xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision a2ca9020334dedc0ffe2be40f68c1c248a38771c)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/IR/Argument.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/CFG.h"
88 #include "llvm/IR/CallSite.h"
89 #include "llvm/IR/Constant.h"
90 #include "llvm/IR/ConstantRange.h"
91 #include "llvm/IR/Constants.h"
92 #include "llvm/IR/DataLayout.h"
93 #include "llvm/IR/DerivedTypes.h"
94 #include "llvm/IR/Dominators.h"
95 #include "llvm/IR/Function.h"
96 #include "llvm/IR/GlobalAlias.h"
97 #include "llvm/IR/GlobalValue.h"
98 #include "llvm/IR/GlobalVariable.h"
99 #include "llvm/IR/InstIterator.h"
100 #include "llvm/IR/InstrTypes.h"
101 #include "llvm/IR/Instruction.h"
102 #include "llvm/IR/Instructions.h"
103 #include "llvm/IR/IntrinsicInst.h"
104 #include "llvm/IR/Intrinsics.h"
105 #include "llvm/IR/LLVMContext.h"
106 #include "llvm/IR/Metadata.h"
107 #include "llvm/IR/Operator.h"
108 #include "llvm/IR/PatternMatch.h"
109 #include "llvm/IR/Type.h"
110 #include "llvm/IR/Use.h"
111 #include "llvm/IR/User.h"
112 #include "llvm/IR/Value.h"
113 #include "llvm/Pass.h"
114 #include "llvm/Support/Casting.h"
115 #include "llvm/Support/CommandLine.h"
116 #include "llvm/Support/Compiler.h"
117 #include "llvm/Support/Debug.h"
118 #include "llvm/Support/ErrorHandling.h"
119 #include "llvm/Support/KnownBits.h"
120 #include "llvm/Support/SaveAndRestore.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include <algorithm>
123 #include <cassert>
124 #include <climits>
125 #include <cstddef>
126 #include <cstdint>
127 #include <cstdlib>
128 #include <map>
129 #include <memory>
130 #include <tuple>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "scalar-evolution"
137 
138 STATISTIC(NumArrayLenItCounts,
139           "Number of trip counts computed with array length");
140 STATISTIC(NumTripCountsComputed,
141           "Number of loops with predictable loop counts");
142 STATISTIC(NumTripCountsNotComputed,
143           "Number of loops without predictable loop counts");
144 STATISTIC(NumBruteForceTripCountsComputed,
145           "Number of loops with trip counts computed by force");
146 
147 static cl::opt<unsigned>
148 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
149                         cl::desc("Maximum number of iterations SCEV will "
150                                  "symbolically execute a constant "
151                                  "derived loop"),
152                         cl::init(100));
153 
154 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
155 static cl::opt<bool>
156 VerifySCEV("verify-scev",
157            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
158 static cl::opt<bool>
159     VerifySCEVMap("verify-scev-maps",
160                   cl::desc("Verify no dangling value in ScalarEvolution's "
161                            "ExprValueMap (slow)"));
162 
163 static cl::opt<unsigned> MulOpsInlineThreshold(
164     "scev-mulops-inline-threshold", cl::Hidden,
165     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
166     cl::init(32));
167 
168 static cl::opt<unsigned> AddOpsInlineThreshold(
169     "scev-addops-inline-threshold", cl::Hidden,
170     cl::desc("Threshold for inlining addition operands into a SCEV"),
171     cl::init(500));
172 
173 static cl::opt<unsigned> MaxSCEVCompareDepth(
174     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
175     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
176     cl::init(32));
177 
178 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
179     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
180     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
181     cl::init(2));
182 
183 static cl::opt<unsigned> MaxValueCompareDepth(
184     "scalar-evolution-max-value-compare-depth", cl::Hidden,
185     cl::desc("Maximum depth of recursive value complexity comparisons"),
186     cl::init(2));
187 
188 static cl::opt<unsigned>
189     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
190                   cl::desc("Maximum depth of recursive arithmetics"),
191                   cl::init(32));
192 
193 static cl::opt<unsigned> MaxConstantEvolvingDepth(
194     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
195     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
196 
197 static cl::opt<unsigned>
198     MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden,
199                 cl::desc("Maximum depth of recursive SExt/ZExt"),
200                 cl::init(8));
201 
202 static cl::opt<unsigned>
203     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
204                   cl::desc("Max coefficients in AddRec during evolving"),
205                   cl::init(16));
206 
207 //===----------------------------------------------------------------------===//
208 //                           SCEV class definitions
209 //===----------------------------------------------------------------------===//
210 
211 //===----------------------------------------------------------------------===//
212 // Implementation of the SCEV class.
213 //
214 
215 #ifdef LLVM_ENABLE_DUMP
216 LLVM_DUMP_METHOD void SCEV::dump() const {
217   print(dbgs());
218   dbgs() << '\n';
219 }
220 #endif
221 
222 void SCEV::print(raw_ostream &OS) const {
223   switch (static_cast<SCEVTypes>(getSCEVType())) {
224   case scConstant:
225     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
226     return;
227   case scTruncate: {
228     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
229     const SCEV *Op = Trunc->getOperand();
230     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
231        << *Trunc->getType() << ")";
232     return;
233   }
234   case scZeroExtend: {
235     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
236     const SCEV *Op = ZExt->getOperand();
237     OS << "(zext " << *Op->getType() << " " << *Op << " to "
238        << *ZExt->getType() << ")";
239     return;
240   }
241   case scSignExtend: {
242     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
243     const SCEV *Op = SExt->getOperand();
244     OS << "(sext " << *Op->getType() << " " << *Op << " to "
245        << *SExt->getType() << ")";
246     return;
247   }
248   case scAddRecExpr: {
249     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
250     OS << "{" << *AR->getOperand(0);
251     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
252       OS << ",+," << *AR->getOperand(i);
253     OS << "}<";
254     if (AR->hasNoUnsignedWrap())
255       OS << "nuw><";
256     if (AR->hasNoSignedWrap())
257       OS << "nsw><";
258     if (AR->hasNoSelfWrap() &&
259         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
260       OS << "nw><";
261     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
262     OS << ">";
263     return;
264   }
265   case scAddExpr:
266   case scMulExpr:
267   case scUMaxExpr:
268   case scSMaxExpr: {
269     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
270     const char *OpStr = nullptr;
271     switch (NAry->getSCEVType()) {
272     case scAddExpr: OpStr = " + "; break;
273     case scMulExpr: OpStr = " * "; break;
274     case scUMaxExpr: OpStr = " umax "; break;
275     case scSMaxExpr: OpStr = " smax "; break;
276     }
277     OS << "(";
278     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
279          I != E; ++I) {
280       OS << **I;
281       if (std::next(I) != E)
282         OS << OpStr;
283     }
284     OS << ")";
285     switch (NAry->getSCEVType()) {
286     case scAddExpr:
287     case scMulExpr:
288       if (NAry->hasNoUnsignedWrap())
289         OS << "<nuw>";
290       if (NAry->hasNoSignedWrap())
291         OS << "<nsw>";
292     }
293     return;
294   }
295   case scUDivExpr: {
296     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
297     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
298     return;
299   }
300   case scUnknown: {
301     const SCEVUnknown *U = cast<SCEVUnknown>(this);
302     Type *AllocTy;
303     if (U->isSizeOf(AllocTy)) {
304       OS << "sizeof(" << *AllocTy << ")";
305       return;
306     }
307     if (U->isAlignOf(AllocTy)) {
308       OS << "alignof(" << *AllocTy << ")";
309       return;
310     }
311 
312     Type *CTy;
313     Constant *FieldNo;
314     if (U->isOffsetOf(CTy, FieldNo)) {
315       OS << "offsetof(" << *CTy << ", ";
316       FieldNo->printAsOperand(OS, false);
317       OS << ")";
318       return;
319     }
320 
321     // Otherwise just print it normally.
322     U->getValue()->printAsOperand(OS, false);
323     return;
324   }
325   case scCouldNotCompute:
326     OS << "***COULDNOTCOMPUTE***";
327     return;
328   }
329   llvm_unreachable("Unknown SCEV kind!");
330 }
331 
332 Type *SCEV::getType() const {
333   switch (static_cast<SCEVTypes>(getSCEVType())) {
334   case scConstant:
335     return cast<SCEVConstant>(this)->getType();
336   case scTruncate:
337   case scZeroExtend:
338   case scSignExtend:
339     return cast<SCEVCastExpr>(this)->getType();
340   case scAddRecExpr:
341   case scMulExpr:
342   case scUMaxExpr:
343   case scSMaxExpr:
344     return cast<SCEVNAryExpr>(this)->getType();
345   case scAddExpr:
346     return cast<SCEVAddExpr>(this)->getType();
347   case scUDivExpr:
348     return cast<SCEVUDivExpr>(this)->getType();
349   case scUnknown:
350     return cast<SCEVUnknown>(this)->getType();
351   case scCouldNotCompute:
352     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
353   }
354   llvm_unreachable("Unknown SCEV kind!");
355 }
356 
357 bool SCEV::isZero() const {
358   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
359     return SC->getValue()->isZero();
360   return false;
361 }
362 
363 bool SCEV::isOne() const {
364   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
365     return SC->getValue()->isOne();
366   return false;
367 }
368 
369 bool SCEV::isAllOnesValue() const {
370   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
371     return SC->getValue()->isMinusOne();
372   return false;
373 }
374 
375 bool SCEV::isNonConstantNegative() const {
376   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
377   if (!Mul) return false;
378 
379   // If there is a constant factor, it will be first.
380   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
381   if (!SC) return false;
382 
383   // Return true if the value is negative, this matches things like (-42 * V).
384   return SC->getAPInt().isNegative();
385 }
386 
387 SCEVCouldNotCompute::SCEVCouldNotCompute() :
388   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
389 
390 bool SCEVCouldNotCompute::classof(const SCEV *S) {
391   return S->getSCEVType() == scCouldNotCompute;
392 }
393 
394 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
395   FoldingSetNodeID ID;
396   ID.AddInteger(scConstant);
397   ID.AddPointer(V);
398   void *IP = nullptr;
399   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
400   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
401   UniqueSCEVs.InsertNode(S, IP);
402   return S;
403 }
404 
405 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
406   return getConstant(ConstantInt::get(getContext(), Val));
407 }
408 
409 const SCEV *
410 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
411   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
412   return getConstant(ConstantInt::get(ITy, V, isSigned));
413 }
414 
415 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
416                            unsigned SCEVTy, const SCEV *op, Type *ty)
417   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
418 
419 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
420                                    const SCEV *op, Type *ty)
421   : SCEVCastExpr(ID, scTruncate, op, ty) {
422   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
423          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
424          "Cannot truncate non-integer value!");
425 }
426 
427 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
428                                        const SCEV *op, Type *ty)
429   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
430   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
431          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
432          "Cannot zero extend non-integer value!");
433 }
434 
435 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
436                                        const SCEV *op, Type *ty)
437   : SCEVCastExpr(ID, scSignExtend, op, ty) {
438   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
439          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
440          "Cannot sign extend non-integer value!");
441 }
442 
443 void SCEVUnknown::deleted() {
444   // Clear this SCEVUnknown from various maps.
445   SE->forgetMemoizedResults(this);
446 
447   // Remove this SCEVUnknown from the uniquing map.
448   SE->UniqueSCEVs.RemoveNode(this);
449 
450   // Release the value.
451   setValPtr(nullptr);
452 }
453 
454 void SCEVUnknown::allUsesReplacedWith(Value *New) {
455   // Remove this SCEVUnknown from the uniquing map.
456   SE->UniqueSCEVs.RemoveNode(this);
457 
458   // Update this SCEVUnknown to point to the new value. This is needed
459   // because there may still be outstanding SCEVs which still point to
460   // this SCEVUnknown.
461   setValPtr(New);
462 }
463 
464 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
465   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
466     if (VCE->getOpcode() == Instruction::PtrToInt)
467       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
468         if (CE->getOpcode() == Instruction::GetElementPtr &&
469             CE->getOperand(0)->isNullValue() &&
470             CE->getNumOperands() == 2)
471           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
472             if (CI->isOne()) {
473               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
474                                  ->getElementType();
475               return true;
476             }
477 
478   return false;
479 }
480 
481 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
482   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
483     if (VCE->getOpcode() == Instruction::PtrToInt)
484       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
485         if (CE->getOpcode() == Instruction::GetElementPtr &&
486             CE->getOperand(0)->isNullValue()) {
487           Type *Ty =
488             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
489           if (StructType *STy = dyn_cast<StructType>(Ty))
490             if (!STy->isPacked() &&
491                 CE->getNumOperands() == 3 &&
492                 CE->getOperand(1)->isNullValue()) {
493               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
494                 if (CI->isOne() &&
495                     STy->getNumElements() == 2 &&
496                     STy->getElementType(0)->isIntegerTy(1)) {
497                   AllocTy = STy->getElementType(1);
498                   return true;
499                 }
500             }
501         }
502 
503   return false;
504 }
505 
506 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
507   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
508     if (VCE->getOpcode() == Instruction::PtrToInt)
509       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
510         if (CE->getOpcode() == Instruction::GetElementPtr &&
511             CE->getNumOperands() == 3 &&
512             CE->getOperand(0)->isNullValue() &&
513             CE->getOperand(1)->isNullValue()) {
514           Type *Ty =
515             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
516           // Ignore vector types here so that ScalarEvolutionExpander doesn't
517           // emit getelementptrs that index into vectors.
518           if (Ty->isStructTy() || Ty->isArrayTy()) {
519             CTy = Ty;
520             FieldNo = CE->getOperand(2);
521             return true;
522           }
523         }
524 
525   return false;
526 }
527 
528 //===----------------------------------------------------------------------===//
529 //                               SCEV Utilities
530 //===----------------------------------------------------------------------===//
531 
532 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
533 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
534 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
535 /// have been previously deemed to be "equally complex" by this routine.  It is
536 /// intended to avoid exponential time complexity in cases like:
537 ///
538 ///   %a = f(%x, %y)
539 ///   %b = f(%a, %a)
540 ///   %c = f(%b, %b)
541 ///
542 ///   %d = f(%x, %y)
543 ///   %e = f(%d, %d)
544 ///   %f = f(%e, %e)
545 ///
546 ///   CompareValueComplexity(%f, %c)
547 ///
548 /// Since we do not continue running this routine on expression trees once we
549 /// have seen unequal values, there is no need to track them in the cache.
550 static int
551 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache,
552                        const LoopInfo *const LI, Value *LV, Value *RV,
553                        unsigned Depth) {
554   if (Depth > MaxValueCompareDepth || EqCache.count({LV, RV}))
555     return 0;
556 
557   // Order pointer values after integer values. This helps SCEVExpander form
558   // GEPs.
559   bool LIsPointer = LV->getType()->isPointerTy(),
560        RIsPointer = RV->getType()->isPointerTy();
561   if (LIsPointer != RIsPointer)
562     return (int)LIsPointer - (int)RIsPointer;
563 
564   // Compare getValueID values.
565   unsigned LID = LV->getValueID(), RID = RV->getValueID();
566   if (LID != RID)
567     return (int)LID - (int)RID;
568 
569   // Sort arguments by their position.
570   if (const auto *LA = dyn_cast<Argument>(LV)) {
571     const auto *RA = cast<Argument>(RV);
572     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573     return (int)LArgNo - (int)RArgNo;
574   }
575 
576   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
577     const auto *RGV = cast<GlobalValue>(RV);
578 
579     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
580       auto LT = GV->getLinkage();
581       return !(GlobalValue::isPrivateLinkage(LT) ||
582                GlobalValue::isInternalLinkage(LT));
583     };
584 
585     // Use the names to distinguish the two values, but only if the
586     // names are semantically important.
587     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
588       return LGV->getName().compare(RGV->getName());
589   }
590 
591   // For instructions, compare their loop depth, and their operand count.  This
592   // is pretty loose.
593   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
594     const auto *RInst = cast<Instruction>(RV);
595 
596     // Compare loop depths.
597     const BasicBlock *LParent = LInst->getParent(),
598                      *RParent = RInst->getParent();
599     if (LParent != RParent) {
600       unsigned LDepth = LI->getLoopDepth(LParent),
601                RDepth = LI->getLoopDepth(RParent);
602       if (LDepth != RDepth)
603         return (int)LDepth - (int)RDepth;
604     }
605 
606     // Compare the number of operands.
607     unsigned LNumOps = LInst->getNumOperands(),
608              RNumOps = RInst->getNumOperands();
609     if (LNumOps != RNumOps)
610       return (int)LNumOps - (int)RNumOps;
611 
612     for (unsigned Idx : seq(0u, LNumOps)) {
613       int Result =
614           CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx),
615                                  RInst->getOperand(Idx), Depth + 1);
616       if (Result != 0)
617         return Result;
618     }
619   }
620 
621   EqCache.insert({LV, RV});
622   return 0;
623 }
624 
625 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
626 // than RHS, respectively. A three-way result allows recursive comparisons to be
627 // more efficient.
628 static int CompareSCEVComplexity(
629     SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV,
630     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
631     DominatorTree &DT, unsigned Depth = 0) {
632   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
633   if (LHS == RHS)
634     return 0;
635 
636   // Primarily, sort the SCEVs by their getSCEVType().
637   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
638   if (LType != RType)
639     return (int)LType - (int)RType;
640 
641   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.count({LHS, RHS}))
642     return 0;
643   // Aside from the getSCEVType() ordering, the particular ordering
644   // isn't very important except that it's beneficial to be consistent,
645   // so that (a + b) and (b + a) don't end up as different expressions.
646   switch (static_cast<SCEVTypes>(LType)) {
647   case scUnknown: {
648     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
649     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
650 
651     SmallSet<std::pair<Value *, Value *>, 8> EqCache;
652     int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(),
653                                    Depth + 1);
654     if (X == 0)
655       EqCacheSCEV.insert({LHS, RHS});
656     return X;
657   }
658 
659   case scConstant: {
660     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
661     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
662 
663     // Compare constant values.
664     const APInt &LA = LC->getAPInt();
665     const APInt &RA = RC->getAPInt();
666     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
667     if (LBitWidth != RBitWidth)
668       return (int)LBitWidth - (int)RBitWidth;
669     return LA.ult(RA) ? -1 : 1;
670   }
671 
672   case scAddRecExpr: {
673     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
674     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
675 
676     // There is always a dominance between two recs that are used by one SCEV,
677     // so we can safely sort recs by loop header dominance. We require such
678     // order in getAddExpr.
679     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
680     if (LLoop != RLoop) {
681       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
682       assert(LHead != RHead && "Two loops share the same header?");
683       if (DT.dominates(LHead, RHead))
684         return 1;
685       else
686         assert(DT.dominates(RHead, LHead) &&
687                "No dominance between recurrences used by one SCEV?");
688       return -1;
689     }
690 
691     // Addrec complexity grows with operand count.
692     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
693     if (LNumOps != RNumOps)
694       return (int)LNumOps - (int)RNumOps;
695 
696     // Lexicographically compare.
697     for (unsigned i = 0; i != LNumOps; ++i) {
698       int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i),
699                                     RA->getOperand(i), DT,  Depth + 1);
700       if (X != 0)
701         return X;
702     }
703     EqCacheSCEV.insert({LHS, RHS});
704     return 0;
705   }
706 
707   case scAddExpr:
708   case scMulExpr:
709   case scSMaxExpr:
710   case scUMaxExpr: {
711     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
712     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
713 
714     // Lexicographically compare n-ary expressions.
715     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
716     if (LNumOps != RNumOps)
717       return (int)LNumOps - (int)RNumOps;
718 
719     for (unsigned i = 0; i != LNumOps; ++i) {
720       if (i >= RNumOps)
721         return 1;
722       int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i),
723                                     RC->getOperand(i), DT, Depth + 1);
724       if (X != 0)
725         return X;
726     }
727     EqCacheSCEV.insert({LHS, RHS});
728     return 0;
729   }
730 
731   case scUDivExpr: {
732     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
733     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
734 
735     // Lexicographically compare udiv expressions.
736     int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(),
737                                   DT, Depth + 1);
738     if (X != 0)
739       return X;
740     X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), DT,
741                               Depth + 1);
742     if (X == 0)
743       EqCacheSCEV.insert({LHS, RHS});
744     return X;
745   }
746 
747   case scTruncate:
748   case scZeroExtend:
749   case scSignExtend: {
750     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
751     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
752 
753     // Compare cast expressions by operand.
754     int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(),
755                                   RC->getOperand(), DT, Depth + 1);
756     if (X == 0)
757       EqCacheSCEV.insert({LHS, RHS});
758     return X;
759   }
760 
761   case scCouldNotCompute:
762     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
763   }
764   llvm_unreachable("Unknown SCEV kind!");
765 }
766 
767 /// Given a list of SCEV objects, order them by their complexity, and group
768 /// objects of the same complexity together by value.  When this routine is
769 /// finished, we know that any duplicates in the vector are consecutive and that
770 /// complexity is monotonically increasing.
771 ///
772 /// Note that we go take special precautions to ensure that we get deterministic
773 /// results from this routine.  In other words, we don't want the results of
774 /// this to depend on where the addresses of various SCEV objects happened to
775 /// land in memory.
776 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
777                               LoopInfo *LI, DominatorTree &DT) {
778   if (Ops.size() < 2) return;  // Noop
779 
780   SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache;
781   if (Ops.size() == 2) {
782     // This is the common case, which also happens to be trivially simple.
783     // Special case it.
784     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
785     if (CompareSCEVComplexity(EqCache, LI, RHS, LHS, DT) < 0)
786       std::swap(LHS, RHS);
787     return;
788   }
789 
790   // Do the rough sort by complexity.
791   std::stable_sort(Ops.begin(), Ops.end(),
792                    [&EqCache, LI, &DT](const SCEV *LHS, const SCEV *RHS) {
793                      return
794                          CompareSCEVComplexity(EqCache, LI, LHS, RHS, DT) < 0;
795                    });
796 
797   // Now that we are sorted by complexity, group elements of the same
798   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
799   // be extremely short in practice.  Note that we take this approach because we
800   // do not want to depend on the addresses of the objects we are grouping.
801   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
802     const SCEV *S = Ops[i];
803     unsigned Complexity = S->getSCEVType();
804 
805     // If there are any objects of the same complexity and same value as this
806     // one, group them.
807     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
808       if (Ops[j] == S) { // Found a duplicate.
809         // Move it to immediately after i'th element.
810         std::swap(Ops[i+1], Ops[j]);
811         ++i;   // no need to rescan it.
812         if (i == e-2) return;  // Done!
813       }
814     }
815   }
816 }
817 
818 // Returns the size of the SCEV S.
819 static inline int sizeOfSCEV(const SCEV *S) {
820   struct FindSCEVSize {
821     int Size = 0;
822 
823     FindSCEVSize() = default;
824 
825     bool follow(const SCEV *S) {
826       ++Size;
827       // Keep looking at all operands of S.
828       return true;
829     }
830 
831     bool isDone() const {
832       return false;
833     }
834   };
835 
836   FindSCEVSize F;
837   SCEVTraversal<FindSCEVSize> ST(F);
838   ST.visitAll(S);
839   return F.Size;
840 }
841 
842 namespace {
843 
844 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
845 public:
846   // Computes the Quotient and Remainder of the division of Numerator by
847   // Denominator.
848   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
849                      const SCEV *Denominator, const SCEV **Quotient,
850                      const SCEV **Remainder) {
851     assert(Numerator && Denominator && "Uninitialized SCEV");
852 
853     SCEVDivision D(SE, Numerator, Denominator);
854 
855     // Check for the trivial case here to avoid having to check for it in the
856     // rest of the code.
857     if (Numerator == Denominator) {
858       *Quotient = D.One;
859       *Remainder = D.Zero;
860       return;
861     }
862 
863     if (Numerator->isZero()) {
864       *Quotient = D.Zero;
865       *Remainder = D.Zero;
866       return;
867     }
868 
869     // A simple case when N/1. The quotient is N.
870     if (Denominator->isOne()) {
871       *Quotient = Numerator;
872       *Remainder = D.Zero;
873       return;
874     }
875 
876     // Split the Denominator when it is a product.
877     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
878       const SCEV *Q, *R;
879       *Quotient = Numerator;
880       for (const SCEV *Op : T->operands()) {
881         divide(SE, *Quotient, Op, &Q, &R);
882         *Quotient = Q;
883 
884         // Bail out when the Numerator is not divisible by one of the terms of
885         // the Denominator.
886         if (!R->isZero()) {
887           *Quotient = D.Zero;
888           *Remainder = Numerator;
889           return;
890         }
891       }
892       *Remainder = D.Zero;
893       return;
894     }
895 
896     D.visit(Numerator);
897     *Quotient = D.Quotient;
898     *Remainder = D.Remainder;
899   }
900 
901   // Except in the trivial case described above, we do not know how to divide
902   // Expr by Denominator for the following functions with empty implementation.
903   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
904   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
905   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
906   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
907   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
908   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
909   void visitUnknown(const SCEVUnknown *Numerator) {}
910   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
911 
912   void visitConstant(const SCEVConstant *Numerator) {
913     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
914       APInt NumeratorVal = Numerator->getAPInt();
915       APInt DenominatorVal = D->getAPInt();
916       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
917       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
918 
919       if (NumeratorBW > DenominatorBW)
920         DenominatorVal = DenominatorVal.sext(NumeratorBW);
921       else if (NumeratorBW < DenominatorBW)
922         NumeratorVal = NumeratorVal.sext(DenominatorBW);
923 
924       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
925       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
926       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
927       Quotient = SE.getConstant(QuotientVal);
928       Remainder = SE.getConstant(RemainderVal);
929       return;
930     }
931   }
932 
933   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
934     const SCEV *StartQ, *StartR, *StepQ, *StepR;
935     if (!Numerator->isAffine())
936       return cannotDivide(Numerator);
937     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
938     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
939     // Bail out if the types do not match.
940     Type *Ty = Denominator->getType();
941     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
942         Ty != StepQ->getType() || Ty != StepR->getType())
943       return cannotDivide(Numerator);
944     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
945                                 Numerator->getNoWrapFlags());
946     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
947                                  Numerator->getNoWrapFlags());
948   }
949 
950   void visitAddExpr(const SCEVAddExpr *Numerator) {
951     SmallVector<const SCEV *, 2> Qs, Rs;
952     Type *Ty = Denominator->getType();
953 
954     for (const SCEV *Op : Numerator->operands()) {
955       const SCEV *Q, *R;
956       divide(SE, Op, Denominator, &Q, &R);
957 
958       // Bail out if types do not match.
959       if (Ty != Q->getType() || Ty != R->getType())
960         return cannotDivide(Numerator);
961 
962       Qs.push_back(Q);
963       Rs.push_back(R);
964     }
965 
966     if (Qs.size() == 1) {
967       Quotient = Qs[0];
968       Remainder = Rs[0];
969       return;
970     }
971 
972     Quotient = SE.getAddExpr(Qs);
973     Remainder = SE.getAddExpr(Rs);
974   }
975 
976   void visitMulExpr(const SCEVMulExpr *Numerator) {
977     SmallVector<const SCEV *, 2> Qs;
978     Type *Ty = Denominator->getType();
979 
980     bool FoundDenominatorTerm = false;
981     for (const SCEV *Op : Numerator->operands()) {
982       // Bail out if types do not match.
983       if (Ty != Op->getType())
984         return cannotDivide(Numerator);
985 
986       if (FoundDenominatorTerm) {
987         Qs.push_back(Op);
988         continue;
989       }
990 
991       // Check whether Denominator divides one of the product operands.
992       const SCEV *Q, *R;
993       divide(SE, Op, Denominator, &Q, &R);
994       if (!R->isZero()) {
995         Qs.push_back(Op);
996         continue;
997       }
998 
999       // Bail out if types do not match.
1000       if (Ty != Q->getType())
1001         return cannotDivide(Numerator);
1002 
1003       FoundDenominatorTerm = true;
1004       Qs.push_back(Q);
1005     }
1006 
1007     if (FoundDenominatorTerm) {
1008       Remainder = Zero;
1009       if (Qs.size() == 1)
1010         Quotient = Qs[0];
1011       else
1012         Quotient = SE.getMulExpr(Qs);
1013       return;
1014     }
1015 
1016     if (!isa<SCEVUnknown>(Denominator))
1017       return cannotDivide(Numerator);
1018 
1019     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1020     ValueToValueMap RewriteMap;
1021     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1022         cast<SCEVConstant>(Zero)->getValue();
1023     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1024 
1025     if (Remainder->isZero()) {
1026       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1027       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1028           cast<SCEVConstant>(One)->getValue();
1029       Quotient =
1030           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1031       return;
1032     }
1033 
1034     // Quotient is (Numerator - Remainder) divided by Denominator.
1035     const SCEV *Q, *R;
1036     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1037     // This SCEV does not seem to simplify: fail the division here.
1038     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1039       return cannotDivide(Numerator);
1040     divide(SE, Diff, Denominator, &Q, &R);
1041     if (R != Zero)
1042       return cannotDivide(Numerator);
1043     Quotient = Q;
1044   }
1045 
1046 private:
1047   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1048                const SCEV *Denominator)
1049       : SE(S), Denominator(Denominator) {
1050     Zero = SE.getZero(Denominator->getType());
1051     One = SE.getOne(Denominator->getType());
1052 
1053     // We generally do not know how to divide Expr by Denominator. We
1054     // initialize the division to a "cannot divide" state to simplify the rest
1055     // of the code.
1056     cannotDivide(Numerator);
1057   }
1058 
1059   // Convenience function for giving up on the division. We set the quotient to
1060   // be equal to zero and the remainder to be equal to the numerator.
1061   void cannotDivide(const SCEV *Numerator) {
1062     Quotient = Zero;
1063     Remainder = Numerator;
1064   }
1065 
1066   ScalarEvolution &SE;
1067   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1068 };
1069 
1070 } // end anonymous namespace
1071 
1072 //===----------------------------------------------------------------------===//
1073 //                      Simple SCEV method implementations
1074 //===----------------------------------------------------------------------===//
1075 
1076 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1077 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1078                                        ScalarEvolution &SE,
1079                                        Type *ResultTy) {
1080   // Handle the simplest case efficiently.
1081   if (K == 1)
1082     return SE.getTruncateOrZeroExtend(It, ResultTy);
1083 
1084   // We are using the following formula for BC(It, K):
1085   //
1086   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1087   //
1088   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1089   // overflow.  Hence, we must assure that the result of our computation is
1090   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1091   // safe in modular arithmetic.
1092   //
1093   // However, this code doesn't use exactly that formula; the formula it uses
1094   // is something like the following, where T is the number of factors of 2 in
1095   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1096   // exponentiation:
1097   //
1098   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1099   //
1100   // This formula is trivially equivalent to the previous formula.  However,
1101   // this formula can be implemented much more efficiently.  The trick is that
1102   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1103   // arithmetic.  To do exact division in modular arithmetic, all we have
1104   // to do is multiply by the inverse.  Therefore, this step can be done at
1105   // width W.
1106   //
1107   // The next issue is how to safely do the division by 2^T.  The way this
1108   // is done is by doing the multiplication step at a width of at least W + T
1109   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1110   // when we perform the division by 2^T (which is equivalent to a right shift
1111   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1112   // truncated out after the division by 2^T.
1113   //
1114   // In comparison to just directly using the first formula, this technique
1115   // is much more efficient; using the first formula requires W * K bits,
1116   // but this formula less than W + K bits. Also, the first formula requires
1117   // a division step, whereas this formula only requires multiplies and shifts.
1118   //
1119   // It doesn't matter whether the subtraction step is done in the calculation
1120   // width or the input iteration count's width; if the subtraction overflows,
1121   // the result must be zero anyway.  We prefer here to do it in the width of
1122   // the induction variable because it helps a lot for certain cases; CodeGen
1123   // isn't smart enough to ignore the overflow, which leads to much less
1124   // efficient code if the width of the subtraction is wider than the native
1125   // register width.
1126   //
1127   // (It's possible to not widen at all by pulling out factors of 2 before
1128   // the multiplication; for example, K=2 can be calculated as
1129   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1130   // extra arithmetic, so it's not an obvious win, and it gets
1131   // much more complicated for K > 3.)
1132 
1133   // Protection from insane SCEVs; this bound is conservative,
1134   // but it probably doesn't matter.
1135   if (K > 1000)
1136     return SE.getCouldNotCompute();
1137 
1138   unsigned W = SE.getTypeSizeInBits(ResultTy);
1139 
1140   // Calculate K! / 2^T and T; we divide out the factors of two before
1141   // multiplying for calculating K! / 2^T to avoid overflow.
1142   // Other overflow doesn't matter because we only care about the bottom
1143   // W bits of the result.
1144   APInt OddFactorial(W, 1);
1145   unsigned T = 1;
1146   for (unsigned i = 3; i <= K; ++i) {
1147     APInt Mult(W, i);
1148     unsigned TwoFactors = Mult.countTrailingZeros();
1149     T += TwoFactors;
1150     Mult.lshrInPlace(TwoFactors);
1151     OddFactorial *= Mult;
1152   }
1153 
1154   // We need at least W + T bits for the multiplication step
1155   unsigned CalculationBits = W + T;
1156 
1157   // Calculate 2^T, at width T+W.
1158   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1159 
1160   // Calculate the multiplicative inverse of K! / 2^T;
1161   // this multiplication factor will perform the exact division by
1162   // K! / 2^T.
1163   APInt Mod = APInt::getSignedMinValue(W+1);
1164   APInt MultiplyFactor = OddFactorial.zext(W+1);
1165   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1166   MultiplyFactor = MultiplyFactor.trunc(W);
1167 
1168   // Calculate the product, at width T+W
1169   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1170                                                       CalculationBits);
1171   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1172   for (unsigned i = 1; i != K; ++i) {
1173     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1174     Dividend = SE.getMulExpr(Dividend,
1175                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1176   }
1177 
1178   // Divide by 2^T
1179   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1180 
1181   // Truncate the result, and divide by K! / 2^T.
1182 
1183   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1184                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1185 }
1186 
1187 /// Return the value of this chain of recurrences at the specified iteration
1188 /// number.  We can evaluate this recurrence by multiplying each element in the
1189 /// chain by the binomial coefficient corresponding to it.  In other words, we
1190 /// can evaluate {A,+,B,+,C,+,D} as:
1191 ///
1192 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1193 ///
1194 /// where BC(It, k) stands for binomial coefficient.
1195 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1196                                                 ScalarEvolution &SE) const {
1197   const SCEV *Result = getStart();
1198   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1199     // The computation is correct in the face of overflow provided that the
1200     // multiplication is performed _after_ the evaluation of the binomial
1201     // coefficient.
1202     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1203     if (isa<SCEVCouldNotCompute>(Coeff))
1204       return Coeff;
1205 
1206     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1207   }
1208   return Result;
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 //                    SCEV Expression folder implementations
1213 //===----------------------------------------------------------------------===//
1214 
1215 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1216                                              Type *Ty) {
1217   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1218          "This is not a truncating conversion!");
1219   assert(isSCEVable(Ty) &&
1220          "This is not a conversion to a SCEVable type!");
1221   Ty = getEffectiveSCEVType(Ty);
1222 
1223   FoldingSetNodeID ID;
1224   ID.AddInteger(scTruncate);
1225   ID.AddPointer(Op);
1226   ID.AddPointer(Ty);
1227   void *IP = nullptr;
1228   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1229 
1230   // Fold if the operand is constant.
1231   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1232     return getConstant(
1233       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1234 
1235   // trunc(trunc(x)) --> trunc(x)
1236   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1237     return getTruncateExpr(ST->getOperand(), Ty);
1238 
1239   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1240   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1241     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1242 
1243   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1244   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1245     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1246 
1247   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1248   // eliminate all the truncates, or we replace other casts with truncates.
1249   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1250     SmallVector<const SCEV *, 4> Operands;
1251     bool hasTrunc = false;
1252     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1253       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1254       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1255         hasTrunc = isa<SCEVTruncateExpr>(S);
1256       Operands.push_back(S);
1257     }
1258     if (!hasTrunc)
1259       return getAddExpr(Operands);
1260     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1261   }
1262 
1263   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1264   // eliminate all the truncates, or we replace other casts with truncates.
1265   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1266     SmallVector<const SCEV *, 4> Operands;
1267     bool hasTrunc = false;
1268     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1269       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1270       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1271         hasTrunc = isa<SCEVTruncateExpr>(S);
1272       Operands.push_back(S);
1273     }
1274     if (!hasTrunc)
1275       return getMulExpr(Operands);
1276     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1277   }
1278 
1279   // If the input value is a chrec scev, truncate the chrec's operands.
1280   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1281     SmallVector<const SCEV *, 4> Operands;
1282     for (const SCEV *Op : AddRec->operands())
1283       Operands.push_back(getTruncateExpr(Op, Ty));
1284     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1285   }
1286 
1287   // The cast wasn't folded; create an explicit cast node. We can reuse
1288   // the existing insert position since if we get here, we won't have
1289   // made any changes which would invalidate it.
1290   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1291                                                  Op, Ty);
1292   UniqueSCEVs.InsertNode(S, IP);
1293   addToLoopUseLists(S);
1294   return S;
1295 }
1296 
1297 // Get the limit of a recurrence such that incrementing by Step cannot cause
1298 // signed overflow as long as the value of the recurrence within the
1299 // loop does not exceed this limit before incrementing.
1300 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1301                                                  ICmpInst::Predicate *Pred,
1302                                                  ScalarEvolution *SE) {
1303   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1304   if (SE->isKnownPositive(Step)) {
1305     *Pred = ICmpInst::ICMP_SLT;
1306     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1307                            SE->getSignedRangeMax(Step));
1308   }
1309   if (SE->isKnownNegative(Step)) {
1310     *Pred = ICmpInst::ICMP_SGT;
1311     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1312                            SE->getSignedRangeMin(Step));
1313   }
1314   return nullptr;
1315 }
1316 
1317 // Get the limit of a recurrence such that incrementing by Step cannot cause
1318 // unsigned overflow as long as the value of the recurrence within the loop does
1319 // not exceed this limit before incrementing.
1320 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1321                                                    ICmpInst::Predicate *Pred,
1322                                                    ScalarEvolution *SE) {
1323   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1324   *Pred = ICmpInst::ICMP_ULT;
1325 
1326   return SE->getConstant(APInt::getMinValue(BitWidth) -
1327                          SE->getUnsignedRangeMax(Step));
1328 }
1329 
1330 namespace {
1331 
1332 struct ExtendOpTraitsBase {
1333   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1334                                                           unsigned);
1335 };
1336 
1337 // Used to make code generic over signed and unsigned overflow.
1338 template <typename ExtendOp> struct ExtendOpTraits {
1339   // Members present:
1340   //
1341   // static const SCEV::NoWrapFlags WrapType;
1342   //
1343   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1344   //
1345   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1346   //                                           ICmpInst::Predicate *Pred,
1347   //                                           ScalarEvolution *SE);
1348 };
1349 
1350 template <>
1351 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1352   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1353 
1354   static const GetExtendExprTy GetExtendExpr;
1355 
1356   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1357                                              ICmpInst::Predicate *Pred,
1358                                              ScalarEvolution *SE) {
1359     return getSignedOverflowLimitForStep(Step, Pred, SE);
1360   }
1361 };
1362 
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1364     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1365 
1366 template <>
1367 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1368   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1369 
1370   static const GetExtendExprTy GetExtendExpr;
1371 
1372   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1373                                              ICmpInst::Predicate *Pred,
1374                                              ScalarEvolution *SE) {
1375     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1376   }
1377 };
1378 
1379 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1380     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1381 
1382 } // end anonymous namespace
1383 
1384 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1385 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1386 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1387 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1388 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1389 // expression "Step + sext/zext(PreIncAR)" is congruent with
1390 // "sext/zext(PostIncAR)"
1391 template <typename ExtendOpTy>
1392 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1393                                         ScalarEvolution *SE, unsigned Depth) {
1394   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1395   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1396 
1397   const Loop *L = AR->getLoop();
1398   const SCEV *Start = AR->getStart();
1399   const SCEV *Step = AR->getStepRecurrence(*SE);
1400 
1401   // Check for a simple looking step prior to loop entry.
1402   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1403   if (!SA)
1404     return nullptr;
1405 
1406   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1407   // subtraction is expensive. For this purpose, perform a quick and dirty
1408   // difference, by checking for Step in the operand list.
1409   SmallVector<const SCEV *, 4> DiffOps;
1410   for (const SCEV *Op : SA->operands())
1411     if (Op != Step)
1412       DiffOps.push_back(Op);
1413 
1414   if (DiffOps.size() == SA->getNumOperands())
1415     return nullptr;
1416 
1417   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1418   // `Step`:
1419 
1420   // 1. NSW/NUW flags on the step increment.
1421   auto PreStartFlags =
1422     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1423   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1424   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1425       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1426 
1427   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1428   // "S+X does not sign/unsign-overflow".
1429   //
1430 
1431   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1432   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1433       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1434     return PreStart;
1435 
1436   // 2. Direct overflow check on the step operation's expression.
1437   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1438   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1439   const SCEV *OperandExtendedStart =
1440       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1441                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1442   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1443     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1444       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1445       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1446       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1447       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1448     }
1449     return PreStart;
1450   }
1451 
1452   // 3. Loop precondition.
1453   ICmpInst::Predicate Pred;
1454   const SCEV *OverflowLimit =
1455       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1456 
1457   if (OverflowLimit &&
1458       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1459     return PreStart;
1460 
1461   return nullptr;
1462 }
1463 
1464 // Get the normalized zero or sign extended expression for this AddRec's Start.
1465 template <typename ExtendOpTy>
1466 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1467                                         ScalarEvolution *SE,
1468                                         unsigned Depth) {
1469   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1470 
1471   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1472   if (!PreStart)
1473     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1474 
1475   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1476                                              Depth),
1477                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1478 }
1479 
1480 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1481 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1482 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1483 //
1484 // Formally:
1485 //
1486 //     {S,+,X} == {S-T,+,X} + T
1487 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1488 //
1489 // If ({S-T,+,X} + T) does not overflow  ... (1)
1490 //
1491 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1492 //
1493 // If {S-T,+,X} does not overflow  ... (2)
1494 //
1495 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1496 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1497 //
1498 // If (S-T)+T does not overflow  ... (3)
1499 //
1500 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1501 //      == {Ext(S),+,Ext(X)} == LHS
1502 //
1503 // Thus, if (1), (2) and (3) are true for some T, then
1504 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1505 //
1506 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1507 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1508 // to check for (1) and (2).
1509 //
1510 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1511 // is `Delta` (defined below).
1512 template <typename ExtendOpTy>
1513 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1514                                                 const SCEV *Step,
1515                                                 const Loop *L) {
1516   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1517 
1518   // We restrict `Start` to a constant to prevent SCEV from spending too much
1519   // time here.  It is correct (but more expensive) to continue with a
1520   // non-constant `Start` and do a general SCEV subtraction to compute
1521   // `PreStart` below.
1522   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1523   if (!StartC)
1524     return false;
1525 
1526   APInt StartAI = StartC->getAPInt();
1527 
1528   for (unsigned Delta : {-2, -1, 1, 2}) {
1529     const SCEV *PreStart = getConstant(StartAI - Delta);
1530 
1531     FoldingSetNodeID ID;
1532     ID.AddInteger(scAddRecExpr);
1533     ID.AddPointer(PreStart);
1534     ID.AddPointer(Step);
1535     ID.AddPointer(L);
1536     void *IP = nullptr;
1537     const auto *PreAR =
1538       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1539 
1540     // Give up if we don't already have the add recurrence we need because
1541     // actually constructing an add recurrence is relatively expensive.
1542     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1543       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1544       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1545       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1546           DeltaS, &Pred, this);
1547       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1548         return true;
1549     }
1550   }
1551 
1552   return false;
1553 }
1554 
1555 const SCEV *
1556 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1557   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1558          "This is not an extending conversion!");
1559   assert(isSCEVable(Ty) &&
1560          "This is not a conversion to a SCEVable type!");
1561   Ty = getEffectiveSCEVType(Ty);
1562 
1563   // Fold if the operand is constant.
1564   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1565     return getConstant(
1566       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1567 
1568   // zext(zext(x)) --> zext(x)
1569   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1570     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1571 
1572   // Before doing any expensive analysis, check to see if we've already
1573   // computed a SCEV for this Op and Ty.
1574   FoldingSetNodeID ID;
1575   ID.AddInteger(scZeroExtend);
1576   ID.AddPointer(Op);
1577   ID.AddPointer(Ty);
1578   void *IP = nullptr;
1579   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1580   if (Depth > MaxExtDepth) {
1581     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1582                                                      Op, Ty);
1583     UniqueSCEVs.InsertNode(S, IP);
1584     addToLoopUseLists(S);
1585     return S;
1586   }
1587 
1588   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1589   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1590     // It's possible the bits taken off by the truncate were all zero bits. If
1591     // so, we should be able to simplify this further.
1592     const SCEV *X = ST->getOperand();
1593     ConstantRange CR = getUnsignedRange(X);
1594     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1595     unsigned NewBits = getTypeSizeInBits(Ty);
1596     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1597             CR.zextOrTrunc(NewBits)))
1598       return getTruncateOrZeroExtend(X, Ty);
1599   }
1600 
1601   // If the input value is a chrec scev, and we can prove that the value
1602   // did not overflow the old, smaller, value, we can zero extend all of the
1603   // operands (often constants).  This allows analysis of something like
1604   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1605   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1606     if (AR->isAffine()) {
1607       const SCEV *Start = AR->getStart();
1608       const SCEV *Step = AR->getStepRecurrence(*this);
1609       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1610       const Loop *L = AR->getLoop();
1611 
1612       if (!AR->hasNoUnsignedWrap()) {
1613         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1614         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1615       }
1616 
1617       // If we have special knowledge that this addrec won't overflow,
1618       // we don't need to do any further analysis.
1619       if (AR->hasNoUnsignedWrap())
1620         return getAddRecExpr(
1621             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1622             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1623 
1624       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1625       // Note that this serves two purposes: It filters out loops that are
1626       // simply not analyzable, and it covers the case where this code is
1627       // being called from within backedge-taken count analysis, such that
1628       // attempting to ask for the backedge-taken count would likely result
1629       // in infinite recursion. In the later case, the analysis code will
1630       // cope with a conservative value, and it will take care to purge
1631       // that value once it has finished.
1632       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1633       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1634         // Manually compute the final value for AR, checking for
1635         // overflow.
1636 
1637         // Check whether the backedge-taken count can be losslessly casted to
1638         // the addrec's type. The count is always unsigned.
1639         const SCEV *CastedMaxBECount =
1640           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1641         const SCEV *RecastedMaxBECount =
1642           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1643         if (MaxBECount == RecastedMaxBECount) {
1644           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1645           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1646           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1647                                         SCEV::FlagAnyWrap, Depth + 1);
1648           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1649                                                           SCEV::FlagAnyWrap,
1650                                                           Depth + 1),
1651                                                WideTy, Depth + 1);
1652           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1653           const SCEV *WideMaxBECount =
1654             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1655           const SCEV *OperandExtendedAdd =
1656             getAddExpr(WideStart,
1657                        getMulExpr(WideMaxBECount,
1658                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1659                                   SCEV::FlagAnyWrap, Depth + 1),
1660                        SCEV::FlagAnyWrap, Depth + 1);
1661           if (ZAdd == OperandExtendedAdd) {
1662             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1663             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1664             // Return the expression with the addrec on the outside.
1665             return getAddRecExpr(
1666                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1667                                                          Depth + 1),
1668                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1669                 AR->getNoWrapFlags());
1670           }
1671           // Similar to above, only this time treat the step value as signed.
1672           // This covers loops that count down.
1673           OperandExtendedAdd =
1674             getAddExpr(WideStart,
1675                        getMulExpr(WideMaxBECount,
1676                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1677                                   SCEV::FlagAnyWrap, Depth + 1),
1678                        SCEV::FlagAnyWrap, Depth + 1);
1679           if (ZAdd == OperandExtendedAdd) {
1680             // Cache knowledge of AR NW, which is propagated to this AddRec.
1681             // Negative step causes unsigned wrap, but it still can't self-wrap.
1682             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1683             // Return the expression with the addrec on the outside.
1684             return getAddRecExpr(
1685                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1686                                                          Depth + 1),
1687                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1688                 AR->getNoWrapFlags());
1689           }
1690         }
1691       }
1692 
1693       // Normally, in the cases we can prove no-overflow via a
1694       // backedge guarding condition, we can also compute a backedge
1695       // taken count for the loop.  The exceptions are assumptions and
1696       // guards present in the loop -- SCEV is not great at exploiting
1697       // these to compute max backedge taken counts, but can still use
1698       // these to prove lack of overflow.  Use this fact to avoid
1699       // doing extra work that may not pay off.
1700       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1701           !AC.assumptions().empty()) {
1702         // If the backedge is guarded by a comparison with the pre-inc
1703         // value the addrec is safe. Also, if the entry is guarded by
1704         // a comparison with the start value and the backedge is
1705         // guarded by a comparison with the post-inc value, the addrec
1706         // is safe.
1707         if (isKnownPositive(Step)) {
1708           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1709                                       getUnsignedRangeMax(Step));
1710           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1711               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1712                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1713                                            AR->getPostIncExpr(*this), N))) {
1714             // Cache knowledge of AR NUW, which is propagated to this
1715             // AddRec.
1716             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1717             // Return the expression with the addrec on the outside.
1718             return getAddRecExpr(
1719                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1720                                                          Depth + 1),
1721                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1722                 AR->getNoWrapFlags());
1723           }
1724         } else if (isKnownNegative(Step)) {
1725           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1726                                       getSignedRangeMin(Step));
1727           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1728               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1729                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1730                                            AR->getPostIncExpr(*this), N))) {
1731             // Cache knowledge of AR NW, which is propagated to this
1732             // AddRec.  Negative step causes unsigned wrap, but it
1733             // still can't self-wrap.
1734             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1735             // Return the expression with the addrec on the outside.
1736             return getAddRecExpr(
1737                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1738                                                          Depth + 1),
1739                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1740                 AR->getNoWrapFlags());
1741           }
1742         }
1743       }
1744 
1745       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1746         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1747         return getAddRecExpr(
1748             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1749             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1750       }
1751     }
1752 
1753   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1754     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1755     if (SA->hasNoUnsignedWrap()) {
1756       // If the addition does not unsign overflow then we can, by definition,
1757       // commute the zero extension with the addition operation.
1758       SmallVector<const SCEV *, 4> Ops;
1759       for (const auto *Op : SA->operands())
1760         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1761       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1762     }
1763   }
1764 
1765   // The cast wasn't folded; create an explicit cast node.
1766   // Recompute the insert position, as it may have been invalidated.
1767   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1768   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1769                                                    Op, Ty);
1770   UniqueSCEVs.InsertNode(S, IP);
1771   addToLoopUseLists(S);
1772   return S;
1773 }
1774 
1775 const SCEV *
1776 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1777   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1778          "This is not an extending conversion!");
1779   assert(isSCEVable(Ty) &&
1780          "This is not a conversion to a SCEVable type!");
1781   Ty = getEffectiveSCEVType(Ty);
1782 
1783   // Fold if the operand is constant.
1784   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1785     return getConstant(
1786       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1787 
1788   // sext(sext(x)) --> sext(x)
1789   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1790     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1791 
1792   // sext(zext(x)) --> zext(x)
1793   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1794     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1795 
1796   // Before doing any expensive analysis, check to see if we've already
1797   // computed a SCEV for this Op and Ty.
1798   FoldingSetNodeID ID;
1799   ID.AddInteger(scSignExtend);
1800   ID.AddPointer(Op);
1801   ID.AddPointer(Ty);
1802   void *IP = nullptr;
1803   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1804   // Limit recursion depth.
1805   if (Depth > MaxExtDepth) {
1806     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1807                                                      Op, Ty);
1808     UniqueSCEVs.InsertNode(S, IP);
1809     addToLoopUseLists(S);
1810     return S;
1811   }
1812 
1813   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1814   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1815     // It's possible the bits taken off by the truncate were all sign bits. If
1816     // so, we should be able to simplify this further.
1817     const SCEV *X = ST->getOperand();
1818     ConstantRange CR = getSignedRange(X);
1819     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1820     unsigned NewBits = getTypeSizeInBits(Ty);
1821     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1822             CR.sextOrTrunc(NewBits)))
1823       return getTruncateOrSignExtend(X, Ty);
1824   }
1825 
1826   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1827   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1828     if (SA->getNumOperands() == 2) {
1829       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1830       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1831       if (SMul && SC1) {
1832         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1833           const APInt &C1 = SC1->getAPInt();
1834           const APInt &C2 = SC2->getAPInt();
1835           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1836               C2.ugt(C1) && C2.isPowerOf2())
1837             return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1),
1838                               getSignExtendExpr(SMul, Ty, Depth + 1),
1839                               SCEV::FlagAnyWrap, Depth + 1);
1840         }
1841       }
1842     }
1843 
1844     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1845     if (SA->hasNoSignedWrap()) {
1846       // If the addition does not sign overflow then we can, by definition,
1847       // commute the sign extension with the addition operation.
1848       SmallVector<const SCEV *, 4> Ops;
1849       for (const auto *Op : SA->operands())
1850         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1851       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1852     }
1853   }
1854   // If the input value is a chrec scev, and we can prove that the value
1855   // did not overflow the old, smaller, value, we can sign extend all of the
1856   // operands (often constants).  This allows analysis of something like
1857   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1858   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1859     if (AR->isAffine()) {
1860       const SCEV *Start = AR->getStart();
1861       const SCEV *Step = AR->getStepRecurrence(*this);
1862       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1863       const Loop *L = AR->getLoop();
1864 
1865       if (!AR->hasNoSignedWrap()) {
1866         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1867         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1868       }
1869 
1870       // If we have special knowledge that this addrec won't overflow,
1871       // we don't need to do any further analysis.
1872       if (AR->hasNoSignedWrap())
1873         return getAddRecExpr(
1874             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1875             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1876 
1877       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1878       // Note that this serves two purposes: It filters out loops that are
1879       // simply not analyzable, and it covers the case where this code is
1880       // being called from within backedge-taken count analysis, such that
1881       // attempting to ask for the backedge-taken count would likely result
1882       // in infinite recursion. In the later case, the analysis code will
1883       // cope with a conservative value, and it will take care to purge
1884       // that value once it has finished.
1885       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1886       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1887         // Manually compute the final value for AR, checking for
1888         // overflow.
1889 
1890         // Check whether the backedge-taken count can be losslessly casted to
1891         // the addrec's type. The count is always unsigned.
1892         const SCEV *CastedMaxBECount =
1893           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1894         const SCEV *RecastedMaxBECount =
1895           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1896         if (MaxBECount == RecastedMaxBECount) {
1897           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1898           // Check whether Start+Step*MaxBECount has no signed overflow.
1899           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1900                                         SCEV::FlagAnyWrap, Depth + 1);
1901           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1902                                                           SCEV::FlagAnyWrap,
1903                                                           Depth + 1),
1904                                                WideTy, Depth + 1);
1905           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1906           const SCEV *WideMaxBECount =
1907             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1908           const SCEV *OperandExtendedAdd =
1909             getAddExpr(WideStart,
1910                        getMulExpr(WideMaxBECount,
1911                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1912                                   SCEV::FlagAnyWrap, Depth + 1),
1913                        SCEV::FlagAnyWrap, Depth + 1);
1914           if (SAdd == OperandExtendedAdd) {
1915             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1916             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1917             // Return the expression with the addrec on the outside.
1918             return getAddRecExpr(
1919                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1920                                                          Depth + 1),
1921                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1922                 AR->getNoWrapFlags());
1923           }
1924           // Similar to above, only this time treat the step value as unsigned.
1925           // This covers loops that count up with an unsigned step.
1926           OperandExtendedAdd =
1927             getAddExpr(WideStart,
1928                        getMulExpr(WideMaxBECount,
1929                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1930                                   SCEV::FlagAnyWrap, Depth + 1),
1931                        SCEV::FlagAnyWrap, Depth + 1);
1932           if (SAdd == OperandExtendedAdd) {
1933             // If AR wraps around then
1934             //
1935             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1936             // => SAdd != OperandExtendedAdd
1937             //
1938             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1939             // (SAdd == OperandExtendedAdd => AR is NW)
1940 
1941             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1942 
1943             // Return the expression with the addrec on the outside.
1944             return getAddRecExpr(
1945                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1946                                                          Depth + 1),
1947                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1948                 AR->getNoWrapFlags());
1949           }
1950         }
1951       }
1952 
1953       // Normally, in the cases we can prove no-overflow via a
1954       // backedge guarding condition, we can also compute a backedge
1955       // taken count for the loop.  The exceptions are assumptions and
1956       // guards present in the loop -- SCEV is not great at exploiting
1957       // these to compute max backedge taken counts, but can still use
1958       // these to prove lack of overflow.  Use this fact to avoid
1959       // doing extra work that may not pay off.
1960 
1961       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1962           !AC.assumptions().empty()) {
1963         // If the backedge is guarded by a comparison with the pre-inc
1964         // value the addrec is safe. Also, if the entry is guarded by
1965         // a comparison with the start value and the backedge is
1966         // guarded by a comparison with the post-inc value, the addrec
1967         // is safe.
1968         ICmpInst::Predicate Pred;
1969         const SCEV *OverflowLimit =
1970             getSignedOverflowLimitForStep(Step, &Pred, this);
1971         if (OverflowLimit &&
1972             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1973              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1974               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1975                                           OverflowLimit)))) {
1976           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1977           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1978           return getAddRecExpr(
1979               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1980               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1981         }
1982       }
1983 
1984       // If Start and Step are constants, check if we can apply this
1985       // transformation:
1986       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1987       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1988       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1989       if (SC1 && SC2) {
1990         const APInt &C1 = SC1->getAPInt();
1991         const APInt &C2 = SC2->getAPInt();
1992         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1993             C2.isPowerOf2()) {
1994           Start = getSignExtendExpr(Start, Ty, Depth + 1);
1995           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1996                                             AR->getNoWrapFlags());
1997           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1),
1998                             SCEV::FlagAnyWrap, Depth + 1);
1999         }
2000       }
2001 
2002       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2003         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2004         return getAddRecExpr(
2005             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2006             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2007       }
2008     }
2009 
2010   // If the input value is provably positive and we could not simplify
2011   // away the sext build a zext instead.
2012   if (isKnownNonNegative(Op))
2013     return getZeroExtendExpr(Op, Ty, Depth + 1);
2014 
2015   // The cast wasn't folded; create an explicit cast node.
2016   // Recompute the insert position, as it may have been invalidated.
2017   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2018   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2019                                                    Op, Ty);
2020   UniqueSCEVs.InsertNode(S, IP);
2021   addToLoopUseLists(S);
2022   return S;
2023 }
2024 
2025 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2026 /// unspecified bits out to the given type.
2027 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2028                                               Type *Ty) {
2029   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2030          "This is not an extending conversion!");
2031   assert(isSCEVable(Ty) &&
2032          "This is not a conversion to a SCEVable type!");
2033   Ty = getEffectiveSCEVType(Ty);
2034 
2035   // Sign-extend negative constants.
2036   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2037     if (SC->getAPInt().isNegative())
2038       return getSignExtendExpr(Op, Ty);
2039 
2040   // Peel off a truncate cast.
2041   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2042     const SCEV *NewOp = T->getOperand();
2043     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2044       return getAnyExtendExpr(NewOp, Ty);
2045     return getTruncateOrNoop(NewOp, Ty);
2046   }
2047 
2048   // Next try a zext cast. If the cast is folded, use it.
2049   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2050   if (!isa<SCEVZeroExtendExpr>(ZExt))
2051     return ZExt;
2052 
2053   // Next try a sext cast. If the cast is folded, use it.
2054   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2055   if (!isa<SCEVSignExtendExpr>(SExt))
2056     return SExt;
2057 
2058   // Force the cast to be folded into the operands of an addrec.
2059   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2060     SmallVector<const SCEV *, 4> Ops;
2061     for (const SCEV *Op : AR->operands())
2062       Ops.push_back(getAnyExtendExpr(Op, Ty));
2063     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2064   }
2065 
2066   // If the expression is obviously signed, use the sext cast value.
2067   if (isa<SCEVSMaxExpr>(Op))
2068     return SExt;
2069 
2070   // Absent any other information, use the zext cast value.
2071   return ZExt;
2072 }
2073 
2074 /// Process the given Ops list, which is a list of operands to be added under
2075 /// the given scale, update the given map. This is a helper function for
2076 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2077 /// that would form an add expression like this:
2078 ///
2079 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2080 ///
2081 /// where A and B are constants, update the map with these values:
2082 ///
2083 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2084 ///
2085 /// and add 13 + A*B*29 to AccumulatedConstant.
2086 /// This will allow getAddRecExpr to produce this:
2087 ///
2088 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2089 ///
2090 /// This form often exposes folding opportunities that are hidden in
2091 /// the original operand list.
2092 ///
2093 /// Return true iff it appears that any interesting folding opportunities
2094 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2095 /// the common case where no interesting opportunities are present, and
2096 /// is also used as a check to avoid infinite recursion.
2097 static bool
2098 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2099                              SmallVectorImpl<const SCEV *> &NewOps,
2100                              APInt &AccumulatedConstant,
2101                              const SCEV *const *Ops, size_t NumOperands,
2102                              const APInt &Scale,
2103                              ScalarEvolution &SE) {
2104   bool Interesting = false;
2105 
2106   // Iterate over the add operands. They are sorted, with constants first.
2107   unsigned i = 0;
2108   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2109     ++i;
2110     // Pull a buried constant out to the outside.
2111     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2112       Interesting = true;
2113     AccumulatedConstant += Scale * C->getAPInt();
2114   }
2115 
2116   // Next comes everything else. We're especially interested in multiplies
2117   // here, but they're in the middle, so just visit the rest with one loop.
2118   for (; i != NumOperands; ++i) {
2119     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2120     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2121       APInt NewScale =
2122           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2123       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2124         // A multiplication of a constant with another add; recurse.
2125         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2126         Interesting |=
2127           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2128                                        Add->op_begin(), Add->getNumOperands(),
2129                                        NewScale, SE);
2130       } else {
2131         // A multiplication of a constant with some other value. Update
2132         // the map.
2133         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2134         const SCEV *Key = SE.getMulExpr(MulOps);
2135         auto Pair = M.insert({Key, NewScale});
2136         if (Pair.second) {
2137           NewOps.push_back(Pair.first->first);
2138         } else {
2139           Pair.first->second += NewScale;
2140           // The map already had an entry for this value, which may indicate
2141           // a folding opportunity.
2142           Interesting = true;
2143         }
2144       }
2145     } else {
2146       // An ordinary operand. Update the map.
2147       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2148           M.insert({Ops[i], Scale});
2149       if (Pair.second) {
2150         NewOps.push_back(Pair.first->first);
2151       } else {
2152         Pair.first->second += Scale;
2153         // The map already had an entry for this value, which may indicate
2154         // a folding opportunity.
2155         Interesting = true;
2156       }
2157     }
2158   }
2159 
2160   return Interesting;
2161 }
2162 
2163 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2164 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2165 // can't-overflow flags for the operation if possible.
2166 static SCEV::NoWrapFlags
2167 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2168                       const SmallVectorImpl<const SCEV *> &Ops,
2169                       SCEV::NoWrapFlags Flags) {
2170   using namespace std::placeholders;
2171 
2172   using OBO = OverflowingBinaryOperator;
2173 
2174   bool CanAnalyze =
2175       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2176   (void)CanAnalyze;
2177   assert(CanAnalyze && "don't call from other places!");
2178 
2179   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2180   SCEV::NoWrapFlags SignOrUnsignWrap =
2181       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2182 
2183   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2184   auto IsKnownNonNegative = [&](const SCEV *S) {
2185     return SE->isKnownNonNegative(S);
2186   };
2187 
2188   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2189     Flags =
2190         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2191 
2192   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2193 
2194   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
2195       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
2196 
2197     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2198     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2199 
2200     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2201     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2202       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2203           Instruction::Add, C, OBO::NoSignedWrap);
2204       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2205         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2206     }
2207     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2208       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2209           Instruction::Add, C, OBO::NoUnsignedWrap);
2210       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2211         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2212     }
2213   }
2214 
2215   return Flags;
2216 }
2217 
2218 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2219   if (!isLoopInvariant(S, L))
2220     return false;
2221   // If a value depends on a SCEVUnknown which is defined after the loop, we
2222   // conservatively assume that we cannot calculate it at the loop's entry.
2223   struct FindDominatedSCEVUnknown {
2224     bool Found = false;
2225     const Loop *L;
2226     DominatorTree &DT;
2227     LoopInfo &LI;
2228 
2229     FindDominatedSCEVUnknown(const Loop *L, DominatorTree &DT, LoopInfo &LI)
2230         : L(L), DT(DT), LI(LI) {}
2231 
2232     bool checkSCEVUnknown(const SCEVUnknown *SU) {
2233       if (auto *I = dyn_cast<Instruction>(SU->getValue())) {
2234         if (DT.dominates(L->getHeader(), I->getParent()))
2235           Found = true;
2236         else
2237           assert(DT.dominates(I->getParent(), L->getHeader()) &&
2238                  "No dominance relationship between SCEV and loop?");
2239       }
2240       return false;
2241     }
2242 
2243     bool follow(const SCEV *S) {
2244       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
2245       case scConstant:
2246         return false;
2247       case scAddRecExpr:
2248       case scTruncate:
2249       case scZeroExtend:
2250       case scSignExtend:
2251       case scAddExpr:
2252       case scMulExpr:
2253       case scUMaxExpr:
2254       case scSMaxExpr:
2255       case scUDivExpr:
2256         return true;
2257       case scUnknown:
2258         return checkSCEVUnknown(cast<SCEVUnknown>(S));
2259       case scCouldNotCompute:
2260         llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2261       }
2262       return false;
2263     }
2264 
2265     bool isDone() { return Found; }
2266   };
2267 
2268   FindDominatedSCEVUnknown FSU(L, DT, LI);
2269   SCEVTraversal<FindDominatedSCEVUnknown> ST(FSU);
2270   ST.visitAll(S);
2271   return !FSU.Found;
2272 }
2273 
2274 /// Get a canonical add expression, or something simpler if possible.
2275 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2276                                         SCEV::NoWrapFlags Flags,
2277                                         unsigned Depth) {
2278   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2279          "only nuw or nsw allowed");
2280   assert(!Ops.empty() && "Cannot get empty add!");
2281   if (Ops.size() == 1) return Ops[0];
2282 #ifndef NDEBUG
2283   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2284   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2285     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2286            "SCEVAddExpr operand types don't match!");
2287 #endif
2288 
2289   // Sort by complexity, this groups all similar expression types together.
2290   GroupByComplexity(Ops, &LI, DT);
2291 
2292   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2293 
2294   // If there are any constants, fold them together.
2295   unsigned Idx = 0;
2296   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2297     ++Idx;
2298     assert(Idx < Ops.size());
2299     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2300       // We found two constants, fold them together!
2301       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2302       if (Ops.size() == 2) return Ops[0];
2303       Ops.erase(Ops.begin()+1);  // Erase the folded element
2304       LHSC = cast<SCEVConstant>(Ops[0]);
2305     }
2306 
2307     // If we are left with a constant zero being added, strip it off.
2308     if (LHSC->getValue()->isZero()) {
2309       Ops.erase(Ops.begin());
2310       --Idx;
2311     }
2312 
2313     if (Ops.size() == 1) return Ops[0];
2314   }
2315 
2316   // Limit recursion calls depth.
2317   if (Depth > MaxArithDepth)
2318     return getOrCreateAddExpr(Ops, Flags);
2319 
2320   // Okay, check to see if the same value occurs in the operand list more than
2321   // once.  If so, merge them together into an multiply expression.  Since we
2322   // sorted the list, these values are required to be adjacent.
2323   Type *Ty = Ops[0]->getType();
2324   bool FoundMatch = false;
2325   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2326     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2327       // Scan ahead to count how many equal operands there are.
2328       unsigned Count = 2;
2329       while (i+Count != e && Ops[i+Count] == Ops[i])
2330         ++Count;
2331       // Merge the values into a multiply.
2332       const SCEV *Scale = getConstant(Ty, Count);
2333       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2334       if (Ops.size() == Count)
2335         return Mul;
2336       Ops[i] = Mul;
2337       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2338       --i; e -= Count - 1;
2339       FoundMatch = true;
2340     }
2341   if (FoundMatch)
2342     return getAddExpr(Ops, Flags);
2343 
2344   // Check for truncates. If all the operands are truncated from the same
2345   // type, see if factoring out the truncate would permit the result to be
2346   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2347   // if the contents of the resulting outer trunc fold to something simple.
2348   auto FindTruncSrcType = [&]() -> Type * {
2349     // We're ultimately looking to fold an addrec of truncs and muls of only
2350     // constants and truncs, so if we find any other types of SCEV
2351     // as operands of the addrec then we bail and return nullptr here.
2352     // Otherwise, we return the type of the operand of a trunc that we find.
2353     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2354       return T->getOperand()->getType();
2355     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2356       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2357       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2358         return T->getOperand()->getType();
2359     }
2360     return nullptr;
2361   };
2362   if (auto *SrcType = FindTruncSrcType()) {
2363     SmallVector<const SCEV *, 8> LargeOps;
2364     bool Ok = true;
2365     // Check all the operands to see if they can be represented in the
2366     // source type of the truncate.
2367     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2368       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2369         if (T->getOperand()->getType() != SrcType) {
2370           Ok = false;
2371           break;
2372         }
2373         LargeOps.push_back(T->getOperand());
2374       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2375         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2376       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2377         SmallVector<const SCEV *, 8> LargeMulOps;
2378         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2379           if (const SCEVTruncateExpr *T =
2380                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2381             if (T->getOperand()->getType() != SrcType) {
2382               Ok = false;
2383               break;
2384             }
2385             LargeMulOps.push_back(T->getOperand());
2386           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2387             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2388           } else {
2389             Ok = false;
2390             break;
2391           }
2392         }
2393         if (Ok)
2394           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2395       } else {
2396         Ok = false;
2397         break;
2398       }
2399     }
2400     if (Ok) {
2401       // Evaluate the expression in the larger type.
2402       const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1);
2403       // If it folds to something simple, use it. Otherwise, don't.
2404       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2405         return getTruncateExpr(Fold, Ty);
2406     }
2407   }
2408 
2409   // Skip past any other cast SCEVs.
2410   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2411     ++Idx;
2412 
2413   // If there are add operands they would be next.
2414   if (Idx < Ops.size()) {
2415     bool DeletedAdd = false;
2416     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2417       if (Ops.size() > AddOpsInlineThreshold ||
2418           Add->getNumOperands() > AddOpsInlineThreshold)
2419         break;
2420       // If we have an add, expand the add operands onto the end of the operands
2421       // list.
2422       Ops.erase(Ops.begin()+Idx);
2423       Ops.append(Add->op_begin(), Add->op_end());
2424       DeletedAdd = true;
2425     }
2426 
2427     // If we deleted at least one add, we added operands to the end of the list,
2428     // and they are not necessarily sorted.  Recurse to resort and resimplify
2429     // any operands we just acquired.
2430     if (DeletedAdd)
2431       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2432   }
2433 
2434   // Skip over the add expression until we get to a multiply.
2435   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2436     ++Idx;
2437 
2438   // Check to see if there are any folding opportunities present with
2439   // operands multiplied by constant values.
2440   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2441     uint64_t BitWidth = getTypeSizeInBits(Ty);
2442     DenseMap<const SCEV *, APInt> M;
2443     SmallVector<const SCEV *, 8> NewOps;
2444     APInt AccumulatedConstant(BitWidth, 0);
2445     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2446                                      Ops.data(), Ops.size(),
2447                                      APInt(BitWidth, 1), *this)) {
2448       struct APIntCompare {
2449         bool operator()(const APInt &LHS, const APInt &RHS) const {
2450           return LHS.ult(RHS);
2451         }
2452       };
2453 
2454       // Some interesting folding opportunity is present, so its worthwhile to
2455       // re-generate the operands list. Group the operands by constant scale,
2456       // to avoid multiplying by the same constant scale multiple times.
2457       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2458       for (const SCEV *NewOp : NewOps)
2459         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2460       // Re-generate the operands list.
2461       Ops.clear();
2462       if (AccumulatedConstant != 0)
2463         Ops.push_back(getConstant(AccumulatedConstant));
2464       for (auto &MulOp : MulOpLists)
2465         if (MulOp.first != 0)
2466           Ops.push_back(getMulExpr(
2467               getConstant(MulOp.first),
2468               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2469               SCEV::FlagAnyWrap, Depth + 1));
2470       if (Ops.empty())
2471         return getZero(Ty);
2472       if (Ops.size() == 1)
2473         return Ops[0];
2474       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2475     }
2476   }
2477 
2478   // If we are adding something to a multiply expression, make sure the
2479   // something is not already an operand of the multiply.  If so, merge it into
2480   // the multiply.
2481   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2482     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2483     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2484       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2485       if (isa<SCEVConstant>(MulOpSCEV))
2486         continue;
2487       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2488         if (MulOpSCEV == Ops[AddOp]) {
2489           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2490           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2491           if (Mul->getNumOperands() != 2) {
2492             // If the multiply has more than two operands, we must get the
2493             // Y*Z term.
2494             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2495                                                 Mul->op_begin()+MulOp);
2496             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2497             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2498           }
2499           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2500           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2501           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2502                                             SCEV::FlagAnyWrap, Depth + 1);
2503           if (Ops.size() == 2) return OuterMul;
2504           if (AddOp < Idx) {
2505             Ops.erase(Ops.begin()+AddOp);
2506             Ops.erase(Ops.begin()+Idx-1);
2507           } else {
2508             Ops.erase(Ops.begin()+Idx);
2509             Ops.erase(Ops.begin()+AddOp-1);
2510           }
2511           Ops.push_back(OuterMul);
2512           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2513         }
2514 
2515       // Check this multiply against other multiplies being added together.
2516       for (unsigned OtherMulIdx = Idx+1;
2517            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2518            ++OtherMulIdx) {
2519         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2520         // If MulOp occurs in OtherMul, we can fold the two multiplies
2521         // together.
2522         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2523              OMulOp != e; ++OMulOp)
2524           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2525             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2526             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2527             if (Mul->getNumOperands() != 2) {
2528               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2529                                                   Mul->op_begin()+MulOp);
2530               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2531               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2532             }
2533             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2534             if (OtherMul->getNumOperands() != 2) {
2535               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2536                                                   OtherMul->op_begin()+OMulOp);
2537               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2538               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2539             }
2540             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2541             const SCEV *InnerMulSum =
2542                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2543             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2544                                               SCEV::FlagAnyWrap, Depth + 1);
2545             if (Ops.size() == 2) return OuterMul;
2546             Ops.erase(Ops.begin()+Idx);
2547             Ops.erase(Ops.begin()+OtherMulIdx-1);
2548             Ops.push_back(OuterMul);
2549             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2550           }
2551       }
2552     }
2553   }
2554 
2555   // If there are any add recurrences in the operands list, see if any other
2556   // added values are loop invariant.  If so, we can fold them into the
2557   // recurrence.
2558   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2559     ++Idx;
2560 
2561   // Scan over all recurrences, trying to fold loop invariants into them.
2562   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2563     // Scan all of the other operands to this add and add them to the vector if
2564     // they are loop invariant w.r.t. the recurrence.
2565     SmallVector<const SCEV *, 8> LIOps;
2566     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2567     const Loop *AddRecLoop = AddRec->getLoop();
2568     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2569       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2570         LIOps.push_back(Ops[i]);
2571         Ops.erase(Ops.begin()+i);
2572         --i; --e;
2573       }
2574 
2575     // If we found some loop invariants, fold them into the recurrence.
2576     if (!LIOps.empty()) {
2577       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2578       LIOps.push_back(AddRec->getStart());
2579 
2580       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2581                                              AddRec->op_end());
2582       // This follows from the fact that the no-wrap flags on the outer add
2583       // expression are applicable on the 0th iteration, when the add recurrence
2584       // will be equal to its start value.
2585       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2586 
2587       // Build the new addrec. Propagate the NUW and NSW flags if both the
2588       // outer add and the inner addrec are guaranteed to have no overflow.
2589       // Always propagate NW.
2590       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2591       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2592 
2593       // If all of the other operands were loop invariant, we are done.
2594       if (Ops.size() == 1) return NewRec;
2595 
2596       // Otherwise, add the folded AddRec by the non-invariant parts.
2597       for (unsigned i = 0;; ++i)
2598         if (Ops[i] == AddRec) {
2599           Ops[i] = NewRec;
2600           break;
2601         }
2602       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2603     }
2604 
2605     // Okay, if there weren't any loop invariants to be folded, check to see if
2606     // there are multiple AddRec's with the same loop induction variable being
2607     // added together.  If so, we can fold them.
2608     for (unsigned OtherIdx = Idx+1;
2609          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2610          ++OtherIdx) {
2611       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2612       // so that the 1st found AddRecExpr is dominated by all others.
2613       assert(DT.dominates(
2614            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2615            AddRec->getLoop()->getHeader()) &&
2616         "AddRecExprs are not sorted in reverse dominance order?");
2617       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2618         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2619         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2620                                                AddRec->op_end());
2621         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2622              ++OtherIdx) {
2623           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2624           if (OtherAddRec->getLoop() == AddRecLoop) {
2625             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2626                  i != e; ++i) {
2627               if (i >= AddRecOps.size()) {
2628                 AddRecOps.append(OtherAddRec->op_begin()+i,
2629                                  OtherAddRec->op_end());
2630                 break;
2631               }
2632               SmallVector<const SCEV *, 2> TwoOps = {
2633                   AddRecOps[i], OtherAddRec->getOperand(i)};
2634               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2635             }
2636             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2637           }
2638         }
2639         // Step size has changed, so we cannot guarantee no self-wraparound.
2640         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2641         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2642       }
2643     }
2644 
2645     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2646     // next one.
2647   }
2648 
2649   // Okay, it looks like we really DO need an add expr.  Check to see if we
2650   // already have one, otherwise create a new one.
2651   return getOrCreateAddExpr(Ops, Flags);
2652 }
2653 
2654 const SCEV *
2655 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2656                                     SCEV::NoWrapFlags Flags) {
2657   FoldingSetNodeID ID;
2658   ID.AddInteger(scAddExpr);
2659   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2660     ID.AddPointer(Ops[i]);
2661   void *IP = nullptr;
2662   SCEVAddExpr *S =
2663       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2664   if (!S) {
2665     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2666     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2667     S = new (SCEVAllocator)
2668         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2669     UniqueSCEVs.InsertNode(S, IP);
2670     addToLoopUseLists(S);
2671   }
2672   S->setNoWrapFlags(Flags);
2673   return S;
2674 }
2675 
2676 const SCEV *
2677 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2678                                     SCEV::NoWrapFlags Flags) {
2679   FoldingSetNodeID ID;
2680   ID.AddInteger(scMulExpr);
2681   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2682     ID.AddPointer(Ops[i]);
2683   void *IP = nullptr;
2684   SCEVMulExpr *S =
2685     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2686   if (!S) {
2687     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2688     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2689     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2690                                         O, Ops.size());
2691     UniqueSCEVs.InsertNode(S, IP);
2692     addToLoopUseLists(S);
2693   }
2694   S->setNoWrapFlags(Flags);
2695   return S;
2696 }
2697 
2698 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2699   uint64_t k = i*j;
2700   if (j > 1 && k / j != i) Overflow = true;
2701   return k;
2702 }
2703 
2704 /// Compute the result of "n choose k", the binomial coefficient.  If an
2705 /// intermediate computation overflows, Overflow will be set and the return will
2706 /// be garbage. Overflow is not cleared on absence of overflow.
2707 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2708   // We use the multiplicative formula:
2709   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2710   // At each iteration, we take the n-th term of the numeral and divide by the
2711   // (k-n)th term of the denominator.  This division will always produce an
2712   // integral result, and helps reduce the chance of overflow in the
2713   // intermediate computations. However, we can still overflow even when the
2714   // final result would fit.
2715 
2716   if (n == 0 || n == k) return 1;
2717   if (k > n) return 0;
2718 
2719   if (k > n/2)
2720     k = n-k;
2721 
2722   uint64_t r = 1;
2723   for (uint64_t i = 1; i <= k; ++i) {
2724     r = umul_ov(r, n-(i-1), Overflow);
2725     r /= i;
2726   }
2727   return r;
2728 }
2729 
2730 /// Determine if any of the operands in this SCEV are a constant or if
2731 /// any of the add or multiply expressions in this SCEV contain a constant.
2732 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2733   struct FindConstantInAddMulChain {
2734     bool FoundConstant = false;
2735 
2736     bool follow(const SCEV *S) {
2737       FoundConstant |= isa<SCEVConstant>(S);
2738       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2739     }
2740 
2741     bool isDone() const {
2742       return FoundConstant;
2743     }
2744   };
2745 
2746   FindConstantInAddMulChain F;
2747   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2748   ST.visitAll(StartExpr);
2749   return F.FoundConstant;
2750 }
2751 
2752 /// Get a canonical multiply expression, or something simpler if possible.
2753 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2754                                         SCEV::NoWrapFlags Flags,
2755                                         unsigned Depth) {
2756   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2757          "only nuw or nsw allowed");
2758   assert(!Ops.empty() && "Cannot get empty mul!");
2759   if (Ops.size() == 1) return Ops[0];
2760 #ifndef NDEBUG
2761   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2762   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2763     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2764            "SCEVMulExpr operand types don't match!");
2765 #endif
2766 
2767   // Sort by complexity, this groups all similar expression types together.
2768   GroupByComplexity(Ops, &LI, DT);
2769 
2770   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2771 
2772   // Limit recursion calls depth.
2773   if (Depth > MaxArithDepth)
2774     return getOrCreateMulExpr(Ops, Flags);
2775 
2776   // If there are any constants, fold them together.
2777   unsigned Idx = 0;
2778   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2779 
2780     // C1*(C2+V) -> C1*C2 + C1*V
2781     if (Ops.size() == 2)
2782         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2783           // If any of Add's ops are Adds or Muls with a constant,
2784           // apply this transformation as well.
2785           if (Add->getNumOperands() == 2)
2786             // TODO: There are some cases where this transformation is not
2787             // profitable, for example:
2788             // Add = (C0 + X) * Y + Z.
2789             // Maybe the scope of this transformation should be narrowed down.
2790             if (containsConstantInAddMulChain(Add))
2791               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2792                                            SCEV::FlagAnyWrap, Depth + 1),
2793                                 getMulExpr(LHSC, Add->getOperand(1),
2794                                            SCEV::FlagAnyWrap, Depth + 1),
2795                                 SCEV::FlagAnyWrap, Depth + 1);
2796 
2797     ++Idx;
2798     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2799       // We found two constants, fold them together!
2800       ConstantInt *Fold =
2801           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2802       Ops[0] = getConstant(Fold);
2803       Ops.erase(Ops.begin()+1);  // Erase the folded element
2804       if (Ops.size() == 1) return Ops[0];
2805       LHSC = cast<SCEVConstant>(Ops[0]);
2806     }
2807 
2808     // If we are left with a constant one being multiplied, strip it off.
2809     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2810       Ops.erase(Ops.begin());
2811       --Idx;
2812     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2813       // If we have a multiply of zero, it will always be zero.
2814       return Ops[0];
2815     } else if (Ops[0]->isAllOnesValue()) {
2816       // If we have a mul by -1 of an add, try distributing the -1 among the
2817       // add operands.
2818       if (Ops.size() == 2) {
2819         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2820           SmallVector<const SCEV *, 4> NewOps;
2821           bool AnyFolded = false;
2822           for (const SCEV *AddOp : Add->operands()) {
2823             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2824                                          Depth + 1);
2825             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2826             NewOps.push_back(Mul);
2827           }
2828           if (AnyFolded)
2829             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2830         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2831           // Negation preserves a recurrence's no self-wrap property.
2832           SmallVector<const SCEV *, 4> Operands;
2833           for (const SCEV *AddRecOp : AddRec->operands())
2834             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2835                                           Depth + 1));
2836 
2837           return getAddRecExpr(Operands, AddRec->getLoop(),
2838                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2839         }
2840       }
2841     }
2842 
2843     if (Ops.size() == 1)
2844       return Ops[0];
2845   }
2846 
2847   // Skip over the add expression until we get to a multiply.
2848   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2849     ++Idx;
2850 
2851   // If there are mul operands inline them all into this expression.
2852   if (Idx < Ops.size()) {
2853     bool DeletedMul = false;
2854     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2855       if (Ops.size() > MulOpsInlineThreshold)
2856         break;
2857       // If we have an mul, expand the mul operands onto the end of the
2858       // operands list.
2859       Ops.erase(Ops.begin()+Idx);
2860       Ops.append(Mul->op_begin(), Mul->op_end());
2861       DeletedMul = true;
2862     }
2863 
2864     // If we deleted at least one mul, we added operands to the end of the
2865     // list, and they are not necessarily sorted.  Recurse to resort and
2866     // resimplify any operands we just acquired.
2867     if (DeletedMul)
2868       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2869   }
2870 
2871   // If there are any add recurrences in the operands list, see if any other
2872   // added values are loop invariant.  If so, we can fold them into the
2873   // recurrence.
2874   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2875     ++Idx;
2876 
2877   // Scan over all recurrences, trying to fold loop invariants into them.
2878   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2879     // Scan all of the other operands to this mul and add them to the vector
2880     // if they are loop invariant w.r.t. the recurrence.
2881     SmallVector<const SCEV *, 8> LIOps;
2882     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2883     const Loop *AddRecLoop = AddRec->getLoop();
2884     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2885       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2886         LIOps.push_back(Ops[i]);
2887         Ops.erase(Ops.begin()+i);
2888         --i; --e;
2889       }
2890 
2891     // If we found some loop invariants, fold them into the recurrence.
2892     if (!LIOps.empty()) {
2893       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2894       SmallVector<const SCEV *, 4> NewOps;
2895       NewOps.reserve(AddRec->getNumOperands());
2896       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2897       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2898         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2899                                     SCEV::FlagAnyWrap, Depth + 1));
2900 
2901       // Build the new addrec. Propagate the NUW and NSW flags if both the
2902       // outer mul and the inner addrec are guaranteed to have no overflow.
2903       //
2904       // No self-wrap cannot be guaranteed after changing the step size, but
2905       // will be inferred if either NUW or NSW is true.
2906       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2907       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2908 
2909       // If all of the other operands were loop invariant, we are done.
2910       if (Ops.size() == 1) return NewRec;
2911 
2912       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2913       for (unsigned i = 0;; ++i)
2914         if (Ops[i] == AddRec) {
2915           Ops[i] = NewRec;
2916           break;
2917         }
2918       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2919     }
2920 
2921     // Okay, if there weren't any loop invariants to be folded, check to see
2922     // if there are multiple AddRec's with the same loop induction variable
2923     // being multiplied together.  If so, we can fold them.
2924 
2925     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2926     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2927     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2928     //   ]]],+,...up to x=2n}.
2929     // Note that the arguments to choose() are always integers with values
2930     // known at compile time, never SCEV objects.
2931     //
2932     // The implementation avoids pointless extra computations when the two
2933     // addrec's are of different length (mathematically, it's equivalent to
2934     // an infinite stream of zeros on the right).
2935     bool OpsModified = false;
2936     for (unsigned OtherIdx = Idx+1;
2937          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2938          ++OtherIdx) {
2939       const SCEVAddRecExpr *OtherAddRec =
2940         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2941       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2942         continue;
2943 
2944       // Limit max number of arguments to avoid creation of unreasonably big
2945       // SCEVAddRecs with very complex operands.
2946       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2947           MaxAddRecSize)
2948         continue;
2949 
2950       bool Overflow = false;
2951       Type *Ty = AddRec->getType();
2952       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2953       SmallVector<const SCEV*, 7> AddRecOps;
2954       for (int x = 0, xe = AddRec->getNumOperands() +
2955              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2956         const SCEV *Term = getZero(Ty);
2957         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2958           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2959           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2960                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2961                z < ze && !Overflow; ++z) {
2962             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2963             uint64_t Coeff;
2964             if (LargerThan64Bits)
2965               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2966             else
2967               Coeff = Coeff1*Coeff2;
2968             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2969             const SCEV *Term1 = AddRec->getOperand(y-z);
2970             const SCEV *Term2 = OtherAddRec->getOperand(z);
2971             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2,
2972                                                SCEV::FlagAnyWrap, Depth + 1),
2973                               SCEV::FlagAnyWrap, Depth + 1);
2974           }
2975         }
2976         AddRecOps.push_back(Term);
2977       }
2978       if (!Overflow) {
2979         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2980                                               SCEV::FlagAnyWrap);
2981         if (Ops.size() == 2) return NewAddRec;
2982         Ops[Idx] = NewAddRec;
2983         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2984         OpsModified = true;
2985         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2986         if (!AddRec)
2987           break;
2988       }
2989     }
2990     if (OpsModified)
2991       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2992 
2993     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2994     // next one.
2995   }
2996 
2997   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2998   // already have one, otherwise create a new one.
2999   return getOrCreateMulExpr(Ops, Flags);
3000 }
3001 
3002 /// Represents an unsigned remainder expression based on unsigned division.
3003 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3004                                          const SCEV *RHS) {
3005   assert(getEffectiveSCEVType(LHS->getType()) ==
3006          getEffectiveSCEVType(RHS->getType()) &&
3007          "SCEVURemExpr operand types don't match!");
3008 
3009   // Short-circuit easy cases
3010   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3011     // If constant is one, the result is trivial
3012     if (RHSC->getValue()->isOne())
3013       return getZero(LHS->getType()); // X urem 1 --> 0
3014 
3015     // If constant is a power of two, fold into a zext(trunc(LHS)).
3016     if (RHSC->getAPInt().isPowerOf2()) {
3017       Type *FullTy = LHS->getType();
3018       Type *TruncTy =
3019           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3020       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3021     }
3022   }
3023 
3024   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3025   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3026   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3027   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3028 }
3029 
3030 /// Get a canonical unsigned division expression, or something simpler if
3031 /// possible.
3032 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3033                                          const SCEV *RHS) {
3034   assert(getEffectiveSCEVType(LHS->getType()) ==
3035          getEffectiveSCEVType(RHS->getType()) &&
3036          "SCEVUDivExpr operand types don't match!");
3037 
3038   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3039     if (RHSC->getValue()->isOne())
3040       return LHS;                               // X udiv 1 --> x
3041     // If the denominator is zero, the result of the udiv is undefined. Don't
3042     // try to analyze it, because the resolution chosen here may differ from
3043     // the resolution chosen in other parts of the compiler.
3044     if (!RHSC->getValue()->isZero()) {
3045       // Determine if the division can be folded into the operands of
3046       // its operands.
3047       // TODO: Generalize this to non-constants by using known-bits information.
3048       Type *Ty = LHS->getType();
3049       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3050       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3051       // For non-power-of-two values, effectively round the value up to the
3052       // nearest power of two.
3053       if (!RHSC->getAPInt().isPowerOf2())
3054         ++MaxShiftAmt;
3055       IntegerType *ExtTy =
3056         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3057       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3058         if (const SCEVConstant *Step =
3059             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3060           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3061           const APInt &StepInt = Step->getAPInt();
3062           const APInt &DivInt = RHSC->getAPInt();
3063           if (!StepInt.urem(DivInt) &&
3064               getZeroExtendExpr(AR, ExtTy) ==
3065               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3066                             getZeroExtendExpr(Step, ExtTy),
3067                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3068             SmallVector<const SCEV *, 4> Operands;
3069             for (const SCEV *Op : AR->operands())
3070               Operands.push_back(getUDivExpr(Op, RHS));
3071             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3072           }
3073           /// Get a canonical UDivExpr for a recurrence.
3074           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3075           // We can currently only fold X%N if X is constant.
3076           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3077           if (StartC && !DivInt.urem(StepInt) &&
3078               getZeroExtendExpr(AR, ExtTy) ==
3079               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3080                             getZeroExtendExpr(Step, ExtTy),
3081                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3082             const APInt &StartInt = StartC->getAPInt();
3083             const APInt &StartRem = StartInt.urem(StepInt);
3084             if (StartRem != 0)
3085               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3086                                   AR->getLoop(), SCEV::FlagNW);
3087           }
3088         }
3089       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3090       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3091         SmallVector<const SCEV *, 4> Operands;
3092         for (const SCEV *Op : M->operands())
3093           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3094         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3095           // Find an operand that's safely divisible.
3096           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3097             const SCEV *Op = M->getOperand(i);
3098             const SCEV *Div = getUDivExpr(Op, RHSC);
3099             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3100               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3101                                                       M->op_end());
3102               Operands[i] = Div;
3103               return getMulExpr(Operands);
3104             }
3105           }
3106       }
3107       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3108       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3109         SmallVector<const SCEV *, 4> Operands;
3110         for (const SCEV *Op : A->operands())
3111           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3112         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3113           Operands.clear();
3114           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3115             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3116             if (isa<SCEVUDivExpr>(Op) ||
3117                 getMulExpr(Op, RHS) != A->getOperand(i))
3118               break;
3119             Operands.push_back(Op);
3120           }
3121           if (Operands.size() == A->getNumOperands())
3122             return getAddExpr(Operands);
3123         }
3124       }
3125 
3126       // Fold if both operands are constant.
3127       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3128         Constant *LHSCV = LHSC->getValue();
3129         Constant *RHSCV = RHSC->getValue();
3130         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3131                                                                    RHSCV)));
3132       }
3133     }
3134   }
3135 
3136   FoldingSetNodeID ID;
3137   ID.AddInteger(scUDivExpr);
3138   ID.AddPointer(LHS);
3139   ID.AddPointer(RHS);
3140   void *IP = nullptr;
3141   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3142   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3143                                              LHS, RHS);
3144   UniqueSCEVs.InsertNode(S, IP);
3145   addToLoopUseLists(S);
3146   return S;
3147 }
3148 
3149 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3150   APInt A = C1->getAPInt().abs();
3151   APInt B = C2->getAPInt().abs();
3152   uint32_t ABW = A.getBitWidth();
3153   uint32_t BBW = B.getBitWidth();
3154 
3155   if (ABW > BBW)
3156     B = B.zext(ABW);
3157   else if (ABW < BBW)
3158     A = A.zext(BBW);
3159 
3160   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3161 }
3162 
3163 /// Get a canonical unsigned division expression, or something simpler if
3164 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3165 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3166 /// it's not exact because the udiv may be clearing bits.
3167 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3168                                               const SCEV *RHS) {
3169   // TODO: we could try to find factors in all sorts of things, but for now we
3170   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3171   // end of this file for inspiration.
3172 
3173   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3174   if (!Mul || !Mul->hasNoUnsignedWrap())
3175     return getUDivExpr(LHS, RHS);
3176 
3177   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3178     // If the mulexpr multiplies by a constant, then that constant must be the
3179     // first element of the mulexpr.
3180     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3181       if (LHSCst == RHSCst) {
3182         SmallVector<const SCEV *, 2> Operands;
3183         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3184         return getMulExpr(Operands);
3185       }
3186 
3187       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3188       // that there's a factor provided by one of the other terms. We need to
3189       // check.
3190       APInt Factor = gcd(LHSCst, RHSCst);
3191       if (!Factor.isIntN(1)) {
3192         LHSCst =
3193             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3194         RHSCst =
3195             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3196         SmallVector<const SCEV *, 2> Operands;
3197         Operands.push_back(LHSCst);
3198         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3199         LHS = getMulExpr(Operands);
3200         RHS = RHSCst;
3201         Mul = dyn_cast<SCEVMulExpr>(LHS);
3202         if (!Mul)
3203           return getUDivExactExpr(LHS, RHS);
3204       }
3205     }
3206   }
3207 
3208   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3209     if (Mul->getOperand(i) == RHS) {
3210       SmallVector<const SCEV *, 2> Operands;
3211       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3212       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3213       return getMulExpr(Operands);
3214     }
3215   }
3216 
3217   return getUDivExpr(LHS, RHS);
3218 }
3219 
3220 /// Get an add recurrence expression for the specified loop.  Simplify the
3221 /// expression as much as possible.
3222 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3223                                            const Loop *L,
3224                                            SCEV::NoWrapFlags Flags) {
3225   SmallVector<const SCEV *, 4> Operands;
3226   Operands.push_back(Start);
3227   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3228     if (StepChrec->getLoop() == L) {
3229       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3230       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3231     }
3232 
3233   Operands.push_back(Step);
3234   return getAddRecExpr(Operands, L, Flags);
3235 }
3236 
3237 /// Get an add recurrence expression for the specified loop.  Simplify the
3238 /// expression as much as possible.
3239 const SCEV *
3240 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3241                                const Loop *L, SCEV::NoWrapFlags Flags) {
3242   if (Operands.size() == 1) return Operands[0];
3243 #ifndef NDEBUG
3244   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3245   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3246     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3247            "SCEVAddRecExpr operand types don't match!");
3248   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3249     assert(isLoopInvariant(Operands[i], L) &&
3250            "SCEVAddRecExpr operand is not loop-invariant!");
3251 #endif
3252 
3253   if (Operands.back()->isZero()) {
3254     Operands.pop_back();
3255     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3256   }
3257 
3258   // It's tempting to want to call getMaxBackedgeTakenCount count here and
3259   // use that information to infer NUW and NSW flags. However, computing a
3260   // BE count requires calling getAddRecExpr, so we may not yet have a
3261   // meaningful BE count at this point (and if we don't, we'd be stuck
3262   // with a SCEVCouldNotCompute as the cached BE count).
3263 
3264   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3265 
3266   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3267   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3268     const Loop *NestedLoop = NestedAR->getLoop();
3269     if (L->contains(NestedLoop)
3270             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3271             : (!NestedLoop->contains(L) &&
3272                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3273       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3274                                                   NestedAR->op_end());
3275       Operands[0] = NestedAR->getStart();
3276       // AddRecs require their operands be loop-invariant with respect to their
3277       // loops. Don't perform this transformation if it would break this
3278       // requirement.
3279       bool AllInvariant = all_of(
3280           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3281 
3282       if (AllInvariant) {
3283         // Create a recurrence for the outer loop with the same step size.
3284         //
3285         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3286         // inner recurrence has the same property.
3287         SCEV::NoWrapFlags OuterFlags =
3288           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3289 
3290         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3291         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3292           return isLoopInvariant(Op, NestedLoop);
3293         });
3294 
3295         if (AllInvariant) {
3296           // Ok, both add recurrences are valid after the transformation.
3297           //
3298           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3299           // the outer recurrence has the same property.
3300           SCEV::NoWrapFlags InnerFlags =
3301             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3302           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3303         }
3304       }
3305       // Reset Operands to its original state.
3306       Operands[0] = NestedAR;
3307     }
3308   }
3309 
3310   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3311   // already have one, otherwise create a new one.
3312   FoldingSetNodeID ID;
3313   ID.AddInteger(scAddRecExpr);
3314   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3315     ID.AddPointer(Operands[i]);
3316   ID.AddPointer(L);
3317   void *IP = nullptr;
3318   SCEVAddRecExpr *S =
3319     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3320   if (!S) {
3321     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
3322     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
3323     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
3324                                            O, Operands.size(), L);
3325     UniqueSCEVs.InsertNode(S, IP);
3326     addToLoopUseLists(S);
3327   }
3328   S->setNoWrapFlags(Flags);
3329   return S;
3330 }
3331 
3332 const SCEV *
3333 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3334                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3335   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3336   // getSCEV(Base)->getType() has the same address space as Base->getType()
3337   // because SCEV::getType() preserves the address space.
3338   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3339   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3340   // instruction to its SCEV, because the Instruction may be guarded by control
3341   // flow and the no-overflow bits may not be valid for the expression in any
3342   // context. This can be fixed similarly to how these flags are handled for
3343   // adds.
3344   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3345                                              : SCEV::FlagAnyWrap;
3346 
3347   const SCEV *TotalOffset = getZero(IntPtrTy);
3348   // The array size is unimportant. The first thing we do on CurTy is getting
3349   // its element type.
3350   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3351   for (const SCEV *IndexExpr : IndexExprs) {
3352     // Compute the (potentially symbolic) offset in bytes for this index.
3353     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3354       // For a struct, add the member offset.
3355       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3356       unsigned FieldNo = Index->getZExtValue();
3357       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3358 
3359       // Add the field offset to the running total offset.
3360       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3361 
3362       // Update CurTy to the type of the field at Index.
3363       CurTy = STy->getTypeAtIndex(Index);
3364     } else {
3365       // Update CurTy to its element type.
3366       CurTy = cast<SequentialType>(CurTy)->getElementType();
3367       // For an array, add the element offset, explicitly scaled.
3368       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3369       // Getelementptr indices are signed.
3370       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3371 
3372       // Multiply the index by the element size to compute the element offset.
3373       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3374 
3375       // Add the element offset to the running total offset.
3376       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3377     }
3378   }
3379 
3380   // Add the total offset from all the GEP indices to the base.
3381   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3382 }
3383 
3384 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3385                                          const SCEV *RHS) {
3386   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3387   return getSMaxExpr(Ops);
3388 }
3389 
3390 const SCEV *
3391 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3392   assert(!Ops.empty() && "Cannot get empty smax!");
3393   if (Ops.size() == 1) return Ops[0];
3394 #ifndef NDEBUG
3395   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3396   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3397     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3398            "SCEVSMaxExpr operand types don't match!");
3399 #endif
3400 
3401   // Sort by complexity, this groups all similar expression types together.
3402   GroupByComplexity(Ops, &LI, DT);
3403 
3404   // If there are any constants, fold them together.
3405   unsigned Idx = 0;
3406   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3407     ++Idx;
3408     assert(Idx < Ops.size());
3409     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3410       // We found two constants, fold them together!
3411       ConstantInt *Fold = ConstantInt::get(
3412           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3413       Ops[0] = getConstant(Fold);
3414       Ops.erase(Ops.begin()+1);  // Erase the folded element
3415       if (Ops.size() == 1) return Ops[0];
3416       LHSC = cast<SCEVConstant>(Ops[0]);
3417     }
3418 
3419     // If we are left with a constant minimum-int, strip it off.
3420     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3421       Ops.erase(Ops.begin());
3422       --Idx;
3423     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3424       // If we have an smax with a constant maximum-int, it will always be
3425       // maximum-int.
3426       return Ops[0];
3427     }
3428 
3429     if (Ops.size() == 1) return Ops[0];
3430   }
3431 
3432   // Find the first SMax
3433   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3434     ++Idx;
3435 
3436   // Check to see if one of the operands is an SMax. If so, expand its operands
3437   // onto our operand list, and recurse to simplify.
3438   if (Idx < Ops.size()) {
3439     bool DeletedSMax = false;
3440     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3441       Ops.erase(Ops.begin()+Idx);
3442       Ops.append(SMax->op_begin(), SMax->op_end());
3443       DeletedSMax = true;
3444     }
3445 
3446     if (DeletedSMax)
3447       return getSMaxExpr(Ops);
3448   }
3449 
3450   // Okay, check to see if the same value occurs in the operand list twice.  If
3451   // so, delete one.  Since we sorted the list, these values are required to
3452   // be adjacent.
3453   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3454     //  X smax Y smax Y  -->  X smax Y
3455     //  X smax Y         -->  X, if X is always greater than Y
3456     if (Ops[i] == Ops[i+1] ||
3457         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3458       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3459       --i; --e;
3460     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3461       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3462       --i; --e;
3463     }
3464 
3465   if (Ops.size() == 1) return Ops[0];
3466 
3467   assert(!Ops.empty() && "Reduced smax down to nothing!");
3468 
3469   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3470   // already have one, otherwise create a new one.
3471   FoldingSetNodeID ID;
3472   ID.AddInteger(scSMaxExpr);
3473   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3474     ID.AddPointer(Ops[i]);
3475   void *IP = nullptr;
3476   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3477   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3478   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3479   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3480                                              O, Ops.size());
3481   UniqueSCEVs.InsertNode(S, IP);
3482   addToLoopUseLists(S);
3483   return S;
3484 }
3485 
3486 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3487                                          const SCEV *RHS) {
3488   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3489   return getUMaxExpr(Ops);
3490 }
3491 
3492 const SCEV *
3493 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3494   assert(!Ops.empty() && "Cannot get empty umax!");
3495   if (Ops.size() == 1) return Ops[0];
3496 #ifndef NDEBUG
3497   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3498   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3499     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3500            "SCEVUMaxExpr operand types don't match!");
3501 #endif
3502 
3503   // Sort by complexity, this groups all similar expression types together.
3504   GroupByComplexity(Ops, &LI, DT);
3505 
3506   // If there are any constants, fold them together.
3507   unsigned Idx = 0;
3508   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3509     ++Idx;
3510     assert(Idx < Ops.size());
3511     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3512       // We found two constants, fold them together!
3513       ConstantInt *Fold = ConstantInt::get(
3514           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3515       Ops[0] = getConstant(Fold);
3516       Ops.erase(Ops.begin()+1);  // Erase the folded element
3517       if (Ops.size() == 1) return Ops[0];
3518       LHSC = cast<SCEVConstant>(Ops[0]);
3519     }
3520 
3521     // If we are left with a constant minimum-int, strip it off.
3522     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3523       Ops.erase(Ops.begin());
3524       --Idx;
3525     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3526       // If we have an umax with a constant maximum-int, it will always be
3527       // maximum-int.
3528       return Ops[0];
3529     }
3530 
3531     if (Ops.size() == 1) return Ops[0];
3532   }
3533 
3534   // Find the first UMax
3535   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3536     ++Idx;
3537 
3538   // Check to see if one of the operands is a UMax. If so, expand its operands
3539   // onto our operand list, and recurse to simplify.
3540   if (Idx < Ops.size()) {
3541     bool DeletedUMax = false;
3542     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3543       Ops.erase(Ops.begin()+Idx);
3544       Ops.append(UMax->op_begin(), UMax->op_end());
3545       DeletedUMax = true;
3546     }
3547 
3548     if (DeletedUMax)
3549       return getUMaxExpr(Ops);
3550   }
3551 
3552   // Okay, check to see if the same value occurs in the operand list twice.  If
3553   // so, delete one.  Since we sorted the list, these values are required to
3554   // be adjacent.
3555   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3556     //  X umax Y umax Y  -->  X umax Y
3557     //  X umax Y         -->  X, if X is always greater than Y
3558     if (Ops[i] == Ops[i+1] ||
3559         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3560       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3561       --i; --e;
3562     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3563       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3564       --i; --e;
3565     }
3566 
3567   if (Ops.size() == 1) return Ops[0];
3568 
3569   assert(!Ops.empty() && "Reduced umax down to nothing!");
3570 
3571   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3572   // already have one, otherwise create a new one.
3573   FoldingSetNodeID ID;
3574   ID.AddInteger(scUMaxExpr);
3575   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3576     ID.AddPointer(Ops[i]);
3577   void *IP = nullptr;
3578   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3579   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3580   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3581   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3582                                              O, Ops.size());
3583   UniqueSCEVs.InsertNode(S, IP);
3584   addToLoopUseLists(S);
3585   return S;
3586 }
3587 
3588 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3589                                          const SCEV *RHS) {
3590   // ~smax(~x, ~y) == smin(x, y).
3591   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3592 }
3593 
3594 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3595                                          const SCEV *RHS) {
3596   // ~umax(~x, ~y) == umin(x, y)
3597   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3598 }
3599 
3600 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3601   // We can bypass creating a target-independent
3602   // constant expression and then folding it back into a ConstantInt.
3603   // This is just a compile-time optimization.
3604   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3605 }
3606 
3607 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3608                                              StructType *STy,
3609                                              unsigned FieldNo) {
3610   // We can bypass creating a target-independent
3611   // constant expression and then folding it back into a ConstantInt.
3612   // This is just a compile-time optimization.
3613   return getConstant(
3614       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3615 }
3616 
3617 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3618   // Don't attempt to do anything other than create a SCEVUnknown object
3619   // here.  createSCEV only calls getUnknown after checking for all other
3620   // interesting possibilities, and any other code that calls getUnknown
3621   // is doing so in order to hide a value from SCEV canonicalization.
3622 
3623   FoldingSetNodeID ID;
3624   ID.AddInteger(scUnknown);
3625   ID.AddPointer(V);
3626   void *IP = nullptr;
3627   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3628     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3629            "Stale SCEVUnknown in uniquing map!");
3630     return S;
3631   }
3632   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3633                                             FirstUnknown);
3634   FirstUnknown = cast<SCEVUnknown>(S);
3635   UniqueSCEVs.InsertNode(S, IP);
3636   return S;
3637 }
3638 
3639 //===----------------------------------------------------------------------===//
3640 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3641 //
3642 
3643 /// Test if values of the given type are analyzable within the SCEV
3644 /// framework. This primarily includes integer types, and it can optionally
3645 /// include pointer types if the ScalarEvolution class has access to
3646 /// target-specific information.
3647 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3648   // Integers and pointers are always SCEVable.
3649   return Ty->isIntegerTy() || Ty->isPointerTy();
3650 }
3651 
3652 /// Return the size in bits of the specified type, for which isSCEVable must
3653 /// return true.
3654 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3655   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3656   return getDataLayout().getTypeSizeInBits(Ty);
3657 }
3658 
3659 /// Return a type with the same bitwidth as the given type and which represents
3660 /// how SCEV will treat the given type, for which isSCEVable must return
3661 /// true. For pointer types, this is the pointer-sized integer type.
3662 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3663   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3664 
3665   if (Ty->isIntegerTy())
3666     return Ty;
3667 
3668   // The only other support type is pointer.
3669   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3670   return getDataLayout().getIntPtrType(Ty);
3671 }
3672 
3673 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3674   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3675 }
3676 
3677 const SCEV *ScalarEvolution::getCouldNotCompute() {
3678   return CouldNotCompute.get();
3679 }
3680 
3681 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3682   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3683     auto *SU = dyn_cast<SCEVUnknown>(S);
3684     return SU && SU->getValue() == nullptr;
3685   });
3686 
3687   return !ContainsNulls;
3688 }
3689 
3690 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3691   HasRecMapType::iterator I = HasRecMap.find(S);
3692   if (I != HasRecMap.end())
3693     return I->second;
3694 
3695   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3696   HasRecMap.insert({S, FoundAddRec});
3697   return FoundAddRec;
3698 }
3699 
3700 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3701 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3702 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3703 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3704   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3705   if (!Add)
3706     return {S, nullptr};
3707 
3708   if (Add->getNumOperands() != 2)
3709     return {S, nullptr};
3710 
3711   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3712   if (!ConstOp)
3713     return {S, nullptr};
3714 
3715   return {Add->getOperand(1), ConstOp->getValue()};
3716 }
3717 
3718 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3719 /// by the value and offset from any ValueOffsetPair in the set.
3720 SetVector<ScalarEvolution::ValueOffsetPair> *
3721 ScalarEvolution::getSCEVValues(const SCEV *S) {
3722   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3723   if (SI == ExprValueMap.end())
3724     return nullptr;
3725 #ifndef NDEBUG
3726   if (VerifySCEVMap) {
3727     // Check there is no dangling Value in the set returned.
3728     for (const auto &VE : SI->second)
3729       assert(ValueExprMap.count(VE.first));
3730   }
3731 #endif
3732   return &SI->second;
3733 }
3734 
3735 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3736 /// cannot be used separately. eraseValueFromMap should be used to remove
3737 /// V from ValueExprMap and ExprValueMap at the same time.
3738 void ScalarEvolution::eraseValueFromMap(Value *V) {
3739   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3740   if (I != ValueExprMap.end()) {
3741     const SCEV *S = I->second;
3742     // Remove {V, 0} from the set of ExprValueMap[S]
3743     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3744       SV->remove({V, nullptr});
3745 
3746     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3747     const SCEV *Stripped;
3748     ConstantInt *Offset;
3749     std::tie(Stripped, Offset) = splitAddExpr(S);
3750     if (Offset != nullptr) {
3751       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3752         SV->remove({V, Offset});
3753     }
3754     ValueExprMap.erase(V);
3755   }
3756 }
3757 
3758 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3759 /// create a new one.
3760 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3761   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3762 
3763   const SCEV *S = getExistingSCEV(V);
3764   if (S == nullptr) {
3765     S = createSCEV(V);
3766     // During PHI resolution, it is possible to create two SCEVs for the same
3767     // V, so it is needed to double check whether V->S is inserted into
3768     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3769     std::pair<ValueExprMapType::iterator, bool> Pair =
3770         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3771     if (Pair.second) {
3772       ExprValueMap[S].insert({V, nullptr});
3773 
3774       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3775       // ExprValueMap.
3776       const SCEV *Stripped = S;
3777       ConstantInt *Offset = nullptr;
3778       std::tie(Stripped, Offset) = splitAddExpr(S);
3779       // If stripped is SCEVUnknown, don't bother to save
3780       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3781       // increase the complexity of the expansion code.
3782       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3783       // because it may generate add/sub instead of GEP in SCEV expansion.
3784       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3785           !isa<GetElementPtrInst>(V))
3786         ExprValueMap[Stripped].insert({V, Offset});
3787     }
3788   }
3789   return S;
3790 }
3791 
3792 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3793   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3794 
3795   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3796   if (I != ValueExprMap.end()) {
3797     const SCEV *S = I->second;
3798     if (checkValidity(S))
3799       return S;
3800     eraseValueFromMap(V);
3801     forgetMemoizedResults(S);
3802   }
3803   return nullptr;
3804 }
3805 
3806 /// Return a SCEV corresponding to -V = -1*V
3807 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3808                                              SCEV::NoWrapFlags Flags) {
3809   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3810     return getConstant(
3811                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3812 
3813   Type *Ty = V->getType();
3814   Ty = getEffectiveSCEVType(Ty);
3815   return getMulExpr(
3816       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3817 }
3818 
3819 /// Return a SCEV corresponding to ~V = -1-V
3820 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3821   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3822     return getConstant(
3823                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3824 
3825   Type *Ty = V->getType();
3826   Ty = getEffectiveSCEVType(Ty);
3827   const SCEV *AllOnes =
3828                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3829   return getMinusSCEV(AllOnes, V);
3830 }
3831 
3832 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3833                                           SCEV::NoWrapFlags Flags,
3834                                           unsigned Depth) {
3835   // Fast path: X - X --> 0.
3836   if (LHS == RHS)
3837     return getZero(LHS->getType());
3838 
3839   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3840   // makes it so that we cannot make much use of NUW.
3841   auto AddFlags = SCEV::FlagAnyWrap;
3842   const bool RHSIsNotMinSigned =
3843       !getSignedRangeMin(RHS).isMinSignedValue();
3844   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3845     // Let M be the minimum representable signed value. Then (-1)*RHS
3846     // signed-wraps if and only if RHS is M. That can happen even for
3847     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3848     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3849     // (-1)*RHS, we need to prove that RHS != M.
3850     //
3851     // If LHS is non-negative and we know that LHS - RHS does not
3852     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3853     // either by proving that RHS > M or that LHS >= 0.
3854     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3855       AddFlags = SCEV::FlagNSW;
3856     }
3857   }
3858 
3859   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3860   // RHS is NSW and LHS >= 0.
3861   //
3862   // The difficulty here is that the NSW flag may have been proven
3863   // relative to a loop that is to be found in a recurrence in LHS and
3864   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3865   // larger scope than intended.
3866   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3867 
3868   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3869 }
3870 
3871 const SCEV *
3872 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3873   Type *SrcTy = V->getType();
3874   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3875          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3876          "Cannot truncate or zero extend with non-integer arguments!");
3877   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3878     return V;  // No conversion
3879   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3880     return getTruncateExpr(V, Ty);
3881   return getZeroExtendExpr(V, Ty);
3882 }
3883 
3884 const SCEV *
3885 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3886                                          Type *Ty) {
3887   Type *SrcTy = V->getType();
3888   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3889          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3890          "Cannot truncate or zero extend with non-integer arguments!");
3891   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3892     return V;  // No conversion
3893   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3894     return getTruncateExpr(V, Ty);
3895   return getSignExtendExpr(V, Ty);
3896 }
3897 
3898 const SCEV *
3899 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3900   Type *SrcTy = V->getType();
3901   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3902          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3903          "Cannot noop or zero extend with non-integer arguments!");
3904   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3905          "getNoopOrZeroExtend cannot truncate!");
3906   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3907     return V;  // No conversion
3908   return getZeroExtendExpr(V, Ty);
3909 }
3910 
3911 const SCEV *
3912 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3913   Type *SrcTy = V->getType();
3914   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3915          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3916          "Cannot noop or sign extend with non-integer arguments!");
3917   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3918          "getNoopOrSignExtend cannot truncate!");
3919   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3920     return V;  // No conversion
3921   return getSignExtendExpr(V, Ty);
3922 }
3923 
3924 const SCEV *
3925 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3926   Type *SrcTy = V->getType();
3927   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3928          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3929          "Cannot noop or any extend with non-integer arguments!");
3930   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3931          "getNoopOrAnyExtend cannot truncate!");
3932   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3933     return V;  // No conversion
3934   return getAnyExtendExpr(V, Ty);
3935 }
3936 
3937 const SCEV *
3938 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3939   Type *SrcTy = V->getType();
3940   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3941          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3942          "Cannot truncate or noop with non-integer arguments!");
3943   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3944          "getTruncateOrNoop cannot extend!");
3945   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3946     return V;  // No conversion
3947   return getTruncateExpr(V, Ty);
3948 }
3949 
3950 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3951                                                         const SCEV *RHS) {
3952   const SCEV *PromotedLHS = LHS;
3953   const SCEV *PromotedRHS = RHS;
3954 
3955   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3956     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3957   else
3958     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3959 
3960   return getUMaxExpr(PromotedLHS, PromotedRHS);
3961 }
3962 
3963 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3964                                                         const SCEV *RHS) {
3965   const SCEV *PromotedLHS = LHS;
3966   const SCEV *PromotedRHS = RHS;
3967 
3968   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3969     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3970   else
3971     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3972 
3973   return getUMinExpr(PromotedLHS, PromotedRHS);
3974 }
3975 
3976 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3977   // A pointer operand may evaluate to a nonpointer expression, such as null.
3978   if (!V->getType()->isPointerTy())
3979     return V;
3980 
3981   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3982     return getPointerBase(Cast->getOperand());
3983   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3984     const SCEV *PtrOp = nullptr;
3985     for (const SCEV *NAryOp : NAry->operands()) {
3986       if (NAryOp->getType()->isPointerTy()) {
3987         // Cannot find the base of an expression with multiple pointer operands.
3988         if (PtrOp)
3989           return V;
3990         PtrOp = NAryOp;
3991       }
3992     }
3993     if (!PtrOp)
3994       return V;
3995     return getPointerBase(PtrOp);
3996   }
3997   return V;
3998 }
3999 
4000 /// Push users of the given Instruction onto the given Worklist.
4001 static void
4002 PushDefUseChildren(Instruction *I,
4003                    SmallVectorImpl<Instruction *> &Worklist) {
4004   // Push the def-use children onto the Worklist stack.
4005   for (User *U : I->users())
4006     Worklist.push_back(cast<Instruction>(U));
4007 }
4008 
4009 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4010   SmallVector<Instruction *, 16> Worklist;
4011   PushDefUseChildren(PN, Worklist);
4012 
4013   SmallPtrSet<Instruction *, 8> Visited;
4014   Visited.insert(PN);
4015   while (!Worklist.empty()) {
4016     Instruction *I = Worklist.pop_back_val();
4017     if (!Visited.insert(I).second)
4018       continue;
4019 
4020     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4021     if (It != ValueExprMap.end()) {
4022       const SCEV *Old = It->second;
4023 
4024       // Short-circuit the def-use traversal if the symbolic name
4025       // ceases to appear in expressions.
4026       if (Old != SymName && !hasOperand(Old, SymName))
4027         continue;
4028 
4029       // SCEVUnknown for a PHI either means that it has an unrecognized
4030       // structure, it's a PHI that's in the progress of being computed
4031       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4032       // additional loop trip count information isn't going to change anything.
4033       // In the second case, createNodeForPHI will perform the necessary
4034       // updates on its own when it gets to that point. In the third, we do
4035       // want to forget the SCEVUnknown.
4036       if (!isa<PHINode>(I) ||
4037           !isa<SCEVUnknown>(Old) ||
4038           (I != PN && Old == SymName)) {
4039         eraseValueFromMap(It->first);
4040         forgetMemoizedResults(Old);
4041       }
4042     }
4043 
4044     PushDefUseChildren(I, Worklist);
4045   }
4046 }
4047 
4048 namespace {
4049 
4050 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4051 public:
4052   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4053       : SCEVRewriteVisitor(SE), L(L) {}
4054 
4055   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4056                              ScalarEvolution &SE) {
4057     SCEVInitRewriter Rewriter(L, SE);
4058     const SCEV *Result = Rewriter.visit(S);
4059     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4060   }
4061 
4062   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4063     if (!SE.isLoopInvariant(Expr, L))
4064       Valid = false;
4065     return Expr;
4066   }
4067 
4068   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4069     // Only allow AddRecExprs for this loop.
4070     if (Expr->getLoop() == L)
4071       return Expr->getStart();
4072     Valid = false;
4073     return Expr;
4074   }
4075 
4076   bool isValid() { return Valid; }
4077 
4078 private:
4079   const Loop *L;
4080   bool Valid = true;
4081 };
4082 
4083 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4084 public:
4085   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4086       : SCEVRewriteVisitor(SE), L(L) {}
4087 
4088   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4089                              ScalarEvolution &SE) {
4090     SCEVShiftRewriter Rewriter(L, SE);
4091     const SCEV *Result = Rewriter.visit(S);
4092     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4093   }
4094 
4095   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4096     // Only allow AddRecExprs for this loop.
4097     if (!SE.isLoopInvariant(Expr, L))
4098       Valid = false;
4099     return Expr;
4100   }
4101 
4102   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4103     if (Expr->getLoop() == L && Expr->isAffine())
4104       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4105     Valid = false;
4106     return Expr;
4107   }
4108 
4109   bool isValid() { return Valid; }
4110 
4111 private:
4112   const Loop *L;
4113   bool Valid = true;
4114 };
4115 
4116 } // end anonymous namespace
4117 
4118 SCEV::NoWrapFlags
4119 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4120   if (!AR->isAffine())
4121     return SCEV::FlagAnyWrap;
4122 
4123   using OBO = OverflowingBinaryOperator;
4124 
4125   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4126 
4127   if (!AR->hasNoSignedWrap()) {
4128     ConstantRange AddRecRange = getSignedRange(AR);
4129     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4130 
4131     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4132         Instruction::Add, IncRange, OBO::NoSignedWrap);
4133     if (NSWRegion.contains(AddRecRange))
4134       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4135   }
4136 
4137   if (!AR->hasNoUnsignedWrap()) {
4138     ConstantRange AddRecRange = getUnsignedRange(AR);
4139     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4140 
4141     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4142         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4143     if (NUWRegion.contains(AddRecRange))
4144       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4145   }
4146 
4147   return Result;
4148 }
4149 
4150 namespace {
4151 
4152 /// Represents an abstract binary operation.  This may exist as a
4153 /// normal instruction or constant expression, or may have been
4154 /// derived from an expression tree.
4155 struct BinaryOp {
4156   unsigned Opcode;
4157   Value *LHS;
4158   Value *RHS;
4159   bool IsNSW = false;
4160   bool IsNUW = false;
4161 
4162   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4163   /// constant expression.
4164   Operator *Op = nullptr;
4165 
4166   explicit BinaryOp(Operator *Op)
4167       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4168         Op(Op) {
4169     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4170       IsNSW = OBO->hasNoSignedWrap();
4171       IsNUW = OBO->hasNoUnsignedWrap();
4172     }
4173   }
4174 
4175   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4176                     bool IsNUW = false)
4177       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4178 };
4179 
4180 } // end anonymous namespace
4181 
4182 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4183 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4184   auto *Op = dyn_cast<Operator>(V);
4185   if (!Op)
4186     return None;
4187 
4188   // Implementation detail: all the cleverness here should happen without
4189   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4190   // SCEV expressions when possible, and we should not break that.
4191 
4192   switch (Op->getOpcode()) {
4193   case Instruction::Add:
4194   case Instruction::Sub:
4195   case Instruction::Mul:
4196   case Instruction::UDiv:
4197   case Instruction::URem:
4198   case Instruction::And:
4199   case Instruction::Or:
4200   case Instruction::AShr:
4201   case Instruction::Shl:
4202     return BinaryOp(Op);
4203 
4204   case Instruction::Xor:
4205     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4206       // If the RHS of the xor is a signmask, then this is just an add.
4207       // Instcombine turns add of signmask into xor as a strength reduction step.
4208       if (RHSC->getValue().isSignMask())
4209         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4210     return BinaryOp(Op);
4211 
4212   case Instruction::LShr:
4213     // Turn logical shift right of a constant into a unsigned divide.
4214     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4215       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4216 
4217       // If the shift count is not less than the bitwidth, the result of
4218       // the shift is undefined. Don't try to analyze it, because the
4219       // resolution chosen here may differ from the resolution chosen in
4220       // other parts of the compiler.
4221       if (SA->getValue().ult(BitWidth)) {
4222         Constant *X =
4223             ConstantInt::get(SA->getContext(),
4224                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4225         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4226       }
4227     }
4228     return BinaryOp(Op);
4229 
4230   case Instruction::ExtractValue: {
4231     auto *EVI = cast<ExtractValueInst>(Op);
4232     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4233       break;
4234 
4235     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4236     if (!CI)
4237       break;
4238 
4239     if (auto *F = CI->getCalledFunction())
4240       switch (F->getIntrinsicID()) {
4241       case Intrinsic::sadd_with_overflow:
4242       case Intrinsic::uadd_with_overflow:
4243         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4244           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4245                           CI->getArgOperand(1));
4246 
4247         // Now that we know that all uses of the arithmetic-result component of
4248         // CI are guarded by the overflow check, we can go ahead and pretend
4249         // that the arithmetic is non-overflowing.
4250         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4251           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4252                           CI->getArgOperand(1), /* IsNSW = */ true,
4253                           /* IsNUW = */ false);
4254         else
4255           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4256                           CI->getArgOperand(1), /* IsNSW = */ false,
4257                           /* IsNUW*/ true);
4258       case Intrinsic::ssub_with_overflow:
4259       case Intrinsic::usub_with_overflow:
4260         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4261           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4262                           CI->getArgOperand(1));
4263 
4264         // The same reasoning as sadd/uadd above.
4265         if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
4266           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4267                           CI->getArgOperand(1), /* IsNSW = */ true,
4268                           /* IsNUW = */ false);
4269         else
4270           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4271                           CI->getArgOperand(1), /* IsNSW = */ false,
4272                           /* IsNUW = */ true);
4273       case Intrinsic::smul_with_overflow:
4274       case Intrinsic::umul_with_overflow:
4275         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4276                         CI->getArgOperand(1));
4277       default:
4278         break;
4279       }
4280   }
4281 
4282   default:
4283     break;
4284   }
4285 
4286   return None;
4287 }
4288 
4289 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4290 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4291 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4292 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4293 /// follows one of the following patterns:
4294 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4295 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4296 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4297 /// we return the type of the truncation operation, and indicate whether the
4298 /// truncated type should be treated as signed/unsigned by setting
4299 /// \p Signed to true/false, respectively.
4300 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4301                                bool &Signed, ScalarEvolution &SE) {
4302   // The case where Op == SymbolicPHI (that is, with no type conversions on
4303   // the way) is handled by the regular add recurrence creating logic and
4304   // would have already been triggered in createAddRecForPHI. Reaching it here
4305   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4306   // because one of the other operands of the SCEVAddExpr updating this PHI is
4307   // not invariant).
4308   //
4309   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4310   // this case predicates that allow us to prove that Op == SymbolicPHI will
4311   // be added.
4312   if (Op == SymbolicPHI)
4313     return nullptr;
4314 
4315   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4316   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4317   if (SourceBits != NewBits)
4318     return nullptr;
4319 
4320   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4321   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4322   if (!SExt && !ZExt)
4323     return nullptr;
4324   const SCEVTruncateExpr *Trunc =
4325       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4326            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4327   if (!Trunc)
4328     return nullptr;
4329   const SCEV *X = Trunc->getOperand();
4330   if (X != SymbolicPHI)
4331     return nullptr;
4332   Signed = SExt != nullptr;
4333   return Trunc->getType();
4334 }
4335 
4336 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4337   if (!PN->getType()->isIntegerTy())
4338     return nullptr;
4339   const Loop *L = LI.getLoopFor(PN->getParent());
4340   if (!L || L->getHeader() != PN->getParent())
4341     return nullptr;
4342   return L;
4343 }
4344 
4345 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4346 // computation that updates the phi follows the following pattern:
4347 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4348 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4349 // If so, try to see if it can be rewritten as an AddRecExpr under some
4350 // Predicates. If successful, return them as a pair. Also cache the results
4351 // of the analysis.
4352 //
4353 // Example usage scenario:
4354 //    Say the Rewriter is called for the following SCEV:
4355 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4356 //    where:
4357 //         %X = phi i64 (%Start, %BEValue)
4358 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4359 //    and call this function with %SymbolicPHI = %X.
4360 //
4361 //    The analysis will find that the value coming around the backedge has
4362 //    the following SCEV:
4363 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4364 //    Upon concluding that this matches the desired pattern, the function
4365 //    will return the pair {NewAddRec, SmallPredsVec} where:
4366 //         NewAddRec = {%Start,+,%Step}
4367 //         SmallPredsVec = {P1, P2, P3} as follows:
4368 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4369 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4370 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4371 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4372 //    under the predicates {P1,P2,P3}.
4373 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4374 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4375 //
4376 // TODO's:
4377 //
4378 // 1) Extend the Induction descriptor to also support inductions that involve
4379 //    casts: When needed (namely, when we are called in the context of the
4380 //    vectorizer induction analysis), a Set of cast instructions will be
4381 //    populated by this method, and provided back to isInductionPHI. This is
4382 //    needed to allow the vectorizer to properly record them to be ignored by
4383 //    the cost model and to avoid vectorizing them (otherwise these casts,
4384 //    which are redundant under the runtime overflow checks, will be
4385 //    vectorized, which can be costly).
4386 //
4387 // 2) Support additional induction/PHISCEV patterns: We also want to support
4388 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4389 //    after the induction update operation (the induction increment):
4390 //
4391 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4392 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4393 //
4394 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4395 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4396 //
4397 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4398 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4399 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4400   SmallVector<const SCEVPredicate *, 3> Predicates;
4401 
4402   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4403   // return an AddRec expression under some predicate.
4404 
4405   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4406   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4407   assert(L && "Expecting an integer loop header phi");
4408 
4409   // The loop may have multiple entrances or multiple exits; we can analyze
4410   // this phi as an addrec if it has a unique entry value and a unique
4411   // backedge value.
4412   Value *BEValueV = nullptr, *StartValueV = nullptr;
4413   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4414     Value *V = PN->getIncomingValue(i);
4415     if (L->contains(PN->getIncomingBlock(i))) {
4416       if (!BEValueV) {
4417         BEValueV = V;
4418       } else if (BEValueV != V) {
4419         BEValueV = nullptr;
4420         break;
4421       }
4422     } else if (!StartValueV) {
4423       StartValueV = V;
4424     } else if (StartValueV != V) {
4425       StartValueV = nullptr;
4426       break;
4427     }
4428   }
4429   if (!BEValueV || !StartValueV)
4430     return None;
4431 
4432   const SCEV *BEValue = getSCEV(BEValueV);
4433 
4434   // If the value coming around the backedge is an add with the symbolic
4435   // value we just inserted, possibly with casts that we can ignore under
4436   // an appropriate runtime guard, then we found a simple induction variable!
4437   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4438   if (!Add)
4439     return None;
4440 
4441   // If there is a single occurrence of the symbolic value, possibly
4442   // casted, replace it with a recurrence.
4443   unsigned FoundIndex = Add->getNumOperands();
4444   Type *TruncTy = nullptr;
4445   bool Signed;
4446   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4447     if ((TruncTy =
4448              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4449       if (FoundIndex == e) {
4450         FoundIndex = i;
4451         break;
4452       }
4453 
4454   if (FoundIndex == Add->getNumOperands())
4455     return None;
4456 
4457   // Create an add with everything but the specified operand.
4458   SmallVector<const SCEV *, 8> Ops;
4459   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4460     if (i != FoundIndex)
4461       Ops.push_back(Add->getOperand(i));
4462   const SCEV *Accum = getAddExpr(Ops);
4463 
4464   // The runtime checks will not be valid if the step amount is
4465   // varying inside the loop.
4466   if (!isLoopInvariant(Accum, L))
4467     return None;
4468 
4469   // *** Part2: Create the predicates
4470 
4471   // Analysis was successful: we have a phi-with-cast pattern for which we
4472   // can return an AddRec expression under the following predicates:
4473   //
4474   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4475   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4476   // P2: An Equal predicate that guarantees that
4477   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4478   // P3: An Equal predicate that guarantees that
4479   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4480   //
4481   // As we next prove, the above predicates guarantee that:
4482   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4483   //
4484   //
4485   // More formally, we want to prove that:
4486   //     Expr(i+1) = Start + (i+1) * Accum
4487   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4488   //
4489   // Given that:
4490   // 1) Expr(0) = Start
4491   // 2) Expr(1) = Start + Accum
4492   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4493   // 3) Induction hypothesis (step i):
4494   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4495   //
4496   // Proof:
4497   //  Expr(i+1) =
4498   //   = Start + (i+1)*Accum
4499   //   = (Start + i*Accum) + Accum
4500   //   = Expr(i) + Accum
4501   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4502   //                                                             :: from step i
4503   //
4504   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4505   //
4506   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4507   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4508   //     + Accum                                                     :: from P3
4509   //
4510   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4511   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4512   //
4513   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4514   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4515   //
4516   // By induction, the same applies to all iterations 1<=i<n:
4517   //
4518 
4519   // Create a truncated addrec for which we will add a no overflow check (P1).
4520   const SCEV *StartVal = getSCEV(StartValueV);
4521   const SCEV *PHISCEV =
4522       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4523                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4524 
4525   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4526   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4527   // will be constant.
4528   //
4529   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4530   // add P1.
4531   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4532     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4533         Signed ? SCEVWrapPredicate::IncrementNSSW
4534                : SCEVWrapPredicate::IncrementNUSW;
4535     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4536     Predicates.push_back(AddRecPred);
4537   }
4538 
4539   // Create the Equal Predicates P2,P3:
4540 
4541   // It is possible that the predicates P2 and/or P3 are computable at
4542   // compile time due to StartVal and/or Accum being constants.
4543   // If either one is, then we can check that now and escape if either P2
4544   // or P3 is false.
4545 
4546   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4547   // for each of StartVal and Accum
4548   auto GetExtendedExpr = [&](const SCEV *Expr) -> const SCEV * {
4549     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4550     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4551     const SCEV *ExtendedExpr =
4552         Signed ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4553                : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4554     return ExtendedExpr;
4555   };
4556 
4557   // Given:
4558   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4559   //               = GetExtendedExpr(Expr)
4560   // Determine whether the predicate P: Expr == ExtendedExpr
4561   // is known to be false at compile time
4562   auto PredIsKnownFalse = [&](const SCEV *Expr,
4563                               const SCEV *ExtendedExpr) -> bool {
4564     return Expr != ExtendedExpr &&
4565            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4566   };
4567 
4568   const SCEV *StartExtended = GetExtendedExpr(StartVal);
4569   if (PredIsKnownFalse(StartVal, StartExtended)) {
4570     DEBUG(dbgs() << "P2 is compile-time false\n";);
4571     return None;
4572   }
4573 
4574   const SCEV *AccumExtended = GetExtendedExpr(Accum);
4575   if (PredIsKnownFalse(Accum, AccumExtended)) {
4576     DEBUG(dbgs() << "P3 is compile-time false\n";);
4577     return None;
4578   }
4579 
4580   auto AppendPredicate = [&](const SCEV *Expr,
4581                              const SCEV *ExtendedExpr) -> void {
4582     if (Expr != ExtendedExpr &&
4583         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4584       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4585       DEBUG (dbgs() << "Added Predicate: " << *Pred);
4586       Predicates.push_back(Pred);
4587     }
4588   };
4589 
4590   AppendPredicate(StartVal, StartExtended);
4591   AppendPredicate(Accum, AccumExtended);
4592 
4593   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4594   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4595   // into NewAR if it will also add the runtime overflow checks specified in
4596   // Predicates.
4597   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4598 
4599   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4600       std::make_pair(NewAR, Predicates);
4601   // Remember the result of the analysis for this SCEV at this locayyytion.
4602   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4603   return PredRewrite;
4604 }
4605 
4606 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4607 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4608   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4609   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4610   if (!L)
4611     return None;
4612 
4613   // Check to see if we already analyzed this PHI.
4614   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4615   if (I != PredicatedSCEVRewrites.end()) {
4616     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4617         I->second;
4618     // Analysis was done before and failed to create an AddRec:
4619     if (Rewrite.first == SymbolicPHI)
4620       return None;
4621     // Analysis was done before and succeeded to create an AddRec under
4622     // a predicate:
4623     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4624     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4625     return Rewrite;
4626   }
4627 
4628   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4629     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4630 
4631   // Record in the cache that the analysis failed
4632   if (!Rewrite) {
4633     SmallVector<const SCEVPredicate *, 3> Predicates;
4634     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4635     return None;
4636   }
4637 
4638   return Rewrite;
4639 }
4640 
4641 /// A helper function for createAddRecFromPHI to handle simple cases.
4642 ///
4643 /// This function tries to find an AddRec expression for the simplest (yet most
4644 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4645 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4646 /// technique for finding the AddRec expression.
4647 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4648                                                       Value *BEValueV,
4649                                                       Value *StartValueV) {
4650   const Loop *L = LI.getLoopFor(PN->getParent());
4651   assert(L && L->getHeader() == PN->getParent());
4652   assert(BEValueV && StartValueV);
4653 
4654   auto BO = MatchBinaryOp(BEValueV, DT);
4655   if (!BO)
4656     return nullptr;
4657 
4658   if (BO->Opcode != Instruction::Add)
4659     return nullptr;
4660 
4661   const SCEV *Accum = nullptr;
4662   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4663     Accum = getSCEV(BO->RHS);
4664   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4665     Accum = getSCEV(BO->LHS);
4666 
4667   if (!Accum)
4668     return nullptr;
4669 
4670   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4671   if (BO->IsNUW)
4672     Flags = setFlags(Flags, SCEV::FlagNUW);
4673   if (BO->IsNSW)
4674     Flags = setFlags(Flags, SCEV::FlagNSW);
4675 
4676   const SCEV *StartVal = getSCEV(StartValueV);
4677   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4678 
4679   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4680 
4681   // We can add Flags to the post-inc expression only if we
4682   // know that it is *undefined behavior* for BEValueV to
4683   // overflow.
4684   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4685     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4686       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4687 
4688   return PHISCEV;
4689 }
4690 
4691 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4692   const Loop *L = LI.getLoopFor(PN->getParent());
4693   if (!L || L->getHeader() != PN->getParent())
4694     return nullptr;
4695 
4696   // The loop may have multiple entrances or multiple exits; we can analyze
4697   // this phi as an addrec if it has a unique entry value and a unique
4698   // backedge value.
4699   Value *BEValueV = nullptr, *StartValueV = nullptr;
4700   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4701     Value *V = PN->getIncomingValue(i);
4702     if (L->contains(PN->getIncomingBlock(i))) {
4703       if (!BEValueV) {
4704         BEValueV = V;
4705       } else if (BEValueV != V) {
4706         BEValueV = nullptr;
4707         break;
4708       }
4709     } else if (!StartValueV) {
4710       StartValueV = V;
4711     } else if (StartValueV != V) {
4712       StartValueV = nullptr;
4713       break;
4714     }
4715   }
4716   if (!BEValueV || !StartValueV)
4717     return nullptr;
4718 
4719   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4720          "PHI node already processed?");
4721 
4722   // First, try to find AddRec expression without creating a fictituos symbolic
4723   // value for PN.
4724   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4725     return S;
4726 
4727   // Handle PHI node value symbolically.
4728   const SCEV *SymbolicName = getUnknown(PN);
4729   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4730 
4731   // Using this symbolic name for the PHI, analyze the value coming around
4732   // the back-edge.
4733   const SCEV *BEValue = getSCEV(BEValueV);
4734 
4735   // NOTE: If BEValue is loop invariant, we know that the PHI node just
4736   // has a special value for the first iteration of the loop.
4737 
4738   // If the value coming around the backedge is an add with the symbolic
4739   // value we just inserted, then we found a simple induction variable!
4740   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4741     // If there is a single occurrence of the symbolic value, replace it
4742     // with a recurrence.
4743     unsigned FoundIndex = Add->getNumOperands();
4744     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4745       if (Add->getOperand(i) == SymbolicName)
4746         if (FoundIndex == e) {
4747           FoundIndex = i;
4748           break;
4749         }
4750 
4751     if (FoundIndex != Add->getNumOperands()) {
4752       // Create an add with everything but the specified operand.
4753       SmallVector<const SCEV *, 8> Ops;
4754       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4755         if (i != FoundIndex)
4756           Ops.push_back(Add->getOperand(i));
4757       const SCEV *Accum = getAddExpr(Ops);
4758 
4759       // This is not a valid addrec if the step amount is varying each
4760       // loop iteration, but is not itself an addrec in this loop.
4761       if (isLoopInvariant(Accum, L) ||
4762           (isa<SCEVAddRecExpr>(Accum) &&
4763            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4764         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4765 
4766         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4767           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4768             if (BO->IsNUW)
4769               Flags = setFlags(Flags, SCEV::FlagNUW);
4770             if (BO->IsNSW)
4771               Flags = setFlags(Flags, SCEV::FlagNSW);
4772           }
4773         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4774           // If the increment is an inbounds GEP, then we know the address
4775           // space cannot be wrapped around. We cannot make any guarantee
4776           // about signed or unsigned overflow because pointers are
4777           // unsigned but we may have a negative index from the base
4778           // pointer. We can guarantee that no unsigned wrap occurs if the
4779           // indices form a positive value.
4780           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4781             Flags = setFlags(Flags, SCEV::FlagNW);
4782 
4783             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4784             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4785               Flags = setFlags(Flags, SCEV::FlagNUW);
4786           }
4787 
4788           // We cannot transfer nuw and nsw flags from subtraction
4789           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4790           // for instance.
4791         }
4792 
4793         const SCEV *StartVal = getSCEV(StartValueV);
4794         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4795 
4796         // Okay, for the entire analysis of this edge we assumed the PHI
4797         // to be symbolic.  We now need to go back and purge all of the
4798         // entries for the scalars that use the symbolic expression.
4799         forgetSymbolicName(PN, SymbolicName);
4800         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4801 
4802         // We can add Flags to the post-inc expression only if we
4803         // know that it is *undefined behavior* for BEValueV to
4804         // overflow.
4805         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4806           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4807             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4808 
4809         return PHISCEV;
4810       }
4811     }
4812   } else {
4813     // Otherwise, this could be a loop like this:
4814     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4815     // In this case, j = {1,+,1}  and BEValue is j.
4816     // Because the other in-value of i (0) fits the evolution of BEValue
4817     // i really is an addrec evolution.
4818     //
4819     // We can generalize this saying that i is the shifted value of BEValue
4820     // by one iteration:
4821     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4822     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4823     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4824     if (Shifted != getCouldNotCompute() &&
4825         Start != getCouldNotCompute()) {
4826       const SCEV *StartVal = getSCEV(StartValueV);
4827       if (Start == StartVal) {
4828         // Okay, for the entire analysis of this edge we assumed the PHI
4829         // to be symbolic.  We now need to go back and purge all of the
4830         // entries for the scalars that use the symbolic expression.
4831         forgetSymbolicName(PN, SymbolicName);
4832         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4833         return Shifted;
4834       }
4835     }
4836   }
4837 
4838   // Remove the temporary PHI node SCEV that has been inserted while intending
4839   // to create an AddRecExpr for this PHI node. We can not keep this temporary
4840   // as it will prevent later (possibly simpler) SCEV expressions to be added
4841   // to the ValueExprMap.
4842   eraseValueFromMap(PN);
4843 
4844   return nullptr;
4845 }
4846 
4847 // Checks if the SCEV S is available at BB.  S is considered available at BB
4848 // if S can be materialized at BB without introducing a fault.
4849 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4850                                BasicBlock *BB) {
4851   struct CheckAvailable {
4852     bool TraversalDone = false;
4853     bool Available = true;
4854 
4855     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4856     BasicBlock *BB = nullptr;
4857     DominatorTree &DT;
4858 
4859     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4860       : L(L), BB(BB), DT(DT) {}
4861 
4862     bool setUnavailable() {
4863       TraversalDone = true;
4864       Available = false;
4865       return false;
4866     }
4867 
4868     bool follow(const SCEV *S) {
4869       switch (S->getSCEVType()) {
4870       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4871       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4872         // These expressions are available if their operand(s) is/are.
4873         return true;
4874 
4875       case scAddRecExpr: {
4876         // We allow add recurrences that are on the loop BB is in, or some
4877         // outer loop.  This guarantees availability because the value of the
4878         // add recurrence at BB is simply the "current" value of the induction
4879         // variable.  We can relax this in the future; for instance an add
4880         // recurrence on a sibling dominating loop is also available at BB.
4881         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4882         if (L && (ARLoop == L || ARLoop->contains(L)))
4883           return true;
4884 
4885         return setUnavailable();
4886       }
4887 
4888       case scUnknown: {
4889         // For SCEVUnknown, we check for simple dominance.
4890         const auto *SU = cast<SCEVUnknown>(S);
4891         Value *V = SU->getValue();
4892 
4893         if (isa<Argument>(V))
4894           return false;
4895 
4896         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4897           return false;
4898 
4899         return setUnavailable();
4900       }
4901 
4902       case scUDivExpr:
4903       case scCouldNotCompute:
4904         // We do not try to smart about these at all.
4905         return setUnavailable();
4906       }
4907       llvm_unreachable("switch should be fully covered!");
4908     }
4909 
4910     bool isDone() { return TraversalDone; }
4911   };
4912 
4913   CheckAvailable CA(L, BB, DT);
4914   SCEVTraversal<CheckAvailable> ST(CA);
4915 
4916   ST.visitAll(S);
4917   return CA.Available;
4918 }
4919 
4920 // Try to match a control flow sequence that branches out at BI and merges back
4921 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4922 // match.
4923 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4924                           Value *&C, Value *&LHS, Value *&RHS) {
4925   C = BI->getCondition();
4926 
4927   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4928   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4929 
4930   if (!LeftEdge.isSingleEdge())
4931     return false;
4932 
4933   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4934 
4935   Use &LeftUse = Merge->getOperandUse(0);
4936   Use &RightUse = Merge->getOperandUse(1);
4937 
4938   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4939     LHS = LeftUse;
4940     RHS = RightUse;
4941     return true;
4942   }
4943 
4944   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4945     LHS = RightUse;
4946     RHS = LeftUse;
4947     return true;
4948   }
4949 
4950   return false;
4951 }
4952 
4953 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4954   auto IsReachable =
4955       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
4956   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
4957     const Loop *L = LI.getLoopFor(PN->getParent());
4958 
4959     // We don't want to break LCSSA, even in a SCEV expression tree.
4960     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4961       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4962         return nullptr;
4963 
4964     // Try to match
4965     //
4966     //  br %cond, label %left, label %right
4967     // left:
4968     //  br label %merge
4969     // right:
4970     //  br label %merge
4971     // merge:
4972     //  V = phi [ %x, %left ], [ %y, %right ]
4973     //
4974     // as "select %cond, %x, %y"
4975 
4976     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4977     assert(IDom && "At least the entry block should dominate PN");
4978 
4979     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4980     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4981 
4982     if (BI && BI->isConditional() &&
4983         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4984         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4985         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4986       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4987   }
4988 
4989   return nullptr;
4990 }
4991 
4992 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4993   if (const SCEV *S = createAddRecFromPHI(PN))
4994     return S;
4995 
4996   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4997     return S;
4998 
4999   // If the PHI has a single incoming value, follow that value, unless the
5000   // PHI's incoming blocks are in a different loop, in which case doing so
5001   // risks breaking LCSSA form. Instcombine would normally zap these, but
5002   // it doesn't have DominatorTree information, so it may miss cases.
5003   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5004     if (LI.replacementPreservesLCSSAForm(PN, V))
5005       return getSCEV(V);
5006 
5007   // If it's not a loop phi, we can't handle it yet.
5008   return getUnknown(PN);
5009 }
5010 
5011 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5012                                                       Value *Cond,
5013                                                       Value *TrueVal,
5014                                                       Value *FalseVal) {
5015   // Handle "constant" branch or select. This can occur for instance when a
5016   // loop pass transforms an inner loop and moves on to process the outer loop.
5017   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5018     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5019 
5020   // Try to match some simple smax or umax patterns.
5021   auto *ICI = dyn_cast<ICmpInst>(Cond);
5022   if (!ICI)
5023     return getUnknown(I);
5024 
5025   Value *LHS = ICI->getOperand(0);
5026   Value *RHS = ICI->getOperand(1);
5027 
5028   switch (ICI->getPredicate()) {
5029   case ICmpInst::ICMP_SLT:
5030   case ICmpInst::ICMP_SLE:
5031     std::swap(LHS, RHS);
5032     LLVM_FALLTHROUGH;
5033   case ICmpInst::ICMP_SGT:
5034   case ICmpInst::ICMP_SGE:
5035     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5036     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5037     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5038       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5039       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5040       const SCEV *LA = getSCEV(TrueVal);
5041       const SCEV *RA = getSCEV(FalseVal);
5042       const SCEV *LDiff = getMinusSCEV(LA, LS);
5043       const SCEV *RDiff = getMinusSCEV(RA, RS);
5044       if (LDiff == RDiff)
5045         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5046       LDiff = getMinusSCEV(LA, RS);
5047       RDiff = getMinusSCEV(RA, LS);
5048       if (LDiff == RDiff)
5049         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5050     }
5051     break;
5052   case ICmpInst::ICMP_ULT:
5053   case ICmpInst::ICMP_ULE:
5054     std::swap(LHS, RHS);
5055     LLVM_FALLTHROUGH;
5056   case ICmpInst::ICMP_UGT:
5057   case ICmpInst::ICMP_UGE:
5058     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5059     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5060     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5061       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5062       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5063       const SCEV *LA = getSCEV(TrueVal);
5064       const SCEV *RA = getSCEV(FalseVal);
5065       const SCEV *LDiff = getMinusSCEV(LA, LS);
5066       const SCEV *RDiff = getMinusSCEV(RA, RS);
5067       if (LDiff == RDiff)
5068         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5069       LDiff = getMinusSCEV(LA, RS);
5070       RDiff = getMinusSCEV(RA, LS);
5071       if (LDiff == RDiff)
5072         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5073     }
5074     break;
5075   case ICmpInst::ICMP_NE:
5076     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5077     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5078         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5079       const SCEV *One = getOne(I->getType());
5080       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5081       const SCEV *LA = getSCEV(TrueVal);
5082       const SCEV *RA = getSCEV(FalseVal);
5083       const SCEV *LDiff = getMinusSCEV(LA, LS);
5084       const SCEV *RDiff = getMinusSCEV(RA, One);
5085       if (LDiff == RDiff)
5086         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5087     }
5088     break;
5089   case ICmpInst::ICMP_EQ:
5090     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5091     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5092         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5093       const SCEV *One = getOne(I->getType());
5094       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5095       const SCEV *LA = getSCEV(TrueVal);
5096       const SCEV *RA = getSCEV(FalseVal);
5097       const SCEV *LDiff = getMinusSCEV(LA, One);
5098       const SCEV *RDiff = getMinusSCEV(RA, LS);
5099       if (LDiff == RDiff)
5100         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5101     }
5102     break;
5103   default:
5104     break;
5105   }
5106 
5107   return getUnknown(I);
5108 }
5109 
5110 /// Expand GEP instructions into add and multiply operations. This allows them
5111 /// to be analyzed by regular SCEV code.
5112 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5113   // Don't attempt to analyze GEPs over unsized objects.
5114   if (!GEP->getSourceElementType()->isSized())
5115     return getUnknown(GEP);
5116 
5117   SmallVector<const SCEV *, 4> IndexExprs;
5118   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5119     IndexExprs.push_back(getSCEV(*Index));
5120   return getGEPExpr(GEP, IndexExprs);
5121 }
5122 
5123 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5124   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5125     return C->getAPInt().countTrailingZeros();
5126 
5127   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5128     return std::min(GetMinTrailingZeros(T->getOperand()),
5129                     (uint32_t)getTypeSizeInBits(T->getType()));
5130 
5131   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5132     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5133     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5134                ? getTypeSizeInBits(E->getType())
5135                : OpRes;
5136   }
5137 
5138   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5139     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5140     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5141                ? getTypeSizeInBits(E->getType())
5142                : OpRes;
5143   }
5144 
5145   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5146     // The result is the min of all operands results.
5147     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5148     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5149       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5150     return MinOpRes;
5151   }
5152 
5153   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5154     // The result is the sum of all operands results.
5155     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5156     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5157     for (unsigned i = 1, e = M->getNumOperands();
5158          SumOpRes != BitWidth && i != e; ++i)
5159       SumOpRes =
5160           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5161     return SumOpRes;
5162   }
5163 
5164   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5165     // The result is the min of all operands results.
5166     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5167     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5168       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5169     return MinOpRes;
5170   }
5171 
5172   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5173     // The result is the min of all operands results.
5174     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5175     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5176       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5177     return MinOpRes;
5178   }
5179 
5180   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5181     // The result is the min of all operands results.
5182     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5183     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5184       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5185     return MinOpRes;
5186   }
5187 
5188   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5189     // For a SCEVUnknown, ask ValueTracking.
5190     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5191     return Known.countMinTrailingZeros();
5192   }
5193 
5194   // SCEVUDivExpr
5195   return 0;
5196 }
5197 
5198 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5199   auto I = MinTrailingZerosCache.find(S);
5200   if (I != MinTrailingZerosCache.end())
5201     return I->second;
5202 
5203   uint32_t Result = GetMinTrailingZerosImpl(S);
5204   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5205   assert(InsertPair.second && "Should insert a new key");
5206   return InsertPair.first->second;
5207 }
5208 
5209 /// Helper method to assign a range to V from metadata present in the IR.
5210 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5211   if (Instruction *I = dyn_cast<Instruction>(V))
5212     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5213       return getConstantRangeFromMetadata(*MD);
5214 
5215   return None;
5216 }
5217 
5218 /// Determine the range for a particular SCEV.  If SignHint is
5219 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5220 /// with a "cleaner" unsigned (resp. signed) representation.
5221 const ConstantRange &
5222 ScalarEvolution::getRangeRef(const SCEV *S,
5223                              ScalarEvolution::RangeSignHint SignHint) {
5224   DenseMap<const SCEV *, ConstantRange> &Cache =
5225       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5226                                                        : SignedRanges;
5227 
5228   // See if we've computed this range already.
5229   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5230   if (I != Cache.end())
5231     return I->second;
5232 
5233   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5234     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5235 
5236   unsigned BitWidth = getTypeSizeInBits(S->getType());
5237   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5238 
5239   // If the value has known zeros, the maximum value will have those known zeros
5240   // as well.
5241   uint32_t TZ = GetMinTrailingZeros(S);
5242   if (TZ != 0) {
5243     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5244       ConservativeResult =
5245           ConstantRange(APInt::getMinValue(BitWidth),
5246                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5247     else
5248       ConservativeResult = ConstantRange(
5249           APInt::getSignedMinValue(BitWidth),
5250           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5251   }
5252 
5253   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5254     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5255     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5256       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5257     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5258   }
5259 
5260   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5261     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5262     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5263       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5264     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5265   }
5266 
5267   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5268     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5269     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5270       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5271     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5272   }
5273 
5274   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5275     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5276     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5277       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5278     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5279   }
5280 
5281   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5282     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5283     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5284     return setRange(UDiv, SignHint,
5285                     ConservativeResult.intersectWith(X.udiv(Y)));
5286   }
5287 
5288   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5289     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5290     return setRange(ZExt, SignHint,
5291                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5292   }
5293 
5294   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5295     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5296     return setRange(SExt, SignHint,
5297                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5298   }
5299 
5300   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5301     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5302     return setRange(Trunc, SignHint,
5303                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
5304   }
5305 
5306   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5307     // If there's no unsigned wrap, the value will never be less than its
5308     // initial value.
5309     if (AddRec->hasNoUnsignedWrap())
5310       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5311         if (!C->getValue()->isZero())
5312           ConservativeResult = ConservativeResult.intersectWith(
5313               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5314 
5315     // If there's no signed wrap, and all the operands have the same sign or
5316     // zero, the value won't ever change sign.
5317     if (AddRec->hasNoSignedWrap()) {
5318       bool AllNonNeg = true;
5319       bool AllNonPos = true;
5320       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5321         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5322         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5323       }
5324       if (AllNonNeg)
5325         ConservativeResult = ConservativeResult.intersectWith(
5326           ConstantRange(APInt(BitWidth, 0),
5327                         APInt::getSignedMinValue(BitWidth)));
5328       else if (AllNonPos)
5329         ConservativeResult = ConservativeResult.intersectWith(
5330           ConstantRange(APInt::getSignedMinValue(BitWidth),
5331                         APInt(BitWidth, 1)));
5332     }
5333 
5334     // TODO: non-affine addrec
5335     if (AddRec->isAffine()) {
5336       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5337       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5338           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5339         auto RangeFromAffine = getRangeForAffineAR(
5340             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5341             BitWidth);
5342         if (!RangeFromAffine.isFullSet())
5343           ConservativeResult =
5344               ConservativeResult.intersectWith(RangeFromAffine);
5345 
5346         auto RangeFromFactoring = getRangeViaFactoring(
5347             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5348             BitWidth);
5349         if (!RangeFromFactoring.isFullSet())
5350           ConservativeResult =
5351               ConservativeResult.intersectWith(RangeFromFactoring);
5352       }
5353     }
5354 
5355     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5356   }
5357 
5358   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5359     // Check if the IR explicitly contains !range metadata.
5360     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5361     if (MDRange.hasValue())
5362       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5363 
5364     // Split here to avoid paying the compile-time cost of calling both
5365     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5366     // if needed.
5367     const DataLayout &DL = getDataLayout();
5368     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5369       // For a SCEVUnknown, ask ValueTracking.
5370       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5371       if (Known.One != ~Known.Zero + 1)
5372         ConservativeResult =
5373             ConservativeResult.intersectWith(ConstantRange(Known.One,
5374                                                            ~Known.Zero + 1));
5375     } else {
5376       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5377              "generalize as needed!");
5378       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5379       if (NS > 1)
5380         ConservativeResult = ConservativeResult.intersectWith(
5381             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5382                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5383     }
5384 
5385     return setRange(U, SignHint, std::move(ConservativeResult));
5386   }
5387 
5388   return setRange(S, SignHint, std::move(ConservativeResult));
5389 }
5390 
5391 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5392 // values that the expression can take. Initially, the expression has a value
5393 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5394 // argument defines if we treat Step as signed or unsigned.
5395 static ConstantRange getRangeForAffineARHelper(APInt Step,
5396                                                const ConstantRange &StartRange,
5397                                                const APInt &MaxBECount,
5398                                                unsigned BitWidth, bool Signed) {
5399   // If either Step or MaxBECount is 0, then the expression won't change, and we
5400   // just need to return the initial range.
5401   if (Step == 0 || MaxBECount == 0)
5402     return StartRange;
5403 
5404   // If we don't know anything about the initial value (i.e. StartRange is
5405   // FullRange), then we don't know anything about the final range either.
5406   // Return FullRange.
5407   if (StartRange.isFullSet())
5408     return ConstantRange(BitWidth, /* isFullSet = */ true);
5409 
5410   // If Step is signed and negative, then we use its absolute value, but we also
5411   // note that we're moving in the opposite direction.
5412   bool Descending = Signed && Step.isNegative();
5413 
5414   if (Signed)
5415     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5416     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5417     // This equations hold true due to the well-defined wrap-around behavior of
5418     // APInt.
5419     Step = Step.abs();
5420 
5421   // Check if Offset is more than full span of BitWidth. If it is, the
5422   // expression is guaranteed to overflow.
5423   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5424     return ConstantRange(BitWidth, /* isFullSet = */ true);
5425 
5426   // Offset is by how much the expression can change. Checks above guarantee no
5427   // overflow here.
5428   APInt Offset = Step * MaxBECount;
5429 
5430   // Minimum value of the final range will match the minimal value of StartRange
5431   // if the expression is increasing and will be decreased by Offset otherwise.
5432   // Maximum value of the final range will match the maximal value of StartRange
5433   // if the expression is decreasing and will be increased by Offset otherwise.
5434   APInt StartLower = StartRange.getLower();
5435   APInt StartUpper = StartRange.getUpper() - 1;
5436   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5437                                    : (StartUpper + std::move(Offset));
5438 
5439   // It's possible that the new minimum/maximum value will fall into the initial
5440   // range (due to wrap around). This means that the expression can take any
5441   // value in this bitwidth, and we have to return full range.
5442   if (StartRange.contains(MovedBoundary))
5443     return ConstantRange(BitWidth, /* isFullSet = */ true);
5444 
5445   APInt NewLower =
5446       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5447   APInt NewUpper =
5448       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5449   NewUpper += 1;
5450 
5451   // If we end up with full range, return a proper full range.
5452   if (NewLower == NewUpper)
5453     return ConstantRange(BitWidth, /* isFullSet = */ true);
5454 
5455   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5456   return ConstantRange(std::move(NewLower), std::move(NewUpper));
5457 }
5458 
5459 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5460                                                    const SCEV *Step,
5461                                                    const SCEV *MaxBECount,
5462                                                    unsigned BitWidth) {
5463   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5464          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5465          "Precondition!");
5466 
5467   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5468   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5469 
5470   // First, consider step signed.
5471   ConstantRange StartSRange = getSignedRange(Start);
5472   ConstantRange StepSRange = getSignedRange(Step);
5473 
5474   // If Step can be both positive and negative, we need to find ranges for the
5475   // maximum absolute step values in both directions and union them.
5476   ConstantRange SR =
5477       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5478                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5479   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5480                                               StartSRange, MaxBECountValue,
5481                                               BitWidth, /* Signed = */ true));
5482 
5483   // Next, consider step unsigned.
5484   ConstantRange UR = getRangeForAffineARHelper(
5485       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5486       MaxBECountValue, BitWidth, /* Signed = */ false);
5487 
5488   // Finally, intersect signed and unsigned ranges.
5489   return SR.intersectWith(UR);
5490 }
5491 
5492 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5493                                                     const SCEV *Step,
5494                                                     const SCEV *MaxBECount,
5495                                                     unsigned BitWidth) {
5496   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5497   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5498 
5499   struct SelectPattern {
5500     Value *Condition = nullptr;
5501     APInt TrueValue;
5502     APInt FalseValue;
5503 
5504     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5505                            const SCEV *S) {
5506       Optional<unsigned> CastOp;
5507       APInt Offset(BitWidth, 0);
5508 
5509       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5510              "Should be!");
5511 
5512       // Peel off a constant offset:
5513       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5514         // In the future we could consider being smarter here and handle
5515         // {Start+Step,+,Step} too.
5516         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5517           return;
5518 
5519         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5520         S = SA->getOperand(1);
5521       }
5522 
5523       // Peel off a cast operation
5524       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5525         CastOp = SCast->getSCEVType();
5526         S = SCast->getOperand();
5527       }
5528 
5529       using namespace llvm::PatternMatch;
5530 
5531       auto *SU = dyn_cast<SCEVUnknown>(S);
5532       const APInt *TrueVal, *FalseVal;
5533       if (!SU ||
5534           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5535                                           m_APInt(FalseVal)))) {
5536         Condition = nullptr;
5537         return;
5538       }
5539 
5540       TrueValue = *TrueVal;
5541       FalseValue = *FalseVal;
5542 
5543       // Re-apply the cast we peeled off earlier
5544       if (CastOp.hasValue())
5545         switch (*CastOp) {
5546         default:
5547           llvm_unreachable("Unknown SCEV cast type!");
5548 
5549         case scTruncate:
5550           TrueValue = TrueValue.trunc(BitWidth);
5551           FalseValue = FalseValue.trunc(BitWidth);
5552           break;
5553         case scZeroExtend:
5554           TrueValue = TrueValue.zext(BitWidth);
5555           FalseValue = FalseValue.zext(BitWidth);
5556           break;
5557         case scSignExtend:
5558           TrueValue = TrueValue.sext(BitWidth);
5559           FalseValue = FalseValue.sext(BitWidth);
5560           break;
5561         }
5562 
5563       // Re-apply the constant offset we peeled off earlier
5564       TrueValue += Offset;
5565       FalseValue += Offset;
5566     }
5567 
5568     bool isRecognized() { return Condition != nullptr; }
5569   };
5570 
5571   SelectPattern StartPattern(*this, BitWidth, Start);
5572   if (!StartPattern.isRecognized())
5573     return ConstantRange(BitWidth, /* isFullSet = */ true);
5574 
5575   SelectPattern StepPattern(*this, BitWidth, Step);
5576   if (!StepPattern.isRecognized())
5577     return ConstantRange(BitWidth, /* isFullSet = */ true);
5578 
5579   if (StartPattern.Condition != StepPattern.Condition) {
5580     // We don't handle this case today; but we could, by considering four
5581     // possibilities below instead of two. I'm not sure if there are cases where
5582     // that will help over what getRange already does, though.
5583     return ConstantRange(BitWidth, /* isFullSet = */ true);
5584   }
5585 
5586   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5587   // construct arbitrary general SCEV expressions here.  This function is called
5588   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5589   // say) can end up caching a suboptimal value.
5590 
5591   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5592   // C2352 and C2512 (otherwise it isn't needed).
5593 
5594   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5595   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5596   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5597   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5598 
5599   ConstantRange TrueRange =
5600       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5601   ConstantRange FalseRange =
5602       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5603 
5604   return TrueRange.unionWith(FalseRange);
5605 }
5606 
5607 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5608   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5609   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5610 
5611   // Return early if there are no flags to propagate to the SCEV.
5612   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5613   if (BinOp->hasNoUnsignedWrap())
5614     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5615   if (BinOp->hasNoSignedWrap())
5616     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5617   if (Flags == SCEV::FlagAnyWrap)
5618     return SCEV::FlagAnyWrap;
5619 
5620   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5621 }
5622 
5623 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5624   // Here we check that I is in the header of the innermost loop containing I,
5625   // since we only deal with instructions in the loop header. The actual loop we
5626   // need to check later will come from an add recurrence, but getting that
5627   // requires computing the SCEV of the operands, which can be expensive. This
5628   // check we can do cheaply to rule out some cases early.
5629   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5630   if (InnermostContainingLoop == nullptr ||
5631       InnermostContainingLoop->getHeader() != I->getParent())
5632     return false;
5633 
5634   // Only proceed if we can prove that I does not yield poison.
5635   if (!programUndefinedIfFullPoison(I))
5636     return false;
5637 
5638   // At this point we know that if I is executed, then it does not wrap
5639   // according to at least one of NSW or NUW. If I is not executed, then we do
5640   // not know if the calculation that I represents would wrap. Multiple
5641   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5642   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5643   // derived from other instructions that map to the same SCEV. We cannot make
5644   // that guarantee for cases where I is not executed. So we need to find the
5645   // loop that I is considered in relation to and prove that I is executed for
5646   // every iteration of that loop. That implies that the value that I
5647   // calculates does not wrap anywhere in the loop, so then we can apply the
5648   // flags to the SCEV.
5649   //
5650   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5651   // from different loops, so that we know which loop to prove that I is
5652   // executed in.
5653   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5654     // I could be an extractvalue from a call to an overflow intrinsic.
5655     // TODO: We can do better here in some cases.
5656     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5657       return false;
5658     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5659     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5660       bool AllOtherOpsLoopInvariant = true;
5661       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5662            ++OtherOpIndex) {
5663         if (OtherOpIndex != OpIndex) {
5664           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5665           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5666             AllOtherOpsLoopInvariant = false;
5667             break;
5668           }
5669         }
5670       }
5671       if (AllOtherOpsLoopInvariant &&
5672           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5673         return true;
5674     }
5675   }
5676   return false;
5677 }
5678 
5679 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5680   // If we know that \c I can never be poison period, then that's enough.
5681   if (isSCEVExprNeverPoison(I))
5682     return true;
5683 
5684   // For an add recurrence specifically, we assume that infinite loops without
5685   // side effects are undefined behavior, and then reason as follows:
5686   //
5687   // If the add recurrence is poison in any iteration, it is poison on all
5688   // future iterations (since incrementing poison yields poison). If the result
5689   // of the add recurrence is fed into the loop latch condition and the loop
5690   // does not contain any throws or exiting blocks other than the latch, we now
5691   // have the ability to "choose" whether the backedge is taken or not (by
5692   // choosing a sufficiently evil value for the poison feeding into the branch)
5693   // for every iteration including and after the one in which \p I first became
5694   // poison.  There are two possibilities (let's call the iteration in which \p
5695   // I first became poison as K):
5696   //
5697   //  1. In the set of iterations including and after K, the loop body executes
5698   //     no side effects.  In this case executing the backege an infinte number
5699   //     of times will yield undefined behavior.
5700   //
5701   //  2. In the set of iterations including and after K, the loop body executes
5702   //     at least one side effect.  In this case, that specific instance of side
5703   //     effect is control dependent on poison, which also yields undefined
5704   //     behavior.
5705 
5706   auto *ExitingBB = L->getExitingBlock();
5707   auto *LatchBB = L->getLoopLatch();
5708   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5709     return false;
5710 
5711   SmallPtrSet<const Instruction *, 16> Pushed;
5712   SmallVector<const Instruction *, 8> PoisonStack;
5713 
5714   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
5715   // things that are known to be fully poison under that assumption go on the
5716   // PoisonStack.
5717   Pushed.insert(I);
5718   PoisonStack.push_back(I);
5719 
5720   bool LatchControlDependentOnPoison = false;
5721   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5722     const Instruction *Poison = PoisonStack.pop_back_val();
5723 
5724     for (auto *PoisonUser : Poison->users()) {
5725       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
5726         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5727           PoisonStack.push_back(cast<Instruction>(PoisonUser));
5728       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5729         assert(BI->isConditional() && "Only possibility!");
5730         if (BI->getParent() == LatchBB) {
5731           LatchControlDependentOnPoison = true;
5732           break;
5733         }
5734       }
5735     }
5736   }
5737 
5738   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5739 }
5740 
5741 ScalarEvolution::LoopProperties
5742 ScalarEvolution::getLoopProperties(const Loop *L) {
5743   using LoopProperties = ScalarEvolution::LoopProperties;
5744 
5745   auto Itr = LoopPropertiesCache.find(L);
5746   if (Itr == LoopPropertiesCache.end()) {
5747     auto HasSideEffects = [](Instruction *I) {
5748       if (auto *SI = dyn_cast<StoreInst>(I))
5749         return !SI->isSimple();
5750 
5751       return I->mayHaveSideEffects();
5752     };
5753 
5754     LoopProperties LP = {/* HasNoAbnormalExits */ true,
5755                          /*HasNoSideEffects*/ true};
5756 
5757     for (auto *BB : L->getBlocks())
5758       for (auto &I : *BB) {
5759         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5760           LP.HasNoAbnormalExits = false;
5761         if (HasSideEffects(&I))
5762           LP.HasNoSideEffects = false;
5763         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5764           break; // We're already as pessimistic as we can get.
5765       }
5766 
5767     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5768     assert(InsertPair.second && "We just checked!");
5769     Itr = InsertPair.first;
5770   }
5771 
5772   return Itr->second;
5773 }
5774 
5775 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5776   if (!isSCEVable(V->getType()))
5777     return getUnknown(V);
5778 
5779   if (Instruction *I = dyn_cast<Instruction>(V)) {
5780     // Don't attempt to analyze instructions in blocks that aren't
5781     // reachable. Such instructions don't matter, and they aren't required
5782     // to obey basic rules for definitions dominating uses which this
5783     // analysis depends on.
5784     if (!DT.isReachableFromEntry(I->getParent()))
5785       return getUnknown(V);
5786   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5787     return getConstant(CI);
5788   else if (isa<ConstantPointerNull>(V))
5789     return getZero(V->getType());
5790   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5791     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5792   else if (!isa<ConstantExpr>(V))
5793     return getUnknown(V);
5794 
5795   Operator *U = cast<Operator>(V);
5796   if (auto BO = MatchBinaryOp(U, DT)) {
5797     switch (BO->Opcode) {
5798     case Instruction::Add: {
5799       // The simple thing to do would be to just call getSCEV on both operands
5800       // and call getAddExpr with the result. However if we're looking at a
5801       // bunch of things all added together, this can be quite inefficient,
5802       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5803       // Instead, gather up all the operands and make a single getAddExpr call.
5804       // LLVM IR canonical form means we need only traverse the left operands.
5805       SmallVector<const SCEV *, 4> AddOps;
5806       do {
5807         if (BO->Op) {
5808           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5809             AddOps.push_back(OpSCEV);
5810             break;
5811           }
5812 
5813           // If a NUW or NSW flag can be applied to the SCEV for this
5814           // addition, then compute the SCEV for this addition by itself
5815           // with a separate call to getAddExpr. We need to do that
5816           // instead of pushing the operands of the addition onto AddOps,
5817           // since the flags are only known to apply to this particular
5818           // addition - they may not apply to other additions that can be
5819           // formed with operands from AddOps.
5820           const SCEV *RHS = getSCEV(BO->RHS);
5821           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5822           if (Flags != SCEV::FlagAnyWrap) {
5823             const SCEV *LHS = getSCEV(BO->LHS);
5824             if (BO->Opcode == Instruction::Sub)
5825               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5826             else
5827               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5828             break;
5829           }
5830         }
5831 
5832         if (BO->Opcode == Instruction::Sub)
5833           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5834         else
5835           AddOps.push_back(getSCEV(BO->RHS));
5836 
5837         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5838         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5839                        NewBO->Opcode != Instruction::Sub)) {
5840           AddOps.push_back(getSCEV(BO->LHS));
5841           break;
5842         }
5843         BO = NewBO;
5844       } while (true);
5845 
5846       return getAddExpr(AddOps);
5847     }
5848 
5849     case Instruction::Mul: {
5850       SmallVector<const SCEV *, 4> MulOps;
5851       do {
5852         if (BO->Op) {
5853           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5854             MulOps.push_back(OpSCEV);
5855             break;
5856           }
5857 
5858           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5859           if (Flags != SCEV::FlagAnyWrap) {
5860             MulOps.push_back(
5861                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5862             break;
5863           }
5864         }
5865 
5866         MulOps.push_back(getSCEV(BO->RHS));
5867         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5868         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5869           MulOps.push_back(getSCEV(BO->LHS));
5870           break;
5871         }
5872         BO = NewBO;
5873       } while (true);
5874 
5875       return getMulExpr(MulOps);
5876     }
5877     case Instruction::UDiv:
5878       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5879     case Instruction::URem:
5880       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5881     case Instruction::Sub: {
5882       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5883       if (BO->Op)
5884         Flags = getNoWrapFlagsFromUB(BO->Op);
5885       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5886     }
5887     case Instruction::And:
5888       // For an expression like x&255 that merely masks off the high bits,
5889       // use zext(trunc(x)) as the SCEV expression.
5890       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5891         if (CI->isZero())
5892           return getSCEV(BO->RHS);
5893         if (CI->isMinusOne())
5894           return getSCEV(BO->LHS);
5895         const APInt &A = CI->getValue();
5896 
5897         // Instcombine's ShrinkDemandedConstant may strip bits out of
5898         // constants, obscuring what would otherwise be a low-bits mask.
5899         // Use computeKnownBits to compute what ShrinkDemandedConstant
5900         // knew about to reconstruct a low-bits mask value.
5901         unsigned LZ = A.countLeadingZeros();
5902         unsigned TZ = A.countTrailingZeros();
5903         unsigned BitWidth = A.getBitWidth();
5904         KnownBits Known(BitWidth);
5905         computeKnownBits(BO->LHS, Known, getDataLayout(),
5906                          0, &AC, nullptr, &DT);
5907 
5908         APInt EffectiveMask =
5909             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5910         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
5911           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
5912           const SCEV *LHS = getSCEV(BO->LHS);
5913           const SCEV *ShiftedLHS = nullptr;
5914           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
5915             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
5916               // For an expression like (x * 8) & 8, simplify the multiply.
5917               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
5918               unsigned GCD = std::min(MulZeros, TZ);
5919               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
5920               SmallVector<const SCEV*, 4> MulOps;
5921               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
5922               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
5923               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
5924               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
5925             }
5926           }
5927           if (!ShiftedLHS)
5928             ShiftedLHS = getUDivExpr(LHS, MulCount);
5929           return getMulExpr(
5930               getZeroExtendExpr(
5931                   getTruncateExpr(ShiftedLHS,
5932                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5933                   BO->LHS->getType()),
5934               MulCount);
5935         }
5936       }
5937       break;
5938 
5939     case Instruction::Or:
5940       // If the RHS of the Or is a constant, we may have something like:
5941       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5942       // optimizations will transparently handle this case.
5943       //
5944       // In order for this transformation to be safe, the LHS must be of the
5945       // form X*(2^n) and the Or constant must be less than 2^n.
5946       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5947         const SCEV *LHS = getSCEV(BO->LHS);
5948         const APInt &CIVal = CI->getValue();
5949         if (GetMinTrailingZeros(LHS) >=
5950             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5951           // Build a plain add SCEV.
5952           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5953           // If the LHS of the add was an addrec and it has no-wrap flags,
5954           // transfer the no-wrap flags, since an or won't introduce a wrap.
5955           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5956             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5957             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5958                 OldAR->getNoWrapFlags());
5959           }
5960           return S;
5961         }
5962       }
5963       break;
5964 
5965     case Instruction::Xor:
5966       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5967         // If the RHS of xor is -1, then this is a not operation.
5968         if (CI->isMinusOne())
5969           return getNotSCEV(getSCEV(BO->LHS));
5970 
5971         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5972         // This is a variant of the check for xor with -1, and it handles
5973         // the case where instcombine has trimmed non-demanded bits out
5974         // of an xor with -1.
5975         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5976           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5977             if (LBO->getOpcode() == Instruction::And &&
5978                 LCI->getValue() == CI->getValue())
5979               if (const SCEVZeroExtendExpr *Z =
5980                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5981                 Type *UTy = BO->LHS->getType();
5982                 const SCEV *Z0 = Z->getOperand();
5983                 Type *Z0Ty = Z0->getType();
5984                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5985 
5986                 // If C is a low-bits mask, the zero extend is serving to
5987                 // mask off the high bits. Complement the operand and
5988                 // re-apply the zext.
5989                 if (CI->getValue().isMask(Z0TySize))
5990                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5991 
5992                 // If C is a single bit, it may be in the sign-bit position
5993                 // before the zero-extend. In this case, represent the xor
5994                 // using an add, which is equivalent, and re-apply the zext.
5995                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5996                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5997                     Trunc.isSignMask())
5998                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5999                                            UTy);
6000               }
6001       }
6002       break;
6003 
6004   case Instruction::Shl:
6005     // Turn shift left of a constant amount into a multiply.
6006     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6007       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6008 
6009       // If the shift count is not less than the bitwidth, the result of
6010       // the shift is undefined. Don't try to analyze it, because the
6011       // resolution chosen here may differ from the resolution chosen in
6012       // other parts of the compiler.
6013       if (SA->getValue().uge(BitWidth))
6014         break;
6015 
6016       // It is currently not resolved how to interpret NSW for left
6017       // shift by BitWidth - 1, so we avoid applying flags in that
6018       // case. Remove this check (or this comment) once the situation
6019       // is resolved. See
6020       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6021       // and http://reviews.llvm.org/D8890 .
6022       auto Flags = SCEV::FlagAnyWrap;
6023       if (BO->Op && SA->getValue().ult(BitWidth - 1))
6024         Flags = getNoWrapFlagsFromUB(BO->Op);
6025 
6026       Constant *X = ConstantInt::get(getContext(),
6027         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6028       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6029     }
6030     break;
6031 
6032     case Instruction::AShr: {
6033       // AShr X, C, where C is a constant.
6034       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6035       if (!CI)
6036         break;
6037 
6038       Type *OuterTy = BO->LHS->getType();
6039       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6040       // If the shift count is not less than the bitwidth, the result of
6041       // the shift is undefined. Don't try to analyze it, because the
6042       // resolution chosen here may differ from the resolution chosen in
6043       // other parts of the compiler.
6044       if (CI->getValue().uge(BitWidth))
6045         break;
6046 
6047       if (CI->isZero())
6048         return getSCEV(BO->LHS); // shift by zero --> noop
6049 
6050       uint64_t AShrAmt = CI->getZExtValue();
6051       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6052 
6053       Operator *L = dyn_cast<Operator>(BO->LHS);
6054       if (L && L->getOpcode() == Instruction::Shl) {
6055         // X = Shl A, n
6056         // Y = AShr X, m
6057         // Both n and m are constant.
6058 
6059         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6060         if (L->getOperand(1) == BO->RHS)
6061           // For a two-shift sext-inreg, i.e. n = m,
6062           // use sext(trunc(x)) as the SCEV expression.
6063           return getSignExtendExpr(
6064               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6065 
6066         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6067         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6068           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6069           if (ShlAmt > AShrAmt) {
6070             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6071             // expression. We already checked that ShlAmt < BitWidth, so
6072             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6073             // ShlAmt - AShrAmt < Amt.
6074             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6075                                             ShlAmt - AShrAmt);
6076             return getSignExtendExpr(
6077                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6078                 getConstant(Mul)), OuterTy);
6079           }
6080         }
6081       }
6082       break;
6083     }
6084     }
6085   }
6086 
6087   switch (U->getOpcode()) {
6088   case Instruction::Trunc:
6089     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6090 
6091   case Instruction::ZExt:
6092     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6093 
6094   case Instruction::SExt:
6095     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6096       // The NSW flag of a subtract does not always survive the conversion to
6097       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6098       // more likely to preserve NSW and allow later AddRec optimisations.
6099       //
6100       // NOTE: This is effectively duplicating this logic from getSignExtend:
6101       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6102       // but by that point the NSW information has potentially been lost.
6103       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6104         Type *Ty = U->getType();
6105         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6106         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6107         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6108       }
6109     }
6110     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6111 
6112   case Instruction::BitCast:
6113     // BitCasts are no-op casts so we just eliminate the cast.
6114     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6115       return getSCEV(U->getOperand(0));
6116     break;
6117 
6118   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6119   // lead to pointer expressions which cannot safely be expanded to GEPs,
6120   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6121   // simplifying integer expressions.
6122 
6123   case Instruction::GetElementPtr:
6124     return createNodeForGEP(cast<GEPOperator>(U));
6125 
6126   case Instruction::PHI:
6127     return createNodeForPHI(cast<PHINode>(U));
6128 
6129   case Instruction::Select:
6130     // U can also be a select constant expr, which let fall through.  Since
6131     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6132     // constant expressions cannot have instructions as operands, we'd have
6133     // returned getUnknown for a select constant expressions anyway.
6134     if (isa<Instruction>(U))
6135       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6136                                       U->getOperand(1), U->getOperand(2));
6137     break;
6138 
6139   case Instruction::Call:
6140   case Instruction::Invoke:
6141     if (Value *RV = CallSite(U).getReturnedArgOperand())
6142       return getSCEV(RV);
6143     break;
6144   }
6145 
6146   return getUnknown(V);
6147 }
6148 
6149 //===----------------------------------------------------------------------===//
6150 //                   Iteration Count Computation Code
6151 //
6152 
6153 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6154   if (!ExitCount)
6155     return 0;
6156 
6157   ConstantInt *ExitConst = ExitCount->getValue();
6158 
6159   // Guard against huge trip counts.
6160   if (ExitConst->getValue().getActiveBits() > 32)
6161     return 0;
6162 
6163   // In case of integer overflow, this returns 0, which is correct.
6164   return ((unsigned)ExitConst->getZExtValue()) + 1;
6165 }
6166 
6167 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6168   if (BasicBlock *ExitingBB = L->getExitingBlock())
6169     return getSmallConstantTripCount(L, ExitingBB);
6170 
6171   // No trip count information for multiple exits.
6172   return 0;
6173 }
6174 
6175 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6176                                                     BasicBlock *ExitingBlock) {
6177   assert(ExitingBlock && "Must pass a non-null exiting block!");
6178   assert(L->isLoopExiting(ExitingBlock) &&
6179          "Exiting block must actually branch out of the loop!");
6180   const SCEVConstant *ExitCount =
6181       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6182   return getConstantTripCount(ExitCount);
6183 }
6184 
6185 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6186   const auto *MaxExitCount =
6187       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6188   return getConstantTripCount(MaxExitCount);
6189 }
6190 
6191 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6192   if (BasicBlock *ExitingBB = L->getExitingBlock())
6193     return getSmallConstantTripMultiple(L, ExitingBB);
6194 
6195   // No trip multiple information for multiple exits.
6196   return 0;
6197 }
6198 
6199 /// Returns the largest constant divisor of the trip count of this loop as a
6200 /// normal unsigned value, if possible. This means that the actual trip count is
6201 /// always a multiple of the returned value (don't forget the trip count could
6202 /// very well be zero as well!).
6203 ///
6204 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6205 /// multiple of a constant (which is also the case if the trip count is simply
6206 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6207 /// if the trip count is very large (>= 2^32).
6208 ///
6209 /// As explained in the comments for getSmallConstantTripCount, this assumes
6210 /// that control exits the loop via ExitingBlock.
6211 unsigned
6212 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6213                                               BasicBlock *ExitingBlock) {
6214   assert(ExitingBlock && "Must pass a non-null exiting block!");
6215   assert(L->isLoopExiting(ExitingBlock) &&
6216          "Exiting block must actually branch out of the loop!");
6217   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6218   if (ExitCount == getCouldNotCompute())
6219     return 1;
6220 
6221   // Get the trip count from the BE count by adding 1.
6222   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6223 
6224   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6225   if (!TC)
6226     // Attempt to factor more general cases. Returns the greatest power of
6227     // two divisor. If overflow happens, the trip count expression is still
6228     // divisible by the greatest power of 2 divisor returned.
6229     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6230 
6231   ConstantInt *Result = TC->getValue();
6232 
6233   // Guard against huge trip counts (this requires checking
6234   // for zero to handle the case where the trip count == -1 and the
6235   // addition wraps).
6236   if (!Result || Result->getValue().getActiveBits() > 32 ||
6237       Result->getValue().getActiveBits() == 0)
6238     return 1;
6239 
6240   return (unsigned)Result->getZExtValue();
6241 }
6242 
6243 /// Get the expression for the number of loop iterations for which this loop is
6244 /// guaranteed not to exit via ExitingBlock. Otherwise return
6245 /// SCEVCouldNotCompute.
6246 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6247                                           BasicBlock *ExitingBlock) {
6248   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6249 }
6250 
6251 const SCEV *
6252 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6253                                                  SCEVUnionPredicate &Preds) {
6254   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
6255 }
6256 
6257 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6258   return getBackedgeTakenInfo(L).getExact(this);
6259 }
6260 
6261 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6262 /// known never to be less than the actual backedge taken count.
6263 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6264   return getBackedgeTakenInfo(L).getMax(this);
6265 }
6266 
6267 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6268   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6269 }
6270 
6271 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6272 static void
6273 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6274   BasicBlock *Header = L->getHeader();
6275 
6276   // Push all Loop-header PHIs onto the Worklist stack.
6277   for (BasicBlock::iterator I = Header->begin();
6278        PHINode *PN = dyn_cast<PHINode>(I); ++I)
6279     Worklist.push_back(PN);
6280 }
6281 
6282 const ScalarEvolution::BackedgeTakenInfo &
6283 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6284   auto &BTI = getBackedgeTakenInfo(L);
6285   if (BTI.hasFullInfo())
6286     return BTI;
6287 
6288   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6289 
6290   if (!Pair.second)
6291     return Pair.first->second;
6292 
6293   BackedgeTakenInfo Result =
6294       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6295 
6296   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6297 }
6298 
6299 const ScalarEvolution::BackedgeTakenInfo &
6300 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6301   // Initially insert an invalid entry for this loop. If the insertion
6302   // succeeds, proceed to actually compute a backedge-taken count and
6303   // update the value. The temporary CouldNotCompute value tells SCEV
6304   // code elsewhere that it shouldn't attempt to request a new
6305   // backedge-taken count, which could result in infinite recursion.
6306   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6307       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6308   if (!Pair.second)
6309     return Pair.first->second;
6310 
6311   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6312   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6313   // must be cleared in this scope.
6314   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6315 
6316   if (Result.getExact(this) != getCouldNotCompute()) {
6317     assert(isLoopInvariant(Result.getExact(this), L) &&
6318            isLoopInvariant(Result.getMax(this), L) &&
6319            "Computed backedge-taken count isn't loop invariant for loop!");
6320     ++NumTripCountsComputed;
6321   }
6322   else if (Result.getMax(this) == getCouldNotCompute() &&
6323            isa<PHINode>(L->getHeader()->begin())) {
6324     // Only count loops that have phi nodes as not being computable.
6325     ++NumTripCountsNotComputed;
6326   }
6327 
6328   // Now that we know more about the trip count for this loop, forget any
6329   // existing SCEV values for PHI nodes in this loop since they are only
6330   // conservative estimates made without the benefit of trip count
6331   // information. This is similar to the code in forgetLoop, except that
6332   // it handles SCEVUnknown PHI nodes specially.
6333   if (Result.hasAnyInfo()) {
6334     SmallVector<Instruction *, 16> Worklist;
6335     PushLoopPHIs(L, Worklist);
6336 
6337     SmallPtrSet<Instruction *, 8> Visited;
6338     while (!Worklist.empty()) {
6339       Instruction *I = Worklist.pop_back_val();
6340       if (!Visited.insert(I).second)
6341         continue;
6342 
6343       ValueExprMapType::iterator It =
6344         ValueExprMap.find_as(static_cast<Value *>(I));
6345       if (It != ValueExprMap.end()) {
6346         const SCEV *Old = It->second;
6347 
6348         // SCEVUnknown for a PHI either means that it has an unrecognized
6349         // structure, or it's a PHI that's in the progress of being computed
6350         // by createNodeForPHI.  In the former case, additional loop trip
6351         // count information isn't going to change anything. In the later
6352         // case, createNodeForPHI will perform the necessary updates on its
6353         // own when it gets to that point.
6354         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6355           eraseValueFromMap(It->first);
6356           forgetMemoizedResults(Old, false);
6357         }
6358         if (PHINode *PN = dyn_cast<PHINode>(I))
6359           ConstantEvolutionLoopExitValue.erase(PN);
6360       }
6361 
6362       PushDefUseChildren(I, Worklist);
6363     }
6364   }
6365 
6366   // Re-lookup the insert position, since the call to
6367   // computeBackedgeTakenCount above could result in a
6368   // recusive call to getBackedgeTakenInfo (on a different
6369   // loop), which would invalidate the iterator computed
6370   // earlier.
6371   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6372 }
6373 
6374 void ScalarEvolution::forgetLoop(const Loop *L) {
6375   // Drop any stored trip count value.
6376   auto RemoveLoopFromBackedgeMap =
6377       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6378         auto BTCPos = Map.find(L);
6379         if (BTCPos != Map.end()) {
6380           BTCPos->second.clear();
6381           Map.erase(BTCPos);
6382         }
6383       };
6384 
6385   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6386   SmallVector<Instruction *, 32> Worklist;
6387   SmallPtrSet<Instruction *, 16> Visited;
6388 
6389   // Iterate over all the loops and sub-loops to drop SCEV information.
6390   while (!LoopWorklist.empty()) {
6391     auto *CurrL = LoopWorklist.pop_back_val();
6392 
6393     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6394     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6395 
6396     // Drop information about predicated SCEV rewrites for this loop.
6397     for (auto I = PredicatedSCEVRewrites.begin();
6398          I != PredicatedSCEVRewrites.end();) {
6399       std::pair<const SCEV *, const Loop *> Entry = I->first;
6400       if (Entry.second == CurrL)
6401         PredicatedSCEVRewrites.erase(I++);
6402       else
6403         ++I;
6404     }
6405 
6406     auto LoopUsersItr = LoopUsers.find(CurrL);
6407     if (LoopUsersItr != LoopUsers.end()) {
6408       for (auto *S : LoopUsersItr->second)
6409         forgetMemoizedResults(S);
6410       LoopUsers.erase(LoopUsersItr);
6411     }
6412 
6413     // Drop information about expressions based on loop-header PHIs.
6414     PushLoopPHIs(CurrL, Worklist);
6415 
6416     while (!Worklist.empty()) {
6417       Instruction *I = Worklist.pop_back_val();
6418       if (!Visited.insert(I).second)
6419         continue;
6420 
6421       ValueExprMapType::iterator It =
6422           ValueExprMap.find_as(static_cast<Value *>(I));
6423       if (It != ValueExprMap.end()) {
6424         eraseValueFromMap(It->first);
6425         forgetMemoizedResults(It->second);
6426         if (PHINode *PN = dyn_cast<PHINode>(I))
6427           ConstantEvolutionLoopExitValue.erase(PN);
6428       }
6429 
6430       PushDefUseChildren(I, Worklist);
6431     }
6432 
6433     for (auto I = ExitLimits.begin(); I != ExitLimits.end(); ++I) {
6434       auto &Query = I->first;
6435       if (Query.L == CurrL)
6436         ExitLimits.erase(I);
6437     }
6438 
6439     LoopPropertiesCache.erase(CurrL);
6440     // Forget all contained loops too, to avoid dangling entries in the
6441     // ValuesAtScopes map.
6442     LoopWorklist.append(CurrL->begin(), CurrL->end());
6443   }
6444 }
6445 
6446 void ScalarEvolution::forgetValue(Value *V) {
6447   Instruction *I = dyn_cast<Instruction>(V);
6448   if (!I) return;
6449 
6450   // Drop information about expressions based on loop-header PHIs.
6451   SmallVector<Instruction *, 16> Worklist;
6452   Worklist.push_back(I);
6453 
6454   SmallPtrSet<Instruction *, 8> Visited;
6455   while (!Worklist.empty()) {
6456     I = Worklist.pop_back_val();
6457     if (!Visited.insert(I).second)
6458       continue;
6459 
6460     ValueExprMapType::iterator It =
6461       ValueExprMap.find_as(static_cast<Value *>(I));
6462     if (It != ValueExprMap.end()) {
6463       eraseValueFromMap(It->first);
6464       forgetMemoizedResults(It->second);
6465       if (PHINode *PN = dyn_cast<PHINode>(I))
6466         ConstantEvolutionLoopExitValue.erase(PN);
6467     }
6468 
6469     PushDefUseChildren(I, Worklist);
6470   }
6471 }
6472 
6473 /// Get the exact loop backedge taken count considering all loop exits. A
6474 /// computable result can only be returned for loops with a single exit.
6475 /// Returning the minimum taken count among all exits is incorrect because one
6476 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
6477 /// the limit of each loop test is never skipped. This is a valid assumption as
6478 /// long as the loop exits via that test. For precise results, it is the
6479 /// caller's responsibility to specify the relevant loop exit using
6480 /// getExact(ExitingBlock, SE).
6481 const SCEV *
6482 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE,
6483                                              SCEVUnionPredicate *Preds) const {
6484   // If any exits were not computable, the loop is not computable.
6485   if (!isComplete() || ExitNotTaken.empty())
6486     return SE->getCouldNotCompute();
6487 
6488   const SCEV *BECount = nullptr;
6489   for (auto &ENT : ExitNotTaken) {
6490     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
6491 
6492     if (!BECount)
6493       BECount = ENT.ExactNotTaken;
6494     else if (BECount != ENT.ExactNotTaken)
6495       return SE->getCouldNotCompute();
6496     if (Preds && !ENT.hasAlwaysTruePredicate())
6497       Preds->add(ENT.Predicate.get());
6498 
6499     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6500            "Predicate should be always true!");
6501   }
6502 
6503   assert(BECount && "Invalid not taken count for loop exit");
6504   return BECount;
6505 }
6506 
6507 /// Get the exact not taken count for this loop exit.
6508 const SCEV *
6509 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6510                                              ScalarEvolution *SE) const {
6511   for (auto &ENT : ExitNotTaken)
6512     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6513       return ENT.ExactNotTaken;
6514 
6515   return SE->getCouldNotCompute();
6516 }
6517 
6518 /// getMax - Get the max backedge taken count for the loop.
6519 const SCEV *
6520 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6521   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6522     return !ENT.hasAlwaysTruePredicate();
6523   };
6524 
6525   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6526     return SE->getCouldNotCompute();
6527 
6528   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6529          "No point in having a non-constant max backedge taken count!");
6530   return getMax();
6531 }
6532 
6533 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6534   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6535     return !ENT.hasAlwaysTruePredicate();
6536   };
6537   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6538 }
6539 
6540 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6541                                                     ScalarEvolution *SE) const {
6542   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6543       SE->hasOperand(getMax(), S))
6544     return true;
6545 
6546   for (auto &ENT : ExitNotTaken)
6547     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6548         SE->hasOperand(ENT.ExactNotTaken, S))
6549       return true;
6550 
6551   return false;
6552 }
6553 
6554 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6555     : ExactNotTaken(E), MaxNotTaken(E) {
6556   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6557           isa<SCEVConstant>(MaxNotTaken)) &&
6558          "No point in having a non-constant max backedge taken count!");
6559 }
6560 
6561 ScalarEvolution::ExitLimit::ExitLimit(
6562     const SCEV *E, const SCEV *M, bool MaxOrZero,
6563     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6564     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6565   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6566           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6567          "Exact is not allowed to be less precise than Max");
6568   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6569           isa<SCEVConstant>(MaxNotTaken)) &&
6570          "No point in having a non-constant max backedge taken count!");
6571   for (auto *PredSet : PredSetList)
6572     for (auto *P : *PredSet)
6573       addPredicate(P);
6574 }
6575 
6576 ScalarEvolution::ExitLimit::ExitLimit(
6577     const SCEV *E, const SCEV *M, bool MaxOrZero,
6578     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6579     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6580   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6581           isa<SCEVConstant>(MaxNotTaken)) &&
6582          "No point in having a non-constant max backedge taken count!");
6583 }
6584 
6585 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6586                                       bool MaxOrZero)
6587     : ExitLimit(E, M, MaxOrZero, None) {
6588   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6589           isa<SCEVConstant>(MaxNotTaken)) &&
6590          "No point in having a non-constant max backedge taken count!");
6591 }
6592 
6593 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6594 /// computable exit into a persistent ExitNotTakenInfo array.
6595 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6596     SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6597         &&ExitCounts,
6598     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6599     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6600   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6601 
6602   ExitNotTaken.reserve(ExitCounts.size());
6603   std::transform(
6604       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6605       [&](const EdgeExitInfo &EEI) {
6606         BasicBlock *ExitBB = EEI.first;
6607         const ExitLimit &EL = EEI.second;
6608         if (EL.Predicates.empty())
6609           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
6610 
6611         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6612         for (auto *Pred : EL.Predicates)
6613           Predicate->add(Pred);
6614 
6615         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
6616       });
6617   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6618          "No point in having a non-constant max backedge taken count!");
6619 }
6620 
6621 /// Invalidate this result and free the ExitNotTakenInfo array.
6622 void ScalarEvolution::BackedgeTakenInfo::clear() {
6623   ExitNotTaken.clear();
6624 }
6625 
6626 /// Compute the number of times the backedge of the specified loop will execute.
6627 ScalarEvolution::BackedgeTakenInfo
6628 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6629                                            bool AllowPredicates) {
6630   SmallVector<BasicBlock *, 8> ExitingBlocks;
6631   L->getExitingBlocks(ExitingBlocks);
6632 
6633   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6634 
6635   SmallVector<EdgeExitInfo, 4> ExitCounts;
6636   bool CouldComputeBECount = true;
6637   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6638   const SCEV *MustExitMaxBECount = nullptr;
6639   const SCEV *MayExitMaxBECount = nullptr;
6640   bool MustExitMaxOrZero = false;
6641 
6642   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6643   // and compute maxBECount.
6644   // Do a union of all the predicates here.
6645   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6646     BasicBlock *ExitBB = ExitingBlocks[i];
6647     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
6648 
6649     assert((AllowPredicates || EL.Predicates.empty()) &&
6650            "Predicated exit limit when predicates are not allowed!");
6651 
6652     // 1. For each exit that can be computed, add an entry to ExitCounts.
6653     // CouldComputeBECount is true only if all exits can be computed.
6654     if (EL.ExactNotTaken == getCouldNotCompute())
6655       // We couldn't compute an exact value for this exit, so
6656       // we won't be able to compute an exact value for the loop.
6657       CouldComputeBECount = false;
6658     else
6659       ExitCounts.emplace_back(ExitBB, EL);
6660 
6661     // 2. Derive the loop's MaxBECount from each exit's max number of
6662     // non-exiting iterations. Partition the loop exits into two kinds:
6663     // LoopMustExits and LoopMayExits.
6664     //
6665     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
6666     // is a LoopMayExit.  If any computable LoopMustExit is found, then
6667     // MaxBECount is the minimum EL.MaxNotTaken of computable
6668     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
6669     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
6670     // computable EL.MaxNotTaken.
6671     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
6672         DT.dominates(ExitBB, Latch)) {
6673       if (!MustExitMaxBECount) {
6674         MustExitMaxBECount = EL.MaxNotTaken;
6675         MustExitMaxOrZero = EL.MaxOrZero;
6676       } else {
6677         MustExitMaxBECount =
6678             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
6679       }
6680     } else if (MayExitMaxBECount != getCouldNotCompute()) {
6681       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
6682         MayExitMaxBECount = EL.MaxNotTaken;
6683       else {
6684         MayExitMaxBECount =
6685             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
6686       }
6687     }
6688   }
6689   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
6690     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
6691   // The loop backedge will be taken the maximum or zero times if there's
6692   // a single exit that must be taken the maximum or zero times.
6693   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
6694   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
6695                            MaxBECount, MaxOrZero);
6696 }
6697 
6698 ScalarEvolution::ExitLimit
6699 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
6700                                   bool AllowPredicates) {
6701   ExitLimitQuery Query(L, ExitingBlock, AllowPredicates);
6702   auto MaybeEL = ExitLimits.find(Query);
6703   if (MaybeEL != ExitLimits.end())
6704     return MaybeEL->second;
6705   ExitLimit EL = computeExitLimitImpl(L, ExitingBlock, AllowPredicates);
6706   ExitLimits.insert({Query, EL});
6707   return EL;
6708 }
6709 
6710 ScalarEvolution::ExitLimit
6711 ScalarEvolution::computeExitLimitImpl(const Loop *L, BasicBlock *ExitingBlock,
6712                                       bool AllowPredicates) {
6713   // Okay, we've chosen an exiting block.  See what condition causes us to exit
6714   // at this block and remember the exit block and whether all other targets
6715   // lead to the loop header.
6716   bool MustExecuteLoopHeader = true;
6717   BasicBlock *Exit = nullptr;
6718   for (auto *SBB : successors(ExitingBlock))
6719     if (!L->contains(SBB)) {
6720       if (Exit) // Multiple exit successors.
6721         return getCouldNotCompute();
6722       Exit = SBB;
6723     } else if (SBB != L->getHeader()) {
6724       MustExecuteLoopHeader = false;
6725     }
6726 
6727   // At this point, we know we have a conditional branch that determines whether
6728   // the loop is exited.  However, we don't know if the branch is executed each
6729   // time through the loop.  If not, then the execution count of the branch will
6730   // not be equal to the trip count of the loop.
6731   //
6732   // Currently we check for this by checking to see if the Exit branch goes to
6733   // the loop header.  If so, we know it will always execute the same number of
6734   // times as the loop.  We also handle the case where the exit block *is* the
6735   // loop header.  This is common for un-rotated loops.
6736   //
6737   // If both of those tests fail, walk up the unique predecessor chain to the
6738   // header, stopping if there is an edge that doesn't exit the loop. If the
6739   // header is reached, the execution count of the branch will be equal to the
6740   // trip count of the loop.
6741   //
6742   //  More extensive analysis could be done to handle more cases here.
6743   //
6744   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
6745     // The simple checks failed, try climbing the unique predecessor chain
6746     // up to the header.
6747     bool Ok = false;
6748     for (BasicBlock *BB = ExitingBlock; BB; ) {
6749       BasicBlock *Pred = BB->getUniquePredecessor();
6750       if (!Pred)
6751         return getCouldNotCompute();
6752       TerminatorInst *PredTerm = Pred->getTerminator();
6753       for (const BasicBlock *PredSucc : PredTerm->successors()) {
6754         if (PredSucc == BB)
6755           continue;
6756         // If the predecessor has a successor that isn't BB and isn't
6757         // outside the loop, assume the worst.
6758         if (L->contains(PredSucc))
6759           return getCouldNotCompute();
6760       }
6761       if (Pred == L->getHeader()) {
6762         Ok = true;
6763         break;
6764       }
6765       BB = Pred;
6766     }
6767     if (!Ok)
6768       return getCouldNotCompute();
6769   }
6770 
6771   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
6772   TerminatorInst *Term = ExitingBlock->getTerminator();
6773   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
6774     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
6775     // Proceed to the next level to examine the exit condition expression.
6776     return computeExitLimitFromCond(
6777         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
6778         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
6779   }
6780 
6781   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
6782     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
6783                                                 /*ControlsExit=*/IsOnlyExit);
6784 
6785   return getCouldNotCompute();
6786 }
6787 
6788 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
6789     const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB,
6790     bool ControlsExit, bool AllowPredicates) {
6791   ScalarEvolution::ExitLimitCacheTy Cache(L, TBB, FBB, AllowPredicates);
6792   return computeExitLimitFromCondCached(Cache, L, ExitCond, TBB, FBB,
6793                                         ControlsExit, AllowPredicates);
6794 }
6795 
6796 Optional<ScalarEvolution::ExitLimit>
6797 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
6798                                       BasicBlock *TBB, BasicBlock *FBB,
6799                                       bool ControlsExit, bool AllowPredicates) {
6800   (void)this->L;
6801   (void)this->TBB;
6802   (void)this->FBB;
6803   (void)this->AllowPredicates;
6804 
6805   assert(this->L == L && this->TBB == TBB && this->FBB == FBB &&
6806          this->AllowPredicates == AllowPredicates &&
6807          "Variance in assumed invariant key components!");
6808   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
6809   if (Itr == TripCountMap.end())
6810     return None;
6811   return Itr->second;
6812 }
6813 
6814 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
6815                                              BasicBlock *TBB, BasicBlock *FBB,
6816                                              bool ControlsExit,
6817                                              bool AllowPredicates,
6818                                              const ExitLimit &EL) {
6819   assert(this->L == L && this->TBB == TBB && this->FBB == FBB &&
6820          this->AllowPredicates == AllowPredicates &&
6821          "Variance in assumed invariant key components!");
6822 
6823   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
6824   assert(InsertResult.second && "Expected successful insertion!");
6825   (void)InsertResult;
6826 }
6827 
6828 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
6829     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB,
6830     BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) {
6831 
6832   if (auto MaybeEL =
6833           Cache.find(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates))
6834     return *MaybeEL;
6835 
6836   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, TBB, FBB,
6837                                               ControlsExit, AllowPredicates);
6838   Cache.insert(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates, EL);
6839   return EL;
6840 }
6841 
6842 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
6843     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB,
6844     BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) {
6845   // Check if the controlling expression for this loop is an And or Or.
6846   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
6847     if (BO->getOpcode() == Instruction::And) {
6848       // Recurse on the operands of the and.
6849       bool EitherMayExit = L->contains(TBB);
6850       ExitLimit EL0 = computeExitLimitFromCondCached(
6851           Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit,
6852           AllowPredicates);
6853       ExitLimit EL1 = computeExitLimitFromCondCached(
6854           Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit,
6855           AllowPredicates);
6856       const SCEV *BECount = getCouldNotCompute();
6857       const SCEV *MaxBECount = getCouldNotCompute();
6858       if (EitherMayExit) {
6859         // Both conditions must be true for the loop to continue executing.
6860         // Choose the less conservative count.
6861         if (EL0.ExactNotTaken == getCouldNotCompute() ||
6862             EL1.ExactNotTaken == getCouldNotCompute())
6863           BECount = getCouldNotCompute();
6864         else
6865           BECount =
6866               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
6867         if (EL0.MaxNotTaken == getCouldNotCompute())
6868           MaxBECount = EL1.MaxNotTaken;
6869         else if (EL1.MaxNotTaken == getCouldNotCompute())
6870           MaxBECount = EL0.MaxNotTaken;
6871         else
6872           MaxBECount =
6873               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
6874       } else {
6875         // Both conditions must be true at the same time for the loop to exit.
6876         // For now, be conservative.
6877         assert(L->contains(FBB) && "Loop block has no successor in loop!");
6878         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
6879           MaxBECount = EL0.MaxNotTaken;
6880         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
6881           BECount = EL0.ExactNotTaken;
6882       }
6883 
6884       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
6885       // to be more aggressive when computing BECount than when computing
6886       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
6887       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
6888       // to not.
6889       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
6890           !isa<SCEVCouldNotCompute>(BECount))
6891         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
6892 
6893       return ExitLimit(BECount, MaxBECount, false,
6894                        {&EL0.Predicates, &EL1.Predicates});
6895     }
6896     if (BO->getOpcode() == Instruction::Or) {
6897       // Recurse on the operands of the or.
6898       bool EitherMayExit = L->contains(FBB);
6899       ExitLimit EL0 = computeExitLimitFromCondCached(
6900           Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit,
6901           AllowPredicates);
6902       ExitLimit EL1 = computeExitLimitFromCondCached(
6903           Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit,
6904           AllowPredicates);
6905       const SCEV *BECount = getCouldNotCompute();
6906       const SCEV *MaxBECount = getCouldNotCompute();
6907       if (EitherMayExit) {
6908         // Both conditions must be false for the loop to continue executing.
6909         // Choose the less conservative count.
6910         if (EL0.ExactNotTaken == getCouldNotCompute() ||
6911             EL1.ExactNotTaken == getCouldNotCompute())
6912           BECount = getCouldNotCompute();
6913         else
6914           BECount =
6915               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
6916         if (EL0.MaxNotTaken == getCouldNotCompute())
6917           MaxBECount = EL1.MaxNotTaken;
6918         else if (EL1.MaxNotTaken == getCouldNotCompute())
6919           MaxBECount = EL0.MaxNotTaken;
6920         else
6921           MaxBECount =
6922               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
6923       } else {
6924         // Both conditions must be false at the same time for the loop to exit.
6925         // For now, be conservative.
6926         assert(L->contains(TBB) && "Loop block has no successor in loop!");
6927         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
6928           MaxBECount = EL0.MaxNotTaken;
6929         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
6930           BECount = EL0.ExactNotTaken;
6931       }
6932 
6933       return ExitLimit(BECount, MaxBECount, false,
6934                        {&EL0.Predicates, &EL1.Predicates});
6935     }
6936   }
6937 
6938   // With an icmp, it may be feasible to compute an exact backedge-taken count.
6939   // Proceed to the next level to examine the icmp.
6940   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
6941     ExitLimit EL =
6942         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
6943     if (EL.hasFullInfo() || !AllowPredicates)
6944       return EL;
6945 
6946     // Try again, but use SCEV predicates this time.
6947     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
6948                                     /*AllowPredicates=*/true);
6949   }
6950 
6951   // Check for a constant condition. These are normally stripped out by
6952   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
6953   // preserve the CFG and is temporarily leaving constant conditions
6954   // in place.
6955   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
6956     if (L->contains(FBB) == !CI->getZExtValue())
6957       // The backedge is always taken.
6958       return getCouldNotCompute();
6959     else
6960       // The backedge is never taken.
6961       return getZero(CI->getType());
6962   }
6963 
6964   // If it's not an integer or pointer comparison then compute it the hard way.
6965   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6966 }
6967 
6968 ScalarEvolution::ExitLimit
6969 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
6970                                           ICmpInst *ExitCond,
6971                                           BasicBlock *TBB,
6972                                           BasicBlock *FBB,
6973                                           bool ControlsExit,
6974                                           bool AllowPredicates) {
6975   // If the condition was exit on true, convert the condition to exit on false
6976   ICmpInst::Predicate Cond;
6977   if (!L->contains(FBB))
6978     Cond = ExitCond->getPredicate();
6979   else
6980     Cond = ExitCond->getInversePredicate();
6981 
6982   // Handle common loops like: for (X = "string"; *X; ++X)
6983   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
6984     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
6985       ExitLimit ItCnt =
6986         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
6987       if (ItCnt.hasAnyInfo())
6988         return ItCnt;
6989     }
6990 
6991   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
6992   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
6993 
6994   // Try to evaluate any dependencies out of the loop.
6995   LHS = getSCEVAtScope(LHS, L);
6996   RHS = getSCEVAtScope(RHS, L);
6997 
6998   // At this point, we would like to compute how many iterations of the
6999   // loop the predicate will return true for these inputs.
7000   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7001     // If there is a loop-invariant, force it into the RHS.
7002     std::swap(LHS, RHS);
7003     Cond = ICmpInst::getSwappedPredicate(Cond);
7004   }
7005 
7006   // Simplify the operands before analyzing them.
7007   (void)SimplifyICmpOperands(Cond, LHS, RHS);
7008 
7009   // If we have a comparison of a chrec against a constant, try to use value
7010   // ranges to answer this query.
7011   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7012     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7013       if (AddRec->getLoop() == L) {
7014         // Form the constant range.
7015         ConstantRange CompRange =
7016             ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt());
7017 
7018         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7019         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7020       }
7021 
7022   switch (Cond) {
7023   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7024     // Convert to: while (X-Y != 0)
7025     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7026                                 AllowPredicates);
7027     if (EL.hasAnyInfo()) return EL;
7028     break;
7029   }
7030   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7031     // Convert to: while (X-Y == 0)
7032     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7033     if (EL.hasAnyInfo()) return EL;
7034     break;
7035   }
7036   case ICmpInst::ICMP_SLT:
7037   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7038     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
7039     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7040                                     AllowPredicates);
7041     if (EL.hasAnyInfo()) return EL;
7042     break;
7043   }
7044   case ICmpInst::ICMP_SGT:
7045   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7046     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
7047     ExitLimit EL =
7048         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7049                             AllowPredicates);
7050     if (EL.hasAnyInfo()) return EL;
7051     break;
7052   }
7053   default:
7054     break;
7055   }
7056 
7057   auto *ExhaustiveCount =
7058       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
7059 
7060   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7061     return ExhaustiveCount;
7062 
7063   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7064                                       ExitCond->getOperand(1), L, Cond);
7065 }
7066 
7067 ScalarEvolution::ExitLimit
7068 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7069                                                       SwitchInst *Switch,
7070                                                       BasicBlock *ExitingBlock,
7071                                                       bool ControlsExit) {
7072   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7073 
7074   // Give up if the exit is the default dest of a switch.
7075   if (Switch->getDefaultDest() == ExitingBlock)
7076     return getCouldNotCompute();
7077 
7078   assert(L->contains(Switch->getDefaultDest()) &&
7079          "Default case must not exit the loop!");
7080   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7081   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7082 
7083   // while (X != Y) --> while (X-Y != 0)
7084   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7085   if (EL.hasAnyInfo())
7086     return EL;
7087 
7088   return getCouldNotCompute();
7089 }
7090 
7091 static ConstantInt *
7092 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7093                                 ScalarEvolution &SE) {
7094   const SCEV *InVal = SE.getConstant(C);
7095   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7096   assert(isa<SCEVConstant>(Val) &&
7097          "Evaluation of SCEV at constant didn't fold correctly?");
7098   return cast<SCEVConstant>(Val)->getValue();
7099 }
7100 
7101 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7102 /// compute the backedge execution count.
7103 ScalarEvolution::ExitLimit
7104 ScalarEvolution::computeLoadConstantCompareExitLimit(
7105   LoadInst *LI,
7106   Constant *RHS,
7107   const Loop *L,
7108   ICmpInst::Predicate predicate) {
7109   if (LI->isVolatile()) return getCouldNotCompute();
7110 
7111   // Check to see if the loaded pointer is a getelementptr of a global.
7112   // TODO: Use SCEV instead of manually grubbing with GEPs.
7113   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7114   if (!GEP) return getCouldNotCompute();
7115 
7116   // Make sure that it is really a constant global we are gepping, with an
7117   // initializer, and make sure the first IDX is really 0.
7118   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7119   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7120       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7121       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7122     return getCouldNotCompute();
7123 
7124   // Okay, we allow one non-constant index into the GEP instruction.
7125   Value *VarIdx = nullptr;
7126   std::vector<Constant*> Indexes;
7127   unsigned VarIdxNum = 0;
7128   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7129     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7130       Indexes.push_back(CI);
7131     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7132       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7133       VarIdx = GEP->getOperand(i);
7134       VarIdxNum = i-2;
7135       Indexes.push_back(nullptr);
7136     }
7137 
7138   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7139   if (!VarIdx)
7140     return getCouldNotCompute();
7141 
7142   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7143   // Check to see if X is a loop variant variable value now.
7144   const SCEV *Idx = getSCEV(VarIdx);
7145   Idx = getSCEVAtScope(Idx, L);
7146 
7147   // We can only recognize very limited forms of loop index expressions, in
7148   // particular, only affine AddRec's like {C1,+,C2}.
7149   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7150   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7151       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7152       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7153     return getCouldNotCompute();
7154 
7155   unsigned MaxSteps = MaxBruteForceIterations;
7156   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7157     ConstantInt *ItCst = ConstantInt::get(
7158                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7159     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7160 
7161     // Form the GEP offset.
7162     Indexes[VarIdxNum] = Val;
7163 
7164     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7165                                                          Indexes);
7166     if (!Result) break;  // Cannot compute!
7167 
7168     // Evaluate the condition for this iteration.
7169     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7170     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7171     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7172       ++NumArrayLenItCounts;
7173       return getConstant(ItCst);   // Found terminating iteration!
7174     }
7175   }
7176   return getCouldNotCompute();
7177 }
7178 
7179 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7180     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7181   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7182   if (!RHS)
7183     return getCouldNotCompute();
7184 
7185   const BasicBlock *Latch = L->getLoopLatch();
7186   if (!Latch)
7187     return getCouldNotCompute();
7188 
7189   const BasicBlock *Predecessor = L->getLoopPredecessor();
7190   if (!Predecessor)
7191     return getCouldNotCompute();
7192 
7193   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7194   // Return LHS in OutLHS and shift_opt in OutOpCode.
7195   auto MatchPositiveShift =
7196       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7197 
7198     using namespace PatternMatch;
7199 
7200     ConstantInt *ShiftAmt;
7201     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7202       OutOpCode = Instruction::LShr;
7203     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7204       OutOpCode = Instruction::AShr;
7205     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7206       OutOpCode = Instruction::Shl;
7207     else
7208       return false;
7209 
7210     return ShiftAmt->getValue().isStrictlyPositive();
7211   };
7212 
7213   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7214   //
7215   // loop:
7216   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7217   //   %iv.shifted = lshr i32 %iv, <positive constant>
7218   //
7219   // Return true on a successful match.  Return the corresponding PHI node (%iv
7220   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7221   auto MatchShiftRecurrence =
7222       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7223     Optional<Instruction::BinaryOps> PostShiftOpCode;
7224 
7225     {
7226       Instruction::BinaryOps OpC;
7227       Value *V;
7228 
7229       // If we encounter a shift instruction, "peel off" the shift operation,
7230       // and remember that we did so.  Later when we inspect %iv's backedge
7231       // value, we will make sure that the backedge value uses the same
7232       // operation.
7233       //
7234       // Note: the peeled shift operation does not have to be the same
7235       // instruction as the one feeding into the PHI's backedge value.  We only
7236       // really care about it being the same *kind* of shift instruction --
7237       // that's all that is required for our later inferences to hold.
7238       if (MatchPositiveShift(LHS, V, OpC)) {
7239         PostShiftOpCode = OpC;
7240         LHS = V;
7241       }
7242     }
7243 
7244     PNOut = dyn_cast<PHINode>(LHS);
7245     if (!PNOut || PNOut->getParent() != L->getHeader())
7246       return false;
7247 
7248     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7249     Value *OpLHS;
7250 
7251     return
7252         // The backedge value for the PHI node must be a shift by a positive
7253         // amount
7254         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7255 
7256         // of the PHI node itself
7257         OpLHS == PNOut &&
7258 
7259         // and the kind of shift should be match the kind of shift we peeled
7260         // off, if any.
7261         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7262   };
7263 
7264   PHINode *PN;
7265   Instruction::BinaryOps OpCode;
7266   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7267     return getCouldNotCompute();
7268 
7269   const DataLayout &DL = getDataLayout();
7270 
7271   // The key rationale for this optimization is that for some kinds of shift
7272   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7273   // within a finite number of iterations.  If the condition guarding the
7274   // backedge (in the sense that the backedge is taken if the condition is true)
7275   // is false for the value the shift recurrence stabilizes to, then we know
7276   // that the backedge is taken only a finite number of times.
7277 
7278   ConstantInt *StableValue = nullptr;
7279   switch (OpCode) {
7280   default:
7281     llvm_unreachable("Impossible case!");
7282 
7283   case Instruction::AShr: {
7284     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7285     // bitwidth(K) iterations.
7286     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7287     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7288                                        Predecessor->getTerminator(), &DT);
7289     auto *Ty = cast<IntegerType>(RHS->getType());
7290     if (Known.isNonNegative())
7291       StableValue = ConstantInt::get(Ty, 0);
7292     else if (Known.isNegative())
7293       StableValue = ConstantInt::get(Ty, -1, true);
7294     else
7295       return getCouldNotCompute();
7296 
7297     break;
7298   }
7299   case Instruction::LShr:
7300   case Instruction::Shl:
7301     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7302     // stabilize to 0 in at most bitwidth(K) iterations.
7303     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7304     break;
7305   }
7306 
7307   auto *Result =
7308       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7309   assert(Result->getType()->isIntegerTy(1) &&
7310          "Otherwise cannot be an operand to a branch instruction");
7311 
7312   if (Result->isZeroValue()) {
7313     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7314     const SCEV *UpperBound =
7315         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7316     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7317   }
7318 
7319   return getCouldNotCompute();
7320 }
7321 
7322 /// Return true if we can constant fold an instruction of the specified type,
7323 /// assuming that all operands were constants.
7324 static bool CanConstantFold(const Instruction *I) {
7325   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7326       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7327       isa<LoadInst>(I))
7328     return true;
7329 
7330   if (const CallInst *CI = dyn_cast<CallInst>(I))
7331     if (const Function *F = CI->getCalledFunction())
7332       return canConstantFoldCallTo(CI, F);
7333   return false;
7334 }
7335 
7336 /// Determine whether this instruction can constant evolve within this loop
7337 /// assuming its operands can all constant evolve.
7338 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7339   // An instruction outside of the loop can't be derived from a loop PHI.
7340   if (!L->contains(I)) return false;
7341 
7342   if (isa<PHINode>(I)) {
7343     // We don't currently keep track of the control flow needed to evaluate
7344     // PHIs, so we cannot handle PHIs inside of loops.
7345     return L->getHeader() == I->getParent();
7346   }
7347 
7348   // If we won't be able to constant fold this expression even if the operands
7349   // are constants, bail early.
7350   return CanConstantFold(I);
7351 }
7352 
7353 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7354 /// recursing through each instruction operand until reaching a loop header phi.
7355 static PHINode *
7356 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7357                                DenseMap<Instruction *, PHINode *> &PHIMap,
7358                                unsigned Depth) {
7359   if (Depth > MaxConstantEvolvingDepth)
7360     return nullptr;
7361 
7362   // Otherwise, we can evaluate this instruction if all of its operands are
7363   // constant or derived from a PHI node themselves.
7364   PHINode *PHI = nullptr;
7365   for (Value *Op : UseInst->operands()) {
7366     if (isa<Constant>(Op)) continue;
7367 
7368     Instruction *OpInst = dyn_cast<Instruction>(Op);
7369     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7370 
7371     PHINode *P = dyn_cast<PHINode>(OpInst);
7372     if (!P)
7373       // If this operand is already visited, reuse the prior result.
7374       // We may have P != PHI if this is the deepest point at which the
7375       // inconsistent paths meet.
7376       P = PHIMap.lookup(OpInst);
7377     if (!P) {
7378       // Recurse and memoize the results, whether a phi is found or not.
7379       // This recursive call invalidates pointers into PHIMap.
7380       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7381       PHIMap[OpInst] = P;
7382     }
7383     if (!P)
7384       return nullptr;  // Not evolving from PHI
7385     if (PHI && PHI != P)
7386       return nullptr;  // Evolving from multiple different PHIs.
7387     PHI = P;
7388   }
7389   // This is a expression evolving from a constant PHI!
7390   return PHI;
7391 }
7392 
7393 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7394 /// in the loop that V is derived from.  We allow arbitrary operations along the
7395 /// way, but the operands of an operation must either be constants or a value
7396 /// derived from a constant PHI.  If this expression does not fit with these
7397 /// constraints, return null.
7398 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7399   Instruction *I = dyn_cast<Instruction>(V);
7400   if (!I || !canConstantEvolve(I, L)) return nullptr;
7401 
7402   if (PHINode *PN = dyn_cast<PHINode>(I))
7403     return PN;
7404 
7405   // Record non-constant instructions contained by the loop.
7406   DenseMap<Instruction *, PHINode *> PHIMap;
7407   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7408 }
7409 
7410 /// EvaluateExpression - Given an expression that passes the
7411 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7412 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7413 /// reason, return null.
7414 static Constant *EvaluateExpression(Value *V, const Loop *L,
7415                                     DenseMap<Instruction *, Constant *> &Vals,
7416                                     const DataLayout &DL,
7417                                     const TargetLibraryInfo *TLI) {
7418   // Convenient constant check, but redundant for recursive calls.
7419   if (Constant *C = dyn_cast<Constant>(V)) return C;
7420   Instruction *I = dyn_cast<Instruction>(V);
7421   if (!I) return nullptr;
7422 
7423   if (Constant *C = Vals.lookup(I)) return C;
7424 
7425   // An instruction inside the loop depends on a value outside the loop that we
7426   // weren't given a mapping for, or a value such as a call inside the loop.
7427   if (!canConstantEvolve(I, L)) return nullptr;
7428 
7429   // An unmapped PHI can be due to a branch or another loop inside this loop,
7430   // or due to this not being the initial iteration through a loop where we
7431   // couldn't compute the evolution of this particular PHI last time.
7432   if (isa<PHINode>(I)) return nullptr;
7433 
7434   std::vector<Constant*> Operands(I->getNumOperands());
7435 
7436   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7437     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7438     if (!Operand) {
7439       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7440       if (!Operands[i]) return nullptr;
7441       continue;
7442     }
7443     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7444     Vals[Operand] = C;
7445     if (!C) return nullptr;
7446     Operands[i] = C;
7447   }
7448 
7449   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7450     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7451                                            Operands[1], DL, TLI);
7452   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7453     if (!LI->isVolatile())
7454       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7455   }
7456   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7457 }
7458 
7459 
7460 // If every incoming value to PN except the one for BB is a specific Constant,
7461 // return that, else return nullptr.
7462 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7463   Constant *IncomingVal = nullptr;
7464 
7465   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7466     if (PN->getIncomingBlock(i) == BB)
7467       continue;
7468 
7469     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7470     if (!CurrentVal)
7471       return nullptr;
7472 
7473     if (IncomingVal != CurrentVal) {
7474       if (IncomingVal)
7475         return nullptr;
7476       IncomingVal = CurrentVal;
7477     }
7478   }
7479 
7480   return IncomingVal;
7481 }
7482 
7483 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7484 /// in the header of its containing loop, we know the loop executes a
7485 /// constant number of times, and the PHI node is just a recurrence
7486 /// involving constants, fold it.
7487 Constant *
7488 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7489                                                    const APInt &BEs,
7490                                                    const Loop *L) {
7491   auto I = ConstantEvolutionLoopExitValue.find(PN);
7492   if (I != ConstantEvolutionLoopExitValue.end())
7493     return I->second;
7494 
7495   if (BEs.ugt(MaxBruteForceIterations))
7496     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7497 
7498   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7499 
7500   DenseMap<Instruction *, Constant *> CurrentIterVals;
7501   BasicBlock *Header = L->getHeader();
7502   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7503 
7504   BasicBlock *Latch = L->getLoopLatch();
7505   if (!Latch)
7506     return nullptr;
7507 
7508   for (auto &I : *Header) {
7509     PHINode *PHI = dyn_cast<PHINode>(&I);
7510     if (!PHI) break;
7511     auto *StartCST = getOtherIncomingValue(PHI, Latch);
7512     if (!StartCST) continue;
7513     CurrentIterVals[PHI] = StartCST;
7514   }
7515   if (!CurrentIterVals.count(PN))
7516     return RetVal = nullptr;
7517 
7518   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7519 
7520   // Execute the loop symbolically to determine the exit value.
7521   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7522          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7523 
7524   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7525   unsigned IterationNum = 0;
7526   const DataLayout &DL = getDataLayout();
7527   for (; ; ++IterationNum) {
7528     if (IterationNum == NumIterations)
7529       return RetVal = CurrentIterVals[PN];  // Got exit value!
7530 
7531     // Compute the value of the PHIs for the next iteration.
7532     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7533     DenseMap<Instruction *, Constant *> NextIterVals;
7534     Constant *NextPHI =
7535         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7536     if (!NextPHI)
7537       return nullptr;        // Couldn't evaluate!
7538     NextIterVals[PN] = NextPHI;
7539 
7540     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7541 
7542     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7543     // cease to be able to evaluate one of them or if they stop evolving,
7544     // because that doesn't necessarily prevent us from computing PN.
7545     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7546     for (const auto &I : CurrentIterVals) {
7547       PHINode *PHI = dyn_cast<PHINode>(I.first);
7548       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7549       PHIsToCompute.emplace_back(PHI, I.second);
7550     }
7551     // We use two distinct loops because EvaluateExpression may invalidate any
7552     // iterators into CurrentIterVals.
7553     for (const auto &I : PHIsToCompute) {
7554       PHINode *PHI = I.first;
7555       Constant *&NextPHI = NextIterVals[PHI];
7556       if (!NextPHI) {   // Not already computed.
7557         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7558         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7559       }
7560       if (NextPHI != I.second)
7561         StoppedEvolving = false;
7562     }
7563 
7564     // If all entries in CurrentIterVals == NextIterVals then we can stop
7565     // iterating, the loop can't continue to change.
7566     if (StoppedEvolving)
7567       return RetVal = CurrentIterVals[PN];
7568 
7569     CurrentIterVals.swap(NextIterVals);
7570   }
7571 }
7572 
7573 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7574                                                           Value *Cond,
7575                                                           bool ExitWhen) {
7576   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7577   if (!PN) return getCouldNotCompute();
7578 
7579   // If the loop is canonicalized, the PHI will have exactly two entries.
7580   // That's the only form we support here.
7581   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7582 
7583   DenseMap<Instruction *, Constant *> CurrentIterVals;
7584   BasicBlock *Header = L->getHeader();
7585   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7586 
7587   BasicBlock *Latch = L->getLoopLatch();
7588   assert(Latch && "Should follow from NumIncomingValues == 2!");
7589 
7590   for (auto &I : *Header) {
7591     PHINode *PHI = dyn_cast<PHINode>(&I);
7592     if (!PHI)
7593       break;
7594     auto *StartCST = getOtherIncomingValue(PHI, Latch);
7595     if (!StartCST) continue;
7596     CurrentIterVals[PHI] = StartCST;
7597   }
7598   if (!CurrentIterVals.count(PN))
7599     return getCouldNotCompute();
7600 
7601   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7602   // the loop symbolically to determine when the condition gets a value of
7603   // "ExitWhen".
7604   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7605   const DataLayout &DL = getDataLayout();
7606   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7607     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7608         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7609 
7610     // Couldn't symbolically evaluate.
7611     if (!CondVal) return getCouldNotCompute();
7612 
7613     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7614       ++NumBruteForceTripCountsComputed;
7615       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7616     }
7617 
7618     // Update all the PHI nodes for the next iteration.
7619     DenseMap<Instruction *, Constant *> NextIterVals;
7620 
7621     // Create a list of which PHIs we need to compute. We want to do this before
7622     // calling EvaluateExpression on them because that may invalidate iterators
7623     // into CurrentIterVals.
7624     SmallVector<PHINode *, 8> PHIsToCompute;
7625     for (const auto &I : CurrentIterVals) {
7626       PHINode *PHI = dyn_cast<PHINode>(I.first);
7627       if (!PHI || PHI->getParent() != Header) continue;
7628       PHIsToCompute.push_back(PHI);
7629     }
7630     for (PHINode *PHI : PHIsToCompute) {
7631       Constant *&NextPHI = NextIterVals[PHI];
7632       if (NextPHI) continue;    // Already computed!
7633 
7634       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7635       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7636     }
7637     CurrentIterVals.swap(NextIterVals);
7638   }
7639 
7640   // Too many iterations were needed to evaluate.
7641   return getCouldNotCompute();
7642 }
7643 
7644 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7645   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7646       ValuesAtScopes[V];
7647   // Check to see if we've folded this expression at this loop before.
7648   for (auto &LS : Values)
7649     if (LS.first == L)
7650       return LS.second ? LS.second : V;
7651 
7652   Values.emplace_back(L, nullptr);
7653 
7654   // Otherwise compute it.
7655   const SCEV *C = computeSCEVAtScope(V, L);
7656   for (auto &LS : reverse(ValuesAtScopes[V]))
7657     if (LS.first == L) {
7658       LS.second = C;
7659       break;
7660     }
7661   return C;
7662 }
7663 
7664 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7665 /// will return Constants for objects which aren't represented by a
7666 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7667 /// Returns NULL if the SCEV isn't representable as a Constant.
7668 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7669   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7670     case scCouldNotCompute:
7671     case scAddRecExpr:
7672       break;
7673     case scConstant:
7674       return cast<SCEVConstant>(V)->getValue();
7675     case scUnknown:
7676       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7677     case scSignExtend: {
7678       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7679       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7680         return ConstantExpr::getSExt(CastOp, SS->getType());
7681       break;
7682     }
7683     case scZeroExtend: {
7684       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7685       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7686         return ConstantExpr::getZExt(CastOp, SZ->getType());
7687       break;
7688     }
7689     case scTruncate: {
7690       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
7691       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
7692         return ConstantExpr::getTrunc(CastOp, ST->getType());
7693       break;
7694     }
7695     case scAddExpr: {
7696       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
7697       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
7698         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7699           unsigned AS = PTy->getAddressSpace();
7700           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7701           C = ConstantExpr::getBitCast(C, DestPtrTy);
7702         }
7703         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
7704           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
7705           if (!C2) return nullptr;
7706 
7707           // First pointer!
7708           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
7709             unsigned AS = C2->getType()->getPointerAddressSpace();
7710             std::swap(C, C2);
7711             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7712             // The offsets have been converted to bytes.  We can add bytes to an
7713             // i8* by GEP with the byte count in the first index.
7714             C = ConstantExpr::getBitCast(C, DestPtrTy);
7715           }
7716 
7717           // Don't bother trying to sum two pointers. We probably can't
7718           // statically compute a load that results from it anyway.
7719           if (C2->getType()->isPointerTy())
7720             return nullptr;
7721 
7722           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7723             if (PTy->getElementType()->isStructTy())
7724               C2 = ConstantExpr::getIntegerCast(
7725                   C2, Type::getInt32Ty(C->getContext()), true);
7726             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
7727           } else
7728             C = ConstantExpr::getAdd(C, C2);
7729         }
7730         return C;
7731       }
7732       break;
7733     }
7734     case scMulExpr: {
7735       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
7736       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
7737         // Don't bother with pointers at all.
7738         if (C->getType()->isPointerTy()) return nullptr;
7739         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
7740           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
7741           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
7742           C = ConstantExpr::getMul(C, C2);
7743         }
7744         return C;
7745       }
7746       break;
7747     }
7748     case scUDivExpr: {
7749       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
7750       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
7751         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
7752           if (LHS->getType() == RHS->getType())
7753             return ConstantExpr::getUDiv(LHS, RHS);
7754       break;
7755     }
7756     case scSMaxExpr:
7757     case scUMaxExpr:
7758       break; // TODO: smax, umax.
7759   }
7760   return nullptr;
7761 }
7762 
7763 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
7764   if (isa<SCEVConstant>(V)) return V;
7765 
7766   // If this instruction is evolved from a constant-evolving PHI, compute the
7767   // exit value from the loop without using SCEVs.
7768   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
7769     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
7770       const Loop *LI = this->LI[I->getParent()];
7771       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
7772         if (PHINode *PN = dyn_cast<PHINode>(I))
7773           if (PN->getParent() == LI->getHeader()) {
7774             // Okay, there is no closed form solution for the PHI node.  Check
7775             // to see if the loop that contains it has a known backedge-taken
7776             // count.  If so, we may be able to force computation of the exit
7777             // value.
7778             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
7779             if (const SCEVConstant *BTCC =
7780                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
7781 
7782               // This trivial case can show up in some degenerate cases where
7783               // the incoming IR has not yet been fully simplified.
7784               if (BTCC->getValue()->isZero()) {
7785                 Value *InitValue = nullptr;
7786                 bool MultipleInitValues = false;
7787                 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
7788                   if (!LI->contains(PN->getIncomingBlock(i))) {
7789                     if (!InitValue)
7790                       InitValue = PN->getIncomingValue(i);
7791                     else if (InitValue != PN->getIncomingValue(i)) {
7792                       MultipleInitValues = true;
7793                       break;
7794                     }
7795                   }
7796                   if (!MultipleInitValues && InitValue)
7797                     return getSCEV(InitValue);
7798                 }
7799               }
7800               // Okay, we know how many times the containing loop executes.  If
7801               // this is a constant evolving PHI node, get the final value at
7802               // the specified iteration number.
7803               Constant *RV =
7804                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
7805               if (RV) return getSCEV(RV);
7806             }
7807           }
7808 
7809       // Okay, this is an expression that we cannot symbolically evaluate
7810       // into a SCEV.  Check to see if it's possible to symbolically evaluate
7811       // the arguments into constants, and if so, try to constant propagate the
7812       // result.  This is particularly useful for computing loop exit values.
7813       if (CanConstantFold(I)) {
7814         SmallVector<Constant *, 4> Operands;
7815         bool MadeImprovement = false;
7816         for (Value *Op : I->operands()) {
7817           if (Constant *C = dyn_cast<Constant>(Op)) {
7818             Operands.push_back(C);
7819             continue;
7820           }
7821 
7822           // If any of the operands is non-constant and if they are
7823           // non-integer and non-pointer, don't even try to analyze them
7824           // with scev techniques.
7825           if (!isSCEVable(Op->getType()))
7826             return V;
7827 
7828           const SCEV *OrigV = getSCEV(Op);
7829           const SCEV *OpV = getSCEVAtScope(OrigV, L);
7830           MadeImprovement |= OrigV != OpV;
7831 
7832           Constant *C = BuildConstantFromSCEV(OpV);
7833           if (!C) return V;
7834           if (C->getType() != Op->getType())
7835             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
7836                                                               Op->getType(),
7837                                                               false),
7838                                       C, Op->getType());
7839           Operands.push_back(C);
7840         }
7841 
7842         // Check to see if getSCEVAtScope actually made an improvement.
7843         if (MadeImprovement) {
7844           Constant *C = nullptr;
7845           const DataLayout &DL = getDataLayout();
7846           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
7847             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7848                                                 Operands[1], DL, &TLI);
7849           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
7850             if (!LI->isVolatile())
7851               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7852           } else
7853             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
7854           if (!C) return V;
7855           return getSCEV(C);
7856         }
7857       }
7858     }
7859 
7860     // This is some other type of SCEVUnknown, just return it.
7861     return V;
7862   }
7863 
7864   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
7865     // Avoid performing the look-up in the common case where the specified
7866     // expression has no loop-variant portions.
7867     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
7868       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
7869       if (OpAtScope != Comm->getOperand(i)) {
7870         // Okay, at least one of these operands is loop variant but might be
7871         // foldable.  Build a new instance of the folded commutative expression.
7872         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
7873                                             Comm->op_begin()+i);
7874         NewOps.push_back(OpAtScope);
7875 
7876         for (++i; i != e; ++i) {
7877           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
7878           NewOps.push_back(OpAtScope);
7879         }
7880         if (isa<SCEVAddExpr>(Comm))
7881           return getAddExpr(NewOps);
7882         if (isa<SCEVMulExpr>(Comm))
7883           return getMulExpr(NewOps);
7884         if (isa<SCEVSMaxExpr>(Comm))
7885           return getSMaxExpr(NewOps);
7886         if (isa<SCEVUMaxExpr>(Comm))
7887           return getUMaxExpr(NewOps);
7888         llvm_unreachable("Unknown commutative SCEV type!");
7889       }
7890     }
7891     // If we got here, all operands are loop invariant.
7892     return Comm;
7893   }
7894 
7895   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
7896     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
7897     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
7898     if (LHS == Div->getLHS() && RHS == Div->getRHS())
7899       return Div;   // must be loop invariant
7900     return getUDivExpr(LHS, RHS);
7901   }
7902 
7903   // If this is a loop recurrence for a loop that does not contain L, then we
7904   // are dealing with the final value computed by the loop.
7905   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
7906     // First, attempt to evaluate each operand.
7907     // Avoid performing the look-up in the common case where the specified
7908     // expression has no loop-variant portions.
7909     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
7910       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
7911       if (OpAtScope == AddRec->getOperand(i))
7912         continue;
7913 
7914       // Okay, at least one of these operands is loop variant but might be
7915       // foldable.  Build a new instance of the folded commutative expression.
7916       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
7917                                           AddRec->op_begin()+i);
7918       NewOps.push_back(OpAtScope);
7919       for (++i; i != e; ++i)
7920         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
7921 
7922       const SCEV *FoldedRec =
7923         getAddRecExpr(NewOps, AddRec->getLoop(),
7924                       AddRec->getNoWrapFlags(SCEV::FlagNW));
7925       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
7926       // The addrec may be folded to a nonrecurrence, for example, if the
7927       // induction variable is multiplied by zero after constant folding. Go
7928       // ahead and return the folded value.
7929       if (!AddRec)
7930         return FoldedRec;
7931       break;
7932     }
7933 
7934     // If the scope is outside the addrec's loop, evaluate it by using the
7935     // loop exit value of the addrec.
7936     if (!AddRec->getLoop()->contains(L)) {
7937       // To evaluate this recurrence, we need to know how many times the AddRec
7938       // loop iterates.  Compute this now.
7939       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
7940       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
7941 
7942       // Then, evaluate the AddRec.
7943       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
7944     }
7945 
7946     return AddRec;
7947   }
7948 
7949   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
7950     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7951     if (Op == Cast->getOperand())
7952       return Cast;  // must be loop invariant
7953     return getZeroExtendExpr(Op, Cast->getType());
7954   }
7955 
7956   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
7957     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7958     if (Op == Cast->getOperand())
7959       return Cast;  // must be loop invariant
7960     return getSignExtendExpr(Op, Cast->getType());
7961   }
7962 
7963   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
7964     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7965     if (Op == Cast->getOperand())
7966       return Cast;  // must be loop invariant
7967     return getTruncateExpr(Op, Cast->getType());
7968   }
7969 
7970   llvm_unreachable("Unknown SCEV type!");
7971 }
7972 
7973 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
7974   return getSCEVAtScope(getSCEV(V), L);
7975 }
7976 
7977 /// Finds the minimum unsigned root of the following equation:
7978 ///
7979 ///     A * X = B (mod N)
7980 ///
7981 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
7982 /// A and B isn't important.
7983 ///
7984 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
7985 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
7986                                                ScalarEvolution &SE) {
7987   uint32_t BW = A.getBitWidth();
7988   assert(BW == SE.getTypeSizeInBits(B->getType()));
7989   assert(A != 0 && "A must be non-zero.");
7990 
7991   // 1. D = gcd(A, N)
7992   //
7993   // The gcd of A and N may have only one prime factor: 2. The number of
7994   // trailing zeros in A is its multiplicity
7995   uint32_t Mult2 = A.countTrailingZeros();
7996   // D = 2^Mult2
7997 
7998   // 2. Check if B is divisible by D.
7999   //
8000   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8001   // is not less than multiplicity of this prime factor for D.
8002   if (SE.GetMinTrailingZeros(B) < Mult2)
8003     return SE.getCouldNotCompute();
8004 
8005   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8006   // modulo (N / D).
8007   //
8008   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8009   // (N / D) in general. The inverse itself always fits into BW bits, though,
8010   // so we immediately truncate it.
8011   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8012   APInt Mod(BW + 1, 0);
8013   Mod.setBit(BW - Mult2);  // Mod = N / D
8014   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8015 
8016   // 4. Compute the minimum unsigned root of the equation:
8017   // I * (B / D) mod (N / D)
8018   // To simplify the computation, we factor out the divide by D:
8019   // (I * B mod N) / D
8020   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8021   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8022 }
8023 
8024 /// Find the roots of the quadratic equation for the given quadratic chrec
8025 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
8026 /// two SCEVCouldNotCompute objects.
8027 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
8028 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8029   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8030   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8031   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8032   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8033 
8034   // We currently can only solve this if the coefficients are constants.
8035   if (!LC || !MC || !NC)
8036     return None;
8037 
8038   uint32_t BitWidth = LC->getAPInt().getBitWidth();
8039   const APInt &L = LC->getAPInt();
8040   const APInt &M = MC->getAPInt();
8041   const APInt &N = NC->getAPInt();
8042   APInt Two(BitWidth, 2);
8043 
8044   // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
8045 
8046   // The A coefficient is N/2
8047   APInt A = N.sdiv(Two);
8048 
8049   // The B coefficient is M-N/2
8050   APInt B = M;
8051   B -= A; // A is the same as N/2.
8052 
8053   // The C coefficient is L.
8054   const APInt& C = L;
8055 
8056   // Compute the B^2-4ac term.
8057   APInt SqrtTerm = B;
8058   SqrtTerm *= B;
8059   SqrtTerm -= 4 * (A * C);
8060 
8061   if (SqrtTerm.isNegative()) {
8062     // The loop is provably infinite.
8063     return None;
8064   }
8065 
8066   // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
8067   // integer value or else APInt::sqrt() will assert.
8068   APInt SqrtVal = SqrtTerm.sqrt();
8069 
8070   // Compute the two solutions for the quadratic formula.
8071   // The divisions must be performed as signed divisions.
8072   APInt NegB = -std::move(B);
8073   APInt TwoA = std::move(A);
8074   TwoA <<= 1;
8075   if (TwoA.isNullValue())
8076     return None;
8077 
8078   LLVMContext &Context = SE.getContext();
8079 
8080   ConstantInt *Solution1 =
8081     ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
8082   ConstantInt *Solution2 =
8083     ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
8084 
8085   return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
8086                         cast<SCEVConstant>(SE.getConstant(Solution2)));
8087 }
8088 
8089 ScalarEvolution::ExitLimit
8090 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8091                               bool AllowPredicates) {
8092 
8093   // This is only used for loops with a "x != y" exit test. The exit condition
8094   // is now expressed as a single expression, V = x-y. So the exit test is
8095   // effectively V != 0.  We know and take advantage of the fact that this
8096   // expression only being used in a comparison by zero context.
8097 
8098   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8099   // If the value is a constant
8100   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8101     // If the value is already zero, the branch will execute zero times.
8102     if (C->getValue()->isZero()) return C;
8103     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8104   }
8105 
8106   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
8107   if (!AddRec && AllowPredicates)
8108     // Try to make this an AddRec using runtime tests, in the first X
8109     // iterations of this loop, where X is the SCEV expression found by the
8110     // algorithm below.
8111     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8112 
8113   if (!AddRec || AddRec->getLoop() != L)
8114     return getCouldNotCompute();
8115 
8116   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8117   // the quadratic equation to solve it.
8118   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8119     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
8120       const SCEVConstant *R1 = Roots->first;
8121       const SCEVConstant *R2 = Roots->second;
8122       // Pick the smallest positive root value.
8123       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8124               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8125         if (!CB->getZExtValue())
8126           std::swap(R1, R2); // R1 is the minimum root now.
8127 
8128         // We can only use this value if the chrec ends up with an exact zero
8129         // value at this index.  When solving for "X*X != 5", for example, we
8130         // should not accept a root of 2.
8131         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
8132         if (Val->isZero())
8133           // We found a quadratic root!
8134           return ExitLimit(R1, R1, false, Predicates);
8135       }
8136     }
8137     return getCouldNotCompute();
8138   }
8139 
8140   // Otherwise we can only handle this if it is affine.
8141   if (!AddRec->isAffine())
8142     return getCouldNotCompute();
8143 
8144   // If this is an affine expression, the execution count of this branch is
8145   // the minimum unsigned root of the following equation:
8146   //
8147   //     Start + Step*N = 0 (mod 2^BW)
8148   //
8149   // equivalent to:
8150   //
8151   //             Step*N = -Start (mod 2^BW)
8152   //
8153   // where BW is the common bit width of Start and Step.
8154 
8155   // Get the initial value for the loop.
8156   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8157   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8158 
8159   // For now we handle only constant steps.
8160   //
8161   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8162   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8163   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8164   // We have not yet seen any such cases.
8165   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8166   if (!StepC || StepC->getValue()->isZero())
8167     return getCouldNotCompute();
8168 
8169   // For positive steps (counting up until unsigned overflow):
8170   //   N = -Start/Step (as unsigned)
8171   // For negative steps (counting down to zero):
8172   //   N = Start/-Step
8173   // First compute the unsigned distance from zero in the direction of Step.
8174   bool CountDown = StepC->getAPInt().isNegative();
8175   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8176 
8177   // Handle unitary steps, which cannot wraparound.
8178   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8179   //   N = Distance (as unsigned)
8180   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8181     APInt MaxBECount = getUnsignedRangeMax(Distance);
8182 
8183     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8184     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8185     // case, and see if we can improve the bound.
8186     //
8187     // Explicitly handling this here is necessary because getUnsignedRange
8188     // isn't context-sensitive; it doesn't know that we only care about the
8189     // range inside the loop.
8190     const SCEV *Zero = getZero(Distance->getType());
8191     const SCEV *One = getOne(Distance->getType());
8192     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8193     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8194       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8195       // as "unsigned_max(Distance + 1) - 1".
8196       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8197       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8198     }
8199     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8200   }
8201 
8202   // If the condition controls loop exit (the loop exits only if the expression
8203   // is true) and the addition is no-wrap we can use unsigned divide to
8204   // compute the backedge count.  In this case, the step may not divide the
8205   // distance, but we don't care because if the condition is "missed" the loop
8206   // will have undefined behavior due to wrapping.
8207   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8208       loopHasNoAbnormalExits(AddRec->getLoop())) {
8209     const SCEV *Exact =
8210         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8211     const SCEV *Max =
8212         Exact == getCouldNotCompute()
8213             ? Exact
8214             : getConstant(getUnsignedRangeMax(Exact));
8215     return ExitLimit(Exact, Max, false, Predicates);
8216   }
8217 
8218   // Solve the general equation.
8219   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8220                                                getNegativeSCEV(Start), *this);
8221   const SCEV *M = E == getCouldNotCompute()
8222                       ? E
8223                       : getConstant(getUnsignedRangeMax(E));
8224   return ExitLimit(E, M, false, Predicates);
8225 }
8226 
8227 ScalarEvolution::ExitLimit
8228 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8229   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8230   // handle them yet except for the trivial case.  This could be expanded in the
8231   // future as needed.
8232 
8233   // If the value is a constant, check to see if it is known to be non-zero
8234   // already.  If so, the backedge will execute zero times.
8235   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8236     if (!C->getValue()->isZero())
8237       return getZero(C->getType());
8238     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8239   }
8240 
8241   // We could implement others, but I really doubt anyone writes loops like
8242   // this, and if they did, they would already be constant folded.
8243   return getCouldNotCompute();
8244 }
8245 
8246 std::pair<BasicBlock *, BasicBlock *>
8247 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8248   // If the block has a unique predecessor, then there is no path from the
8249   // predecessor to the block that does not go through the direct edge
8250   // from the predecessor to the block.
8251   if (BasicBlock *Pred = BB->getSinglePredecessor())
8252     return {Pred, BB};
8253 
8254   // A loop's header is defined to be a block that dominates the loop.
8255   // If the header has a unique predecessor outside the loop, it must be
8256   // a block that has exactly one successor that can reach the loop.
8257   if (Loop *L = LI.getLoopFor(BB))
8258     return {L->getLoopPredecessor(), L->getHeader()};
8259 
8260   return {nullptr, nullptr};
8261 }
8262 
8263 /// SCEV structural equivalence is usually sufficient for testing whether two
8264 /// expressions are equal, however for the purposes of looking for a condition
8265 /// guarding a loop, it can be useful to be a little more general, since a
8266 /// front-end may have replicated the controlling expression.
8267 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8268   // Quick check to see if they are the same SCEV.
8269   if (A == B) return true;
8270 
8271   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8272     // Not all instructions that are "identical" compute the same value.  For
8273     // instance, two distinct alloca instructions allocating the same type are
8274     // identical and do not read memory; but compute distinct values.
8275     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8276   };
8277 
8278   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8279   // two different instructions with the same value. Check for this case.
8280   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8281     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8282       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8283         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8284           if (ComputesEqualValues(AI, BI))
8285             return true;
8286 
8287   // Otherwise assume they may have a different value.
8288   return false;
8289 }
8290 
8291 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8292                                            const SCEV *&LHS, const SCEV *&RHS,
8293                                            unsigned Depth) {
8294   bool Changed = false;
8295 
8296   // If we hit the max recursion limit bail out.
8297   if (Depth >= 3)
8298     return false;
8299 
8300   // Canonicalize a constant to the right side.
8301   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8302     // Check for both operands constant.
8303     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8304       if (ConstantExpr::getICmp(Pred,
8305                                 LHSC->getValue(),
8306                                 RHSC->getValue())->isNullValue())
8307         goto trivially_false;
8308       else
8309         goto trivially_true;
8310     }
8311     // Otherwise swap the operands to put the constant on the right.
8312     std::swap(LHS, RHS);
8313     Pred = ICmpInst::getSwappedPredicate(Pred);
8314     Changed = true;
8315   }
8316 
8317   // If we're comparing an addrec with a value which is loop-invariant in the
8318   // addrec's loop, put the addrec on the left. Also make a dominance check,
8319   // as both operands could be addrecs loop-invariant in each other's loop.
8320   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8321     const Loop *L = AR->getLoop();
8322     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8323       std::swap(LHS, RHS);
8324       Pred = ICmpInst::getSwappedPredicate(Pred);
8325       Changed = true;
8326     }
8327   }
8328 
8329   // If there's a constant operand, canonicalize comparisons with boundary
8330   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8331   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8332     const APInt &RA = RC->getAPInt();
8333 
8334     bool SimplifiedByConstantRange = false;
8335 
8336     if (!ICmpInst::isEquality(Pred)) {
8337       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8338       if (ExactCR.isFullSet())
8339         goto trivially_true;
8340       else if (ExactCR.isEmptySet())
8341         goto trivially_false;
8342 
8343       APInt NewRHS;
8344       CmpInst::Predicate NewPred;
8345       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8346           ICmpInst::isEquality(NewPred)) {
8347         // We were able to convert an inequality to an equality.
8348         Pred = NewPred;
8349         RHS = getConstant(NewRHS);
8350         Changed = SimplifiedByConstantRange = true;
8351       }
8352     }
8353 
8354     if (!SimplifiedByConstantRange) {
8355       switch (Pred) {
8356       default:
8357         break;
8358       case ICmpInst::ICMP_EQ:
8359       case ICmpInst::ICMP_NE:
8360         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8361         if (!RA)
8362           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8363             if (const SCEVMulExpr *ME =
8364                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8365               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8366                   ME->getOperand(0)->isAllOnesValue()) {
8367                 RHS = AE->getOperand(1);
8368                 LHS = ME->getOperand(1);
8369                 Changed = true;
8370               }
8371         break;
8372 
8373 
8374         // The "Should have been caught earlier!" messages refer to the fact
8375         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8376         // should have fired on the corresponding cases, and canonicalized the
8377         // check to trivially_true or trivially_false.
8378 
8379       case ICmpInst::ICMP_UGE:
8380         assert(!RA.isMinValue() && "Should have been caught earlier!");
8381         Pred = ICmpInst::ICMP_UGT;
8382         RHS = getConstant(RA - 1);
8383         Changed = true;
8384         break;
8385       case ICmpInst::ICMP_ULE:
8386         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8387         Pred = ICmpInst::ICMP_ULT;
8388         RHS = getConstant(RA + 1);
8389         Changed = true;
8390         break;
8391       case ICmpInst::ICMP_SGE:
8392         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8393         Pred = ICmpInst::ICMP_SGT;
8394         RHS = getConstant(RA - 1);
8395         Changed = true;
8396         break;
8397       case ICmpInst::ICMP_SLE:
8398         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8399         Pred = ICmpInst::ICMP_SLT;
8400         RHS = getConstant(RA + 1);
8401         Changed = true;
8402         break;
8403       }
8404     }
8405   }
8406 
8407   // Check for obvious equality.
8408   if (HasSameValue(LHS, RHS)) {
8409     if (ICmpInst::isTrueWhenEqual(Pred))
8410       goto trivially_true;
8411     if (ICmpInst::isFalseWhenEqual(Pred))
8412       goto trivially_false;
8413   }
8414 
8415   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8416   // adding or subtracting 1 from one of the operands.
8417   switch (Pred) {
8418   case ICmpInst::ICMP_SLE:
8419     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8420       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8421                        SCEV::FlagNSW);
8422       Pred = ICmpInst::ICMP_SLT;
8423       Changed = true;
8424     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8425       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8426                        SCEV::FlagNSW);
8427       Pred = ICmpInst::ICMP_SLT;
8428       Changed = true;
8429     }
8430     break;
8431   case ICmpInst::ICMP_SGE:
8432     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8433       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8434                        SCEV::FlagNSW);
8435       Pred = ICmpInst::ICMP_SGT;
8436       Changed = true;
8437     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8438       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8439                        SCEV::FlagNSW);
8440       Pred = ICmpInst::ICMP_SGT;
8441       Changed = true;
8442     }
8443     break;
8444   case ICmpInst::ICMP_ULE:
8445     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8446       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8447                        SCEV::FlagNUW);
8448       Pred = ICmpInst::ICMP_ULT;
8449       Changed = true;
8450     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8451       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8452       Pred = ICmpInst::ICMP_ULT;
8453       Changed = true;
8454     }
8455     break;
8456   case ICmpInst::ICMP_UGE:
8457     if (!getUnsignedRangeMin(RHS).isMinValue()) {
8458       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8459       Pred = ICmpInst::ICMP_UGT;
8460       Changed = true;
8461     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8462       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8463                        SCEV::FlagNUW);
8464       Pred = ICmpInst::ICMP_UGT;
8465       Changed = true;
8466     }
8467     break;
8468   default:
8469     break;
8470   }
8471 
8472   // TODO: More simplifications are possible here.
8473 
8474   // Recursively simplify until we either hit a recursion limit or nothing
8475   // changes.
8476   if (Changed)
8477     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
8478 
8479   return Changed;
8480 
8481 trivially_true:
8482   // Return 0 == 0.
8483   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8484   Pred = ICmpInst::ICMP_EQ;
8485   return true;
8486 
8487 trivially_false:
8488   // Return 0 != 0.
8489   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8490   Pred = ICmpInst::ICMP_NE;
8491   return true;
8492 }
8493 
8494 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
8495   return getSignedRangeMax(S).isNegative();
8496 }
8497 
8498 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
8499   return getSignedRangeMin(S).isStrictlyPositive();
8500 }
8501 
8502 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
8503   return !getSignedRangeMin(S).isNegative();
8504 }
8505 
8506 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
8507   return !getSignedRangeMax(S).isStrictlyPositive();
8508 }
8509 
8510 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
8511   return isKnownNegative(S) || isKnownPositive(S);
8512 }
8513 
8514 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
8515                                        const SCEV *LHS, const SCEV *RHS) {
8516   // Canonicalize the inputs first.
8517   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8518 
8519   // If LHS or RHS is an addrec, check to see if the condition is true in
8520   // every iteration of the loop.
8521   // If LHS and RHS are both addrec, both conditions must be true in
8522   // every iteration of the loop.
8523   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8524   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8525   bool LeftGuarded = false;
8526   bool RightGuarded = false;
8527   if (LAR) {
8528     const Loop *L = LAR->getLoop();
8529     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
8530         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
8531       if (!RAR) return true;
8532       LeftGuarded = true;
8533     }
8534   }
8535   if (RAR) {
8536     const Loop *L = RAR->getLoop();
8537     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
8538         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
8539       if (!LAR) return true;
8540       RightGuarded = true;
8541     }
8542   }
8543   if (LeftGuarded && RightGuarded)
8544     return true;
8545 
8546   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
8547     return true;
8548 
8549   // Otherwise see what can be done with known constant ranges.
8550   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
8551 }
8552 
8553 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
8554                                            ICmpInst::Predicate Pred,
8555                                            bool &Increasing) {
8556   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
8557 
8558 #ifndef NDEBUG
8559   // Verify an invariant: inverting the predicate should turn a monotonically
8560   // increasing change to a monotonically decreasing one, and vice versa.
8561   bool IncreasingSwapped;
8562   bool ResultSwapped = isMonotonicPredicateImpl(
8563       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
8564 
8565   assert(Result == ResultSwapped && "should be able to analyze both!");
8566   if (ResultSwapped)
8567     assert(Increasing == !IncreasingSwapped &&
8568            "monotonicity should flip as we flip the predicate");
8569 #endif
8570 
8571   return Result;
8572 }
8573 
8574 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
8575                                                ICmpInst::Predicate Pred,
8576                                                bool &Increasing) {
8577 
8578   // A zero step value for LHS means the induction variable is essentially a
8579   // loop invariant value. We don't really depend on the predicate actually
8580   // flipping from false to true (for increasing predicates, and the other way
8581   // around for decreasing predicates), all we care about is that *if* the
8582   // predicate changes then it only changes from false to true.
8583   //
8584   // A zero step value in itself is not very useful, but there may be places
8585   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
8586   // as general as possible.
8587 
8588   switch (Pred) {
8589   default:
8590     return false; // Conservative answer
8591 
8592   case ICmpInst::ICMP_UGT:
8593   case ICmpInst::ICMP_UGE:
8594   case ICmpInst::ICMP_ULT:
8595   case ICmpInst::ICMP_ULE:
8596     if (!LHS->hasNoUnsignedWrap())
8597       return false;
8598 
8599     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
8600     return true;
8601 
8602   case ICmpInst::ICMP_SGT:
8603   case ICmpInst::ICMP_SGE:
8604   case ICmpInst::ICMP_SLT:
8605   case ICmpInst::ICMP_SLE: {
8606     if (!LHS->hasNoSignedWrap())
8607       return false;
8608 
8609     const SCEV *Step = LHS->getStepRecurrence(*this);
8610 
8611     if (isKnownNonNegative(Step)) {
8612       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
8613       return true;
8614     }
8615 
8616     if (isKnownNonPositive(Step)) {
8617       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
8618       return true;
8619     }
8620 
8621     return false;
8622   }
8623 
8624   }
8625 
8626   llvm_unreachable("switch has default clause!");
8627 }
8628 
8629 bool ScalarEvolution::isLoopInvariantPredicate(
8630     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
8631     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
8632     const SCEV *&InvariantRHS) {
8633 
8634   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
8635   if (!isLoopInvariant(RHS, L)) {
8636     if (!isLoopInvariant(LHS, L))
8637       return false;
8638 
8639     std::swap(LHS, RHS);
8640     Pred = ICmpInst::getSwappedPredicate(Pred);
8641   }
8642 
8643   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8644   if (!ArLHS || ArLHS->getLoop() != L)
8645     return false;
8646 
8647   bool Increasing;
8648   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
8649     return false;
8650 
8651   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
8652   // true as the loop iterates, and the backedge is control dependent on
8653   // "ArLHS `Pred` RHS" == true then we can reason as follows:
8654   //
8655   //   * if the predicate was false in the first iteration then the predicate
8656   //     is never evaluated again, since the loop exits without taking the
8657   //     backedge.
8658   //   * if the predicate was true in the first iteration then it will
8659   //     continue to be true for all future iterations since it is
8660   //     monotonically increasing.
8661   //
8662   // For both the above possibilities, we can replace the loop varying
8663   // predicate with its value on the first iteration of the loop (which is
8664   // loop invariant).
8665   //
8666   // A similar reasoning applies for a monotonically decreasing predicate, by
8667   // replacing true with false and false with true in the above two bullets.
8668 
8669   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
8670 
8671   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
8672     return false;
8673 
8674   InvariantPred = Pred;
8675   InvariantLHS = ArLHS->getStart();
8676   InvariantRHS = RHS;
8677   return true;
8678 }
8679 
8680 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
8681     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8682   if (HasSameValue(LHS, RHS))
8683     return ICmpInst::isTrueWhenEqual(Pred);
8684 
8685   // This code is split out from isKnownPredicate because it is called from
8686   // within isLoopEntryGuardedByCond.
8687 
8688   auto CheckRanges =
8689       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
8690     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
8691         .contains(RangeLHS);
8692   };
8693 
8694   // The check at the top of the function catches the case where the values are
8695   // known to be equal.
8696   if (Pred == CmpInst::ICMP_EQ)
8697     return false;
8698 
8699   if (Pred == CmpInst::ICMP_NE)
8700     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
8701            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
8702            isKnownNonZero(getMinusSCEV(LHS, RHS));
8703 
8704   if (CmpInst::isSigned(Pred))
8705     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
8706 
8707   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
8708 }
8709 
8710 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
8711                                                     const SCEV *LHS,
8712                                                     const SCEV *RHS) {
8713   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
8714   // Return Y via OutY.
8715   auto MatchBinaryAddToConst =
8716       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
8717              SCEV::NoWrapFlags ExpectedFlags) {
8718     const SCEV *NonConstOp, *ConstOp;
8719     SCEV::NoWrapFlags FlagsPresent;
8720 
8721     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
8722         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
8723       return false;
8724 
8725     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
8726     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
8727   };
8728 
8729   APInt C;
8730 
8731   switch (Pred) {
8732   default:
8733     break;
8734 
8735   case ICmpInst::ICMP_SGE:
8736     std::swap(LHS, RHS);
8737     LLVM_FALLTHROUGH;
8738   case ICmpInst::ICMP_SLE:
8739     // X s<= (X + C)<nsw> if C >= 0
8740     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
8741       return true;
8742 
8743     // (X + C)<nsw> s<= X if C <= 0
8744     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
8745         !C.isStrictlyPositive())
8746       return true;
8747     break;
8748 
8749   case ICmpInst::ICMP_SGT:
8750     std::swap(LHS, RHS);
8751     LLVM_FALLTHROUGH;
8752   case ICmpInst::ICMP_SLT:
8753     // X s< (X + C)<nsw> if C > 0
8754     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
8755         C.isStrictlyPositive())
8756       return true;
8757 
8758     // (X + C)<nsw> s< X if C < 0
8759     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
8760       return true;
8761     break;
8762   }
8763 
8764   return false;
8765 }
8766 
8767 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
8768                                                    const SCEV *LHS,
8769                                                    const SCEV *RHS) {
8770   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
8771     return false;
8772 
8773   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
8774   // the stack can result in exponential time complexity.
8775   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
8776 
8777   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
8778   //
8779   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
8780   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
8781   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
8782   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
8783   // use isKnownPredicate later if needed.
8784   return isKnownNonNegative(RHS) &&
8785          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
8786          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
8787 }
8788 
8789 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
8790                                         ICmpInst::Predicate Pred,
8791                                         const SCEV *LHS, const SCEV *RHS) {
8792   // No need to even try if we know the module has no guards.
8793   if (!HasGuards)
8794     return false;
8795 
8796   return any_of(*BB, [&](Instruction &I) {
8797     using namespace llvm::PatternMatch;
8798 
8799     Value *Condition;
8800     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
8801                          m_Value(Condition))) &&
8802            isImpliedCond(Pred, LHS, RHS, Condition, false);
8803   });
8804 }
8805 
8806 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
8807 /// protected by a conditional between LHS and RHS.  This is used to
8808 /// to eliminate casts.
8809 bool
8810 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
8811                                              ICmpInst::Predicate Pred,
8812                                              const SCEV *LHS, const SCEV *RHS) {
8813   // Interpret a null as meaning no loop, where there is obviously no guard
8814   // (interprocedural conditions notwithstanding).
8815   if (!L) return true;
8816 
8817   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8818     return true;
8819 
8820   BasicBlock *Latch = L->getLoopLatch();
8821   if (!Latch)
8822     return false;
8823 
8824   BranchInst *LoopContinuePredicate =
8825     dyn_cast<BranchInst>(Latch->getTerminator());
8826   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
8827       isImpliedCond(Pred, LHS, RHS,
8828                     LoopContinuePredicate->getCondition(),
8829                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
8830     return true;
8831 
8832   // We don't want more than one activation of the following loops on the stack
8833   // -- that can lead to O(n!) time complexity.
8834   if (WalkingBEDominatingConds)
8835     return false;
8836 
8837   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
8838 
8839   // See if we can exploit a trip count to prove the predicate.
8840   const auto &BETakenInfo = getBackedgeTakenInfo(L);
8841   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
8842   if (LatchBECount != getCouldNotCompute()) {
8843     // We know that Latch branches back to the loop header exactly
8844     // LatchBECount times.  This means the backdege condition at Latch is
8845     // equivalent to  "{0,+,1} u< LatchBECount".
8846     Type *Ty = LatchBECount->getType();
8847     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
8848     const SCEV *LoopCounter =
8849       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
8850     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
8851                       LatchBECount))
8852       return true;
8853   }
8854 
8855   // Check conditions due to any @llvm.assume intrinsics.
8856   for (auto &AssumeVH : AC.assumptions()) {
8857     if (!AssumeVH)
8858       continue;
8859     auto *CI = cast<CallInst>(AssumeVH);
8860     if (!DT.dominates(CI, Latch->getTerminator()))
8861       continue;
8862 
8863     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8864       return true;
8865   }
8866 
8867   // If the loop is not reachable from the entry block, we risk running into an
8868   // infinite loop as we walk up into the dom tree.  These loops do not matter
8869   // anyway, so we just return a conservative answer when we see them.
8870   if (!DT.isReachableFromEntry(L->getHeader()))
8871     return false;
8872 
8873   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
8874     return true;
8875 
8876   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
8877        DTN != HeaderDTN; DTN = DTN->getIDom()) {
8878     assert(DTN && "should reach the loop header before reaching the root!");
8879 
8880     BasicBlock *BB = DTN->getBlock();
8881     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
8882       return true;
8883 
8884     BasicBlock *PBB = BB->getSinglePredecessor();
8885     if (!PBB)
8886       continue;
8887 
8888     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
8889     if (!ContinuePredicate || !ContinuePredicate->isConditional())
8890       continue;
8891 
8892     Value *Condition = ContinuePredicate->getCondition();
8893 
8894     // If we have an edge `E` within the loop body that dominates the only
8895     // latch, the condition guarding `E` also guards the backedge.  This
8896     // reasoning works only for loops with a single latch.
8897 
8898     BasicBlockEdge DominatingEdge(PBB, BB);
8899     if (DominatingEdge.isSingleEdge()) {
8900       // We're constructively (and conservatively) enumerating edges within the
8901       // loop body that dominate the latch.  The dominator tree better agree
8902       // with us on this:
8903       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
8904 
8905       if (isImpliedCond(Pred, LHS, RHS, Condition,
8906                         BB != ContinuePredicate->getSuccessor(0)))
8907         return true;
8908     }
8909   }
8910 
8911   return false;
8912 }
8913 
8914 bool
8915 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
8916                                           ICmpInst::Predicate Pred,
8917                                           const SCEV *LHS, const SCEV *RHS) {
8918   // Interpret a null as meaning no loop, where there is obviously no guard
8919   // (interprocedural conditions notwithstanding).
8920   if (!L) return false;
8921 
8922   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8923     return true;
8924 
8925   // Starting at the loop predecessor, climb up the predecessor chain, as long
8926   // as there are predecessors that can be found that have unique successors
8927   // leading to the original header.
8928   for (std::pair<BasicBlock *, BasicBlock *>
8929          Pair(L->getLoopPredecessor(), L->getHeader());
8930        Pair.first;
8931        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
8932 
8933     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
8934       return true;
8935 
8936     BranchInst *LoopEntryPredicate =
8937       dyn_cast<BranchInst>(Pair.first->getTerminator());
8938     if (!LoopEntryPredicate ||
8939         LoopEntryPredicate->isUnconditional())
8940       continue;
8941 
8942     if (isImpliedCond(Pred, LHS, RHS,
8943                       LoopEntryPredicate->getCondition(),
8944                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
8945       return true;
8946   }
8947 
8948   // Check conditions due to any @llvm.assume intrinsics.
8949   for (auto &AssumeVH : AC.assumptions()) {
8950     if (!AssumeVH)
8951       continue;
8952     auto *CI = cast<CallInst>(AssumeVH);
8953     if (!DT.dominates(CI, L->getHeader()))
8954       continue;
8955 
8956     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8957       return true;
8958   }
8959 
8960   return false;
8961 }
8962 
8963 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8964                                     const SCEV *LHS, const SCEV *RHS,
8965                                     Value *FoundCondValue,
8966                                     bool Inverse) {
8967   if (!PendingLoopPredicates.insert(FoundCondValue).second)
8968     return false;
8969 
8970   auto ClearOnExit =
8971       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
8972 
8973   // Recursively handle And and Or conditions.
8974   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8975     if (BO->getOpcode() == Instruction::And) {
8976       if (!Inverse)
8977         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8978                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8979     } else if (BO->getOpcode() == Instruction::Or) {
8980       if (Inverse)
8981         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8982                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8983     }
8984   }
8985 
8986   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8987   if (!ICI) return false;
8988 
8989   // Now that we found a conditional branch that dominates the loop or controls
8990   // the loop latch. Check to see if it is the comparison we are looking for.
8991   ICmpInst::Predicate FoundPred;
8992   if (Inverse)
8993     FoundPred = ICI->getInversePredicate();
8994   else
8995     FoundPred = ICI->getPredicate();
8996 
8997   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8998   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8999 
9000   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9001 }
9002 
9003 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9004                                     const SCEV *RHS,
9005                                     ICmpInst::Predicate FoundPred,
9006                                     const SCEV *FoundLHS,
9007                                     const SCEV *FoundRHS) {
9008   // Balance the types.
9009   if (getTypeSizeInBits(LHS->getType()) <
9010       getTypeSizeInBits(FoundLHS->getType())) {
9011     if (CmpInst::isSigned(Pred)) {
9012       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9013       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9014     } else {
9015       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9016       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9017     }
9018   } else if (getTypeSizeInBits(LHS->getType()) >
9019       getTypeSizeInBits(FoundLHS->getType())) {
9020     if (CmpInst::isSigned(FoundPred)) {
9021       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9022       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9023     } else {
9024       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9025       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9026     }
9027   }
9028 
9029   // Canonicalize the query to match the way instcombine will have
9030   // canonicalized the comparison.
9031   if (SimplifyICmpOperands(Pred, LHS, RHS))
9032     if (LHS == RHS)
9033       return CmpInst::isTrueWhenEqual(Pred);
9034   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9035     if (FoundLHS == FoundRHS)
9036       return CmpInst::isFalseWhenEqual(FoundPred);
9037 
9038   // Check to see if we can make the LHS or RHS match.
9039   if (LHS == FoundRHS || RHS == FoundLHS) {
9040     if (isa<SCEVConstant>(RHS)) {
9041       std::swap(FoundLHS, FoundRHS);
9042       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9043     } else {
9044       std::swap(LHS, RHS);
9045       Pred = ICmpInst::getSwappedPredicate(Pred);
9046     }
9047   }
9048 
9049   // Check whether the found predicate is the same as the desired predicate.
9050   if (FoundPred == Pred)
9051     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9052 
9053   // Check whether swapping the found predicate makes it the same as the
9054   // desired predicate.
9055   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9056     if (isa<SCEVConstant>(RHS))
9057       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9058     else
9059       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9060                                    RHS, LHS, FoundLHS, FoundRHS);
9061   }
9062 
9063   // Unsigned comparison is the same as signed comparison when both the operands
9064   // are non-negative.
9065   if (CmpInst::isUnsigned(FoundPred) &&
9066       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9067       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9068     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9069 
9070   // Check if we can make progress by sharpening ranges.
9071   if (FoundPred == ICmpInst::ICMP_NE &&
9072       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9073 
9074     const SCEVConstant *C = nullptr;
9075     const SCEV *V = nullptr;
9076 
9077     if (isa<SCEVConstant>(FoundLHS)) {
9078       C = cast<SCEVConstant>(FoundLHS);
9079       V = FoundRHS;
9080     } else {
9081       C = cast<SCEVConstant>(FoundRHS);
9082       V = FoundLHS;
9083     }
9084 
9085     // The guarding predicate tells us that C != V. If the known range
9086     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9087     // range we consider has to correspond to same signedness as the
9088     // predicate we're interested in folding.
9089 
9090     APInt Min = ICmpInst::isSigned(Pred) ?
9091         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9092 
9093     if (Min == C->getAPInt()) {
9094       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9095       // This is true even if (Min + 1) wraps around -- in case of
9096       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9097 
9098       APInt SharperMin = Min + 1;
9099 
9100       switch (Pred) {
9101         case ICmpInst::ICMP_SGE:
9102         case ICmpInst::ICMP_UGE:
9103           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9104           // RHS, we're done.
9105           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9106                                     getConstant(SharperMin)))
9107             return true;
9108           LLVM_FALLTHROUGH;
9109 
9110         case ICmpInst::ICMP_SGT:
9111         case ICmpInst::ICMP_UGT:
9112           // We know from the range information that (V `Pred` Min ||
9113           // V == Min).  We know from the guarding condition that !(V
9114           // == Min).  This gives us
9115           //
9116           //       V `Pred` Min || V == Min && !(V == Min)
9117           //   =>  V `Pred` Min
9118           //
9119           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9120 
9121           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9122             return true;
9123           LLVM_FALLTHROUGH;
9124 
9125         default:
9126           // No change
9127           break;
9128       }
9129     }
9130   }
9131 
9132   // Check whether the actual condition is beyond sufficient.
9133   if (FoundPred == ICmpInst::ICMP_EQ)
9134     if (ICmpInst::isTrueWhenEqual(Pred))
9135       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9136         return true;
9137   if (Pred == ICmpInst::ICMP_NE)
9138     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9139       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9140         return true;
9141 
9142   // Otherwise assume the worst.
9143   return false;
9144 }
9145 
9146 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9147                                      const SCEV *&L, const SCEV *&R,
9148                                      SCEV::NoWrapFlags &Flags) {
9149   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9150   if (!AE || AE->getNumOperands() != 2)
9151     return false;
9152 
9153   L = AE->getOperand(0);
9154   R = AE->getOperand(1);
9155   Flags = AE->getNoWrapFlags();
9156   return true;
9157 }
9158 
9159 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9160                                                            const SCEV *Less) {
9161   // We avoid subtracting expressions here because this function is usually
9162   // fairly deep in the call stack (i.e. is called many times).
9163 
9164   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9165     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9166     const auto *MAR = cast<SCEVAddRecExpr>(More);
9167 
9168     if (LAR->getLoop() != MAR->getLoop())
9169       return None;
9170 
9171     // We look at affine expressions only; not for correctness but to keep
9172     // getStepRecurrence cheap.
9173     if (!LAR->isAffine() || !MAR->isAffine())
9174       return None;
9175 
9176     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9177       return None;
9178 
9179     Less = LAR->getStart();
9180     More = MAR->getStart();
9181 
9182     // fall through
9183   }
9184 
9185   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9186     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9187     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9188     return M - L;
9189   }
9190 
9191   const SCEV *L, *R;
9192   SCEV::NoWrapFlags Flags;
9193   if (splitBinaryAdd(Less, L, R, Flags))
9194     if (const auto *LC = dyn_cast<SCEVConstant>(L))
9195       if (R == More)
9196         return -(LC->getAPInt());
9197 
9198   if (splitBinaryAdd(More, L, R, Flags))
9199     if (const auto *LC = dyn_cast<SCEVConstant>(L))
9200       if (R == Less)
9201         return LC->getAPInt();
9202 
9203   return None;
9204 }
9205 
9206 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9207     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9208     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9209   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9210     return false;
9211 
9212   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9213   if (!AddRecLHS)
9214     return false;
9215 
9216   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9217   if (!AddRecFoundLHS)
9218     return false;
9219 
9220   // We'd like to let SCEV reason about control dependencies, so we constrain
9221   // both the inequalities to be about add recurrences on the same loop.  This
9222   // way we can use isLoopEntryGuardedByCond later.
9223 
9224   const Loop *L = AddRecFoundLHS->getLoop();
9225   if (L != AddRecLHS->getLoop())
9226     return false;
9227 
9228   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9229   //
9230   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9231   //                                                                  ... (2)
9232   //
9233   // Informal proof for (2), assuming (1) [*]:
9234   //
9235   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9236   //
9237   // Then
9238   //
9239   //       FoundLHS s< FoundRHS s< INT_MIN - C
9240   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9241   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9242   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9243   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9244   // <=>  FoundLHS + C s< FoundRHS + C
9245   //
9246   // [*]: (1) can be proved by ruling out overflow.
9247   //
9248   // [**]: This can be proved by analyzing all the four possibilities:
9249   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9250   //    (A s>= 0, B s>= 0).
9251   //
9252   // Note:
9253   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9254   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9255   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9256   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9257   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9258   // C)".
9259 
9260   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9261   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9262   if (!LDiff || !RDiff || *LDiff != *RDiff)
9263     return false;
9264 
9265   if (LDiff->isMinValue())
9266     return true;
9267 
9268   APInt FoundRHSLimit;
9269 
9270   if (Pred == CmpInst::ICMP_ULT) {
9271     FoundRHSLimit = -(*RDiff);
9272   } else {
9273     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9274     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9275   }
9276 
9277   // Try to prove (1) or (2), as needed.
9278   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9279                                   getConstant(FoundRHSLimit));
9280 }
9281 
9282 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
9283                                             const SCEV *LHS, const SCEV *RHS,
9284                                             const SCEV *FoundLHS,
9285                                             const SCEV *FoundRHS) {
9286   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
9287     return true;
9288 
9289   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
9290     return true;
9291 
9292   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
9293                                      FoundLHS, FoundRHS) ||
9294          // ~x < ~y --> x > y
9295          isImpliedCondOperandsHelper(Pred, LHS, RHS,
9296                                      getNotSCEV(FoundRHS),
9297                                      getNotSCEV(FoundLHS));
9298 }
9299 
9300 /// If Expr computes ~A, return A else return nullptr
9301 static const SCEV *MatchNotExpr(const SCEV *Expr) {
9302   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
9303   if (!Add || Add->getNumOperands() != 2 ||
9304       !Add->getOperand(0)->isAllOnesValue())
9305     return nullptr;
9306 
9307   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
9308   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
9309       !AddRHS->getOperand(0)->isAllOnesValue())
9310     return nullptr;
9311 
9312   return AddRHS->getOperand(1);
9313 }
9314 
9315 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
9316 template<typename MaxExprType>
9317 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
9318                               const SCEV *Candidate) {
9319   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
9320   if (!MaxExpr) return false;
9321 
9322   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
9323 }
9324 
9325 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
9326 template<typename MaxExprType>
9327 static bool IsMinConsistingOf(ScalarEvolution &SE,
9328                               const SCEV *MaybeMinExpr,
9329                               const SCEV *Candidate) {
9330   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
9331   if (!MaybeMaxExpr)
9332     return false;
9333 
9334   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
9335 }
9336 
9337 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
9338                                            ICmpInst::Predicate Pred,
9339                                            const SCEV *LHS, const SCEV *RHS) {
9340   // If both sides are affine addrecs for the same loop, with equal
9341   // steps, and we know the recurrences don't wrap, then we only
9342   // need to check the predicate on the starting values.
9343 
9344   if (!ICmpInst::isRelational(Pred))
9345     return false;
9346 
9347   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
9348   if (!LAR)
9349     return false;
9350   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9351   if (!RAR)
9352     return false;
9353   if (LAR->getLoop() != RAR->getLoop())
9354     return false;
9355   if (!LAR->isAffine() || !RAR->isAffine())
9356     return false;
9357 
9358   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
9359     return false;
9360 
9361   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
9362                          SCEV::FlagNSW : SCEV::FlagNUW;
9363   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
9364     return false;
9365 
9366   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
9367 }
9368 
9369 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
9370 /// expression?
9371 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
9372                                         ICmpInst::Predicate Pred,
9373                                         const SCEV *LHS, const SCEV *RHS) {
9374   switch (Pred) {
9375   default:
9376     return false;
9377 
9378   case ICmpInst::ICMP_SGE:
9379     std::swap(LHS, RHS);
9380     LLVM_FALLTHROUGH;
9381   case ICmpInst::ICMP_SLE:
9382     return
9383       // min(A, ...) <= A
9384       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
9385       // A <= max(A, ...)
9386       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
9387 
9388   case ICmpInst::ICMP_UGE:
9389     std::swap(LHS, RHS);
9390     LLVM_FALLTHROUGH;
9391   case ICmpInst::ICMP_ULE:
9392     return
9393       // min(A, ...) <= A
9394       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
9395       // A <= max(A, ...)
9396       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
9397   }
9398 
9399   llvm_unreachable("covered switch fell through?!");
9400 }
9401 
9402 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
9403                                              const SCEV *LHS, const SCEV *RHS,
9404                                              const SCEV *FoundLHS,
9405                                              const SCEV *FoundRHS,
9406                                              unsigned Depth) {
9407   assert(getTypeSizeInBits(LHS->getType()) ==
9408              getTypeSizeInBits(RHS->getType()) &&
9409          "LHS and RHS have different sizes?");
9410   assert(getTypeSizeInBits(FoundLHS->getType()) ==
9411              getTypeSizeInBits(FoundRHS->getType()) &&
9412          "FoundLHS and FoundRHS have different sizes?");
9413   // We want to avoid hurting the compile time with analysis of too big trees.
9414   if (Depth > MaxSCEVOperationsImplicationDepth)
9415     return false;
9416   // We only want to work with ICMP_SGT comparison so far.
9417   // TODO: Extend to ICMP_UGT?
9418   if (Pred == ICmpInst::ICMP_SLT) {
9419     Pred = ICmpInst::ICMP_SGT;
9420     std::swap(LHS, RHS);
9421     std::swap(FoundLHS, FoundRHS);
9422   }
9423   if (Pred != ICmpInst::ICMP_SGT)
9424     return false;
9425 
9426   auto GetOpFromSExt = [&](const SCEV *S) {
9427     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
9428       return Ext->getOperand();
9429     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
9430     // the constant in some cases.
9431     return S;
9432   };
9433 
9434   // Acquire values from extensions.
9435   auto *OrigFoundLHS = FoundLHS;
9436   LHS = GetOpFromSExt(LHS);
9437   FoundLHS = GetOpFromSExt(FoundLHS);
9438 
9439   // Is the SGT predicate can be proved trivially or using the found context.
9440   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
9441     return isKnownViaSimpleReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
9442            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
9443                                   FoundRHS, Depth + 1);
9444   };
9445 
9446   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
9447     // We want to avoid creation of any new non-constant SCEV. Since we are
9448     // going to compare the operands to RHS, we should be certain that we don't
9449     // need any size extensions for this. So let's decline all cases when the
9450     // sizes of types of LHS and RHS do not match.
9451     // TODO: Maybe try to get RHS from sext to catch more cases?
9452     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
9453       return false;
9454 
9455     // Should not overflow.
9456     if (!LHSAddExpr->hasNoSignedWrap())
9457       return false;
9458 
9459     auto *LL = LHSAddExpr->getOperand(0);
9460     auto *LR = LHSAddExpr->getOperand(1);
9461     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
9462 
9463     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
9464     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
9465       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
9466     };
9467     // Try to prove the following rule:
9468     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
9469     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
9470     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
9471       return true;
9472   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
9473     Value *LL, *LR;
9474     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
9475 
9476     using namespace llvm::PatternMatch;
9477 
9478     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
9479       // Rules for division.
9480       // We are going to perform some comparisons with Denominator and its
9481       // derivative expressions. In general case, creating a SCEV for it may
9482       // lead to a complex analysis of the entire graph, and in particular it
9483       // can request trip count recalculation for the same loop. This would
9484       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
9485       // this, we only want to create SCEVs that are constants in this section.
9486       // So we bail if Denominator is not a constant.
9487       if (!isa<ConstantInt>(LR))
9488         return false;
9489 
9490       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
9491 
9492       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
9493       // then a SCEV for the numerator already exists and matches with FoundLHS.
9494       auto *Numerator = getExistingSCEV(LL);
9495       if (!Numerator || Numerator->getType() != FoundLHS->getType())
9496         return false;
9497 
9498       // Make sure that the numerator matches with FoundLHS and the denominator
9499       // is positive.
9500       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
9501         return false;
9502 
9503       auto *DTy = Denominator->getType();
9504       auto *FRHSTy = FoundRHS->getType();
9505       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
9506         // One of types is a pointer and another one is not. We cannot extend
9507         // them properly to a wider type, so let us just reject this case.
9508         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
9509         // to avoid this check.
9510         return false;
9511 
9512       // Given that:
9513       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
9514       auto *WTy = getWiderType(DTy, FRHSTy);
9515       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
9516       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
9517 
9518       // Try to prove the following rule:
9519       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
9520       // For example, given that FoundLHS > 2. It means that FoundLHS is at
9521       // least 3. If we divide it by Denominator < 4, we will have at least 1.
9522       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
9523       if (isKnownNonPositive(RHS) &&
9524           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
9525         return true;
9526 
9527       // Try to prove the following rule:
9528       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
9529       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
9530       // If we divide it by Denominator > 2, then:
9531       // 1. If FoundLHS is negative, then the result is 0.
9532       // 2. If FoundLHS is non-negative, then the result is non-negative.
9533       // Anyways, the result is non-negative.
9534       auto *MinusOne = getNegativeSCEV(getOne(WTy));
9535       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
9536       if (isKnownNegative(RHS) &&
9537           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
9538         return true;
9539     }
9540   }
9541 
9542   return false;
9543 }
9544 
9545 bool
9546 ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred,
9547                                            const SCEV *LHS, const SCEV *RHS) {
9548   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
9549          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
9550          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
9551          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
9552 }
9553 
9554 bool
9555 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
9556                                              const SCEV *LHS, const SCEV *RHS,
9557                                              const SCEV *FoundLHS,
9558                                              const SCEV *FoundRHS) {
9559   switch (Pred) {
9560   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
9561   case ICmpInst::ICMP_EQ:
9562   case ICmpInst::ICMP_NE:
9563     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
9564       return true;
9565     break;
9566   case ICmpInst::ICMP_SLT:
9567   case ICmpInst::ICMP_SLE:
9568     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
9569         isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
9570       return true;
9571     break;
9572   case ICmpInst::ICMP_SGT:
9573   case ICmpInst::ICMP_SGE:
9574     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
9575         isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
9576       return true;
9577     break;
9578   case ICmpInst::ICMP_ULT:
9579   case ICmpInst::ICMP_ULE:
9580     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
9581         isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
9582       return true;
9583     break;
9584   case ICmpInst::ICMP_UGT:
9585   case ICmpInst::ICMP_UGE:
9586     if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
9587         isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
9588       return true;
9589     break;
9590   }
9591 
9592   // Maybe it can be proved via operations?
9593   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
9594     return true;
9595 
9596   return false;
9597 }
9598 
9599 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
9600                                                      const SCEV *LHS,
9601                                                      const SCEV *RHS,
9602                                                      const SCEV *FoundLHS,
9603                                                      const SCEV *FoundRHS) {
9604   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
9605     // The restriction on `FoundRHS` be lifted easily -- it exists only to
9606     // reduce the compile time impact of this optimization.
9607     return false;
9608 
9609   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
9610   if (!Addend)
9611     return false;
9612 
9613   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
9614 
9615   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
9616   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
9617   ConstantRange FoundLHSRange =
9618       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
9619 
9620   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
9621   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
9622 
9623   // We can also compute the range of values for `LHS` that satisfy the
9624   // consequent, "`LHS` `Pred` `RHS`":
9625   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
9626   ConstantRange SatisfyingLHSRange =
9627       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
9628 
9629   // The antecedent implies the consequent if every value of `LHS` that
9630   // satisfies the antecedent also satisfies the consequent.
9631   return SatisfyingLHSRange.contains(LHSRange);
9632 }
9633 
9634 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
9635                                          bool IsSigned, bool NoWrap) {
9636   assert(isKnownPositive(Stride) && "Positive stride expected!");
9637 
9638   if (NoWrap) return false;
9639 
9640   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9641   const SCEV *One = getOne(Stride->getType());
9642 
9643   if (IsSigned) {
9644     APInt MaxRHS = getSignedRangeMax(RHS);
9645     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
9646     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
9647 
9648     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
9649     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
9650   }
9651 
9652   APInt MaxRHS = getUnsignedRangeMax(RHS);
9653   APInt MaxValue = APInt::getMaxValue(BitWidth);
9654   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
9655 
9656   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
9657   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
9658 }
9659 
9660 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
9661                                          bool IsSigned, bool NoWrap) {
9662   if (NoWrap) return false;
9663 
9664   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9665   const SCEV *One = getOne(Stride->getType());
9666 
9667   if (IsSigned) {
9668     APInt MinRHS = getSignedRangeMin(RHS);
9669     APInt MinValue = APInt::getSignedMinValue(BitWidth);
9670     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
9671 
9672     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
9673     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
9674   }
9675 
9676   APInt MinRHS = getUnsignedRangeMin(RHS);
9677   APInt MinValue = APInt::getMinValue(BitWidth);
9678   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
9679 
9680   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
9681   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
9682 }
9683 
9684 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
9685                                             bool Equality) {
9686   const SCEV *One = getOne(Step->getType());
9687   Delta = Equality ? getAddExpr(Delta, Step)
9688                    : getAddExpr(Delta, getMinusSCEV(Step, One));
9689   return getUDivExpr(Delta, Step);
9690 }
9691 
9692 const SCEV *ScalarEvolution::computeMaxBECount(const SCEV *Start,
9693                                                const SCEV *Stride,
9694                                                const SCEV *End,
9695                                                unsigned BitWidth,
9696                                                bool IsSigned) {
9697 
9698   assert(!isKnownNonPositive(Stride) &&
9699          "Stride is expected strictly positive!");
9700   // Calculate the maximum backedge count based on the range of values
9701   // permitted by Start, End, and Stride.
9702   const SCEV *MaxBECount;
9703   APInt MinStart =
9704       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
9705 
9706   APInt StrideForMaxBECount;
9707 
9708   bool PositiveStride = isKnownPositive(Stride);
9709   if (PositiveStride)
9710     StrideForMaxBECount =
9711         IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
9712   else
9713     // Using a stride of 1 is safe when computing max backedge taken count for
9714     // a loop with unknown stride.
9715     StrideForMaxBECount = APInt(BitWidth, 1, IsSigned);
9716 
9717   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
9718                             : APInt::getMaxValue(BitWidth);
9719   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
9720 
9721   // Although End can be a MAX expression we estimate MaxEnd considering only
9722   // the case End = RHS of the loop termination condition. This is safe because
9723   // in the other case (End - Start) is zero, leading to a zero maximum backedge
9724   // taken count.
9725   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
9726                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
9727 
9728   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
9729                               getConstant(StrideForMaxBECount) /* Step */,
9730                               false /* Equality */);
9731 
9732   return MaxBECount;
9733 }
9734 
9735 ScalarEvolution::ExitLimit
9736 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
9737                                   const Loop *L, bool IsSigned,
9738                                   bool ControlsExit, bool AllowPredicates) {
9739   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9740 
9741   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
9742   bool PredicatedIV = false;
9743 
9744   if (!IV && AllowPredicates) {
9745     // Try to make this an AddRec using runtime tests, in the first X
9746     // iterations of this loop, where X is the SCEV expression found by the
9747     // algorithm below.
9748     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
9749     PredicatedIV = true;
9750   }
9751 
9752   // Avoid weird loops
9753   if (!IV || IV->getLoop() != L || !IV->isAffine())
9754     return getCouldNotCompute();
9755 
9756   bool NoWrap = ControlsExit &&
9757                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
9758 
9759   const SCEV *Stride = IV->getStepRecurrence(*this);
9760 
9761   bool PositiveStride = isKnownPositive(Stride);
9762 
9763   // Avoid negative or zero stride values.
9764   if (!PositiveStride) {
9765     // We can compute the correct backedge taken count for loops with unknown
9766     // strides if we can prove that the loop is not an infinite loop with side
9767     // effects. Here's the loop structure we are trying to handle -
9768     //
9769     // i = start
9770     // do {
9771     //   A[i] = i;
9772     //   i += s;
9773     // } while (i < end);
9774     //
9775     // The backedge taken count for such loops is evaluated as -
9776     // (max(end, start + stride) - start - 1) /u stride
9777     //
9778     // The additional preconditions that we need to check to prove correctness
9779     // of the above formula is as follows -
9780     //
9781     // a) IV is either nuw or nsw depending upon signedness (indicated by the
9782     //    NoWrap flag).
9783     // b) loop is single exit with no side effects.
9784     //
9785     //
9786     // Precondition a) implies that if the stride is negative, this is a single
9787     // trip loop. The backedge taken count formula reduces to zero in this case.
9788     //
9789     // Precondition b) implies that the unknown stride cannot be zero otherwise
9790     // we have UB.
9791     //
9792     // The positive stride case is the same as isKnownPositive(Stride) returning
9793     // true (original behavior of the function).
9794     //
9795     // We want to make sure that the stride is truly unknown as there are edge
9796     // cases where ScalarEvolution propagates no wrap flags to the
9797     // post-increment/decrement IV even though the increment/decrement operation
9798     // itself is wrapping. The computed backedge taken count may be wrong in
9799     // such cases. This is prevented by checking that the stride is not known to
9800     // be either positive or non-positive. For example, no wrap flags are
9801     // propagated to the post-increment IV of this loop with a trip count of 2 -
9802     //
9803     // unsigned char i;
9804     // for(i=127; i<128; i+=129)
9805     //   A[i] = i;
9806     //
9807     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
9808         !loopHasNoSideEffects(L))
9809       return getCouldNotCompute();
9810   } else if (!Stride->isOne() &&
9811              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
9812     // Avoid proven overflow cases: this will ensure that the backedge taken
9813     // count will not generate any unsigned overflow. Relaxed no-overflow
9814     // conditions exploit NoWrapFlags, allowing to optimize in presence of
9815     // undefined behaviors like the case of C language.
9816     return getCouldNotCompute();
9817 
9818   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
9819                                       : ICmpInst::ICMP_ULT;
9820   const SCEV *Start = IV->getStart();
9821   const SCEV *End = RHS;
9822   // When the RHS is not invariant, we do not know the end bound of the loop and
9823   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
9824   // calculate the MaxBECount, given the start, stride and max value for the end
9825   // bound of the loop (RHS), and the fact that IV does not overflow (which is
9826   // checked above).
9827   if (!isLoopInvariant(RHS, L)) {
9828     const SCEV *MaxBECount = computeMaxBECount(
9829         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
9830     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
9831                      false /*MaxOrZero*/, Predicates);
9832   }
9833   // If the backedge is taken at least once, then it will be taken
9834   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
9835   // is the LHS value of the less-than comparison the first time it is evaluated
9836   // and End is the RHS.
9837   const SCEV *BECountIfBackedgeTaken =
9838     computeBECount(getMinusSCEV(End, Start), Stride, false);
9839   // If the loop entry is guarded by the result of the backedge test of the
9840   // first loop iteration, then we know the backedge will be taken at least
9841   // once and so the backedge taken count is as above. If not then we use the
9842   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
9843   // as if the backedge is taken at least once max(End,Start) is End and so the
9844   // result is as above, and if not max(End,Start) is Start so we get a backedge
9845   // count of zero.
9846   const SCEV *BECount;
9847   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
9848     BECount = BECountIfBackedgeTaken;
9849   else {
9850     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
9851     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
9852   }
9853 
9854   const SCEV *MaxBECount;
9855   bool MaxOrZero = false;
9856   if (isa<SCEVConstant>(BECount))
9857     MaxBECount = BECount;
9858   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
9859     // If we know exactly how many times the backedge will be taken if it's
9860     // taken at least once, then the backedge count will either be that or
9861     // zero.
9862     MaxBECount = BECountIfBackedgeTaken;
9863     MaxOrZero = true;
9864   } else {
9865     MaxBECount = computeMaxBECount(Start, Stride, RHS,
9866                                    getTypeSizeInBits(LHS->getType()), IsSigned);
9867   }
9868 
9869   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
9870       !isa<SCEVCouldNotCompute>(BECount))
9871     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
9872 
9873   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
9874 }
9875 
9876 ScalarEvolution::ExitLimit
9877 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
9878                                      const Loop *L, bool IsSigned,
9879                                      bool ControlsExit, bool AllowPredicates) {
9880   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9881   // We handle only IV > Invariant
9882   if (!isLoopInvariant(RHS, L))
9883     return getCouldNotCompute();
9884 
9885   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
9886   if (!IV && AllowPredicates)
9887     // Try to make this an AddRec using runtime tests, in the first X
9888     // iterations of this loop, where X is the SCEV expression found by the
9889     // algorithm below.
9890     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
9891 
9892   // Avoid weird loops
9893   if (!IV || IV->getLoop() != L || !IV->isAffine())
9894     return getCouldNotCompute();
9895 
9896   bool NoWrap = ControlsExit &&
9897                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
9898 
9899   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
9900 
9901   // Avoid negative or zero stride values
9902   if (!isKnownPositive(Stride))
9903     return getCouldNotCompute();
9904 
9905   // Avoid proven overflow cases: this will ensure that the backedge taken count
9906   // will not generate any unsigned overflow. Relaxed no-overflow conditions
9907   // exploit NoWrapFlags, allowing to optimize in presence of undefined
9908   // behaviors like the case of C language.
9909   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
9910     return getCouldNotCompute();
9911 
9912   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
9913                                       : ICmpInst::ICMP_UGT;
9914 
9915   const SCEV *Start = IV->getStart();
9916   const SCEV *End = RHS;
9917   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
9918     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
9919 
9920   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
9921 
9922   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
9923                             : getUnsignedRangeMax(Start);
9924 
9925   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
9926                              : getUnsignedRangeMin(Stride);
9927 
9928   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
9929   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
9930                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
9931 
9932   // Although End can be a MIN expression we estimate MinEnd considering only
9933   // the case End = RHS. This is safe because in the other case (Start - End)
9934   // is zero, leading to a zero maximum backedge taken count.
9935   APInt MinEnd =
9936     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
9937              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
9938 
9939 
9940   const SCEV *MaxBECount = getCouldNotCompute();
9941   if (isa<SCEVConstant>(BECount))
9942     MaxBECount = BECount;
9943   else
9944     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
9945                                 getConstant(MinStride), false);
9946 
9947   if (isa<SCEVCouldNotCompute>(MaxBECount))
9948     MaxBECount = BECount;
9949 
9950   return ExitLimit(BECount, MaxBECount, false, Predicates);
9951 }
9952 
9953 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
9954                                                     ScalarEvolution &SE) const {
9955   if (Range.isFullSet())  // Infinite loop.
9956     return SE.getCouldNotCompute();
9957 
9958   // If the start is a non-zero constant, shift the range to simplify things.
9959   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
9960     if (!SC->getValue()->isZero()) {
9961       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
9962       Operands[0] = SE.getZero(SC->getType());
9963       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
9964                                              getNoWrapFlags(FlagNW));
9965       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
9966         return ShiftedAddRec->getNumIterationsInRange(
9967             Range.subtract(SC->getAPInt()), SE);
9968       // This is strange and shouldn't happen.
9969       return SE.getCouldNotCompute();
9970     }
9971 
9972   // The only time we can solve this is when we have all constant indices.
9973   // Otherwise, we cannot determine the overflow conditions.
9974   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
9975     return SE.getCouldNotCompute();
9976 
9977   // Okay at this point we know that all elements of the chrec are constants and
9978   // that the start element is zero.
9979 
9980   // First check to see if the range contains zero.  If not, the first
9981   // iteration exits.
9982   unsigned BitWidth = SE.getTypeSizeInBits(getType());
9983   if (!Range.contains(APInt(BitWidth, 0)))
9984     return SE.getZero(getType());
9985 
9986   if (isAffine()) {
9987     // If this is an affine expression then we have this situation:
9988     //   Solve {0,+,A} in Range  ===  Ax in Range
9989 
9990     // We know that zero is in the range.  If A is positive then we know that
9991     // the upper value of the range must be the first possible exit value.
9992     // If A is negative then the lower of the range is the last possible loop
9993     // value.  Also note that we already checked for a full range.
9994     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
9995     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
9996 
9997     // The exit value should be (End+A)/A.
9998     APInt ExitVal = (End + A).udiv(A);
9999     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10000 
10001     // Evaluate at the exit value.  If we really did fall out of the valid
10002     // range, then we computed our trip count, otherwise wrap around or other
10003     // things must have happened.
10004     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10005     if (Range.contains(Val->getValue()))
10006       return SE.getCouldNotCompute();  // Something strange happened
10007 
10008     // Ensure that the previous value is in the range.  This is a sanity check.
10009     assert(Range.contains(
10010            EvaluateConstantChrecAtConstant(this,
10011            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10012            "Linear scev computation is off in a bad way!");
10013     return SE.getConstant(ExitValue);
10014   } else if (isQuadratic()) {
10015     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
10016     // quadratic equation to solve it.  To do this, we must frame our problem in
10017     // terms of figuring out when zero is crossed, instead of when
10018     // Range.getUpper() is crossed.
10019     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
10020     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
10021     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
10022 
10023     // Next, solve the constructed addrec
10024     if (auto Roots =
10025             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
10026       const SCEVConstant *R1 = Roots->first;
10027       const SCEVConstant *R2 = Roots->second;
10028       // Pick the smallest positive root value.
10029       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
10030               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
10031         if (!CB->getZExtValue())
10032           std::swap(R1, R2); // R1 is the minimum root now.
10033 
10034         // Make sure the root is not off by one.  The returned iteration should
10035         // not be in the range, but the previous one should be.  When solving
10036         // for "X*X < 5", for example, we should not return a root of 2.
10037         ConstantInt *R1Val =
10038             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
10039         if (Range.contains(R1Val->getValue())) {
10040           // The next iteration must be out of the range...
10041           ConstantInt *NextVal =
10042               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
10043 
10044           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
10045           if (!Range.contains(R1Val->getValue()))
10046             return SE.getConstant(NextVal);
10047           return SE.getCouldNotCompute(); // Something strange happened
10048         }
10049 
10050         // If R1 was not in the range, then it is a good return value.  Make
10051         // sure that R1-1 WAS in the range though, just in case.
10052         ConstantInt *NextVal =
10053             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
10054         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
10055         if (Range.contains(R1Val->getValue()))
10056           return R1;
10057         return SE.getCouldNotCompute(); // Something strange happened
10058       }
10059     }
10060   }
10061 
10062   return SE.getCouldNotCompute();
10063 }
10064 
10065 // Return true when S contains at least an undef value.
10066 static inline bool containsUndefs(const SCEV *S) {
10067   return SCEVExprContains(S, [](const SCEV *S) {
10068     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10069       return isa<UndefValue>(SU->getValue());
10070     else if (const auto *SC = dyn_cast<SCEVConstant>(S))
10071       return isa<UndefValue>(SC->getValue());
10072     return false;
10073   });
10074 }
10075 
10076 namespace {
10077 
10078 // Collect all steps of SCEV expressions.
10079 struct SCEVCollectStrides {
10080   ScalarEvolution &SE;
10081   SmallVectorImpl<const SCEV *> &Strides;
10082 
10083   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10084       : SE(SE), Strides(S) {}
10085 
10086   bool follow(const SCEV *S) {
10087     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10088       Strides.push_back(AR->getStepRecurrence(SE));
10089     return true;
10090   }
10091 
10092   bool isDone() const { return false; }
10093 };
10094 
10095 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10096 struct SCEVCollectTerms {
10097   SmallVectorImpl<const SCEV *> &Terms;
10098 
10099   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10100 
10101   bool follow(const SCEV *S) {
10102     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10103         isa<SCEVSignExtendExpr>(S)) {
10104       if (!containsUndefs(S))
10105         Terms.push_back(S);
10106 
10107       // Stop recursion: once we collected a term, do not walk its operands.
10108       return false;
10109     }
10110 
10111     // Keep looking.
10112     return true;
10113   }
10114 
10115   bool isDone() const { return false; }
10116 };
10117 
10118 // Check if a SCEV contains an AddRecExpr.
10119 struct SCEVHasAddRec {
10120   bool &ContainsAddRec;
10121 
10122   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10123     ContainsAddRec = false;
10124   }
10125 
10126   bool follow(const SCEV *S) {
10127     if (isa<SCEVAddRecExpr>(S)) {
10128       ContainsAddRec = true;
10129 
10130       // Stop recursion: once we collected a term, do not walk its operands.
10131       return false;
10132     }
10133 
10134     // Keep looking.
10135     return true;
10136   }
10137 
10138   bool isDone() const { return false; }
10139 };
10140 
10141 // Find factors that are multiplied with an expression that (possibly as a
10142 // subexpression) contains an AddRecExpr. In the expression:
10143 //
10144 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10145 //
10146 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10147 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10148 // parameters as they form a product with an induction variable.
10149 //
10150 // This collector expects all array size parameters to be in the same MulExpr.
10151 // It might be necessary to later add support for collecting parameters that are
10152 // spread over different nested MulExpr.
10153 struct SCEVCollectAddRecMultiplies {
10154   SmallVectorImpl<const SCEV *> &Terms;
10155   ScalarEvolution &SE;
10156 
10157   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10158       : Terms(T), SE(SE) {}
10159 
10160   bool follow(const SCEV *S) {
10161     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10162       bool HasAddRec = false;
10163       SmallVector<const SCEV *, 0> Operands;
10164       for (auto Op : Mul->operands()) {
10165         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10166         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10167           Operands.push_back(Op);
10168         } else if (Unknown) {
10169           HasAddRec = true;
10170         } else {
10171           bool ContainsAddRec;
10172           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10173           visitAll(Op, ContiansAddRec);
10174           HasAddRec |= ContainsAddRec;
10175         }
10176       }
10177       if (Operands.size() == 0)
10178         return true;
10179 
10180       if (!HasAddRec)
10181         return false;
10182 
10183       Terms.push_back(SE.getMulExpr(Operands));
10184       // Stop recursion: once we collected a term, do not walk its operands.
10185       return false;
10186     }
10187 
10188     // Keep looking.
10189     return true;
10190   }
10191 
10192   bool isDone() const { return false; }
10193 };
10194 
10195 } // end anonymous namespace
10196 
10197 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10198 /// two places:
10199 ///   1) The strides of AddRec expressions.
10200 ///   2) Unknowns that are multiplied with AddRec expressions.
10201 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10202     SmallVectorImpl<const SCEV *> &Terms) {
10203   SmallVector<const SCEV *, 4> Strides;
10204   SCEVCollectStrides StrideCollector(*this, Strides);
10205   visitAll(Expr, StrideCollector);
10206 
10207   DEBUG({
10208       dbgs() << "Strides:\n";
10209       for (const SCEV *S : Strides)
10210         dbgs() << *S << "\n";
10211     });
10212 
10213   for (const SCEV *S : Strides) {
10214     SCEVCollectTerms TermCollector(Terms);
10215     visitAll(S, TermCollector);
10216   }
10217 
10218   DEBUG({
10219       dbgs() << "Terms:\n";
10220       for (const SCEV *T : Terms)
10221         dbgs() << *T << "\n";
10222     });
10223 
10224   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10225   visitAll(Expr, MulCollector);
10226 }
10227 
10228 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10229                                    SmallVectorImpl<const SCEV *> &Terms,
10230                                    SmallVectorImpl<const SCEV *> &Sizes) {
10231   int Last = Terms.size() - 1;
10232   const SCEV *Step = Terms[Last];
10233 
10234   // End of recursion.
10235   if (Last == 0) {
10236     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10237       SmallVector<const SCEV *, 2> Qs;
10238       for (const SCEV *Op : M->operands())
10239         if (!isa<SCEVConstant>(Op))
10240           Qs.push_back(Op);
10241 
10242       Step = SE.getMulExpr(Qs);
10243     }
10244 
10245     Sizes.push_back(Step);
10246     return true;
10247   }
10248 
10249   for (const SCEV *&Term : Terms) {
10250     // Normalize the terms before the next call to findArrayDimensionsRec.
10251     const SCEV *Q, *R;
10252     SCEVDivision::divide(SE, Term, Step, &Q, &R);
10253 
10254     // Bail out when GCD does not evenly divide one of the terms.
10255     if (!R->isZero())
10256       return false;
10257 
10258     Term = Q;
10259   }
10260 
10261   // Remove all SCEVConstants.
10262   Terms.erase(
10263       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
10264       Terms.end());
10265 
10266   if (Terms.size() > 0)
10267     if (!findArrayDimensionsRec(SE, Terms, Sizes))
10268       return false;
10269 
10270   Sizes.push_back(Step);
10271   return true;
10272 }
10273 
10274 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
10275 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
10276   for (const SCEV *T : Terms)
10277     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
10278       return true;
10279   return false;
10280 }
10281 
10282 // Return the number of product terms in S.
10283 static inline int numberOfTerms(const SCEV *S) {
10284   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
10285     return Expr->getNumOperands();
10286   return 1;
10287 }
10288 
10289 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
10290   if (isa<SCEVConstant>(T))
10291     return nullptr;
10292 
10293   if (isa<SCEVUnknown>(T))
10294     return T;
10295 
10296   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
10297     SmallVector<const SCEV *, 2> Factors;
10298     for (const SCEV *Op : M->operands())
10299       if (!isa<SCEVConstant>(Op))
10300         Factors.push_back(Op);
10301 
10302     return SE.getMulExpr(Factors);
10303   }
10304 
10305   return T;
10306 }
10307 
10308 /// Return the size of an element read or written by Inst.
10309 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
10310   Type *Ty;
10311   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
10312     Ty = Store->getValueOperand()->getType();
10313   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
10314     Ty = Load->getType();
10315   else
10316     return nullptr;
10317 
10318   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
10319   return getSizeOfExpr(ETy, Ty);
10320 }
10321 
10322 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
10323                                           SmallVectorImpl<const SCEV *> &Sizes,
10324                                           const SCEV *ElementSize) {
10325   if (Terms.size() < 1 || !ElementSize)
10326     return;
10327 
10328   // Early return when Terms do not contain parameters: we do not delinearize
10329   // non parametric SCEVs.
10330   if (!containsParameters(Terms))
10331     return;
10332 
10333   DEBUG({
10334       dbgs() << "Terms:\n";
10335       for (const SCEV *T : Terms)
10336         dbgs() << *T << "\n";
10337     });
10338 
10339   // Remove duplicates.
10340   array_pod_sort(Terms.begin(), Terms.end());
10341   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
10342 
10343   // Put larger terms first.
10344   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
10345     return numberOfTerms(LHS) > numberOfTerms(RHS);
10346   });
10347 
10348   // Try to divide all terms by the element size. If term is not divisible by
10349   // element size, proceed with the original term.
10350   for (const SCEV *&Term : Terms) {
10351     const SCEV *Q, *R;
10352     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
10353     if (!Q->isZero())
10354       Term = Q;
10355   }
10356 
10357   SmallVector<const SCEV *, 4> NewTerms;
10358 
10359   // Remove constant factors.
10360   for (const SCEV *T : Terms)
10361     if (const SCEV *NewT = removeConstantFactors(*this, T))
10362       NewTerms.push_back(NewT);
10363 
10364   DEBUG({
10365       dbgs() << "Terms after sorting:\n";
10366       for (const SCEV *T : NewTerms)
10367         dbgs() << *T << "\n";
10368     });
10369 
10370   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
10371     Sizes.clear();
10372     return;
10373   }
10374 
10375   // The last element to be pushed into Sizes is the size of an element.
10376   Sizes.push_back(ElementSize);
10377 
10378   DEBUG({
10379       dbgs() << "Sizes:\n";
10380       for (const SCEV *S : Sizes)
10381         dbgs() << *S << "\n";
10382     });
10383 }
10384 
10385 void ScalarEvolution::computeAccessFunctions(
10386     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
10387     SmallVectorImpl<const SCEV *> &Sizes) {
10388   // Early exit in case this SCEV is not an affine multivariate function.
10389   if (Sizes.empty())
10390     return;
10391 
10392   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
10393     if (!AR->isAffine())
10394       return;
10395 
10396   const SCEV *Res = Expr;
10397   int Last = Sizes.size() - 1;
10398   for (int i = Last; i >= 0; i--) {
10399     const SCEV *Q, *R;
10400     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
10401 
10402     DEBUG({
10403         dbgs() << "Res: " << *Res << "\n";
10404         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
10405         dbgs() << "Res divided by Sizes[i]:\n";
10406         dbgs() << "Quotient: " << *Q << "\n";
10407         dbgs() << "Remainder: " << *R << "\n";
10408       });
10409 
10410     Res = Q;
10411 
10412     // Do not record the last subscript corresponding to the size of elements in
10413     // the array.
10414     if (i == Last) {
10415 
10416       // Bail out if the remainder is too complex.
10417       if (isa<SCEVAddRecExpr>(R)) {
10418         Subscripts.clear();
10419         Sizes.clear();
10420         return;
10421       }
10422 
10423       continue;
10424     }
10425 
10426     // Record the access function for the current subscript.
10427     Subscripts.push_back(R);
10428   }
10429 
10430   // Also push in last position the remainder of the last division: it will be
10431   // the access function of the innermost dimension.
10432   Subscripts.push_back(Res);
10433 
10434   std::reverse(Subscripts.begin(), Subscripts.end());
10435 
10436   DEBUG({
10437       dbgs() << "Subscripts:\n";
10438       for (const SCEV *S : Subscripts)
10439         dbgs() << *S << "\n";
10440     });
10441 }
10442 
10443 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
10444 /// sizes of an array access. Returns the remainder of the delinearization that
10445 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
10446 /// the multiples of SCEV coefficients: that is a pattern matching of sub
10447 /// expressions in the stride and base of a SCEV corresponding to the
10448 /// computation of a GCD (greatest common divisor) of base and stride.  When
10449 /// SCEV->delinearize fails, it returns the SCEV unchanged.
10450 ///
10451 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
10452 ///
10453 ///  void foo(long n, long m, long o, double A[n][m][o]) {
10454 ///
10455 ///    for (long i = 0; i < n; i++)
10456 ///      for (long j = 0; j < m; j++)
10457 ///        for (long k = 0; k < o; k++)
10458 ///          A[i][j][k] = 1.0;
10459 ///  }
10460 ///
10461 /// the delinearization input is the following AddRec SCEV:
10462 ///
10463 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
10464 ///
10465 /// From this SCEV, we are able to say that the base offset of the access is %A
10466 /// because it appears as an offset that does not divide any of the strides in
10467 /// the loops:
10468 ///
10469 ///  CHECK: Base offset: %A
10470 ///
10471 /// and then SCEV->delinearize determines the size of some of the dimensions of
10472 /// the array as these are the multiples by which the strides are happening:
10473 ///
10474 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
10475 ///
10476 /// Note that the outermost dimension remains of UnknownSize because there are
10477 /// no strides that would help identifying the size of the last dimension: when
10478 /// the array has been statically allocated, one could compute the size of that
10479 /// dimension by dividing the overall size of the array by the size of the known
10480 /// dimensions: %m * %o * 8.
10481 ///
10482 /// Finally delinearize provides the access functions for the array reference
10483 /// that does correspond to A[i][j][k] of the above C testcase:
10484 ///
10485 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
10486 ///
10487 /// The testcases are checking the output of a function pass:
10488 /// DelinearizationPass that walks through all loads and stores of a function
10489 /// asking for the SCEV of the memory access with respect to all enclosing
10490 /// loops, calling SCEV->delinearize on that and printing the results.
10491 void ScalarEvolution::delinearize(const SCEV *Expr,
10492                                  SmallVectorImpl<const SCEV *> &Subscripts,
10493                                  SmallVectorImpl<const SCEV *> &Sizes,
10494                                  const SCEV *ElementSize) {
10495   // First step: collect parametric terms.
10496   SmallVector<const SCEV *, 4> Terms;
10497   collectParametricTerms(Expr, Terms);
10498 
10499   if (Terms.empty())
10500     return;
10501 
10502   // Second step: find subscript sizes.
10503   findArrayDimensions(Terms, Sizes, ElementSize);
10504 
10505   if (Sizes.empty())
10506     return;
10507 
10508   // Third step: compute the access functions for each subscript.
10509   computeAccessFunctions(Expr, Subscripts, Sizes);
10510 
10511   if (Subscripts.empty())
10512     return;
10513 
10514   DEBUG({
10515       dbgs() << "succeeded to delinearize " << *Expr << "\n";
10516       dbgs() << "ArrayDecl[UnknownSize]";
10517       for (const SCEV *S : Sizes)
10518         dbgs() << "[" << *S << "]";
10519 
10520       dbgs() << "\nArrayRef";
10521       for (const SCEV *S : Subscripts)
10522         dbgs() << "[" << *S << "]";
10523       dbgs() << "\n";
10524     });
10525 }
10526 
10527 //===----------------------------------------------------------------------===//
10528 //                   SCEVCallbackVH Class Implementation
10529 //===----------------------------------------------------------------------===//
10530 
10531 void ScalarEvolution::SCEVCallbackVH::deleted() {
10532   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
10533   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
10534     SE->ConstantEvolutionLoopExitValue.erase(PN);
10535   SE->eraseValueFromMap(getValPtr());
10536   // this now dangles!
10537 }
10538 
10539 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
10540   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
10541 
10542   // Forget all the expressions associated with users of the old value,
10543   // so that future queries will recompute the expressions using the new
10544   // value.
10545   Value *Old = getValPtr();
10546   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
10547   SmallPtrSet<User *, 8> Visited;
10548   while (!Worklist.empty()) {
10549     User *U = Worklist.pop_back_val();
10550     // Deleting the Old value will cause this to dangle. Postpone
10551     // that until everything else is done.
10552     if (U == Old)
10553       continue;
10554     if (!Visited.insert(U).second)
10555       continue;
10556     if (PHINode *PN = dyn_cast<PHINode>(U))
10557       SE->ConstantEvolutionLoopExitValue.erase(PN);
10558     SE->eraseValueFromMap(U);
10559     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
10560   }
10561   // Delete the Old value.
10562   if (PHINode *PN = dyn_cast<PHINode>(Old))
10563     SE->ConstantEvolutionLoopExitValue.erase(PN);
10564   SE->eraseValueFromMap(Old);
10565   // this now dangles!
10566 }
10567 
10568 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
10569   : CallbackVH(V), SE(se) {}
10570 
10571 //===----------------------------------------------------------------------===//
10572 //                   ScalarEvolution Class Implementation
10573 //===----------------------------------------------------------------------===//
10574 
10575 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
10576                                  AssumptionCache &AC, DominatorTree &DT,
10577                                  LoopInfo &LI)
10578     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
10579       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
10580       LoopDispositions(64), BlockDispositions(64) {
10581   // To use guards for proving predicates, we need to scan every instruction in
10582   // relevant basic blocks, and not just terminators.  Doing this is a waste of
10583   // time if the IR does not actually contain any calls to
10584   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
10585   //
10586   // This pessimizes the case where a pass that preserves ScalarEvolution wants
10587   // to _add_ guards to the module when there weren't any before, and wants
10588   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
10589   // efficient in lieu of being smart in that rather obscure case.
10590 
10591   auto *GuardDecl = F.getParent()->getFunction(
10592       Intrinsic::getName(Intrinsic::experimental_guard));
10593   HasGuards = GuardDecl && !GuardDecl->use_empty();
10594 }
10595 
10596 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
10597     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
10598       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
10599       ValueExprMap(std::move(Arg.ValueExprMap)),
10600       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
10601       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
10602       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
10603       PredicatedBackedgeTakenCounts(
10604           std::move(Arg.PredicatedBackedgeTakenCounts)),
10605       ExitLimits(std::move(Arg.ExitLimits)),
10606       ConstantEvolutionLoopExitValue(
10607           std::move(Arg.ConstantEvolutionLoopExitValue)),
10608       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
10609       LoopDispositions(std::move(Arg.LoopDispositions)),
10610       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
10611       BlockDispositions(std::move(Arg.BlockDispositions)),
10612       UnsignedRanges(std::move(Arg.UnsignedRanges)),
10613       SignedRanges(std::move(Arg.SignedRanges)),
10614       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
10615       UniquePreds(std::move(Arg.UniquePreds)),
10616       SCEVAllocator(std::move(Arg.SCEVAllocator)),
10617       LoopUsers(std::move(Arg.LoopUsers)),
10618       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
10619       FirstUnknown(Arg.FirstUnknown) {
10620   Arg.FirstUnknown = nullptr;
10621 }
10622 
10623 ScalarEvolution::~ScalarEvolution() {
10624   // Iterate through all the SCEVUnknown instances and call their
10625   // destructors, so that they release their references to their values.
10626   for (SCEVUnknown *U = FirstUnknown; U;) {
10627     SCEVUnknown *Tmp = U;
10628     U = U->Next;
10629     Tmp->~SCEVUnknown();
10630   }
10631   FirstUnknown = nullptr;
10632 
10633   ExprValueMap.clear();
10634   ValueExprMap.clear();
10635   HasRecMap.clear();
10636 
10637   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
10638   // that a loop had multiple computable exits.
10639   for (auto &BTCI : BackedgeTakenCounts)
10640     BTCI.second.clear();
10641   for (auto &BTCI : PredicatedBackedgeTakenCounts)
10642     BTCI.second.clear();
10643 
10644   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
10645   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
10646   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
10647 }
10648 
10649 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
10650   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
10651 }
10652 
10653 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
10654                           const Loop *L) {
10655   // Print all inner loops first
10656   for (Loop *I : *L)
10657     PrintLoopInfo(OS, SE, I);
10658 
10659   OS << "Loop ";
10660   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10661   OS << ": ";
10662 
10663   SmallVector<BasicBlock *, 8> ExitBlocks;
10664   L->getExitBlocks(ExitBlocks);
10665   if (ExitBlocks.size() != 1)
10666     OS << "<multiple exits> ";
10667 
10668   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
10669     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
10670   } else {
10671     OS << "Unpredictable backedge-taken count. ";
10672   }
10673 
10674   OS << "\n"
10675         "Loop ";
10676   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10677   OS << ": ";
10678 
10679   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
10680     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
10681     if (SE->isBackedgeTakenCountMaxOrZero(L))
10682       OS << ", actual taken count either this or zero.";
10683   } else {
10684     OS << "Unpredictable max backedge-taken count. ";
10685   }
10686 
10687   OS << "\n"
10688         "Loop ";
10689   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10690   OS << ": ";
10691 
10692   SCEVUnionPredicate Pred;
10693   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
10694   if (!isa<SCEVCouldNotCompute>(PBT)) {
10695     OS << "Predicated backedge-taken count is " << *PBT << "\n";
10696     OS << " Predicates:\n";
10697     Pred.print(OS, 4);
10698   } else {
10699     OS << "Unpredictable predicated backedge-taken count. ";
10700   }
10701   OS << "\n";
10702 
10703   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
10704     OS << "Loop ";
10705     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10706     OS << ": ";
10707     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
10708   }
10709 }
10710 
10711 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
10712   switch (LD) {
10713   case ScalarEvolution::LoopVariant:
10714     return "Variant";
10715   case ScalarEvolution::LoopInvariant:
10716     return "Invariant";
10717   case ScalarEvolution::LoopComputable:
10718     return "Computable";
10719   }
10720   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
10721 }
10722 
10723 void ScalarEvolution::print(raw_ostream &OS) const {
10724   // ScalarEvolution's implementation of the print method is to print
10725   // out SCEV values of all instructions that are interesting. Doing
10726   // this potentially causes it to create new SCEV objects though,
10727   // which technically conflicts with the const qualifier. This isn't
10728   // observable from outside the class though, so casting away the
10729   // const isn't dangerous.
10730   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
10731 
10732   OS << "Classifying expressions for: ";
10733   F.printAsOperand(OS, /*PrintType=*/false);
10734   OS << "\n";
10735   for (Instruction &I : instructions(F))
10736     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
10737       OS << I << '\n';
10738       OS << "  -->  ";
10739       const SCEV *SV = SE.getSCEV(&I);
10740       SV->print(OS);
10741       if (!isa<SCEVCouldNotCompute>(SV)) {
10742         OS << " U: ";
10743         SE.getUnsignedRange(SV).print(OS);
10744         OS << " S: ";
10745         SE.getSignedRange(SV).print(OS);
10746       }
10747 
10748       const Loop *L = LI.getLoopFor(I.getParent());
10749 
10750       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
10751       if (AtUse != SV) {
10752         OS << "  -->  ";
10753         AtUse->print(OS);
10754         if (!isa<SCEVCouldNotCompute>(AtUse)) {
10755           OS << " U: ";
10756           SE.getUnsignedRange(AtUse).print(OS);
10757           OS << " S: ";
10758           SE.getSignedRange(AtUse).print(OS);
10759         }
10760       }
10761 
10762       if (L) {
10763         OS << "\t\t" "Exits: ";
10764         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
10765         if (!SE.isLoopInvariant(ExitValue, L)) {
10766           OS << "<<Unknown>>";
10767         } else {
10768           OS << *ExitValue;
10769         }
10770 
10771         bool First = true;
10772         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
10773           if (First) {
10774             OS << "\t\t" "LoopDispositions: { ";
10775             First = false;
10776           } else {
10777             OS << ", ";
10778           }
10779 
10780           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10781           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
10782         }
10783 
10784         for (auto *InnerL : depth_first(L)) {
10785           if (InnerL == L)
10786             continue;
10787           if (First) {
10788             OS << "\t\t" "LoopDispositions: { ";
10789             First = false;
10790           } else {
10791             OS << ", ";
10792           }
10793 
10794           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
10795           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
10796         }
10797 
10798         OS << " }";
10799       }
10800 
10801       OS << "\n";
10802     }
10803 
10804   OS << "Determining loop execution counts for: ";
10805   F.printAsOperand(OS, /*PrintType=*/false);
10806   OS << "\n";
10807   for (Loop *I : LI)
10808     PrintLoopInfo(OS, &SE, I);
10809 }
10810 
10811 ScalarEvolution::LoopDisposition
10812 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
10813   auto &Values = LoopDispositions[S];
10814   for (auto &V : Values) {
10815     if (V.getPointer() == L)
10816       return V.getInt();
10817   }
10818   Values.emplace_back(L, LoopVariant);
10819   LoopDisposition D = computeLoopDisposition(S, L);
10820   auto &Values2 = LoopDispositions[S];
10821   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
10822     if (V.getPointer() == L) {
10823       V.setInt(D);
10824       break;
10825     }
10826   }
10827   return D;
10828 }
10829 
10830 ScalarEvolution::LoopDisposition
10831 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
10832   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
10833   case scConstant:
10834     return LoopInvariant;
10835   case scTruncate:
10836   case scZeroExtend:
10837   case scSignExtend:
10838     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
10839   case scAddRecExpr: {
10840     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
10841 
10842     // If L is the addrec's loop, it's computable.
10843     if (AR->getLoop() == L)
10844       return LoopComputable;
10845 
10846     // Add recurrences are never invariant in the function-body (null loop).
10847     if (!L)
10848       return LoopVariant;
10849 
10850     // This recurrence is variant w.r.t. L if L contains AR's loop.
10851     if (L->contains(AR->getLoop()))
10852       return LoopVariant;
10853 
10854     // This recurrence is invariant w.r.t. L if AR's loop contains L.
10855     if (AR->getLoop()->contains(L))
10856       return LoopInvariant;
10857 
10858     // This recurrence is variant w.r.t. L if any of its operands
10859     // are variant.
10860     for (auto *Op : AR->operands())
10861       if (!isLoopInvariant(Op, L))
10862         return LoopVariant;
10863 
10864     // Otherwise it's loop-invariant.
10865     return LoopInvariant;
10866   }
10867   case scAddExpr:
10868   case scMulExpr:
10869   case scUMaxExpr:
10870   case scSMaxExpr: {
10871     bool HasVarying = false;
10872     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
10873       LoopDisposition D = getLoopDisposition(Op, L);
10874       if (D == LoopVariant)
10875         return LoopVariant;
10876       if (D == LoopComputable)
10877         HasVarying = true;
10878     }
10879     return HasVarying ? LoopComputable : LoopInvariant;
10880   }
10881   case scUDivExpr: {
10882     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
10883     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
10884     if (LD == LoopVariant)
10885       return LoopVariant;
10886     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
10887     if (RD == LoopVariant)
10888       return LoopVariant;
10889     return (LD == LoopInvariant && RD == LoopInvariant) ?
10890            LoopInvariant : LoopComputable;
10891   }
10892   case scUnknown:
10893     // All non-instruction values are loop invariant.  All instructions are loop
10894     // invariant if they are not contained in the specified loop.
10895     // Instructions are never considered invariant in the function body
10896     // (null loop) because they are defined within the "loop".
10897     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
10898       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
10899     return LoopInvariant;
10900   case scCouldNotCompute:
10901     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10902   }
10903   llvm_unreachable("Unknown SCEV kind!");
10904 }
10905 
10906 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
10907   return getLoopDisposition(S, L) == LoopInvariant;
10908 }
10909 
10910 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
10911   return getLoopDisposition(S, L) == LoopComputable;
10912 }
10913 
10914 ScalarEvolution::BlockDisposition
10915 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
10916   auto &Values = BlockDispositions[S];
10917   for (auto &V : Values) {
10918     if (V.getPointer() == BB)
10919       return V.getInt();
10920   }
10921   Values.emplace_back(BB, DoesNotDominateBlock);
10922   BlockDisposition D = computeBlockDisposition(S, BB);
10923   auto &Values2 = BlockDispositions[S];
10924   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
10925     if (V.getPointer() == BB) {
10926       V.setInt(D);
10927       break;
10928     }
10929   }
10930   return D;
10931 }
10932 
10933 ScalarEvolution::BlockDisposition
10934 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
10935   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
10936   case scConstant:
10937     return ProperlyDominatesBlock;
10938   case scTruncate:
10939   case scZeroExtend:
10940   case scSignExtend:
10941     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
10942   case scAddRecExpr: {
10943     // This uses a "dominates" query instead of "properly dominates" query
10944     // to test for proper dominance too, because the instruction which
10945     // produces the addrec's value is a PHI, and a PHI effectively properly
10946     // dominates its entire containing block.
10947     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
10948     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
10949       return DoesNotDominateBlock;
10950 
10951     // Fall through into SCEVNAryExpr handling.
10952     LLVM_FALLTHROUGH;
10953   }
10954   case scAddExpr:
10955   case scMulExpr:
10956   case scUMaxExpr:
10957   case scSMaxExpr: {
10958     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
10959     bool Proper = true;
10960     for (const SCEV *NAryOp : NAry->operands()) {
10961       BlockDisposition D = getBlockDisposition(NAryOp, BB);
10962       if (D == DoesNotDominateBlock)
10963         return DoesNotDominateBlock;
10964       if (D == DominatesBlock)
10965         Proper = false;
10966     }
10967     return Proper ? ProperlyDominatesBlock : DominatesBlock;
10968   }
10969   case scUDivExpr: {
10970     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
10971     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
10972     BlockDisposition LD = getBlockDisposition(LHS, BB);
10973     if (LD == DoesNotDominateBlock)
10974       return DoesNotDominateBlock;
10975     BlockDisposition RD = getBlockDisposition(RHS, BB);
10976     if (RD == DoesNotDominateBlock)
10977       return DoesNotDominateBlock;
10978     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
10979       ProperlyDominatesBlock : DominatesBlock;
10980   }
10981   case scUnknown:
10982     if (Instruction *I =
10983           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
10984       if (I->getParent() == BB)
10985         return DominatesBlock;
10986       if (DT.properlyDominates(I->getParent(), BB))
10987         return ProperlyDominatesBlock;
10988       return DoesNotDominateBlock;
10989     }
10990     return ProperlyDominatesBlock;
10991   case scCouldNotCompute:
10992     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10993   }
10994   llvm_unreachable("Unknown SCEV kind!");
10995 }
10996 
10997 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
10998   return getBlockDisposition(S, BB) >= DominatesBlock;
10999 }
11000 
11001 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11002   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11003 }
11004 
11005 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11006   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11007 }
11008 
11009 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11010   auto IsS = [&](const SCEV *X) { return S == X; };
11011   auto ContainsS = [&](const SCEV *X) {
11012     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11013   };
11014   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11015 }
11016 
11017 void
11018 ScalarEvolution::forgetMemoizedResults(const SCEV *S, bool EraseExitLimit) {
11019   ValuesAtScopes.erase(S);
11020   LoopDispositions.erase(S);
11021   BlockDispositions.erase(S);
11022   UnsignedRanges.erase(S);
11023   SignedRanges.erase(S);
11024   ExprValueMap.erase(S);
11025   HasRecMap.erase(S);
11026   MinTrailingZerosCache.erase(S);
11027 
11028   for (auto I = PredicatedSCEVRewrites.begin();
11029        I != PredicatedSCEVRewrites.end();) {
11030     std::pair<const SCEV *, const Loop *> Entry = I->first;
11031     if (Entry.first == S)
11032       PredicatedSCEVRewrites.erase(I++);
11033     else
11034       ++I;
11035   }
11036 
11037   auto RemoveSCEVFromBackedgeMap =
11038       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11039         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11040           BackedgeTakenInfo &BEInfo = I->second;
11041           if (BEInfo.hasOperand(S, this)) {
11042             BEInfo.clear();
11043             Map.erase(I++);
11044           } else
11045             ++I;
11046         }
11047       };
11048 
11049   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11050   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11051 
11052   // TODO: There is a suspicion that we only need to do it when there is a
11053   // SCEVUnknown somewhere inside S. Need to check this.
11054   if (EraseExitLimit)
11055     for (auto I = ExitLimits.begin(), E = ExitLimits.end(); I != E; ++I)
11056       if (I->second.hasOperand(S))
11057         ExitLimits.erase(I);
11058 }
11059 
11060 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11061   struct FindUsedLoops {
11062     SmallPtrSet<const Loop *, 8> LoopsUsed;
11063     bool follow(const SCEV *S) {
11064       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11065         LoopsUsed.insert(AR->getLoop());
11066       return true;
11067     }
11068 
11069     bool isDone() const { return false; }
11070   };
11071 
11072   FindUsedLoops F;
11073   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11074 
11075   for (auto *L : F.LoopsUsed)
11076     LoopUsers[L].push_back(S);
11077 }
11078 
11079 void ScalarEvolution::verify() const {
11080   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11081   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11082 
11083   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11084 
11085   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11086   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11087     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11088 
11089     const SCEV *visitConstant(const SCEVConstant *Constant) {
11090       return SE.getConstant(Constant->getAPInt());
11091     }
11092 
11093     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11094       return SE.getUnknown(Expr->getValue());
11095     }
11096 
11097     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11098       return SE.getCouldNotCompute();
11099     }
11100   };
11101 
11102   SCEVMapper SCM(SE2);
11103 
11104   while (!LoopStack.empty()) {
11105     auto *L = LoopStack.pop_back_val();
11106     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11107 
11108     auto *CurBECount = SCM.visit(
11109         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11110     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11111 
11112     if (CurBECount == SE2.getCouldNotCompute() ||
11113         NewBECount == SE2.getCouldNotCompute()) {
11114       // NB! This situation is legal, but is very suspicious -- whatever pass
11115       // change the loop to make a trip count go from could not compute to
11116       // computable or vice-versa *should have* invalidated SCEV.  However, we
11117       // choose not to assert here (for now) since we don't want false
11118       // positives.
11119       continue;
11120     }
11121 
11122     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11123       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11124       // not propagate undef aggressively).  This means we can (and do) fail
11125       // verification in cases where a transform makes the trip count of a loop
11126       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11127       // both cases the loop iterates "undef" times, but SCEV thinks we
11128       // increased the trip count of the loop by 1 incorrectly.
11129       continue;
11130     }
11131 
11132     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11133         SE.getTypeSizeInBits(NewBECount->getType()))
11134       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11135     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11136              SE.getTypeSizeInBits(NewBECount->getType()))
11137       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11138 
11139     auto *ConstantDelta =
11140         dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11141 
11142     if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11143       dbgs() << "Trip Count Changed!\n";
11144       dbgs() << "Old: " << *CurBECount << "\n";
11145       dbgs() << "New: " << *NewBECount << "\n";
11146       dbgs() << "Delta: " << *ConstantDelta << "\n";
11147       std::abort();
11148     }
11149   }
11150 }
11151 
11152 bool ScalarEvolution::invalidate(
11153     Function &F, const PreservedAnalyses &PA,
11154     FunctionAnalysisManager::Invalidator &Inv) {
11155   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11156   // of its dependencies is invalidated.
11157   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11158   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11159          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11160          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11161          Inv.invalidate<LoopAnalysis>(F, PA);
11162 }
11163 
11164 AnalysisKey ScalarEvolutionAnalysis::Key;
11165 
11166 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11167                                              FunctionAnalysisManager &AM) {
11168   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11169                          AM.getResult<AssumptionAnalysis>(F),
11170                          AM.getResult<DominatorTreeAnalysis>(F),
11171                          AM.getResult<LoopAnalysis>(F));
11172 }
11173 
11174 PreservedAnalyses
11175 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11176   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11177   return PreservedAnalyses::all();
11178 }
11179 
11180 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11181                       "Scalar Evolution Analysis", false, true)
11182 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11183 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11184 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11185 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11186 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11187                     "Scalar Evolution Analysis", false, true)
11188 
11189 char ScalarEvolutionWrapperPass::ID = 0;
11190 
11191 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11192   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11193 }
11194 
11195 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11196   SE.reset(new ScalarEvolution(
11197       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11198       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11199       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11200       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11201   return false;
11202 }
11203 
11204 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11205 
11206 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11207   SE->print(OS);
11208 }
11209 
11210 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11211   if (!VerifySCEV)
11212     return;
11213 
11214   SE->verify();
11215 }
11216 
11217 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11218   AU.setPreservesAll();
11219   AU.addRequiredTransitive<AssumptionCacheTracker>();
11220   AU.addRequiredTransitive<LoopInfoWrapperPass>();
11221   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11222   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11223 }
11224 
11225 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11226                                                         const SCEV *RHS) {
11227   FoldingSetNodeID ID;
11228   assert(LHS->getType() == RHS->getType() &&
11229          "Type mismatch between LHS and RHS");
11230   // Unique this node based on the arguments
11231   ID.AddInteger(SCEVPredicate::P_Equal);
11232   ID.AddPointer(LHS);
11233   ID.AddPointer(RHS);
11234   void *IP = nullptr;
11235   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11236     return S;
11237   SCEVEqualPredicate *Eq = new (SCEVAllocator)
11238       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
11239   UniquePreds.InsertNode(Eq, IP);
11240   return Eq;
11241 }
11242 
11243 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
11244     const SCEVAddRecExpr *AR,
11245     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11246   FoldingSetNodeID ID;
11247   // Unique this node based on the arguments
11248   ID.AddInteger(SCEVPredicate::P_Wrap);
11249   ID.AddPointer(AR);
11250   ID.AddInteger(AddedFlags);
11251   void *IP = nullptr;
11252   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11253     return S;
11254   auto *OF = new (SCEVAllocator)
11255       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
11256   UniquePreds.InsertNode(OF, IP);
11257   return OF;
11258 }
11259 
11260 namespace {
11261 
11262 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
11263 public:
11264   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
11265                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11266                         SCEVUnionPredicate *Pred)
11267       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
11268 
11269   /// Rewrites \p S in the context of a loop L and the SCEV predication
11270   /// infrastructure.
11271   ///
11272   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
11273   /// equivalences present in \p Pred.
11274   ///
11275   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
11276   /// \p NewPreds such that the result will be an AddRecExpr.
11277   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
11278                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11279                              SCEVUnionPredicate *Pred) {
11280     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
11281     return Rewriter.visit(S);
11282   }
11283 
11284   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11285     if (Pred) {
11286       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
11287       for (auto *Pred : ExprPreds)
11288         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
11289           if (IPred->getLHS() == Expr)
11290             return IPred->getRHS();
11291     }
11292     return convertToAddRecWithPreds(Expr);
11293   }
11294 
11295   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
11296     const SCEV *Operand = visit(Expr->getOperand());
11297     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11298     if (AR && AR->getLoop() == L && AR->isAffine()) {
11299       // This couldn't be folded because the operand didn't have the nuw
11300       // flag. Add the nusw flag as an assumption that we could make.
11301       const SCEV *Step = AR->getStepRecurrence(SE);
11302       Type *Ty = Expr->getType();
11303       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
11304         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
11305                                 SE.getSignExtendExpr(Step, Ty), L,
11306                                 AR->getNoWrapFlags());
11307     }
11308     return SE.getZeroExtendExpr(Operand, Expr->getType());
11309   }
11310 
11311   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
11312     const SCEV *Operand = visit(Expr->getOperand());
11313     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11314     if (AR && AR->getLoop() == L && AR->isAffine()) {
11315       // This couldn't be folded because the operand didn't have the nsw
11316       // flag. Add the nssw flag as an assumption that we could make.
11317       const SCEV *Step = AR->getStepRecurrence(SE);
11318       Type *Ty = Expr->getType();
11319       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
11320         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
11321                                 SE.getSignExtendExpr(Step, Ty), L,
11322                                 AR->getNoWrapFlags());
11323     }
11324     return SE.getSignExtendExpr(Operand, Expr->getType());
11325   }
11326 
11327 private:
11328   bool addOverflowAssumption(const SCEVPredicate *P) {
11329     if (!NewPreds) {
11330       // Check if we've already made this assumption.
11331       return Pred && Pred->implies(P);
11332     }
11333     NewPreds->insert(P);
11334     return true;
11335   }
11336 
11337   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
11338                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11339     auto *A = SE.getWrapPredicate(AR, AddedFlags);
11340     return addOverflowAssumption(A);
11341   }
11342 
11343   // If \p Expr represents a PHINode, we try to see if it can be represented
11344   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
11345   // to add this predicate as a runtime overflow check, we return the AddRec.
11346   // If \p Expr does not meet these conditions (is not a PHI node, or we
11347   // couldn't create an AddRec for it, or couldn't add the predicate), we just
11348   // return \p Expr.
11349   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
11350     if (!isa<PHINode>(Expr->getValue()))
11351       return Expr;
11352     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
11353     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
11354     if (!PredicatedRewrite)
11355       return Expr;
11356     for (auto *P : PredicatedRewrite->second){
11357       if (!addOverflowAssumption(P))
11358         return Expr;
11359     }
11360     return PredicatedRewrite->first;
11361   }
11362 
11363   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
11364   SCEVUnionPredicate *Pred;
11365   const Loop *L;
11366 };
11367 
11368 } // end anonymous namespace
11369 
11370 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
11371                                                    SCEVUnionPredicate &Preds) {
11372   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
11373 }
11374 
11375 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
11376     const SCEV *S, const Loop *L,
11377     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
11378   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
11379   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
11380   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
11381 
11382   if (!AddRec)
11383     return nullptr;
11384 
11385   // Since the transformation was successful, we can now transfer the SCEV
11386   // predicates.
11387   for (auto *P : TransformPreds)
11388     Preds.insert(P);
11389 
11390   return AddRec;
11391 }
11392 
11393 /// SCEV predicates
11394 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
11395                              SCEVPredicateKind Kind)
11396     : FastID(ID), Kind(Kind) {}
11397 
11398 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
11399                                        const SCEV *LHS, const SCEV *RHS)
11400     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
11401   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
11402   assert(LHS != RHS && "LHS and RHS are the same SCEV");
11403 }
11404 
11405 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
11406   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
11407 
11408   if (!Op)
11409     return false;
11410 
11411   return Op->LHS == LHS && Op->RHS == RHS;
11412 }
11413 
11414 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
11415 
11416 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
11417 
11418 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
11419   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
11420 }
11421 
11422 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
11423                                      const SCEVAddRecExpr *AR,
11424                                      IncrementWrapFlags Flags)
11425     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
11426 
11427 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
11428 
11429 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
11430   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
11431 
11432   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
11433 }
11434 
11435 bool SCEVWrapPredicate::isAlwaysTrue() const {
11436   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
11437   IncrementWrapFlags IFlags = Flags;
11438 
11439   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
11440     IFlags = clearFlags(IFlags, IncrementNSSW);
11441 
11442   return IFlags == IncrementAnyWrap;
11443 }
11444 
11445 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
11446   OS.indent(Depth) << *getExpr() << " Added Flags: ";
11447   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
11448     OS << "<nusw>";
11449   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
11450     OS << "<nssw>";
11451   OS << "\n";
11452 }
11453 
11454 SCEVWrapPredicate::IncrementWrapFlags
11455 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
11456                                    ScalarEvolution &SE) {
11457   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
11458   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
11459 
11460   // We can safely transfer the NSW flag as NSSW.
11461   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
11462     ImpliedFlags = IncrementNSSW;
11463 
11464   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
11465     // If the increment is positive, the SCEV NUW flag will also imply the
11466     // WrapPredicate NUSW flag.
11467     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
11468       if (Step->getValue()->getValue().isNonNegative())
11469         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
11470   }
11471 
11472   return ImpliedFlags;
11473 }
11474 
11475 /// Union predicates don't get cached so create a dummy set ID for it.
11476 SCEVUnionPredicate::SCEVUnionPredicate()
11477     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
11478 
11479 bool SCEVUnionPredicate::isAlwaysTrue() const {
11480   return all_of(Preds,
11481                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
11482 }
11483 
11484 ArrayRef<const SCEVPredicate *>
11485 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
11486   auto I = SCEVToPreds.find(Expr);
11487   if (I == SCEVToPreds.end())
11488     return ArrayRef<const SCEVPredicate *>();
11489   return I->second;
11490 }
11491 
11492 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
11493   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
11494     return all_of(Set->Preds,
11495                   [this](const SCEVPredicate *I) { return this->implies(I); });
11496 
11497   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
11498   if (ScevPredsIt == SCEVToPreds.end())
11499     return false;
11500   auto &SCEVPreds = ScevPredsIt->second;
11501 
11502   return any_of(SCEVPreds,
11503                 [N](const SCEVPredicate *I) { return I->implies(N); });
11504 }
11505 
11506 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
11507 
11508 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
11509   for (auto Pred : Preds)
11510     Pred->print(OS, Depth);
11511 }
11512 
11513 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
11514   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
11515     for (auto Pred : Set->Preds)
11516       add(Pred);
11517     return;
11518   }
11519 
11520   if (implies(N))
11521     return;
11522 
11523   const SCEV *Key = N->getExpr();
11524   assert(Key && "Only SCEVUnionPredicate doesn't have an "
11525                 " associated expression!");
11526 
11527   SCEVToPreds[Key].push_back(N);
11528   Preds.push_back(N);
11529 }
11530 
11531 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
11532                                                      Loop &L)
11533     : SE(SE), L(L) {}
11534 
11535 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
11536   const SCEV *Expr = SE.getSCEV(V);
11537   RewriteEntry &Entry = RewriteMap[Expr];
11538 
11539   // If we already have an entry and the version matches, return it.
11540   if (Entry.second && Generation == Entry.first)
11541     return Entry.second;
11542 
11543   // We found an entry but it's stale. Rewrite the stale entry
11544   // according to the current predicate.
11545   if (Entry.second)
11546     Expr = Entry.second;
11547 
11548   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
11549   Entry = {Generation, NewSCEV};
11550 
11551   return NewSCEV;
11552 }
11553 
11554 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
11555   if (!BackedgeCount) {
11556     SCEVUnionPredicate BackedgePred;
11557     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
11558     addPredicate(BackedgePred);
11559   }
11560   return BackedgeCount;
11561 }
11562 
11563 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
11564   if (Preds.implies(&Pred))
11565     return;
11566   Preds.add(&Pred);
11567   updateGeneration();
11568 }
11569 
11570 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
11571   return Preds;
11572 }
11573 
11574 void PredicatedScalarEvolution::updateGeneration() {
11575   // If the generation number wrapped recompute everything.
11576   if (++Generation == 0) {
11577     for (auto &II : RewriteMap) {
11578       const SCEV *Rewritten = II.second.second;
11579       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
11580     }
11581   }
11582 }
11583 
11584 void PredicatedScalarEvolution::setNoOverflow(
11585     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
11586   const SCEV *Expr = getSCEV(V);
11587   const auto *AR = cast<SCEVAddRecExpr>(Expr);
11588 
11589   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
11590 
11591   // Clear the statically implied flags.
11592   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
11593   addPredicate(*SE.getWrapPredicate(AR, Flags));
11594 
11595   auto II = FlagsMap.insert({V, Flags});
11596   if (!II.second)
11597     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
11598 }
11599 
11600 bool PredicatedScalarEvolution::hasNoOverflow(
11601     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
11602   const SCEV *Expr = getSCEV(V);
11603   const auto *AR = cast<SCEVAddRecExpr>(Expr);
11604 
11605   Flags = SCEVWrapPredicate::clearFlags(
11606       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
11607 
11608   auto II = FlagsMap.find(V);
11609 
11610   if (II != FlagsMap.end())
11611     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
11612 
11613   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
11614 }
11615 
11616 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
11617   const SCEV *Expr = this->getSCEV(V);
11618   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
11619   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
11620 
11621   if (!New)
11622     return nullptr;
11623 
11624   for (auto *P : NewPreds)
11625     Preds.add(P);
11626 
11627   updateGeneration();
11628   RewriteMap[SE.getSCEV(V)] = {Generation, New};
11629   return New;
11630 }
11631 
11632 PredicatedScalarEvolution::PredicatedScalarEvolution(
11633     const PredicatedScalarEvolution &Init)
11634     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
11635       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
11636   for (const auto &I : Init.FlagsMap)
11637     FlagsMap.insert(I);
11638 }
11639 
11640 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
11641   // For each block.
11642   for (auto *BB : L.getBlocks())
11643     for (auto &I : *BB) {
11644       if (!SE.isSCEVable(I.getType()))
11645         continue;
11646 
11647       auto *Expr = SE.getSCEV(&I);
11648       auto II = RewriteMap.find(Expr);
11649 
11650       if (II == RewriteMap.end())
11651         continue;
11652 
11653       // Don't print things that are not interesting.
11654       if (II->second.second == Expr)
11655         continue;
11656 
11657       OS.indent(Depth) << "[PSE]" << I << ":\n";
11658       OS.indent(Depth + 2) << *Expr << "\n";
11659       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
11660     }
11661 }
11662