getExitingBlock())
5168     return getSmallConstantTripMultiple(L, ExitingBB);
5169 
5170   // No trip multiple information for multiple exits.
5171   return 0;
5172 }
5173 
5174 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
5175 /// trip count of this loop as a normal unsigned value, if possible. This
5176 /// means that the actual trip count is always a multiple of the returned
5177 /// value (don't forget the trip count could very well be zero as well!).
5178 ///
5179 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5180 /// multiple of a constant (which is also the case if the trip count is simply
5181 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5182 /// if the trip count is very large (>= 2^32).
5183 ///
5184 /// As explained in the comments for getSmallConstantTripCount, this assumes
5185 /// that control exits the loop via ExitingBlock.
5186 unsigned
5187 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5188                                               BasicBlock *ExitingBlock) {
5189   assert(ExitingBlock && "Must pass a non-null exiting block!");
5190   assert(L->isLoopExiting(ExitingBlock) &&
5191          "Exiting block must actually branch out of the loop!");
5192   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5193   if (ExitCount == getCouldNotCompute())
5194     return 1;
5195 
5196   // Get the trip count from the BE count by adding 1.
5197   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5198   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5199   // to factor simple cases.
5200   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5201     TCMul = Mul->getOperand(0);
5202 
5203   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5204   if (!MulC)
5205     return 1;
5206 
5207   ConstantInt *Result = MulC->getValue();
5208 
5209   // Guard against huge trip counts (this requires checking
5210   // for zero to handle the case where the trip count == -1 and the
5211   // addition wraps).
5212   if (!Result || Result->getValue().getActiveBits() > 32 ||
5213       Result->getValue().getActiveBits() == 0)
5214     return 1;
5215 
5216   return (unsigned)Result->getZExtValue();
5217 }
5218 
5219 // getExitCount - Get the expression for the number of loop iterations for which
5220 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
5221 // SCEVCouldNotCompute.
5222 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5223   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5224 }
5225 
5226 /// getBackedgeTakenCount - If the specified loop has a predictable
5227 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
5228 /// object. The backedge-taken count is the number of times the loop header
5229 /// will be branched to from within the loop. This is one less than the
5230 /// trip count of the loop, since it doesn't count the first iteration,
5231 /// when the header is branched to from outside the loop.
5232 ///
5233 /// Note that it is not valid to call this method on a loop without a
5234 /// loop-invariant backedge-taken count (see
5235 /// hasLoopInvariantBackedgeTakenCount).
5236 ///
5237 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5238   return getBackedgeTakenInfo(L).getExact(this);
5239 }
5240 
5241 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
5242 /// return the least SCEV value that is known never to be less than the
5243 /// actual backedge taken count.
5244 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5245   return getBackedgeTakenInfo(L).getMax(this);
5246 }
5247 
5248 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
5249 /// onto the given Worklist.
5250 static void
5251 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5252   BasicBlock *Header = L->getHeader();
5253 
5254   // Push all Loop-header PHIs onto the Worklist stack.
5255   for (BasicBlock::iterator I = Header->begin();
5256        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5257     Worklist.push_back(PN);
5258 }
5259 
5260 const ScalarEvolution::BackedgeTakenInfo &
5261 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5262   // Initially insert an invalid entry for this loop. If the insertion
5263   // succeeds, proceed to actually compute a backedge-taken count and
5264   // update the value. The temporary CouldNotCompute value tells SCEV
5265   // code elsewhere that it shouldn't attempt to request a new
5266   // backedge-taken count, which could result in infinite recursion.
5267   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5268       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5269   if (!Pair.second)
5270     return Pair.first->second;
5271 
5272   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5273   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5274   // must be cleared in this scope.
5275   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5276 
5277   if (Result.getExact(this) != getCouldNotCompute()) {
5278     assert(isLoopInvariant(Result.getExact(this), L) &&
5279            isLoopInvariant(Result.getMax(this), L) &&
5280            "Computed backedge-taken count isn't loop invariant for loop!");
5281     ++NumTripCountsComputed;
5282   }
5283   else if (Result.getMax(this) == getCouldNotCompute() &&
5284            isa<PHINode>(L->getHeader()->begin())) {
5285     // Only count loops that have phi nodes as not being computable.
5286     ++NumTripCountsNotComputed;
5287   }
5288 
5289   // Now that we know more about the trip count for this loop, forget any
5290   // existing SCEV values for PHI nodes in this loop since they are only
5291   // conservative estimates made without the benefit of trip count
5292   // information. This is similar to the code in forgetLoop, except that
5293   // it handles SCEVUnknown PHI nodes specially.
5294   if (Result.hasAnyInfo()) {
5295     SmallVector<Instruction *, 16> Worklist;
5296     PushLoopPHIs(L, Worklist);
5297 
5298     SmallPtrSet<Instruction *, 8> Visited;
5299     while (!Worklist.empty()) {
5300       Instruction *I = Worklist.pop_back_val();
5301       if (!Visited.insert(I).second)
5302         continue;
5303 
5304       ValueExprMapType::iterator It =
5305         ValueExprMap.find_as(static_cast<Value *>(I));
5306       if (It != ValueExprMap.end()) {
5307         const SCEV *Old = It->second;
5308 
5309         // SCEVUnknown for a PHI either means that it has an unrecognized
5310         // structure, or it's a PHI that's in the progress of being computed
5311         // by createNodeForPHI.  In the former case, additional loop trip
5312         // count information isn't going to change anything. In the later
5313         // case, createNodeForPHI will perform the necessary updates on its
5314         // own when it gets to that point.
5315         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5316           forgetMemoizedResults(Old);
5317           ValueExprMap.erase(It);
5318         }
5319         if (PHINode *PN = dyn_cast<PHINode>(I))
5320           ConstantEvolutionLoopExitValue.erase(PN);
5321       }
5322 
5323       PushDefUseChildren(I, Worklist);
5324     }
5325   }
5326 
5327   // Re-lookup the insert position, since the call to
5328   // computeBackedgeTakenCount above could result in a
5329   // recusive call to getBackedgeTakenInfo (on a different
5330   // loop), which would invalidate the iterator computed
5331   // earlier.
5332   return BackedgeTakenCounts.find(L)->second = Result;
5333 }
5334 
5335 /// forgetLoop - This method should be called by the client when it has
5336 /// changed a loop in a way that may effect ScalarEvolution's ability to
5337 /// compute a trip count, or if the loop is deleted.
5338 void ScalarEvolution::forgetLoop(const Loop *L) {
5339   // Drop any stored trip count value.
5340   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5341     BackedgeTakenCounts.find(L);
5342   if (BTCPos != BackedgeTakenCounts.end()) {
5343     BTCPos->second.clear();
5344     BackedgeTakenCounts.erase(BTCPos);
5345   }
5346 
5347   // Drop information about expressions based on loop-header PHIs.
5348   SmallVector<Instruction *, 16> Worklist;
5349   PushLoopPHIs(L, Worklist);
5350 
5351   SmallPtrSet<Instruction *, 8> Visited;
5352   while (!Worklist.empty()) {
5353     Instruction *I = Worklist.pop_back_val();
5354     if (!Visited.insert(I).second)
5355       continue;
5356 
5357     ValueExprMapType::iterator It =
5358       ValueExprMap.find_as(static_cast<Value *>(I));
5359     if (It != ValueExprMap.end()) {
5360       forgetMemoizedResults(It->second);
5361       ValueExprMap.erase(It);
5362       if (PHINode *PN = dyn_cast<PHINode>(I))
5363         ConstantEvolutionLoopExitValue.erase(PN);
5364     }
5365 
5366     PushDefUseChildren(I, Worklist);
5367   }
5368 
5369   // Forget all contained loops too, to avoid dangling entries in the
5370   // ValuesAtScopes map.
5371   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5372     forgetLoop(*I);
5373 }
5374 
5375 /// forgetValue - This method should be called by the client when it has
5376 /// changed a value in a way that may effect its value, or which may
5377 /// disconnect it from a def-use chain linking it to a loop.
5378 void ScalarEvolution::forgetValue(Value *V) {
5379   Instruction *I = dyn_cast<Instruction>(V);
5380   if (!I) return;
5381 
5382   // Drop information about expressions based on loop-header PHIs.
5383   SmallVector<Instruction *, 16> Worklist;
5384   Worklist.push_back(I);
5385 
5386   SmallPtrSet<Instruction *, 8> Visited;
5387   while (!Worklist.empty()) {
5388     I = Worklist.pop_back_val();
5389     if (!Visited.insert(I).second)
5390       continue;
5391 
5392     ValueExprMapType::iterator It =
5393       ValueExprMap.find_as(static_cast<Value *>(I));
5394     if (It != ValueExprMap.end()) {
5395       forgetMemoizedResults(It->second);
5396       ValueExprMap.erase(It);
5397       if (PHINode *PN = dyn_cast<PHINode>(I))
5398         ConstantEvolutionLoopExitValue.erase(PN);
5399     }
5400 
5401     PushDefUseChildren(I, Worklist);
5402   }
5403 }
5404 
5405 /// getExact - Get the exact loop backedge taken count considering all loop
5406 /// exits. A computable result can only be returned for loops with a single
5407 /// exit.  Returning the minimum taken count among all exits is incorrect
5408 /// because one of the loop's exit limit's may have been skipped. HowFarToZero
5409 /// assumes that the limit of each loop test is never skipped. This is a valid
5410 /// assumption as long as the loop exits via that test. For precise results, it
5411 /// is the caller's responsibility to specify the relevant loop exit using
5412 /// getExact(ExitingBlock, SE).
5413 const SCEV *
5414 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5415   // If any exits were not computable, the loop is not computable.
5416   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5417 
5418   // We need exactly one computable exit.
5419   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5420   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5421 
5422   const SCEV *BECount = nullptr;
5423   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5424        ENT != nullptr; ENT = ENT->getNextExit()) {
5425 
5426     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5427 
5428     if (!BECount)
5429       BECount = ENT->ExactNotTaken;
5430     else if (BECount != ENT->ExactNotTaken)
5431       return SE->getCouldNotCompute();
5432   }
5433   assert(BECount && "Invalid not taken count for loop exit");
5434   return BECount;
5435 }
5436 
5437 /// getExact - Get the exact not taken count for this loop exit.
5438 const SCEV *
5439 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5440                                              ScalarEvolution *SE) const {
5441   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5442        ENT != nullptr; ENT = ENT->getNextExit()) {
5443 
5444     if (ENT->ExitingBlock == ExitingBlock)
5445       return ENT->ExactNotTaken;
5446   }
5447   return SE->getCouldNotCompute();
5448 }
5449 
5450 /// getMax - Get the max backedge taken count for the loop.
5451 const SCEV *
5452 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5453   return Max ? Max : SE->getCouldNotCompute();
5454 }
5455 
5456 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5457                                                     ScalarEvolution *SE) const {
5458   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5459     return true;
5460 
5461   if (!ExitNotTaken.ExitingBlock)
5462     return false;
5463 
5464   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5465        ENT != nullptr; ENT = ENT->getNextExit()) {
5466 
5467     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5468         && SE->hasOperand(ENT->ExactNotTaken, S)) {
5469       return true;
5470     }
5471   }
5472   return false;
5473 }
5474 
5475 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5476 /// computable exit into a persistent ExitNotTakenInfo array.
5477 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5478   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5479   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5480 
5481   if (!Complete)
5482     ExitNotTaken.setIncomplete();
5483 
5484   unsigned NumExits = ExitCounts.size();
5485   if (NumExits == 0) return;
5486 
5487   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
5488   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5489   if (NumExits == 1) return;
5490 
5491   // Handle the rare case of multiple computable exits.
5492   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5493 
5494   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5495   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5496     PrevENT->setNextExit(ENT);
5497     ENT->ExitingBlock = ExitCounts[i].first;
5498     ENT->ExactNotTaken = ExitCounts[i].second;
5499   }
5500 }
5501 
5502 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
5503 void ScalarEvolution::BackedgeTakenInfo::clear() {
5504   ExitNotTaken.ExitingBlock = nullptr;
5505   ExitNotTaken.ExactNotTaken = nullptr;
5506   delete[] ExitNotTaken.getNextExit();
5507 }
5508 
5509 /// computeBackedgeTakenCount - Compute the number of times the backedge
5510 /// of the specified loop will execute.
5511 ScalarEvolution::BackedgeTakenInfo
5512 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
5513   SmallVector<BasicBlock *, 8> ExitingBlocks;
5514   L->getExitingBlocks(ExitingBlocks);
5515 
5516   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
5517   bool CouldComputeBECount = true;
5518   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5519   const SCEV *MustExitMaxBECount = nullptr;
5520   const SCEV *MayExitMaxBECount = nullptr;
5521 
5522   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5523   // and compute maxBECount.
5524   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5525     BasicBlock *ExitBB = ExitingBlocks[i];
5526     ExitLimit EL = computeExitLimit(L, ExitBB);
5527 
5528     // 1. For each exit that can be computed, add an entry to ExitCounts.
5529     // CouldComputeBECount is true only if all exits can be computed.
5530     if (EL.Exact == getCouldNotCompute())
5531       // We couldn't compute an exact value for this exit, so
5532       // we won't be able to compute an exact value for the loop.
5533       CouldComputeBECount = false;
5534     else
5535       ExitCounts.push_back({ExitBB, EL.Exact});
5536 
5537     // 2. Derive the loop's MaxBECount from each exit's max number of
5538     // non-exiting iterations. Partition the loop exits into two kinds:
5539     // LoopMustExits and LoopMayExits.
5540     //
5541     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5542     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5543     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5544     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5545     // considered greater than any computable EL.Max.
5546     if (EL.Max != getCouldNotCompute() && Latch &&
5547         DT.dominates(ExitBB, Latch)) {
5548       if (!MustExitMaxBECount)
5549         MustExitMaxBECount = EL.Max;
5550       else {
5551         MustExitMaxBECount =
5552           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5553       }
5554     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5555       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5556         MayExitMaxBECount = EL.Max;
5557       else {
5558         MayExitMaxBECount =
5559           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5560       }
5561     }
5562   }
5563   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5564     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5565   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5566 }
5567 
5568 ScalarEvolution::ExitLimit
5569 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
5570 
5571   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5572   // at this block and remember the exit block and whether all other targets
5573   // lead to the loop header.
5574   bool MustExecuteLoopHeader = true;
5575   BasicBlock *Exit = nullptr;
5576   for (auto *SBB : successors(ExitingBlock))
5577     if (!L->contains(SBB)) {
5578       if (Exit) // Multiple exit successors.
5579         return getCouldNotCompute();
5580       Exit = SBB;
5581     } else if (SBB != L->getHeader()) {
5582       MustExecuteLoopHeader = false;
5583     }
5584 
5585   // At this point, we know we have a conditional branch that determines whether
5586   // the loop is exited.  However, we don't know if the branch is executed each
5587   // time through the loop.  If not, then the execution count of the branch will
5588   // not be equal to the trip count of the loop.
5589   //
5590   // Currently we check for this by checking to see if the Exit branch goes to
5591   // the loop header.  If so, we know it will always execute the same number of
5592   // times as the loop.  We also handle the case where the exit block *is* the
5593   // loop header.  This is common for un-rotated loops.
5594   //
5595   // If both of those tests fail, walk up the unique predecessor chain to the
5596   // header, stopping if there is an edge that doesn't exit the loop. If the
5597   // header is reached, the execution count of the branch will be equal to the
5598   // trip count of the loop.
5599   //
5600   //  More extensive analysis could be done to handle more cases here.
5601   //
5602   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5603     // The simple checks failed, try climbing the unique predecessor chain
5604     // up to the header.
5605     bool Ok = false;
5606     for (BasicBlock *BB = ExitingBlock; BB; ) {
5607       BasicBlock *Pred = BB->getUniquePredecessor();
5608       if (!Pred)
5609         return getCouldNotCompute();
5610       TerminatorInst *PredTerm = Pred->getTerminator();
5611       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5612         if (PredSucc == BB)
5613           continue;
5614         // If the predecessor has a successor that isn't BB and isn't
5615         // outside the loop, assume the worst.
5616         if (L->contains(PredSucc))
5617           return getCouldNotCompute();
5618       }
5619       if (Pred == L->getHeader()) {
5620         Ok = true;
5621         break;
5622       }
5623       BB = Pred;
5624     }
5625     if (!Ok)
5626       return getCouldNotCompute();
5627   }
5628 
5629   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5630   TerminatorInst *Term = ExitingBlock->getTerminator();
5631   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5632     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5633     // Proceed to the next level to examine the exit condition expression.
5634     return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5635                                     BI->getSuccessor(1),
5636                                     /*ControlsExit=*/IsOnlyExit);
5637   }
5638 
5639   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5640     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5641                                                 /*ControlsExit=*/IsOnlyExit);
5642 
5643   return getCouldNotCompute();
5644 }
5645 
5646 /// computeExitLimitFromCond - Compute the number of times the
5647 /// backedge of the specified loop will execute if its exit condition
5648 /// were a conditional branch of ExitCond, TBB, and FBB.
5649 ///
5650 /// @param ControlsExit is true if ExitCond directly controls the exit
5651 /// branch. In this case, we can assume that the loop exits only if the
5652 /// condition is true and can infer that failing to meet the condition prior to
5653 /// integer wraparound results in undefined behavior.
5654 ScalarEvolution::ExitLimit
5655 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5656                                           Value *ExitCond,
5657                                           BasicBlock *TBB,
5658                                           BasicBlock *FBB,
5659                                           bool ControlsExit) {
5660   // Check if the controlling expression for this loop is an And or Or.
5661   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5662     if (BO->getOpcode() == Instruction::And) {
5663       // Recurse on the operands of the and.
5664       bool EitherMayExit = L->contains(TBB);
5665       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5666                                                ControlsExit && !EitherMayExit);
5667       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5668                                                ControlsExit && !EitherMayExit);
5669       const SCEV *BECount = getCouldNotCompute();
5670       const SCEV *MaxBECount = getCouldNotCompute();
5671       if (EitherMayExit) {
5672         // Both conditions must be true for the loop to continue executing.
5673         // Choose the less conservative count.
5674         if (EL0.Exact == getCouldNotCompute() ||
5675             EL1.Exact == getCouldNotCompute())
5676           BECount = getCouldNotCompute();
5677         else
5678           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5679         if (EL0.Max == getCouldNotCompute())
5680           MaxBECount = EL1.Max;
5681         else if (EL1.Max == getCouldNotCompute())
5682           MaxBECount = EL0.Max;
5683         else
5684           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5685       } else {
5686         // Both conditions must be true at the same time for the loop to exit.
5687         // For now, be conservative.
5688         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5689         if (EL0.Max == EL1.Max)
5690           MaxBECount = EL0.Max;
5691         if (EL0.Exact == EL1.Exact)
5692           BECount = EL0.Exact;
5693       }
5694 
5695       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5696       // to be more aggressive when computing BECount than when computing
5697       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
5698       // to match, but for EL0.Max and EL1.Max to not.
5699       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5700           !isa<SCEVCouldNotCompute>(BECount))
5701         MaxBECount = BECount;
5702 
5703       return ExitLimit(BECount, MaxBECount);
5704     }
5705     if (BO->getOpcode() == Instruction::Or) {
5706       // Recurse on the operands of the or.
5707       bool EitherMayExit = L->contains(FBB);
5708       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5709                                                ControlsExit && !EitherMayExit);
5710       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5711                                                ControlsExit && !EitherMayExit);
5712       const SCEV *BECount = getCouldNotCompute();
5713       const SCEV *MaxBECount = getCouldNotCompute();
5714       if (EitherMayExit) {
5715         // Both conditions must be false for the loop to continue executing.
5716         // Choose the less conservative count.
5717         if (EL0.Exact == getCouldNotCompute() ||
5718             EL1.Exact == getCouldNotCompute())
5719           BECount = getCouldNotCompute();
5720         else
5721           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5722         if (EL0.Max == getCouldNotCompute())
5723           MaxBECount = EL1.Max;
5724         else if (EL1.Max == getCouldNotCompute())
5725           MaxBECount = EL0.Max;
5726         else
5727           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5728       } else {
5729         // Both conditions must be false at the same time for the loop to exit.
5730         // For now, be conservative.
5731         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5732         if (EL0.Max == EL1.Max)
5733           MaxBECount = EL0.Max;
5734         if (EL0.Exact == EL1.Exact)
5735           BECount = EL0.Exact;
5736       }
5737 
5738       return ExitLimit(BECount, MaxBECount);
5739     }
5740   }
5741 
5742   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5743   // Proceed to the next level to examine the icmp.
5744   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5745     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5746 
5747   // Check for a constant condition. These are normally stripped out by
5748   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5749   // preserve the CFG and is temporarily leaving constant conditions
5750   // in place.
5751   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5752     if (L->contains(FBB) == !CI->getZExtValue())
5753       // The backedge is always taken.
5754       return getCouldNotCompute();
5755     else
5756       // The backedge is never taken.
5757       return getZero(CI->getType());
5758   }
5759 
5760   // If it's not an integer or pointer comparison then compute it the hard way.
5761   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5762 }
5763 
5764 ScalarEvolution::ExitLimit
5765 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5766                                           ICmpInst *ExitCond,
5767                                           BasicBlock *TBB,
5768                                           BasicBlock *FBB,
5769                                           bool ControlsExit) {
5770 
5771   // If the condition was exit on true, convert the condition to exit on false
5772   ICmpInst::Predicate Cond;
5773   if (!L->contains(FBB))
5774     Cond = ExitCond->getPredicate();
5775   else
5776     Cond = ExitCond->getInversePredicate();
5777 
5778   // Handle common loops like: for (X = "string"; *X; ++X)
5779   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5780     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5781       ExitLimit ItCnt =
5782         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5783       if (ItCnt.hasAnyInfo())
5784         return ItCnt;
5785     }
5786 
5787   ExitLimit ShiftEL = computeShiftCompareExitLimit(
5788       ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5789   if (ShiftEL.hasAnyInfo())
5790     return ShiftEL;
5791 
5792   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5793   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5794 
5795   // Try to evaluate any dependencies out of the loop.
5796   LHS = getSCEVAtScope(LHS, L);
5797   RHS = getSCEVAtScope(RHS, L);
5798 
5799   // At this point, we would like to compute how many iterations of the
5800   // loop the predicate will return true for these inputs.
5801   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5802     // If there is a loop-invariant, force it into the RHS.
5803     std::swap(LHS, RHS);
5804     Cond = ICmpInst::getSwappedPredicate(Cond);
5805   }
5806 
5807   // Simplify the operands before analyzing them.
5808   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5809 
5810   // If we have a comparison of a chrec against a constant, try to use value
5811   // ranges to answer this query.
5812   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5813     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5814       if (AddRec->getLoop() == L) {
5815         // Form the constant range.
5816         ConstantRange CompRange(
5817             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5818 
5819         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5820         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5821       }
5822 
5823   switch (Cond) {
5824   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5825     // Convert to: while (X-Y != 0)
5826     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5827     if (EL.hasAnyInfo()) return EL;
5828     break;
5829   }
5830   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5831     // Convert to: while (X-Y == 0)
5832     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5833     if (EL.hasAnyInfo()) return EL;
5834     break;
5835   }
5836   case ICmpInst::ICMP_SLT:
5837   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5838     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5839     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5840     if (EL.hasAnyInfo()) return EL;
5841     break;
5842   }
5843   case ICmpInst::ICMP_SGT:
5844   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5845     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5846     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5847     if (EL.hasAnyInfo()) return EL;
5848     break;
5849   }
5850   default:
5851     break;
5852   }
5853   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5854 }
5855 
5856 ScalarEvolution::ExitLimit
5857 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
5858                                                       SwitchInst *Switch,
5859                                                       BasicBlock *ExitingBlock,
5860                                                       bool ControlsExit) {
5861   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5862 
5863   // Give up if the exit is the default dest of a switch.
5864   if (Switch->getDefaultDest() == ExitingBlock)
5865     return getCouldNotCompute();
5866 
5867   assert(L->contains(Switch->getDefaultDest()) &&
5868          "Default case must not exit the loop!");
5869   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5870   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5871 
5872   // while (X != Y) --> while (X-Y != 0)
5873   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5874   if (EL.hasAnyInfo())
5875     return EL;
5876 
5877   return getCouldNotCompute();
5878 }
5879 
5880 static ConstantInt *
5881 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5882                                 ScalarEvolution &SE) {
5883   const SCEV *InVal = SE.getConstant(C);
5884   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5885   assert(isa<SCEVConstant>(Val) &&
5886          "Evaluation of SCEV at constant didn't fold correctly?");
5887   return cast<SCEVConstant>(Val)->getValue();
5888 }
5889 
5890 /// computeLoadConstantCompareExitLimit - Given an exit condition of
5891 /// 'icmp op load X, cst', try to see if we can compute the backedge
5892 /// execution count.
5893 ScalarEvolution::ExitLimit
5894 ScalarEvolution::computeLoadConstantCompareExitLimit(
5895   LoadInst *LI,
5896   Constant *RHS,
5897   const Loop *L,
5898   ICmpInst::Predicate predicate) {
5899 
5900   if (LI->isVolatile()) return getCouldNotCompute();
5901 
5902   // Check to see if the loaded pointer is a getelementptr of a global.
5903   // TODO: Use SCEV instead of manually grubbing with GEPs.
5904   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5905   if (!GEP) return getCouldNotCompute();
5906 
5907   // Make sure that it is really a constant global we are gepping, with an
5908   // initializer, and make sure the first IDX is really 0.
5909   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5910   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5911       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5912       !cast<Constant>(GEP->getOperand(1))->isNullValue())
5913     return getCouldNotCompute();
5914 
5915   // Okay, we allow one non-constant index into the GEP instruction.
5916   Value *VarIdx = nullptr;
5917   std::vector<Constant*> Indexes;
5918   unsigned VarIdxNum = 0;
5919   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5920     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5921       Indexes.push_back(CI);
5922     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5923       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5924       VarIdx = GEP->getOperand(i);
5925       VarIdxNum = i-2;
5926       Indexes.push_back(nullptr);
5927     }
5928 
5929   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5930   if (!VarIdx)
5931     return getCouldNotCompute();
5932 
5933   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5934   // Check to see if X is a loop variant variable value now.
5935   const SCEV *Idx = getSCEV(VarIdx);
5936   Idx = getSCEVAtScope(Idx, L);
5937 
5938   // We can only recognize very limited forms of loop index expressions, in
5939   // particular, only affine AddRec's like {C1,+,C2}.
5940   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5941   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5942       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5943       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5944     return getCouldNotCompute();
5945 
5946   unsigned MaxSteps = MaxBruteForceIterations;
5947   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5948     ConstantInt *ItCst = ConstantInt::get(
5949                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
5950     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5951 
5952     // Form the GEP offset.
5953     Indexes[VarIdxNum] = Val;
5954 
5955     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5956                                                          Indexes);
5957     if (!Result) break;  // Cannot compute!
5958 
5959     // Evaluate the condition for this iteration.
5960     Result = ConstantExpr::getICmp(predicate, Result, RHS);
5961     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5962     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5963       ++NumArrayLenItCounts;
5964       return getConstant(ItCst);   // Found terminating iteration!
5965     }
5966   }
5967   return getCouldNotCompute();
5968 }
5969 
5970 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5971     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5972   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5973   if (!RHS)
5974     return getCouldNotCompute();
5975 
5976   const BasicBlock *Latch = L->getLoopLatch();
5977   if (!Latch)
5978     return getCouldNotCompute();
5979 
5980   const BasicBlock *Predecessor = L->getLoopPredecessor();
5981   if (!Predecessor)
5982     return getCouldNotCompute();
5983 
5984   // Return true if V is of the form "LHS `shift_op` <positive constant>".
5985   // Return LHS in OutLHS and shift_opt in OutOpCode.
5986   auto MatchPositiveShift =
5987       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5988 
5989     using namespace PatternMatch;
5990 
5991     ConstantInt *ShiftAmt;
5992     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5993       OutOpCode = Instruction::LShr;
5994     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5995       OutOpCode = Instruction::AShr;
5996     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5997       OutOpCode = Instruction::Shl;
5998     else
5999       return false;
6000 
6001     return ShiftAmt->getValue().isStrictlyPositive();
6002   };
6003 
6004   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6005   //
6006   // loop:
6007   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6008   //   %iv.shifted = lshr i32 %iv, <positive constant>
6009   //
6010   // Return true on a succesful match.  Return the corresponding PHI node (%iv
6011   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6012   auto MatchShiftRecurrence =
6013       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6014     Optional<Instruction::BinaryOps> PostShiftOpCode;
6015 
6016     {
6017       Instruction::BinaryOps OpC;
6018       Value *V;
6019 
6020       // If we encounter a shift instruction, "peel off" the shift operation,
6021       // and remember that we did so.  Later when we inspect %iv's backedge
6022       // value, we will make sure that the backedge value uses the same
6023       // operation.
6024       //
6025       // Note: the peeled shift operation does not have to be the same
6026       // instruction as the one feeding into the PHI's backedge value.  We only
6027       // really care about it being the same *kind* of shift instruction --
6028       // that's all that is required for our later inferences to hold.
6029       if (MatchPositiveShift(LHS, V, OpC)) {
6030         PostShiftOpCode = OpC;
6031         LHS = V;
6032       }
6033     }
6034 
6035     PNOut = dyn_cast<PHINode>(LHS);
6036     if (!PNOut || PNOut->getParent() != L->getHeader())
6037       return false;
6038 
6039     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6040     Value *OpLHS;
6041 
6042     return
6043         // The backedge value for the PHI node must be a shift by a positive
6044         // amount
6045         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6046 
6047         // of the PHI node itself
6048         OpLHS == PNOut &&
6049 
6050         // and the kind of shift should be match the kind of shift we peeled
6051         // off, if any.
6052         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6053   };
6054 
6055   PHINode *PN;
6056   Instruction::BinaryOps OpCode;
6057   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6058     return getCouldNotCompute();
6059 
6060   const DataLayout &DL = getDataLayout();
6061 
6062   // The key rationale for this optimization is that for some kinds of shift
6063   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6064   // within a finite number of iterations.  If the condition guarding the
6065   // backedge (in the sense that the backedge is taken if the condition is true)
6066   // is false for the value the shift recurrence stabilizes to, then we know
6067   // that the backedge is taken only a finite number of times.
6068 
6069   ConstantInt *StableValue = nullptr;
6070   switch (OpCode) {
6071   default:
6072     llvm_unreachable("Impossible case!");
6073 
6074   case Instruction::AShr: {
6075     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6076     // bitwidth(K) iterations.
6077     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6078     bool KnownZero, KnownOne;
6079     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6080                    Predecessor->getTerminator(), &DT);
6081     auto *Ty = cast<IntegerType>(RHS->getType());
6082     if (KnownZero)
6083       StableValue = ConstantInt::get(Ty, 0);
6084     else if (KnownOne)
6085       StableValue = ConstantInt::get(Ty, -1, true);
6086     else
6087       return getCouldNotCompute();
6088 
6089     break;
6090   }
6091   case Instruction::LShr:
6092   case Instruction::Shl:
6093     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6094     // stabilize to 0 in at most bitwidth(K) iterations.
6095     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6096     break;
6097   }
6098 
6099   auto *Result =
6100       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6101   assert(Result->getType()->isIntegerTy(1) &&
6102          "Otherwise cannot be an operand to a branch instruction");
6103 
6104   if (Result->isZeroValue()) {
6105     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6106     const SCEV *UpperBound =
6107         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6108     return ExitLimit(getCouldNotCompute(), UpperBound);
6109   }
6110 
6111   return getCouldNotCompute();
6112 }
6113 
6114 /// CanConstantFold - Return true if we can constant fold an instruction of the
6115 /// specified type, assuming that all operands were constants.
6116 static bool CanConstantFold(const Instruction *I) {
6117   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6118       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6119       isa<LoadInst>(I))
6120     return true;
6121 
6122   if (const CallInst *CI = dyn_cast<CallInst>(I))
6123     if (const Function *F = CI->getCalledFunction())
6124       return canConstantFoldCallTo(F);
6125   return false;
6126 }
6127 
6128 /// Determine whether this instruction can constant evolve within this loop
6129 /// assuming its operands can all constant evolve.
6130 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6131   // An instruction outside of the loop can't be derived from a loop PHI.
6132   if (!L->contains(I)) return false;
6133 
6134   if (isa<PHINode>(I)) {
6135     // We don't currently keep track of the control flow needed to evaluate
6136     // PHIs, so we cannot handle PHIs inside of loops.
6137     return L->getHeader() == I->getParent();
6138   }
6139 
6140   // If we won't be able to constant fold this expression even if the operands
6141   // are constants, bail early.
6142   return CanConstantFold(I);
6143 }
6144 
6145 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6146 /// recursing through each instruction operand until reaching a loop header phi.
6147 static PHINode *
6148 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6149                                DenseMap<Instruction *, PHINode *> &PHIMap) {
6150 
6151   // Otherwise, we can evaluate this instruction if all of its operands are
6152   // constant or derived from a PHI node themselves.
6153   PHINode *PHI = nullptr;
6154   for (Value *Op : UseInst->operands()) {
6155     if (isa<Constant>(Op)) continue;
6156 
6157     Instruction *OpInst = dyn_cast<Instruction>(Op);
6158     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6159 
6160     PHINode *P = dyn_cast<PHINode>(OpInst);
6161     if (!P)
6162       // If this operand is already visited, reuse the prior result.
6163       // We may have P != PHI if this is the deepest point at which the
6164       // inconsistent paths meet.
6165       P = PHIMap.lookup(OpInst);
6166     if (!P) {
6167       // Recurse and memoize the results, whether a phi is found or not.
6168       // This recursive call invalidates pointers into PHIMap.
6169       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6170       PHIMap[OpInst] = P;
6171     }
6172     if (!P)
6173       return nullptr;  // Not evolving from PHI
6174     if (PHI && PHI != P)
6175       return nullptr;  // Evolving from multiple different PHIs.
6176     PHI = P;
6177   }
6178   // This is a expression evolving from a constant PHI!
6179   return PHI;
6180 }
6181 
6182 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6183 /// in the loop that V is derived from.  We allow arbitrary operations along the
6184 /// way, but the operands of an operation must either be constants or a value
6185 /// derived from a constant PHI.  If this expression does not fit with these
6186 /// constraints, return null.
6187 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6188   Instruction *I = dyn_cast<Instruction>(V);
6189   if (!I || !canConstantEvolve(I, L)) return nullptr;
6190 
6191   if (PHINode *PN = dyn_cast<PHINode>(I))
6192     return PN;
6193 
6194   // Record non-constant instructions contained by the loop.
6195   DenseMap<Instruction *, PHINode *> PHIMap;
6196   return getConstantEvolvingPHIOperands(I, L, PHIMap);
6197 }
6198 
6199 /// EvaluateExpression - Given an expression that passes the
6200 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6201 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6202 /// reason, return null.
6203 static Constant *EvaluateExpression(Value *V, const Loop *L,
6204                                     DenseMap<Instruction *, Constant *> &Vals,
6205                                     const DataLayout &DL,
6206                                     const TargetLibraryInfo *TLI) {
6207   // Convenient constant check, but redundant for recursive calls.
6208   if (Constant *C = dyn_cast<Constant>(V)) return C;
6209   Instruction *I = dyn_cast<Instruction>(V);
6210   if (!I) return nullptr;
6211 
6212   if (Constant *C = Vals.lookup(I)) return C;
6213 
6214   // An instruction inside the loop depends on a value outside the loop that we
6215   // weren't given a mapping for, or a value such as a call inside the loop.
6216   if (!canConstantEvolve(I, L)) return nullptr;
6217 
6218   // An unmapped PHI can be due to a branch or another loop inside this loop,
6219   // or due to this not being the initial iteration through a loop where we
6220   // couldn't compute the evolution of this particular PHI last time.
6221   if (isa<PHINode>(I)) return nullptr;
6222 
6223   std::vector<Constant*> Operands(I->getNumOperands());
6224 
6225   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6226     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6227     if (!Operand) {
6228       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6229       if (!Operands[i]) return nullptr;
6230       continue;
6231     }
6232     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6233     Vals[Operand] = C;
6234     if (!C) return nullptr;
6235     Operands[i] = C;
6236   }
6237 
6238   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6239     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6240                                            Operands[1], DL, TLI);
6241   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6242     if (!LI->isVolatile())
6243       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6244   }
6245   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6246 }
6247 
6248 
6249 // If every incoming value to PN except the one for BB is a specific Constant,
6250 // return that, else return nullptr.
6251 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6252   Constant *IncomingVal = nullptr;
6253 
6254   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6255     if (PN->getIncomingBlock(i) == BB)
6256       continue;
6257 
6258     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6259     if (!CurrentVal)
6260       return nullptr;
6261 
6262     if (IncomingVal != CurrentVal) {
6263       if (IncomingVal)
6264         return nullptr;
6265       IncomingVal = CurrentVal;
6266     }
6267   }
6268 
6269   return IncomingVal;
6270 }
6271 
6272 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6273 /// in the header of its containing loop, we know the loop executes a
6274 /// constant number of times, and the PHI node is just a recurrence
6275 /// involving constants, fold it.
6276 Constant *
6277 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6278                                                    const APInt &BEs,
6279                                                    const Loop *L) {
6280   auto I = ConstantEvolutionLoopExitValue.find(PN);
6281   if (I != ConstantEvolutionLoopExitValue.end())
6282     return I->second;
6283 
6284   if (BEs.ugt(MaxBruteForceIterations))
6285     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6286 
6287   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6288 
6289   DenseMap<Instruction *, Constant *> CurrentIterVals;
6290   BasicBlock *Header = L->getHeader();
6291   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6292 
6293   BasicBlock *Latch = L->getLoopLatch();
6294   if (!Latch)
6295     return nullptr;
6296 
6297   for (auto &I : *Header) {
6298     PHINode *PHI = dyn_cast<PHINode>(&I);
6299     if (!PHI) break;
6300     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6301     if (!StartCST) continue;
6302     CurrentIterVals[PHI] = StartCST;
6303   }
6304   if (!CurrentIterVals.count(PN))
6305     return RetVal = nullptr;
6306 
6307   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6308 
6309   // Execute the loop symbolically to determine the exit value.
6310   if (BEs.getActiveBits() >= 32)
6311     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6312 
6313   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6314   unsigned IterationNum = 0;
6315   const DataLayout &DL = getDataLayout();
6316   for (; ; ++IterationNum) {
6317     if (IterationNum == NumIterations)
6318       return RetVal = CurrentIterVals[PN];  // Got exit value!
6319 
6320     // Compute the value of the PHIs for the next iteration.
6321     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6322     DenseMap<Instruction *, Constant *> NextIterVals;
6323     Constant *NextPHI =
6324         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6325     if (!NextPHI)
6326       return nullptr;        // Couldn't evaluate!
6327     NextIterVals[PN] = NextPHI;
6328 
6329     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6330 
6331     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6332     // cease to be able to evaluate one of them or if they stop evolving,
6333     // because that doesn't necessarily prevent us from computing PN.
6334     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6335     for (const auto &I : CurrentIterVals) {
6336       PHINode *PHI = dyn_cast<PHINode>(I.first);
6337       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6338       PHIsToCompute.emplace_back(PHI, I.second);
6339     }
6340     // We use two distinct loops because EvaluateExpression may invalidate any
6341     // iterators into CurrentIterVals.
6342     for (const auto &I : PHIsToCompute) {
6343       PHINode *PHI = I.first;
6344       Constant *&NextPHI = NextIterVals[PHI];
6345       if (!NextPHI) {   // Not already computed.
6346         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6347         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6348       }
6349       if (NextPHI != I.second)
6350         StoppedEvolving = false;
6351     }
6352 
6353     // If all entries in CurrentIterVals == NextIterVals then we can stop
6354     // iterating, the loop can't continue to change.
6355     if (StoppedEvolving)
6356       return RetVal = CurrentIterVals[PN];
6357 
6358     CurrentIterVals.swap(NextIterVals);
6359   }
6360 }
6361 
6362 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6363                                                           Value *Cond,
6364                                                           bool ExitWhen) {
6365   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6366   if (!PN) return getCouldNotCompute();
6367 
6368   // If the loop is canonicalized, the PHI will have exactly two entries.
6369   // That's the only form we support here.
6370   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6371 
6372   DenseMap<Instruction *, Constant *> CurrentIterVals;
6373   BasicBlock *Header = L->getHeader();
6374   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6375 
6376   BasicBlock *Latch = L->getLoopLatch();
6377   assert(Latch && "Should follow from NumIncomingValues == 2!");
6378 
6379   for (auto &I : *Header) {
6380     PHINode *PHI = dyn_cast<PHINode>(&I);
6381     if (!PHI)
6382       break;
6383     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6384     if (!StartCST) continue;
6385     CurrentIterVals[PHI] = StartCST;
6386   }
6387   if (!CurrentIterVals.count(PN))
6388     return getCouldNotCompute();
6389 
6390   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6391   // the loop symbolically to determine when the condition gets a value of
6392   // "ExitWhen".
6393   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6394   const DataLayout &DL = getDataLayout();
6395   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6396     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6397         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6398 
6399     // Couldn't symbolically evaluate.
6400     if (!CondVal) return getCouldNotCompute();
6401 
6402     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6403       ++NumBruteForceTripCountsComputed;
6404       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6405     }
6406 
6407     // Update all the PHI nodes for the next iteration.
6408     DenseMap<Instruction *, Constant *> NextIterVals;
6409 
6410     // Create a list of which PHIs we need to compute. We want to do this before
6411     // calling EvaluateExpression on them because that may invalidate iterators
6412     // into CurrentIterVals.
6413     SmallVector<PHINode *, 8> PHIsToCompute;
6414     for (const auto &I : CurrentIterVals) {
6415       PHINode *PHI = dyn_cast<PHINode>(I.first);
6416       if (!PHI || PHI->getParent() != Header) continue;
6417       PHIsToCompute.push_back(PHI);
6418     }
6419     for (PHINode *PHI : PHIsToCompute) {
6420       Constant *&NextPHI = NextIterVals[PHI];
6421       if (NextPHI) continue;    // Already computed!
6422 
6423       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6424       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6425     }
6426     CurrentIterVals.swap(NextIterVals);
6427   }
6428 
6429   // Too many iterations were needed to evaluate.
6430   return getCouldNotCompute();
6431 }
6432 
6433 /// getSCEVAtScope - Return a SCEV expression for the specified value
6434 /// at the specified scope in the program.  The L value specifies a loop
6435 /// nest to evaluate the expression at, where null is the top-level or a
6436 /// specified loop is immediately inside of the loop.
6437 ///
6438 /// This method can be used to compute the exit value for a variable defined
6439 /// in a loop by querying what the value will hold in the parent loop.
6440 ///
6441 /// In the case that a relevant loop exit value cannot be computed, the
6442 /// original value V is returned.
6443 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6444   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6445       ValuesAtScopes[V];
6446   // Check to see if we've folded this expression at this loop before.
6447   for (auto &LS : Values)
6448     if (LS.first == L)
6449       return LS.second ? LS.second : V;
6450 
6451   Values.emplace_back(L, nullptr);
6452 
6453   // Otherwise compute it.
6454   const SCEV *C = computeSCEVAtScope(V, L);
6455   for (auto &LS : reverse(ValuesAtScopes[V]))
6456     if (LS.first == L) {
6457       LS.second = C;
6458       break;
6459     }
6460   return C;
6461 }
6462 
6463 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6464 /// will return Constants for objects which aren't represented by a
6465 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6466 /// Returns NULL if the SCEV isn't representable as a Constant.
6467 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6468   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6469     case scCouldNotCompute:
6470     case scAddRecExpr:
6471       break;
6472     case scConstant:
6473       return cast<SCEVConstant>(V)->getValue();
6474     case scUnknown:
6475       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6476     case scSignExtend: {
6477       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6478       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6479         return ConstantExpr::getSExt(CastOp, SS->getType());
6480       break;
6481     }
6482     case scZeroExtend: {
6483       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6484       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6485         return ConstantExpr::getZExt(CastOp, SZ->getType());
6486       break;
6487     }
6488     case scTruncate: {
6489       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6490       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6491         return ConstantExpr::getTrunc(CastOp, ST->getType());
6492       break;
6493     }
6494     case scAddExpr: {
6495       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6496       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6497         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6498           unsigned AS = PTy->getAddressSpace();
6499           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6500           C = ConstantExpr::getBitCast(C, DestPtrTy);
6501         }
6502         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6503           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6504           if (!C2) return nullptr;
6505 
6506           // First pointer!
6507           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6508             unsigned AS = C2->getType()->getPointerAddressSpace();
6509             std::swap(C, C2);
6510             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6511             // The offsets have been converted to bytes.  We can add bytes to an
6512             // i8* by GEP with the byte count in the first index.
6513             C = ConstantExpr::getBitCast(C, DestPtrTy);
6514           }
6515 
6516           // Don't bother trying to sum two pointers. We probably can't
6517           // statically compute a load that results from it anyway.
6518           if (C2->getType()->isPointerTy())
6519             return nullptr;
6520 
6521           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6522             if (PTy->getElementType()->isStructTy())
6523               C2 = ConstantExpr::getIntegerCast(
6524                   C2, Type::getInt32Ty(C->getContext()), true);
6525             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6526           } else
6527             C = ConstantExpr::getAdd(C, C2);
6528         }
6529         return C;
6530       }
6531       break;
6532     }
6533     case scMulExpr: {
6534       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6535       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6536         // Don't bother with pointers at all.
6537         if (C->getType()->isPointerTy()) return nullptr;
6538         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6539           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6540           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6541           C = ConstantExpr::getMul(C, C2);
6542         }
6543         return C;
6544       }
6545       break;
6546     }
6547     case scUDivExpr: {
6548       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6549       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6550         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6551           if (LHS->getType() == RHS->getType())
6552             return ConstantExpr::getUDiv(LHS, RHS);
6553       break;
6554     }
6555     case scSMaxExpr:
6556     case scUMaxExpr:
6557       break; // TODO: smax, umax.
6558   }
6559   return nullptr;
6560 }
6561 
6562 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6563   if (isa<SCEVConstant>(V)) return V;
6564 
6565   // If this instruction is evolved from a constant-evolving PHI, compute the
6566   // exit value from the loop without using SCEVs.
6567   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6568     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6569       const Loop *LI = this->LI[I->getParent()];
6570       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6571         if (PHINode *PN = dyn_cast<PHINode>(I))
6572           if (PN->getParent() == LI->getHeader()) {
6573             // Okay, there is no closed form solution for the PHI node.  Check
6574             // to see if the loop that contains it has a known backedge-taken
6575             // count.  If so, we may be able to force computation of the exit
6576             // value.
6577             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6578             if (const SCEVConstant *BTCC =
6579                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6580               // Okay, we know how many times the containing loop executes.  If
6581               // this is a constant evolving PHI node, get the final value at
6582               // the specified iteration number.
6583               Constant *RV =
6584                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6585               if (RV) return getSCEV(RV);
6586             }
6587           }
6588 
6589       // Okay, this is an expression that we cannot symbolically evaluate
6590       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6591       // the arguments into constants, and if so, try to constant propagate the
6592       // result.  This is particularly useful for computing loop exit values.
6593       if (CanConstantFold(I)) {
6594         SmallVector<Constant *, 4> Operands;
6595         bool MadeImprovement = false;
6596         for (Value *Op : I->operands()) {
6597           if (Constant *C = dyn_cast<Constant>(Op)) {
6598             Operands.push_back(C);
6599             continue;
6600           }
6601 
6602           // If any of the operands is non-constant and if they are
6603           // non-integer and non-pointer, don't even try to analyze them
6604           // with scev techniques.
6605           if (!isSCEVable(Op->getType()))
6606             return V;
6607 
6608           const SCEV *OrigV = getSCEV(Op);
6609           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6610           MadeImprovement |= OrigV != OpV;
6611 
6612           Constant *C = BuildConstantFromSCEV(OpV);
6613           if (!C) return V;
6614           if (C->getType() != Op->getType())
6615             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6616                                                               Op->getType(),
6617                                                               false),
6618                                       C, Op->getType());
6619           Operands.push_back(C);
6620         }
6621 
6622         // Check to see if getSCEVAtScope actually made an improvement.
6623         if (MadeImprovement) {
6624           Constant *C = nullptr;
6625           const DataLayout &DL = getDataLayout();
6626           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6627             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6628                                                 Operands[1], DL, &TLI);
6629           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6630             if (!LI->isVolatile())
6631               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6632           } else
6633             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6634           if (!C) return V;
6635           return getSCEV(C);
6636         }
6637       }
6638     }
6639 
6640     // This is some other type of SCEVUnknown, just return it.
6641     return V;
6642   }
6643 
6644   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6645     // Avoid performing the look-up in the common case where the specified
6646     // expression has no loop-variant portions.
6647     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6648       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6649       if (OpAtScope != Comm->getOperand(i)) {
6650         // Okay, at least one of these operands is loop variant but might be
6651         // foldable.  Build a new instance of the folded commutative expression.
6652         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6653                                             Comm->op_begin()+i);
6654         NewOps.push_back(OpAtScope);
6655 
6656         for (++i; i != e; ++i) {
6657           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6658           NewOps.push_back(OpAtScope);
6659         }
6660         if (isa<SCEVAddExpr>(Comm))
6661           return getAddExpr(NewOps);
6662         if (isa<SCEVMulExpr>(Comm))
6663           return getMulExpr(NewOps);
6664         if (isa<SCEVSMaxExpr>(Comm))
6665           return getSMaxExpr(NewOps);
6666         if (isa<SCEVUMaxExpr>(Comm))
6667           return getUMaxExpr(NewOps);
6668         llvm_unreachable("Unknown commutative SCEV type!");
6669       }
6670     }
6671     // If we got here, all operands are loop invariant.
6672     return Comm;
6673   }
6674 
6675   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6676     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6677     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6678     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6679       return Div;   // must be loop invariant
6680     return getUDivExpr(LHS, RHS);
6681   }
6682 
6683   // If this is a loop recurrence for a loop that does not contain L, then we
6684   // are dealing with the final value computed by the loop.
6685   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6686     // First, attempt to evaluate each operand.
6687     // Avoid performing the look-up in the common case where the specified
6688     // expression has no loop-variant portions.
6689     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6690       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6691       if (OpAtScope == AddRec->getOperand(i))
6692         continue;
6693 
6694       // Okay, at least one of these operands is loop variant but might be
6695       // foldable.  Build a new instance of the folded commutative expression.
6696       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6697                                           AddRec->op_begin()+i);
6698       NewOps.push_back(OpAtScope);
6699       for (++i; i != e; ++i)
6700         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6701 
6702       const SCEV *FoldedRec =
6703         getAddRecExpr(NewOps, AddRec->getLoop(),
6704                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6705       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6706       // The addrec may be folded to a nonrecurrence, for example, if the
6707       // induction variable is multiplied by zero after constant folding. Go
6708       // ahead and return the folded value.
6709       if (!AddRec)
6710         return FoldedRec;
6711       break;
6712     }
6713 
6714     // If the scope is outside the addrec's loop, evaluate it by using the
6715     // loop exit value of the addrec.
6716     if (!AddRec->getLoop()->contains(L)) {
6717       // To evaluate this recurrence, we need to know how many times the AddRec
6718       // loop iterates.  Compute this now.
6719       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6720       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6721 
6722       // Then, evaluate the AddRec.
6723       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6724     }
6725 
6726     return AddRec;
6727   }
6728 
6729   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6730     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6731     if (Op == Cast->getOperand())
6732       return Cast;  // must be loop invariant
6733     return getZeroExtendExpr(Op, Cast->getType());
6734   }
6735 
6736   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6737     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6738     if (Op == Cast->getOperand())
6739       return Cast;  // must be loop invariant
6740     return getSignExtendExpr(Op, Cast->getType());
6741   }
6742 
6743   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6744     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6745     if (Op == Cast->getOperand())
6746       return Cast;  // must be loop invariant
6747     return getTruncateExpr(Op, Cast->getType());
6748   }
6749 
6750   llvm_unreachable("Unknown SCEV type!");
6751 }
6752 
6753 /// getSCEVAtScope - This is a convenience function which does
6754 /// getSCEVAtScope(getSCEV(V), L).
6755 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6756   return getSCEVAtScope(getSCEV(V), L);
6757 }
6758 
6759 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6760 /// following equation:
6761 ///
6762 ///     A * X = B (mod N)
6763 ///
6764 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6765 /// A and B isn't important.
6766 ///
6767 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6768 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6769                                                ScalarEvolution &SE) {
6770   uint32_t BW = A.getBitWidth();
6771   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6772   assert(A != 0 && "A must be non-zero.");
6773 
6774   // 1. D = gcd(A, N)
6775   //
6776   // The gcd of A and N may have only one prime factor: 2. The number of
6777   // trailing zeros in A is its multiplicity
6778   uint32_t Mult2 = A.countTrailingZeros();
6779   // D = 2^Mult2
6780 
6781   // 2. Check if B is divisible by D.
6782   //
6783   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6784   // is not less than multiplicity of this prime factor for D.
6785   if (B.countTrailingZeros() < Mult2)
6786     return SE.getCouldNotCompute();
6787 
6788   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6789   // modulo (N / D).
6790   //
6791   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6792   // bit width during computations.
6793   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6794   APInt Mod(BW + 1, 0);
6795   Mod.setBit(BW - Mult2);  // Mod = N / D
6796   APInt I = AD.multiplicativeInverse(Mod);
6797 
6798   // 4. Compute the minimum unsigned root of the equation:
6799   // I * (B / D) mod (N / D)
6800   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6801 
6802   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6803   // bits.
6804   return SE.getConstant(Result.trunc(BW));
6805 }
6806 
6807 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6808 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
6809 /// might be the same) or two SCEVCouldNotCompute objects.
6810 ///
6811 static std::pair<const SCEV *,const SCEV *>
6812 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6813   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6814   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6815   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6816   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6817 
6818   // We currently can only solve this if the coefficients are constants.
6819   if (!LC || !MC || !NC) {
6820     const SCEV *CNC = SE.getCouldNotCompute();
6821     return {CNC, CNC};
6822   }
6823 
6824   uint32_t BitWidth = LC->getAPInt().getBitWidth();
6825   const APInt &L = LC->getAPInt();
6826   const APInt &M = MC->getAPInt();
6827   const APInt &N = NC->getAPInt();
6828   APInt Two(BitWidth, 2);
6829   APInt Four(BitWidth, 4);
6830 
6831   {
6832     using namespace APIntOps;
6833     const APInt& C = L;
6834     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6835     // The B coefficient is M-N/2
6836     APInt B(M);
6837     B -= sdiv(N,Two);
6838 
6839     // The A coefficient is N/2
6840     APInt A(N.sdiv(Two));
6841 
6842     // Compute the B^2-4ac term.
6843     APInt SqrtTerm(B);
6844     SqrtTerm *= B;
6845     SqrtTerm -= Four * (A * C);
6846 
6847     if (SqrtTerm.isNegative()) {
6848       // The loop is provably infinite.
6849       const SCEV *CNC = SE.getCouldNotCompute();
6850       return {CNC, CNC};
6851     }
6852 
6853     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6854     // integer value or else APInt::sqrt() will assert.
6855     APInt SqrtVal(SqrtTerm.sqrt());
6856 
6857     // Compute the two solutions for the quadratic formula.
6858     // The divisions must be performed as signed divisions.
6859     APInt NegB(-B);
6860     APInt TwoA(A << 1);
6861     if (TwoA.isMinValue()) {
6862       const SCEV *CNC = SE.getCouldNotCompute();
6863       return {CNC, CNC};
6864     }
6865 
6866     LLVMContext &Context = SE.getContext();
6867 
6868     ConstantInt *Solution1 =
6869       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6870     ConstantInt *Solution2 =
6871       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6872 
6873     return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
6874   } // end APIntOps namespace
6875 }
6876 
6877 /// HowFarToZero - Return the number of times a backedge comparing the specified
6878 /// value to zero will execute.  If not computable, return CouldNotCompute.
6879 ///
6880 /// This is only used for loops with a "x != y" exit test. The exit condition is
6881 /// now expressed as a single expression, V = x-y. So the exit test is
6882 /// effectively V != 0.  We know and take advantage of the fact that this
6883 /// expression only being used in a comparison by zero context.
6884 ScalarEvolution::ExitLimit
6885 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6886   // If the value is a constant
6887   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6888     // If the value is already zero, the branch will execute zero times.
6889     if (C->getValue()->isZero()) return C;
6890     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6891   }
6892 
6893   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6894   if (!AddRec || AddRec->getLoop() != L)
6895     return getCouldNotCompute();
6896 
6897   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6898   // the quadratic equation to solve it.
6899   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6900     std::pair<const SCEV *,const SCEV *> Roots =
6901       SolveQuadraticEquation(AddRec, *this);
6902     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6903     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6904     if (R1 && R2) {
6905       // Pick the smallest positive root value.
6906       if (ConstantInt *CB =
6907           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6908                                                       R1->getValue(),
6909                                                       R2->getValue()))) {
6910         if (!CB->getZExtValue())
6911           std::swap(R1, R2);   // R1 is the minimum root now.
6912 
6913         // We can only use this value if the chrec ends up with an exact zero
6914         // value at this index.  When solving for "X*X != 5", for example, we
6915         // should not accept a root of 2.
6916         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6917         if (Val->isZero())
6918           return R1;  // We found a quadratic root!
6919       }
6920     }
6921     return getCouldNotCompute();
6922   }
6923 
6924   // Otherwise we can only handle this if it is affine.
6925   if (!AddRec->isAffine())
6926     return getCouldNotCompute();
6927 
6928   // If this is an affine expression, the execution count of this branch is
6929   // the minimum unsigned root of the following equation:
6930   //
6931   //     Start + Step*N = 0 (mod 2^BW)
6932   //
6933   // equivalent to:
6934   //
6935   //             Step*N = -Start (mod 2^BW)
6936   //
6937   // where BW is the common bit width of Start and Step.
6938 
6939   // Get the initial value for the loop.
6940   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6941   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6942 
6943   // For now we handle only constant steps.
6944   //
6945   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6946   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6947   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6948   // We have not yet seen any such cases.
6949   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6950   if (!StepC || StepC->getValue()->equalsInt(0))
6951     return getCouldNotCompute();
6952 
6953   // For positive steps (counting up until unsigned overflow):
6954   //   N = -Start/Step (as unsigned)
6955   // For negative steps (counting down to zero):
6956   //   N = Start/-Step
6957   // First compute the unsigned distance from zero in the direction of Step.
6958   bool CountDown = StepC->getAPInt().isNegative();
6959   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6960 
6961   // Handle unitary steps, which cannot wraparound.
6962   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6963   //   N = Distance (as unsigned)
6964   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6965     ConstantRange CR = getUnsignedRange(Start);
6966     const SCEV *MaxBECount;
6967     if (!CountDown && CR.getUnsignedMin().isMinValue())
6968       // When counting up, the worst starting value is 1, not 0.
6969       MaxBECount = CR.getUnsignedMax().isMinValue()
6970         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6971         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6972     else
6973       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6974                                          : -CR.getUnsignedMin());
6975     return ExitLimit(Distance, MaxBECount);
6976   }
6977 
6978   // As a special case, handle the instance where Step is a positive power of
6979   // two. In this case, determining whether Step divides Distance evenly can be
6980   // done by counting and comparing the number of trailing zeros of Step and
6981   // Distance.
6982   if (!CountDown) {
6983     const APInt &StepV = StepC->getAPInt();
6984     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
6985     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6986     // case is not handled as this code is guarded by !CountDown.
6987     if (StepV.isPowerOf2() &&
6988         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6989       // Here we've constrained the equation to be of the form
6990       //
6991       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
6992       //
6993       // where we're operating on a W bit wide integer domain and k is
6994       // non-negative.  The smallest unsigned solution for X is the trip count.
6995       //
6996       // (0) is equivalent to:
6997       //
6998       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
6999       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7000       // <=>  2^k * Distance' - X = L * 2^(W - N)
7001       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
7002       //
7003       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7004       // by 2^(W - N).
7005       //
7006       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
7007       //
7008       // E.g. say we're solving
7009       //
7010       //   2 * Val = 2 * X  (in i8)   ... (3)
7011       //
7012       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7013       //
7014       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7015       // necessarily the smallest unsigned value of X that satisfies (3).
7016       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7017       // is i8 1, not i8 -127
7018 
7019       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7020 
7021       // Since SCEV does not have a URem node, we construct one using a truncate
7022       // and a zero extend.
7023 
7024       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7025       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7026       auto *WideTy = Distance->getType();
7027 
7028       return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7029     }
7030   }
7031 
7032   // If the condition controls loop exit (the loop exits only if the expression
7033   // is true) and the addition is no-wrap we can use unsigned divide to
7034   // compute the backedge count.  In this case, the step may not divide the
7035   // distance, but we don't care because if the condition is "missed" the loop
7036   // will have undefined behavior due to wrapping.
7037   if (ControlsExit && AddRec->hasNoSelfWrap()) {
7038     const SCEV *Exact =
7039         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7040     return ExitLimit(Exact, Exact);
7041   }
7042 
7043   // Then, try to solve the above equation provided that Start is constant.
7044   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
7045     return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
7046                                         *this);
7047   return getCouldNotCompute();
7048 }
7049 
7050 /// HowFarToNonZero - Return the number of times a backedge checking the
7051 /// specified value for nonzero will execute.  If not computable, return
7052 /// CouldNotCompute
7053 ScalarEvolution::ExitLimit
7054 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
7055   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7056   // handle them yet except for the trivial case.  This could be expanded in the
7057   // future as needed.
7058 
7059   // If the value is a constant, check to see if it is known to be non-zero
7060   // already.  If so, the backedge will execute zero times.
7061   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7062     if (!C->getValue()->isNullValue())
7063       return getZero(C->getType());
7064     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7065   }
7066 
7067   // We could implement others, but I really doubt anyone writes loops like
7068   // this, and if they did, they would already be constant folded.
7069   return getCouldNotCompute();
7070 }
7071 
7072 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
7073 /// (which may not be an immediate predecessor) which has exactly one
7074 /// successor from which BB is reachable, or null if no such block is
7075 /// found.
7076 ///
7077 std::pair<BasicBlock *, BasicBlock *>
7078 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7079   // If the block has a unique predecessor, then there is no path from the
7080   // predecessor to the block that does not go through the direct edge
7081   // from the predecessor to the block.
7082   if (BasicBlock *Pred = BB->getSinglePredecessor())
7083     return {Pred, BB};
7084 
7085   // A loop's header is defined to be a block that dominates the loop.
7086   // If the header has a unique predecessor outside the loop, it must be
7087   // a block that has exactly one successor that can reach the loop.
7088   if (Loop *L = LI.getLoopFor(BB))
7089     return {L->getLoopPredecessor(), L->getHeader()};
7090 
7091   return {nullptr, nullptr};
7092 }
7093 
7094 /// HasSameValue - SCEV structural equivalence is usually sufficient for
7095 /// testing whether two expressions are equal, however for the purposes of
7096 /// looking for a condition guarding a loop, it can be useful to be a little
7097 /// more general, since a front-end may have replicated the controlling
7098 /// expression.
7099 ///
7100 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7101   // Quick check to see if they are the same SCEV.
7102   if (A == B) return true;
7103 
7104   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7105     // Not all instructions that are "identical" compute the same value.  For
7106     // instance, two distinct alloca instructions allocating the same type are
7107     // identical and do not read memory; but compute distinct values.
7108     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7109   };
7110 
7111   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7112   // two different instructions with the same value. Check for this case.
7113   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7114     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7115       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7116         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7117           if (ComputesEqualValues(AI, BI))
7118             return true;
7119 
7120   // Otherwise assume they may have a different value.
7121   return false;
7122 }
7123 
7124 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
7125 /// predicate Pred. Return true iff any changes were made.
7126 ///
7127 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7128                                            const SCEV *&LHS, const SCEV *&RHS,
7129                                            unsigned Depth) {
7130   bool Changed = false;
7131 
7132   // If we hit the max recursion limit bail out.
7133   if (Depth >= 3)
7134     return false;
7135 
7136   // Canonicalize a constant to the right side.
7137   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7138     // Check for both operands constant.
7139     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7140       if (ConstantExpr::getICmp(Pred,
7141                                 LHSC->getValue(),
7142                                 RHSC->getValue())->isNullValue())
7143         goto trivially_false;
7144       else
7145         goto trivially_true;
7146     }
7147     // Otherwise swap the operands to put the constant on the right.
7148     std::swap(LHS, RHS);
7149     Pred = ICmpInst::getSwappedPredicate(Pred);
7150     Changed = true;
7151   }
7152 
7153   // If we're comparing an addrec with a value which is loop-invariant in the
7154   // addrec's loop, put the addrec on the left. Also make a dominance check,
7155   // as both operands could be addrecs loop-invariant in each other's loop.
7156   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7157     const Loop *L = AR->getLoop();
7158     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7159       std::swap(LHS, RHS);
7160       Pred = ICmpInst::getSwappedPredicate(Pred);
7161       Changed = true;
7162     }
7163   }
7164 
7165   // If there's a constant operand, canonicalize comparisons with boundary
7166   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7167   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7168     const APInt &RA = RC->getAPInt();
7169     switch (Pred) {
7170     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7171     case ICmpInst::ICMP_EQ:
7172     case ICmpInst::ICMP_NE:
7173       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7174       if (!RA)
7175         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7176           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7177             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7178                 ME->getOperand(0)->isAllOnesValue()) {
7179               RHS = AE->getOperand(1);
7180               LHS = ME->getOperand(1);
7181               Changed = true;
7182             }
7183       break;
7184     case ICmpInst::ICMP_UGE:
7185       if ((RA - 1).isMinValue()) {
7186         Pred = ICmpInst::ICMP_NE;
7187         RHS = getConstant(RA - 1);
7188         Changed = true;
7189         break;
7190       }
7191       if (RA.isMaxValue()) {
7192         Pred = ICmpInst::ICMP_EQ;
7193         Changed = true;
7194         break;
7195       }
7196       if (RA.isMinValue()) goto trivially_true;
7197 
7198       Pred = ICmpInst::ICMP_UGT;
7199       RHS = getConstant(RA - 1);
7200       Changed = true;
7201       break;
7202     case ICmpInst::ICMP_ULE:
7203       if ((RA + 1).isMaxValue()) {
7204         Pred = ICmpInst::ICMP_NE;
7205         RHS = getConstant(RA + 1);
7206         Changed = true;
7207         break;
7208       }
7209       if (RA.isMinValue()) {
7210         Pred = ICmpInst::ICMP_EQ;
7211         Changed = true;
7212         break;
7213       }
7214       if (RA.isMaxValue()) goto trivially_true;
7215 
7216       Pred = ICmpInst::ICMP_ULT;
7217       RHS = getConstant(RA + 1);
7218       Changed = true;
7219       break;
7220     case ICmpInst::ICMP_SGE:
7221       if ((RA - 1).isMinSignedValue()) {
7222         Pred = ICmpInst::ICMP_NE;
7223         RHS = getConstant(RA - 1);
7224         Changed = true;
7225         break;
7226       }
7227       if (RA.isMaxSignedValue()) {
7228         Pred = ICmpInst::ICMP_EQ;
7229         Changed = true;
7230         break;
7231       }
7232       if (RA.isMinSignedValue()) goto trivially_true;
7233 
7234       Pred = ICmpInst::ICMP_SGT;
7235       RHS = getConstant(RA - 1);
7236       Changed = true;
7237       break;
7238     case ICmpInst::ICMP_SLE:
7239       if ((RA + 1).isMaxSignedValue()) {
7240         Pred = ICmpInst::ICMP_NE;
7241         RHS = getConstant(RA + 1);
7242         Changed = true;
7243         break;
7244       }
7245       if (RA.isMinSignedValue()) {
7246         Pred = ICmpInst::ICMP_EQ;
7247         Changed = true;
7248         break;
7249       }
7250       if (RA.isMaxSignedValue()) goto trivially_true;
7251 
7252       Pred = ICmpInst::ICMP_SLT;
7253       RHS = getConstant(RA + 1);
7254       Changed = true;
7255       break;
7256     case ICmpInst::ICMP_UGT:
7257       if (RA.isMinValue()) {
7258         Pred = ICmpInst::ICMP_NE;
7259         Changed = true;
7260         break;
7261       }
7262       if ((RA + 1).isMaxValue()) {
7263         Pred = ICmpInst::ICMP_EQ;
7264         RHS = getConstant(RA + 1);
7265         Changed = true;
7266         break;
7267       }
7268       if (RA.isMaxValue()) goto trivially_false;
7269       break;
7270     case ICmpInst::ICMP_ULT:
7271       if (RA.isMaxValue()) {
7272         Pred = ICmpInst::ICMP_NE;
7273         Changed = true;
7274         break;
7275       }
7276       if ((RA - 1).isMinValue()) {
7277         Pred = ICmpInst::ICMP_EQ;
7278         RHS = getConstant(RA - 1);
7279         Changed = true;
7280         break;
7281       }
7282       if (RA.isMinValue()) goto trivially_false;
7283       break;
7284     case ICmpInst::ICMP_SGT:
7285       if (RA.isMinSignedValue()) {
7286         Pred = ICmpInst::ICMP_NE;
7287         Changed = true;
7288         break;
7289       }
7290       if ((RA + 1).isMaxSignedValue()) {
7291         Pred = ICmpInst::ICMP_EQ;
7292         RHS = getConstant(RA + 1);
7293         Changed = true;
7294         break;
7295       }
7296       if (RA.isMaxSignedValue()) goto trivially_false;
7297       break;
7298     case ICmpInst::ICMP_SLT:
7299       if (RA.isMaxSignedValue()) {
7300         Pred = ICmpInst::ICMP_NE;
7301         Changed = true;
7302         break;
7303       }
7304       if ((RA - 1).isMinSignedValue()) {
7305        Pred = ICmpInst::ICMP_EQ;
7306        RHS = getConstant(RA - 1);
7307         Changed = true;
7308        break;
7309       }
7310       if (RA.isMinSignedValue()) goto trivially_false;
7311       break;
7312     }
7313   }
7314 
7315   // Check for obvious equality.
7316   if (HasSameValue(LHS, RHS)) {
7317     if (ICmpInst::isTrueWhenEqual(Pred))
7318       goto trivially_true;
7319     if (ICmpInst::isFalseWhenEqual(Pred))
7320       goto trivially_false;
7321   }
7322 
7323   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7324   // adding or subtracting 1 from one of the operands.
7325   switch (Pred) {
7326   case ICmpInst::ICMP_SLE:
7327     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7328       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7329                        SCEV::FlagNSW);
7330       Pred = ICmpInst::ICMP_SLT;
7331       Changed = true;
7332     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7333       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7334                        SCEV::FlagNSW);
7335       Pred = ICmpInst::ICMP_SLT;
7336       Changed = true;
7337     }
7338     break;
7339   case ICmpInst::ICMP_SGE:
7340     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7341       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7342                        SCEV::FlagNSW);
7343       Pred = ICmpInst::ICMP_SGT;
7344       Changed = true;
7345     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7346       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7347                        SCEV::FlagNSW);
7348       Pred = ICmpInst::ICMP_SGT;
7349       Changed = true;
7350     }
7351     break;
7352   case ICmpInst::ICMP_ULE:
7353     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7354       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7355                        SCEV::FlagNUW);
7356       Pred = ICmpInst::ICMP_ULT;
7357       Changed = true;
7358     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7359       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7360       Pred = ICmpInst::ICMP_ULT;
7361       Changed = true;
7362     }
7363     break;
7364   case ICmpInst::ICMP_UGE:
7365     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7366       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7367       Pred = ICmpInst::ICMP_UGT;
7368       Changed = true;
7369     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7370       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7371                        SCEV::FlagNUW);
7372       Pred = ICmpInst::ICMP_UGT;
7373       Changed = true;
7374     }
7375     break;
7376   default:
7377     break;
7378   }
7379 
7380   // TODO: More simplifications are possible here.
7381 
7382   // Recursively simplify until we either hit a recursion limit or nothing
7383   // changes.
7384   if (Changed)
7385     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7386 
7387   return Changed;
7388 
7389 trivially_true:
7390   // Return 0 == 0.
7391   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7392   Pred = ICmpInst::ICMP_EQ;
7393   return true;
7394 
7395 trivially_false:
7396   // Return 0 != 0.
7397   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7398   Pred = ICmpInst::ICMP_NE;
7399   return true;
7400 }
7401 
7402 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7403   return getSignedRange(S).getSignedMax().isNegative();
7404 }
7405 
7406 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7407   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7408 }
7409 
7410 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7411   return !getSignedRange(S).getSignedMin().isNegative();
7412 }
7413 
7414 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7415   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7416 }
7417 
7418 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7419   return isKnownNegative(S) || isKnownPositive(S);
7420 }
7421 
7422 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7423                                        const SCEV *LHS, const SCEV *RHS) {
7424   // Canonicalize the inputs first.
7425   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7426 
7427   // If LHS or RHS is an addrec, check to see if the condition is true in
7428   // every iteration of the loop.
7429   // If LHS and RHS are both addrec, both conditions must be true in
7430   // every iteration of the loop.
7431   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7432   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7433   bool LeftGuarded = false;
7434   bool RightGuarded = false;
7435   if (LAR) {
7436     const Loop *L = LAR->getLoop();
7437     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7438         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7439       if (!RAR) return true;
7440       LeftGuarded = true;
7441     }
7442   }
7443   if (RAR) {
7444     const Loop *L = RAR->getLoop();
7445     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7446         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7447       if (!LAR) return true;
7448       RightGuarded = true;
7449     }
7450   }
7451   if (LeftGuarded && RightGuarded)
7452     return true;
7453 
7454   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7455     return true;
7456 
7457   // Otherwise see what can be done with known constant ranges.
7458   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7459 }
7460 
7461 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7462                                            ICmpInst::Predicate Pred,
7463                                            bool &Increasing) {
7464   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7465 
7466 #ifndef NDEBUG
7467   // Verify an invariant: inverting the predicate should turn a monotonically
7468   // increasing change to a monotonically decreasing one, and vice versa.
7469   bool IncreasingSwapped;
7470   bool ResultSwapped = isMonotonicPredicateImpl(
7471       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7472 
7473   assert(Result == ResultSwapped && "should be able to analyze both!");
7474   if (ResultSwapped)
7475     assert(Increasing == !IncreasingSwapped &&
7476            "monotonicity should flip as we flip the predicate");
7477 #endif
7478 
7479   return Result;
7480 }
7481 
7482 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7483                                                ICmpInst::Predicate Pred,
7484                                                bool &Increasing) {
7485 
7486   // A zero step value for LHS means the induction variable is essentially a
7487   // loop invariant value. We don't really depend on the predicate actually
7488   // flipping from false to true (for increasing predicates, and the other way
7489   // around for decreasing predicates), all we care about is that *if* the
7490   // predicate changes then it only changes from false to true.
7491   //
7492   // A zero step value in itself is not very useful, but there may be places
7493   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7494   // as general as possible.
7495 
7496   switch (Pred) {
7497   default:
7498     return false; // Conservative answer
7499 
7500   case ICmpInst::ICMP_UGT:
7501   case ICmpInst::ICMP_UGE:
7502   case ICmpInst::ICMP_ULT:
7503   case ICmpInst::ICMP_ULE:
7504     if (!LHS->hasNoUnsignedWrap())
7505       return false;
7506 
7507     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7508     return true;
7509 
7510   case ICmpInst::ICMP_SGT:
7511   case ICmpInst::ICMP_SGE:
7512   case ICmpInst::ICMP_SLT:
7513   case ICmpInst::ICMP_SLE: {
7514     if (!LHS->hasNoSignedWrap())
7515       return false;
7516 
7517     const SCEV *Step = LHS->getStepRecurrence(*this);
7518 
7519     if (isKnownNonNegative(Step)) {
7520       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7521       return true;
7522     }
7523 
7524     if (isKnownNonPositive(Step)) {
7525       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7526       return true;
7527     }
7528 
7529     return false;
7530   }
7531 
7532   }
7533 
7534   llvm_unreachable("switch has default clause!");
7535 }
7536 
7537 bool ScalarEvolution::isLoopInvariantPredicate(
7538     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7539     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7540     const SCEV *&InvariantRHS) {
7541 
7542   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7543   if (!isLoopInvariant(RHS, L)) {
7544     if (!isLoopInvariant(LHS, L))
7545       return false;
7546 
7547     std::swap(LHS, RHS);
7548     Pred = ICmpInst::getSwappedPredicate(Pred);
7549   }
7550 
7551   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7552   if (!ArLHS || ArLHS->getLoop() != L)
7553     return false;
7554 
7555   bool Increasing;
7556   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7557     return false;
7558 
7559   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7560   // true as the loop iterates, and the backedge is control dependent on
7561   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7562   //
7563   //   * if the predicate was false in the first iteration then the predicate
7564   //     is never evaluated again, since the loop exits without taking the
7565   //     backedge.
7566   //   * if the predicate was true in the first iteration then it will
7567   //     continue to be true for all future iterations since it is
7568   //     monotonically increasing.
7569   //
7570   // For both the above possibilities, we can replace the loop varying
7571   // predicate with its value on the first iteration of the loop (which is
7572   // loop invariant).
7573   //
7574   // A similar reasoning applies for a monotonically decreasing predicate, by
7575   // replacing true with false and false with true in the above two bullets.
7576 
7577   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7578 
7579   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7580     return false;
7581 
7582   InvariantPred = Pred;
7583   InvariantLHS = ArLHS->getStart();
7584   InvariantRHS = RHS;
7585   return true;
7586 }
7587 
7588 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7589     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7590   if (HasSameValue(LHS, RHS))
7591     return ICmpInst::isTrueWhenEqual(Pred);
7592 
7593   // This code is split out from isKnownPredicate because it is called from
7594   // within isLoopEntryGuardedByCond.
7595 
7596   auto CheckRanges =
7597       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7598     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7599         .contains(RangeLHS);
7600   };
7601 
7602   // The check at the top of the function catches the case where the values are
7603   // known to be equal.
7604   if (Pred == CmpInst::ICMP_EQ)
7605     return false;
7606 
7607   if (Pred == CmpInst::ICMP_NE)
7608     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7609            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7610            isKnownNonZero(getMinusSCEV(LHS, RHS));
7611 
7612   if (CmpInst::isSigned(Pred))
7613     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7614 
7615   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7616 }
7617 
7618 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7619                                                     const SCEV *LHS,
7620                                                     const SCEV *RHS) {
7621 
7622   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7623   // Return Y via OutY.
7624   auto MatchBinaryAddToConst =
7625       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7626              SCEV::NoWrapFlags ExpectedFlags) {
7627     const SCEV *NonConstOp, *ConstOp;
7628     SCEV::NoWrapFlags FlagsPresent;
7629 
7630     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7631         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7632       return false;
7633 
7634     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7635     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7636   };
7637 
7638   APInt C;
7639 
7640   switch (Pred) {
7641   default:
7642     break;
7643 
7644   case ICmpInst::ICMP_SGE:
7645     std::swap(LHS, RHS);
7646   case ICmpInst::ICMP_SLE:
7647     // X s<= (X + C)<nsw> if C >= 0
7648     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7649       return true;
7650 
7651     // (X + C)<nsw> s<= X if C <= 0
7652     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7653         !C.isStrictlyPositive())
7654       return true;
7655     break;
7656 
7657   case ICmpInst::ICMP_SGT:
7658     std::swap(LHS, RHS);
7659   case ICmpInst::ICMP_SLT:
7660     // X s< (X + C)<nsw> if C > 0
7661     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7662         C.isStrictlyPositive())
7663       return true;
7664 
7665     // (X + C)<nsw> s< X if C < 0
7666     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7667       return true;
7668     break;
7669   }
7670 
7671   return false;
7672 }
7673 
7674 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7675                                                    const SCEV *LHS,
7676                                                    const SCEV *RHS) {
7677   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7678     return false;
7679 
7680   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7681   // the stack can result in exponential time complexity.
7682   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7683 
7684   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7685   //
7686   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7687   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7688   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7689   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7690   // use isKnownPredicate later if needed.
7691   return isKnownNonNegative(RHS) &&
7692          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7693          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7694 }
7695 
7696 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7697 /// protected by a conditional between LHS and RHS.  This is used to
7698 /// to eliminate casts.
7699 bool
7700 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7701                                              ICmpInst::Predicate Pred,
7702                                              const SCEV *LHS, const SCEV *RHS) {
7703   // Interpret a null as meaning no loop, where there is obviously no guard
7704   // (interprocedural conditions notwithstanding).
7705   if (!L) return true;
7706 
7707   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7708     return true;
7709 
7710   BasicBlock *Latch = L->getLoopLatch();
7711   if (!Latch)
7712     return false;
7713 
7714   BranchInst *LoopContinuePredicate =
7715     dyn_cast<BranchInst>(Latch->getTerminator());
7716   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7717       isImpliedCond(Pred, LHS, RHS,
7718                     LoopContinuePredicate->getCondition(),
7719                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7720     return true;
7721 
7722   // We don't want more than one activation of the following loops on the stack
7723   // -- that can lead to O(n!) time complexity.
7724   if (WalkingBEDominatingConds)
7725     return false;
7726 
7727   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7728 
7729   // See if we can exploit a trip count to prove the predicate.
7730   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7731   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7732   if (LatchBECount != getCouldNotCompute()) {
7733     // We know that Latch branches back to the loop header exactly
7734     // LatchBECount times.  This means the backdege condition at Latch is
7735     // equivalent to  "{0,+,1} u< LatchBECount".
7736     Type *Ty = LatchBECount->getType();
7737     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7738     const SCEV *LoopCounter =
7739       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7740     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7741                       LatchBECount))
7742       return true;
7743   }
7744 
7745   // Check conditions due to any @llvm.assume intrinsics.
7746   for (auto &AssumeVH : AC.assumptions()) {
7747     if (!AssumeVH)
7748       continue;
7749     auto *CI = cast<CallInst>(AssumeVH);
7750     if (!DT.dominates(CI, Latch->getTerminator()))
7751       continue;
7752 
7753     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7754       return true;
7755   }
7756 
7757   // If the loop is not reachable from the entry block, we risk running into an
7758   // infinite loop as we walk up into the dom tree.  These loops do not matter
7759   // anyway, so we just return a conservative answer when we see them.
7760   if (!DT.isReachableFromEntry(L->getHeader()))
7761     return false;
7762 
7763   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7764        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7765 
7766     assert(DTN && "should reach the loop header before reaching the root!");
7767 
7768     BasicBlock *BB = DTN->getBlock();
7769     BasicBlock *PBB = BB->getSinglePredecessor();
7770     if (!PBB)
7771       continue;
7772 
7773     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7774     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7775       continue;
7776 
7777     Value *Condition = ContinuePredicate->getCondition();
7778 
7779     // If we have an edge `E` within the loop body that dominates the only
7780     // latch, the condition guarding `E` also guards the backedge.  This
7781     // reasoning works only for loops with a single latch.
7782 
7783     BasicBlockEdge DominatingEdge(PBB, BB);
7784     if (DominatingEdge.isSingleEdge()) {
7785       // We're constructively (and conservatively) enumerating edges within the
7786       // loop body that dominate the latch.  The dominator tree better agree
7787       // with us on this:
7788       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7789 
7790       if (isImpliedCond(Pred, LHS, RHS, Condition,
7791                         BB != ContinuePredicate->getSuccessor(0)))
7792         return true;
7793     }
7794   }
7795 
7796   return false;
7797 }
7798 
7799 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
7800 /// by a conditional between LHS and RHS.  This is used to help avoid max
7801 /// expressions in loop trip counts, and to eliminate casts.
7802 bool
7803 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7804                                           ICmpInst::Predicate Pred,
7805                                           const SCEV *LHS, const SCEV *RHS) {
7806   // Interpret a null as meaning no loop, where there is obviously no guard
7807   // (interprocedural conditions notwithstanding).
7808   if (!L) return false;
7809 
7810   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7811     return true;
7812 
7813   // Starting at the loop predecessor, climb up the predecessor chain, as long
7814   // as there are predecessors that can be found that have unique successors
7815   // leading to the original header.
7816   for (std::pair<BasicBlock *, BasicBlock *>
7817          Pair(L->getLoopPredecessor(), L->getHeader());
7818        Pair.first;
7819        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7820 
7821     BranchInst *LoopEntryPredicate =
7822       dyn_cast<BranchInst>(Pair.first->getTerminator());
7823     if (!LoopEntryPredicate ||
7824         LoopEntryPredicate->isUnconditional())
7825       continue;
7826 
7827     if (isImpliedCond(Pred, LHS, RHS,
7828                       LoopEntryPredicate->getCondition(),
7829                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
7830       return true;
7831   }
7832 
7833   // Check conditions due to any @llvm.assume intrinsics.
7834   for (auto &AssumeVH : AC.assumptions()) {
7835     if (!AssumeVH)
7836       continue;
7837     auto *CI = cast<CallInst>(AssumeVH);
7838     if (!DT.dominates(CI, L->getHeader()))
7839       continue;
7840 
7841     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7842       return true;
7843   }
7844 
7845   return false;
7846 }
7847 
7848 namespace {
7849 /// RAII wrapper to prevent recursive application of isImpliedCond.
7850 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7851 /// currently evaluating isImpliedCond.
7852 struct MarkPendingLoopPredicate {
7853   Value *Cond;
7854   DenseSet<Value*> &LoopPreds;
7855   bool Pending;
7856 
7857   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7858     : Cond(C), LoopPreds(LP) {
7859     Pending = !LoopPreds.insert(Cond).second;
7860   }
7861   ~MarkPendingLoopPredicate() {
7862     if (!Pending)
7863       LoopPreds.erase(Cond);
7864   }
7865 };
7866 } // end anonymous namespace
7867 
7868 /// isImpliedCond - Test whether the condition described by Pred, LHS,
7869 /// and RHS is true whenever the given Cond value evaluates to true.
7870 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
7871                                     const SCEV *LHS, const SCEV *RHS,
7872                                     Value *FoundCondValue,
7873                                     bool Inverse) {
7874   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7875   if (Mark.Pending)
7876     return false;
7877 
7878   // Recursively handle And and Or conditions.
7879   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
7880     if (BO->getOpcode() == Instruction::And) {
7881       if (!Inverse)
7882         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7883                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7884     } else if (BO->getOpcode() == Instruction::Or) {
7885       if (Inverse)
7886         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7887                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7888     }
7889   }
7890 
7891   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
7892   if (!ICI) return false;
7893 
7894   // Now that we found a conditional branch that dominates the loop or controls
7895   // the loop latch. Check to see if it is the comparison we are looking for.
7896   ICmpInst::Predicate FoundPred;
7897   if (Inverse)
7898     FoundPred = ICI->getInversePredicate();
7899   else
7900     FoundPred = ICI->getPredicate();
7901 
7902   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7903   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
7904 
7905   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7906 }
7907 
7908 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7909                                     const SCEV *RHS,
7910                                     ICmpInst::Predicate FoundPred,
7911                                     const SCEV *FoundLHS,
7912                                     const SCEV *FoundRHS) {
7913   // Balance the types.
7914   if (getTypeSizeInBits(LHS->getType()) <
7915       getTypeSizeInBits(FoundLHS->getType())) {
7916     if (CmpInst::isSigned(Pred)) {
7917       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7918       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7919     } else {
7920       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7921       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7922     }
7923   } else if (getTypeSizeInBits(LHS->getType()) >
7924       getTypeSizeInBits(FoundLHS->getType())) {
7925     if (CmpInst::isSigned(FoundPred)) {
7926       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7927       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7928     } else {
7929       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7930       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7931     }
7932   }
7933 
7934   // Canonicalize the query to match the way instcombine will have
7935   // canonicalized the comparison.
7936   if (SimplifyICmpOperands(Pred, LHS, RHS))
7937     if (LHS == RHS)
7938       return CmpInst::isTrueWhenEqual(Pred);
7939   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7940     if (FoundLHS == FoundRHS)
7941       return CmpInst::isFalseWhenEqual(FoundPred);
7942 
7943   // Check to see if we can make the LHS or RHS match.
7944   if (LHS == FoundRHS || RHS == FoundLHS) {
7945     if (isa<SCEVConstant>(RHS)) {
7946       std::swap(FoundLHS, FoundRHS);
7947       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7948     } else {
7949       std::swap(LHS, RHS);
7950       Pred = ICmpInst::getSwappedPredicate(Pred);
7951     }
7952   }
7953 
7954   // Check whether the found predicate is the same as the desired predicate.
7955   if (FoundPred == Pred)
7956     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7957 
7958   // Check whether swapping the found predicate makes it the same as the
7959   // desired predicate.
7960   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7961     if (isa<SCEVConstant>(RHS))
7962       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7963     else
7964       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7965                                    RHS, LHS, FoundLHS, FoundRHS);
7966   }
7967 
7968   // Unsigned comparison is the same as signed comparison when both the operands
7969   // are non-negative.
7970   if (CmpInst::isUnsigned(FoundPred) &&
7971       CmpInst::getSignedPredicate(FoundPred) == Pred &&
7972       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7973     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7974 
7975   // Check if we can make progress by sharpening ranges.
7976   if (FoundPred == ICmpInst::ICMP_NE &&
7977       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7978 
7979     const SCEVConstant *C = nullptr;
7980     const SCEV *V = nullptr;
7981 
7982     if (isa<SCEVConstant>(FoundLHS)) {
7983       C = cast<SCEVConstant>(FoundLHS);
7984       V = FoundRHS;
7985     } else {
7986       C = cast<SCEVConstant>(FoundRHS);
7987       V = FoundLHS;
7988     }
7989 
7990     // The guarding predicate tells us that C != V. If the known range
7991     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
7992     // range we consider has to correspond to same signedness as the
7993     // predicate we're interested in folding.
7994 
7995     APInt Min = ICmpInst::isSigned(Pred) ?
7996         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7997 
7998     if (Min == C->getAPInt()) {
7999       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8000       // This is true even if (Min + 1) wraps around -- in case of
8001       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8002 
8003       APInt SharperMin = Min + 1;
8004 
8005       switch (Pred) {
8006         case ICmpInst::ICMP_SGE:
8007         case ICmpInst::ICMP_UGE:
8008           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8009           // RHS, we're done.
8010           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8011                                     getConstant(SharperMin)))
8012             return true;
8013 
8014         case ICmpInst::ICMP_SGT:
8015         case ICmpInst::ICMP_UGT:
8016           // We know from the range information that (V `Pred` Min ||
8017           // V == Min).  We know from the guarding condition that !(V
8018           // == Min).  This gives us
8019           //
8020           //       V `Pred` Min || V == Min && !(V == Min)
8021           //   =>  V `Pred` Min
8022           //
8023           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8024 
8025           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8026             return true;
8027 
8028         default:
8029           // No change
8030           break;
8031       }
8032     }
8033   }
8034 
8035   // Check whether the actual condition is beyond sufficient.
8036   if (FoundPred == ICmpInst::ICMP_EQ)
8037     if (ICmpInst::isTrueWhenEqual(Pred))
8038       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8039         return true;
8040   if (Pred == ICmpInst::ICMP_NE)
8041     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8042       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8043         return true;
8044 
8045   // Otherwise assume the worst.
8046   return false;
8047 }
8048 
8049 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8050                                      const SCEV *&L, const SCEV *&R,
8051                                      SCEV::NoWrapFlags &Flags) {
8052   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8053   if (!AE || AE->getNumOperands() != 2)
8054     return false;
8055 
8056   L = AE->getOperand(0);
8057   R = AE->getOperand(1);
8058   Flags = AE->getNoWrapFlags();
8059   return true;
8060 }
8061 
8062 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8063                                                 const SCEV *More,
8064                                                 APInt &C) {
8065   // We avoid subtracting expressions here because this function is usually
8066   // fairly deep in the call stack (i.e. is called many times).
8067 
8068   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8069     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8070     const auto *MAR = cast<SCEVAddRecExpr>(More);
8071 
8072     if (LAR->getLoop() != MAR->getLoop())
8073       return false;
8074 
8075     // We look at affine expressions only; not for correctness but to keep
8076     // getStepRecurrence cheap.
8077     if (!LAR->isAffine() || !MAR->isAffine())
8078       return false;
8079 
8080     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8081       return false;
8082 
8083     Less = LAR->getStart();
8084     More = MAR->getStart();
8085 
8086     // fall through
8087   }
8088 
8089   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8090     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8091     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8092     C = M - L;
8093     return true;
8094   }
8095 
8096   const SCEV *L, *R;
8097   SCEV::NoWrapFlags Flags;
8098   if (splitBinaryAdd(Less, L, R, Flags))
8099     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8100       if (R == More) {
8101         C = -(LC->getAPInt());
8102         return true;
8103       }
8104 
8105   if (splitBinaryAdd(More, L, R, Flags))
8106     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8107       if (R == Less) {
8108         C = LC->getAPInt();
8109         return true;
8110       }
8111 
8112   return false;
8113 }
8114 
8115 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8116     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8117     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8118   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8119     return false;
8120 
8121   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8122   if (!AddRecLHS)
8123     return false;
8124 
8125   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8126   if (!AddRecFoundLHS)
8127     return false;
8128 
8129   // We'd like to let SCEV reason about control dependencies, so we constrain
8130   // both the inequalities to be about add recurrences on the same loop.  This
8131   // way we can use isLoopEntryGuardedByCond later.
8132 
8133   const Loop *L = AddRecFoundLHS->getLoop();
8134   if (L != AddRecLHS->getLoop())
8135     return false;
8136 
8137   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8138   //
8139   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8140   //                                                                  ... (2)
8141   //
8142   // Informal proof for (2), assuming (1) [*]:
8143   //
8144   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8145   //
8146   // Then
8147   //
8148   //       FoundLHS s< FoundRHS s< INT_MIN - C
8149   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8150   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8151   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8152   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8153   // <=>  FoundLHS + C s< FoundRHS + C
8154   //
8155   // [*]: (1) can be proved by ruling out overflow.
8156   //
8157   // [**]: This can be proved by analyzing all the four possibilities:
8158   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8159   //    (A s>= 0, B s>= 0).
8160   //
8161   // Note:
8162   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8163   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8164   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8165   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8166   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8167   // C)".
8168 
8169   APInt LDiff, RDiff;
8170   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8171       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
8172       LDiff != RDiff)
8173     return false;
8174 
8175   if (LDiff == 0)
8176     return true;
8177 
8178   APInt FoundRHSLimit;
8179 
8180   if (Pred == CmpInst::ICMP_ULT) {
8181     FoundRHSLimit = -RDiff;
8182   } else {
8183     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8184     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
8185   }
8186 
8187   // Try to prove (1) or (2), as needed.
8188   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8189                                   getConstant(FoundRHSLimit));
8190 }
8191 
8192 /// isImpliedCondOperands - Test whether the condition described by Pred,
8193 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
8194 /// and FoundRHS is true.
8195 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8196                                             const SCEV *LHS, const SCEV *RHS,
8197                                             const SCEV *FoundLHS,
8198                                             const SCEV *FoundRHS) {
8199   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8200     return true;
8201 
8202   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8203     return true;
8204 
8205   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8206                                      FoundLHS, FoundRHS) ||
8207          // ~x < ~y --> x > y
8208          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8209                                      getNotSCEV(FoundRHS),
8210                                      getNotSCEV(FoundLHS));
8211 }
8212 
8213 
8214 /// If Expr computes ~A, return A else return nullptr
8215 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8216   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8217   if (!Add || Add->getNumOperands() != 2 ||
8218       !Add->getOperand(0)->isAllOnesValue())
8219     return nullptr;
8220 
8221   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8222   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8223       !AddRHS->getOperand(0)->isAllOnesValue())
8224     return nullptr;
8225 
8226   return AddRHS->getOperand(1);
8227 }
8228 
8229 
8230 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8231 template<typename MaxExprType>
8232 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8233                               const SCEV *Candidate) {
8234   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8235   if (!MaxExpr) return false;
8236 
8237   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8238 }
8239 
8240 
8241 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8242 template<typename MaxExprType>
8243 static bool IsMinConsistingOf(ScalarEvolution &SE,
8244                               const SCEV *MaybeMinExpr,
8245                               const SCEV *Candidate) {
8246   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8247   if (!MaybeMaxExpr)
8248     return false;
8249 
8250   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8251 }
8252 
8253 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8254                                            ICmpInst::Predicate Pred,
8255                                            const SCEV *LHS, const SCEV *RHS) {
8256 
8257   // If both sides are affine addrecs for the same loop, with equal
8258   // steps, and we know the recurrences don't wrap, then we only
8259   // need to check the predicate on the starting values.
8260 
8261   if (!ICmpInst::isRelational(Pred))
8262     return false;
8263 
8264   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8265   if (!LAR)
8266     return false;
8267   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8268   if (!RAR)
8269     return false;
8270   if (LAR->getLoop() != RAR->getLoop())
8271     return false;
8272   if (!LAR->isAffine() || !RAR->isAffine())
8273     return false;
8274 
8275   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8276     return false;
8277 
8278   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8279                          SCEV::FlagNSW : SCEV::FlagNUW;
8280   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8281     return false;
8282 
8283   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8284 }
8285 
8286 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8287 /// expression?
8288 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8289                                         ICmpInst::Predicate Pred,
8290                                         const SCEV *LHS, const SCEV *RHS) {
8291   switch (Pred) {
8292   default:
8293     return false;
8294 
8295   case ICmpInst::ICMP_SGE:
8296     std::swap(LHS, RHS);
8297     // fall through
8298   case ICmpInst::ICMP_SLE:
8299     return
8300       // min(A, ...) <= A
8301       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8302       // A <= max(A, ...)
8303       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8304 
8305   case ICmpInst::ICMP_UGE:
8306     std::swap(LHS, RHS);
8307     // fall through
8308   case ICmpInst::ICMP_ULE:
8309     return
8310       // min(A, ...) <= A
8311       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8312       // A <= max(A, ...)
8313       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8314   }
8315 
8316   llvm_unreachable("covered switch fell through?!");
8317 }
8318 
8319 /// isImpliedCondOperandsHelper - Test whether the condition described by
8320 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
8321 /// FoundLHS, and FoundRHS is true.
8322 bool
8323 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8324                                              const SCEV *LHS, const SCEV *RHS,
8325                                              const SCEV *FoundLHS,
8326                                              const SCEV *FoundRHS) {
8327   auto IsKnownPredicateFull =
8328       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8329     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8330            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8331            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8332            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8333   };
8334 
8335   switch (Pred) {
8336   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8337   case ICmpInst::ICMP_EQ:
8338   case ICmpInst::ICMP_NE:
8339     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8340       return true;
8341     break;
8342   case ICmpInst::ICMP_SLT:
8343   case ICmpInst::ICMP_SLE:
8344     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8345         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8346       return true;
8347     break;
8348   case ICmpInst::ICMP_SGT:
8349   case ICmpInst::ICMP_SGE:
8350     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8351         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8352       return true;
8353     break;
8354   case ICmpInst::ICMP_ULT:
8355   case ICmpInst::ICMP_ULE:
8356     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8357         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8358       return true;
8359     break;
8360   case ICmpInst::ICMP_UGT:
8361   case ICmpInst::ICMP_UGE:
8362     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8363         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8364       return true;
8365     break;
8366   }
8367 
8368   return false;
8369 }
8370 
8371 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8372 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8373 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8374                                                      const SCEV *LHS,
8375                                                      const SCEV *RHS,
8376                                                      const SCEV *FoundLHS,
8377                                                      const SCEV *FoundRHS) {
8378   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8379     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8380     // reduce the compile time impact of this optimization.
8381     return false;
8382 
8383   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8384   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8385       !isa<SCEVConstant>(AddLHS->getOperand(0)))
8386     return false;
8387 
8388   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8389 
8390   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8391   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8392   ConstantRange FoundLHSRange =
8393       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8394 
8395   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8396   // for `LHS`:
8397   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8398   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8399 
8400   // We can also compute the range of values for `LHS` that satisfy the
8401   // consequent, "`LHS` `Pred` `RHS`":
8402   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8403   ConstantRange SatisfyingLHSRange =
8404       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8405 
8406   // The antecedent implies the consequent if every value of `LHS` that
8407   // satisfies the antecedent also satisfies the consequent.
8408   return SatisfyingLHSRange.contains(LHSRange);
8409 }
8410 
8411 // Verify if an linear IV with positive stride can overflow when in a
8412 // less-than comparison, knowing the invariant term of the comparison, the
8413 // stride and the knowledge of NSW/NUW flags on the recurrence.
8414 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8415                                          bool IsSigned, bool NoWrap) {
8416   if (NoWrap) return false;
8417 
8418   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8419   const SCEV *One = getOne(Stride->getType());
8420 
8421   if (IsSigned) {
8422     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8423     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8424     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8425                                 .getSignedMax();
8426 
8427     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8428     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8429   }
8430 
8431   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8432   APInt MaxValue = APInt::getMaxValue(BitWidth);
8433   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8434                               .getUnsignedMax();
8435 
8436   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8437   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8438 }
8439 
8440 // Verify if an linear IV with negative stride can overflow when in a
8441 // greater-than comparison, knowing the invariant term of the comparison,
8442 // the stride and the knowledge of NSW/NUW flags on the recurrence.
8443 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8444                                          bool IsSigned, bool NoWrap) {
8445   if (NoWrap) return false;
8446 
8447   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8448   const SCEV *One = getOne(Stride->getType());
8449 
8450   if (IsSigned) {
8451     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8452     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8453     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8454                                .getSignedMax();
8455 
8456     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8457     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8458   }
8459 
8460   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8461   APInt MinValue = APInt::getMinValue(BitWidth);
8462   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8463                             .getUnsignedMax();
8464 
8465   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8466   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8467 }
8468 
8469 // Compute the backedge taken count knowing the interval difference, the
8470 // stride and presence of the equality in the comparison.
8471 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8472                                             bool Equality) {
8473   const SCEV *One = getOne(Step->getType());
8474   Delta = Equality ? getAddExpr(Delta, Step)
8475                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8476   return getUDivExpr(Delta, Step);
8477 }
8478 
8479 /// HowManyLessThans - Return the number of times a backedge containing the
8480 /// specified less-than comparison will execute.  If not computable, return
8481 /// CouldNotCompute.
8482 ///
8483 /// @param ControlsExit is true when the LHS < RHS condition directly controls
8484 /// the branch (loops exits only if condition is true). In this case, we can use
8485 /// NoWrapFlags to skip overflow checks.
8486 ScalarEvolution::ExitLimit
8487 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
8488                                   const Loop *L, bool IsSigned,
8489                                   bool ControlsExit) {
8490   // We handle only IV < Invariant
8491   if (!isLoopInvariant(RHS, L))
8492     return getCouldNotCompute();
8493 
8494   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8495 
8496   // Avoid weird loops
8497   if (!IV || IV->getLoop() != L || !IV->isAffine())
8498     return getCouldNotCompute();
8499 
8500   bool NoWrap = ControlsExit &&
8501                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8502 
8503   const SCEV *Stride = IV->getStepRecurrence(*this);
8504 
8505   // Avoid negative or zero stride values
8506   if (!isKnownPositive(Stride))
8507     return getCouldNotCompute();
8508 
8509   // Avoid proven overflow cases: this will ensure that the backedge taken count
8510   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8511   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8512   // behaviors like the case of C language.
8513   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8514     return getCouldNotCompute();
8515 
8516   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8517                                       : ICmpInst::ICMP_ULT;
8518   const SCEV *Start = IV->getStart();
8519   const SCEV *End = RHS;
8520   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8521     const SCEV *Diff = getMinusSCEV(RHS, Start);
8522     // If we have NoWrap set, then we can assume that the increment won't
8523     // overflow, in which case if RHS - Start is a constant, we don't need to
8524     // do a max operation since we can just figure it out statically
8525     if (NoWrap && isa<SCEVConstant>(Diff)) {
8526       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8527       if (D.isNegative())
8528         End = Start;
8529     } else
8530       End = IsSigned ? getSMaxExpr(RHS, Start)
8531                      : getUMaxExpr(RHS, Start);
8532   }
8533 
8534   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8535 
8536   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8537                             : getUnsignedRange(Start).getUnsignedMin();
8538 
8539   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8540                              : getUnsignedRange(Stride).getUnsignedMin();
8541 
8542   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8543   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8544                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8545 
8546   // Although End can be a MAX expression we estimate MaxEnd considering only
8547   // the case End = RHS. This is safe because in the other case (End - Start)
8548   // is zero, leading to a zero maximum backedge taken count.
8549   APInt MaxEnd =
8550     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8551              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8552 
8553   const SCEV *MaxBECount;
8554   if (isa<SCEVConstant>(BECount))
8555     MaxBECount = BECount;
8556   else
8557     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8558                                 getConstant(MinStride), false);
8559 
8560   if (isa<SCEVCouldNotCompute>(MaxBECount))
8561     MaxBECount = BECount;
8562 
8563   return ExitLimit(BECount, MaxBECount);
8564 }
8565 
8566 ScalarEvolution::ExitLimit
8567 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8568                                      const Loop *L, bool IsSigned,
8569                                      bool ControlsExit) {
8570   // We handle only IV > Invariant
8571   if (!isLoopInvariant(RHS, L))
8572     return getCouldNotCompute();
8573 
8574   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8575 
8576   // Avoid weird loops
8577   if (!IV || IV->getLoop() != L || !IV->isAffine())
8578     return getCouldNotCompute();
8579 
8580   bool NoWrap = ControlsExit &&
8581                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8582 
8583   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8584 
8585   // Avoid negative or zero stride values
8586   if (!isKnownPositive(Stride))
8587     return getCouldNotCompute();
8588 
8589   // Avoid proven overflow cases: this will ensure that the backedge taken count
8590   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8591   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8592   // behaviors like the case of C language.
8593   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8594     return getCouldNotCompute();
8595 
8596   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8597                                       : ICmpInst::ICMP_UGT;
8598 
8599   const SCEV *Start = IV->getStart();
8600   const SCEV *End = RHS;
8601   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8602     const SCEV *Diff = getMinusSCEV(RHS, Start);
8603     // If we have NoWrap set, then we can assume that the increment won't
8604     // overflow, in which case if RHS - Start is a constant, we don't need to
8605     // do a max operation since we can just figure it out statically
8606     if (NoWrap && isa<SCEVConstant>(Diff)) {
8607       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8608       if (!D.isNegative())
8609         End = Start;
8610     } else
8611       End = IsSigned ? getSMinExpr(RHS, Start)
8612                      : getUMinExpr(RHS, Start);
8613   }
8614 
8615   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8616 
8617   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8618                             : getUnsignedRange(Start).getUnsignedMax();
8619 
8620   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8621                              : getUnsignedRange(Stride).getUnsignedMin();
8622 
8623   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8624   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8625                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8626 
8627   // Although End can be a MIN expression we estimate MinEnd considering only
8628   // the case End = RHS. This is safe because in the other case (Start - End)
8629   // is zero, leading to a zero maximum backedge taken count.
8630   APInt MinEnd =
8631     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8632              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8633 
8634 
8635   const SCEV *MaxBECount = getCouldNotCompute();
8636   if (isa<SCEVConstant>(BECount))
8637     MaxBECount = BECount;
8638   else
8639     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8640                                 getConstant(MinStride), false);
8641 
8642   if (isa<SCEVCouldNotCompute>(MaxBECount))
8643     MaxBECount = BECount;
8644 
8645   return ExitLimit(BECount, MaxBECount);
8646 }
8647 
8648 /// getNumIterationsInRange - Return the number of iterations of this loop that
8649 /// produce values in the specified constant range.  Another way of looking at
8650 /// this is that it returns the first iteration number where the value is not in
8651 /// the condition, thus computing the exit count. If the iteration count can't
8652 /// be computed, an instance of SCEVCouldNotCompute is returned.
8653 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8654                                                     ScalarEvolution &SE) const {
8655   if (Range.isFullSet())  // Infinite loop.
8656     return SE.getCouldNotCompute();
8657 
8658   // If the start is a non-zero constant, shift the range to simplify things.
8659   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8660     if (!SC->getValue()->isZero()) {
8661       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8662       Operands[0] = SE.getZero(SC->getType());
8663       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8664                                              getNoWrapFlags(FlagNW));
8665       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8666         return ShiftedAddRec->getNumIterationsInRange(
8667             Range.subtract(SC->getAPInt()), SE);
8668       // This is strange and shouldn't happen.
8669       return SE.getCouldNotCompute();
8670     }
8671 
8672   // The only time we can solve this is when we have all constant indices.
8673   // Otherwise, we cannot determine the overflow conditions.
8674   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8675     return SE.getCouldNotCompute();
8676 
8677   // Okay at this point we know that all elements of the chrec are constants and
8678   // that the start element is zero.
8679 
8680   // First check to see if the range contains zero.  If not, the first
8681   // iteration exits.
8682   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8683   if (!Range.contains(APInt(BitWidth, 0)))
8684     return SE.getZero(getType());
8685 
8686   if (isAffine()) {
8687     // If this is an affine expression then we have this situation:
8688     //   Solve {0,+,A} in Range  ===  Ax in Range
8689 
8690     // We know that zero is in the range.  If A is positive then we know that
8691     // the upper value of the range must be the first possible exit value.
8692     // If A is negative then the lower of the range is the last possible loop
8693     // value.  Also note that we already checked for a full range.
8694     APInt One(BitWidth,1);
8695     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8696     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8697 
8698     // The exit value should be (End+A)/A.
8699     APInt ExitVal = (End + A).udiv(A);
8700     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8701 
8702     // Evaluate at the exit value.  If we really did fall out of the valid
8703     // range, then we computed our trip count, otherwise wrap around or other
8704     // things must have happened.
8705     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8706     if (Range.contains(Val->getValue()))
8707       return SE.getCouldNotCompute();  // Something strange happened
8708 
8709     // Ensure that the previous value is in the range.  This is a sanity check.
8710     assert(Range.contains(
8711            EvaluateConstantChrecAtConstant(this,
8712            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8713            "Linear scev computation is off in a bad way!");
8714     return SE.getConstant(ExitValue);
8715   } else if (isQuadratic()) {
8716     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8717     // quadratic equation to solve it.  To do this, we must frame our problem in
8718     // terms of figuring out when zero is crossed, instead of when
8719     // Range.getUpper() is crossed.
8720     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8721     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8722     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8723                                              // getNoWrapFlags(FlagNW)
8724                                              FlagAnyWrap);
8725 
8726     // Next, solve the constructed addrec
8727     auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
8728     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8729     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
8730     if (R1) {
8731       // Pick the smallest positive root value.
8732       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8733               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8734         if (!CB->getZExtValue())
8735           std::swap(R1, R2);   // R1 is the minimum root now.
8736 
8737         // Make sure the root is not off by one.  The returned iteration should
8738         // not be in the range, but the previous one should be.  When solving
8739         // for "X*X < 5", for example, we should not return a root of 2.
8740         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
8741                                                              R1->getValue(),
8742                                                              SE);
8743         if (Range.contains(R1Val->getValue())) {
8744           // The next iteration must be out of the range...
8745           ConstantInt *NextVal =
8746               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8747 
8748           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8749           if (!Range.contains(R1Val->getValue()))
8750             return SE.getConstant(NextVal);
8751           return SE.getCouldNotCompute();  // Something strange happened
8752         }
8753 
8754         // If R1 was not in the range, then it is a good return value.  Make
8755         // sure that R1-1 WAS in the range though, just in case.
8756         ConstantInt *NextVal =
8757             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8758         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8759         if (Range.contains(R1Val->getValue()))
8760           return R1;
8761         return SE.getCouldNotCompute();  // Something strange happened
8762       }
8763     }
8764   }
8765 
8766   return SE.getCouldNotCompute();
8767 }
8768 
8769 namespace {
8770 struct FindUndefs {
8771   bool Found;
8772   FindUndefs() : Found(false) {}
8773 
8774   bool follow(const SCEV *S) {
8775     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8776       if (isa<UndefValue>(C->getValue()))
8777         Found = true;
8778     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8779       if (isa<UndefValue>(C->getValue()))
8780         Found = true;
8781     }
8782 
8783     // Keep looking if we haven't found it yet.
8784     return !Found;
8785   }
8786   bool isDone() const {
8787     // Stop recursion if we have found an undef.
8788     return Found;
8789   }
8790 };
8791 }
8792 
8793 // Return true when S contains at least an undef value.
8794 static inline bool
8795 containsUndefs(const SCEV *S) {
8796   FindUndefs F;
8797   SCEVTraversal<FindUndefs> ST(F);
8798   ST.visitAll(S);
8799 
8800   return F.Found;
8801 }
8802 
8803 namespace {
8804 // Collect all steps of SCEV expressions.
8805 struct SCEVCollectStrides {
8806   ScalarEvolution &SE;
8807   SmallVectorImpl<const SCEV *> &Strides;
8808 
8809   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8810       : SE(SE), Strides(S) {}
8811 
8812   bool follow(const SCEV *S) {
8813     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8814       Strides.push_back(AR->getStepRecurrence(SE));
8815     return true;
8816   }
8817   bool isDone() const { return false; }
8818 };
8819 
8820 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8821 struct SCEVCollectTerms {
8822   SmallVectorImpl<const SCEV *> &Terms;
8823 
8824   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8825       : Terms(T) {}
8826 
8827   bool follow(const SCEV *S) {
8828     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8829       if (!containsUndefs(S))
8830         Terms.push_back(S);
8831 
8832       // Stop recursion: once we collected a term, do not walk its operands.
8833       return false;
8834     }
8835 
8836     // Keep looking.
8837     return true;
8838   }
8839   bool isDone() const { return false; }
8840 };
8841 
8842 // Check if a SCEV contains an AddRecExpr.
8843 struct SCEVHasAddRec {
8844   bool &ContainsAddRec;
8845 
8846   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8847    ContainsAddRec = false;
8848   }
8849 
8850   bool follow(const SCEV *S) {
8851     if (isa<SCEVAddRecExpr>(S)) {
8852       ContainsAddRec = true;
8853 
8854       // Stop recursion: once we collected a term, do not walk its operands.
8855       return false;
8856     }
8857 
8858     // Keep looking.
8859     return true;
8860   }
8861   bool isDone() const { return false; }
8862 };
8863 
8864 // Find factors that are multiplied with an expression that (possibly as a
8865 // subexpression) contains an AddRecExpr. In the expression:
8866 //
8867 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
8868 //
8869 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8870 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8871 // parameters as they form a product with an induction variable.
8872 //
8873 // This collector expects all array size parameters to be in the same MulExpr.
8874 // It might be necessary to later add support for collecting parameters that are
8875 // spread over different nested MulExpr.
8876 struct SCEVCollectAddRecMultiplies {
8877   SmallVectorImpl<const SCEV *> &Terms;
8878   ScalarEvolution &SE;
8879 
8880   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8881       : Terms(T), SE(SE) {}
8882 
8883   bool follow(const SCEV *S) {
8884     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8885       bool HasAddRec = false;
8886       SmallVector<const SCEV *, 0> Operands;
8887       for (auto Op : Mul->operands()) {
8888         if (isa<SCEVUnknown>(Op)) {
8889           Operands.push_back(Op);
8890         } else {
8891           bool ContainsAddRec;
8892           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8893           visitAll(Op, ContiansAddRec);
8894           HasAddRec |= ContainsAddRec;
8895         }
8896       }
8897       if (Operands.size() == 0)
8898         return true;
8899 
8900       if (!HasAddRec)
8901         return false;
8902 
8903       Terms.push_back(SE.getMulExpr(Operands));
8904       // Stop recursion: once we collected a term, do not walk its operands.
8905       return false;
8906     }
8907 
8908     // Keep looking.
8909     return true;
8910   }
8911   bool isDone() const { return false; }
8912 };
8913 }
8914 
8915 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8916 /// two places:
8917 ///   1) The strides of AddRec expressions.
8918 ///   2) Unknowns that are multiplied with AddRec expressions.
8919 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8920     SmallVectorImpl<const SCEV *> &Terms) {
8921   SmallVector<const SCEV *, 4> Strides;
8922   SCEVCollectStrides StrideCollector(*this, Strides);
8923   visitAll(Expr, StrideCollector);
8924 
8925   DEBUG({
8926       dbgs() << "Strides:\n";
8927       for (const SCEV *S : Strides)
8928         dbgs() << *S << "\n";
8929     });
8930 
8931   for (const SCEV *S : Strides) {
8932     SCEVCollectTerms TermCollector(Terms);
8933     visitAll(S, TermCollector);
8934   }
8935 
8936   DEBUG({
8937       dbgs() << "Terms:\n";
8938       for (const SCEV *T : Terms)
8939         dbgs() << *T << "\n";
8940     });
8941 
8942   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8943   visitAll(Expr, MulCollector);
8944 }
8945 
8946 static bool findArrayDimensionsRec(ScalarEvolution &SE,
8947                                    SmallVectorImpl<const SCEV *> &Terms,
8948                                    SmallVectorImpl<const SCEV *> &Sizes) {
8949   int Last = Terms.size() - 1;
8950   const SCEV *Step = Terms[Last];
8951 
8952   // End of recursion.
8953   if (Last == 0) {
8954     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
8955       SmallVector<const SCEV *, 2> Qs;
8956       for (const SCEV *Op : M->operands())
8957         if (!isa<SCEVConstant>(Op))
8958           Qs.push_back(Op);
8959 
8960       Step = SE.getMulExpr(Qs);
8961     }
8962 
8963     Sizes.push_back(Step);
8964     return true;
8965   }
8966 
8967   for (const SCEV *&Term : Terms) {
8968     // Normalize the terms before the next call to findArrayDimensionsRec.
8969     const SCEV *Q, *R;
8970     SCEVDivision::divide(SE, Term, Step, &Q, &R);
8971 
8972     // Bail out when GCD does not evenly divide one of the terms.
8973     if (!R->isZero())
8974       return false;
8975 
8976     Term = Q;
8977   }
8978 
8979   // Remove all SCEVConstants.
8980   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8981                 return isa<SCEVConstant>(E);
8982               }),
8983               Terms.end());
8984 
8985   if (Terms.size() > 0)
8986     if (!findArrayDimensionsRec(SE, Terms, Sizes))
8987       return false;
8988 
8989   Sizes.push_back(Step);
8990   return true;
8991 }
8992 
8993 // Returns true when S contains at least a SCEVUnknown parameter.
8994 static inline bool
8995 containsParameters(const SCEV *S) {
8996   struct FindParameter {
8997     bool FoundParameter;
8998     FindParameter() : FoundParameter(false) {}
8999 
9000     bool follow(const SCEV *S) {
9001       if (isa<SCEVUnknown>(S)) {
9002         FoundParameter = true;
9003         // Stop recursion: we found a parameter.
9004         return false;
9005       }
9006       // Keep looking.
9007       return true;
9008     }
9009     bool isDone() const {
9010       // Stop recursion if we have found a parameter.
9011       return FoundParameter;
9012     }
9013   };
9014 
9015   FindParameter F;
9016   SCEVTraversal<FindParameter> ST(F);
9017   ST.visitAll(S);
9018 
9019   return F.FoundParameter;
9020 }
9021 
9022 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9023 static inline bool
9024 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9025   for (const SCEV *T : Terms)
9026     if (containsParameters(T))
9027       return true;
9028   return false;
9029 }
9030 
9031 // Return the number of product terms in S.
9032 static inline int numberOfTerms(const SCEV *S) {
9033   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9034     return Expr->getNumOperands();
9035   return 1;
9036 }
9037 
9038 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9039   if (isa<SCEVConstant>(T))
9040     return nullptr;
9041 
9042   if (isa<SCEVUnknown>(T))
9043     return T;
9044 
9045   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9046     SmallVector<const SCEV *, 2> Factors;
9047     for (const SCEV *Op : M->operands())
9048       if (!isa<SCEVConstant>(Op))
9049         Factors.push_back(Op);
9050 
9051     return SE.getMulExpr(Factors);
9052   }
9053 
9054   return T;
9055 }
9056 
9057 /// Return the size of an element read or written by Inst.
9058 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9059   Type *Ty;
9060   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9061     Ty = Store->getValueOperand()->getType();
9062   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9063     Ty = Load->getType();
9064   else
9065     return nullptr;
9066 
9067   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9068   return getSizeOfExpr(ETy, Ty);
9069 }
9070 
9071 /// Second step of delinearization: compute the array dimensions Sizes from the
9072 /// set of Terms extracted from the memory access function of this SCEVAddRec.
9073 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9074                                           SmallVectorImpl<const SCEV *> &Sizes,
9075                                           const SCEV *ElementSize) const {
9076 
9077   if (Terms.size() < 1 || !ElementSize)
9078     return;
9079 
9080   // Early return when Terms do not contain parameters: we do not delinearize
9081   // non parametric SCEVs.
9082   if (!containsParameters(Terms))
9083     return;
9084 
9085   DEBUG({
9086       dbgs() << "Terms:\n";
9087       for (const SCEV *T : Terms)
9088         dbgs() << *T << "\n";
9089     });
9090 
9091   // Remove duplicates.
9092   std::sort(Terms.begin(), Terms.end());
9093   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9094 
9095   // Put larger terms first.
9096   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9097     return numberOfTerms(LHS) > numberOfTerms(RHS);
9098   });
9099 
9100   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9101 
9102   // Try to divide all terms by the element size. If term is not divisible by
9103   // element size, proceed with the original term.
9104   for (const SCEV *&Term : Terms) {
9105     const SCEV *Q, *R;
9106     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9107     if (!Q->isZero())
9108       Term = Q;
9109   }
9110 
9111   SmallVector<const SCEV *, 4> NewTerms;
9112 
9113   // Remove constant factors.
9114   for (const SCEV *T : Terms)
9115     if (const SCEV *NewT = removeConstantFactors(SE, T))
9116       NewTerms.push_back(NewT);
9117 
9118   DEBUG({
9119       dbgs() << "Terms after sorting:\n";
9120       for (const SCEV *T : NewTerms)
9121         dbgs() << *T << "\n";
9122     });
9123 
9124   if (NewTerms.empty() ||
9125       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9126     Sizes.clear();
9127     return;
9128   }
9129 
9130   // The last element to be pushed into Sizes is the size of an element.
9131   Sizes.push_back(ElementSize);
9132 
9133   DEBUG({
9134       dbgs() << "Sizes:\n";
9135       for (const SCEV *S : Sizes)
9136         dbgs() << *S << "\n";
9137     });
9138 }
9139 
9140 /// Third step of delinearization: compute the access functions for the
9141 /// Subscripts based on the dimensions in Sizes.
9142 void ScalarEvolution::computeAccessFunctions(
9143     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9144     SmallVectorImpl<const SCEV *> &Sizes) {
9145 
9146   // Early exit in case this SCEV is not an affine multivariate function.
9147   if (Sizes.empty())
9148     return;
9149 
9150   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9151     if (!AR->isAffine())
9152       return;
9153 
9154   const SCEV *Res = Expr;
9155   int Last = Sizes.size() - 1;
9156   for (int i = Last; i >= 0; i--) {
9157     const SCEV *Q, *R;
9158     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9159 
9160     DEBUG({
9161         dbgs() << "Res: " << *Res << "\n";
9162         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9163         dbgs() << "Res divided by Sizes[i]:\n";
9164         dbgs() << "Quotient: " << *Q << "\n";
9165         dbgs() << "Remainder: " << *R << "\n";
9166       });
9167 
9168     Res = Q;
9169 
9170     // Do not record the last subscript corresponding to the size of elements in
9171     // the array.
9172     if (i == Last) {
9173 
9174       // Bail out if the remainder is too complex.
9175       if (isa<SCEVAddRecExpr>(R)) {
9176         Subscripts.clear();
9177         Sizes.clear();
9178         return;
9179       }
9180 
9181       continue;
9182     }
9183 
9184     // Record the access function for the current subscript.
9185     Subscripts.push_back(R);
9186   }
9187 
9188   // Also push in last position the remainder of the last division: it will be
9189   // the access function of the innermost dimension.
9190   Subscripts.push_back(Res);
9191 
9192   std::reverse(Subscripts.begin(), Subscripts.end());
9193 
9194   DEBUG({
9195       dbgs() << "Subscripts:\n";
9196       for (const SCEV *S : Subscripts)
9197         dbgs() << *S << "\n";
9198     });
9199 }
9200 
9201 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9202 /// sizes of an array access. Returns the remainder of the delinearization that
9203 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9204 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9205 /// expressions in the stride and base of a SCEV corresponding to the
9206 /// computation of a GCD (greatest common divisor) of base and stride.  When
9207 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9208 ///
9209 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9210 ///
9211 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9212 ///
9213 ///    for (long i = 0; i < n; i++)
9214 ///      for (long j = 0; j < m; j++)
9215 ///        for (long k = 0; k < o; k++)
9216 ///          A[i][j][k] = 1.0;
9217 ///  }
9218 ///
9219 /// the delinearization input is the following AddRec SCEV:
9220 ///
9221 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9222 ///
9223 /// From this SCEV, we are able to say that the base offset of the access is %A
9224 /// because it appears as an offset that does not divide any of the strides in
9225 /// the loops:
9226 ///
9227 ///  CHECK: Base offset: %A
9228 ///
9229 /// and then SCEV->delinearize determines the size of some of the dimensions of
9230 /// the array as these are the multiples by which the strides are happening:
9231 ///
9232 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9233 ///
9234 /// Note that the outermost dimension remains of UnknownSize because there are
9235 /// no strides that would help identifying the size of the last dimension: when
9236 /// the array has been statically allocated, one could compute the size of that
9237 /// dimension by dividing the overall size of the array by the size of the known
9238 /// dimensions: %m * %o * 8.
9239 ///
9240 /// Finally delinearize provides the access functions for the array reference
9241 /// that does correspond to A[i][j][k] of the above C testcase:
9242 ///
9243 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9244 ///
9245 /// The testcases are checking the output of a function pass:
9246 /// DelinearizationPass that walks through all loads and stores of a function
9247 /// asking for the SCEV of the memory access with respect to all enclosing
9248 /// loops, calling SCEV->delinearize on that and printing the results.
9249 
9250 void ScalarEvolution::delinearize(const SCEV *Expr,
9251                                  SmallVectorImpl<const SCEV *> &Subscripts,
9252                                  SmallVectorImpl<const SCEV *> &Sizes,
9253                                  const SCEV *ElementSize) {
9254   // First step: collect parametric terms.
9255   SmallVector<const SCEV *, 4> Terms;
9256   collectParametricTerms(Expr, Terms);
9257 
9258   if (Terms.empty())
9259     return;
9260 
9261   // Second step: find subscript sizes.
9262   findArrayDimensions(Terms, Sizes, ElementSize);
9263 
9264   if (Sizes.empty())
9265     return;
9266 
9267   // Third step: compute the access functions for each subscript.
9268   computeAccessFunctions(Expr, Subscripts, Sizes);
9269 
9270   if (Subscripts.empty())
9271     return;
9272 
9273   DEBUG({
9274       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9275       dbgs() << "ArrayDecl[UnknownSize]";
9276       for (const SCEV *S : Sizes)
9277         dbgs() << "[" << *S << "]";
9278 
9279       dbgs() << "\nArrayRef";
9280       for (const SCEV *S : Subscripts)
9281         dbgs() << "[" << *S << "]";
9282       dbgs() << "\n";
9283     });
9284 }
9285 
9286 //===----------------------------------------------------------------------===//
9287 //                   SCEVCallbackVH Class Implementation
9288 //===----------------------------------------------------------------------===//
9289 
9290 void ScalarEvolution::SCEVCallbackVH::deleted() {
9291   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9292   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9293     SE->ConstantEvolutionLoopExitValue.erase(PN);
9294   SE->eraseValueFromMap(getValPtr());
9295   // this now dangles!
9296 }
9297 
9298 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9299   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9300 
9301   // Forget all the expressions associated with users of the old value,
9302   // so that future queries will recompute the expressions using the new
9303   // value.
9304   Value *Old = getValPtr();
9305   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9306   SmallPtrSet<User *, 8> Visited;
9307   while (!Worklist.empty()) {
9308     User *U = Worklist.pop_back_val();
9309     // Deleting the Old value will cause this to dangle. Postpone
9310     // that until everything else is done.
9311     if (U == Old)
9312       continue;
9313     if (!Visited.insert(U).second)
9314       continue;
9315     if (PHINode *PN = dyn_cast<PHINode>(U))
9316       SE->ConstantEvolutionLoopExitValue.erase(PN);
9317     SE->eraseValueFromMap(U);
9318     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9319   }
9320   // Delete the Old value.
9321   if (PHINode *PN = dyn_cast<PHINode>(Old))
9322     SE->ConstantEvolutionLoopExitValue.erase(PN);
9323   SE->eraseValueFromMap(Old);
9324   // this now dangles!
9325 }
9326 
9327 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9328   : CallbackVH(V), SE(se) {}
9329 
9330 //===----------------------------------------------------------------------===//
9331 //                   ScalarEvolution Class Implementation
9332 //===----------------------------------------------------------------------===//
9333 
9334 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9335                                  AssumptionCache &AC, DominatorTree &DT,
9336                                  LoopInfo &LI)
9337     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9338       CouldNotCompute(new SCEVCouldNotCompute()),
9339       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9340       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9341       FirstUnknown(nullptr) {}
9342 
9343 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9344     : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9345       CouldNotCompute(std::move(Arg.CouldNotCompute)),
9346       ValueExprMap(std::move(Arg.ValueExprMap)),
9347       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9348       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9349       ConstantEvolutionLoopExitValue(
9350           std::move(Arg.ConstantEvolutionLoopExitValue)),
9351       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9352       LoopDispositions(std::move(Arg.LoopDispositions)),
9353       BlockDispositions(std::move(Arg.BlockDispositions)),
9354       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9355       SignedRanges(std::move(Arg.SignedRanges)),
9356       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9357       UniquePreds(std::move(Arg.UniquePreds)),
9358       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9359       FirstUnknown(Arg.FirstUnknown) {
9360   Arg.FirstUnknown = nullptr;
9361 }
9362 
9363 ScalarEvolution::~ScalarEvolution() {
9364   // Iterate through all the SCEVUnknown instances and call their
9365   // destructors, so that they release their references to their values.
9366   for (SCEVUnknown *U = FirstUnknown; U;) {
9367     SCEVUnknown *Tmp = U;
9368     U = U->Next;
9369     Tmp->~SCEVUnknown();
9370   }
9371   FirstUnknown = nullptr;
9372 
9373   ExprValueMap.clear();
9374   ValueExprMap.clear();
9375   HasRecMap.clear();
9376 
9377   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9378   // that a loop had multiple computable exits.
9379   for (auto &BTCI : BackedgeTakenCounts)
9380     BTCI.second.clear();
9381 
9382   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9383   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9384   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9385 }
9386 
9387 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9388   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9389 }
9390 
9391 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9392                           const Loop *L) {
9393   // Print all inner loops first
9394   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9395     PrintLoopInfo(OS, SE, *I);
9396 
9397   OS << "Loop ";
9398   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9399   OS << ": ";
9400 
9401   SmallVector<BasicBlock *, 8> ExitBlocks;
9402   L->getExitBlocks(ExitBlocks);
9403   if (ExitBlocks.size() != 1)
9404     OS << "<multiple exits> ";
9405 
9406   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9407     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9408   } else {
9409     OS << "Unpredictable backedge-taken count. ";
9410   }
9411 
9412   OS << "\n"
9413         "Loop ";
9414   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9415   OS << ": ";
9416 
9417   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9418     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9419   } else {
9420     OS << "Unpredictable max backedge-taken count. ";
9421   }
9422 
9423   OS << "\n";
9424 }
9425 
9426 void ScalarEvolution::print(raw_ostream &OS) const {
9427   // ScalarEvolution's implementation of the print method is to print
9428   // out SCEV values of all instructions that are interesting. Doing
9429   // this potentially causes it to create new SCEV objects though,
9430   // which technically conflicts with the const qualifier. This isn't
9431   // observable from outside the class though, so casting away the
9432   // const isn't dangerous.
9433   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9434 
9435   OS << "Classifying expressions for: ";
9436   F.printAsOperand(OS, /*PrintType=*/false);
9437   OS << "\n";
9438   for (Instruction &I : instructions(F))
9439     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9440       OS << I << '\n';
9441       OS << "  -->  ";
9442       const SCEV *SV = SE.getSCEV(&I);
9443       SV->print(OS);
9444       if (!isa<SCEVCouldNotCompute>(SV)) {
9445         OS << " U: ";
9446         SE.getUnsignedRange(SV).print(OS);
9447         OS << " S: ";
9448         SE.getSignedRange(SV).print(OS);
9449       }
9450 
9451       const Loop *L = LI.getLoopFor(I.getParent());
9452 
9453       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9454       if (AtUse != SV) {
9455         OS << "  -->  ";
9456         AtUse->print(OS);
9457         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9458           OS << " U: ";
9459           SE.getUnsignedRange(AtUse).print(OS);
9460           OS << " S: ";
9461           SE.getSignedRange(AtUse).print(OS);
9462         }
9463       }
9464 
9465       if (L) {
9466         OS << "\t\t" "Exits: ";
9467         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9468         if (!SE.isLoopInvariant(ExitValue, L)) {
9469           OS << "<<Unknown>>";
9470         } else {
9471           OS << *ExitValue;
9472         }
9473       }
9474 
9475       OS << "\n";
9476     }
9477 
9478   OS << "Determining loop execution counts for: ";
9479   F.printAsOperand(OS, /*PrintType=*/false);
9480   OS << "\n";
9481   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9482     PrintLoopInfo(OS, &SE, *I);
9483 }
9484 
9485 ScalarEvolution::LoopDisposition
9486 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9487   auto &Values = LoopDispositions[S];
9488   for (auto &V : Values) {
9489     if (V.getPointer() == L)
9490       return V.getInt();
9491   }
9492   Values.emplace_back(L, LoopVariant);
9493   LoopDisposition D = computeLoopDisposition(S, L);
9494   auto &Values2 = LoopDispositions[S];
9495   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9496     if (V.getPointer() == L) {
9497       V.setInt(D);
9498       break;
9499     }
9500   }
9501   return D;
9502 }
9503 
9504 ScalarEvolution::LoopDisposition
9505 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9506   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9507   case scConstant:
9508     return LoopInvariant;
9509   case scTruncate:
9510   case scZeroExtend:
9511   case scSignExtend:
9512     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9513   case scAddRecExpr: {
9514     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9515 
9516     // If L is the addrec's loop, it's computable.
9517     if (AR->getLoop() == L)
9518       return LoopComputable;
9519 
9520     // Add recurrences are never invariant in the function-body (null loop).
9521     if (!L)
9522       return LoopVariant;
9523 
9524     // This recurrence is variant w.r.t. L if L contains AR's loop.
9525     if (L->contains(AR->getLoop()))
9526       return LoopVariant;
9527 
9528     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9529     if (AR->getLoop()->contains(L))
9530       return LoopInvariant;
9531 
9532     // This recurrence is variant w.r.t. L if any of its operands
9533     // are variant.
9534     for (auto *Op : AR->operands())
9535       if (!isLoopInvariant(Op, L))
9536         return LoopVariant;
9537 
9538     // Otherwise it's loop-invariant.
9539     return LoopInvariant;
9540   }
9541   case scAddExpr:
9542   case scMulExpr:
9543   case scUMaxExpr:
9544   case scSMaxExpr: {
9545     bool HasVarying = false;
9546     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9547       LoopDisposition D = getLoopDisposition(Op, L);
9548       if (D == LoopVariant)
9549         return LoopVariant;
9550       if (D == LoopComputable)
9551         HasVarying = true;
9552     }
9553     return HasVarying ? LoopComputable : LoopInvariant;
9554   }
9555   case scUDivExpr: {
9556     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9557     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9558     if (LD == LoopVariant)
9559       return LoopVariant;
9560     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9561     if (RD == LoopVariant)
9562       return LoopVariant;
9563     return (LD == LoopInvariant && RD == LoopInvariant) ?
9564            LoopInvariant : LoopComputable;
9565   }
9566   case scUnknown:
9567     // All non-instruction values are loop invariant.  All instructions are loop
9568     // invariant if they are not contained in the specified loop.
9569     // Instructions are never considered invariant in the function body
9570     // (null loop) because they are defined within the "loop".
9571     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9572       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9573     return LoopInvariant;
9574   case scCouldNotCompute:
9575     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9576   }
9577   llvm_unreachable("Unknown SCEV kind!");
9578 }
9579 
9580 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9581   return getLoopDisposition(S, L) == LoopInvariant;
9582 }
9583 
9584 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9585   return getLoopDisposition(S, L) == LoopComputable;
9586 }
9587 
9588 ScalarEvolution::BlockDisposition
9589 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9590   auto &Values = BlockDispositions[S];
9591   for (auto &V : Values) {
9592     if (V.getPointer() == BB)
9593       return V.getInt();
9594   }
9595   Values.emplace_back(BB, DoesNotDominateBlock);
9596   BlockDisposition D = computeBlockDisposition(S, BB);
9597   auto &Values2 = BlockDispositions[S];
9598   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9599     if (V.getPointer() == BB) {
9600       V.setInt(D);
9601       break;
9602     }
9603   }
9604   return D;
9605 }
9606 
9607 ScalarEvolution::BlockDisposition
9608 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9609   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9610   case scConstant:
9611     return ProperlyDominatesBlock;
9612   case scTruncate:
9613   case scZeroExtend:
9614   case scSignExtend:
9615     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9616   case scAddRecExpr: {
9617     // This uses a "dominates" query instead of "properly dominates" query
9618     // to test for proper dominance too, because the instruction which
9619     // produces the addrec's value is a PHI, and a PHI effectively properly
9620     // dominates its entire containing block.
9621     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9622     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9623       return DoesNotDominateBlock;
9624   }
9625   // FALL THROUGH into SCEVNAryExpr handling.
9626   case scAddExpr:
9627   case scMulExpr:
9628   case scUMaxExpr:
9629   case scSMaxExpr: {
9630     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9631     bool Proper = true;
9632     for (const SCEV *NAryOp : NAry->operands()) {
9633       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9634       if (D == DoesNotDominateBlock)
9635         return DoesNotDominateBlock;
9636       if (D == DominatesBlock)
9637         Proper = false;
9638     }
9639     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9640   }
9641   case scUDivExpr: {
9642     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9643     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9644     BlockDisposition LD = getBlockDisposition(LHS, BB);
9645     if (LD == DoesNotDominateBlock)
9646       return DoesNotDominateBlock;
9647     BlockDisposition RD = getBlockDisposition(RHS, BB);
9648     if (RD == DoesNotDominateBlock)
9649       return DoesNotDominateBlock;
9650     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9651       ProperlyDominatesBlock : DominatesBlock;
9652   }
9653   case scUnknown:
9654     if (Instruction *I =
9655           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9656       if (I->getParent() == BB)
9657         return DominatesBlock;
9658       if (DT.properlyDominates(I->getParent(), BB))
9659         return ProperlyDominatesBlock;
9660       return DoesNotDominateBlock;
9661     }
9662     return ProperlyDominatesBlock;
9663   case scCouldNotCompute:
9664     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9665   }
9666   llvm_unreachable("Unknown SCEV kind!");
9667 }
9668 
9669 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9670   return getBlockDisposition(S, BB) >= DominatesBlock;
9671 }
9672 
9673 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9674   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9675 }
9676 
9677 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9678   // Search for a SCEV expression node within an expression tree.
9679   // Implements SCEVTraversal::Visitor.
9680   struct SCEVSearch {
9681     const SCEV *Node;
9682     bool IsFound;
9683 
9684     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9685 
9686     bool follow(const SCEV *S) {
9687       IsFound |= (S == Node);
9688       return !IsFound;
9689     }
9690     bool isDone() const { return IsFound; }
9691   };
9692 
9693   SCEVSearch Search(Op);
9694   visitAll(S, Search);
9695   return Search.IsFound;
9696 }
9697 
9698 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9699   ValuesAtScopes.erase(S);
9700   LoopDispositions.erase(S);
9701   BlockDispositions.erase(S);
9702   UnsignedRanges.erase(S);
9703   SignedRanges.erase(S);
9704   ExprValueMap.erase(S);
9705   HasRecMap.erase(S);
9706 
9707   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9708          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9709     BackedgeTakenInfo &BEInfo = I->second;
9710     if (BEInfo.hasOperand(S, this)) {
9711       BEInfo.clear();
9712       BackedgeTakenCounts.erase(I++);
9713     }
9714     else
9715       ++I;
9716   }
9717 }
9718 
9719 typedef DenseMap<const Loop *, std::string> VerifyMap;
9720 
9721 /// replaceSubString - Replaces all occurrences of From in Str with To.
9722 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9723   size_t Pos = 0;
9724   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9725     Str.replace(Pos, From.size(), To.data(), To.size());
9726     Pos += To.size();
9727   }
9728 }
9729 
9730 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9731 static void
9732 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9733   std::string &S = Map[L];
9734   if (S.empty()) {
9735     raw_string_ostream OS(S);
9736     SE.getBackedgeTakenCount(L)->print(OS);
9737 
9738     // false and 0 are semantically equivalent. This can happen in dead loops.
9739     replaceSubString(OS.str(), "false", "0");
9740     // Remove wrap flags, their use in SCEV is highly fragile.
9741     // FIXME: Remove this when SCEV gets smarter about them.
9742     replaceSubString(OS.str(), "<nw>", "");
9743     replaceSubString(OS.str(), "<nsw>", "");
9744     replaceSubString(OS.str(), "<nuw>", "");
9745   }
9746 
9747   for (auto *R : reverse(*L))
9748     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9749 }
9750 
9751 void ScalarEvolution::verify() const {
9752   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9753 
9754   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9755   // FIXME: It would be much better to store actual values instead of strings,
9756   //        but SCEV pointers will change if we drop the caches.
9757   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9758   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9759     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9760 
9761   // Gather stringified backedge taken counts for all loops using a fresh
9762   // ScalarEvolution object.
9763   ScalarEvolution SE2(F, TLI, AC, DT, LI);
9764   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9765     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9766 
9767   // Now compare whether they're the same with and without caches. This allows
9768   // verifying that no pass changed the cache.
9769   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9770          "New loops suddenly appeared!");
9771 
9772   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9773                            OldE = BackedgeDumpsOld.end(),
9774                            NewI = BackedgeDumpsNew.begin();
9775        OldI != OldE; ++OldI, ++NewI) {
9776     assert(OldI->first == NewI->first && "Loop order changed!");
9777 
9778     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9779     // changes.
9780     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
9781     // means that a pass is buggy or SCEV has to learn a new pattern but is
9782     // usually not harmful.
9783     if (OldI->second != NewI->second &&
9784         OldI->second.find("undef") == std::string::npos &&
9785         NewI->second.find("undef") == std::string::npos &&
9786         OldI->second != "***COULDNOTCOMPUTE***" &&
9787         NewI->second != "***COULDNOTCOMPUTE***") {
9788       dbgs() << "SCEVValidator: SCEV for loop '"
9789              << OldI->first->getHeader()->getName()
9790              << "' changed from '" << OldI->second
9791              << "' to '" << NewI->second << "'!\n";
9792       std::abort();
9793     }
9794   }
9795 
9796   // TODO: Verify more things.
9797 }
9798 
9799 char ScalarEvolutionAnalysis::PassID;
9800 
9801 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9802                                              AnalysisManager<Function> &AM) {
9803   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
9804                          AM.getResult<AssumptionAnalysis>(F),
9805                          AM.getResult<DominatorTreeAnalysis>(F),
9806                          AM.getResult<LoopAnalysis>(F));
9807 }
9808 
9809 PreservedAnalyses
9810 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
9811   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
9812   return PreservedAnalyses::all();
9813 }
9814 
9815 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9816                       "Scalar Evolution Analysis", false, true)
9817 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9818 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9819 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9820 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9821 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9822                     "Scalar Evolution Analysis", false, true)
9823 char ScalarEvolutionWrapperPass::ID = 0;
9824 
9825 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9826   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9827 }
9828 
9829 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9830   SE.reset(new ScalarEvolution(
9831       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9832       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9833       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9834       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9835   return false;
9836 }
9837 
9838 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9839 
9840 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9841   SE->print(OS);
9842 }
9843 
9844 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9845   if (!VerifySCEV)
9846     return;
9847 
9848   SE->verify();
9849 }
9850 
9851 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9852   AU.setPreservesAll();
9853   AU.addRequiredTransitive<AssumptionCacheTracker>();
9854   AU.addRequiredTransitive<LoopInfoWrapperPass>();
9855   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9856   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9857 }
9858 
9859 const SCEVPredicate *
9860 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9861                                    const SCEVConstant *RHS) {
9862   FoldingSetNodeID ID;
9863   // Unique this node based on the arguments
9864   ID.AddInteger(SCEVPredicate::P_Equal);
9865   ID.AddPointer(LHS);
9866   ID.AddPointer(RHS);
9867   void *IP = nullptr;
9868   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9869     return S;
9870   SCEVEqualPredicate *Eq = new (SCEVAllocator)
9871       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9872   UniquePreds.InsertNode(Eq, IP);
9873   return Eq;
9874 }
9875 
9876 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
9877     const SCEVAddRecExpr *AR,
9878     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9879   FoldingSetNodeID ID;
9880   // Unique this node based on the arguments
9881   ID.AddInteger(SCEVPredicate::P_Wrap);
9882   ID.AddPointer(AR);
9883   ID.AddInteger(AddedFlags);
9884   void *IP = nullptr;
9885   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9886     return S;
9887   auto *OF = new (SCEVAllocator)
9888       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
9889   UniquePreds.InsertNode(OF, IP);
9890   return OF;
9891 }
9892 
9893 namespace {
9894 
9895 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9896 public:
9897   // Rewrites \p S in the context of a loop L and the predicate A.
9898   // If Assume is true, rewrite is free to add further predicates to A
9899   // such that the result will be an AddRecExpr.
9900   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
9901                              SCEVUnionPredicate &A, bool Assume) {
9902     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
9903     return Rewriter.visit(S);
9904   }
9905 
9906   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
9907                         SCEVUnionPredicate &P, bool Assume)
9908       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
9909 
9910   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9911     auto ExprPreds = P.getPredicatesForExpr(Expr);
9912     for (auto *Pred : ExprPreds)
9913       if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9914         if (IPred->getLHS() == Expr)
9915           return IPred->getRHS();
9916 
9917     return Expr;
9918   }
9919 
9920   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
9921     const SCEV *Operand = visit(Expr->getOperand());
9922     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9923     if (AR && AR->getLoop() == L && AR->isAffine()) {
9924       // This couldn't be folded because the operand didn't have the nuw
9925       // flag. Add the nusw flag as an assumption that we could make.
9926       const SCEV *Step = AR->getStepRecurrence(SE);
9927       Type *Ty = Expr->getType();
9928       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
9929         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
9930                                 SE.getSignExtendExpr(Step, Ty), L,
9931                                 AR->getNoWrapFlags());
9932     }
9933     return SE.getZeroExtendExpr(Operand, Expr->getType());
9934   }
9935 
9936   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
9937     const SCEV *Operand = visit(Expr->getOperand());
9938     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9939     if (AR && AR->getLoop() == L && AR->isAffine()) {
9940       // This couldn't be folded because the operand didn't have the nsw
9941       // flag. Add the nssw flag as an assumption that we could make.
9942       const SCEV *Step = AR->getStepRecurrence(SE);
9943       Type *Ty = Expr->getType();
9944       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
9945         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
9946                                 SE.getSignExtendExpr(Step, Ty), L,
9947                                 AR->getNoWrapFlags());
9948     }
9949     return SE.getSignExtendExpr(Operand, Expr->getType());
9950   }
9951 
9952 private:
9953   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
9954                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9955     auto *A = SE.getWrapPredicate(AR, AddedFlags);
9956     if (!Assume) {
9957       // Check if we've already made this assumption.
9958       if (P.implies(A))
9959         return true;
9960       return false;
9961     }
9962     P.add(A);
9963     return true;
9964   }
9965 
9966   SCEVUnionPredicate &P;
9967   const Loop *L;
9968   bool Assume;
9969 };
9970 } // end anonymous namespace
9971 
9972 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
9973                                                    SCEVUnionPredicate &Preds) {
9974   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
9975 }
9976 
9977 const SCEVAddRecExpr *
9978 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
9979                                                    SCEVUnionPredicate &Preds) {
9980   SCEVUnionPredicate TransformPreds;
9981   S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
9982   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
9983 
9984   if (!AddRec)
9985     return nullptr;
9986 
9987   // Since the transformation was successful, we can now transfer the SCEV
9988   // predicates.
9989   Preds.add(&TransformPreds);
9990   return AddRec;
9991 }
9992 
9993 /// SCEV predicates
9994 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9995                              SCEVPredicateKind Kind)
9996     : FastID(ID), Kind(Kind) {}
9997 
9998 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9999                                        const SCEVUnknown *LHS,
10000                                        const SCEVConstant *RHS)
10001     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10002 
10003 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10004   const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
10005 
10006   if (!Op)
10007     return false;
10008 
10009   return Op->LHS == LHS && Op->RHS == RHS;
10010 }
10011 
10012 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10013 
10014 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10015 
10016 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10017   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10018 }
10019 
10020 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10021                                      const SCEVAddRecExpr *AR,
10022                                      IncrementWrapFlags Flags)
10023     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10024 
10025 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10026 
10027 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10028   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10029 
10030   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10031 }
10032 
10033 bool SCEVWrapPredicate::isAlwaysTrue() const {
10034   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10035   IncrementWrapFlags IFlags = Flags;
10036 
10037   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10038     IFlags = clearFlags(IFlags, IncrementNSSW);
10039 
10040   return IFlags == IncrementAnyWrap;
10041 }
10042 
10043 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10044   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10045   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10046     OS << "<nusw>";
10047   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10048     OS << "<nssw>";
10049   OS << "\n";
10050 }
10051 
10052 SCEVWrapPredicate::IncrementWrapFlags
10053 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10054                                    ScalarEvolution &SE) {
10055   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10056   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10057 
10058   // We can safely transfer the NSW flag as NSSW.
10059   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10060     ImpliedFlags = IncrementNSSW;
10061 
10062   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10063     // If the increment is positive, the SCEV NUW flag will also imply the
10064     // WrapPredicate NUSW flag.
10065     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10066       if (Step->getValue()->getValue().isNonNegative())
10067         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10068   }
10069 
10070   return ImpliedFlags;
10071 }
10072 
10073 /// Union predicates don't get cached so create a dummy set ID for it.
10074 SCEVUnionPredicate::SCEVUnionPredicate()
10075     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10076 
10077 bool SCEVUnionPredicate::isAlwaysTrue() const {
10078   return all_of(Preds,
10079                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10080 }
10081 
10082 ArrayRef<const SCEVPredicate *>
10083 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10084   auto I = SCEVToPreds.find(Expr);
10085   if (I == SCEVToPreds.end())
10086     return ArrayRef<const SCEVPredicate *>();
10087   return I->second;
10088 }
10089 
10090 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10091   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
10092     return all_of(Set->Preds,
10093                   [this](const SCEVPredicate *I) { return this->implies(I); });
10094 
10095   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10096   if (ScevPredsIt == SCEVToPreds.end())
10097     return false;
10098   auto &SCEVPreds = ScevPredsIt->second;
10099 
10100   return any_of(SCEVPreds,
10101                 [N](const SCEVPredicate *I) { return I->implies(N); });
10102 }
10103 
10104 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10105 
10106 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10107   for (auto Pred : Preds)
10108     Pred->print(OS, Depth);
10109 }
10110 
10111 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10112   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
10113     for (auto Pred : Set->Preds)
10114       add(Pred);
10115     return;
10116   }
10117 
10118   if (implies(N))
10119     return;
10120 
10121   const SCEV *Key = N->getExpr();
10122   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10123                 " associated expression!");
10124 
10125   SCEVToPreds[Key].push_back(N);
10126   Preds.push_back(N);
10127 }
10128 
10129 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10130                                                      Loop &L)
10131     : SE(SE), L(L), Generation(0) {}
10132 
10133 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10134   const SCEV *Expr = SE.getSCEV(V);
10135   RewriteEntry &Entry = RewriteMap[Expr];
10136 
10137   // If we already have an entry and the version matches, return it.
10138   if (Entry.second && Generation == Entry.first)
10139     return Entry.second;
10140 
10141   // We found an entry but it's stale. Rewrite the stale entry
10142   // acording to the current predicate.
10143   if (Entry.second)
10144     Expr = Entry.second;
10145 
10146   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10147   Entry = {Generation, NewSCEV};
10148 
10149   return NewSCEV;
10150 }
10151 
10152 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10153   if (Preds.implies(&Pred))
10154     return;
10155   Preds.add(&Pred);
10156   updateGeneration();
10157 }
10158 
10159 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10160   return Preds;
10161 }
10162 
10163 void PredicatedScalarEvolution::updateGeneration() {
10164   // If the generation number wrapped recompute everything.
10165   if (++Generation == 0) {
10166     for (auto &II : RewriteMap) {
10167       const SCEV *Rewritten = II.second.second;
10168       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10169     }
10170   }
10171 }
10172 
10173 void PredicatedScalarEvolution::setNoOverflow(
10174     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10175   const SCEV *Expr = getSCEV(V);
10176   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10177 
10178   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10179 
10180   // Clear the statically implied flags.
10181   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10182   addPredicate(*SE.getWrapPredicate(AR, Flags));
10183 
10184   auto II = FlagsMap.insert({V, Flags});
10185   if (!II.second)
10186     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10187 }
10188 
10189 bool PredicatedScalarEvolution::hasNoOverflow(
10190     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10191   const SCEV *Expr = getSCEV(V);
10192   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10193 
10194   Flags = SCEVWrapPredicate::clearFlags(
10195       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10196 
10197   auto II = FlagsMap.find(V);
10198 
10199   if (II != FlagsMap.end())
10200     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10201 
10202   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10203 }
10204 
10205 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10206   const SCEV *Expr = this->getSCEV(V);
10207   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10208 
10209   if (!New)
10210     return nullptr;
10211 
10212   updateGeneration();
10213   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10214   return New;
10215 }
10216 
10217 PredicatedScalarEvolution::
10218 PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) :
10219   RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10220   Generation(Init.Generation) {
10221   for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
10222     FlagsMap.insert(*I);
10223 }
10224