1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 case scMulExpr: 390 case scUMaxExpr: 391 case scSMaxExpr: 392 case scUMinExpr: 393 case scSMinExpr: 394 return cast<SCEVNAryExpr>(this)->getType(); 395 case scAddExpr: 396 return cast<SCEVAddExpr>(this)->getType(); 397 case scUDivExpr: 398 return cast<SCEVUDivExpr>(this)->getType(); 399 case scUnknown: 400 return cast<SCEVUnknown>(this)->getType(); 401 case scCouldNotCompute: 402 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 403 } 404 llvm_unreachable("Unknown SCEV kind!"); 405 } 406 407 bool SCEV::isZero() const { 408 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 409 return SC->getValue()->isZero(); 410 return false; 411 } 412 413 bool SCEV::isOne() const { 414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 415 return SC->getValue()->isOne(); 416 return false; 417 } 418 419 bool SCEV::isAllOnesValue() const { 420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 421 return SC->getValue()->isMinusOne(); 422 return false; 423 } 424 425 bool SCEV::isNonConstantNegative() const { 426 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 427 if (!Mul) return false; 428 429 // If there is a constant factor, it will be first. 430 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 431 if (!SC) return false; 432 433 // Return true if the value is negative, this matches things like (-42 * V). 434 return SC->getAPInt().isNegative(); 435 } 436 437 SCEVCouldNotCompute::SCEVCouldNotCompute() : 438 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 439 440 bool SCEVCouldNotCompute::classof(const SCEV *S) { 441 return S->getSCEVType() == scCouldNotCompute; 442 } 443 444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 445 FoldingSetNodeID ID; 446 ID.AddInteger(scConstant); 447 ID.AddPointer(V); 448 void *IP = nullptr; 449 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 450 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 451 UniqueSCEVs.InsertNode(S, IP); 452 return S; 453 } 454 455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 456 return getConstant(ConstantInt::get(getContext(), Val)); 457 } 458 459 const SCEV * 460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 461 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 462 return getConstant(ConstantInt::get(ITy, V, isSigned)); 463 } 464 465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 466 const SCEV *op, Type *ty) 467 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 468 Operands[0] = op; 469 } 470 471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 472 Type *ITy) 473 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 474 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 475 "Must be a non-bit-width-changing pointer-to-integer cast!"); 476 } 477 478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 479 SCEVTypes SCEVTy, const SCEV *op, 480 Type *ty) 481 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 482 483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 484 Type *ty) 485 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 486 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 487 "Cannot truncate non-integer value!"); 488 } 489 490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 491 const SCEV *op, Type *ty) 492 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 493 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 494 "Cannot zero extend non-integer value!"); 495 } 496 497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 498 const SCEV *op, Type *ty) 499 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 500 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 501 "Cannot sign extend non-integer value!"); 502 } 503 504 void SCEVUnknown::deleted() { 505 // Clear this SCEVUnknown from various maps. 506 SE->forgetMemoizedResults(this); 507 508 // Remove this SCEVUnknown from the uniquing map. 509 SE->UniqueSCEVs.RemoveNode(this); 510 511 // Release the value. 512 setValPtr(nullptr); 513 } 514 515 void SCEVUnknown::allUsesReplacedWith(Value *New) { 516 // Remove this SCEVUnknown from the uniquing map. 517 SE->UniqueSCEVs.RemoveNode(this); 518 519 // Update this SCEVUnknown to point to the new value. This is needed 520 // because there may still be outstanding SCEVs which still point to 521 // this SCEVUnknown. 522 setValPtr(New); 523 } 524 525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 526 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 527 if (VCE->getOpcode() == Instruction::PtrToInt) 528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 529 if (CE->getOpcode() == Instruction::GetElementPtr && 530 CE->getOperand(0)->isNullValue() && 531 CE->getNumOperands() == 2) 532 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 533 if (CI->isOne()) { 534 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 535 ->getElementType(); 536 return true; 537 } 538 539 return false; 540 } 541 542 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 543 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 544 if (VCE->getOpcode() == Instruction::PtrToInt) 545 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 546 if (CE->getOpcode() == Instruction::GetElementPtr && 547 CE->getOperand(0)->isNullValue()) { 548 Type *Ty = 549 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 550 if (StructType *STy = dyn_cast<StructType>(Ty)) 551 if (!STy->isPacked() && 552 CE->getNumOperands() == 3 && 553 CE->getOperand(1)->isNullValue()) { 554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 555 if (CI->isOne() && 556 STy->getNumElements() == 2 && 557 STy->getElementType(0)->isIntegerTy(1)) { 558 AllocTy = STy->getElementType(1); 559 return true; 560 } 561 } 562 } 563 564 return false; 565 } 566 567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 569 if (VCE->getOpcode() == Instruction::PtrToInt) 570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 571 if (CE->getOpcode() == Instruction::GetElementPtr && 572 CE->getNumOperands() == 3 && 573 CE->getOperand(0)->isNullValue() && 574 CE->getOperand(1)->isNullValue()) { 575 Type *Ty = 576 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 577 // Ignore vector types here so that ScalarEvolutionExpander doesn't 578 // emit getelementptrs that index into vectors. 579 if (Ty->isStructTy() || Ty->isArrayTy()) { 580 CTy = Ty; 581 FieldNo = CE->getOperand(2); 582 return true; 583 } 584 } 585 586 return false; 587 } 588 589 //===----------------------------------------------------------------------===// 590 // SCEV Utilities 591 //===----------------------------------------------------------------------===// 592 593 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 594 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 595 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 596 /// have been previously deemed to be "equally complex" by this routine. It is 597 /// intended to avoid exponential time complexity in cases like: 598 /// 599 /// %a = f(%x, %y) 600 /// %b = f(%a, %a) 601 /// %c = f(%b, %b) 602 /// 603 /// %d = f(%x, %y) 604 /// %e = f(%d, %d) 605 /// %f = f(%e, %e) 606 /// 607 /// CompareValueComplexity(%f, %c) 608 /// 609 /// Since we do not continue running this routine on expression trees once we 610 /// have seen unequal values, there is no need to track them in the cache. 611 static int 612 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 613 const LoopInfo *const LI, Value *LV, Value *RV, 614 unsigned Depth) { 615 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 616 return 0; 617 618 // Order pointer values after integer values. This helps SCEVExpander form 619 // GEPs. 620 bool LIsPointer = LV->getType()->isPointerTy(), 621 RIsPointer = RV->getType()->isPointerTy(); 622 if (LIsPointer != RIsPointer) 623 return (int)LIsPointer - (int)RIsPointer; 624 625 // Compare getValueID values. 626 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 627 if (LID != RID) 628 return (int)LID - (int)RID; 629 630 // Sort arguments by their position. 631 if (const auto *LA = dyn_cast<Argument>(LV)) { 632 const auto *RA = cast<Argument>(RV); 633 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 634 return (int)LArgNo - (int)RArgNo; 635 } 636 637 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 638 const auto *RGV = cast<GlobalValue>(RV); 639 640 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 641 auto LT = GV->getLinkage(); 642 return !(GlobalValue::isPrivateLinkage(LT) || 643 GlobalValue::isInternalLinkage(LT)); 644 }; 645 646 // Use the names to distinguish the two values, but only if the 647 // names are semantically important. 648 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 649 return LGV->getName().compare(RGV->getName()); 650 } 651 652 // For instructions, compare their loop depth, and their operand count. This 653 // is pretty loose. 654 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 655 const auto *RInst = cast<Instruction>(RV); 656 657 // Compare loop depths. 658 const BasicBlock *LParent = LInst->getParent(), 659 *RParent = RInst->getParent(); 660 if (LParent != RParent) { 661 unsigned LDepth = LI->getLoopDepth(LParent), 662 RDepth = LI->getLoopDepth(RParent); 663 if (LDepth != RDepth) 664 return (int)LDepth - (int)RDepth; 665 } 666 667 // Compare the number of operands. 668 unsigned LNumOps = LInst->getNumOperands(), 669 RNumOps = RInst->getNumOperands(); 670 if (LNumOps != RNumOps) 671 return (int)LNumOps - (int)RNumOps; 672 673 for (unsigned Idx : seq(0u, LNumOps)) { 674 int Result = 675 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 676 RInst->getOperand(Idx), Depth + 1); 677 if (Result != 0) 678 return Result; 679 } 680 } 681 682 EqCacheValue.unionSets(LV, RV); 683 return 0; 684 } 685 686 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 687 // than RHS, respectively. A three-way result allows recursive comparisons to be 688 // more efficient. 689 // If the max analysis depth was reached, return None, assuming we do not know 690 // if they are equivalent for sure. 691 static Optional<int> 692 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 693 EquivalenceClasses<const Value *> &EqCacheValue, 694 const LoopInfo *const LI, const SCEV *LHS, 695 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 696 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 697 if (LHS == RHS) 698 return 0; 699 700 // Primarily, sort the SCEVs by their getSCEVType(). 701 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 702 if (LType != RType) 703 return (int)LType - (int)RType; 704 705 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 706 return 0; 707 708 if (Depth > MaxSCEVCompareDepth) 709 return None; 710 711 // Aside from the getSCEVType() ordering, the particular ordering 712 // isn't very important except that it's beneficial to be consistent, 713 // so that (a + b) and (b + a) don't end up as different expressions. 714 switch (LType) { 715 case scUnknown: { 716 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 717 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 718 719 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 720 RU->getValue(), Depth + 1); 721 if (X == 0) 722 EqCacheSCEV.unionSets(LHS, RHS); 723 return X; 724 } 725 726 case scConstant: { 727 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 728 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 729 730 // Compare constant values. 731 const APInt &LA = LC->getAPInt(); 732 const APInt &RA = RC->getAPInt(); 733 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 734 if (LBitWidth != RBitWidth) 735 return (int)LBitWidth - (int)RBitWidth; 736 return LA.ult(RA) ? -1 : 1; 737 } 738 739 case scAddRecExpr: { 740 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 741 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 742 743 // There is always a dominance between two recs that are used by one SCEV, 744 // so we can safely sort recs by loop header dominance. We require such 745 // order in getAddExpr. 746 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 747 if (LLoop != RLoop) { 748 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 749 assert(LHead != RHead && "Two loops share the same header?"); 750 if (DT.dominates(LHead, RHead)) 751 return 1; 752 else 753 assert(DT.dominates(RHead, LHead) && 754 "No dominance between recurrences used by one SCEV?"); 755 return -1; 756 } 757 758 // Addrec complexity grows with operand count. 759 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 760 if (LNumOps != RNumOps) 761 return (int)LNumOps - (int)RNumOps; 762 763 // Lexicographically compare. 764 for (unsigned i = 0; i != LNumOps; ++i) { 765 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 766 LA->getOperand(i), RA->getOperand(i), DT, 767 Depth + 1); 768 if (X != 0) 769 return X; 770 } 771 EqCacheSCEV.unionSets(LHS, RHS); 772 return 0; 773 } 774 775 case scAddExpr: 776 case scMulExpr: 777 case scSMaxExpr: 778 case scUMaxExpr: 779 case scSMinExpr: 780 case scUMinExpr: { 781 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 782 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 783 784 // Lexicographically compare n-ary expressions. 785 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 786 if (LNumOps != RNumOps) 787 return (int)LNumOps - (int)RNumOps; 788 789 for (unsigned i = 0; i != LNumOps; ++i) { 790 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 791 LC->getOperand(i), RC->getOperand(i), DT, 792 Depth + 1); 793 if (X != 0) 794 return X; 795 } 796 EqCacheSCEV.unionSets(LHS, RHS); 797 return 0; 798 } 799 800 case scUDivExpr: { 801 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 802 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 803 804 // Lexicographically compare udiv expressions. 805 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 806 RC->getLHS(), DT, Depth + 1); 807 if (X != 0) 808 return X; 809 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 810 RC->getRHS(), DT, Depth + 1); 811 if (X == 0) 812 EqCacheSCEV.unionSets(LHS, RHS); 813 return X; 814 } 815 816 case scPtrToInt: 817 case scTruncate: 818 case scZeroExtend: 819 case scSignExtend: { 820 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 821 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 822 823 // Compare cast expressions by operand. 824 auto X = 825 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 826 RC->getOperand(), DT, Depth + 1); 827 if (X == 0) 828 EqCacheSCEV.unionSets(LHS, RHS); 829 return X; 830 } 831 832 case scCouldNotCompute: 833 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 834 } 835 llvm_unreachable("Unknown SCEV kind!"); 836 } 837 838 /// Given a list of SCEV objects, order them by their complexity, and group 839 /// objects of the same complexity together by value. When this routine is 840 /// finished, we know that any duplicates in the vector are consecutive and that 841 /// complexity is monotonically increasing. 842 /// 843 /// Note that we go take special precautions to ensure that we get deterministic 844 /// results from this routine. In other words, we don't want the results of 845 /// this to depend on where the addresses of various SCEV objects happened to 846 /// land in memory. 847 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 848 LoopInfo *LI, DominatorTree &DT) { 849 if (Ops.size() < 2) return; // Noop 850 851 EquivalenceClasses<const SCEV *> EqCacheSCEV; 852 EquivalenceClasses<const Value *> EqCacheValue; 853 854 // Whether LHS has provably less complexity than RHS. 855 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 856 auto Complexity = 857 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 858 return Complexity && *Complexity < 0; 859 }; 860 if (Ops.size() == 2) { 861 // This is the common case, which also happens to be trivially simple. 862 // Special case it. 863 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 864 if (IsLessComplex(RHS, LHS)) 865 std::swap(LHS, RHS); 866 return; 867 } 868 869 // Do the rough sort by complexity. 870 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 871 return IsLessComplex(LHS, RHS); 872 }); 873 874 // Now that we are sorted by complexity, group elements of the same 875 // complexity. Note that this is, at worst, N^2, but the vector is likely to 876 // be extremely short in practice. Note that we take this approach because we 877 // do not want to depend on the addresses of the objects we are grouping. 878 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 879 const SCEV *S = Ops[i]; 880 unsigned Complexity = S->getSCEVType(); 881 882 // If there are any objects of the same complexity and same value as this 883 // one, group them. 884 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 885 if (Ops[j] == S) { // Found a duplicate. 886 // Move it to immediately after i'th element. 887 std::swap(Ops[i+1], Ops[j]); 888 ++i; // no need to rescan it. 889 if (i == e-2) return; // Done! 890 } 891 } 892 } 893 } 894 895 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 896 /// least HugeExprThreshold nodes). 897 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 898 return any_of(Ops, [](const SCEV *S) { 899 return S->getExpressionSize() >= HugeExprThreshold; 900 }); 901 } 902 903 //===----------------------------------------------------------------------===// 904 // Simple SCEV method implementations 905 //===----------------------------------------------------------------------===// 906 907 /// Compute BC(It, K). The result has width W. Assume, K > 0. 908 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 909 ScalarEvolution &SE, 910 Type *ResultTy) { 911 // Handle the simplest case efficiently. 912 if (K == 1) 913 return SE.getTruncateOrZeroExtend(It, ResultTy); 914 915 // We are using the following formula for BC(It, K): 916 // 917 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 918 // 919 // Suppose, W is the bitwidth of the return value. We must be prepared for 920 // overflow. Hence, we must assure that the result of our computation is 921 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 922 // safe in modular arithmetic. 923 // 924 // However, this code doesn't use exactly that formula; the formula it uses 925 // is something like the following, where T is the number of factors of 2 in 926 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 927 // exponentiation: 928 // 929 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 930 // 931 // This formula is trivially equivalent to the previous formula. However, 932 // this formula can be implemented much more efficiently. The trick is that 933 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 934 // arithmetic. To do exact division in modular arithmetic, all we have 935 // to do is multiply by the inverse. Therefore, this step can be done at 936 // width W. 937 // 938 // The next issue is how to safely do the division by 2^T. The way this 939 // is done is by doing the multiplication step at a width of at least W + T 940 // bits. This way, the bottom W+T bits of the product are accurate. Then, 941 // when we perform the division by 2^T (which is equivalent to a right shift 942 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 943 // truncated out after the division by 2^T. 944 // 945 // In comparison to just directly using the first formula, this technique 946 // is much more efficient; using the first formula requires W * K bits, 947 // but this formula less than W + K bits. Also, the first formula requires 948 // a division step, whereas this formula only requires multiplies and shifts. 949 // 950 // It doesn't matter whether the subtraction step is done in the calculation 951 // width or the input iteration count's width; if the subtraction overflows, 952 // the result must be zero anyway. We prefer here to do it in the width of 953 // the induction variable because it helps a lot for certain cases; CodeGen 954 // isn't smart enough to ignore the overflow, which leads to much less 955 // efficient code if the width of the subtraction is wider than the native 956 // register width. 957 // 958 // (It's possible to not widen at all by pulling out factors of 2 before 959 // the multiplication; for example, K=2 can be calculated as 960 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 961 // extra arithmetic, so it's not an obvious win, and it gets 962 // much more complicated for K > 3.) 963 964 // Protection from insane SCEVs; this bound is conservative, 965 // but it probably doesn't matter. 966 if (K > 1000) 967 return SE.getCouldNotCompute(); 968 969 unsigned W = SE.getTypeSizeInBits(ResultTy); 970 971 // Calculate K! / 2^T and T; we divide out the factors of two before 972 // multiplying for calculating K! / 2^T to avoid overflow. 973 // Other overflow doesn't matter because we only care about the bottom 974 // W bits of the result. 975 APInt OddFactorial(W, 1); 976 unsigned T = 1; 977 for (unsigned i = 3; i <= K; ++i) { 978 APInt Mult(W, i); 979 unsigned TwoFactors = Mult.countTrailingZeros(); 980 T += TwoFactors; 981 Mult.lshrInPlace(TwoFactors); 982 OddFactorial *= Mult; 983 } 984 985 // We need at least W + T bits for the multiplication step 986 unsigned CalculationBits = W + T; 987 988 // Calculate 2^T, at width T+W. 989 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 990 991 // Calculate the multiplicative inverse of K! / 2^T; 992 // this multiplication factor will perform the exact division by 993 // K! / 2^T. 994 APInt Mod = APInt::getSignedMinValue(W+1); 995 APInt MultiplyFactor = OddFactorial.zext(W+1); 996 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 997 MultiplyFactor = MultiplyFactor.trunc(W); 998 999 // Calculate the product, at width T+W 1000 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1001 CalculationBits); 1002 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1003 for (unsigned i = 1; i != K; ++i) { 1004 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1005 Dividend = SE.getMulExpr(Dividend, 1006 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1007 } 1008 1009 // Divide by 2^T 1010 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1011 1012 // Truncate the result, and divide by K! / 2^T. 1013 1014 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1015 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1016 } 1017 1018 /// Return the value of this chain of recurrences at the specified iteration 1019 /// number. We can evaluate this recurrence by multiplying each element in the 1020 /// chain by the binomial coefficient corresponding to it. In other words, we 1021 /// can evaluate {A,+,B,+,C,+,D} as: 1022 /// 1023 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1024 /// 1025 /// where BC(It, k) stands for binomial coefficient. 1026 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1027 ScalarEvolution &SE) const { 1028 const SCEV *Result = getStart(); 1029 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1030 // The computation is correct in the face of overflow provided that the 1031 // multiplication is performed _after_ the evaluation of the binomial 1032 // coefficient. 1033 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1034 if (isa<SCEVCouldNotCompute>(Coeff)) 1035 return Coeff; 1036 1037 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1038 } 1039 return Result; 1040 } 1041 1042 //===----------------------------------------------------------------------===// 1043 // SCEV Expression folder implementations 1044 //===----------------------------------------------------------------------===// 1045 1046 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty, 1047 unsigned Depth) { 1048 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1049 assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once."); 1050 1051 // We could be called with an integer-typed operands during SCEV rewrites. 1052 // Since the operand is an integer already, just perform zext/trunc/self cast. 1053 if (!Op->getType()->isPointerTy()) 1054 return getTruncateOrZeroExtend(Op, Ty); 1055 1056 // What would be an ID for such a SCEV cast expression? 1057 FoldingSetNodeID ID; 1058 ID.AddInteger(scPtrToInt); 1059 ID.AddPointer(Op); 1060 1061 void *IP = nullptr; 1062 1063 // Is there already an expression for such a cast? 1064 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1065 return getTruncateOrZeroExtend(S, Ty); 1066 1067 // If not, is this expression something we can't reduce any further? 1068 if (isa<SCEVUnknown>(Op)) { 1069 // Create an explicit cast node. 1070 // We can reuse the existing insert position since if we get here, 1071 // we won't have made any changes which would invalidate it. 1072 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1073 assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType( 1074 Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) && 1075 "We can only model ptrtoint if SCEV's effective (integer) type is " 1076 "sufficiently wide to represent all possible pointer values."); 1077 SCEV *S = new (SCEVAllocator) 1078 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1079 UniqueSCEVs.InsertNode(S, IP); 1080 addToLoopUseLists(S); 1081 return getTruncateOrZeroExtend(S, Ty); 1082 } 1083 1084 assert(Depth == 0 && 1085 "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's."); 1086 1087 // Otherwise, we've got some expression that is more complex than just a 1088 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1089 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1090 // only, and the expressions must otherwise be integer-typed. 1091 // So sink the cast down to the SCEVUnknown's. 1092 1093 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1094 /// which computes a pointer-typed value, and rewrites the whole expression 1095 /// tree so that *all* the computations are done on integers, and the only 1096 /// pointer-typed operands in the expression are SCEVUnknown. 1097 class SCEVPtrToIntSinkingRewriter 1098 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1099 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1100 1101 public: 1102 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1103 1104 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1105 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1106 return Rewriter.visit(Scev); 1107 } 1108 1109 const SCEV *visit(const SCEV *S) { 1110 Type *STy = S->getType(); 1111 // If the expression is not pointer-typed, just keep it as-is. 1112 if (!STy->isPointerTy()) 1113 return S; 1114 // Else, recursively sink the cast down into it. 1115 return Base::visit(S); 1116 } 1117 1118 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1119 SmallVector<const SCEV *, 2> Operands; 1120 bool Changed = false; 1121 for (auto *Op : Expr->operands()) { 1122 Operands.push_back(visit(Op)); 1123 Changed |= Op != Operands.back(); 1124 } 1125 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1126 } 1127 1128 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1129 SmallVector<const SCEV *, 2> Operands; 1130 bool Changed = false; 1131 for (auto *Op : Expr->operands()) { 1132 Operands.push_back(visit(Op)); 1133 Changed |= Op != Operands.back(); 1134 } 1135 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1136 } 1137 1138 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1139 Type *ExprPtrTy = Expr->getType(); 1140 assert(ExprPtrTy->isPointerTy() && 1141 "Should only reach pointer-typed SCEVUnknown's."); 1142 Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy); 1143 return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1); 1144 } 1145 }; 1146 1147 // And actually perform the cast sinking. 1148 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1149 assert(IntOp->getType()->isIntegerTy() && 1150 "We must have succeeded in sinking the cast, " 1151 "and ending up with an integer-typed expression!"); 1152 return getTruncateOrZeroExtend(IntOp, Ty); 1153 } 1154 1155 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1156 unsigned Depth) { 1157 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1158 "This is not a truncating conversion!"); 1159 assert(isSCEVable(Ty) && 1160 "This is not a conversion to a SCEVable type!"); 1161 Ty = getEffectiveSCEVType(Ty); 1162 1163 FoldingSetNodeID ID; 1164 ID.AddInteger(scTruncate); 1165 ID.AddPointer(Op); 1166 ID.AddPointer(Ty); 1167 void *IP = nullptr; 1168 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1169 1170 // Fold if the operand is constant. 1171 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1172 return getConstant( 1173 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1174 1175 // trunc(trunc(x)) --> trunc(x) 1176 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1177 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1178 1179 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1180 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1181 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1182 1183 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1184 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1185 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1186 1187 if (Depth > MaxCastDepth) { 1188 SCEV *S = 1189 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1190 UniqueSCEVs.InsertNode(S, IP); 1191 addToLoopUseLists(S); 1192 return S; 1193 } 1194 1195 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1196 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1197 // if after transforming we have at most one truncate, not counting truncates 1198 // that replace other casts. 1199 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1200 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1201 SmallVector<const SCEV *, 4> Operands; 1202 unsigned numTruncs = 0; 1203 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1204 ++i) { 1205 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1206 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1207 isa<SCEVTruncateExpr>(S)) 1208 numTruncs++; 1209 Operands.push_back(S); 1210 } 1211 if (numTruncs < 2) { 1212 if (isa<SCEVAddExpr>(Op)) 1213 return getAddExpr(Operands); 1214 else if (isa<SCEVMulExpr>(Op)) 1215 return getMulExpr(Operands); 1216 else 1217 llvm_unreachable("Unexpected SCEV type for Op."); 1218 } 1219 // Although we checked in the beginning that ID is not in the cache, it is 1220 // possible that during recursion and different modification ID was inserted 1221 // into the cache. So if we find it, just return it. 1222 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1223 return S; 1224 } 1225 1226 // If the input value is a chrec scev, truncate the chrec's operands. 1227 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1228 SmallVector<const SCEV *, 4> Operands; 1229 for (const SCEV *Op : AddRec->operands()) 1230 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1231 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1232 } 1233 1234 // Return zero if truncating to known zeros. 1235 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1236 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1237 return getZero(Ty); 1238 1239 // The cast wasn't folded; create an explicit cast node. We can reuse 1240 // the existing insert position since if we get here, we won't have 1241 // made any changes which would invalidate it. 1242 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1243 Op, Ty); 1244 UniqueSCEVs.InsertNode(S, IP); 1245 addToLoopUseLists(S); 1246 return S; 1247 } 1248 1249 // Get the limit of a recurrence such that incrementing by Step cannot cause 1250 // signed overflow as long as the value of the recurrence within the 1251 // loop does not exceed this limit before incrementing. 1252 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1253 ICmpInst::Predicate *Pred, 1254 ScalarEvolution *SE) { 1255 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1256 if (SE->isKnownPositive(Step)) { 1257 *Pred = ICmpInst::ICMP_SLT; 1258 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1259 SE->getSignedRangeMax(Step)); 1260 } 1261 if (SE->isKnownNegative(Step)) { 1262 *Pred = ICmpInst::ICMP_SGT; 1263 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1264 SE->getSignedRangeMin(Step)); 1265 } 1266 return nullptr; 1267 } 1268 1269 // Get the limit of a recurrence such that incrementing by Step cannot cause 1270 // unsigned overflow as long as the value of the recurrence within the loop does 1271 // not exceed this limit before incrementing. 1272 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1273 ICmpInst::Predicate *Pred, 1274 ScalarEvolution *SE) { 1275 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1276 *Pred = ICmpInst::ICMP_ULT; 1277 1278 return SE->getConstant(APInt::getMinValue(BitWidth) - 1279 SE->getUnsignedRangeMax(Step)); 1280 } 1281 1282 namespace { 1283 1284 struct ExtendOpTraitsBase { 1285 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1286 unsigned); 1287 }; 1288 1289 // Used to make code generic over signed and unsigned overflow. 1290 template <typename ExtendOp> struct ExtendOpTraits { 1291 // Members present: 1292 // 1293 // static const SCEV::NoWrapFlags WrapType; 1294 // 1295 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1296 // 1297 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1298 // ICmpInst::Predicate *Pred, 1299 // ScalarEvolution *SE); 1300 }; 1301 1302 template <> 1303 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1304 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1305 1306 static const GetExtendExprTy GetExtendExpr; 1307 1308 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1309 ICmpInst::Predicate *Pred, 1310 ScalarEvolution *SE) { 1311 return getSignedOverflowLimitForStep(Step, Pred, SE); 1312 } 1313 }; 1314 1315 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1316 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1317 1318 template <> 1319 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1320 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1321 1322 static const GetExtendExprTy GetExtendExpr; 1323 1324 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1325 ICmpInst::Predicate *Pred, 1326 ScalarEvolution *SE) { 1327 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1328 } 1329 }; 1330 1331 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1332 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1333 1334 } // end anonymous namespace 1335 1336 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1337 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1338 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1339 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1340 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1341 // expression "Step + sext/zext(PreIncAR)" is congruent with 1342 // "sext/zext(PostIncAR)" 1343 template <typename ExtendOpTy> 1344 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1345 ScalarEvolution *SE, unsigned Depth) { 1346 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1347 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1348 1349 const Loop *L = AR->getLoop(); 1350 const SCEV *Start = AR->getStart(); 1351 const SCEV *Step = AR->getStepRecurrence(*SE); 1352 1353 // Check for a simple looking step prior to loop entry. 1354 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1355 if (!SA) 1356 return nullptr; 1357 1358 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1359 // subtraction is expensive. For this purpose, perform a quick and dirty 1360 // difference, by checking for Step in the operand list. 1361 SmallVector<const SCEV *, 4> DiffOps; 1362 for (const SCEV *Op : SA->operands()) 1363 if (Op != Step) 1364 DiffOps.push_back(Op); 1365 1366 if (DiffOps.size() == SA->getNumOperands()) 1367 return nullptr; 1368 1369 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1370 // `Step`: 1371 1372 // 1. NSW/NUW flags on the step increment. 1373 auto PreStartFlags = 1374 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1375 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1376 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1377 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1378 1379 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1380 // "S+X does not sign/unsign-overflow". 1381 // 1382 1383 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1384 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1385 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1386 return PreStart; 1387 1388 // 2. Direct overflow check on the step operation's expression. 1389 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1390 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1391 const SCEV *OperandExtendedStart = 1392 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1393 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1394 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1395 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1396 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1397 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1398 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1399 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1400 } 1401 return PreStart; 1402 } 1403 1404 // 3. Loop precondition. 1405 ICmpInst::Predicate Pred; 1406 const SCEV *OverflowLimit = 1407 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1408 1409 if (OverflowLimit && 1410 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1411 return PreStart; 1412 1413 return nullptr; 1414 } 1415 1416 // Get the normalized zero or sign extended expression for this AddRec's Start. 1417 template <typename ExtendOpTy> 1418 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1419 ScalarEvolution *SE, 1420 unsigned Depth) { 1421 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1422 1423 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1424 if (!PreStart) 1425 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1426 1427 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1428 Depth), 1429 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1430 } 1431 1432 // Try to prove away overflow by looking at "nearby" add recurrences. A 1433 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1434 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1435 // 1436 // Formally: 1437 // 1438 // {S,+,X} == {S-T,+,X} + T 1439 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1440 // 1441 // If ({S-T,+,X} + T) does not overflow ... (1) 1442 // 1443 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1444 // 1445 // If {S-T,+,X} does not overflow ... (2) 1446 // 1447 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1448 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1449 // 1450 // If (S-T)+T does not overflow ... (3) 1451 // 1452 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1453 // == {Ext(S),+,Ext(X)} == LHS 1454 // 1455 // Thus, if (1), (2) and (3) are true for some T, then 1456 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1457 // 1458 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1459 // does not overflow" restricted to the 0th iteration. Therefore we only need 1460 // to check for (1) and (2). 1461 // 1462 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1463 // is `Delta` (defined below). 1464 template <typename ExtendOpTy> 1465 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1466 const SCEV *Step, 1467 const Loop *L) { 1468 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1469 1470 // We restrict `Start` to a constant to prevent SCEV from spending too much 1471 // time here. It is correct (but more expensive) to continue with a 1472 // non-constant `Start` and do a general SCEV subtraction to compute 1473 // `PreStart` below. 1474 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1475 if (!StartC) 1476 return false; 1477 1478 APInt StartAI = StartC->getAPInt(); 1479 1480 for (unsigned Delta : {-2, -1, 1, 2}) { 1481 const SCEV *PreStart = getConstant(StartAI - Delta); 1482 1483 FoldingSetNodeID ID; 1484 ID.AddInteger(scAddRecExpr); 1485 ID.AddPointer(PreStart); 1486 ID.AddPointer(Step); 1487 ID.AddPointer(L); 1488 void *IP = nullptr; 1489 const auto *PreAR = 1490 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1491 1492 // Give up if we don't already have the add recurrence we need because 1493 // actually constructing an add recurrence is relatively expensive. 1494 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1495 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1496 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1497 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1498 DeltaS, &Pred, this); 1499 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1500 return true; 1501 } 1502 } 1503 1504 return false; 1505 } 1506 1507 // Finds an integer D for an expression (C + x + y + ...) such that the top 1508 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1509 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1510 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1511 // the (C + x + y + ...) expression is \p WholeAddExpr. 1512 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1513 const SCEVConstant *ConstantTerm, 1514 const SCEVAddExpr *WholeAddExpr) { 1515 const APInt &C = ConstantTerm->getAPInt(); 1516 const unsigned BitWidth = C.getBitWidth(); 1517 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1518 uint32_t TZ = BitWidth; 1519 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1520 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1521 if (TZ) { 1522 // Set D to be as many least significant bits of C as possible while still 1523 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1524 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1525 } 1526 return APInt(BitWidth, 0); 1527 } 1528 1529 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1530 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1531 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1532 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1533 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1534 const APInt &ConstantStart, 1535 const SCEV *Step) { 1536 const unsigned BitWidth = ConstantStart.getBitWidth(); 1537 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1538 if (TZ) 1539 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1540 : ConstantStart; 1541 return APInt(BitWidth, 0); 1542 } 1543 1544 const SCEV * 1545 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1546 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1547 "This is not an extending conversion!"); 1548 assert(isSCEVable(Ty) && 1549 "This is not a conversion to a SCEVable type!"); 1550 Ty = getEffectiveSCEVType(Ty); 1551 1552 // Fold if the operand is constant. 1553 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1554 return getConstant( 1555 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1556 1557 // zext(zext(x)) --> zext(x) 1558 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1559 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1560 1561 // Before doing any expensive analysis, check to see if we've already 1562 // computed a SCEV for this Op and Ty. 1563 FoldingSetNodeID ID; 1564 ID.AddInteger(scZeroExtend); 1565 ID.AddPointer(Op); 1566 ID.AddPointer(Ty); 1567 void *IP = nullptr; 1568 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1569 if (Depth > MaxCastDepth) { 1570 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1571 Op, Ty); 1572 UniqueSCEVs.InsertNode(S, IP); 1573 addToLoopUseLists(S); 1574 return S; 1575 } 1576 1577 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1578 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1579 // It's possible the bits taken off by the truncate were all zero bits. If 1580 // so, we should be able to simplify this further. 1581 const SCEV *X = ST->getOperand(); 1582 ConstantRange CR = getUnsignedRange(X); 1583 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1584 unsigned NewBits = getTypeSizeInBits(Ty); 1585 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1586 CR.zextOrTrunc(NewBits))) 1587 return getTruncateOrZeroExtend(X, Ty, Depth); 1588 } 1589 1590 // If the input value is a chrec scev, and we can prove that the value 1591 // did not overflow the old, smaller, value, we can zero extend all of the 1592 // operands (often constants). This allows analysis of something like 1593 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1594 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1595 if (AR->isAffine()) { 1596 const SCEV *Start = AR->getStart(); 1597 const SCEV *Step = AR->getStepRecurrence(*this); 1598 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1599 const Loop *L = AR->getLoop(); 1600 1601 if (!AR->hasNoUnsignedWrap()) { 1602 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1603 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1604 } 1605 1606 // If we have special knowledge that this addrec won't overflow, 1607 // we don't need to do any further analysis. 1608 if (AR->hasNoUnsignedWrap()) 1609 return getAddRecExpr( 1610 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1611 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1612 1613 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1614 // Note that this serves two purposes: It filters out loops that are 1615 // simply not analyzable, and it covers the case where this code is 1616 // being called from within backedge-taken count analysis, such that 1617 // attempting to ask for the backedge-taken count would likely result 1618 // in infinite recursion. In the later case, the analysis code will 1619 // cope with a conservative value, and it will take care to purge 1620 // that value once it has finished. 1621 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1622 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1623 // Manually compute the final value for AR, checking for overflow. 1624 1625 // Check whether the backedge-taken count can be losslessly casted to 1626 // the addrec's type. The count is always unsigned. 1627 const SCEV *CastedMaxBECount = 1628 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1629 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1630 CastedMaxBECount, MaxBECount->getType(), Depth); 1631 if (MaxBECount == RecastedMaxBECount) { 1632 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1633 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1634 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1635 SCEV::FlagAnyWrap, Depth + 1); 1636 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1637 SCEV::FlagAnyWrap, 1638 Depth + 1), 1639 WideTy, Depth + 1); 1640 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1641 const SCEV *WideMaxBECount = 1642 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1643 const SCEV *OperandExtendedAdd = 1644 getAddExpr(WideStart, 1645 getMulExpr(WideMaxBECount, 1646 getZeroExtendExpr(Step, WideTy, Depth + 1), 1647 SCEV::FlagAnyWrap, Depth + 1), 1648 SCEV::FlagAnyWrap, Depth + 1); 1649 if (ZAdd == OperandExtendedAdd) { 1650 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1651 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1652 // Return the expression with the addrec on the outside. 1653 return getAddRecExpr( 1654 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1655 Depth + 1), 1656 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1657 AR->getNoWrapFlags()); 1658 } 1659 // Similar to above, only this time treat the step value as signed. 1660 // This covers loops that count down. 1661 OperandExtendedAdd = 1662 getAddExpr(WideStart, 1663 getMulExpr(WideMaxBECount, 1664 getSignExtendExpr(Step, WideTy, Depth + 1), 1665 SCEV::FlagAnyWrap, Depth + 1), 1666 SCEV::FlagAnyWrap, Depth + 1); 1667 if (ZAdd == OperandExtendedAdd) { 1668 // Cache knowledge of AR NW, which is propagated to this AddRec. 1669 // Negative step causes unsigned wrap, but it still can't self-wrap. 1670 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1671 // Return the expression with the addrec on the outside. 1672 return getAddRecExpr( 1673 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1674 Depth + 1), 1675 getSignExtendExpr(Step, Ty, Depth + 1), L, 1676 AR->getNoWrapFlags()); 1677 } 1678 } 1679 } 1680 1681 // Normally, in the cases we can prove no-overflow via a 1682 // backedge guarding condition, we can also compute a backedge 1683 // taken count for the loop. The exceptions are assumptions and 1684 // guards present in the loop -- SCEV is not great at exploiting 1685 // these to compute max backedge taken counts, but can still use 1686 // these to prove lack of overflow. Use this fact to avoid 1687 // doing extra work that may not pay off. 1688 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1689 !AC.assumptions().empty()) { 1690 1691 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1692 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1693 if (AR->hasNoUnsignedWrap()) { 1694 // Same as nuw case above - duplicated here to avoid a compile time 1695 // issue. It's not clear that the order of checks does matter, but 1696 // it's one of two issue possible causes for a change which was 1697 // reverted. Be conservative for the moment. 1698 return getAddRecExpr( 1699 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1700 Depth + 1), 1701 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1702 AR->getNoWrapFlags()); 1703 } 1704 1705 // For a negative step, we can extend the operands iff doing so only 1706 // traverses values in the range zext([0,UINT_MAX]). 1707 if (isKnownNegative(Step)) { 1708 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1709 getSignedRangeMin(Step)); 1710 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1711 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1712 // Cache knowledge of AR NW, which is propagated to this 1713 // AddRec. Negative step causes unsigned wrap, but it 1714 // still can't self-wrap. 1715 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1716 // Return the expression with the addrec on the outside. 1717 return getAddRecExpr( 1718 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1719 Depth + 1), 1720 getSignExtendExpr(Step, Ty, Depth + 1), L, 1721 AR->getNoWrapFlags()); 1722 } 1723 } 1724 } 1725 1726 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1727 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1728 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1729 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1730 const APInt &C = SC->getAPInt(); 1731 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1732 if (D != 0) { 1733 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1734 const SCEV *SResidual = 1735 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1736 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1737 return getAddExpr(SZExtD, SZExtR, 1738 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1739 Depth + 1); 1740 } 1741 } 1742 1743 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1744 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1745 return getAddRecExpr( 1746 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1747 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1748 } 1749 } 1750 1751 // zext(A % B) --> zext(A) % zext(B) 1752 { 1753 const SCEV *LHS; 1754 const SCEV *RHS; 1755 if (matchURem(Op, LHS, RHS)) 1756 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1757 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1758 } 1759 1760 // zext(A / B) --> zext(A) / zext(B). 1761 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1762 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1763 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1764 1765 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1766 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1767 if (SA->hasNoUnsignedWrap()) { 1768 // If the addition does not unsign overflow then we can, by definition, 1769 // commute the zero extension with the addition operation. 1770 SmallVector<const SCEV *, 4> Ops; 1771 for (const auto *Op : SA->operands()) 1772 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1773 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1774 } 1775 1776 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1777 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1778 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1779 // 1780 // Often address arithmetics contain expressions like 1781 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1782 // This transformation is useful while proving that such expressions are 1783 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1784 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1785 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1786 if (D != 0) { 1787 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1788 const SCEV *SResidual = 1789 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1790 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1791 return getAddExpr(SZExtD, SZExtR, 1792 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1793 Depth + 1); 1794 } 1795 } 1796 } 1797 1798 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1799 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1800 if (SM->hasNoUnsignedWrap()) { 1801 // If the multiply does not unsign overflow then we can, by definition, 1802 // commute the zero extension with the multiply operation. 1803 SmallVector<const SCEV *, 4> Ops; 1804 for (const auto *Op : SM->operands()) 1805 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1806 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1807 } 1808 1809 // zext(2^K * (trunc X to iN)) to iM -> 1810 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1811 // 1812 // Proof: 1813 // 1814 // zext(2^K * (trunc X to iN)) to iM 1815 // = zext((trunc X to iN) << K) to iM 1816 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1817 // (because shl removes the top K bits) 1818 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1819 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1820 // 1821 if (SM->getNumOperands() == 2) 1822 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1823 if (MulLHS->getAPInt().isPowerOf2()) 1824 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1825 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1826 MulLHS->getAPInt().logBase2(); 1827 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1828 return getMulExpr( 1829 getZeroExtendExpr(MulLHS, Ty), 1830 getZeroExtendExpr( 1831 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1832 SCEV::FlagNUW, Depth + 1); 1833 } 1834 } 1835 1836 // The cast wasn't folded; create an explicit cast node. 1837 // Recompute the insert position, as it may have been invalidated. 1838 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1839 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1840 Op, Ty); 1841 UniqueSCEVs.InsertNode(S, IP); 1842 addToLoopUseLists(S); 1843 return S; 1844 } 1845 1846 const SCEV * 1847 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1848 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1849 "This is not an extending conversion!"); 1850 assert(isSCEVable(Ty) && 1851 "This is not a conversion to a SCEVable type!"); 1852 Ty = getEffectiveSCEVType(Ty); 1853 1854 // Fold if the operand is constant. 1855 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1856 return getConstant( 1857 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1858 1859 // sext(sext(x)) --> sext(x) 1860 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1861 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1862 1863 // sext(zext(x)) --> zext(x) 1864 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1865 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1866 1867 // Before doing any expensive analysis, check to see if we've already 1868 // computed a SCEV for this Op and Ty. 1869 FoldingSetNodeID ID; 1870 ID.AddInteger(scSignExtend); 1871 ID.AddPointer(Op); 1872 ID.AddPointer(Ty); 1873 void *IP = nullptr; 1874 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1875 // Limit recursion depth. 1876 if (Depth > MaxCastDepth) { 1877 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1878 Op, Ty); 1879 UniqueSCEVs.InsertNode(S, IP); 1880 addToLoopUseLists(S); 1881 return S; 1882 } 1883 1884 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1885 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1886 // It's possible the bits taken off by the truncate were all sign bits. If 1887 // so, we should be able to simplify this further. 1888 const SCEV *X = ST->getOperand(); 1889 ConstantRange CR = getSignedRange(X); 1890 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1891 unsigned NewBits = getTypeSizeInBits(Ty); 1892 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1893 CR.sextOrTrunc(NewBits))) 1894 return getTruncateOrSignExtend(X, Ty, Depth); 1895 } 1896 1897 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1898 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1899 if (SA->hasNoSignedWrap()) { 1900 // If the addition does not sign overflow then we can, by definition, 1901 // commute the sign extension with the addition operation. 1902 SmallVector<const SCEV *, 4> Ops; 1903 for (const auto *Op : SA->operands()) 1904 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1905 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1906 } 1907 1908 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1909 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1910 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1911 // 1912 // For instance, this will bring two seemingly different expressions: 1913 // 1 + sext(5 + 20 * %x + 24 * %y) and 1914 // sext(6 + 20 * %x + 24 * %y) 1915 // to the same form: 1916 // 2 + sext(4 + 20 * %x + 24 * %y) 1917 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1918 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1919 if (D != 0) { 1920 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1921 const SCEV *SResidual = 1922 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1923 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1924 return getAddExpr(SSExtD, SSExtR, 1925 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1926 Depth + 1); 1927 } 1928 } 1929 } 1930 // If the input value is a chrec scev, and we can prove that the value 1931 // did not overflow the old, smaller, value, we can sign extend all of the 1932 // operands (often constants). This allows analysis of something like 1933 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1934 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1935 if (AR->isAffine()) { 1936 const SCEV *Start = AR->getStart(); 1937 const SCEV *Step = AR->getStepRecurrence(*this); 1938 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1939 const Loop *L = AR->getLoop(); 1940 1941 if (!AR->hasNoSignedWrap()) { 1942 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1943 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1944 } 1945 1946 // If we have special knowledge that this addrec won't overflow, 1947 // we don't need to do any further analysis. 1948 if (AR->hasNoSignedWrap()) 1949 return getAddRecExpr( 1950 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1951 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1952 1953 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1954 // Note that this serves two purposes: It filters out loops that are 1955 // simply not analyzable, and it covers the case where this code is 1956 // being called from within backedge-taken count analysis, such that 1957 // attempting to ask for the backedge-taken count would likely result 1958 // in infinite recursion. In the later case, the analysis code will 1959 // cope with a conservative value, and it will take care to purge 1960 // that value once it has finished. 1961 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1962 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1963 // Manually compute the final value for AR, checking for 1964 // overflow. 1965 1966 // Check whether the backedge-taken count can be losslessly casted to 1967 // the addrec's type. The count is always unsigned. 1968 const SCEV *CastedMaxBECount = 1969 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1970 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1971 CastedMaxBECount, MaxBECount->getType(), Depth); 1972 if (MaxBECount == RecastedMaxBECount) { 1973 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1974 // Check whether Start+Step*MaxBECount has no signed overflow. 1975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1976 SCEV::FlagAnyWrap, Depth + 1); 1977 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1978 SCEV::FlagAnyWrap, 1979 Depth + 1), 1980 WideTy, Depth + 1); 1981 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1982 const SCEV *WideMaxBECount = 1983 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1984 const SCEV *OperandExtendedAdd = 1985 getAddExpr(WideStart, 1986 getMulExpr(WideMaxBECount, 1987 getSignExtendExpr(Step, WideTy, Depth + 1), 1988 SCEV::FlagAnyWrap, Depth + 1), 1989 SCEV::FlagAnyWrap, Depth + 1); 1990 if (SAdd == OperandExtendedAdd) { 1991 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1992 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 1993 // Return the expression with the addrec on the outside. 1994 return getAddRecExpr( 1995 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1996 Depth + 1), 1997 getSignExtendExpr(Step, Ty, Depth + 1), L, 1998 AR->getNoWrapFlags()); 1999 } 2000 // Similar to above, only this time treat the step value as unsigned. 2001 // This covers loops that count up with an unsigned step. 2002 OperandExtendedAdd = 2003 getAddExpr(WideStart, 2004 getMulExpr(WideMaxBECount, 2005 getZeroExtendExpr(Step, WideTy, Depth + 1), 2006 SCEV::FlagAnyWrap, Depth + 1), 2007 SCEV::FlagAnyWrap, Depth + 1); 2008 if (SAdd == OperandExtendedAdd) { 2009 // If AR wraps around then 2010 // 2011 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2012 // => SAdd != OperandExtendedAdd 2013 // 2014 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2015 // (SAdd == OperandExtendedAdd => AR is NW) 2016 2017 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2018 2019 // Return the expression with the addrec on the outside. 2020 return getAddRecExpr( 2021 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2022 Depth + 1), 2023 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2024 AR->getNoWrapFlags()); 2025 } 2026 } 2027 } 2028 2029 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2030 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2031 if (AR->hasNoSignedWrap()) { 2032 // Same as nsw case above - duplicated here to avoid a compile time 2033 // issue. It's not clear that the order of checks does matter, but 2034 // it's one of two issue possible causes for a change which was 2035 // reverted. Be conservative for the moment. 2036 return getAddRecExpr( 2037 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2038 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2039 } 2040 2041 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2042 // if D + (C - D + Step * n) could be proven to not signed wrap 2043 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2044 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2045 const APInt &C = SC->getAPInt(); 2046 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2047 if (D != 0) { 2048 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2049 const SCEV *SResidual = 2050 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2051 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2052 return getAddExpr(SSExtD, SSExtR, 2053 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2054 Depth + 1); 2055 } 2056 } 2057 2058 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2059 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2060 return getAddRecExpr( 2061 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2062 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2063 } 2064 } 2065 2066 // If the input value is provably positive and we could not simplify 2067 // away the sext build a zext instead. 2068 if (isKnownNonNegative(Op)) 2069 return getZeroExtendExpr(Op, Ty, Depth + 1); 2070 2071 // The cast wasn't folded; create an explicit cast node. 2072 // Recompute the insert position, as it may have been invalidated. 2073 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2074 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2075 Op, Ty); 2076 UniqueSCEVs.InsertNode(S, IP); 2077 addToLoopUseLists(S); 2078 return S; 2079 } 2080 2081 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2082 /// unspecified bits out to the given type. 2083 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2084 Type *Ty) { 2085 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2086 "This is not an extending conversion!"); 2087 assert(isSCEVable(Ty) && 2088 "This is not a conversion to a SCEVable type!"); 2089 Ty = getEffectiveSCEVType(Ty); 2090 2091 // Sign-extend negative constants. 2092 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2093 if (SC->getAPInt().isNegative()) 2094 return getSignExtendExpr(Op, Ty); 2095 2096 // Peel off a truncate cast. 2097 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2098 const SCEV *NewOp = T->getOperand(); 2099 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2100 return getAnyExtendExpr(NewOp, Ty); 2101 return getTruncateOrNoop(NewOp, Ty); 2102 } 2103 2104 // Next try a zext cast. If the cast is folded, use it. 2105 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2106 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2107 return ZExt; 2108 2109 // Next try a sext cast. If the cast is folded, use it. 2110 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2111 if (!isa<SCEVSignExtendExpr>(SExt)) 2112 return SExt; 2113 2114 // Force the cast to be folded into the operands of an addrec. 2115 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2116 SmallVector<const SCEV *, 4> Ops; 2117 for (const SCEV *Op : AR->operands()) 2118 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2119 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2120 } 2121 2122 // If the expression is obviously signed, use the sext cast value. 2123 if (isa<SCEVSMaxExpr>(Op)) 2124 return SExt; 2125 2126 // Absent any other information, use the zext cast value. 2127 return ZExt; 2128 } 2129 2130 /// Process the given Ops list, which is a list of operands to be added under 2131 /// the given scale, update the given map. This is a helper function for 2132 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2133 /// that would form an add expression like this: 2134 /// 2135 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2136 /// 2137 /// where A and B are constants, update the map with these values: 2138 /// 2139 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2140 /// 2141 /// and add 13 + A*B*29 to AccumulatedConstant. 2142 /// This will allow getAddRecExpr to produce this: 2143 /// 2144 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2145 /// 2146 /// This form often exposes folding opportunities that are hidden in 2147 /// the original operand list. 2148 /// 2149 /// Return true iff it appears that any interesting folding opportunities 2150 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2151 /// the common case where no interesting opportunities are present, and 2152 /// is also used as a check to avoid infinite recursion. 2153 static bool 2154 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2155 SmallVectorImpl<const SCEV *> &NewOps, 2156 APInt &AccumulatedConstant, 2157 const SCEV *const *Ops, size_t NumOperands, 2158 const APInt &Scale, 2159 ScalarEvolution &SE) { 2160 bool Interesting = false; 2161 2162 // Iterate over the add operands. They are sorted, with constants first. 2163 unsigned i = 0; 2164 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2165 ++i; 2166 // Pull a buried constant out to the outside. 2167 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2168 Interesting = true; 2169 AccumulatedConstant += Scale * C->getAPInt(); 2170 } 2171 2172 // Next comes everything else. We're especially interested in multiplies 2173 // here, but they're in the middle, so just visit the rest with one loop. 2174 for (; i != NumOperands; ++i) { 2175 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2176 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2177 APInt NewScale = 2178 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2179 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2180 // A multiplication of a constant with another add; recurse. 2181 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2182 Interesting |= 2183 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2184 Add->op_begin(), Add->getNumOperands(), 2185 NewScale, SE); 2186 } else { 2187 // A multiplication of a constant with some other value. Update 2188 // the map. 2189 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2190 const SCEV *Key = SE.getMulExpr(MulOps); 2191 auto Pair = M.insert({Key, NewScale}); 2192 if (Pair.second) { 2193 NewOps.push_back(Pair.first->first); 2194 } else { 2195 Pair.first->second += NewScale; 2196 // The map already had an entry for this value, which may indicate 2197 // a folding opportunity. 2198 Interesting = true; 2199 } 2200 } 2201 } else { 2202 // An ordinary operand. Update the map. 2203 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2204 M.insert({Ops[i], Scale}); 2205 if (Pair.second) { 2206 NewOps.push_back(Pair.first->first); 2207 } else { 2208 Pair.first->second += Scale; 2209 // The map already had an entry for this value, which may indicate 2210 // a folding opportunity. 2211 Interesting = true; 2212 } 2213 } 2214 } 2215 2216 return Interesting; 2217 } 2218 2219 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2220 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2221 // can't-overflow flags for the operation if possible. 2222 static SCEV::NoWrapFlags 2223 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2224 const ArrayRef<const SCEV *> Ops, 2225 SCEV::NoWrapFlags Flags) { 2226 using namespace std::placeholders; 2227 2228 using OBO = OverflowingBinaryOperator; 2229 2230 bool CanAnalyze = 2231 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2232 (void)CanAnalyze; 2233 assert(CanAnalyze && "don't call from other places!"); 2234 2235 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2236 SCEV::NoWrapFlags SignOrUnsignWrap = 2237 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2238 2239 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2240 auto IsKnownNonNegative = [&](const SCEV *S) { 2241 return SE->isKnownNonNegative(S); 2242 }; 2243 2244 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2245 Flags = 2246 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2247 2248 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2249 2250 if (SignOrUnsignWrap != SignOrUnsignMask && 2251 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2252 isa<SCEVConstant>(Ops[0])) { 2253 2254 auto Opcode = [&] { 2255 switch (Type) { 2256 case scAddExpr: 2257 return Instruction::Add; 2258 case scMulExpr: 2259 return Instruction::Mul; 2260 default: 2261 llvm_unreachable("Unexpected SCEV op."); 2262 } 2263 }(); 2264 2265 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2266 2267 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2268 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2269 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2270 Opcode, C, OBO::NoSignedWrap); 2271 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2272 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2273 } 2274 2275 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2276 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2277 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2278 Opcode, C, OBO::NoUnsignedWrap); 2279 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2280 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2281 } 2282 } 2283 2284 return Flags; 2285 } 2286 2287 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2288 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2289 } 2290 2291 /// Get a canonical add expression, or something simpler if possible. 2292 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2293 SCEV::NoWrapFlags OrigFlags, 2294 unsigned Depth) { 2295 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2296 "only nuw or nsw allowed"); 2297 assert(!Ops.empty() && "Cannot get empty add!"); 2298 if (Ops.size() == 1) return Ops[0]; 2299 #ifndef NDEBUG 2300 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2301 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2302 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2303 "SCEVAddExpr operand types don't match!"); 2304 #endif 2305 2306 // Sort by complexity, this groups all similar expression types together. 2307 GroupByComplexity(Ops, &LI, DT); 2308 2309 // If there are any constants, fold them together. 2310 unsigned Idx = 0; 2311 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2312 ++Idx; 2313 assert(Idx < Ops.size()); 2314 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2315 // We found two constants, fold them together! 2316 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2317 if (Ops.size() == 2) return Ops[0]; 2318 Ops.erase(Ops.begin()+1); // Erase the folded element 2319 LHSC = cast<SCEVConstant>(Ops[0]); 2320 } 2321 2322 // If we are left with a constant zero being added, strip it off. 2323 if (LHSC->getValue()->isZero()) { 2324 Ops.erase(Ops.begin()); 2325 --Idx; 2326 } 2327 2328 if (Ops.size() == 1) return Ops[0]; 2329 } 2330 2331 // Delay expensive flag strengthening until necessary. 2332 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2333 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2334 }; 2335 2336 // Limit recursion calls depth. 2337 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2338 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2339 2340 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2341 // Don't strengthen flags if we have no new information. 2342 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2343 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2344 Add->setNoWrapFlags(ComputeFlags(Ops)); 2345 return S; 2346 } 2347 2348 // Okay, check to see if the same value occurs in the operand list more than 2349 // once. If so, merge them together into an multiply expression. Since we 2350 // sorted the list, these values are required to be adjacent. 2351 Type *Ty = Ops[0]->getType(); 2352 bool FoundMatch = false; 2353 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2354 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2355 // Scan ahead to count how many equal operands there are. 2356 unsigned Count = 2; 2357 while (i+Count != e && Ops[i+Count] == Ops[i]) 2358 ++Count; 2359 // Merge the values into a multiply. 2360 const SCEV *Scale = getConstant(Ty, Count); 2361 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2362 if (Ops.size() == Count) 2363 return Mul; 2364 Ops[i] = Mul; 2365 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2366 --i; e -= Count - 1; 2367 FoundMatch = true; 2368 } 2369 if (FoundMatch) 2370 return getAddExpr(Ops, OrigFlags, Depth + 1); 2371 2372 // Check for truncates. If all the operands are truncated from the same 2373 // type, see if factoring out the truncate would permit the result to be 2374 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2375 // if the contents of the resulting outer trunc fold to something simple. 2376 auto FindTruncSrcType = [&]() -> Type * { 2377 // We're ultimately looking to fold an addrec of truncs and muls of only 2378 // constants and truncs, so if we find any other types of SCEV 2379 // as operands of the addrec then we bail and return nullptr here. 2380 // Otherwise, we return the type of the operand of a trunc that we find. 2381 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2382 return T->getOperand()->getType(); 2383 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2384 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2385 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2386 return T->getOperand()->getType(); 2387 } 2388 return nullptr; 2389 }; 2390 if (auto *SrcType = FindTruncSrcType()) { 2391 SmallVector<const SCEV *, 8> LargeOps; 2392 bool Ok = true; 2393 // Check all the operands to see if they can be represented in the 2394 // source type of the truncate. 2395 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2396 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2397 if (T->getOperand()->getType() != SrcType) { 2398 Ok = false; 2399 break; 2400 } 2401 LargeOps.push_back(T->getOperand()); 2402 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2403 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2404 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2405 SmallVector<const SCEV *, 8> LargeMulOps; 2406 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2407 if (const SCEVTruncateExpr *T = 2408 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2409 if (T->getOperand()->getType() != SrcType) { 2410 Ok = false; 2411 break; 2412 } 2413 LargeMulOps.push_back(T->getOperand()); 2414 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2415 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2416 } else { 2417 Ok = false; 2418 break; 2419 } 2420 } 2421 if (Ok) 2422 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2423 } else { 2424 Ok = false; 2425 break; 2426 } 2427 } 2428 if (Ok) { 2429 // Evaluate the expression in the larger type. 2430 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2431 // If it folds to something simple, use it. Otherwise, don't. 2432 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2433 return getTruncateExpr(Fold, Ty); 2434 } 2435 } 2436 2437 // Skip past any other cast SCEVs. 2438 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2439 ++Idx; 2440 2441 // If there are add operands they would be next. 2442 if (Idx < Ops.size()) { 2443 bool DeletedAdd = false; 2444 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2445 if (Ops.size() > AddOpsInlineThreshold || 2446 Add->getNumOperands() > AddOpsInlineThreshold) 2447 break; 2448 // If we have an add, expand the add operands onto the end of the operands 2449 // list. 2450 Ops.erase(Ops.begin()+Idx); 2451 Ops.append(Add->op_begin(), Add->op_end()); 2452 DeletedAdd = true; 2453 } 2454 2455 // If we deleted at least one add, we added operands to the end of the list, 2456 // and they are not necessarily sorted. Recurse to resort and resimplify 2457 // any operands we just acquired. 2458 if (DeletedAdd) 2459 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2460 } 2461 2462 // Skip over the add expression until we get to a multiply. 2463 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2464 ++Idx; 2465 2466 // Check to see if there are any folding opportunities present with 2467 // operands multiplied by constant values. 2468 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2469 uint64_t BitWidth = getTypeSizeInBits(Ty); 2470 DenseMap<const SCEV *, APInt> M; 2471 SmallVector<const SCEV *, 8> NewOps; 2472 APInt AccumulatedConstant(BitWidth, 0); 2473 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2474 Ops.data(), Ops.size(), 2475 APInt(BitWidth, 1), *this)) { 2476 struct APIntCompare { 2477 bool operator()(const APInt &LHS, const APInt &RHS) const { 2478 return LHS.ult(RHS); 2479 } 2480 }; 2481 2482 // Some interesting folding opportunity is present, so its worthwhile to 2483 // re-generate the operands list. Group the operands by constant scale, 2484 // to avoid multiplying by the same constant scale multiple times. 2485 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2486 for (const SCEV *NewOp : NewOps) 2487 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2488 // Re-generate the operands list. 2489 Ops.clear(); 2490 if (AccumulatedConstant != 0) 2491 Ops.push_back(getConstant(AccumulatedConstant)); 2492 for (auto &MulOp : MulOpLists) 2493 if (MulOp.first != 0) 2494 Ops.push_back(getMulExpr( 2495 getConstant(MulOp.first), 2496 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2497 SCEV::FlagAnyWrap, Depth + 1)); 2498 if (Ops.empty()) 2499 return getZero(Ty); 2500 if (Ops.size() == 1) 2501 return Ops[0]; 2502 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2503 } 2504 } 2505 2506 // If we are adding something to a multiply expression, make sure the 2507 // something is not already an operand of the multiply. If so, merge it into 2508 // the multiply. 2509 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2510 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2511 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2512 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2513 if (isa<SCEVConstant>(MulOpSCEV)) 2514 continue; 2515 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2516 if (MulOpSCEV == Ops[AddOp]) { 2517 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2518 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2519 if (Mul->getNumOperands() != 2) { 2520 // If the multiply has more than two operands, we must get the 2521 // Y*Z term. 2522 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2523 Mul->op_begin()+MulOp); 2524 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2525 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2526 } 2527 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2528 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2529 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2530 SCEV::FlagAnyWrap, Depth + 1); 2531 if (Ops.size() == 2) return OuterMul; 2532 if (AddOp < Idx) { 2533 Ops.erase(Ops.begin()+AddOp); 2534 Ops.erase(Ops.begin()+Idx-1); 2535 } else { 2536 Ops.erase(Ops.begin()+Idx); 2537 Ops.erase(Ops.begin()+AddOp-1); 2538 } 2539 Ops.push_back(OuterMul); 2540 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2541 } 2542 2543 // Check this multiply against other multiplies being added together. 2544 for (unsigned OtherMulIdx = Idx+1; 2545 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2546 ++OtherMulIdx) { 2547 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2548 // If MulOp occurs in OtherMul, we can fold the two multiplies 2549 // together. 2550 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2551 OMulOp != e; ++OMulOp) 2552 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2553 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2554 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2555 if (Mul->getNumOperands() != 2) { 2556 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2557 Mul->op_begin()+MulOp); 2558 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2559 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2560 } 2561 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2562 if (OtherMul->getNumOperands() != 2) { 2563 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2564 OtherMul->op_begin()+OMulOp); 2565 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2566 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2567 } 2568 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2569 const SCEV *InnerMulSum = 2570 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2571 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2572 SCEV::FlagAnyWrap, Depth + 1); 2573 if (Ops.size() == 2) return OuterMul; 2574 Ops.erase(Ops.begin()+Idx); 2575 Ops.erase(Ops.begin()+OtherMulIdx-1); 2576 Ops.push_back(OuterMul); 2577 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2578 } 2579 } 2580 } 2581 } 2582 2583 // If there are any add recurrences in the operands list, see if any other 2584 // added values are loop invariant. If so, we can fold them into the 2585 // recurrence. 2586 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2587 ++Idx; 2588 2589 // Scan over all recurrences, trying to fold loop invariants into them. 2590 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2591 // Scan all of the other operands to this add and add them to the vector if 2592 // they are loop invariant w.r.t. the recurrence. 2593 SmallVector<const SCEV *, 8> LIOps; 2594 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2595 const Loop *AddRecLoop = AddRec->getLoop(); 2596 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2597 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2598 LIOps.push_back(Ops[i]); 2599 Ops.erase(Ops.begin()+i); 2600 --i; --e; 2601 } 2602 2603 // If we found some loop invariants, fold them into the recurrence. 2604 if (!LIOps.empty()) { 2605 // Compute nowrap flags for the addition of the loop-invariant ops and 2606 // the addrec. Temporarily push it as an operand for that purpose. 2607 LIOps.push_back(AddRec); 2608 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2609 LIOps.pop_back(); 2610 2611 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2612 LIOps.push_back(AddRec->getStart()); 2613 2614 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2615 // This follows from the fact that the no-wrap flags on the outer add 2616 // expression are applicable on the 0th iteration, when the add recurrence 2617 // will be equal to its start value. 2618 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2619 2620 // Build the new addrec. Propagate the NUW and NSW flags if both the 2621 // outer add and the inner addrec are guaranteed to have no overflow. 2622 // Always propagate NW. 2623 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2624 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2625 2626 // If all of the other operands were loop invariant, we are done. 2627 if (Ops.size() == 1) return NewRec; 2628 2629 // Otherwise, add the folded AddRec by the non-invariant parts. 2630 for (unsigned i = 0;; ++i) 2631 if (Ops[i] == AddRec) { 2632 Ops[i] = NewRec; 2633 break; 2634 } 2635 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2636 } 2637 2638 // Okay, if there weren't any loop invariants to be folded, check to see if 2639 // there are multiple AddRec's with the same loop induction variable being 2640 // added together. If so, we can fold them. 2641 for (unsigned OtherIdx = Idx+1; 2642 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2643 ++OtherIdx) { 2644 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2645 // so that the 1st found AddRecExpr is dominated by all others. 2646 assert(DT.dominates( 2647 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2648 AddRec->getLoop()->getHeader()) && 2649 "AddRecExprs are not sorted in reverse dominance order?"); 2650 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2651 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2652 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2653 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2654 ++OtherIdx) { 2655 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2656 if (OtherAddRec->getLoop() == AddRecLoop) { 2657 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2658 i != e; ++i) { 2659 if (i >= AddRecOps.size()) { 2660 AddRecOps.append(OtherAddRec->op_begin()+i, 2661 OtherAddRec->op_end()); 2662 break; 2663 } 2664 SmallVector<const SCEV *, 2> TwoOps = { 2665 AddRecOps[i], OtherAddRec->getOperand(i)}; 2666 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2667 } 2668 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2669 } 2670 } 2671 // Step size has changed, so we cannot guarantee no self-wraparound. 2672 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2673 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2674 } 2675 } 2676 2677 // Otherwise couldn't fold anything into this recurrence. Move onto the 2678 // next one. 2679 } 2680 2681 // Okay, it looks like we really DO need an add expr. Check to see if we 2682 // already have one, otherwise create a new one. 2683 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2684 } 2685 2686 const SCEV * 2687 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2688 SCEV::NoWrapFlags Flags) { 2689 FoldingSetNodeID ID; 2690 ID.AddInteger(scAddExpr); 2691 for (const SCEV *Op : Ops) 2692 ID.AddPointer(Op); 2693 void *IP = nullptr; 2694 SCEVAddExpr *S = 2695 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2696 if (!S) { 2697 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2698 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2699 S = new (SCEVAllocator) 2700 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2701 UniqueSCEVs.InsertNode(S, IP); 2702 addToLoopUseLists(S); 2703 } 2704 S->setNoWrapFlags(Flags); 2705 return S; 2706 } 2707 2708 const SCEV * 2709 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2710 const Loop *L, SCEV::NoWrapFlags Flags) { 2711 FoldingSetNodeID ID; 2712 ID.AddInteger(scAddRecExpr); 2713 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2714 ID.AddPointer(Ops[i]); 2715 ID.AddPointer(L); 2716 void *IP = nullptr; 2717 SCEVAddRecExpr *S = 2718 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2719 if (!S) { 2720 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2721 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2722 S = new (SCEVAllocator) 2723 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2724 UniqueSCEVs.InsertNode(S, IP); 2725 addToLoopUseLists(S); 2726 } 2727 setNoWrapFlags(S, Flags); 2728 return S; 2729 } 2730 2731 const SCEV * 2732 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2733 SCEV::NoWrapFlags Flags) { 2734 FoldingSetNodeID ID; 2735 ID.AddInteger(scMulExpr); 2736 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2737 ID.AddPointer(Ops[i]); 2738 void *IP = nullptr; 2739 SCEVMulExpr *S = 2740 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2741 if (!S) { 2742 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2743 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2744 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2745 O, Ops.size()); 2746 UniqueSCEVs.InsertNode(S, IP); 2747 addToLoopUseLists(S); 2748 } 2749 S->setNoWrapFlags(Flags); 2750 return S; 2751 } 2752 2753 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2754 uint64_t k = i*j; 2755 if (j > 1 && k / j != i) Overflow = true; 2756 return k; 2757 } 2758 2759 /// Compute the result of "n choose k", the binomial coefficient. If an 2760 /// intermediate computation overflows, Overflow will be set and the return will 2761 /// be garbage. Overflow is not cleared on absence of overflow. 2762 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2763 // We use the multiplicative formula: 2764 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2765 // At each iteration, we take the n-th term of the numeral and divide by the 2766 // (k-n)th term of the denominator. This division will always produce an 2767 // integral result, and helps reduce the chance of overflow in the 2768 // intermediate computations. However, we can still overflow even when the 2769 // final result would fit. 2770 2771 if (n == 0 || n == k) return 1; 2772 if (k > n) return 0; 2773 2774 if (k > n/2) 2775 k = n-k; 2776 2777 uint64_t r = 1; 2778 for (uint64_t i = 1; i <= k; ++i) { 2779 r = umul_ov(r, n-(i-1), Overflow); 2780 r /= i; 2781 } 2782 return r; 2783 } 2784 2785 /// Determine if any of the operands in this SCEV are a constant or if 2786 /// any of the add or multiply expressions in this SCEV contain a constant. 2787 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2788 struct FindConstantInAddMulChain { 2789 bool FoundConstant = false; 2790 2791 bool follow(const SCEV *S) { 2792 FoundConstant |= isa<SCEVConstant>(S); 2793 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2794 } 2795 2796 bool isDone() const { 2797 return FoundConstant; 2798 } 2799 }; 2800 2801 FindConstantInAddMulChain F; 2802 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2803 ST.visitAll(StartExpr); 2804 return F.FoundConstant; 2805 } 2806 2807 /// Get a canonical multiply expression, or something simpler if possible. 2808 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2809 SCEV::NoWrapFlags OrigFlags, 2810 unsigned Depth) { 2811 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2812 "only nuw or nsw allowed"); 2813 assert(!Ops.empty() && "Cannot get empty mul!"); 2814 if (Ops.size() == 1) return Ops[0]; 2815 #ifndef NDEBUG 2816 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2817 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2818 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2819 "SCEVMulExpr operand types don't match!"); 2820 #endif 2821 2822 // Sort by complexity, this groups all similar expression types together. 2823 GroupByComplexity(Ops, &LI, DT); 2824 2825 // If there are any constants, fold them together. 2826 unsigned Idx = 0; 2827 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2828 ++Idx; 2829 assert(Idx < Ops.size()); 2830 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2831 // We found two constants, fold them together! 2832 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2833 if (Ops.size() == 2) return Ops[0]; 2834 Ops.erase(Ops.begin()+1); // Erase the folded element 2835 LHSC = cast<SCEVConstant>(Ops[0]); 2836 } 2837 2838 // If we have a multiply of zero, it will always be zero. 2839 if (LHSC->getValue()->isZero()) 2840 return LHSC; 2841 2842 // If we are left with a constant one being multiplied, strip it off. 2843 if (LHSC->getValue()->isOne()) { 2844 Ops.erase(Ops.begin()); 2845 --Idx; 2846 } 2847 2848 if (Ops.size() == 1) 2849 return Ops[0]; 2850 } 2851 2852 // Delay expensive flag strengthening until necessary. 2853 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2854 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 2855 }; 2856 2857 // Limit recursion calls depth. 2858 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2859 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 2860 2861 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2862 // Don't strengthen flags if we have no new information. 2863 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 2864 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 2865 Mul->setNoWrapFlags(ComputeFlags(Ops)); 2866 return S; 2867 } 2868 2869 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2870 if (Ops.size() == 2) { 2871 // C1*(C2+V) -> C1*C2 + C1*V 2872 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2873 // If any of Add's ops are Adds or Muls with a constant, apply this 2874 // transformation as well. 2875 // 2876 // TODO: There are some cases where this transformation is not 2877 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2878 // this transformation should be narrowed down. 2879 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2880 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2881 SCEV::FlagAnyWrap, Depth + 1), 2882 getMulExpr(LHSC, Add->getOperand(1), 2883 SCEV::FlagAnyWrap, Depth + 1), 2884 SCEV::FlagAnyWrap, Depth + 1); 2885 2886 if (Ops[0]->isAllOnesValue()) { 2887 // If we have a mul by -1 of an add, try distributing the -1 among the 2888 // add operands. 2889 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2890 SmallVector<const SCEV *, 4> NewOps; 2891 bool AnyFolded = false; 2892 for (const SCEV *AddOp : Add->operands()) { 2893 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2894 Depth + 1); 2895 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2896 NewOps.push_back(Mul); 2897 } 2898 if (AnyFolded) 2899 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2900 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2901 // Negation preserves a recurrence's no self-wrap property. 2902 SmallVector<const SCEV *, 4> Operands; 2903 for (const SCEV *AddRecOp : AddRec->operands()) 2904 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2905 Depth + 1)); 2906 2907 return getAddRecExpr(Operands, AddRec->getLoop(), 2908 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2909 } 2910 } 2911 } 2912 } 2913 2914 // Skip over the add expression until we get to a multiply. 2915 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2916 ++Idx; 2917 2918 // If there are mul operands inline them all into this expression. 2919 if (Idx < Ops.size()) { 2920 bool DeletedMul = false; 2921 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2922 if (Ops.size() > MulOpsInlineThreshold) 2923 break; 2924 // If we have an mul, expand the mul operands onto the end of the 2925 // operands list. 2926 Ops.erase(Ops.begin()+Idx); 2927 Ops.append(Mul->op_begin(), Mul->op_end()); 2928 DeletedMul = true; 2929 } 2930 2931 // If we deleted at least one mul, we added operands to the end of the 2932 // list, and they are not necessarily sorted. Recurse to resort and 2933 // resimplify any operands we just acquired. 2934 if (DeletedMul) 2935 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2936 } 2937 2938 // If there are any add recurrences in the operands list, see if any other 2939 // added values are loop invariant. If so, we can fold them into the 2940 // recurrence. 2941 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2942 ++Idx; 2943 2944 // Scan over all recurrences, trying to fold loop invariants into them. 2945 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2946 // Scan all of the other operands to this mul and add them to the vector 2947 // if they are loop invariant w.r.t. the recurrence. 2948 SmallVector<const SCEV *, 8> LIOps; 2949 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2950 const Loop *AddRecLoop = AddRec->getLoop(); 2951 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2952 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2953 LIOps.push_back(Ops[i]); 2954 Ops.erase(Ops.begin()+i); 2955 --i; --e; 2956 } 2957 2958 // If we found some loop invariants, fold them into the recurrence. 2959 if (!LIOps.empty()) { 2960 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2961 SmallVector<const SCEV *, 4> NewOps; 2962 NewOps.reserve(AddRec->getNumOperands()); 2963 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2964 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2965 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2966 SCEV::FlagAnyWrap, Depth + 1)); 2967 2968 // Build the new addrec. Propagate the NUW and NSW flags if both the 2969 // outer mul and the inner addrec are guaranteed to have no overflow. 2970 // 2971 // No self-wrap cannot be guaranteed after changing the step size, but 2972 // will be inferred if either NUW or NSW is true. 2973 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 2974 const SCEV *NewRec = getAddRecExpr( 2975 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 2976 2977 // If all of the other operands were loop invariant, we are done. 2978 if (Ops.size() == 1) return NewRec; 2979 2980 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2981 for (unsigned i = 0;; ++i) 2982 if (Ops[i] == AddRec) { 2983 Ops[i] = NewRec; 2984 break; 2985 } 2986 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2987 } 2988 2989 // Okay, if there weren't any loop invariants to be folded, check to see 2990 // if there are multiple AddRec's with the same loop induction variable 2991 // being multiplied together. If so, we can fold them. 2992 2993 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2994 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2995 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2996 // ]]],+,...up to x=2n}. 2997 // Note that the arguments to choose() are always integers with values 2998 // known at compile time, never SCEV objects. 2999 // 3000 // The implementation avoids pointless extra computations when the two 3001 // addrec's are of different length (mathematically, it's equivalent to 3002 // an infinite stream of zeros on the right). 3003 bool OpsModified = false; 3004 for (unsigned OtherIdx = Idx+1; 3005 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3006 ++OtherIdx) { 3007 const SCEVAddRecExpr *OtherAddRec = 3008 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3009 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3010 continue; 3011 3012 // Limit max number of arguments to avoid creation of unreasonably big 3013 // SCEVAddRecs with very complex operands. 3014 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3015 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3016 continue; 3017 3018 bool Overflow = false; 3019 Type *Ty = AddRec->getType(); 3020 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3021 SmallVector<const SCEV*, 7> AddRecOps; 3022 for (int x = 0, xe = AddRec->getNumOperands() + 3023 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3024 SmallVector <const SCEV *, 7> SumOps; 3025 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3026 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3027 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3028 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3029 z < ze && !Overflow; ++z) { 3030 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3031 uint64_t Coeff; 3032 if (LargerThan64Bits) 3033 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3034 else 3035 Coeff = Coeff1*Coeff2; 3036 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3037 const SCEV *Term1 = AddRec->getOperand(y-z); 3038 const SCEV *Term2 = OtherAddRec->getOperand(z); 3039 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3040 SCEV::FlagAnyWrap, Depth + 1)); 3041 } 3042 } 3043 if (SumOps.empty()) 3044 SumOps.push_back(getZero(Ty)); 3045 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3046 } 3047 if (!Overflow) { 3048 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3049 SCEV::FlagAnyWrap); 3050 if (Ops.size() == 2) return NewAddRec; 3051 Ops[Idx] = NewAddRec; 3052 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3053 OpsModified = true; 3054 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3055 if (!AddRec) 3056 break; 3057 } 3058 } 3059 if (OpsModified) 3060 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3061 3062 // Otherwise couldn't fold anything into this recurrence. Move onto the 3063 // next one. 3064 } 3065 3066 // Okay, it looks like we really DO need an mul expr. Check to see if we 3067 // already have one, otherwise create a new one. 3068 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3069 } 3070 3071 /// Represents an unsigned remainder expression based on unsigned division. 3072 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3073 const SCEV *RHS) { 3074 assert(getEffectiveSCEVType(LHS->getType()) == 3075 getEffectiveSCEVType(RHS->getType()) && 3076 "SCEVURemExpr operand types don't match!"); 3077 3078 // Short-circuit easy cases 3079 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3080 // If constant is one, the result is trivial 3081 if (RHSC->getValue()->isOne()) 3082 return getZero(LHS->getType()); // X urem 1 --> 0 3083 3084 // If constant is a power of two, fold into a zext(trunc(LHS)). 3085 if (RHSC->getAPInt().isPowerOf2()) { 3086 Type *FullTy = LHS->getType(); 3087 Type *TruncTy = 3088 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3089 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3090 } 3091 } 3092 3093 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3094 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3095 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3096 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3097 } 3098 3099 /// Get a canonical unsigned division expression, or something simpler if 3100 /// possible. 3101 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3102 const SCEV *RHS) { 3103 assert(getEffectiveSCEVType(LHS->getType()) == 3104 getEffectiveSCEVType(RHS->getType()) && 3105 "SCEVUDivExpr operand types don't match!"); 3106 3107 FoldingSetNodeID ID; 3108 ID.AddInteger(scUDivExpr); 3109 ID.AddPointer(LHS); 3110 ID.AddPointer(RHS); 3111 void *IP = nullptr; 3112 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3113 return S; 3114 3115 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3116 if (RHSC->getValue()->isOne()) 3117 return LHS; // X udiv 1 --> x 3118 // If the denominator is zero, the result of the udiv is undefined. Don't 3119 // try to analyze it, because the resolution chosen here may differ from 3120 // the resolution chosen in other parts of the compiler. 3121 if (!RHSC->getValue()->isZero()) { 3122 // Determine if the division can be folded into the operands of 3123 // its operands. 3124 // TODO: Generalize this to non-constants by using known-bits information. 3125 Type *Ty = LHS->getType(); 3126 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3127 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3128 // For non-power-of-two values, effectively round the value up to the 3129 // nearest power of two. 3130 if (!RHSC->getAPInt().isPowerOf2()) 3131 ++MaxShiftAmt; 3132 IntegerType *ExtTy = 3133 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3134 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3135 if (const SCEVConstant *Step = 3136 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3137 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3138 const APInt &StepInt = Step->getAPInt(); 3139 const APInt &DivInt = RHSC->getAPInt(); 3140 if (!StepInt.urem(DivInt) && 3141 getZeroExtendExpr(AR, ExtTy) == 3142 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3143 getZeroExtendExpr(Step, ExtTy), 3144 AR->getLoop(), SCEV::FlagAnyWrap)) { 3145 SmallVector<const SCEV *, 4> Operands; 3146 for (const SCEV *Op : AR->operands()) 3147 Operands.push_back(getUDivExpr(Op, RHS)); 3148 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3149 } 3150 /// Get a canonical UDivExpr for a recurrence. 3151 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3152 // We can currently only fold X%N if X is constant. 3153 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3154 if (StartC && !DivInt.urem(StepInt) && 3155 getZeroExtendExpr(AR, ExtTy) == 3156 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3157 getZeroExtendExpr(Step, ExtTy), 3158 AR->getLoop(), SCEV::FlagAnyWrap)) { 3159 const APInt &StartInt = StartC->getAPInt(); 3160 const APInt &StartRem = StartInt.urem(StepInt); 3161 if (StartRem != 0) { 3162 const SCEV *NewLHS = 3163 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3164 AR->getLoop(), SCEV::FlagNW); 3165 if (LHS != NewLHS) { 3166 LHS = NewLHS; 3167 3168 // Reset the ID to include the new LHS, and check if it is 3169 // already cached. 3170 ID.clear(); 3171 ID.AddInteger(scUDivExpr); 3172 ID.AddPointer(LHS); 3173 ID.AddPointer(RHS); 3174 IP = nullptr; 3175 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3176 return S; 3177 } 3178 } 3179 } 3180 } 3181 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3182 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3183 SmallVector<const SCEV *, 4> Operands; 3184 for (const SCEV *Op : M->operands()) 3185 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3186 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3187 // Find an operand that's safely divisible. 3188 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3189 const SCEV *Op = M->getOperand(i); 3190 const SCEV *Div = getUDivExpr(Op, RHSC); 3191 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3192 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3193 Operands[i] = Div; 3194 return getMulExpr(Operands); 3195 } 3196 } 3197 } 3198 3199 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3200 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3201 if (auto *DivisorConstant = 3202 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3203 bool Overflow = false; 3204 APInt NewRHS = 3205 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3206 if (Overflow) { 3207 return getConstant(RHSC->getType(), 0, false); 3208 } 3209 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3210 } 3211 } 3212 3213 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3214 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3215 SmallVector<const SCEV *, 4> Operands; 3216 for (const SCEV *Op : A->operands()) 3217 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3218 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3219 Operands.clear(); 3220 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3221 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3222 if (isa<SCEVUDivExpr>(Op) || 3223 getMulExpr(Op, RHS) != A->getOperand(i)) 3224 break; 3225 Operands.push_back(Op); 3226 } 3227 if (Operands.size() == A->getNumOperands()) 3228 return getAddExpr(Operands); 3229 } 3230 } 3231 3232 // Fold if both operands are constant. 3233 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3234 Constant *LHSCV = LHSC->getValue(); 3235 Constant *RHSCV = RHSC->getValue(); 3236 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3237 RHSCV))); 3238 } 3239 } 3240 } 3241 3242 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3243 // changes). Make sure we get a new one. 3244 IP = nullptr; 3245 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3246 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3247 LHS, RHS); 3248 UniqueSCEVs.InsertNode(S, IP); 3249 addToLoopUseLists(S); 3250 return S; 3251 } 3252 3253 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3254 APInt A = C1->getAPInt().abs(); 3255 APInt B = C2->getAPInt().abs(); 3256 uint32_t ABW = A.getBitWidth(); 3257 uint32_t BBW = B.getBitWidth(); 3258 3259 if (ABW > BBW) 3260 B = B.zext(ABW); 3261 else if (ABW < BBW) 3262 A = A.zext(BBW); 3263 3264 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3265 } 3266 3267 /// Get a canonical unsigned division expression, or something simpler if 3268 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3269 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3270 /// it's not exact because the udiv may be clearing bits. 3271 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3272 const SCEV *RHS) { 3273 // TODO: we could try to find factors in all sorts of things, but for now we 3274 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3275 // end of this file for inspiration. 3276 3277 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3278 if (!Mul || !Mul->hasNoUnsignedWrap()) 3279 return getUDivExpr(LHS, RHS); 3280 3281 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3282 // If the mulexpr multiplies by a constant, then that constant must be the 3283 // first element of the mulexpr. 3284 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3285 if (LHSCst == RHSCst) { 3286 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3287 return getMulExpr(Operands); 3288 } 3289 3290 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3291 // that there's a factor provided by one of the other terms. We need to 3292 // check. 3293 APInt Factor = gcd(LHSCst, RHSCst); 3294 if (!Factor.isIntN(1)) { 3295 LHSCst = 3296 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3297 RHSCst = 3298 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3299 SmallVector<const SCEV *, 2> Operands; 3300 Operands.push_back(LHSCst); 3301 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3302 LHS = getMulExpr(Operands); 3303 RHS = RHSCst; 3304 Mul = dyn_cast<SCEVMulExpr>(LHS); 3305 if (!Mul) 3306 return getUDivExactExpr(LHS, RHS); 3307 } 3308 } 3309 } 3310 3311 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3312 if (Mul->getOperand(i) == RHS) { 3313 SmallVector<const SCEV *, 2> Operands; 3314 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3315 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3316 return getMulExpr(Operands); 3317 } 3318 } 3319 3320 return getUDivExpr(LHS, RHS); 3321 } 3322 3323 /// Get an add recurrence expression for the specified loop. Simplify the 3324 /// expression as much as possible. 3325 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3326 const Loop *L, 3327 SCEV::NoWrapFlags Flags) { 3328 SmallVector<const SCEV *, 4> Operands; 3329 Operands.push_back(Start); 3330 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3331 if (StepChrec->getLoop() == L) { 3332 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3333 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3334 } 3335 3336 Operands.push_back(Step); 3337 return getAddRecExpr(Operands, L, Flags); 3338 } 3339 3340 /// Get an add recurrence expression for the specified loop. Simplify the 3341 /// expression as much as possible. 3342 const SCEV * 3343 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3344 const Loop *L, SCEV::NoWrapFlags Flags) { 3345 if (Operands.size() == 1) return Operands[0]; 3346 #ifndef NDEBUG 3347 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3348 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3349 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3350 "SCEVAddRecExpr operand types don't match!"); 3351 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3352 assert(isLoopInvariant(Operands[i], L) && 3353 "SCEVAddRecExpr operand is not loop-invariant!"); 3354 #endif 3355 3356 if (Operands.back()->isZero()) { 3357 Operands.pop_back(); 3358 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3359 } 3360 3361 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3362 // use that information to infer NUW and NSW flags. However, computing a 3363 // BE count requires calling getAddRecExpr, so we may not yet have a 3364 // meaningful BE count at this point (and if we don't, we'd be stuck 3365 // with a SCEVCouldNotCompute as the cached BE count). 3366 3367 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3368 3369 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3370 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3371 const Loop *NestedLoop = NestedAR->getLoop(); 3372 if (L->contains(NestedLoop) 3373 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3374 : (!NestedLoop->contains(L) && 3375 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3376 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3377 Operands[0] = NestedAR->getStart(); 3378 // AddRecs require their operands be loop-invariant with respect to their 3379 // loops. Don't perform this transformation if it would break this 3380 // requirement. 3381 bool AllInvariant = all_of( 3382 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3383 3384 if (AllInvariant) { 3385 // Create a recurrence for the outer loop with the same step size. 3386 // 3387 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3388 // inner recurrence has the same property. 3389 SCEV::NoWrapFlags OuterFlags = 3390 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3391 3392 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3393 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3394 return isLoopInvariant(Op, NestedLoop); 3395 }); 3396 3397 if (AllInvariant) { 3398 // Ok, both add recurrences are valid after the transformation. 3399 // 3400 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3401 // the outer recurrence has the same property. 3402 SCEV::NoWrapFlags InnerFlags = 3403 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3404 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3405 } 3406 } 3407 // Reset Operands to its original state. 3408 Operands[0] = NestedAR; 3409 } 3410 } 3411 3412 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3413 // already have one, otherwise create a new one. 3414 return getOrCreateAddRecExpr(Operands, L, Flags); 3415 } 3416 3417 const SCEV * 3418 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3419 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3420 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3421 // getSCEV(Base)->getType() has the same address space as Base->getType() 3422 // because SCEV::getType() preserves the address space. 3423 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3424 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3425 // instruction to its SCEV, because the Instruction may be guarded by control 3426 // flow and the no-overflow bits may not be valid for the expression in any 3427 // context. This can be fixed similarly to how these flags are handled for 3428 // adds. 3429 SCEV::NoWrapFlags OffsetWrap = 3430 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3431 3432 Type *CurTy = GEP->getType(); 3433 bool FirstIter = true; 3434 SmallVector<const SCEV *, 4> Offsets; 3435 for (const SCEV *IndexExpr : IndexExprs) { 3436 // Compute the (potentially symbolic) offset in bytes for this index. 3437 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3438 // For a struct, add the member offset. 3439 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3440 unsigned FieldNo = Index->getZExtValue(); 3441 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3442 Offsets.push_back(FieldOffset); 3443 3444 // Update CurTy to the type of the field at Index. 3445 CurTy = STy->getTypeAtIndex(Index); 3446 } else { 3447 // Update CurTy to its element type. 3448 if (FirstIter) { 3449 assert(isa<PointerType>(CurTy) && 3450 "The first index of a GEP indexes a pointer"); 3451 CurTy = GEP->getSourceElementType(); 3452 FirstIter = false; 3453 } else { 3454 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3455 } 3456 // For an array, add the element offset, explicitly scaled. 3457 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3458 // Getelementptr indices are signed. 3459 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3460 3461 // Multiply the index by the element size to compute the element offset. 3462 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3463 Offsets.push_back(LocalOffset); 3464 } 3465 } 3466 3467 // Handle degenerate case of GEP without offsets. 3468 if (Offsets.empty()) 3469 return BaseExpr; 3470 3471 // Add the offsets together, assuming nsw if inbounds. 3472 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3473 // Add the base address and the offset. We cannot use the nsw flag, as the 3474 // base address is unsigned. However, if we know that the offset is 3475 // non-negative, we can use nuw. 3476 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3477 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3478 return getAddExpr(BaseExpr, Offset, BaseWrap); 3479 } 3480 3481 std::tuple<SCEV *, FoldingSetNodeID, void *> 3482 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3483 ArrayRef<const SCEV *> Ops) { 3484 FoldingSetNodeID ID; 3485 void *IP = nullptr; 3486 ID.AddInteger(SCEVType); 3487 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3488 ID.AddPointer(Ops[i]); 3489 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3490 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3491 } 3492 3493 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3494 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3495 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3496 } 3497 3498 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) { 3499 Type *Ty = Op->getType(); 3500 return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty)); 3501 } 3502 3503 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3504 SmallVectorImpl<const SCEV *> &Ops) { 3505 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3506 if (Ops.size() == 1) return Ops[0]; 3507 #ifndef NDEBUG 3508 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3509 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3510 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3511 "Operand types don't match!"); 3512 #endif 3513 3514 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3515 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3516 3517 // Sort by complexity, this groups all similar expression types together. 3518 GroupByComplexity(Ops, &LI, DT); 3519 3520 // Check if we have created the same expression before. 3521 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3522 return S; 3523 } 3524 3525 // If there are any constants, fold them together. 3526 unsigned Idx = 0; 3527 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3528 ++Idx; 3529 assert(Idx < Ops.size()); 3530 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3531 if (Kind == scSMaxExpr) 3532 return APIntOps::smax(LHS, RHS); 3533 else if (Kind == scSMinExpr) 3534 return APIntOps::smin(LHS, RHS); 3535 else if (Kind == scUMaxExpr) 3536 return APIntOps::umax(LHS, RHS); 3537 else if (Kind == scUMinExpr) 3538 return APIntOps::umin(LHS, RHS); 3539 llvm_unreachable("Unknown SCEV min/max opcode"); 3540 }; 3541 3542 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3543 // We found two constants, fold them together! 3544 ConstantInt *Fold = ConstantInt::get( 3545 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3546 Ops[0] = getConstant(Fold); 3547 Ops.erase(Ops.begin()+1); // Erase the folded element 3548 if (Ops.size() == 1) return Ops[0]; 3549 LHSC = cast<SCEVConstant>(Ops[0]); 3550 } 3551 3552 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3553 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3554 3555 if (IsMax ? IsMinV : IsMaxV) { 3556 // If we are left with a constant minimum(/maximum)-int, strip it off. 3557 Ops.erase(Ops.begin()); 3558 --Idx; 3559 } else if (IsMax ? IsMaxV : IsMinV) { 3560 // If we have a max(/min) with a constant maximum(/minimum)-int, 3561 // it will always be the extremum. 3562 return LHSC; 3563 } 3564 3565 if (Ops.size() == 1) return Ops[0]; 3566 } 3567 3568 // Find the first operation of the same kind 3569 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3570 ++Idx; 3571 3572 // Check to see if one of the operands is of the same kind. If so, expand its 3573 // operands onto our operand list, and recurse to simplify. 3574 if (Idx < Ops.size()) { 3575 bool DeletedAny = false; 3576 while (Ops[Idx]->getSCEVType() == Kind) { 3577 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3578 Ops.erase(Ops.begin()+Idx); 3579 Ops.append(SMME->op_begin(), SMME->op_end()); 3580 DeletedAny = true; 3581 } 3582 3583 if (DeletedAny) 3584 return getMinMaxExpr(Kind, Ops); 3585 } 3586 3587 // Okay, check to see if the same value occurs in the operand list twice. If 3588 // so, delete one. Since we sorted the list, these values are required to 3589 // be adjacent. 3590 llvm::CmpInst::Predicate GEPred = 3591 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3592 llvm::CmpInst::Predicate LEPred = 3593 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3594 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3595 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3596 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3597 if (Ops[i] == Ops[i + 1] || 3598 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3599 // X op Y op Y --> X op Y 3600 // X op Y --> X, if we know X, Y are ordered appropriately 3601 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3602 --i; 3603 --e; 3604 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3605 Ops[i + 1])) { 3606 // X op Y --> Y, if we know X, Y are ordered appropriately 3607 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3608 --i; 3609 --e; 3610 } 3611 } 3612 3613 if (Ops.size() == 1) return Ops[0]; 3614 3615 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3616 3617 // Okay, it looks like we really DO need an expr. Check to see if we 3618 // already have one, otherwise create a new one. 3619 const SCEV *ExistingSCEV; 3620 FoldingSetNodeID ID; 3621 void *IP; 3622 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3623 if (ExistingSCEV) 3624 return ExistingSCEV; 3625 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3626 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3627 SCEV *S = new (SCEVAllocator) 3628 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3629 3630 UniqueSCEVs.InsertNode(S, IP); 3631 addToLoopUseLists(S); 3632 return S; 3633 } 3634 3635 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3636 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3637 return getSMaxExpr(Ops); 3638 } 3639 3640 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3641 return getMinMaxExpr(scSMaxExpr, Ops); 3642 } 3643 3644 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3645 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3646 return getUMaxExpr(Ops); 3647 } 3648 3649 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3650 return getMinMaxExpr(scUMaxExpr, Ops); 3651 } 3652 3653 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3654 const SCEV *RHS) { 3655 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3656 return getSMinExpr(Ops); 3657 } 3658 3659 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3660 return getMinMaxExpr(scSMinExpr, Ops); 3661 } 3662 3663 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3664 const SCEV *RHS) { 3665 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3666 return getUMinExpr(Ops); 3667 } 3668 3669 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3670 return getMinMaxExpr(scUMinExpr, Ops); 3671 } 3672 3673 const SCEV * 3674 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3675 ScalableVectorType *ScalableTy) { 3676 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3677 Constant *One = ConstantInt::get(IntTy, 1); 3678 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3679 // Note that the expression we created is the final expression, we don't 3680 // want to simplify it any further Also, if we call a normal getSCEV(), 3681 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3682 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3683 } 3684 3685 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3686 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3687 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3688 // We can bypass creating a target-independent constant expression and then 3689 // folding it back into a ConstantInt. This is just a compile-time 3690 // optimization. 3691 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3692 } 3693 3694 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3695 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3696 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3697 // We can bypass creating a target-independent constant expression and then 3698 // folding it back into a ConstantInt. This is just a compile-time 3699 // optimization. 3700 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3701 } 3702 3703 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3704 StructType *STy, 3705 unsigned FieldNo) { 3706 // We can bypass creating a target-independent constant expression and then 3707 // folding it back into a ConstantInt. This is just a compile-time 3708 // optimization. 3709 return getConstant( 3710 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3711 } 3712 3713 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3714 // Don't attempt to do anything other than create a SCEVUnknown object 3715 // here. createSCEV only calls getUnknown after checking for all other 3716 // interesting possibilities, and any other code that calls getUnknown 3717 // is doing so in order to hide a value from SCEV canonicalization. 3718 3719 FoldingSetNodeID ID; 3720 ID.AddInteger(scUnknown); 3721 ID.AddPointer(V); 3722 void *IP = nullptr; 3723 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3724 assert(cast<SCEVUnknown>(S)->getValue() == V && 3725 "Stale SCEVUnknown in uniquing map!"); 3726 return S; 3727 } 3728 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3729 FirstUnknown); 3730 FirstUnknown = cast<SCEVUnknown>(S); 3731 UniqueSCEVs.InsertNode(S, IP); 3732 return S; 3733 } 3734 3735 //===----------------------------------------------------------------------===// 3736 // Basic SCEV Analysis and PHI Idiom Recognition Code 3737 // 3738 3739 /// Test if values of the given type are analyzable within the SCEV 3740 /// framework. This primarily includes integer types, and it can optionally 3741 /// include pointer types if the ScalarEvolution class has access to 3742 /// target-specific information. 3743 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3744 // Integers and pointers are always SCEVable. 3745 return Ty->isIntOrPtrTy(); 3746 } 3747 3748 /// Return the size in bits of the specified type, for which isSCEVable must 3749 /// return true. 3750 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3751 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3752 if (Ty->isPointerTy()) 3753 return getDataLayout().getIndexTypeSizeInBits(Ty); 3754 return getDataLayout().getTypeSizeInBits(Ty); 3755 } 3756 3757 /// Return a type with the same bitwidth as the given type and which represents 3758 /// how SCEV will treat the given type, for which isSCEVable must return 3759 /// true. For pointer types, this is the pointer index sized integer type. 3760 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3761 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3762 3763 if (Ty->isIntegerTy()) 3764 return Ty; 3765 3766 // The only other support type is pointer. 3767 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3768 return getDataLayout().getIndexType(Ty); 3769 } 3770 3771 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3772 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3773 } 3774 3775 const SCEV *ScalarEvolution::getCouldNotCompute() { 3776 return CouldNotCompute.get(); 3777 } 3778 3779 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3780 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3781 auto *SU = dyn_cast<SCEVUnknown>(S); 3782 return SU && SU->getValue() == nullptr; 3783 }); 3784 3785 return !ContainsNulls; 3786 } 3787 3788 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3789 HasRecMapType::iterator I = HasRecMap.find(S); 3790 if (I != HasRecMap.end()) 3791 return I->second; 3792 3793 bool FoundAddRec = 3794 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3795 HasRecMap.insert({S, FoundAddRec}); 3796 return FoundAddRec; 3797 } 3798 3799 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3800 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3801 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3802 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3803 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3804 if (!Add) 3805 return {S, nullptr}; 3806 3807 if (Add->getNumOperands() != 2) 3808 return {S, nullptr}; 3809 3810 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3811 if (!ConstOp) 3812 return {S, nullptr}; 3813 3814 return {Add->getOperand(1), ConstOp->getValue()}; 3815 } 3816 3817 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3818 /// by the value and offset from any ValueOffsetPair in the set. 3819 SetVector<ScalarEvolution::ValueOffsetPair> * 3820 ScalarEvolution::getSCEVValues(const SCEV *S) { 3821 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3822 if (SI == ExprValueMap.end()) 3823 return nullptr; 3824 #ifndef NDEBUG 3825 if (VerifySCEVMap) { 3826 // Check there is no dangling Value in the set returned. 3827 for (const auto &VE : SI->second) 3828 assert(ValueExprMap.count(VE.first)); 3829 } 3830 #endif 3831 return &SI->second; 3832 } 3833 3834 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3835 /// cannot be used separately. eraseValueFromMap should be used to remove 3836 /// V from ValueExprMap and ExprValueMap at the same time. 3837 void ScalarEvolution::eraseValueFromMap(Value *V) { 3838 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3839 if (I != ValueExprMap.end()) { 3840 const SCEV *S = I->second; 3841 // Remove {V, 0} from the set of ExprValueMap[S] 3842 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3843 SV->remove({V, nullptr}); 3844 3845 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3846 const SCEV *Stripped; 3847 ConstantInt *Offset; 3848 std::tie(Stripped, Offset) = splitAddExpr(S); 3849 if (Offset != nullptr) { 3850 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3851 SV->remove({V, Offset}); 3852 } 3853 ValueExprMap.erase(V); 3854 } 3855 } 3856 3857 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3858 /// TODO: In reality it is better to check the poison recursively 3859 /// but this is better than nothing. 3860 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3861 if (auto *I = dyn_cast<Instruction>(V)) { 3862 if (isa<OverflowingBinaryOperator>(I)) { 3863 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3864 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3865 return true; 3866 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3867 return true; 3868 } 3869 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3870 return true; 3871 } 3872 return false; 3873 } 3874 3875 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3876 /// create a new one. 3877 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3878 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3879 3880 const SCEV *S = getExistingSCEV(V); 3881 if (S == nullptr) { 3882 S = createSCEV(V); 3883 // During PHI resolution, it is possible to create two SCEVs for the same 3884 // V, so it is needed to double check whether V->S is inserted into 3885 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3886 std::pair<ValueExprMapType::iterator, bool> Pair = 3887 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3888 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3889 ExprValueMap[S].insert({V, nullptr}); 3890 3891 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3892 // ExprValueMap. 3893 const SCEV *Stripped = S; 3894 ConstantInt *Offset = nullptr; 3895 std::tie(Stripped, Offset) = splitAddExpr(S); 3896 // If stripped is SCEVUnknown, don't bother to save 3897 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3898 // increase the complexity of the expansion code. 3899 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3900 // because it may generate add/sub instead of GEP in SCEV expansion. 3901 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3902 !isa<GetElementPtrInst>(V)) 3903 ExprValueMap[Stripped].insert({V, Offset}); 3904 } 3905 } 3906 return S; 3907 } 3908 3909 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3910 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3911 3912 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3913 if (I != ValueExprMap.end()) { 3914 const SCEV *S = I->second; 3915 if (checkValidity(S)) 3916 return S; 3917 eraseValueFromMap(V); 3918 forgetMemoizedResults(S); 3919 } 3920 return nullptr; 3921 } 3922 3923 /// Return a SCEV corresponding to -V = -1*V 3924 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3925 SCEV::NoWrapFlags Flags) { 3926 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3927 return getConstant( 3928 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3929 3930 Type *Ty = V->getType(); 3931 Ty = getEffectiveSCEVType(Ty); 3932 return getMulExpr(V, getMinusOne(Ty), Flags); 3933 } 3934 3935 /// If Expr computes ~A, return A else return nullptr 3936 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3937 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3938 if (!Add || Add->getNumOperands() != 2 || 3939 !Add->getOperand(0)->isAllOnesValue()) 3940 return nullptr; 3941 3942 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3943 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3944 !AddRHS->getOperand(0)->isAllOnesValue()) 3945 return nullptr; 3946 3947 return AddRHS->getOperand(1); 3948 } 3949 3950 /// Return a SCEV corresponding to ~V = -1-V 3951 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3952 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3953 return getConstant( 3954 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3955 3956 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3957 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3958 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3959 SmallVector<const SCEV *, 2> MatchedOperands; 3960 for (const SCEV *Operand : MME->operands()) { 3961 const SCEV *Matched = MatchNotExpr(Operand); 3962 if (!Matched) 3963 return (const SCEV *)nullptr; 3964 MatchedOperands.push_back(Matched); 3965 } 3966 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 3967 MatchedOperands); 3968 }; 3969 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3970 return Replaced; 3971 } 3972 3973 Type *Ty = V->getType(); 3974 Ty = getEffectiveSCEVType(Ty); 3975 return getMinusSCEV(getMinusOne(Ty), V); 3976 } 3977 3978 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3979 SCEV::NoWrapFlags Flags, 3980 unsigned Depth) { 3981 // Fast path: X - X --> 0. 3982 if (LHS == RHS) 3983 return getZero(LHS->getType()); 3984 3985 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3986 // makes it so that we cannot make much use of NUW. 3987 auto AddFlags = SCEV::FlagAnyWrap; 3988 const bool RHSIsNotMinSigned = 3989 !getSignedRangeMin(RHS).isMinSignedValue(); 3990 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3991 // Let M be the minimum representable signed value. Then (-1)*RHS 3992 // signed-wraps if and only if RHS is M. That can happen even for 3993 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3994 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3995 // (-1)*RHS, we need to prove that RHS != M. 3996 // 3997 // If LHS is non-negative and we know that LHS - RHS does not 3998 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3999 // either by proving that RHS > M or that LHS >= 0. 4000 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4001 AddFlags = SCEV::FlagNSW; 4002 } 4003 } 4004 4005 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4006 // RHS is NSW and LHS >= 0. 4007 // 4008 // The difficulty here is that the NSW flag may have been proven 4009 // relative to a loop that is to be found in a recurrence in LHS and 4010 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4011 // larger scope than intended. 4012 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4013 4014 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4015 } 4016 4017 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4018 unsigned Depth) { 4019 Type *SrcTy = V->getType(); 4020 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4021 "Cannot truncate or zero extend with non-integer arguments!"); 4022 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4023 return V; // No conversion 4024 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4025 return getTruncateExpr(V, Ty, Depth); 4026 return getZeroExtendExpr(V, Ty, Depth); 4027 } 4028 4029 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4030 unsigned Depth) { 4031 Type *SrcTy = V->getType(); 4032 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4033 "Cannot truncate or zero extend with non-integer arguments!"); 4034 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4035 return V; // No conversion 4036 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4037 return getTruncateExpr(V, Ty, Depth); 4038 return getSignExtendExpr(V, Ty, Depth); 4039 } 4040 4041 const SCEV * 4042 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4043 Type *SrcTy = V->getType(); 4044 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4045 "Cannot noop or zero extend with non-integer arguments!"); 4046 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4047 "getNoopOrZeroExtend cannot truncate!"); 4048 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4049 return V; // No conversion 4050 return getZeroExtendExpr(V, Ty); 4051 } 4052 4053 const SCEV * 4054 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4055 Type *SrcTy = V->getType(); 4056 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4057 "Cannot noop or sign extend with non-integer arguments!"); 4058 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4059 "getNoopOrSignExtend cannot truncate!"); 4060 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4061 return V; // No conversion 4062 return getSignExtendExpr(V, Ty); 4063 } 4064 4065 const SCEV * 4066 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4067 Type *SrcTy = V->getType(); 4068 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4069 "Cannot noop or any extend with non-integer arguments!"); 4070 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4071 "getNoopOrAnyExtend cannot truncate!"); 4072 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4073 return V; // No conversion 4074 return getAnyExtendExpr(V, Ty); 4075 } 4076 4077 const SCEV * 4078 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4079 Type *SrcTy = V->getType(); 4080 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4081 "Cannot truncate or noop with non-integer arguments!"); 4082 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4083 "getTruncateOrNoop cannot extend!"); 4084 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4085 return V; // No conversion 4086 return getTruncateExpr(V, Ty); 4087 } 4088 4089 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4090 const SCEV *RHS) { 4091 const SCEV *PromotedLHS = LHS; 4092 const SCEV *PromotedRHS = RHS; 4093 4094 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4095 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4096 else 4097 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4098 4099 return getUMaxExpr(PromotedLHS, PromotedRHS); 4100 } 4101 4102 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4103 const SCEV *RHS) { 4104 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4105 return getUMinFromMismatchedTypes(Ops); 4106 } 4107 4108 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4109 SmallVectorImpl<const SCEV *> &Ops) { 4110 assert(!Ops.empty() && "At least one operand must be!"); 4111 // Trivial case. 4112 if (Ops.size() == 1) 4113 return Ops[0]; 4114 4115 // Find the max type first. 4116 Type *MaxType = nullptr; 4117 for (auto *S : Ops) 4118 if (MaxType) 4119 MaxType = getWiderType(MaxType, S->getType()); 4120 else 4121 MaxType = S->getType(); 4122 assert(MaxType && "Failed to find maximum type!"); 4123 4124 // Extend all ops to max type. 4125 SmallVector<const SCEV *, 2> PromotedOps; 4126 for (auto *S : Ops) 4127 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4128 4129 // Generate umin. 4130 return getUMinExpr(PromotedOps); 4131 } 4132 4133 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4134 // A pointer operand may evaluate to a nonpointer expression, such as null. 4135 if (!V->getType()->isPointerTy()) 4136 return V; 4137 4138 while (true) { 4139 if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) { 4140 V = Cast->getOperand(); 4141 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4142 const SCEV *PtrOp = nullptr; 4143 for (const SCEV *NAryOp : NAry->operands()) { 4144 if (NAryOp->getType()->isPointerTy()) { 4145 // Cannot find the base of an expression with multiple pointer ops. 4146 if (PtrOp) 4147 return V; 4148 PtrOp = NAryOp; 4149 } 4150 } 4151 if (!PtrOp) // All operands were non-pointer. 4152 return V; 4153 V = PtrOp; 4154 } else // Not something we can look further into. 4155 return V; 4156 } 4157 } 4158 4159 /// Push users of the given Instruction onto the given Worklist. 4160 static void 4161 PushDefUseChildren(Instruction *I, 4162 SmallVectorImpl<Instruction *> &Worklist) { 4163 // Push the def-use children onto the Worklist stack. 4164 for (User *U : I->users()) 4165 Worklist.push_back(cast<Instruction>(U)); 4166 } 4167 4168 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4169 SmallVector<Instruction *, 16> Worklist; 4170 PushDefUseChildren(PN, Worklist); 4171 4172 SmallPtrSet<Instruction *, 8> Visited; 4173 Visited.insert(PN); 4174 while (!Worklist.empty()) { 4175 Instruction *I = Worklist.pop_back_val(); 4176 if (!Visited.insert(I).second) 4177 continue; 4178 4179 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4180 if (It != ValueExprMap.end()) { 4181 const SCEV *Old = It->second; 4182 4183 // Short-circuit the def-use traversal if the symbolic name 4184 // ceases to appear in expressions. 4185 if (Old != SymName && !hasOperand(Old, SymName)) 4186 continue; 4187 4188 // SCEVUnknown for a PHI either means that it has an unrecognized 4189 // structure, it's a PHI that's in the progress of being computed 4190 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4191 // additional loop trip count information isn't going to change anything. 4192 // In the second case, createNodeForPHI will perform the necessary 4193 // updates on its own when it gets to that point. In the third, we do 4194 // want to forget the SCEVUnknown. 4195 if (!isa<PHINode>(I) || 4196 !isa<SCEVUnknown>(Old) || 4197 (I != PN && Old == SymName)) { 4198 eraseValueFromMap(It->first); 4199 forgetMemoizedResults(Old); 4200 } 4201 } 4202 4203 PushDefUseChildren(I, Worklist); 4204 } 4205 } 4206 4207 namespace { 4208 4209 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4210 /// expression in case its Loop is L. If it is not L then 4211 /// if IgnoreOtherLoops is true then use AddRec itself 4212 /// otherwise rewrite cannot be done. 4213 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4214 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4215 public: 4216 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4217 bool IgnoreOtherLoops = true) { 4218 SCEVInitRewriter Rewriter(L, SE); 4219 const SCEV *Result = Rewriter.visit(S); 4220 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4221 return SE.getCouldNotCompute(); 4222 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4223 ? SE.getCouldNotCompute() 4224 : Result; 4225 } 4226 4227 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4228 if (!SE.isLoopInvariant(Expr, L)) 4229 SeenLoopVariantSCEVUnknown = true; 4230 return Expr; 4231 } 4232 4233 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4234 // Only re-write AddRecExprs for this loop. 4235 if (Expr->getLoop() == L) 4236 return Expr->getStart(); 4237 SeenOtherLoops = true; 4238 return Expr; 4239 } 4240 4241 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4242 4243 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4244 4245 private: 4246 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4247 : SCEVRewriteVisitor(SE), L(L) {} 4248 4249 const Loop *L; 4250 bool SeenLoopVariantSCEVUnknown = false; 4251 bool SeenOtherLoops = false; 4252 }; 4253 4254 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4255 /// increment expression in case its Loop is L. If it is not L then 4256 /// use AddRec itself. 4257 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4258 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4259 public: 4260 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4261 SCEVPostIncRewriter Rewriter(L, SE); 4262 const SCEV *Result = Rewriter.visit(S); 4263 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4264 ? SE.getCouldNotCompute() 4265 : Result; 4266 } 4267 4268 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4269 if (!SE.isLoopInvariant(Expr, L)) 4270 SeenLoopVariantSCEVUnknown = true; 4271 return Expr; 4272 } 4273 4274 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4275 // Only re-write AddRecExprs for this loop. 4276 if (Expr->getLoop() == L) 4277 return Expr->getPostIncExpr(SE); 4278 SeenOtherLoops = true; 4279 return Expr; 4280 } 4281 4282 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4283 4284 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4285 4286 private: 4287 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4288 : SCEVRewriteVisitor(SE), L(L) {} 4289 4290 const Loop *L; 4291 bool SeenLoopVariantSCEVUnknown = false; 4292 bool SeenOtherLoops = false; 4293 }; 4294 4295 /// This class evaluates the compare condition by matching it against the 4296 /// condition of loop latch. If there is a match we assume a true value 4297 /// for the condition while building SCEV nodes. 4298 class SCEVBackedgeConditionFolder 4299 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4300 public: 4301 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4302 ScalarEvolution &SE) { 4303 bool IsPosBECond = false; 4304 Value *BECond = nullptr; 4305 if (BasicBlock *Latch = L->getLoopLatch()) { 4306 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4307 if (BI && BI->isConditional()) { 4308 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4309 "Both outgoing branches should not target same header!"); 4310 BECond = BI->getCondition(); 4311 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4312 } else { 4313 return S; 4314 } 4315 } 4316 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4317 return Rewriter.visit(S); 4318 } 4319 4320 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4321 const SCEV *Result = Expr; 4322 bool InvariantF = SE.isLoopInvariant(Expr, L); 4323 4324 if (!InvariantF) { 4325 Instruction *I = cast<Instruction>(Expr->getValue()); 4326 switch (I->getOpcode()) { 4327 case Instruction::Select: { 4328 SelectInst *SI = cast<SelectInst>(I); 4329 Optional<const SCEV *> Res = 4330 compareWithBackedgeCondition(SI->getCondition()); 4331 if (Res.hasValue()) { 4332 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4333 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4334 } 4335 break; 4336 } 4337 default: { 4338 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4339 if (Res.hasValue()) 4340 Result = Res.getValue(); 4341 break; 4342 } 4343 } 4344 } 4345 return Result; 4346 } 4347 4348 private: 4349 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4350 bool IsPosBECond, ScalarEvolution &SE) 4351 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4352 IsPositiveBECond(IsPosBECond) {} 4353 4354 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4355 4356 const Loop *L; 4357 /// Loop back condition. 4358 Value *BackedgeCond = nullptr; 4359 /// Set to true if loop back is on positive branch condition. 4360 bool IsPositiveBECond; 4361 }; 4362 4363 Optional<const SCEV *> 4364 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4365 4366 // If value matches the backedge condition for loop latch, 4367 // then return a constant evolution node based on loopback 4368 // branch taken. 4369 if (BackedgeCond == IC) 4370 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4371 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4372 return None; 4373 } 4374 4375 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4376 public: 4377 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4378 ScalarEvolution &SE) { 4379 SCEVShiftRewriter Rewriter(L, SE); 4380 const SCEV *Result = Rewriter.visit(S); 4381 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4382 } 4383 4384 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4385 // Only allow AddRecExprs for this loop. 4386 if (!SE.isLoopInvariant(Expr, L)) 4387 Valid = false; 4388 return Expr; 4389 } 4390 4391 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4392 if (Expr->getLoop() == L && Expr->isAffine()) 4393 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4394 Valid = false; 4395 return Expr; 4396 } 4397 4398 bool isValid() { return Valid; } 4399 4400 private: 4401 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4402 : SCEVRewriteVisitor(SE), L(L) {} 4403 4404 const Loop *L; 4405 bool Valid = true; 4406 }; 4407 4408 } // end anonymous namespace 4409 4410 SCEV::NoWrapFlags 4411 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4412 if (!AR->isAffine()) 4413 return SCEV::FlagAnyWrap; 4414 4415 using OBO = OverflowingBinaryOperator; 4416 4417 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4418 4419 if (!AR->hasNoSignedWrap()) { 4420 ConstantRange AddRecRange = getSignedRange(AR); 4421 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4422 4423 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4424 Instruction::Add, IncRange, OBO::NoSignedWrap); 4425 if (NSWRegion.contains(AddRecRange)) 4426 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4427 } 4428 4429 if (!AR->hasNoUnsignedWrap()) { 4430 ConstantRange AddRecRange = getUnsignedRange(AR); 4431 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4432 4433 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4434 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4435 if (NUWRegion.contains(AddRecRange)) 4436 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4437 } 4438 4439 return Result; 4440 } 4441 4442 SCEV::NoWrapFlags 4443 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4444 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4445 4446 if (AR->hasNoSignedWrap()) 4447 return Result; 4448 4449 if (!AR->isAffine()) 4450 return Result; 4451 4452 const SCEV *Step = AR->getStepRecurrence(*this); 4453 const Loop *L = AR->getLoop(); 4454 4455 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4456 // Note that this serves two purposes: It filters out loops that are 4457 // simply not analyzable, and it covers the case where this code is 4458 // being called from within backedge-taken count analysis, such that 4459 // attempting to ask for the backedge-taken count would likely result 4460 // in infinite recursion. In the later case, the analysis code will 4461 // cope with a conservative value, and it will take care to purge 4462 // that value once it has finished. 4463 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4464 4465 // Normally, in the cases we can prove no-overflow via a 4466 // backedge guarding condition, we can also compute a backedge 4467 // taken count for the loop. The exceptions are assumptions and 4468 // guards present in the loop -- SCEV is not great at exploiting 4469 // these to compute max backedge taken counts, but can still use 4470 // these to prove lack of overflow. Use this fact to avoid 4471 // doing extra work that may not pay off. 4472 4473 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4474 AC.assumptions().empty()) 4475 return Result; 4476 4477 // If the backedge is guarded by a comparison with the pre-inc value the 4478 // addrec is safe. Also, if the entry is guarded by a comparison with the 4479 // start value and the backedge is guarded by a comparison with the post-inc 4480 // value, the addrec is safe. 4481 ICmpInst::Predicate Pred; 4482 const SCEV *OverflowLimit = 4483 getSignedOverflowLimitForStep(Step, &Pred, this); 4484 if (OverflowLimit && 4485 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4486 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4487 Result = setFlags(Result, SCEV::FlagNSW); 4488 } 4489 return Result; 4490 } 4491 SCEV::NoWrapFlags 4492 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4493 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4494 4495 if (AR->hasNoUnsignedWrap()) 4496 return Result; 4497 4498 if (!AR->isAffine()) 4499 return Result; 4500 4501 const SCEV *Step = AR->getStepRecurrence(*this); 4502 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4503 const Loop *L = AR->getLoop(); 4504 4505 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4506 // Note that this serves two purposes: It filters out loops that are 4507 // simply not analyzable, and it covers the case where this code is 4508 // being called from within backedge-taken count analysis, such that 4509 // attempting to ask for the backedge-taken count would likely result 4510 // in infinite recursion. In the later case, the analysis code will 4511 // cope with a conservative value, and it will take care to purge 4512 // that value once it has finished. 4513 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4514 4515 // Normally, in the cases we can prove no-overflow via a 4516 // backedge guarding condition, we can also compute a backedge 4517 // taken count for the loop. The exceptions are assumptions and 4518 // guards present in the loop -- SCEV is not great at exploiting 4519 // these to compute max backedge taken counts, but can still use 4520 // these to prove lack of overflow. Use this fact to avoid 4521 // doing extra work that may not pay off. 4522 4523 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4524 AC.assumptions().empty()) 4525 return Result; 4526 4527 // If the backedge is guarded by a comparison with the pre-inc value the 4528 // addrec is safe. Also, if the entry is guarded by a comparison with the 4529 // start value and the backedge is guarded by a comparison with the post-inc 4530 // value, the addrec is safe. 4531 if (isKnownPositive(Step)) { 4532 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4533 getUnsignedRangeMax(Step)); 4534 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4535 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4536 Result = setFlags(Result, SCEV::FlagNUW); 4537 } 4538 } 4539 4540 return Result; 4541 } 4542 4543 namespace { 4544 4545 /// Represents an abstract binary operation. This may exist as a 4546 /// normal instruction or constant expression, or may have been 4547 /// derived from an expression tree. 4548 struct BinaryOp { 4549 unsigned Opcode; 4550 Value *LHS; 4551 Value *RHS; 4552 bool IsNSW = false; 4553 bool IsNUW = false; 4554 bool IsExact = false; 4555 4556 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4557 /// constant expression. 4558 Operator *Op = nullptr; 4559 4560 explicit BinaryOp(Operator *Op) 4561 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4562 Op(Op) { 4563 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4564 IsNSW = OBO->hasNoSignedWrap(); 4565 IsNUW = OBO->hasNoUnsignedWrap(); 4566 } 4567 if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op)) 4568 IsExact = PEO->isExact(); 4569 } 4570 4571 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4572 bool IsNUW = false, bool IsExact = false) 4573 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 4574 IsExact(IsExact) {} 4575 }; 4576 4577 } // end anonymous namespace 4578 4579 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4580 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4581 auto *Op = dyn_cast<Operator>(V); 4582 if (!Op) 4583 return None; 4584 4585 // Implementation detail: all the cleverness here should happen without 4586 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4587 // SCEV expressions when possible, and we should not break that. 4588 4589 switch (Op->getOpcode()) { 4590 case Instruction::Add: 4591 case Instruction::Sub: 4592 case Instruction::Mul: 4593 case Instruction::UDiv: 4594 case Instruction::URem: 4595 case Instruction::And: 4596 case Instruction::Or: 4597 case Instruction::AShr: 4598 case Instruction::Shl: 4599 return BinaryOp(Op); 4600 4601 case Instruction::Xor: 4602 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4603 // If the RHS of the xor is a signmask, then this is just an add. 4604 // Instcombine turns add of signmask into xor as a strength reduction step. 4605 if (RHSC->getValue().isSignMask()) 4606 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4607 return BinaryOp(Op); 4608 4609 case Instruction::LShr: 4610 // Turn logical shift right of a constant into a unsigned divide. 4611 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4612 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4613 4614 // If the shift count is not less than the bitwidth, the result of 4615 // the shift is undefined. Don't try to analyze it, because the 4616 // resolution chosen here may differ from the resolution chosen in 4617 // other parts of the compiler. 4618 if (SA->getValue().ult(BitWidth)) { 4619 Constant *X = 4620 ConstantInt::get(SA->getContext(), 4621 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4622 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4623 } 4624 } 4625 return BinaryOp(Op); 4626 4627 case Instruction::ExtractValue: { 4628 auto *EVI = cast<ExtractValueInst>(Op); 4629 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4630 break; 4631 4632 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4633 if (!WO) 4634 break; 4635 4636 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4637 bool Signed = WO->isSigned(); 4638 // TODO: Should add nuw/nsw flags for mul as well. 4639 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4640 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4641 4642 // Now that we know that all uses of the arithmetic-result component of 4643 // CI are guarded by the overflow check, we can go ahead and pretend 4644 // that the arithmetic is non-overflowing. 4645 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4646 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4647 } 4648 4649 default: 4650 break; 4651 } 4652 4653 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4654 // semantics as a Sub, return a binary sub expression. 4655 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4656 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4657 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4658 4659 return None; 4660 } 4661 4662 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4663 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4664 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4665 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4666 /// follows one of the following patterns: 4667 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4668 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4669 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4670 /// we return the type of the truncation operation, and indicate whether the 4671 /// truncated type should be treated as signed/unsigned by setting 4672 /// \p Signed to true/false, respectively. 4673 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4674 bool &Signed, ScalarEvolution &SE) { 4675 // The case where Op == SymbolicPHI (that is, with no type conversions on 4676 // the way) is handled by the regular add recurrence creating logic and 4677 // would have already been triggered in createAddRecForPHI. Reaching it here 4678 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4679 // because one of the other operands of the SCEVAddExpr updating this PHI is 4680 // not invariant). 4681 // 4682 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4683 // this case predicates that allow us to prove that Op == SymbolicPHI will 4684 // be added. 4685 if (Op == SymbolicPHI) 4686 return nullptr; 4687 4688 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4689 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4690 if (SourceBits != NewBits) 4691 return nullptr; 4692 4693 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4694 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4695 if (!SExt && !ZExt) 4696 return nullptr; 4697 const SCEVTruncateExpr *Trunc = 4698 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4699 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4700 if (!Trunc) 4701 return nullptr; 4702 const SCEV *X = Trunc->getOperand(); 4703 if (X != SymbolicPHI) 4704 return nullptr; 4705 Signed = SExt != nullptr; 4706 return Trunc->getType(); 4707 } 4708 4709 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4710 if (!PN->getType()->isIntegerTy()) 4711 return nullptr; 4712 const Loop *L = LI.getLoopFor(PN->getParent()); 4713 if (!L || L->getHeader() != PN->getParent()) 4714 return nullptr; 4715 return L; 4716 } 4717 4718 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4719 // computation that updates the phi follows the following pattern: 4720 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4721 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4722 // If so, try to see if it can be rewritten as an AddRecExpr under some 4723 // Predicates. If successful, return them as a pair. Also cache the results 4724 // of the analysis. 4725 // 4726 // Example usage scenario: 4727 // Say the Rewriter is called for the following SCEV: 4728 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4729 // where: 4730 // %X = phi i64 (%Start, %BEValue) 4731 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4732 // and call this function with %SymbolicPHI = %X. 4733 // 4734 // The analysis will find that the value coming around the backedge has 4735 // the following SCEV: 4736 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4737 // Upon concluding that this matches the desired pattern, the function 4738 // will return the pair {NewAddRec, SmallPredsVec} where: 4739 // NewAddRec = {%Start,+,%Step} 4740 // SmallPredsVec = {P1, P2, P3} as follows: 4741 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4742 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4743 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4744 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4745 // under the predicates {P1,P2,P3}. 4746 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4747 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4748 // 4749 // TODO's: 4750 // 4751 // 1) Extend the Induction descriptor to also support inductions that involve 4752 // casts: When needed (namely, when we are called in the context of the 4753 // vectorizer induction analysis), a Set of cast instructions will be 4754 // populated by this method, and provided back to isInductionPHI. This is 4755 // needed to allow the vectorizer to properly record them to be ignored by 4756 // the cost model and to avoid vectorizing them (otherwise these casts, 4757 // which are redundant under the runtime overflow checks, will be 4758 // vectorized, which can be costly). 4759 // 4760 // 2) Support additional induction/PHISCEV patterns: We also want to support 4761 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4762 // after the induction update operation (the induction increment): 4763 // 4764 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4765 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4766 // 4767 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4768 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4769 // 4770 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4771 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4772 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4773 SmallVector<const SCEVPredicate *, 3> Predicates; 4774 4775 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4776 // return an AddRec expression under some predicate. 4777 4778 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4779 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4780 assert(L && "Expecting an integer loop header phi"); 4781 4782 // The loop may have multiple entrances or multiple exits; we can analyze 4783 // this phi as an addrec if it has a unique entry value and a unique 4784 // backedge value. 4785 Value *BEValueV = nullptr, *StartValueV = nullptr; 4786 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4787 Value *V = PN->getIncomingValue(i); 4788 if (L->contains(PN->getIncomingBlock(i))) { 4789 if (!BEValueV) { 4790 BEValueV = V; 4791 } else if (BEValueV != V) { 4792 BEValueV = nullptr; 4793 break; 4794 } 4795 } else if (!StartValueV) { 4796 StartValueV = V; 4797 } else if (StartValueV != V) { 4798 StartValueV = nullptr; 4799 break; 4800 } 4801 } 4802 if (!BEValueV || !StartValueV) 4803 return None; 4804 4805 const SCEV *BEValue = getSCEV(BEValueV); 4806 4807 // If the value coming around the backedge is an add with the symbolic 4808 // value we just inserted, possibly with casts that we can ignore under 4809 // an appropriate runtime guard, then we found a simple induction variable! 4810 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4811 if (!Add) 4812 return None; 4813 4814 // If there is a single occurrence of the symbolic value, possibly 4815 // casted, replace it with a recurrence. 4816 unsigned FoundIndex = Add->getNumOperands(); 4817 Type *TruncTy = nullptr; 4818 bool Signed; 4819 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4820 if ((TruncTy = 4821 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4822 if (FoundIndex == e) { 4823 FoundIndex = i; 4824 break; 4825 } 4826 4827 if (FoundIndex == Add->getNumOperands()) 4828 return None; 4829 4830 // Create an add with everything but the specified operand. 4831 SmallVector<const SCEV *, 8> Ops; 4832 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4833 if (i != FoundIndex) 4834 Ops.push_back(Add->getOperand(i)); 4835 const SCEV *Accum = getAddExpr(Ops); 4836 4837 // The runtime checks will not be valid if the step amount is 4838 // varying inside the loop. 4839 if (!isLoopInvariant(Accum, L)) 4840 return None; 4841 4842 // *** Part2: Create the predicates 4843 4844 // Analysis was successful: we have a phi-with-cast pattern for which we 4845 // can return an AddRec expression under the following predicates: 4846 // 4847 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4848 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4849 // P2: An Equal predicate that guarantees that 4850 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4851 // P3: An Equal predicate that guarantees that 4852 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4853 // 4854 // As we next prove, the above predicates guarantee that: 4855 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4856 // 4857 // 4858 // More formally, we want to prove that: 4859 // Expr(i+1) = Start + (i+1) * Accum 4860 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4861 // 4862 // Given that: 4863 // 1) Expr(0) = Start 4864 // 2) Expr(1) = Start + Accum 4865 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4866 // 3) Induction hypothesis (step i): 4867 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4868 // 4869 // Proof: 4870 // Expr(i+1) = 4871 // = Start + (i+1)*Accum 4872 // = (Start + i*Accum) + Accum 4873 // = Expr(i) + Accum 4874 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4875 // :: from step i 4876 // 4877 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4878 // 4879 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4880 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4881 // + Accum :: from P3 4882 // 4883 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4884 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4885 // 4886 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4887 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4888 // 4889 // By induction, the same applies to all iterations 1<=i<n: 4890 // 4891 4892 // Create a truncated addrec for which we will add a no overflow check (P1). 4893 const SCEV *StartVal = getSCEV(StartValueV); 4894 const SCEV *PHISCEV = 4895 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4896 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4897 4898 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4899 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4900 // will be constant. 4901 // 4902 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4903 // add P1. 4904 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4905 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4906 Signed ? SCEVWrapPredicate::IncrementNSSW 4907 : SCEVWrapPredicate::IncrementNUSW; 4908 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4909 Predicates.push_back(AddRecPred); 4910 } 4911 4912 // Create the Equal Predicates P2,P3: 4913 4914 // It is possible that the predicates P2 and/or P3 are computable at 4915 // compile time due to StartVal and/or Accum being constants. 4916 // If either one is, then we can check that now and escape if either P2 4917 // or P3 is false. 4918 4919 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4920 // for each of StartVal and Accum 4921 auto getExtendedExpr = [&](const SCEV *Expr, 4922 bool CreateSignExtend) -> const SCEV * { 4923 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4924 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4925 const SCEV *ExtendedExpr = 4926 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4927 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4928 return ExtendedExpr; 4929 }; 4930 4931 // Given: 4932 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4933 // = getExtendedExpr(Expr) 4934 // Determine whether the predicate P: Expr == ExtendedExpr 4935 // is known to be false at compile time 4936 auto PredIsKnownFalse = [&](const SCEV *Expr, 4937 const SCEV *ExtendedExpr) -> bool { 4938 return Expr != ExtendedExpr && 4939 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4940 }; 4941 4942 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4943 if (PredIsKnownFalse(StartVal, StartExtended)) { 4944 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4945 return None; 4946 } 4947 4948 // The Step is always Signed (because the overflow checks are either 4949 // NSSW or NUSW) 4950 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4951 if (PredIsKnownFalse(Accum, AccumExtended)) { 4952 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4953 return None; 4954 } 4955 4956 auto AppendPredicate = [&](const SCEV *Expr, 4957 const SCEV *ExtendedExpr) -> void { 4958 if (Expr != ExtendedExpr && 4959 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4960 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4961 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4962 Predicates.push_back(Pred); 4963 } 4964 }; 4965 4966 AppendPredicate(StartVal, StartExtended); 4967 AppendPredicate(Accum, AccumExtended); 4968 4969 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4970 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4971 // into NewAR if it will also add the runtime overflow checks specified in 4972 // Predicates. 4973 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4974 4975 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4976 std::make_pair(NewAR, Predicates); 4977 // Remember the result of the analysis for this SCEV at this locayyytion. 4978 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4979 return PredRewrite; 4980 } 4981 4982 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4983 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4984 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4985 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4986 if (!L) 4987 return None; 4988 4989 // Check to see if we already analyzed this PHI. 4990 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4991 if (I != PredicatedSCEVRewrites.end()) { 4992 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4993 I->second; 4994 // Analysis was done before and failed to create an AddRec: 4995 if (Rewrite.first == SymbolicPHI) 4996 return None; 4997 // Analysis was done before and succeeded to create an AddRec under 4998 // a predicate: 4999 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5000 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5001 return Rewrite; 5002 } 5003 5004 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5005 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5006 5007 // Record in the cache that the analysis failed 5008 if (!Rewrite) { 5009 SmallVector<const SCEVPredicate *, 3> Predicates; 5010 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5011 return None; 5012 } 5013 5014 return Rewrite; 5015 } 5016 5017 // FIXME: This utility is currently required because the Rewriter currently 5018 // does not rewrite this expression: 5019 // {0, +, (sext ix (trunc iy to ix) to iy)} 5020 // into {0, +, %step}, 5021 // even when the following Equal predicate exists: 5022 // "%step == (sext ix (trunc iy to ix) to iy)". 5023 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5024 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5025 if (AR1 == AR2) 5026 return true; 5027 5028 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5029 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5030 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5031 return false; 5032 return true; 5033 }; 5034 5035 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5036 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5037 return false; 5038 return true; 5039 } 5040 5041 /// A helper function for createAddRecFromPHI to handle simple cases. 5042 /// 5043 /// This function tries to find an AddRec expression for the simplest (yet most 5044 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5045 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5046 /// technique for finding the AddRec expression. 5047 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5048 Value *BEValueV, 5049 Value *StartValueV) { 5050 const Loop *L = LI.getLoopFor(PN->getParent()); 5051 assert(L && L->getHeader() == PN->getParent()); 5052 assert(BEValueV && StartValueV); 5053 5054 auto BO = MatchBinaryOp(BEValueV, DT); 5055 if (!BO) 5056 return nullptr; 5057 5058 if (BO->Opcode != Instruction::Add) 5059 return nullptr; 5060 5061 const SCEV *Accum = nullptr; 5062 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5063 Accum = getSCEV(BO->RHS); 5064 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5065 Accum = getSCEV(BO->LHS); 5066 5067 if (!Accum) 5068 return nullptr; 5069 5070 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5071 if (BO->IsNUW) 5072 Flags = setFlags(Flags, SCEV::FlagNUW); 5073 if (BO->IsNSW) 5074 Flags = setFlags(Flags, SCEV::FlagNSW); 5075 5076 const SCEV *StartVal = getSCEV(StartValueV); 5077 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5078 5079 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5080 5081 // We can add Flags to the post-inc expression only if we 5082 // know that it is *undefined behavior* for BEValueV to 5083 // overflow. 5084 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5085 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5086 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5087 5088 return PHISCEV; 5089 } 5090 5091 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5092 const Loop *L = LI.getLoopFor(PN->getParent()); 5093 if (!L || L->getHeader() != PN->getParent()) 5094 return nullptr; 5095 5096 // The loop may have multiple entrances or multiple exits; we can analyze 5097 // this phi as an addrec if it has a unique entry value and a unique 5098 // backedge value. 5099 Value *BEValueV = nullptr, *StartValueV = nullptr; 5100 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5101 Value *V = PN->getIncomingValue(i); 5102 if (L->contains(PN->getIncomingBlock(i))) { 5103 if (!BEValueV) { 5104 BEValueV = V; 5105 } else if (BEValueV != V) { 5106 BEValueV = nullptr; 5107 break; 5108 } 5109 } else if (!StartValueV) { 5110 StartValueV = V; 5111 } else if (StartValueV != V) { 5112 StartValueV = nullptr; 5113 break; 5114 } 5115 } 5116 if (!BEValueV || !StartValueV) 5117 return nullptr; 5118 5119 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5120 "PHI node already processed?"); 5121 5122 // First, try to find AddRec expression without creating a fictituos symbolic 5123 // value for PN. 5124 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5125 return S; 5126 5127 // Handle PHI node value symbolically. 5128 const SCEV *SymbolicName = getUnknown(PN); 5129 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5130 5131 // Using this symbolic name for the PHI, analyze the value coming around 5132 // the back-edge. 5133 const SCEV *BEValue = getSCEV(BEValueV); 5134 5135 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5136 // has a special value for the first iteration of the loop. 5137 5138 // If the value coming around the backedge is an add with the symbolic 5139 // value we just inserted, then we found a simple induction variable! 5140 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5141 // If there is a single occurrence of the symbolic value, replace it 5142 // with a recurrence. 5143 unsigned FoundIndex = Add->getNumOperands(); 5144 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5145 if (Add->getOperand(i) == SymbolicName) 5146 if (FoundIndex == e) { 5147 FoundIndex = i; 5148 break; 5149 } 5150 5151 if (FoundIndex != Add->getNumOperands()) { 5152 // Create an add with everything but the specified operand. 5153 SmallVector<const SCEV *, 8> Ops; 5154 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5155 if (i != FoundIndex) 5156 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5157 L, *this)); 5158 const SCEV *Accum = getAddExpr(Ops); 5159 5160 // This is not a valid addrec if the step amount is varying each 5161 // loop iteration, but is not itself an addrec in this loop. 5162 if (isLoopInvariant(Accum, L) || 5163 (isa<SCEVAddRecExpr>(Accum) && 5164 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5165 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5166 5167 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5168 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5169 if (BO->IsNUW) 5170 Flags = setFlags(Flags, SCEV::FlagNUW); 5171 if (BO->IsNSW) 5172 Flags = setFlags(Flags, SCEV::FlagNSW); 5173 } 5174 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5175 // If the increment is an inbounds GEP, then we know the address 5176 // space cannot be wrapped around. We cannot make any guarantee 5177 // about signed or unsigned overflow because pointers are 5178 // unsigned but we may have a negative index from the base 5179 // pointer. We can guarantee that no unsigned wrap occurs if the 5180 // indices form a positive value. 5181 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5182 Flags = setFlags(Flags, SCEV::FlagNW); 5183 5184 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5185 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5186 Flags = setFlags(Flags, SCEV::FlagNUW); 5187 } 5188 5189 // We cannot transfer nuw and nsw flags from subtraction 5190 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5191 // for instance. 5192 } 5193 5194 const SCEV *StartVal = getSCEV(StartValueV); 5195 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5196 5197 // Okay, for the entire analysis of this edge we assumed the PHI 5198 // to be symbolic. We now need to go back and purge all of the 5199 // entries for the scalars that use the symbolic expression. 5200 forgetSymbolicName(PN, SymbolicName); 5201 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5202 5203 // We can add Flags to the post-inc expression only if we 5204 // know that it is *undefined behavior* for BEValueV to 5205 // overflow. 5206 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5207 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5208 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5209 5210 return PHISCEV; 5211 } 5212 } 5213 } else { 5214 // Otherwise, this could be a loop like this: 5215 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5216 // In this case, j = {1,+,1} and BEValue is j. 5217 // Because the other in-value of i (0) fits the evolution of BEValue 5218 // i really is an addrec evolution. 5219 // 5220 // We can generalize this saying that i is the shifted value of BEValue 5221 // by one iteration: 5222 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5223 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5224 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5225 if (Shifted != getCouldNotCompute() && 5226 Start != getCouldNotCompute()) { 5227 const SCEV *StartVal = getSCEV(StartValueV); 5228 if (Start == StartVal) { 5229 // Okay, for the entire analysis of this edge we assumed the PHI 5230 // to be symbolic. We now need to go back and purge all of the 5231 // entries for the scalars that use the symbolic expression. 5232 forgetSymbolicName(PN, SymbolicName); 5233 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5234 return Shifted; 5235 } 5236 } 5237 } 5238 5239 // Remove the temporary PHI node SCEV that has been inserted while intending 5240 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5241 // as it will prevent later (possibly simpler) SCEV expressions to be added 5242 // to the ValueExprMap. 5243 eraseValueFromMap(PN); 5244 5245 return nullptr; 5246 } 5247 5248 // Checks if the SCEV S is available at BB. S is considered available at BB 5249 // if S can be materialized at BB without introducing a fault. 5250 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5251 BasicBlock *BB) { 5252 struct CheckAvailable { 5253 bool TraversalDone = false; 5254 bool Available = true; 5255 5256 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5257 BasicBlock *BB = nullptr; 5258 DominatorTree &DT; 5259 5260 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5261 : L(L), BB(BB), DT(DT) {} 5262 5263 bool setUnavailable() { 5264 TraversalDone = true; 5265 Available = false; 5266 return false; 5267 } 5268 5269 bool follow(const SCEV *S) { 5270 switch (S->getSCEVType()) { 5271 case scConstant: 5272 case scPtrToInt: 5273 case scTruncate: 5274 case scZeroExtend: 5275 case scSignExtend: 5276 case scAddExpr: 5277 case scMulExpr: 5278 case scUMaxExpr: 5279 case scSMaxExpr: 5280 case scUMinExpr: 5281 case scSMinExpr: 5282 // These expressions are available if their operand(s) is/are. 5283 return true; 5284 5285 case scAddRecExpr: { 5286 // We allow add recurrences that are on the loop BB is in, or some 5287 // outer loop. This guarantees availability because the value of the 5288 // add recurrence at BB is simply the "current" value of the induction 5289 // variable. We can relax this in the future; for instance an add 5290 // recurrence on a sibling dominating loop is also available at BB. 5291 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5292 if (L && (ARLoop == L || ARLoop->contains(L))) 5293 return true; 5294 5295 return setUnavailable(); 5296 } 5297 5298 case scUnknown: { 5299 // For SCEVUnknown, we check for simple dominance. 5300 const auto *SU = cast<SCEVUnknown>(S); 5301 Value *V = SU->getValue(); 5302 5303 if (isa<Argument>(V)) 5304 return false; 5305 5306 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5307 return false; 5308 5309 return setUnavailable(); 5310 } 5311 5312 case scUDivExpr: 5313 case scCouldNotCompute: 5314 // We do not try to smart about these at all. 5315 return setUnavailable(); 5316 } 5317 llvm_unreachable("Unknown SCEV kind!"); 5318 } 5319 5320 bool isDone() { return TraversalDone; } 5321 }; 5322 5323 CheckAvailable CA(L, BB, DT); 5324 SCEVTraversal<CheckAvailable> ST(CA); 5325 5326 ST.visitAll(S); 5327 return CA.Available; 5328 } 5329 5330 // Try to match a control flow sequence that branches out at BI and merges back 5331 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5332 // match. 5333 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5334 Value *&C, Value *&LHS, Value *&RHS) { 5335 C = BI->getCondition(); 5336 5337 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5338 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5339 5340 if (!LeftEdge.isSingleEdge()) 5341 return false; 5342 5343 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5344 5345 Use &LeftUse = Merge->getOperandUse(0); 5346 Use &RightUse = Merge->getOperandUse(1); 5347 5348 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5349 LHS = LeftUse; 5350 RHS = RightUse; 5351 return true; 5352 } 5353 5354 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5355 LHS = RightUse; 5356 RHS = LeftUse; 5357 return true; 5358 } 5359 5360 return false; 5361 } 5362 5363 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5364 auto IsReachable = 5365 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5366 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5367 const Loop *L = LI.getLoopFor(PN->getParent()); 5368 5369 // We don't want to break LCSSA, even in a SCEV expression tree. 5370 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5371 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5372 return nullptr; 5373 5374 // Try to match 5375 // 5376 // br %cond, label %left, label %right 5377 // left: 5378 // br label %merge 5379 // right: 5380 // br label %merge 5381 // merge: 5382 // V = phi [ %x, %left ], [ %y, %right ] 5383 // 5384 // as "select %cond, %x, %y" 5385 5386 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5387 assert(IDom && "At least the entry block should dominate PN"); 5388 5389 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5390 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5391 5392 if (BI && BI->isConditional() && 5393 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5394 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5395 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5396 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5397 } 5398 5399 return nullptr; 5400 } 5401 5402 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5403 if (const SCEV *S = createAddRecFromPHI(PN)) 5404 return S; 5405 5406 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5407 return S; 5408 5409 // If the PHI has a single incoming value, follow that value, unless the 5410 // PHI's incoming blocks are in a different loop, in which case doing so 5411 // risks breaking LCSSA form. Instcombine would normally zap these, but 5412 // it doesn't have DominatorTree information, so it may miss cases. 5413 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5414 if (LI.replacementPreservesLCSSAForm(PN, V)) 5415 return getSCEV(V); 5416 5417 // If it's not a loop phi, we can't handle it yet. 5418 return getUnknown(PN); 5419 } 5420 5421 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5422 Value *Cond, 5423 Value *TrueVal, 5424 Value *FalseVal) { 5425 // Handle "constant" branch or select. This can occur for instance when a 5426 // loop pass transforms an inner loop and moves on to process the outer loop. 5427 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5428 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5429 5430 // Try to match some simple smax or umax patterns. 5431 auto *ICI = dyn_cast<ICmpInst>(Cond); 5432 if (!ICI) 5433 return getUnknown(I); 5434 5435 Value *LHS = ICI->getOperand(0); 5436 Value *RHS = ICI->getOperand(1); 5437 5438 switch (ICI->getPredicate()) { 5439 case ICmpInst::ICMP_SLT: 5440 case ICmpInst::ICMP_SLE: 5441 std::swap(LHS, RHS); 5442 LLVM_FALLTHROUGH; 5443 case ICmpInst::ICMP_SGT: 5444 case ICmpInst::ICMP_SGE: 5445 // a >s b ? a+x : b+x -> smax(a, b)+x 5446 // a >s b ? b+x : a+x -> smin(a, b)+x 5447 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5448 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5449 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5450 const SCEV *LA = getSCEV(TrueVal); 5451 const SCEV *RA = getSCEV(FalseVal); 5452 const SCEV *LDiff = getMinusSCEV(LA, LS); 5453 const SCEV *RDiff = getMinusSCEV(RA, RS); 5454 if (LDiff == RDiff) 5455 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5456 LDiff = getMinusSCEV(LA, RS); 5457 RDiff = getMinusSCEV(RA, LS); 5458 if (LDiff == RDiff) 5459 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5460 } 5461 break; 5462 case ICmpInst::ICMP_ULT: 5463 case ICmpInst::ICMP_ULE: 5464 std::swap(LHS, RHS); 5465 LLVM_FALLTHROUGH; 5466 case ICmpInst::ICMP_UGT: 5467 case ICmpInst::ICMP_UGE: 5468 // a >u b ? a+x : b+x -> umax(a, b)+x 5469 // a >u b ? b+x : a+x -> umin(a, b)+x 5470 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5471 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5472 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5473 const SCEV *LA = getSCEV(TrueVal); 5474 const SCEV *RA = getSCEV(FalseVal); 5475 const SCEV *LDiff = getMinusSCEV(LA, LS); 5476 const SCEV *RDiff = getMinusSCEV(RA, RS); 5477 if (LDiff == RDiff) 5478 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5479 LDiff = getMinusSCEV(LA, RS); 5480 RDiff = getMinusSCEV(RA, LS); 5481 if (LDiff == RDiff) 5482 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5483 } 5484 break; 5485 case ICmpInst::ICMP_NE: 5486 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5487 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5488 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5489 const SCEV *One = getOne(I->getType()); 5490 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5491 const SCEV *LA = getSCEV(TrueVal); 5492 const SCEV *RA = getSCEV(FalseVal); 5493 const SCEV *LDiff = getMinusSCEV(LA, LS); 5494 const SCEV *RDiff = getMinusSCEV(RA, One); 5495 if (LDiff == RDiff) 5496 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5497 } 5498 break; 5499 case ICmpInst::ICMP_EQ: 5500 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5501 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5502 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5503 const SCEV *One = getOne(I->getType()); 5504 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5505 const SCEV *LA = getSCEV(TrueVal); 5506 const SCEV *RA = getSCEV(FalseVal); 5507 const SCEV *LDiff = getMinusSCEV(LA, One); 5508 const SCEV *RDiff = getMinusSCEV(RA, LS); 5509 if (LDiff == RDiff) 5510 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5511 } 5512 break; 5513 default: 5514 break; 5515 } 5516 5517 return getUnknown(I); 5518 } 5519 5520 /// Expand GEP instructions into add and multiply operations. This allows them 5521 /// to be analyzed by regular SCEV code. 5522 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5523 // Don't attempt to analyze GEPs over unsized objects. 5524 if (!GEP->getSourceElementType()->isSized()) 5525 return getUnknown(GEP); 5526 5527 SmallVector<const SCEV *, 4> IndexExprs; 5528 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5529 IndexExprs.push_back(getSCEV(*Index)); 5530 return getGEPExpr(GEP, IndexExprs); 5531 } 5532 5533 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5534 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5535 return C->getAPInt().countTrailingZeros(); 5536 5537 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5538 return GetMinTrailingZeros(I->getOperand()); 5539 5540 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5541 return std::min(GetMinTrailingZeros(T->getOperand()), 5542 (uint32_t)getTypeSizeInBits(T->getType())); 5543 5544 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5545 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5546 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5547 ? getTypeSizeInBits(E->getType()) 5548 : OpRes; 5549 } 5550 5551 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5552 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5553 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5554 ? getTypeSizeInBits(E->getType()) 5555 : OpRes; 5556 } 5557 5558 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5559 // The result is the min of all operands results. 5560 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5561 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5562 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5563 return MinOpRes; 5564 } 5565 5566 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5567 // The result is the sum of all operands results. 5568 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5569 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5570 for (unsigned i = 1, e = M->getNumOperands(); 5571 SumOpRes != BitWidth && i != e; ++i) 5572 SumOpRes = 5573 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5574 return SumOpRes; 5575 } 5576 5577 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5578 // The result is the min of all operands results. 5579 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5580 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5581 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5582 return MinOpRes; 5583 } 5584 5585 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5586 // The result is the min of all operands results. 5587 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5588 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5589 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5590 return MinOpRes; 5591 } 5592 5593 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5594 // The result is the min of all operands results. 5595 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5596 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5597 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5598 return MinOpRes; 5599 } 5600 5601 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5602 // For a SCEVUnknown, ask ValueTracking. 5603 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5604 return Known.countMinTrailingZeros(); 5605 } 5606 5607 // SCEVUDivExpr 5608 return 0; 5609 } 5610 5611 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5612 auto I = MinTrailingZerosCache.find(S); 5613 if (I != MinTrailingZerosCache.end()) 5614 return I->second; 5615 5616 uint32_t Result = GetMinTrailingZerosImpl(S); 5617 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5618 assert(InsertPair.second && "Should insert a new key"); 5619 return InsertPair.first->second; 5620 } 5621 5622 /// Helper method to assign a range to V from metadata present in the IR. 5623 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5624 if (Instruction *I = dyn_cast<Instruction>(V)) 5625 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5626 return getConstantRangeFromMetadata(*MD); 5627 5628 return None; 5629 } 5630 5631 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5632 SCEV::NoWrapFlags Flags) { 5633 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5634 AddRec->setNoWrapFlags(Flags); 5635 UnsignedRanges.erase(AddRec); 5636 SignedRanges.erase(AddRec); 5637 } 5638 } 5639 5640 /// Determine the range for a particular SCEV. If SignHint is 5641 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5642 /// with a "cleaner" unsigned (resp. signed) representation. 5643 const ConstantRange & 5644 ScalarEvolution::getRangeRef(const SCEV *S, 5645 ScalarEvolution::RangeSignHint SignHint) { 5646 DenseMap<const SCEV *, ConstantRange> &Cache = 5647 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5648 : SignedRanges; 5649 ConstantRange::PreferredRangeType RangeType = 5650 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5651 ? ConstantRange::Unsigned : ConstantRange::Signed; 5652 5653 // See if we've computed this range already. 5654 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5655 if (I != Cache.end()) 5656 return I->second; 5657 5658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5659 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5660 5661 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5662 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5663 using OBO = OverflowingBinaryOperator; 5664 5665 // If the value has known zeros, the maximum value will have those known zeros 5666 // as well. 5667 uint32_t TZ = GetMinTrailingZeros(S); 5668 if (TZ != 0) { 5669 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5670 ConservativeResult = 5671 ConstantRange(APInt::getMinValue(BitWidth), 5672 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5673 else 5674 ConservativeResult = ConstantRange( 5675 APInt::getSignedMinValue(BitWidth), 5676 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5677 } 5678 5679 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5680 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5681 unsigned WrapType = OBO::AnyWrap; 5682 if (Add->hasNoSignedWrap()) 5683 WrapType |= OBO::NoSignedWrap; 5684 if (Add->hasNoUnsignedWrap()) 5685 WrapType |= OBO::NoUnsignedWrap; 5686 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5687 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5688 WrapType, RangeType); 5689 return setRange(Add, SignHint, 5690 ConservativeResult.intersectWith(X, RangeType)); 5691 } 5692 5693 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5694 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5695 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5696 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5697 return setRange(Mul, SignHint, 5698 ConservativeResult.intersectWith(X, RangeType)); 5699 } 5700 5701 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5702 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5703 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5704 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5705 return setRange(SMax, SignHint, 5706 ConservativeResult.intersectWith(X, RangeType)); 5707 } 5708 5709 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5710 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5711 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5712 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5713 return setRange(UMax, SignHint, 5714 ConservativeResult.intersectWith(X, RangeType)); 5715 } 5716 5717 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5718 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5719 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5720 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5721 return setRange(SMin, SignHint, 5722 ConservativeResult.intersectWith(X, RangeType)); 5723 } 5724 5725 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5726 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5727 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5728 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5729 return setRange(UMin, SignHint, 5730 ConservativeResult.intersectWith(X, RangeType)); 5731 } 5732 5733 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5734 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5735 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5736 return setRange(UDiv, SignHint, 5737 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5738 } 5739 5740 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5741 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5742 return setRange(ZExt, SignHint, 5743 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5744 RangeType)); 5745 } 5746 5747 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5748 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5749 return setRange(SExt, SignHint, 5750 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5751 RangeType)); 5752 } 5753 5754 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 5755 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 5756 return setRange(PtrToInt, SignHint, X); 5757 } 5758 5759 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5760 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5761 return setRange(Trunc, SignHint, 5762 ConservativeResult.intersectWith(X.truncate(BitWidth), 5763 RangeType)); 5764 } 5765 5766 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5767 // If there's no unsigned wrap, the value will never be less than its 5768 // initial value. 5769 if (AddRec->hasNoUnsignedWrap()) { 5770 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5771 if (!UnsignedMinValue.isNullValue()) 5772 ConservativeResult = ConservativeResult.intersectWith( 5773 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5774 } 5775 5776 // If there's no signed wrap, and all the operands except initial value have 5777 // the same sign or zero, the value won't ever be: 5778 // 1: smaller than initial value if operands are non negative, 5779 // 2: bigger than initial value if operands are non positive. 5780 // For both cases, value can not cross signed min/max boundary. 5781 if (AddRec->hasNoSignedWrap()) { 5782 bool AllNonNeg = true; 5783 bool AllNonPos = true; 5784 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5785 if (!isKnownNonNegative(AddRec->getOperand(i))) 5786 AllNonNeg = false; 5787 if (!isKnownNonPositive(AddRec->getOperand(i))) 5788 AllNonPos = false; 5789 } 5790 if (AllNonNeg) 5791 ConservativeResult = ConservativeResult.intersectWith( 5792 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5793 APInt::getSignedMinValue(BitWidth)), 5794 RangeType); 5795 else if (AllNonPos) 5796 ConservativeResult = ConservativeResult.intersectWith( 5797 ConstantRange::getNonEmpty( 5798 APInt::getSignedMinValue(BitWidth), 5799 getSignedRangeMax(AddRec->getStart()) + 1), 5800 RangeType); 5801 } 5802 5803 // TODO: non-affine addrec 5804 if (AddRec->isAffine()) { 5805 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5806 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5807 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5808 auto RangeFromAffine = getRangeForAffineAR( 5809 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5810 BitWidth); 5811 ConservativeResult = 5812 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5813 5814 auto RangeFromFactoring = getRangeViaFactoring( 5815 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5816 BitWidth); 5817 ConservativeResult = 5818 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5819 } 5820 5821 // Now try symbolic BE count and more powerful methods. 5822 if (UseExpensiveRangeSharpening) { 5823 const SCEV *SymbolicMaxBECount = 5824 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 5825 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 5826 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5827 AddRec->hasNoSelfWrap()) { 5828 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 5829 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 5830 ConservativeResult = 5831 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 5832 } 5833 } 5834 } 5835 5836 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5837 } 5838 5839 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5840 // Check if the IR explicitly contains !range metadata. 5841 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5842 if (MDRange.hasValue()) 5843 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5844 RangeType); 5845 5846 // See if ValueTracking can give us a useful range. 5847 const DataLayout &DL = getDataLayout(); 5848 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5849 if (Known.getBitWidth() != BitWidth) 5850 Known = Known.zextOrTrunc(BitWidth); 5851 5852 // ValueTracking may be able to compute a tighter result for the number of 5853 // sign bits than for the value of those sign bits. 5854 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5855 if (U->getType()->isPointerTy()) { 5856 // If the pointer size is larger than the index size type, this can cause 5857 // NS to be larger than BitWidth. So compensate for this. 5858 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5859 int ptrIdxDiff = ptrSize - BitWidth; 5860 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5861 NS -= ptrIdxDiff; 5862 } 5863 5864 if (NS > 1) { 5865 // If we know any of the sign bits, we know all of the sign bits. 5866 if (!Known.Zero.getHiBits(NS).isNullValue()) 5867 Known.Zero.setHighBits(NS); 5868 if (!Known.One.getHiBits(NS).isNullValue()) 5869 Known.One.setHighBits(NS); 5870 } 5871 5872 if (Known.getMinValue() != Known.getMaxValue() + 1) 5873 ConservativeResult = ConservativeResult.intersectWith( 5874 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5875 RangeType); 5876 if (NS > 1) 5877 ConservativeResult = ConservativeResult.intersectWith( 5878 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5879 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5880 RangeType); 5881 5882 // A range of Phi is a subset of union of all ranges of its input. 5883 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5884 // Make sure that we do not run over cycled Phis. 5885 if (PendingPhiRanges.insert(Phi).second) { 5886 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5887 for (auto &Op : Phi->operands()) { 5888 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5889 RangeFromOps = RangeFromOps.unionWith(OpRange); 5890 // No point to continue if we already have a full set. 5891 if (RangeFromOps.isFullSet()) 5892 break; 5893 } 5894 ConservativeResult = 5895 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5896 bool Erased = PendingPhiRanges.erase(Phi); 5897 assert(Erased && "Failed to erase Phi properly?"); 5898 (void) Erased; 5899 } 5900 } 5901 5902 return setRange(U, SignHint, std::move(ConservativeResult)); 5903 } 5904 5905 return setRange(S, SignHint, std::move(ConservativeResult)); 5906 } 5907 5908 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5909 // values that the expression can take. Initially, the expression has a value 5910 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5911 // argument defines if we treat Step as signed or unsigned. 5912 static ConstantRange getRangeForAffineARHelper(APInt Step, 5913 const ConstantRange &StartRange, 5914 const APInt &MaxBECount, 5915 unsigned BitWidth, bool Signed) { 5916 // If either Step or MaxBECount is 0, then the expression won't change, and we 5917 // just need to return the initial range. 5918 if (Step == 0 || MaxBECount == 0) 5919 return StartRange; 5920 5921 // If we don't know anything about the initial value (i.e. StartRange is 5922 // FullRange), then we don't know anything about the final range either. 5923 // Return FullRange. 5924 if (StartRange.isFullSet()) 5925 return ConstantRange::getFull(BitWidth); 5926 5927 // If Step is signed and negative, then we use its absolute value, but we also 5928 // note that we're moving in the opposite direction. 5929 bool Descending = Signed && Step.isNegative(); 5930 5931 if (Signed) 5932 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5933 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5934 // This equations hold true due to the well-defined wrap-around behavior of 5935 // APInt. 5936 Step = Step.abs(); 5937 5938 // Check if Offset is more than full span of BitWidth. If it is, the 5939 // expression is guaranteed to overflow. 5940 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5941 return ConstantRange::getFull(BitWidth); 5942 5943 // Offset is by how much the expression can change. Checks above guarantee no 5944 // overflow here. 5945 APInt Offset = Step * MaxBECount; 5946 5947 // Minimum value of the final range will match the minimal value of StartRange 5948 // if the expression is increasing and will be decreased by Offset otherwise. 5949 // Maximum value of the final range will match the maximal value of StartRange 5950 // if the expression is decreasing and will be increased by Offset otherwise. 5951 APInt StartLower = StartRange.getLower(); 5952 APInt StartUpper = StartRange.getUpper() - 1; 5953 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5954 : (StartUpper + std::move(Offset)); 5955 5956 // It's possible that the new minimum/maximum value will fall into the initial 5957 // range (due to wrap around). This means that the expression can take any 5958 // value in this bitwidth, and we have to return full range. 5959 if (StartRange.contains(MovedBoundary)) 5960 return ConstantRange::getFull(BitWidth); 5961 5962 APInt NewLower = 5963 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5964 APInt NewUpper = 5965 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5966 NewUpper += 1; 5967 5968 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5969 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5970 } 5971 5972 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5973 const SCEV *Step, 5974 const SCEV *MaxBECount, 5975 unsigned BitWidth) { 5976 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5977 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5978 "Precondition!"); 5979 5980 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5981 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5982 5983 // First, consider step signed. 5984 ConstantRange StartSRange = getSignedRange(Start); 5985 ConstantRange StepSRange = getSignedRange(Step); 5986 5987 // If Step can be both positive and negative, we need to find ranges for the 5988 // maximum absolute step values in both directions and union them. 5989 ConstantRange SR = 5990 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5991 MaxBECountValue, BitWidth, /* Signed = */ true); 5992 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5993 StartSRange, MaxBECountValue, 5994 BitWidth, /* Signed = */ true)); 5995 5996 // Next, consider step unsigned. 5997 ConstantRange UR = getRangeForAffineARHelper( 5998 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5999 MaxBECountValue, BitWidth, /* Signed = */ false); 6000 6001 // Finally, intersect signed and unsigned ranges. 6002 return SR.intersectWith(UR, ConstantRange::Smallest); 6003 } 6004 6005 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6006 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6007 ScalarEvolution::RangeSignHint SignHint) { 6008 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6009 assert(AddRec->hasNoSelfWrap() && 6010 "This only works for non-self-wrapping AddRecs!"); 6011 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6012 const SCEV *Step = AddRec->getStepRecurrence(*this); 6013 // Only deal with constant step to save compile time. 6014 if (!isa<SCEVConstant>(Step)) 6015 return ConstantRange::getFull(BitWidth); 6016 // Let's make sure that we can prove that we do not self-wrap during 6017 // MaxBECount iterations. We need this because MaxBECount is a maximum 6018 // iteration count estimate, and we might infer nw from some exit for which we 6019 // do not know max exit count (or any other side reasoning). 6020 // TODO: Turn into assert at some point. 6021 if (getTypeSizeInBits(MaxBECount->getType()) > 6022 getTypeSizeInBits(AddRec->getType())) 6023 return ConstantRange::getFull(BitWidth); 6024 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6025 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6026 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6027 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6028 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6029 MaxItersWithoutWrap)) 6030 return ConstantRange::getFull(BitWidth); 6031 6032 ICmpInst::Predicate LEPred = 6033 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6034 ICmpInst::Predicate GEPred = 6035 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6036 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6037 6038 // We know that there is no self-wrap. Let's take Start and End values and 6039 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6040 // the iteration. They either lie inside the range [Min(Start, End), 6041 // Max(Start, End)] or outside it: 6042 // 6043 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6044 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6045 // 6046 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6047 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6048 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6049 // Start <= End and step is positive, or Start >= End and step is negative. 6050 const SCEV *Start = AddRec->getStart(); 6051 ConstantRange StartRange = getRangeRef(Start, SignHint); 6052 ConstantRange EndRange = getRangeRef(End, SignHint); 6053 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6054 // If they already cover full iteration space, we will know nothing useful 6055 // even if we prove what we want to prove. 6056 if (RangeBetween.isFullSet()) 6057 return RangeBetween; 6058 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6059 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6060 : RangeBetween.isWrappedSet(); 6061 if (IsWrappedSet) 6062 return ConstantRange::getFull(BitWidth); 6063 6064 if (isKnownPositive(Step) && 6065 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6066 return RangeBetween; 6067 else if (isKnownNegative(Step) && 6068 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6069 return RangeBetween; 6070 return ConstantRange::getFull(BitWidth); 6071 } 6072 6073 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6074 const SCEV *Step, 6075 const SCEV *MaxBECount, 6076 unsigned BitWidth) { 6077 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6078 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6079 6080 struct SelectPattern { 6081 Value *Condition = nullptr; 6082 APInt TrueValue; 6083 APInt FalseValue; 6084 6085 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6086 const SCEV *S) { 6087 Optional<unsigned> CastOp; 6088 APInt Offset(BitWidth, 0); 6089 6090 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6091 "Should be!"); 6092 6093 // Peel off a constant offset: 6094 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6095 // In the future we could consider being smarter here and handle 6096 // {Start+Step,+,Step} too. 6097 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6098 return; 6099 6100 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6101 S = SA->getOperand(1); 6102 } 6103 6104 // Peel off a cast operation 6105 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6106 CastOp = SCast->getSCEVType(); 6107 S = SCast->getOperand(); 6108 } 6109 6110 using namespace llvm::PatternMatch; 6111 6112 auto *SU = dyn_cast<SCEVUnknown>(S); 6113 const APInt *TrueVal, *FalseVal; 6114 if (!SU || 6115 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6116 m_APInt(FalseVal)))) { 6117 Condition = nullptr; 6118 return; 6119 } 6120 6121 TrueValue = *TrueVal; 6122 FalseValue = *FalseVal; 6123 6124 // Re-apply the cast we peeled off earlier 6125 if (CastOp.hasValue()) 6126 switch (*CastOp) { 6127 default: 6128 llvm_unreachable("Unknown SCEV cast type!"); 6129 6130 case scTruncate: 6131 TrueValue = TrueValue.trunc(BitWidth); 6132 FalseValue = FalseValue.trunc(BitWidth); 6133 break; 6134 case scZeroExtend: 6135 TrueValue = TrueValue.zext(BitWidth); 6136 FalseValue = FalseValue.zext(BitWidth); 6137 break; 6138 case scSignExtend: 6139 TrueValue = TrueValue.sext(BitWidth); 6140 FalseValue = FalseValue.sext(BitWidth); 6141 break; 6142 } 6143 6144 // Re-apply the constant offset we peeled off earlier 6145 TrueValue += Offset; 6146 FalseValue += Offset; 6147 } 6148 6149 bool isRecognized() { return Condition != nullptr; } 6150 }; 6151 6152 SelectPattern StartPattern(*this, BitWidth, Start); 6153 if (!StartPattern.isRecognized()) 6154 return ConstantRange::getFull(BitWidth); 6155 6156 SelectPattern StepPattern(*this, BitWidth, Step); 6157 if (!StepPattern.isRecognized()) 6158 return ConstantRange::getFull(BitWidth); 6159 6160 if (StartPattern.Condition != StepPattern.Condition) { 6161 // We don't handle this case today; but we could, by considering four 6162 // possibilities below instead of two. I'm not sure if there are cases where 6163 // that will help over what getRange already does, though. 6164 return ConstantRange::getFull(BitWidth); 6165 } 6166 6167 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6168 // construct arbitrary general SCEV expressions here. This function is called 6169 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6170 // say) can end up caching a suboptimal value. 6171 6172 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6173 // C2352 and C2512 (otherwise it isn't needed). 6174 6175 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6176 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6177 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6178 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6179 6180 ConstantRange TrueRange = 6181 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6182 ConstantRange FalseRange = 6183 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6184 6185 return TrueRange.unionWith(FalseRange); 6186 } 6187 6188 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6189 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6190 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6191 6192 // Return early if there are no flags to propagate to the SCEV. 6193 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6194 if (BinOp->hasNoUnsignedWrap()) 6195 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6196 if (BinOp->hasNoSignedWrap()) 6197 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6198 if (Flags == SCEV::FlagAnyWrap) 6199 return SCEV::FlagAnyWrap; 6200 6201 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6202 } 6203 6204 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6205 // Here we check that I is in the header of the innermost loop containing I, 6206 // since we only deal with instructions in the loop header. The actual loop we 6207 // need to check later will come from an add recurrence, but getting that 6208 // requires computing the SCEV of the operands, which can be expensive. This 6209 // check we can do cheaply to rule out some cases early. 6210 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6211 if (InnermostContainingLoop == nullptr || 6212 InnermostContainingLoop->getHeader() != I->getParent()) 6213 return false; 6214 6215 // Only proceed if we can prove that I does not yield poison. 6216 if (!programUndefinedIfPoison(I)) 6217 return false; 6218 6219 // At this point we know that if I is executed, then it does not wrap 6220 // according to at least one of NSW or NUW. If I is not executed, then we do 6221 // not know if the calculation that I represents would wrap. Multiple 6222 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6223 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6224 // derived from other instructions that map to the same SCEV. We cannot make 6225 // that guarantee for cases where I is not executed. So we need to find the 6226 // loop that I is considered in relation to and prove that I is executed for 6227 // every iteration of that loop. That implies that the value that I 6228 // calculates does not wrap anywhere in the loop, so then we can apply the 6229 // flags to the SCEV. 6230 // 6231 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6232 // from different loops, so that we know which loop to prove that I is 6233 // executed in. 6234 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6235 // I could be an extractvalue from a call to an overflow intrinsic. 6236 // TODO: We can do better here in some cases. 6237 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6238 return false; 6239 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6240 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6241 bool AllOtherOpsLoopInvariant = true; 6242 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6243 ++OtherOpIndex) { 6244 if (OtherOpIndex != OpIndex) { 6245 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6246 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6247 AllOtherOpsLoopInvariant = false; 6248 break; 6249 } 6250 } 6251 } 6252 if (AllOtherOpsLoopInvariant && 6253 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6254 return true; 6255 } 6256 } 6257 return false; 6258 } 6259 6260 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6261 // If we know that \c I can never be poison period, then that's enough. 6262 if (isSCEVExprNeverPoison(I)) 6263 return true; 6264 6265 // For an add recurrence specifically, we assume that infinite loops without 6266 // side effects are undefined behavior, and then reason as follows: 6267 // 6268 // If the add recurrence is poison in any iteration, it is poison on all 6269 // future iterations (since incrementing poison yields poison). If the result 6270 // of the add recurrence is fed into the loop latch condition and the loop 6271 // does not contain any throws or exiting blocks other than the latch, we now 6272 // have the ability to "choose" whether the backedge is taken or not (by 6273 // choosing a sufficiently evil value for the poison feeding into the branch) 6274 // for every iteration including and after the one in which \p I first became 6275 // poison. There are two possibilities (let's call the iteration in which \p 6276 // I first became poison as K): 6277 // 6278 // 1. In the set of iterations including and after K, the loop body executes 6279 // no side effects. In this case executing the backege an infinte number 6280 // of times will yield undefined behavior. 6281 // 6282 // 2. In the set of iterations including and after K, the loop body executes 6283 // at least one side effect. In this case, that specific instance of side 6284 // effect is control dependent on poison, which also yields undefined 6285 // behavior. 6286 6287 auto *ExitingBB = L->getExitingBlock(); 6288 auto *LatchBB = L->getLoopLatch(); 6289 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6290 return false; 6291 6292 SmallPtrSet<const Instruction *, 16> Pushed; 6293 SmallVector<const Instruction *, 8> PoisonStack; 6294 6295 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6296 // things that are known to be poison under that assumption go on the 6297 // PoisonStack. 6298 Pushed.insert(I); 6299 PoisonStack.push_back(I); 6300 6301 bool LatchControlDependentOnPoison = false; 6302 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6303 const Instruction *Poison = PoisonStack.pop_back_val(); 6304 6305 for (auto *PoisonUser : Poison->users()) { 6306 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6307 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6308 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6309 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6310 assert(BI->isConditional() && "Only possibility!"); 6311 if (BI->getParent() == LatchBB) { 6312 LatchControlDependentOnPoison = true; 6313 break; 6314 } 6315 } 6316 } 6317 } 6318 6319 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6320 } 6321 6322 ScalarEvolution::LoopProperties 6323 ScalarEvolution::getLoopProperties(const Loop *L) { 6324 using LoopProperties = ScalarEvolution::LoopProperties; 6325 6326 auto Itr = LoopPropertiesCache.find(L); 6327 if (Itr == LoopPropertiesCache.end()) { 6328 auto HasSideEffects = [](Instruction *I) { 6329 if (auto *SI = dyn_cast<StoreInst>(I)) 6330 return !SI->isSimple(); 6331 6332 return I->mayHaveSideEffects(); 6333 }; 6334 6335 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6336 /*HasNoSideEffects*/ true}; 6337 6338 for (auto *BB : L->getBlocks()) 6339 for (auto &I : *BB) { 6340 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6341 LP.HasNoAbnormalExits = false; 6342 if (HasSideEffects(&I)) 6343 LP.HasNoSideEffects = false; 6344 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6345 break; // We're already as pessimistic as we can get. 6346 } 6347 6348 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6349 assert(InsertPair.second && "We just checked!"); 6350 Itr = InsertPair.first; 6351 } 6352 6353 return Itr->second; 6354 } 6355 6356 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6357 if (!isSCEVable(V->getType())) 6358 return getUnknown(V); 6359 6360 if (Instruction *I = dyn_cast<Instruction>(V)) { 6361 // Don't attempt to analyze instructions in blocks that aren't 6362 // reachable. Such instructions don't matter, and they aren't required 6363 // to obey basic rules for definitions dominating uses which this 6364 // analysis depends on. 6365 if (!DT.isReachableFromEntry(I->getParent())) 6366 return getUnknown(UndefValue::get(V->getType())); 6367 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6368 return getConstant(CI); 6369 else if (isa<ConstantPointerNull>(V)) 6370 // FIXME: we shouldn't special-case null pointer constant. 6371 return getZero(V->getType()); 6372 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6373 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6374 else if (!isa<ConstantExpr>(V)) 6375 return getUnknown(V); 6376 6377 Operator *U = cast<Operator>(V); 6378 if (auto BO = MatchBinaryOp(U, DT)) { 6379 switch (BO->Opcode) { 6380 case Instruction::Add: { 6381 // The simple thing to do would be to just call getSCEV on both operands 6382 // and call getAddExpr with the result. However if we're looking at a 6383 // bunch of things all added together, this can be quite inefficient, 6384 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6385 // Instead, gather up all the operands and make a single getAddExpr call. 6386 // LLVM IR canonical form means we need only traverse the left operands. 6387 SmallVector<const SCEV *, 4> AddOps; 6388 do { 6389 if (BO->Op) { 6390 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6391 AddOps.push_back(OpSCEV); 6392 break; 6393 } 6394 6395 // If a NUW or NSW flag can be applied to the SCEV for this 6396 // addition, then compute the SCEV for this addition by itself 6397 // with a separate call to getAddExpr. We need to do that 6398 // instead of pushing the operands of the addition onto AddOps, 6399 // since the flags are only known to apply to this particular 6400 // addition - they may not apply to other additions that can be 6401 // formed with operands from AddOps. 6402 const SCEV *RHS = getSCEV(BO->RHS); 6403 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6404 if (Flags != SCEV::FlagAnyWrap) { 6405 const SCEV *LHS = getSCEV(BO->LHS); 6406 if (BO->Opcode == Instruction::Sub) 6407 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6408 else 6409 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6410 break; 6411 } 6412 } 6413 6414 if (BO->Opcode == Instruction::Sub) 6415 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6416 else 6417 AddOps.push_back(getSCEV(BO->RHS)); 6418 6419 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6420 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6421 NewBO->Opcode != Instruction::Sub)) { 6422 AddOps.push_back(getSCEV(BO->LHS)); 6423 break; 6424 } 6425 BO = NewBO; 6426 } while (true); 6427 6428 return getAddExpr(AddOps); 6429 } 6430 6431 case Instruction::Mul: { 6432 SmallVector<const SCEV *, 4> MulOps; 6433 do { 6434 if (BO->Op) { 6435 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6436 MulOps.push_back(OpSCEV); 6437 break; 6438 } 6439 6440 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6441 if (Flags != SCEV::FlagAnyWrap) { 6442 MulOps.push_back( 6443 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6444 break; 6445 } 6446 } 6447 6448 MulOps.push_back(getSCEV(BO->RHS)); 6449 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6450 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6451 MulOps.push_back(getSCEV(BO->LHS)); 6452 break; 6453 } 6454 BO = NewBO; 6455 } while (true); 6456 6457 return getMulExpr(MulOps); 6458 } 6459 case Instruction::UDiv: 6460 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6461 case Instruction::URem: 6462 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6463 case Instruction::Sub: { 6464 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6465 if (BO->Op) 6466 Flags = getNoWrapFlagsFromUB(BO->Op); 6467 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6468 } 6469 case Instruction::And: 6470 // For an expression like x&255 that merely masks off the high bits, 6471 // use zext(trunc(x)) as the SCEV expression. 6472 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6473 if (CI->isZero()) 6474 return getSCEV(BO->RHS); 6475 if (CI->isMinusOne()) 6476 return getSCEV(BO->LHS); 6477 const APInt &A = CI->getValue(); 6478 6479 // Instcombine's ShrinkDemandedConstant may strip bits out of 6480 // constants, obscuring what would otherwise be a low-bits mask. 6481 // Use computeKnownBits to compute what ShrinkDemandedConstant 6482 // knew about to reconstruct a low-bits mask value. 6483 unsigned LZ = A.countLeadingZeros(); 6484 unsigned TZ = A.countTrailingZeros(); 6485 unsigned BitWidth = A.getBitWidth(); 6486 KnownBits Known(BitWidth); 6487 computeKnownBits(BO->LHS, Known, getDataLayout(), 6488 0, &AC, nullptr, &DT); 6489 6490 APInt EffectiveMask = 6491 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6492 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6493 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6494 const SCEV *LHS = getSCEV(BO->LHS); 6495 const SCEV *ShiftedLHS = nullptr; 6496 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6497 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6498 // For an expression like (x * 8) & 8, simplify the multiply. 6499 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6500 unsigned GCD = std::min(MulZeros, TZ); 6501 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6502 SmallVector<const SCEV*, 4> MulOps; 6503 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6504 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6505 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6506 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6507 } 6508 } 6509 if (!ShiftedLHS) 6510 ShiftedLHS = getUDivExpr(LHS, MulCount); 6511 return getMulExpr( 6512 getZeroExtendExpr( 6513 getTruncateExpr(ShiftedLHS, 6514 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6515 BO->LHS->getType()), 6516 MulCount); 6517 } 6518 } 6519 break; 6520 6521 case Instruction::Or: 6522 // If the RHS of the Or is a constant, we may have something like: 6523 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6524 // optimizations will transparently handle this case. 6525 // 6526 // In order for this transformation to be safe, the LHS must be of the 6527 // form X*(2^n) and the Or constant must be less than 2^n. 6528 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6529 const SCEV *LHS = getSCEV(BO->LHS); 6530 const APInt &CIVal = CI->getValue(); 6531 if (GetMinTrailingZeros(LHS) >= 6532 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6533 // Build a plain add SCEV. 6534 return getAddExpr(LHS, getSCEV(CI), 6535 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6536 } 6537 } 6538 break; 6539 6540 case Instruction::Xor: 6541 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6542 // If the RHS of xor is -1, then this is a not operation. 6543 if (CI->isMinusOne()) 6544 return getNotSCEV(getSCEV(BO->LHS)); 6545 6546 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6547 // This is a variant of the check for xor with -1, and it handles 6548 // the case where instcombine has trimmed non-demanded bits out 6549 // of an xor with -1. 6550 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6551 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6552 if (LBO->getOpcode() == Instruction::And && 6553 LCI->getValue() == CI->getValue()) 6554 if (const SCEVZeroExtendExpr *Z = 6555 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6556 Type *UTy = BO->LHS->getType(); 6557 const SCEV *Z0 = Z->getOperand(); 6558 Type *Z0Ty = Z0->getType(); 6559 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6560 6561 // If C is a low-bits mask, the zero extend is serving to 6562 // mask off the high bits. Complement the operand and 6563 // re-apply the zext. 6564 if (CI->getValue().isMask(Z0TySize)) 6565 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6566 6567 // If C is a single bit, it may be in the sign-bit position 6568 // before the zero-extend. In this case, represent the xor 6569 // using an add, which is equivalent, and re-apply the zext. 6570 APInt Trunc = CI->getValue().trunc(Z0TySize); 6571 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6572 Trunc.isSignMask()) 6573 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6574 UTy); 6575 } 6576 } 6577 break; 6578 6579 case Instruction::Shl: 6580 // Turn shift left of a constant amount into a multiply. 6581 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6582 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6583 6584 // If the shift count is not less than the bitwidth, the result of 6585 // the shift is undefined. Don't try to analyze it, because the 6586 // resolution chosen here may differ from the resolution chosen in 6587 // other parts of the compiler. 6588 if (SA->getValue().uge(BitWidth)) 6589 break; 6590 6591 // We can safely preserve the nuw flag in all cases. It's also safe to 6592 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6593 // requires special handling. It can be preserved as long as we're not 6594 // left shifting by bitwidth - 1. 6595 auto Flags = SCEV::FlagAnyWrap; 6596 if (BO->Op) { 6597 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6598 if ((MulFlags & SCEV::FlagNSW) && 6599 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6600 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6601 if (MulFlags & SCEV::FlagNUW) 6602 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6603 } 6604 6605 Constant *X = ConstantInt::get( 6606 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6607 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6608 } 6609 break; 6610 6611 case Instruction::AShr: { 6612 // AShr X, C, where C is a constant. 6613 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6614 if (!CI) 6615 break; 6616 6617 Type *OuterTy = BO->LHS->getType(); 6618 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6619 // If the shift count is not less than the bitwidth, the result of 6620 // the shift is undefined. Don't try to analyze it, because the 6621 // resolution chosen here may differ from the resolution chosen in 6622 // other parts of the compiler. 6623 if (CI->getValue().uge(BitWidth)) 6624 break; 6625 6626 if (CI->isZero()) 6627 return getSCEV(BO->LHS); // shift by zero --> noop 6628 6629 uint64_t AShrAmt = CI->getZExtValue(); 6630 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6631 6632 Operator *L = dyn_cast<Operator>(BO->LHS); 6633 if (L && L->getOpcode() == Instruction::Shl) { 6634 // X = Shl A, n 6635 // Y = AShr X, m 6636 // Both n and m are constant. 6637 6638 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6639 if (L->getOperand(1) == BO->RHS) 6640 // For a two-shift sext-inreg, i.e. n = m, 6641 // use sext(trunc(x)) as the SCEV expression. 6642 return getSignExtendExpr( 6643 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6644 6645 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6646 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6647 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6648 if (ShlAmt > AShrAmt) { 6649 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6650 // expression. We already checked that ShlAmt < BitWidth, so 6651 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6652 // ShlAmt - AShrAmt < Amt. 6653 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6654 ShlAmt - AShrAmt); 6655 return getSignExtendExpr( 6656 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6657 getConstant(Mul)), OuterTy); 6658 } 6659 } 6660 } 6661 if (BO->IsExact) { 6662 // Given exact arithmetic in-bounds right-shift by a constant, 6663 // we can lower it into: (abs(x) EXACT/u (1<<C)) * signum(x) 6664 const SCEV *X = getSCEV(BO->LHS); 6665 const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false); 6666 APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt); 6667 const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult)); 6668 return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW); 6669 } 6670 break; 6671 } 6672 } 6673 } 6674 6675 switch (U->getOpcode()) { 6676 case Instruction::Trunc: 6677 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6678 6679 case Instruction::ZExt: 6680 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6681 6682 case Instruction::SExt: 6683 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6684 // The NSW flag of a subtract does not always survive the conversion to 6685 // A + (-1)*B. By pushing sign extension onto its operands we are much 6686 // more likely to preserve NSW and allow later AddRec optimisations. 6687 // 6688 // NOTE: This is effectively duplicating this logic from getSignExtend: 6689 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6690 // but by that point the NSW information has potentially been lost. 6691 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6692 Type *Ty = U->getType(); 6693 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6694 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6695 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6696 } 6697 } 6698 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6699 6700 case Instruction::BitCast: 6701 // BitCasts are no-op casts so we just eliminate the cast. 6702 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6703 return getSCEV(U->getOperand(0)); 6704 break; 6705 6706 case Instruction::PtrToInt: { 6707 // Pointer to integer cast is straight-forward, so do model it. 6708 Value *Ptr = U->getOperand(0); 6709 const SCEV *Op = getSCEV(Ptr); 6710 Type *DstIntTy = U->getType(); 6711 // SCEV doesn't have constant pointer expression type, but it supports 6712 // nullptr constant (and only that one), which is modelled in SCEV as a 6713 // zero integer constant. So just skip the ptrtoint cast for constants. 6714 if (isa<SCEVConstant>(Op)) 6715 return getTruncateOrZeroExtend(Op, DstIntTy); 6716 Type *PtrTy = Ptr->getType(); 6717 Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy); 6718 // But only if effective SCEV (integer) type is wide enough to represent 6719 // all possible pointer values. 6720 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) != 6721 getDataLayout().getTypeSizeInBits(IntPtrTy)) 6722 return getUnknown(V); 6723 return getPtrToIntExpr(Op, DstIntTy); 6724 } 6725 case Instruction::IntToPtr: 6726 // Just don't deal with inttoptr casts. 6727 return getUnknown(V); 6728 6729 case Instruction::SDiv: 6730 // If both operands are non-negative, this is just an udiv. 6731 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6732 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6733 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6734 break; 6735 6736 case Instruction::SRem: 6737 // If both operands are non-negative, this is just an urem. 6738 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6739 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6740 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6741 break; 6742 6743 case Instruction::GetElementPtr: 6744 return createNodeForGEP(cast<GEPOperator>(U)); 6745 6746 case Instruction::PHI: 6747 return createNodeForPHI(cast<PHINode>(U)); 6748 6749 case Instruction::Select: 6750 // U can also be a select constant expr, which let fall through. Since 6751 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6752 // constant expressions cannot have instructions as operands, we'd have 6753 // returned getUnknown for a select constant expressions anyway. 6754 if (isa<Instruction>(U)) 6755 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6756 U->getOperand(1), U->getOperand(2)); 6757 break; 6758 6759 case Instruction::Call: 6760 case Instruction::Invoke: 6761 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6762 return getSCEV(RV); 6763 6764 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6765 switch (II->getIntrinsicID()) { 6766 case Intrinsic::abs: 6767 return getAbsExpr( 6768 getSCEV(II->getArgOperand(0)), 6769 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 6770 case Intrinsic::umax: 6771 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6772 getSCEV(II->getArgOperand(1))); 6773 case Intrinsic::umin: 6774 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6775 getSCEV(II->getArgOperand(1))); 6776 case Intrinsic::smax: 6777 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6778 getSCEV(II->getArgOperand(1))); 6779 case Intrinsic::smin: 6780 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6781 getSCEV(II->getArgOperand(1))); 6782 case Intrinsic::usub_sat: { 6783 const SCEV *X = getSCEV(II->getArgOperand(0)); 6784 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6785 const SCEV *ClampedY = getUMinExpr(X, Y); 6786 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 6787 } 6788 case Intrinsic::uadd_sat: { 6789 const SCEV *X = getSCEV(II->getArgOperand(0)); 6790 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6791 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 6792 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 6793 } 6794 case Intrinsic::start_loop_iterations: 6795 // A start_loop_iterations is just equivalent to the first operand for 6796 // SCEV purposes. 6797 return getSCEV(II->getArgOperand(0)); 6798 default: 6799 break; 6800 } 6801 } 6802 break; 6803 } 6804 6805 return getUnknown(V); 6806 } 6807 6808 //===----------------------------------------------------------------------===// 6809 // Iteration Count Computation Code 6810 // 6811 6812 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6813 if (!ExitCount) 6814 return 0; 6815 6816 ConstantInt *ExitConst = ExitCount->getValue(); 6817 6818 // Guard against huge trip counts. 6819 if (ExitConst->getValue().getActiveBits() > 32) 6820 return 0; 6821 6822 // In case of integer overflow, this returns 0, which is correct. 6823 return ((unsigned)ExitConst->getZExtValue()) + 1; 6824 } 6825 6826 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6827 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6828 return getSmallConstantTripCount(L, ExitingBB); 6829 6830 // No trip count information for multiple exits. 6831 return 0; 6832 } 6833 6834 unsigned 6835 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6836 const BasicBlock *ExitingBlock) { 6837 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6838 assert(L->isLoopExiting(ExitingBlock) && 6839 "Exiting block must actually branch out of the loop!"); 6840 const SCEVConstant *ExitCount = 6841 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6842 return getConstantTripCount(ExitCount); 6843 } 6844 6845 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6846 const auto *MaxExitCount = 6847 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6848 return getConstantTripCount(MaxExitCount); 6849 } 6850 6851 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6852 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6853 return getSmallConstantTripMultiple(L, ExitingBB); 6854 6855 // No trip multiple information for multiple exits. 6856 return 0; 6857 } 6858 6859 /// Returns the largest constant divisor of the trip count of this loop as a 6860 /// normal unsigned value, if possible. This means that the actual trip count is 6861 /// always a multiple of the returned value (don't forget the trip count could 6862 /// very well be zero as well!). 6863 /// 6864 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6865 /// multiple of a constant (which is also the case if the trip count is simply 6866 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6867 /// if the trip count is very large (>= 2^32). 6868 /// 6869 /// As explained in the comments for getSmallConstantTripCount, this assumes 6870 /// that control exits the loop via ExitingBlock. 6871 unsigned 6872 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6873 const BasicBlock *ExitingBlock) { 6874 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6875 assert(L->isLoopExiting(ExitingBlock) && 6876 "Exiting block must actually branch out of the loop!"); 6877 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6878 if (ExitCount == getCouldNotCompute()) 6879 return 1; 6880 6881 // Get the trip count from the BE count by adding 1. 6882 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6883 6884 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6885 if (!TC) 6886 // Attempt to factor more general cases. Returns the greatest power of 6887 // two divisor. If overflow happens, the trip count expression is still 6888 // divisible by the greatest power of 2 divisor returned. 6889 return 1U << std::min((uint32_t)31, 6890 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 6891 6892 ConstantInt *Result = TC->getValue(); 6893 6894 // Guard against huge trip counts (this requires checking 6895 // for zero to handle the case where the trip count == -1 and the 6896 // addition wraps). 6897 if (!Result || Result->getValue().getActiveBits() > 32 || 6898 Result->getValue().getActiveBits() == 0) 6899 return 1; 6900 6901 return (unsigned)Result->getZExtValue(); 6902 } 6903 6904 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6905 const BasicBlock *ExitingBlock, 6906 ExitCountKind Kind) { 6907 switch (Kind) { 6908 case Exact: 6909 case SymbolicMaximum: 6910 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6911 case ConstantMaximum: 6912 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 6913 }; 6914 llvm_unreachable("Invalid ExitCountKind!"); 6915 } 6916 6917 const SCEV * 6918 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6919 SCEVUnionPredicate &Preds) { 6920 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6921 } 6922 6923 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6924 ExitCountKind Kind) { 6925 switch (Kind) { 6926 case Exact: 6927 return getBackedgeTakenInfo(L).getExact(L, this); 6928 case ConstantMaximum: 6929 return getBackedgeTakenInfo(L).getConstantMax(this); 6930 case SymbolicMaximum: 6931 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 6932 }; 6933 llvm_unreachable("Invalid ExitCountKind!"); 6934 } 6935 6936 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6937 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 6938 } 6939 6940 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6941 static void 6942 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6943 BasicBlock *Header = L->getHeader(); 6944 6945 // Push all Loop-header PHIs onto the Worklist stack. 6946 for (PHINode &PN : Header->phis()) 6947 Worklist.push_back(&PN); 6948 } 6949 6950 const ScalarEvolution::BackedgeTakenInfo & 6951 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6952 auto &BTI = getBackedgeTakenInfo(L); 6953 if (BTI.hasFullInfo()) 6954 return BTI; 6955 6956 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6957 6958 if (!Pair.second) 6959 return Pair.first->second; 6960 6961 BackedgeTakenInfo Result = 6962 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6963 6964 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6965 } 6966 6967 ScalarEvolution::BackedgeTakenInfo & 6968 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6969 // Initially insert an invalid entry for this loop. If the insertion 6970 // succeeds, proceed to actually compute a backedge-taken count and 6971 // update the value. The temporary CouldNotCompute value tells SCEV 6972 // code elsewhere that it shouldn't attempt to request a new 6973 // backedge-taken count, which could result in infinite recursion. 6974 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6975 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6976 if (!Pair.second) 6977 return Pair.first->second; 6978 6979 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6980 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6981 // must be cleared in this scope. 6982 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6983 6984 // In product build, there are no usage of statistic. 6985 (void)NumTripCountsComputed; 6986 (void)NumTripCountsNotComputed; 6987 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6988 const SCEV *BEExact = Result.getExact(L, this); 6989 if (BEExact != getCouldNotCompute()) { 6990 assert(isLoopInvariant(BEExact, L) && 6991 isLoopInvariant(Result.getConstantMax(this), L) && 6992 "Computed backedge-taken count isn't loop invariant for loop!"); 6993 ++NumTripCountsComputed; 6994 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 6995 isa<PHINode>(L->getHeader()->begin())) { 6996 // Only count loops that have phi nodes as not being computable. 6997 ++NumTripCountsNotComputed; 6998 } 6999 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7000 7001 // Now that we know more about the trip count for this loop, forget any 7002 // existing SCEV values for PHI nodes in this loop since they are only 7003 // conservative estimates made without the benefit of trip count 7004 // information. This is similar to the code in forgetLoop, except that 7005 // it handles SCEVUnknown PHI nodes specially. 7006 if (Result.hasAnyInfo()) { 7007 SmallVector<Instruction *, 16> Worklist; 7008 PushLoopPHIs(L, Worklist); 7009 7010 SmallPtrSet<Instruction *, 8> Discovered; 7011 while (!Worklist.empty()) { 7012 Instruction *I = Worklist.pop_back_val(); 7013 7014 ValueExprMapType::iterator It = 7015 ValueExprMap.find_as(static_cast<Value *>(I)); 7016 if (It != ValueExprMap.end()) { 7017 const SCEV *Old = It->second; 7018 7019 // SCEVUnknown for a PHI either means that it has an unrecognized 7020 // structure, or it's a PHI that's in the progress of being computed 7021 // by createNodeForPHI. In the former case, additional loop trip 7022 // count information isn't going to change anything. In the later 7023 // case, createNodeForPHI will perform the necessary updates on its 7024 // own when it gets to that point. 7025 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7026 eraseValueFromMap(It->first); 7027 forgetMemoizedResults(Old); 7028 } 7029 if (PHINode *PN = dyn_cast<PHINode>(I)) 7030 ConstantEvolutionLoopExitValue.erase(PN); 7031 } 7032 7033 // Since we don't need to invalidate anything for correctness and we're 7034 // only invalidating to make SCEV's results more precise, we get to stop 7035 // early to avoid invalidating too much. This is especially important in 7036 // cases like: 7037 // 7038 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7039 // loop0: 7040 // %pn0 = phi 7041 // ... 7042 // loop1: 7043 // %pn1 = phi 7044 // ... 7045 // 7046 // where both loop0 and loop1's backedge taken count uses the SCEV 7047 // expression for %v. If we don't have the early stop below then in cases 7048 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7049 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7050 // count for loop1, effectively nullifying SCEV's trip count cache. 7051 for (auto *U : I->users()) 7052 if (auto *I = dyn_cast<Instruction>(U)) { 7053 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7054 if (LoopForUser && L->contains(LoopForUser) && 7055 Discovered.insert(I).second) 7056 Worklist.push_back(I); 7057 } 7058 } 7059 } 7060 7061 // Re-lookup the insert position, since the call to 7062 // computeBackedgeTakenCount above could result in a 7063 // recusive call to getBackedgeTakenInfo (on a different 7064 // loop), which would invalidate the iterator computed 7065 // earlier. 7066 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7067 } 7068 7069 void ScalarEvolution::forgetAllLoops() { 7070 // This method is intended to forget all info about loops. It should 7071 // invalidate caches as if the following happened: 7072 // - The trip counts of all loops have changed arbitrarily 7073 // - Every llvm::Value has been updated in place to produce a different 7074 // result. 7075 BackedgeTakenCounts.clear(); 7076 PredicatedBackedgeTakenCounts.clear(); 7077 LoopPropertiesCache.clear(); 7078 ConstantEvolutionLoopExitValue.clear(); 7079 ValueExprMap.clear(); 7080 ValuesAtScopes.clear(); 7081 LoopDispositions.clear(); 7082 BlockDispositions.clear(); 7083 UnsignedRanges.clear(); 7084 SignedRanges.clear(); 7085 ExprValueMap.clear(); 7086 HasRecMap.clear(); 7087 MinTrailingZerosCache.clear(); 7088 PredicatedSCEVRewrites.clear(); 7089 } 7090 7091 void ScalarEvolution::forgetLoop(const Loop *L) { 7092 // Drop any stored trip count value. 7093 auto RemoveLoopFromBackedgeMap = 7094 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 7095 auto BTCPos = Map.find(L); 7096 if (BTCPos != Map.end()) { 7097 BTCPos->second.clear(); 7098 Map.erase(BTCPos); 7099 } 7100 }; 7101 7102 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7103 SmallVector<Instruction *, 32> Worklist; 7104 SmallPtrSet<Instruction *, 16> Visited; 7105 7106 // Iterate over all the loops and sub-loops to drop SCEV information. 7107 while (!LoopWorklist.empty()) { 7108 auto *CurrL = LoopWorklist.pop_back_val(); 7109 7110 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 7111 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 7112 7113 // Drop information about predicated SCEV rewrites for this loop. 7114 for (auto I = PredicatedSCEVRewrites.begin(); 7115 I != PredicatedSCEVRewrites.end();) { 7116 std::pair<const SCEV *, const Loop *> Entry = I->first; 7117 if (Entry.second == CurrL) 7118 PredicatedSCEVRewrites.erase(I++); 7119 else 7120 ++I; 7121 } 7122 7123 auto LoopUsersItr = LoopUsers.find(CurrL); 7124 if (LoopUsersItr != LoopUsers.end()) { 7125 for (auto *S : LoopUsersItr->second) 7126 forgetMemoizedResults(S); 7127 LoopUsers.erase(LoopUsersItr); 7128 } 7129 7130 // Drop information about expressions based on loop-header PHIs. 7131 PushLoopPHIs(CurrL, Worklist); 7132 7133 while (!Worklist.empty()) { 7134 Instruction *I = Worklist.pop_back_val(); 7135 if (!Visited.insert(I).second) 7136 continue; 7137 7138 ValueExprMapType::iterator It = 7139 ValueExprMap.find_as(static_cast<Value *>(I)); 7140 if (It != ValueExprMap.end()) { 7141 eraseValueFromMap(It->first); 7142 forgetMemoizedResults(It->second); 7143 if (PHINode *PN = dyn_cast<PHINode>(I)) 7144 ConstantEvolutionLoopExitValue.erase(PN); 7145 } 7146 7147 PushDefUseChildren(I, Worklist); 7148 } 7149 7150 LoopPropertiesCache.erase(CurrL); 7151 // Forget all contained loops too, to avoid dangling entries in the 7152 // ValuesAtScopes map. 7153 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7154 } 7155 } 7156 7157 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7158 while (Loop *Parent = L->getParentLoop()) 7159 L = Parent; 7160 forgetLoop(L); 7161 } 7162 7163 void ScalarEvolution::forgetValue(Value *V) { 7164 Instruction *I = dyn_cast<Instruction>(V); 7165 if (!I) return; 7166 7167 // Drop information about expressions based on loop-header PHIs. 7168 SmallVector<Instruction *, 16> Worklist; 7169 Worklist.push_back(I); 7170 7171 SmallPtrSet<Instruction *, 8> Visited; 7172 while (!Worklist.empty()) { 7173 I = Worklist.pop_back_val(); 7174 if (!Visited.insert(I).second) 7175 continue; 7176 7177 ValueExprMapType::iterator It = 7178 ValueExprMap.find_as(static_cast<Value *>(I)); 7179 if (It != ValueExprMap.end()) { 7180 eraseValueFromMap(It->first); 7181 forgetMemoizedResults(It->second); 7182 if (PHINode *PN = dyn_cast<PHINode>(I)) 7183 ConstantEvolutionLoopExitValue.erase(PN); 7184 } 7185 7186 PushDefUseChildren(I, Worklist); 7187 } 7188 } 7189 7190 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7191 LoopDispositions.clear(); 7192 } 7193 7194 /// Get the exact loop backedge taken count considering all loop exits. A 7195 /// computable result can only be returned for loops with all exiting blocks 7196 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7197 /// is never skipped. This is a valid assumption as long as the loop exits via 7198 /// that test. For precise results, it is the caller's responsibility to specify 7199 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7200 const SCEV * 7201 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7202 SCEVUnionPredicate *Preds) const { 7203 // If any exits were not computable, the loop is not computable. 7204 if (!isComplete() || ExitNotTaken.empty()) 7205 return SE->getCouldNotCompute(); 7206 7207 const BasicBlock *Latch = L->getLoopLatch(); 7208 // All exiting blocks we have collected must dominate the only backedge. 7209 if (!Latch) 7210 return SE->getCouldNotCompute(); 7211 7212 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7213 // count is simply a minimum out of all these calculated exit counts. 7214 SmallVector<const SCEV *, 2> Ops; 7215 for (auto &ENT : ExitNotTaken) { 7216 const SCEV *BECount = ENT.ExactNotTaken; 7217 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7218 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7219 "We should only have known counts for exiting blocks that dominate " 7220 "latch!"); 7221 7222 Ops.push_back(BECount); 7223 7224 if (Preds && !ENT.hasAlwaysTruePredicate()) 7225 Preds->add(ENT.Predicate.get()); 7226 7227 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7228 "Predicate should be always true!"); 7229 } 7230 7231 return SE->getUMinFromMismatchedTypes(Ops); 7232 } 7233 7234 /// Get the exact not taken count for this loop exit. 7235 const SCEV * 7236 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7237 ScalarEvolution *SE) const { 7238 for (auto &ENT : ExitNotTaken) 7239 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7240 return ENT.ExactNotTaken; 7241 7242 return SE->getCouldNotCompute(); 7243 } 7244 7245 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7246 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7247 for (auto &ENT : ExitNotTaken) 7248 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7249 return ENT.MaxNotTaken; 7250 7251 return SE->getCouldNotCompute(); 7252 } 7253 7254 /// getConstantMax - Get the constant max backedge taken count for the loop. 7255 const SCEV * 7256 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7257 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7258 return !ENT.hasAlwaysTruePredicate(); 7259 }; 7260 7261 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7262 return SE->getCouldNotCompute(); 7263 7264 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7265 isa<SCEVConstant>(getConstantMax())) && 7266 "No point in having a non-constant max backedge taken count!"); 7267 return getConstantMax(); 7268 } 7269 7270 const SCEV * 7271 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7272 ScalarEvolution *SE) { 7273 if (!SymbolicMax) 7274 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7275 return SymbolicMax; 7276 } 7277 7278 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7279 ScalarEvolution *SE) const { 7280 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7281 return !ENT.hasAlwaysTruePredicate(); 7282 }; 7283 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7284 } 7285 7286 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 7287 ScalarEvolution *SE) const { 7288 if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() && 7289 SE->hasOperand(getConstantMax(), S)) 7290 return true; 7291 7292 for (auto &ENT : ExitNotTaken) 7293 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 7294 SE->hasOperand(ENT.ExactNotTaken, S)) 7295 return true; 7296 7297 return false; 7298 } 7299 7300 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7301 : ExactNotTaken(E), MaxNotTaken(E) { 7302 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7303 isa<SCEVConstant>(MaxNotTaken)) && 7304 "No point in having a non-constant max backedge taken count!"); 7305 } 7306 7307 ScalarEvolution::ExitLimit::ExitLimit( 7308 const SCEV *E, const SCEV *M, bool MaxOrZero, 7309 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7310 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7311 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7312 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7313 "Exact is not allowed to be less precise than Max"); 7314 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7315 isa<SCEVConstant>(MaxNotTaken)) && 7316 "No point in having a non-constant max backedge taken count!"); 7317 for (auto *PredSet : PredSetList) 7318 for (auto *P : *PredSet) 7319 addPredicate(P); 7320 } 7321 7322 ScalarEvolution::ExitLimit::ExitLimit( 7323 const SCEV *E, const SCEV *M, bool MaxOrZero, 7324 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7325 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7326 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7327 isa<SCEVConstant>(MaxNotTaken)) && 7328 "No point in having a non-constant max backedge taken count!"); 7329 } 7330 7331 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7332 bool MaxOrZero) 7333 : ExitLimit(E, M, MaxOrZero, None) { 7334 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7335 isa<SCEVConstant>(MaxNotTaken)) && 7336 "No point in having a non-constant max backedge taken count!"); 7337 } 7338 7339 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7340 /// computable exit into a persistent ExitNotTakenInfo array. 7341 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7342 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7343 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7344 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7345 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7346 7347 ExitNotTaken.reserve(ExitCounts.size()); 7348 std::transform( 7349 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7350 [&](const EdgeExitInfo &EEI) { 7351 BasicBlock *ExitBB = EEI.first; 7352 const ExitLimit &EL = EEI.second; 7353 if (EL.Predicates.empty()) 7354 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7355 nullptr); 7356 7357 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7358 for (auto *Pred : EL.Predicates) 7359 Predicate->add(Pred); 7360 7361 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7362 std::move(Predicate)); 7363 }); 7364 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7365 isa<SCEVConstant>(ConstantMax)) && 7366 "No point in having a non-constant max backedge taken count!"); 7367 } 7368 7369 /// Invalidate this result and free the ExitNotTakenInfo array. 7370 void ScalarEvolution::BackedgeTakenInfo::clear() { 7371 ExitNotTaken.clear(); 7372 } 7373 7374 /// Compute the number of times the backedge of the specified loop will execute. 7375 ScalarEvolution::BackedgeTakenInfo 7376 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7377 bool AllowPredicates) { 7378 SmallVector<BasicBlock *, 8> ExitingBlocks; 7379 L->getExitingBlocks(ExitingBlocks); 7380 7381 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7382 7383 SmallVector<EdgeExitInfo, 4> ExitCounts; 7384 bool CouldComputeBECount = true; 7385 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7386 const SCEV *MustExitMaxBECount = nullptr; 7387 const SCEV *MayExitMaxBECount = nullptr; 7388 bool MustExitMaxOrZero = false; 7389 7390 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7391 // and compute maxBECount. 7392 // Do a union of all the predicates here. 7393 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7394 BasicBlock *ExitBB = ExitingBlocks[i]; 7395 7396 // We canonicalize untaken exits to br (constant), ignore them so that 7397 // proving an exit untaken doesn't negatively impact our ability to reason 7398 // about the loop as whole. 7399 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7400 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7401 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7402 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7403 continue; 7404 } 7405 7406 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7407 7408 assert((AllowPredicates || EL.Predicates.empty()) && 7409 "Predicated exit limit when predicates are not allowed!"); 7410 7411 // 1. For each exit that can be computed, add an entry to ExitCounts. 7412 // CouldComputeBECount is true only if all exits can be computed. 7413 if (EL.ExactNotTaken == getCouldNotCompute()) 7414 // We couldn't compute an exact value for this exit, so 7415 // we won't be able to compute an exact value for the loop. 7416 CouldComputeBECount = false; 7417 else 7418 ExitCounts.emplace_back(ExitBB, EL); 7419 7420 // 2. Derive the loop's MaxBECount from each exit's max number of 7421 // non-exiting iterations. Partition the loop exits into two kinds: 7422 // LoopMustExits and LoopMayExits. 7423 // 7424 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7425 // is a LoopMayExit. If any computable LoopMustExit is found, then 7426 // MaxBECount is the minimum EL.MaxNotTaken of computable 7427 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7428 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7429 // computable EL.MaxNotTaken. 7430 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7431 DT.dominates(ExitBB, Latch)) { 7432 if (!MustExitMaxBECount) { 7433 MustExitMaxBECount = EL.MaxNotTaken; 7434 MustExitMaxOrZero = EL.MaxOrZero; 7435 } else { 7436 MustExitMaxBECount = 7437 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7438 } 7439 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7440 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7441 MayExitMaxBECount = EL.MaxNotTaken; 7442 else { 7443 MayExitMaxBECount = 7444 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7445 } 7446 } 7447 } 7448 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7449 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7450 // The loop backedge will be taken the maximum or zero times if there's 7451 // a single exit that must be taken the maximum or zero times. 7452 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7453 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7454 MaxBECount, MaxOrZero); 7455 } 7456 7457 ScalarEvolution::ExitLimit 7458 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7459 bool AllowPredicates) { 7460 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7461 // If our exiting block does not dominate the latch, then its connection with 7462 // loop's exit limit may be far from trivial. 7463 const BasicBlock *Latch = L->getLoopLatch(); 7464 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7465 return getCouldNotCompute(); 7466 7467 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7468 Instruction *Term = ExitingBlock->getTerminator(); 7469 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7470 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7471 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7472 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7473 "It should have one successor in loop and one exit block!"); 7474 // Proceed to the next level to examine the exit condition expression. 7475 return computeExitLimitFromCond( 7476 L, BI->getCondition(), ExitIfTrue, 7477 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7478 } 7479 7480 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7481 // For switch, make sure that there is a single exit from the loop. 7482 BasicBlock *Exit = nullptr; 7483 for (auto *SBB : successors(ExitingBlock)) 7484 if (!L->contains(SBB)) { 7485 if (Exit) // Multiple exit successors. 7486 return getCouldNotCompute(); 7487 Exit = SBB; 7488 } 7489 assert(Exit && "Exiting block must have at least one exit"); 7490 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7491 /*ControlsExit=*/IsOnlyExit); 7492 } 7493 7494 return getCouldNotCompute(); 7495 } 7496 7497 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7498 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7499 bool ControlsExit, bool AllowPredicates) { 7500 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7501 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7502 ControlsExit, AllowPredicates); 7503 } 7504 7505 Optional<ScalarEvolution::ExitLimit> 7506 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7507 bool ExitIfTrue, bool ControlsExit, 7508 bool AllowPredicates) { 7509 (void)this->L; 7510 (void)this->ExitIfTrue; 7511 (void)this->AllowPredicates; 7512 7513 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7514 this->AllowPredicates == AllowPredicates && 7515 "Variance in assumed invariant key components!"); 7516 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7517 if (Itr == TripCountMap.end()) 7518 return None; 7519 return Itr->second; 7520 } 7521 7522 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7523 bool ExitIfTrue, 7524 bool ControlsExit, 7525 bool AllowPredicates, 7526 const ExitLimit &EL) { 7527 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7528 this->AllowPredicates == AllowPredicates && 7529 "Variance in assumed invariant key components!"); 7530 7531 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7532 assert(InsertResult.second && "Expected successful insertion!"); 7533 (void)InsertResult; 7534 (void)ExitIfTrue; 7535 } 7536 7537 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7538 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7539 bool ControlsExit, bool AllowPredicates) { 7540 7541 if (auto MaybeEL = 7542 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7543 return *MaybeEL; 7544 7545 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7546 ControlsExit, AllowPredicates); 7547 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7548 return EL; 7549 } 7550 7551 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7552 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7553 bool ControlsExit, bool AllowPredicates) { 7554 // Handle BinOp conditions (And, Or). 7555 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7556 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7557 return *LimitFromBinOp; 7558 7559 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7560 // Proceed to the next level to examine the icmp. 7561 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7562 ExitLimit EL = 7563 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7564 if (EL.hasFullInfo() || !AllowPredicates) 7565 return EL; 7566 7567 // Try again, but use SCEV predicates this time. 7568 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7569 /*AllowPredicates=*/true); 7570 } 7571 7572 // Check for a constant condition. These are normally stripped out by 7573 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7574 // preserve the CFG and is temporarily leaving constant conditions 7575 // in place. 7576 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7577 if (ExitIfTrue == !CI->getZExtValue()) 7578 // The backedge is always taken. 7579 return getCouldNotCompute(); 7580 else 7581 // The backedge is never taken. 7582 return getZero(CI->getType()); 7583 } 7584 7585 // If it's not an integer or pointer comparison then compute it the hard way. 7586 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7587 } 7588 7589 Optional<ScalarEvolution::ExitLimit> 7590 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7591 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7592 bool ControlsExit, bool AllowPredicates) { 7593 // Check if the controlling expression for this loop is an And or Or. 7594 Value *Op0, *Op1; 7595 bool IsAnd = false; 7596 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7597 IsAnd = true; 7598 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7599 IsAnd = false; 7600 else 7601 return None; 7602 7603 // EitherMayExit is true in these two cases: 7604 // br (and Op0 Op1), loop, exit 7605 // br (or Op0 Op1), exit, loop 7606 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7607 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7608 ControlsExit && !EitherMayExit, 7609 AllowPredicates); 7610 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7611 ControlsExit && !EitherMayExit, 7612 AllowPredicates); 7613 7614 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7615 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7616 if (isa<ConstantInt>(Op1)) 7617 return Op1 == NeutralElement ? EL0 : EL1; 7618 if (isa<ConstantInt>(Op0)) 7619 return Op0 == NeutralElement ? EL1 : EL0; 7620 7621 const SCEV *BECount = getCouldNotCompute(); 7622 const SCEV *MaxBECount = getCouldNotCompute(); 7623 if (EitherMayExit) { 7624 // Both conditions must be same for the loop to continue executing. 7625 // Choose the less conservative count. 7626 // If ExitCond is a short-circuit form (select), using 7627 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7628 // To see the detailed examples, please see 7629 // test/Analysis/ScalarEvolution/exit-count-select.ll 7630 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7631 if (!PoisonSafe) 7632 // Even if ExitCond is select, we can safely derive BECount using both 7633 // EL0 and EL1 in these cases: 7634 // (1) EL0.ExactNotTaken is non-zero 7635 // (2) EL1.ExactNotTaken is non-poison 7636 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7637 // it cannot be umin(0, ..)) 7638 // The PoisonSafe assignment below is simplified and the assertion after 7639 // BECount calculation fully guarantees the condition (3). 7640 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 7641 isa<SCEVConstant>(EL1.ExactNotTaken); 7642 if (EL0.ExactNotTaken != getCouldNotCompute() && 7643 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 7644 BECount = 7645 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7646 7647 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 7648 // it should have been simplified to zero (see the condition (3) above) 7649 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 7650 BECount->isZero()); 7651 } 7652 if (EL0.MaxNotTaken == getCouldNotCompute()) 7653 MaxBECount = EL1.MaxNotTaken; 7654 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7655 MaxBECount = EL0.MaxNotTaken; 7656 else 7657 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7658 } else { 7659 // Both conditions must be same at the same time for the loop to exit. 7660 // For now, be conservative. 7661 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7662 BECount = EL0.ExactNotTaken; 7663 } 7664 7665 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7666 // to be more aggressive when computing BECount than when computing 7667 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7668 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7669 // to not. 7670 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7671 !isa<SCEVCouldNotCompute>(BECount)) 7672 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7673 7674 return ExitLimit(BECount, MaxBECount, false, 7675 { &EL0.Predicates, &EL1.Predicates }); 7676 } 7677 7678 ScalarEvolution::ExitLimit 7679 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7680 ICmpInst *ExitCond, 7681 bool ExitIfTrue, 7682 bool ControlsExit, 7683 bool AllowPredicates) { 7684 // If the condition was exit on true, convert the condition to exit on false 7685 ICmpInst::Predicate Pred; 7686 if (!ExitIfTrue) 7687 Pred = ExitCond->getPredicate(); 7688 else 7689 Pred = ExitCond->getInversePredicate(); 7690 const ICmpInst::Predicate OriginalPred = Pred; 7691 7692 // Handle common loops like: for (X = "string"; *X; ++X) 7693 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7694 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7695 ExitLimit ItCnt = 7696 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7697 if (ItCnt.hasAnyInfo()) 7698 return ItCnt; 7699 } 7700 7701 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7702 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7703 7704 // Try to evaluate any dependencies out of the loop. 7705 LHS = getSCEVAtScope(LHS, L); 7706 RHS = getSCEVAtScope(RHS, L); 7707 7708 // At this point, we would like to compute how many iterations of the 7709 // loop the predicate will return true for these inputs. 7710 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7711 // If there is a loop-invariant, force it into the RHS. 7712 std::swap(LHS, RHS); 7713 Pred = ICmpInst::getSwappedPredicate(Pred); 7714 } 7715 7716 // Simplify the operands before analyzing them. 7717 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7718 7719 // If we have a comparison of a chrec against a constant, try to use value 7720 // ranges to answer this query. 7721 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7722 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7723 if (AddRec->getLoop() == L) { 7724 // Form the constant range. 7725 ConstantRange CompRange = 7726 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7727 7728 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7729 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7730 } 7731 7732 switch (Pred) { 7733 case ICmpInst::ICMP_NE: { // while (X != Y) 7734 // Convert to: while (X-Y != 0) 7735 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7736 AllowPredicates); 7737 if (EL.hasAnyInfo()) return EL; 7738 break; 7739 } 7740 case ICmpInst::ICMP_EQ: { // while (X == Y) 7741 // Convert to: while (X-Y == 0) 7742 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7743 if (EL.hasAnyInfo()) return EL; 7744 break; 7745 } 7746 case ICmpInst::ICMP_SLT: 7747 case ICmpInst::ICMP_ULT: { // while (X < Y) 7748 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7749 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7750 AllowPredicates); 7751 if (EL.hasAnyInfo()) return EL; 7752 break; 7753 } 7754 case ICmpInst::ICMP_SGT: 7755 case ICmpInst::ICMP_UGT: { // while (X > Y) 7756 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7757 ExitLimit EL = 7758 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7759 AllowPredicates); 7760 if (EL.hasAnyInfo()) return EL; 7761 break; 7762 } 7763 default: 7764 break; 7765 } 7766 7767 auto *ExhaustiveCount = 7768 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7769 7770 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7771 return ExhaustiveCount; 7772 7773 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7774 ExitCond->getOperand(1), L, OriginalPred); 7775 } 7776 7777 ScalarEvolution::ExitLimit 7778 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7779 SwitchInst *Switch, 7780 BasicBlock *ExitingBlock, 7781 bool ControlsExit) { 7782 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7783 7784 // Give up if the exit is the default dest of a switch. 7785 if (Switch->getDefaultDest() == ExitingBlock) 7786 return getCouldNotCompute(); 7787 7788 assert(L->contains(Switch->getDefaultDest()) && 7789 "Default case must not exit the loop!"); 7790 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7791 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7792 7793 // while (X != Y) --> while (X-Y != 0) 7794 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7795 if (EL.hasAnyInfo()) 7796 return EL; 7797 7798 return getCouldNotCompute(); 7799 } 7800 7801 static ConstantInt * 7802 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7803 ScalarEvolution &SE) { 7804 const SCEV *InVal = SE.getConstant(C); 7805 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7806 assert(isa<SCEVConstant>(Val) && 7807 "Evaluation of SCEV at constant didn't fold correctly?"); 7808 return cast<SCEVConstant>(Val)->getValue(); 7809 } 7810 7811 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7812 /// compute the backedge execution count. 7813 ScalarEvolution::ExitLimit 7814 ScalarEvolution::computeLoadConstantCompareExitLimit( 7815 LoadInst *LI, 7816 Constant *RHS, 7817 const Loop *L, 7818 ICmpInst::Predicate predicate) { 7819 if (LI->isVolatile()) return getCouldNotCompute(); 7820 7821 // Check to see if the loaded pointer is a getelementptr of a global. 7822 // TODO: Use SCEV instead of manually grubbing with GEPs. 7823 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7824 if (!GEP) return getCouldNotCompute(); 7825 7826 // Make sure that it is really a constant global we are gepping, with an 7827 // initializer, and make sure the first IDX is really 0. 7828 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7829 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7830 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7831 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7832 return getCouldNotCompute(); 7833 7834 // Okay, we allow one non-constant index into the GEP instruction. 7835 Value *VarIdx = nullptr; 7836 std::vector<Constant*> Indexes; 7837 unsigned VarIdxNum = 0; 7838 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7839 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7840 Indexes.push_back(CI); 7841 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7842 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7843 VarIdx = GEP->getOperand(i); 7844 VarIdxNum = i-2; 7845 Indexes.push_back(nullptr); 7846 } 7847 7848 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7849 if (!VarIdx) 7850 return getCouldNotCompute(); 7851 7852 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7853 // Check to see if X is a loop variant variable value now. 7854 const SCEV *Idx = getSCEV(VarIdx); 7855 Idx = getSCEVAtScope(Idx, L); 7856 7857 // We can only recognize very limited forms of loop index expressions, in 7858 // particular, only affine AddRec's like {C1,+,C2}<L>. 7859 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7860 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 7861 isLoopInvariant(IdxExpr, L) || 7862 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7863 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7864 return getCouldNotCompute(); 7865 7866 unsigned MaxSteps = MaxBruteForceIterations; 7867 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7868 ConstantInt *ItCst = ConstantInt::get( 7869 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7870 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7871 7872 // Form the GEP offset. 7873 Indexes[VarIdxNum] = Val; 7874 7875 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7876 Indexes); 7877 if (!Result) break; // Cannot compute! 7878 7879 // Evaluate the condition for this iteration. 7880 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7881 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7882 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7883 ++NumArrayLenItCounts; 7884 return getConstant(ItCst); // Found terminating iteration! 7885 } 7886 } 7887 return getCouldNotCompute(); 7888 } 7889 7890 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7891 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7892 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7893 if (!RHS) 7894 return getCouldNotCompute(); 7895 7896 const BasicBlock *Latch = L->getLoopLatch(); 7897 if (!Latch) 7898 return getCouldNotCompute(); 7899 7900 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7901 if (!Predecessor) 7902 return getCouldNotCompute(); 7903 7904 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7905 // Return LHS in OutLHS and shift_opt in OutOpCode. 7906 auto MatchPositiveShift = 7907 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7908 7909 using namespace PatternMatch; 7910 7911 ConstantInt *ShiftAmt; 7912 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7913 OutOpCode = Instruction::LShr; 7914 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7915 OutOpCode = Instruction::AShr; 7916 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7917 OutOpCode = Instruction::Shl; 7918 else 7919 return false; 7920 7921 return ShiftAmt->getValue().isStrictlyPositive(); 7922 }; 7923 7924 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7925 // 7926 // loop: 7927 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7928 // %iv.shifted = lshr i32 %iv, <positive constant> 7929 // 7930 // Return true on a successful match. Return the corresponding PHI node (%iv 7931 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7932 auto MatchShiftRecurrence = 7933 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7934 Optional<Instruction::BinaryOps> PostShiftOpCode; 7935 7936 { 7937 Instruction::BinaryOps OpC; 7938 Value *V; 7939 7940 // If we encounter a shift instruction, "peel off" the shift operation, 7941 // and remember that we did so. Later when we inspect %iv's backedge 7942 // value, we will make sure that the backedge value uses the same 7943 // operation. 7944 // 7945 // Note: the peeled shift operation does not have to be the same 7946 // instruction as the one feeding into the PHI's backedge value. We only 7947 // really care about it being the same *kind* of shift instruction -- 7948 // that's all that is required for our later inferences to hold. 7949 if (MatchPositiveShift(LHS, V, OpC)) { 7950 PostShiftOpCode = OpC; 7951 LHS = V; 7952 } 7953 } 7954 7955 PNOut = dyn_cast<PHINode>(LHS); 7956 if (!PNOut || PNOut->getParent() != L->getHeader()) 7957 return false; 7958 7959 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7960 Value *OpLHS; 7961 7962 return 7963 // The backedge value for the PHI node must be a shift by a positive 7964 // amount 7965 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7966 7967 // of the PHI node itself 7968 OpLHS == PNOut && 7969 7970 // and the kind of shift should be match the kind of shift we peeled 7971 // off, if any. 7972 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7973 }; 7974 7975 PHINode *PN; 7976 Instruction::BinaryOps OpCode; 7977 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7978 return getCouldNotCompute(); 7979 7980 const DataLayout &DL = getDataLayout(); 7981 7982 // The key rationale for this optimization is that for some kinds of shift 7983 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7984 // within a finite number of iterations. If the condition guarding the 7985 // backedge (in the sense that the backedge is taken if the condition is true) 7986 // is false for the value the shift recurrence stabilizes to, then we know 7987 // that the backedge is taken only a finite number of times. 7988 7989 ConstantInt *StableValue = nullptr; 7990 switch (OpCode) { 7991 default: 7992 llvm_unreachable("Impossible case!"); 7993 7994 case Instruction::AShr: { 7995 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7996 // bitwidth(K) iterations. 7997 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7998 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 7999 Predecessor->getTerminator(), &DT); 8000 auto *Ty = cast<IntegerType>(RHS->getType()); 8001 if (Known.isNonNegative()) 8002 StableValue = ConstantInt::get(Ty, 0); 8003 else if (Known.isNegative()) 8004 StableValue = ConstantInt::get(Ty, -1, true); 8005 else 8006 return getCouldNotCompute(); 8007 8008 break; 8009 } 8010 case Instruction::LShr: 8011 case Instruction::Shl: 8012 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8013 // stabilize to 0 in at most bitwidth(K) iterations. 8014 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8015 break; 8016 } 8017 8018 auto *Result = 8019 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8020 assert(Result->getType()->isIntegerTy(1) && 8021 "Otherwise cannot be an operand to a branch instruction"); 8022 8023 if (Result->isZeroValue()) { 8024 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8025 const SCEV *UpperBound = 8026 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8027 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8028 } 8029 8030 return getCouldNotCompute(); 8031 } 8032 8033 /// Return true if we can constant fold an instruction of the specified type, 8034 /// assuming that all operands were constants. 8035 static bool CanConstantFold(const Instruction *I) { 8036 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8037 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8038 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8039 return true; 8040 8041 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8042 if (const Function *F = CI->getCalledFunction()) 8043 return canConstantFoldCallTo(CI, F); 8044 return false; 8045 } 8046 8047 /// Determine whether this instruction can constant evolve within this loop 8048 /// assuming its operands can all constant evolve. 8049 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8050 // An instruction outside of the loop can't be derived from a loop PHI. 8051 if (!L->contains(I)) return false; 8052 8053 if (isa<PHINode>(I)) { 8054 // We don't currently keep track of the control flow needed to evaluate 8055 // PHIs, so we cannot handle PHIs inside of loops. 8056 return L->getHeader() == I->getParent(); 8057 } 8058 8059 // If we won't be able to constant fold this expression even if the operands 8060 // are constants, bail early. 8061 return CanConstantFold(I); 8062 } 8063 8064 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8065 /// recursing through each instruction operand until reaching a loop header phi. 8066 static PHINode * 8067 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8068 DenseMap<Instruction *, PHINode *> &PHIMap, 8069 unsigned Depth) { 8070 if (Depth > MaxConstantEvolvingDepth) 8071 return nullptr; 8072 8073 // Otherwise, we can evaluate this instruction if all of its operands are 8074 // constant or derived from a PHI node themselves. 8075 PHINode *PHI = nullptr; 8076 for (Value *Op : UseInst->operands()) { 8077 if (isa<Constant>(Op)) continue; 8078 8079 Instruction *OpInst = dyn_cast<Instruction>(Op); 8080 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8081 8082 PHINode *P = dyn_cast<PHINode>(OpInst); 8083 if (!P) 8084 // If this operand is already visited, reuse the prior result. 8085 // We may have P != PHI if this is the deepest point at which the 8086 // inconsistent paths meet. 8087 P = PHIMap.lookup(OpInst); 8088 if (!P) { 8089 // Recurse and memoize the results, whether a phi is found or not. 8090 // This recursive call invalidates pointers into PHIMap. 8091 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8092 PHIMap[OpInst] = P; 8093 } 8094 if (!P) 8095 return nullptr; // Not evolving from PHI 8096 if (PHI && PHI != P) 8097 return nullptr; // Evolving from multiple different PHIs. 8098 PHI = P; 8099 } 8100 // This is a expression evolving from a constant PHI! 8101 return PHI; 8102 } 8103 8104 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8105 /// in the loop that V is derived from. We allow arbitrary operations along the 8106 /// way, but the operands of an operation must either be constants or a value 8107 /// derived from a constant PHI. If this expression does not fit with these 8108 /// constraints, return null. 8109 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8110 Instruction *I = dyn_cast<Instruction>(V); 8111 if (!I || !canConstantEvolve(I, L)) return nullptr; 8112 8113 if (PHINode *PN = dyn_cast<PHINode>(I)) 8114 return PN; 8115 8116 // Record non-constant instructions contained by the loop. 8117 DenseMap<Instruction *, PHINode *> PHIMap; 8118 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8119 } 8120 8121 /// EvaluateExpression - Given an expression that passes the 8122 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8123 /// in the loop has the value PHIVal. If we can't fold this expression for some 8124 /// reason, return null. 8125 static Constant *EvaluateExpression(Value *V, const Loop *L, 8126 DenseMap<Instruction *, Constant *> &Vals, 8127 const DataLayout &DL, 8128 const TargetLibraryInfo *TLI) { 8129 // Convenient constant check, but redundant for recursive calls. 8130 if (Constant *C = dyn_cast<Constant>(V)) return C; 8131 Instruction *I = dyn_cast<Instruction>(V); 8132 if (!I) return nullptr; 8133 8134 if (Constant *C = Vals.lookup(I)) return C; 8135 8136 // An instruction inside the loop depends on a value outside the loop that we 8137 // weren't given a mapping for, or a value such as a call inside the loop. 8138 if (!canConstantEvolve(I, L)) return nullptr; 8139 8140 // An unmapped PHI can be due to a branch or another loop inside this loop, 8141 // or due to this not being the initial iteration through a loop where we 8142 // couldn't compute the evolution of this particular PHI last time. 8143 if (isa<PHINode>(I)) return nullptr; 8144 8145 std::vector<Constant*> Operands(I->getNumOperands()); 8146 8147 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8148 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8149 if (!Operand) { 8150 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8151 if (!Operands[i]) return nullptr; 8152 continue; 8153 } 8154 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8155 Vals[Operand] = C; 8156 if (!C) return nullptr; 8157 Operands[i] = C; 8158 } 8159 8160 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8161 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8162 Operands[1], DL, TLI); 8163 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8164 if (!LI->isVolatile()) 8165 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8166 } 8167 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8168 } 8169 8170 8171 // If every incoming value to PN except the one for BB is a specific Constant, 8172 // return that, else return nullptr. 8173 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8174 Constant *IncomingVal = nullptr; 8175 8176 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8177 if (PN->getIncomingBlock(i) == BB) 8178 continue; 8179 8180 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8181 if (!CurrentVal) 8182 return nullptr; 8183 8184 if (IncomingVal != CurrentVal) { 8185 if (IncomingVal) 8186 return nullptr; 8187 IncomingVal = CurrentVal; 8188 } 8189 } 8190 8191 return IncomingVal; 8192 } 8193 8194 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8195 /// in the header of its containing loop, we know the loop executes a 8196 /// constant number of times, and the PHI node is just a recurrence 8197 /// involving constants, fold it. 8198 Constant * 8199 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8200 const APInt &BEs, 8201 const Loop *L) { 8202 auto I = ConstantEvolutionLoopExitValue.find(PN); 8203 if (I != ConstantEvolutionLoopExitValue.end()) 8204 return I->second; 8205 8206 if (BEs.ugt(MaxBruteForceIterations)) 8207 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8208 8209 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8210 8211 DenseMap<Instruction *, Constant *> CurrentIterVals; 8212 BasicBlock *Header = L->getHeader(); 8213 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8214 8215 BasicBlock *Latch = L->getLoopLatch(); 8216 if (!Latch) 8217 return nullptr; 8218 8219 for (PHINode &PHI : Header->phis()) { 8220 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8221 CurrentIterVals[&PHI] = StartCST; 8222 } 8223 if (!CurrentIterVals.count(PN)) 8224 return RetVal = nullptr; 8225 8226 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8227 8228 // Execute the loop symbolically to determine the exit value. 8229 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8230 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8231 8232 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8233 unsigned IterationNum = 0; 8234 const DataLayout &DL = getDataLayout(); 8235 for (; ; ++IterationNum) { 8236 if (IterationNum == NumIterations) 8237 return RetVal = CurrentIterVals[PN]; // Got exit value! 8238 8239 // Compute the value of the PHIs for the next iteration. 8240 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8241 DenseMap<Instruction *, Constant *> NextIterVals; 8242 Constant *NextPHI = 8243 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8244 if (!NextPHI) 8245 return nullptr; // Couldn't evaluate! 8246 NextIterVals[PN] = NextPHI; 8247 8248 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8249 8250 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8251 // cease to be able to evaluate one of them or if they stop evolving, 8252 // because that doesn't necessarily prevent us from computing PN. 8253 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8254 for (const auto &I : CurrentIterVals) { 8255 PHINode *PHI = dyn_cast<PHINode>(I.first); 8256 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8257 PHIsToCompute.emplace_back(PHI, I.second); 8258 } 8259 // We use two distinct loops because EvaluateExpression may invalidate any 8260 // iterators into CurrentIterVals. 8261 for (const auto &I : PHIsToCompute) { 8262 PHINode *PHI = I.first; 8263 Constant *&NextPHI = NextIterVals[PHI]; 8264 if (!NextPHI) { // Not already computed. 8265 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8266 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8267 } 8268 if (NextPHI != I.second) 8269 StoppedEvolving = false; 8270 } 8271 8272 // If all entries in CurrentIterVals == NextIterVals then we can stop 8273 // iterating, the loop can't continue to change. 8274 if (StoppedEvolving) 8275 return RetVal = CurrentIterVals[PN]; 8276 8277 CurrentIterVals.swap(NextIterVals); 8278 } 8279 } 8280 8281 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8282 Value *Cond, 8283 bool ExitWhen) { 8284 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8285 if (!PN) return getCouldNotCompute(); 8286 8287 // If the loop is canonicalized, the PHI will have exactly two entries. 8288 // That's the only form we support here. 8289 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8290 8291 DenseMap<Instruction *, Constant *> CurrentIterVals; 8292 BasicBlock *Header = L->getHeader(); 8293 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8294 8295 BasicBlock *Latch = L->getLoopLatch(); 8296 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8297 8298 for (PHINode &PHI : Header->phis()) { 8299 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8300 CurrentIterVals[&PHI] = StartCST; 8301 } 8302 if (!CurrentIterVals.count(PN)) 8303 return getCouldNotCompute(); 8304 8305 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8306 // the loop symbolically to determine when the condition gets a value of 8307 // "ExitWhen". 8308 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8309 const DataLayout &DL = getDataLayout(); 8310 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8311 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8312 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8313 8314 // Couldn't symbolically evaluate. 8315 if (!CondVal) return getCouldNotCompute(); 8316 8317 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8318 ++NumBruteForceTripCountsComputed; 8319 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8320 } 8321 8322 // Update all the PHI nodes for the next iteration. 8323 DenseMap<Instruction *, Constant *> NextIterVals; 8324 8325 // Create a list of which PHIs we need to compute. We want to do this before 8326 // calling EvaluateExpression on them because that may invalidate iterators 8327 // into CurrentIterVals. 8328 SmallVector<PHINode *, 8> PHIsToCompute; 8329 for (const auto &I : CurrentIterVals) { 8330 PHINode *PHI = dyn_cast<PHINode>(I.first); 8331 if (!PHI || PHI->getParent() != Header) continue; 8332 PHIsToCompute.push_back(PHI); 8333 } 8334 for (PHINode *PHI : PHIsToCompute) { 8335 Constant *&NextPHI = NextIterVals[PHI]; 8336 if (NextPHI) continue; // Already computed! 8337 8338 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8339 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8340 } 8341 CurrentIterVals.swap(NextIterVals); 8342 } 8343 8344 // Too many iterations were needed to evaluate. 8345 return getCouldNotCompute(); 8346 } 8347 8348 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8349 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8350 ValuesAtScopes[V]; 8351 // Check to see if we've folded this expression at this loop before. 8352 for (auto &LS : Values) 8353 if (LS.first == L) 8354 return LS.second ? LS.second : V; 8355 8356 Values.emplace_back(L, nullptr); 8357 8358 // Otherwise compute it. 8359 const SCEV *C = computeSCEVAtScope(V, L); 8360 for (auto &LS : reverse(ValuesAtScopes[V])) 8361 if (LS.first == L) { 8362 LS.second = C; 8363 break; 8364 } 8365 return C; 8366 } 8367 8368 /// This builds up a Constant using the ConstantExpr interface. That way, we 8369 /// will return Constants for objects which aren't represented by a 8370 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8371 /// Returns NULL if the SCEV isn't representable as a Constant. 8372 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8373 switch (V->getSCEVType()) { 8374 case scCouldNotCompute: 8375 case scAddRecExpr: 8376 return nullptr; 8377 case scConstant: 8378 return cast<SCEVConstant>(V)->getValue(); 8379 case scUnknown: 8380 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8381 case scSignExtend: { 8382 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8383 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8384 return ConstantExpr::getSExt(CastOp, SS->getType()); 8385 return nullptr; 8386 } 8387 case scZeroExtend: { 8388 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8389 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8390 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8391 return nullptr; 8392 } 8393 case scPtrToInt: { 8394 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8395 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8396 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8397 8398 return nullptr; 8399 } 8400 case scTruncate: { 8401 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8402 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8403 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8404 return nullptr; 8405 } 8406 case scAddExpr: { 8407 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8408 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8409 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8410 unsigned AS = PTy->getAddressSpace(); 8411 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8412 C = ConstantExpr::getBitCast(C, DestPtrTy); 8413 } 8414 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8415 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8416 if (!C2) 8417 return nullptr; 8418 8419 // First pointer! 8420 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8421 unsigned AS = C2->getType()->getPointerAddressSpace(); 8422 std::swap(C, C2); 8423 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8424 // The offsets have been converted to bytes. We can add bytes to an 8425 // i8* by GEP with the byte count in the first index. 8426 C = ConstantExpr::getBitCast(C, DestPtrTy); 8427 } 8428 8429 // Don't bother trying to sum two pointers. We probably can't 8430 // statically compute a load that results from it anyway. 8431 if (C2->getType()->isPointerTy()) 8432 return nullptr; 8433 8434 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8435 if (PTy->getElementType()->isStructTy()) 8436 C2 = ConstantExpr::getIntegerCast( 8437 C2, Type::getInt32Ty(C->getContext()), true); 8438 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8439 } else 8440 C = ConstantExpr::getAdd(C, C2); 8441 } 8442 return C; 8443 } 8444 return nullptr; 8445 } 8446 case scMulExpr: { 8447 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8448 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8449 // Don't bother with pointers at all. 8450 if (C->getType()->isPointerTy()) 8451 return nullptr; 8452 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8453 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8454 if (!C2 || C2->getType()->isPointerTy()) 8455 return nullptr; 8456 C = ConstantExpr::getMul(C, C2); 8457 } 8458 return C; 8459 } 8460 return nullptr; 8461 } 8462 case scUDivExpr: { 8463 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8464 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8465 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8466 if (LHS->getType() == RHS->getType()) 8467 return ConstantExpr::getUDiv(LHS, RHS); 8468 return nullptr; 8469 } 8470 case scSMaxExpr: 8471 case scUMaxExpr: 8472 case scSMinExpr: 8473 case scUMinExpr: 8474 return nullptr; // TODO: smax, umax, smin, umax. 8475 } 8476 llvm_unreachable("Unknown SCEV kind!"); 8477 } 8478 8479 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8480 if (isa<SCEVConstant>(V)) return V; 8481 8482 // If this instruction is evolved from a constant-evolving PHI, compute the 8483 // exit value from the loop without using SCEVs. 8484 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8485 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8486 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8487 const Loop *CurrLoop = this->LI[I->getParent()]; 8488 // Looking for loop exit value. 8489 if (CurrLoop && CurrLoop->getParentLoop() == L && 8490 PN->getParent() == CurrLoop->getHeader()) { 8491 // Okay, there is no closed form solution for the PHI node. Check 8492 // to see if the loop that contains it has a known backedge-taken 8493 // count. If so, we may be able to force computation of the exit 8494 // value. 8495 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8496 // This trivial case can show up in some degenerate cases where 8497 // the incoming IR has not yet been fully simplified. 8498 if (BackedgeTakenCount->isZero()) { 8499 Value *InitValue = nullptr; 8500 bool MultipleInitValues = false; 8501 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8502 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8503 if (!InitValue) 8504 InitValue = PN->getIncomingValue(i); 8505 else if (InitValue != PN->getIncomingValue(i)) { 8506 MultipleInitValues = true; 8507 break; 8508 } 8509 } 8510 } 8511 if (!MultipleInitValues && InitValue) 8512 return getSCEV(InitValue); 8513 } 8514 // Do we have a loop invariant value flowing around the backedge 8515 // for a loop which must execute the backedge? 8516 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8517 isKnownPositive(BackedgeTakenCount) && 8518 PN->getNumIncomingValues() == 2) { 8519 8520 unsigned InLoopPred = 8521 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8522 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8523 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8524 return getSCEV(BackedgeVal); 8525 } 8526 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8527 // Okay, we know how many times the containing loop executes. If 8528 // this is a constant evolving PHI node, get the final value at 8529 // the specified iteration number. 8530 Constant *RV = getConstantEvolutionLoopExitValue( 8531 PN, BTCC->getAPInt(), CurrLoop); 8532 if (RV) return getSCEV(RV); 8533 } 8534 } 8535 8536 // If there is a single-input Phi, evaluate it at our scope. If we can 8537 // prove that this replacement does not break LCSSA form, use new value. 8538 if (PN->getNumOperands() == 1) { 8539 const SCEV *Input = getSCEV(PN->getOperand(0)); 8540 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8541 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8542 // for the simplest case just support constants. 8543 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8544 } 8545 } 8546 8547 // Okay, this is an expression that we cannot symbolically evaluate 8548 // into a SCEV. Check to see if it's possible to symbolically evaluate 8549 // the arguments into constants, and if so, try to constant propagate the 8550 // result. This is particularly useful for computing loop exit values. 8551 if (CanConstantFold(I)) { 8552 SmallVector<Constant *, 4> Operands; 8553 bool MadeImprovement = false; 8554 for (Value *Op : I->operands()) { 8555 if (Constant *C = dyn_cast<Constant>(Op)) { 8556 Operands.push_back(C); 8557 continue; 8558 } 8559 8560 // If any of the operands is non-constant and if they are 8561 // non-integer and non-pointer, don't even try to analyze them 8562 // with scev techniques. 8563 if (!isSCEVable(Op->getType())) 8564 return V; 8565 8566 const SCEV *OrigV = getSCEV(Op); 8567 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8568 MadeImprovement |= OrigV != OpV; 8569 8570 Constant *C = BuildConstantFromSCEV(OpV); 8571 if (!C) return V; 8572 if (C->getType() != Op->getType()) 8573 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8574 Op->getType(), 8575 false), 8576 C, Op->getType()); 8577 Operands.push_back(C); 8578 } 8579 8580 // Check to see if getSCEVAtScope actually made an improvement. 8581 if (MadeImprovement) { 8582 Constant *C = nullptr; 8583 const DataLayout &DL = getDataLayout(); 8584 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8585 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8586 Operands[1], DL, &TLI); 8587 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8588 if (!Load->isVolatile()) 8589 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8590 DL); 8591 } else 8592 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8593 if (!C) return V; 8594 return getSCEV(C); 8595 } 8596 } 8597 } 8598 8599 // This is some other type of SCEVUnknown, just return it. 8600 return V; 8601 } 8602 8603 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8604 // Avoid performing the look-up in the common case where the specified 8605 // expression has no loop-variant portions. 8606 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8607 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8608 if (OpAtScope != Comm->getOperand(i)) { 8609 // Okay, at least one of these operands is loop variant but might be 8610 // foldable. Build a new instance of the folded commutative expression. 8611 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8612 Comm->op_begin()+i); 8613 NewOps.push_back(OpAtScope); 8614 8615 for (++i; i != e; ++i) { 8616 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8617 NewOps.push_back(OpAtScope); 8618 } 8619 if (isa<SCEVAddExpr>(Comm)) 8620 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8621 if (isa<SCEVMulExpr>(Comm)) 8622 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8623 if (isa<SCEVMinMaxExpr>(Comm)) 8624 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8625 llvm_unreachable("Unknown commutative SCEV type!"); 8626 } 8627 } 8628 // If we got here, all operands are loop invariant. 8629 return Comm; 8630 } 8631 8632 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8633 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8634 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8635 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8636 return Div; // must be loop invariant 8637 return getUDivExpr(LHS, RHS); 8638 } 8639 8640 // If this is a loop recurrence for a loop that does not contain L, then we 8641 // are dealing with the final value computed by the loop. 8642 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8643 // First, attempt to evaluate each operand. 8644 // Avoid performing the look-up in the common case where the specified 8645 // expression has no loop-variant portions. 8646 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8647 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8648 if (OpAtScope == AddRec->getOperand(i)) 8649 continue; 8650 8651 // Okay, at least one of these operands is loop variant but might be 8652 // foldable. Build a new instance of the folded commutative expression. 8653 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8654 AddRec->op_begin()+i); 8655 NewOps.push_back(OpAtScope); 8656 for (++i; i != e; ++i) 8657 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8658 8659 const SCEV *FoldedRec = 8660 getAddRecExpr(NewOps, AddRec->getLoop(), 8661 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8662 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8663 // The addrec may be folded to a nonrecurrence, for example, if the 8664 // induction variable is multiplied by zero after constant folding. Go 8665 // ahead and return the folded value. 8666 if (!AddRec) 8667 return FoldedRec; 8668 break; 8669 } 8670 8671 // If the scope is outside the addrec's loop, evaluate it by using the 8672 // loop exit value of the addrec. 8673 if (!AddRec->getLoop()->contains(L)) { 8674 // To evaluate this recurrence, we need to know how many times the AddRec 8675 // loop iterates. Compute this now. 8676 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8677 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8678 8679 // Then, evaluate the AddRec. 8680 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8681 } 8682 8683 return AddRec; 8684 } 8685 8686 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8687 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8688 if (Op == Cast->getOperand()) 8689 return Cast; // must be loop invariant 8690 return getZeroExtendExpr(Op, Cast->getType()); 8691 } 8692 8693 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8694 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8695 if (Op == Cast->getOperand()) 8696 return Cast; // must be loop invariant 8697 return getSignExtendExpr(Op, Cast->getType()); 8698 } 8699 8700 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8701 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8702 if (Op == Cast->getOperand()) 8703 return Cast; // must be loop invariant 8704 return getTruncateExpr(Op, Cast->getType()); 8705 } 8706 8707 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 8708 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8709 if (Op == Cast->getOperand()) 8710 return Cast; // must be loop invariant 8711 return getPtrToIntExpr(Op, Cast->getType()); 8712 } 8713 8714 llvm_unreachable("Unknown SCEV type!"); 8715 } 8716 8717 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8718 return getSCEVAtScope(getSCEV(V), L); 8719 } 8720 8721 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8722 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8723 return stripInjectiveFunctions(ZExt->getOperand()); 8724 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8725 return stripInjectiveFunctions(SExt->getOperand()); 8726 return S; 8727 } 8728 8729 /// Finds the minimum unsigned root of the following equation: 8730 /// 8731 /// A * X = B (mod N) 8732 /// 8733 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8734 /// A and B isn't important. 8735 /// 8736 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8737 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8738 ScalarEvolution &SE) { 8739 uint32_t BW = A.getBitWidth(); 8740 assert(BW == SE.getTypeSizeInBits(B->getType())); 8741 assert(A != 0 && "A must be non-zero."); 8742 8743 // 1. D = gcd(A, N) 8744 // 8745 // The gcd of A and N may have only one prime factor: 2. The number of 8746 // trailing zeros in A is its multiplicity 8747 uint32_t Mult2 = A.countTrailingZeros(); 8748 // D = 2^Mult2 8749 8750 // 2. Check if B is divisible by D. 8751 // 8752 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8753 // is not less than multiplicity of this prime factor for D. 8754 if (SE.GetMinTrailingZeros(B) < Mult2) 8755 return SE.getCouldNotCompute(); 8756 8757 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8758 // modulo (N / D). 8759 // 8760 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8761 // (N / D) in general. The inverse itself always fits into BW bits, though, 8762 // so we immediately truncate it. 8763 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8764 APInt Mod(BW + 1, 0); 8765 Mod.setBit(BW - Mult2); // Mod = N / D 8766 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8767 8768 // 4. Compute the minimum unsigned root of the equation: 8769 // I * (B / D) mod (N / D) 8770 // To simplify the computation, we factor out the divide by D: 8771 // (I * B mod N) / D 8772 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8773 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8774 } 8775 8776 /// For a given quadratic addrec, generate coefficients of the corresponding 8777 /// quadratic equation, multiplied by a common value to ensure that they are 8778 /// integers. 8779 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8780 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8781 /// were multiplied by, and BitWidth is the bit width of the original addrec 8782 /// coefficients. 8783 /// This function returns None if the addrec coefficients are not compile- 8784 /// time constants. 8785 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8786 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8787 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8788 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8789 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8790 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8791 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8792 << *AddRec << '\n'); 8793 8794 // We currently can only solve this if the coefficients are constants. 8795 if (!LC || !MC || !NC) { 8796 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8797 return None; 8798 } 8799 8800 APInt L = LC->getAPInt(); 8801 APInt M = MC->getAPInt(); 8802 APInt N = NC->getAPInt(); 8803 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8804 8805 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8806 unsigned NewWidth = BitWidth + 1; 8807 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8808 << BitWidth << '\n'); 8809 // The sign-extension (as opposed to a zero-extension) here matches the 8810 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8811 N = N.sext(NewWidth); 8812 M = M.sext(NewWidth); 8813 L = L.sext(NewWidth); 8814 8815 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8816 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8817 // L+M, L+2M+N, L+3M+3N, ... 8818 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8819 // 8820 // The equation Acc = 0 is then 8821 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8822 // In a quadratic form it becomes: 8823 // N n^2 + (2M-N) n + 2L = 0. 8824 8825 APInt A = N; 8826 APInt B = 2 * M - A; 8827 APInt C = 2 * L; 8828 APInt T = APInt(NewWidth, 2); 8829 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8830 << "x + " << C << ", coeff bw: " << NewWidth 8831 << ", multiplied by " << T << '\n'); 8832 return std::make_tuple(A, B, C, T, BitWidth); 8833 } 8834 8835 /// Helper function to compare optional APInts: 8836 /// (a) if X and Y both exist, return min(X, Y), 8837 /// (b) if neither X nor Y exist, return None, 8838 /// (c) if exactly one of X and Y exists, return that value. 8839 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8840 if (X.hasValue() && Y.hasValue()) { 8841 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8842 APInt XW = X->sextOrSelf(W); 8843 APInt YW = Y->sextOrSelf(W); 8844 return XW.slt(YW) ? *X : *Y; 8845 } 8846 if (!X.hasValue() && !Y.hasValue()) 8847 return None; 8848 return X.hasValue() ? *X : *Y; 8849 } 8850 8851 /// Helper function to truncate an optional APInt to a given BitWidth. 8852 /// When solving addrec-related equations, it is preferable to return a value 8853 /// that has the same bit width as the original addrec's coefficients. If the 8854 /// solution fits in the original bit width, truncate it (except for i1). 8855 /// Returning a value of a different bit width may inhibit some optimizations. 8856 /// 8857 /// In general, a solution to a quadratic equation generated from an addrec 8858 /// may require BW+1 bits, where BW is the bit width of the addrec's 8859 /// coefficients. The reason is that the coefficients of the quadratic 8860 /// equation are BW+1 bits wide (to avoid truncation when converting from 8861 /// the addrec to the equation). 8862 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8863 if (!X.hasValue()) 8864 return None; 8865 unsigned W = X->getBitWidth(); 8866 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8867 return X->trunc(BitWidth); 8868 return X; 8869 } 8870 8871 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8872 /// iterations. The values L, M, N are assumed to be signed, and they 8873 /// should all have the same bit widths. 8874 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8875 /// where BW is the bit width of the addrec's coefficients. 8876 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8877 /// returned as such, otherwise the bit width of the returned value may 8878 /// be greater than BW. 8879 /// 8880 /// This function returns None if 8881 /// (a) the addrec coefficients are not constant, or 8882 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8883 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8884 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8885 static Optional<APInt> 8886 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8887 APInt A, B, C, M; 8888 unsigned BitWidth; 8889 auto T = GetQuadraticEquation(AddRec); 8890 if (!T.hasValue()) 8891 return None; 8892 8893 std::tie(A, B, C, M, BitWidth) = *T; 8894 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8895 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8896 if (!X.hasValue()) 8897 return None; 8898 8899 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8900 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8901 if (!V->isZero()) 8902 return None; 8903 8904 return TruncIfPossible(X, BitWidth); 8905 } 8906 8907 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8908 /// iterations. The values M, N are assumed to be signed, and they 8909 /// should all have the same bit widths. 8910 /// Find the least n such that c(n) does not belong to the given range, 8911 /// while c(n-1) does. 8912 /// 8913 /// This function returns None if 8914 /// (a) the addrec coefficients are not constant, or 8915 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8916 /// bounds of the range. 8917 static Optional<APInt> 8918 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8919 const ConstantRange &Range, ScalarEvolution &SE) { 8920 assert(AddRec->getOperand(0)->isZero() && 8921 "Starting value of addrec should be 0"); 8922 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8923 << Range << ", addrec " << *AddRec << '\n'); 8924 // This case is handled in getNumIterationsInRange. Here we can assume that 8925 // we start in the range. 8926 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8927 "Addrec's initial value should be in range"); 8928 8929 APInt A, B, C, M; 8930 unsigned BitWidth; 8931 auto T = GetQuadraticEquation(AddRec); 8932 if (!T.hasValue()) 8933 return None; 8934 8935 // Be careful about the return value: there can be two reasons for not 8936 // returning an actual number. First, if no solutions to the equations 8937 // were found, and second, if the solutions don't leave the given range. 8938 // The first case means that the actual solution is "unknown", the second 8939 // means that it's known, but not valid. If the solution is unknown, we 8940 // cannot make any conclusions. 8941 // Return a pair: the optional solution and a flag indicating if the 8942 // solution was found. 8943 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8944 // Solve for signed overflow and unsigned overflow, pick the lower 8945 // solution. 8946 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8947 << Bound << " (before multiplying by " << M << ")\n"); 8948 Bound *= M; // The quadratic equation multiplier. 8949 8950 Optional<APInt> SO = None; 8951 if (BitWidth > 1) { 8952 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8953 "signed overflow\n"); 8954 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8955 } 8956 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8957 "unsigned overflow\n"); 8958 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8959 BitWidth+1); 8960 8961 auto LeavesRange = [&] (const APInt &X) { 8962 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8963 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8964 if (Range.contains(V0->getValue())) 8965 return false; 8966 // X should be at least 1, so X-1 is non-negative. 8967 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8968 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8969 if (Range.contains(V1->getValue())) 8970 return true; 8971 return false; 8972 }; 8973 8974 // If SolveQuadraticEquationWrap returns None, it means that there can 8975 // be a solution, but the function failed to find it. We cannot treat it 8976 // as "no solution". 8977 if (!SO.hasValue() || !UO.hasValue()) 8978 return { None, false }; 8979 8980 // Check the smaller value first to see if it leaves the range. 8981 // At this point, both SO and UO must have values. 8982 Optional<APInt> Min = MinOptional(SO, UO); 8983 if (LeavesRange(*Min)) 8984 return { Min, true }; 8985 Optional<APInt> Max = Min == SO ? UO : SO; 8986 if (LeavesRange(*Max)) 8987 return { Max, true }; 8988 8989 // Solutions were found, but were eliminated, hence the "true". 8990 return { None, true }; 8991 }; 8992 8993 std::tie(A, B, C, M, BitWidth) = *T; 8994 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8995 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8996 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8997 auto SL = SolveForBoundary(Lower); 8998 auto SU = SolveForBoundary(Upper); 8999 // If any of the solutions was unknown, no meaninigful conclusions can 9000 // be made. 9001 if (!SL.second || !SU.second) 9002 return None; 9003 9004 // Claim: The correct solution is not some value between Min and Max. 9005 // 9006 // Justification: Assuming that Min and Max are different values, one of 9007 // them is when the first signed overflow happens, the other is when the 9008 // first unsigned overflow happens. Crossing the range boundary is only 9009 // possible via an overflow (treating 0 as a special case of it, modeling 9010 // an overflow as crossing k*2^W for some k). 9011 // 9012 // The interesting case here is when Min was eliminated as an invalid 9013 // solution, but Max was not. The argument is that if there was another 9014 // overflow between Min and Max, it would also have been eliminated if 9015 // it was considered. 9016 // 9017 // For a given boundary, it is possible to have two overflows of the same 9018 // type (signed/unsigned) without having the other type in between: this 9019 // can happen when the vertex of the parabola is between the iterations 9020 // corresponding to the overflows. This is only possible when the two 9021 // overflows cross k*2^W for the same k. In such case, if the second one 9022 // left the range (and was the first one to do so), the first overflow 9023 // would have to enter the range, which would mean that either we had left 9024 // the range before or that we started outside of it. Both of these cases 9025 // are contradictions. 9026 // 9027 // Claim: In the case where SolveForBoundary returns None, the correct 9028 // solution is not some value between the Max for this boundary and the 9029 // Min of the other boundary. 9030 // 9031 // Justification: Assume that we had such Max_A and Min_B corresponding 9032 // to range boundaries A and B and such that Max_A < Min_B. If there was 9033 // a solution between Max_A and Min_B, it would have to be caused by an 9034 // overflow corresponding to either A or B. It cannot correspond to B, 9035 // since Min_B is the first occurrence of such an overflow. If it 9036 // corresponded to A, it would have to be either a signed or an unsigned 9037 // overflow that is larger than both eliminated overflows for A. But 9038 // between the eliminated overflows and this overflow, the values would 9039 // cover the entire value space, thus crossing the other boundary, which 9040 // is a contradiction. 9041 9042 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9043 } 9044 9045 ScalarEvolution::ExitLimit 9046 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9047 bool AllowPredicates) { 9048 9049 // This is only used for loops with a "x != y" exit test. The exit condition 9050 // is now expressed as a single expression, V = x-y. So the exit test is 9051 // effectively V != 0. We know and take advantage of the fact that this 9052 // expression only being used in a comparison by zero context. 9053 9054 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9055 // If the value is a constant 9056 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9057 // If the value is already zero, the branch will execute zero times. 9058 if (C->getValue()->isZero()) return C; 9059 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9060 } 9061 9062 const SCEVAddRecExpr *AddRec = 9063 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9064 9065 if (!AddRec && AllowPredicates) 9066 // Try to make this an AddRec using runtime tests, in the first X 9067 // iterations of this loop, where X is the SCEV expression found by the 9068 // algorithm below. 9069 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9070 9071 if (!AddRec || AddRec->getLoop() != L) 9072 return getCouldNotCompute(); 9073 9074 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9075 // the quadratic equation to solve it. 9076 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9077 // We can only use this value if the chrec ends up with an exact zero 9078 // value at this index. When solving for "X*X != 5", for example, we 9079 // should not accept a root of 2. 9080 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9081 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9082 return ExitLimit(R, R, false, Predicates); 9083 } 9084 return getCouldNotCompute(); 9085 } 9086 9087 // Otherwise we can only handle this if it is affine. 9088 if (!AddRec->isAffine()) 9089 return getCouldNotCompute(); 9090 9091 // If this is an affine expression, the execution count of this branch is 9092 // the minimum unsigned root of the following equation: 9093 // 9094 // Start + Step*N = 0 (mod 2^BW) 9095 // 9096 // equivalent to: 9097 // 9098 // Step*N = -Start (mod 2^BW) 9099 // 9100 // where BW is the common bit width of Start and Step. 9101 9102 // Get the initial value for the loop. 9103 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9104 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9105 9106 // For now we handle only constant steps. 9107 // 9108 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9109 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9110 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9111 // We have not yet seen any such cases. 9112 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9113 if (!StepC || StepC->getValue()->isZero()) 9114 return getCouldNotCompute(); 9115 9116 // For positive steps (counting up until unsigned overflow): 9117 // N = -Start/Step (as unsigned) 9118 // For negative steps (counting down to zero): 9119 // N = Start/-Step 9120 // First compute the unsigned distance from zero in the direction of Step. 9121 bool CountDown = StepC->getAPInt().isNegative(); 9122 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9123 9124 // Handle unitary steps, which cannot wraparound. 9125 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9126 // N = Distance (as unsigned) 9127 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9128 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9129 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9130 if (MaxBECountBase.ult(MaxBECount)) 9131 MaxBECount = MaxBECountBase; 9132 9133 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9134 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9135 // case, and see if we can improve the bound. 9136 // 9137 // Explicitly handling this here is necessary because getUnsignedRange 9138 // isn't context-sensitive; it doesn't know that we only care about the 9139 // range inside the loop. 9140 const SCEV *Zero = getZero(Distance->getType()); 9141 const SCEV *One = getOne(Distance->getType()); 9142 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9143 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9144 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9145 // as "unsigned_max(Distance + 1) - 1". 9146 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9147 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9148 } 9149 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9150 } 9151 9152 // If the condition controls loop exit (the loop exits only if the expression 9153 // is true) and the addition is no-wrap we can use unsigned divide to 9154 // compute the backedge count. In this case, the step may not divide the 9155 // distance, but we don't care because if the condition is "missed" the loop 9156 // will have undefined behavior due to wrapping. 9157 if (ControlsExit && AddRec->hasNoSelfWrap() && 9158 loopHasNoAbnormalExits(AddRec->getLoop())) { 9159 const SCEV *Exact = 9160 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9161 const SCEV *Max = 9162 Exact == getCouldNotCompute() 9163 ? Exact 9164 : getConstant(getUnsignedRangeMax(Exact)); 9165 return ExitLimit(Exact, Max, false, Predicates); 9166 } 9167 9168 // Solve the general equation. 9169 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9170 getNegativeSCEV(Start), *this); 9171 const SCEV *M = E == getCouldNotCompute() 9172 ? E 9173 : getConstant(getUnsignedRangeMax(E)); 9174 return ExitLimit(E, M, false, Predicates); 9175 } 9176 9177 ScalarEvolution::ExitLimit 9178 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9179 // Loops that look like: while (X == 0) are very strange indeed. We don't 9180 // handle them yet except for the trivial case. This could be expanded in the 9181 // future as needed. 9182 9183 // If the value is a constant, check to see if it is known to be non-zero 9184 // already. If so, the backedge will execute zero times. 9185 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9186 if (!C->getValue()->isZero()) 9187 return getZero(C->getType()); 9188 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9189 } 9190 9191 // We could implement others, but I really doubt anyone writes loops like 9192 // this, and if they did, they would already be constant folded. 9193 return getCouldNotCompute(); 9194 } 9195 9196 std::pair<const BasicBlock *, const BasicBlock *> 9197 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9198 const { 9199 // If the block has a unique predecessor, then there is no path from the 9200 // predecessor to the block that does not go through the direct edge 9201 // from the predecessor to the block. 9202 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9203 return {Pred, BB}; 9204 9205 // A loop's header is defined to be a block that dominates the loop. 9206 // If the header has a unique predecessor outside the loop, it must be 9207 // a block that has exactly one successor that can reach the loop. 9208 if (const Loop *L = LI.getLoopFor(BB)) 9209 return {L->getLoopPredecessor(), L->getHeader()}; 9210 9211 return {nullptr, nullptr}; 9212 } 9213 9214 /// SCEV structural equivalence is usually sufficient for testing whether two 9215 /// expressions are equal, however for the purposes of looking for a condition 9216 /// guarding a loop, it can be useful to be a little more general, since a 9217 /// front-end may have replicated the controlling expression. 9218 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9219 // Quick check to see if they are the same SCEV. 9220 if (A == B) return true; 9221 9222 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9223 // Not all instructions that are "identical" compute the same value. For 9224 // instance, two distinct alloca instructions allocating the same type are 9225 // identical and do not read memory; but compute distinct values. 9226 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9227 }; 9228 9229 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9230 // two different instructions with the same value. Check for this case. 9231 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9232 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9233 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9234 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9235 if (ComputesEqualValues(AI, BI)) 9236 return true; 9237 9238 // Otherwise assume they may have a different value. 9239 return false; 9240 } 9241 9242 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9243 const SCEV *&LHS, const SCEV *&RHS, 9244 unsigned Depth) { 9245 bool Changed = false; 9246 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9247 // '0 != 0'. 9248 auto TrivialCase = [&](bool TriviallyTrue) { 9249 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9250 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9251 return true; 9252 }; 9253 // If we hit the max recursion limit bail out. 9254 if (Depth >= 3) 9255 return false; 9256 9257 // Canonicalize a constant to the right side. 9258 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9259 // Check for both operands constant. 9260 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9261 if (ConstantExpr::getICmp(Pred, 9262 LHSC->getValue(), 9263 RHSC->getValue())->isNullValue()) 9264 return TrivialCase(false); 9265 else 9266 return TrivialCase(true); 9267 } 9268 // Otherwise swap the operands to put the constant on the right. 9269 std::swap(LHS, RHS); 9270 Pred = ICmpInst::getSwappedPredicate(Pred); 9271 Changed = true; 9272 } 9273 9274 // If we're comparing an addrec with a value which is loop-invariant in the 9275 // addrec's loop, put the addrec on the left. Also make a dominance check, 9276 // as both operands could be addrecs loop-invariant in each other's loop. 9277 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9278 const Loop *L = AR->getLoop(); 9279 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9280 std::swap(LHS, RHS); 9281 Pred = ICmpInst::getSwappedPredicate(Pred); 9282 Changed = true; 9283 } 9284 } 9285 9286 // If there's a constant operand, canonicalize comparisons with boundary 9287 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9288 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9289 const APInt &RA = RC->getAPInt(); 9290 9291 bool SimplifiedByConstantRange = false; 9292 9293 if (!ICmpInst::isEquality(Pred)) { 9294 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9295 if (ExactCR.isFullSet()) 9296 return TrivialCase(true); 9297 else if (ExactCR.isEmptySet()) 9298 return TrivialCase(false); 9299 9300 APInt NewRHS; 9301 CmpInst::Predicate NewPred; 9302 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9303 ICmpInst::isEquality(NewPred)) { 9304 // We were able to convert an inequality to an equality. 9305 Pred = NewPred; 9306 RHS = getConstant(NewRHS); 9307 Changed = SimplifiedByConstantRange = true; 9308 } 9309 } 9310 9311 if (!SimplifiedByConstantRange) { 9312 switch (Pred) { 9313 default: 9314 break; 9315 case ICmpInst::ICMP_EQ: 9316 case ICmpInst::ICMP_NE: 9317 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9318 if (!RA) 9319 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9320 if (const SCEVMulExpr *ME = 9321 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9322 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9323 ME->getOperand(0)->isAllOnesValue()) { 9324 RHS = AE->getOperand(1); 9325 LHS = ME->getOperand(1); 9326 Changed = true; 9327 } 9328 break; 9329 9330 9331 // The "Should have been caught earlier!" messages refer to the fact 9332 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9333 // should have fired on the corresponding cases, and canonicalized the 9334 // check to trivial case. 9335 9336 case ICmpInst::ICMP_UGE: 9337 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9338 Pred = ICmpInst::ICMP_UGT; 9339 RHS = getConstant(RA - 1); 9340 Changed = true; 9341 break; 9342 case ICmpInst::ICMP_ULE: 9343 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9344 Pred = ICmpInst::ICMP_ULT; 9345 RHS = getConstant(RA + 1); 9346 Changed = true; 9347 break; 9348 case ICmpInst::ICMP_SGE: 9349 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9350 Pred = ICmpInst::ICMP_SGT; 9351 RHS = getConstant(RA - 1); 9352 Changed = true; 9353 break; 9354 case ICmpInst::ICMP_SLE: 9355 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9356 Pred = ICmpInst::ICMP_SLT; 9357 RHS = getConstant(RA + 1); 9358 Changed = true; 9359 break; 9360 } 9361 } 9362 } 9363 9364 // Check for obvious equality. 9365 if (HasSameValue(LHS, RHS)) { 9366 if (ICmpInst::isTrueWhenEqual(Pred)) 9367 return TrivialCase(true); 9368 if (ICmpInst::isFalseWhenEqual(Pred)) 9369 return TrivialCase(false); 9370 } 9371 9372 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9373 // adding or subtracting 1 from one of the operands. 9374 switch (Pred) { 9375 case ICmpInst::ICMP_SLE: 9376 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9377 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9378 SCEV::FlagNSW); 9379 Pred = ICmpInst::ICMP_SLT; 9380 Changed = true; 9381 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9382 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9383 SCEV::FlagNSW); 9384 Pred = ICmpInst::ICMP_SLT; 9385 Changed = true; 9386 } 9387 break; 9388 case ICmpInst::ICMP_SGE: 9389 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9390 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9391 SCEV::FlagNSW); 9392 Pred = ICmpInst::ICMP_SGT; 9393 Changed = true; 9394 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9395 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9396 SCEV::FlagNSW); 9397 Pred = ICmpInst::ICMP_SGT; 9398 Changed = true; 9399 } 9400 break; 9401 case ICmpInst::ICMP_ULE: 9402 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9403 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9404 SCEV::FlagNUW); 9405 Pred = ICmpInst::ICMP_ULT; 9406 Changed = true; 9407 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9408 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9409 Pred = ICmpInst::ICMP_ULT; 9410 Changed = true; 9411 } 9412 break; 9413 case ICmpInst::ICMP_UGE: 9414 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9415 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9416 Pred = ICmpInst::ICMP_UGT; 9417 Changed = true; 9418 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9419 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9420 SCEV::FlagNUW); 9421 Pred = ICmpInst::ICMP_UGT; 9422 Changed = true; 9423 } 9424 break; 9425 default: 9426 break; 9427 } 9428 9429 // TODO: More simplifications are possible here. 9430 9431 // Recursively simplify until we either hit a recursion limit or nothing 9432 // changes. 9433 if (Changed) 9434 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9435 9436 return Changed; 9437 } 9438 9439 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9440 return getSignedRangeMax(S).isNegative(); 9441 } 9442 9443 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9444 return getSignedRangeMin(S).isStrictlyPositive(); 9445 } 9446 9447 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9448 return !getSignedRangeMin(S).isNegative(); 9449 } 9450 9451 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9452 return !getSignedRangeMax(S).isStrictlyPositive(); 9453 } 9454 9455 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9456 return isKnownNegative(S) || isKnownPositive(S); 9457 } 9458 9459 std::pair<const SCEV *, const SCEV *> 9460 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9461 // Compute SCEV on entry of loop L. 9462 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9463 if (Start == getCouldNotCompute()) 9464 return { Start, Start }; 9465 // Compute post increment SCEV for loop L. 9466 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9467 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9468 return { Start, PostInc }; 9469 } 9470 9471 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9472 const SCEV *LHS, const SCEV *RHS) { 9473 // First collect all loops. 9474 SmallPtrSet<const Loop *, 8> LoopsUsed; 9475 getUsedLoops(LHS, LoopsUsed); 9476 getUsedLoops(RHS, LoopsUsed); 9477 9478 if (LoopsUsed.empty()) 9479 return false; 9480 9481 // Domination relationship must be a linear order on collected loops. 9482 #ifndef NDEBUG 9483 for (auto *L1 : LoopsUsed) 9484 for (auto *L2 : LoopsUsed) 9485 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9486 DT.dominates(L2->getHeader(), L1->getHeader())) && 9487 "Domination relationship is not a linear order"); 9488 #endif 9489 9490 const Loop *MDL = 9491 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9492 [&](const Loop *L1, const Loop *L2) { 9493 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9494 }); 9495 9496 // Get init and post increment value for LHS. 9497 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9498 // if LHS contains unknown non-invariant SCEV then bail out. 9499 if (SplitLHS.first == getCouldNotCompute()) 9500 return false; 9501 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9502 // Get init and post increment value for RHS. 9503 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9504 // if RHS contains unknown non-invariant SCEV then bail out. 9505 if (SplitRHS.first == getCouldNotCompute()) 9506 return false; 9507 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9508 // It is possible that init SCEV contains an invariant load but it does 9509 // not dominate MDL and is not available at MDL loop entry, so we should 9510 // check it here. 9511 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9512 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9513 return false; 9514 9515 // It seems backedge guard check is faster than entry one so in some cases 9516 // it can speed up whole estimation by short circuit 9517 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9518 SplitRHS.second) && 9519 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9520 } 9521 9522 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9523 const SCEV *LHS, const SCEV *RHS) { 9524 // Canonicalize the inputs first. 9525 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9526 9527 if (isKnownViaInduction(Pred, LHS, RHS)) 9528 return true; 9529 9530 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9531 return true; 9532 9533 // Otherwise see what can be done with some simple reasoning. 9534 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9535 } 9536 9537 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9538 const SCEV *LHS, const SCEV *RHS, 9539 const Instruction *Context) { 9540 // TODO: Analyze guards and assumes from Context's block. 9541 return isKnownPredicate(Pred, LHS, RHS) || 9542 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9543 } 9544 9545 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9546 const SCEVAddRecExpr *LHS, 9547 const SCEV *RHS) { 9548 const Loop *L = LHS->getLoop(); 9549 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9550 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9551 } 9552 9553 Optional<ScalarEvolution::MonotonicPredicateType> 9554 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9555 ICmpInst::Predicate Pred) { 9556 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9557 9558 #ifndef NDEBUG 9559 // Verify an invariant: inverting the predicate should turn a monotonically 9560 // increasing change to a monotonically decreasing one, and vice versa. 9561 if (Result) { 9562 auto ResultSwapped = 9563 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9564 9565 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9566 assert(ResultSwapped.getValue() != Result.getValue() && 9567 "monotonicity should flip as we flip the predicate"); 9568 } 9569 #endif 9570 9571 return Result; 9572 } 9573 9574 Optional<ScalarEvolution::MonotonicPredicateType> 9575 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9576 ICmpInst::Predicate Pred) { 9577 // A zero step value for LHS means the induction variable is essentially a 9578 // loop invariant value. We don't really depend on the predicate actually 9579 // flipping from false to true (for increasing predicates, and the other way 9580 // around for decreasing predicates), all we care about is that *if* the 9581 // predicate changes then it only changes from false to true. 9582 // 9583 // A zero step value in itself is not very useful, but there may be places 9584 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9585 // as general as possible. 9586 9587 // Only handle LE/LT/GE/GT predicates. 9588 if (!ICmpInst::isRelational(Pred)) 9589 return None; 9590 9591 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9592 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9593 "Should be greater or less!"); 9594 9595 // Check that AR does not wrap. 9596 if (ICmpInst::isUnsigned(Pred)) { 9597 if (!LHS->hasNoUnsignedWrap()) 9598 return None; 9599 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9600 } else { 9601 assert(ICmpInst::isSigned(Pred) && 9602 "Relational predicate is either signed or unsigned!"); 9603 if (!LHS->hasNoSignedWrap()) 9604 return None; 9605 9606 const SCEV *Step = LHS->getStepRecurrence(*this); 9607 9608 if (isKnownNonNegative(Step)) 9609 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9610 9611 if (isKnownNonPositive(Step)) 9612 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9613 9614 return None; 9615 } 9616 } 9617 9618 Optional<ScalarEvolution::LoopInvariantPredicate> 9619 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 9620 const SCEV *LHS, const SCEV *RHS, 9621 const Loop *L) { 9622 9623 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9624 if (!isLoopInvariant(RHS, L)) { 9625 if (!isLoopInvariant(LHS, L)) 9626 return None; 9627 9628 std::swap(LHS, RHS); 9629 Pred = ICmpInst::getSwappedPredicate(Pred); 9630 } 9631 9632 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9633 if (!ArLHS || ArLHS->getLoop() != L) 9634 return None; 9635 9636 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 9637 if (!MonotonicType) 9638 return None; 9639 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9640 // true as the loop iterates, and the backedge is control dependent on 9641 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9642 // 9643 // * if the predicate was false in the first iteration then the predicate 9644 // is never evaluated again, since the loop exits without taking the 9645 // backedge. 9646 // * if the predicate was true in the first iteration then it will 9647 // continue to be true for all future iterations since it is 9648 // monotonically increasing. 9649 // 9650 // For both the above possibilities, we can replace the loop varying 9651 // predicate with its value on the first iteration of the loop (which is 9652 // loop invariant). 9653 // 9654 // A similar reasoning applies for a monotonically decreasing predicate, by 9655 // replacing true with false and false with true in the above two bullets. 9656 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 9657 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9658 9659 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9660 return None; 9661 9662 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 9663 } 9664 9665 Optional<ScalarEvolution::LoopInvariantPredicate> 9666 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 9667 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9668 const Instruction *Context, const SCEV *MaxIter) { 9669 // Try to prove the following set of facts: 9670 // - The predicate is monotonic in the iteration space. 9671 // - If the check does not fail on the 1st iteration: 9672 // - No overflow will happen during first MaxIter iterations; 9673 // - It will not fail on the MaxIter'th iteration. 9674 // If the check does fail on the 1st iteration, we leave the loop and no 9675 // other checks matter. 9676 9677 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9678 if (!isLoopInvariant(RHS, L)) { 9679 if (!isLoopInvariant(LHS, L)) 9680 return None; 9681 9682 std::swap(LHS, RHS); 9683 Pred = ICmpInst::getSwappedPredicate(Pred); 9684 } 9685 9686 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 9687 if (!AR || AR->getLoop() != L) 9688 return None; 9689 9690 // The predicate must be relational (i.e. <, <=, >=, >). 9691 if (!ICmpInst::isRelational(Pred)) 9692 return None; 9693 9694 // TODO: Support steps other than +/- 1. 9695 const SCEV *Step = AR->getStepRecurrence(*this); 9696 auto *One = getOne(Step->getType()); 9697 auto *MinusOne = getNegativeSCEV(One); 9698 if (Step != One && Step != MinusOne) 9699 return None; 9700 9701 // Type mismatch here means that MaxIter is potentially larger than max 9702 // unsigned value in start type, which mean we cannot prove no wrap for the 9703 // indvar. 9704 if (AR->getType() != MaxIter->getType()) 9705 return None; 9706 9707 // Value of IV on suggested last iteration. 9708 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 9709 // Does it still meet the requirement? 9710 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 9711 return None; 9712 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 9713 // not exceed max unsigned value of this type), this effectively proves 9714 // that there is no wrap during the iteration. To prove that there is no 9715 // signed/unsigned wrap, we need to check that 9716 // Start <= Last for step = 1 or Start >= Last for step = -1. 9717 ICmpInst::Predicate NoOverflowPred = 9718 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 9719 if (Step == MinusOne) 9720 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 9721 const SCEV *Start = AR->getStart(); 9722 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 9723 return None; 9724 9725 // Everything is fine. 9726 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 9727 } 9728 9729 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9730 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9731 if (HasSameValue(LHS, RHS)) 9732 return ICmpInst::isTrueWhenEqual(Pred); 9733 9734 // This code is split out from isKnownPredicate because it is called from 9735 // within isLoopEntryGuardedByCond. 9736 9737 auto CheckRanges = 9738 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9739 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9740 .contains(RangeLHS); 9741 }; 9742 9743 // The check at the top of the function catches the case where the values are 9744 // known to be equal. 9745 if (Pred == CmpInst::ICMP_EQ) 9746 return false; 9747 9748 if (Pred == CmpInst::ICMP_NE) 9749 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9750 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9751 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9752 9753 if (CmpInst::isSigned(Pred)) 9754 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9755 9756 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9757 } 9758 9759 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9760 const SCEV *LHS, 9761 const SCEV *RHS) { 9762 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9763 // Return Y via OutY. 9764 auto MatchBinaryAddToConst = 9765 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9766 SCEV::NoWrapFlags ExpectedFlags) { 9767 const SCEV *NonConstOp, *ConstOp; 9768 SCEV::NoWrapFlags FlagsPresent; 9769 9770 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9771 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9772 return false; 9773 9774 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9775 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9776 }; 9777 9778 APInt C; 9779 9780 switch (Pred) { 9781 default: 9782 break; 9783 9784 case ICmpInst::ICMP_SGE: 9785 std::swap(LHS, RHS); 9786 LLVM_FALLTHROUGH; 9787 case ICmpInst::ICMP_SLE: 9788 // X s<= (X + C)<nsw> if C >= 0 9789 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9790 return true; 9791 9792 // (X + C)<nsw> s<= X if C <= 0 9793 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9794 !C.isStrictlyPositive()) 9795 return true; 9796 break; 9797 9798 case ICmpInst::ICMP_SGT: 9799 std::swap(LHS, RHS); 9800 LLVM_FALLTHROUGH; 9801 case ICmpInst::ICMP_SLT: 9802 // X s< (X + C)<nsw> if C > 0 9803 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9804 C.isStrictlyPositive()) 9805 return true; 9806 9807 // (X + C)<nsw> s< X if C < 0 9808 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9809 return true; 9810 break; 9811 9812 case ICmpInst::ICMP_UGE: 9813 std::swap(LHS, RHS); 9814 LLVM_FALLTHROUGH; 9815 case ICmpInst::ICMP_ULE: 9816 // X u<= (X + C)<nuw> for any C 9817 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW)) 9818 return true; 9819 break; 9820 9821 case ICmpInst::ICMP_UGT: 9822 std::swap(LHS, RHS); 9823 LLVM_FALLTHROUGH; 9824 case ICmpInst::ICMP_ULT: 9825 // X u< (X + C)<nuw> if C != 0 9826 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue()) 9827 return true; 9828 break; 9829 } 9830 9831 return false; 9832 } 9833 9834 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9835 const SCEV *LHS, 9836 const SCEV *RHS) { 9837 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9838 return false; 9839 9840 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9841 // the stack can result in exponential time complexity. 9842 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9843 9844 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9845 // 9846 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9847 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9848 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9849 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9850 // use isKnownPredicate later if needed. 9851 return isKnownNonNegative(RHS) && 9852 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9853 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9854 } 9855 9856 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 9857 ICmpInst::Predicate Pred, 9858 const SCEV *LHS, const SCEV *RHS) { 9859 // No need to even try if we know the module has no guards. 9860 if (!HasGuards) 9861 return false; 9862 9863 return any_of(*BB, [&](const Instruction &I) { 9864 using namespace llvm::PatternMatch; 9865 9866 Value *Condition; 9867 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9868 m_Value(Condition))) && 9869 isImpliedCond(Pred, LHS, RHS, Condition, false); 9870 }); 9871 } 9872 9873 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9874 /// protected by a conditional between LHS and RHS. This is used to 9875 /// to eliminate casts. 9876 bool 9877 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9878 ICmpInst::Predicate Pred, 9879 const SCEV *LHS, const SCEV *RHS) { 9880 // Interpret a null as meaning no loop, where there is obviously no guard 9881 // (interprocedural conditions notwithstanding). 9882 if (!L) return true; 9883 9884 if (VerifyIR) 9885 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9886 "This cannot be done on broken IR!"); 9887 9888 9889 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9890 return true; 9891 9892 BasicBlock *Latch = L->getLoopLatch(); 9893 if (!Latch) 9894 return false; 9895 9896 BranchInst *LoopContinuePredicate = 9897 dyn_cast<BranchInst>(Latch->getTerminator()); 9898 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9899 isImpliedCond(Pred, LHS, RHS, 9900 LoopContinuePredicate->getCondition(), 9901 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9902 return true; 9903 9904 // We don't want more than one activation of the following loops on the stack 9905 // -- that can lead to O(n!) time complexity. 9906 if (WalkingBEDominatingConds) 9907 return false; 9908 9909 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9910 9911 // See if we can exploit a trip count to prove the predicate. 9912 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9913 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9914 if (LatchBECount != getCouldNotCompute()) { 9915 // We know that Latch branches back to the loop header exactly 9916 // LatchBECount times. This means the backdege condition at Latch is 9917 // equivalent to "{0,+,1} u< LatchBECount". 9918 Type *Ty = LatchBECount->getType(); 9919 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9920 const SCEV *LoopCounter = 9921 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9922 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9923 LatchBECount)) 9924 return true; 9925 } 9926 9927 // Check conditions due to any @llvm.assume intrinsics. 9928 for (auto &AssumeVH : AC.assumptions()) { 9929 if (!AssumeVH) 9930 continue; 9931 auto *CI = cast<CallInst>(AssumeVH); 9932 if (!DT.dominates(CI, Latch->getTerminator())) 9933 continue; 9934 9935 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9936 return true; 9937 } 9938 9939 // If the loop is not reachable from the entry block, we risk running into an 9940 // infinite loop as we walk up into the dom tree. These loops do not matter 9941 // anyway, so we just return a conservative answer when we see them. 9942 if (!DT.isReachableFromEntry(L->getHeader())) 9943 return false; 9944 9945 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9946 return true; 9947 9948 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9949 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9950 assert(DTN && "should reach the loop header before reaching the root!"); 9951 9952 BasicBlock *BB = DTN->getBlock(); 9953 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9954 return true; 9955 9956 BasicBlock *PBB = BB->getSinglePredecessor(); 9957 if (!PBB) 9958 continue; 9959 9960 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9961 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9962 continue; 9963 9964 Value *Condition = ContinuePredicate->getCondition(); 9965 9966 // If we have an edge `E` within the loop body that dominates the only 9967 // latch, the condition guarding `E` also guards the backedge. This 9968 // reasoning works only for loops with a single latch. 9969 9970 BasicBlockEdge DominatingEdge(PBB, BB); 9971 if (DominatingEdge.isSingleEdge()) { 9972 // We're constructively (and conservatively) enumerating edges within the 9973 // loop body that dominate the latch. The dominator tree better agree 9974 // with us on this: 9975 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9976 9977 if (isImpliedCond(Pred, LHS, RHS, Condition, 9978 BB != ContinuePredicate->getSuccessor(0))) 9979 return true; 9980 } 9981 } 9982 9983 return false; 9984 } 9985 9986 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 9987 ICmpInst::Predicate Pred, 9988 const SCEV *LHS, 9989 const SCEV *RHS) { 9990 if (VerifyIR) 9991 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 9992 "This cannot be done on broken IR!"); 9993 9994 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9995 return true; 9996 9997 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9998 // the facts (a >= b && a != b) separately. A typical situation is when the 9999 // non-strict comparison is known from ranges and non-equality is known from 10000 // dominating predicates. If we are proving strict comparison, we always try 10001 // to prove non-equality and non-strict comparison separately. 10002 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10003 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10004 bool ProvedNonStrictComparison = false; 10005 bool ProvedNonEquality = false; 10006 10007 if (ProvingStrictComparison) { 10008 ProvedNonStrictComparison = 10009 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 10010 ProvedNonEquality = 10011 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 10012 if (ProvedNonStrictComparison && ProvedNonEquality) 10013 return true; 10014 } 10015 10016 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10017 auto ProveViaGuard = [&](const BasicBlock *Block) { 10018 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10019 return true; 10020 if (ProvingStrictComparison) { 10021 if (!ProvedNonStrictComparison) 10022 ProvedNonStrictComparison = 10023 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 10024 if (!ProvedNonEquality) 10025 ProvedNonEquality = 10026 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 10027 if (ProvedNonStrictComparison && ProvedNonEquality) 10028 return true; 10029 } 10030 return false; 10031 }; 10032 10033 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10034 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10035 const Instruction *Context = &BB->front(); 10036 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 10037 return true; 10038 if (ProvingStrictComparison) { 10039 if (!ProvedNonStrictComparison) 10040 ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS, 10041 Condition, Inverse, Context); 10042 if (!ProvedNonEquality) 10043 ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, 10044 Condition, Inverse, Context); 10045 if (ProvedNonStrictComparison && ProvedNonEquality) 10046 return true; 10047 } 10048 return false; 10049 }; 10050 10051 // Starting at the block's predecessor, climb up the predecessor chain, as long 10052 // as there are predecessors that can be found that have unique successors 10053 // leading to the original block. 10054 const Loop *ContainingLoop = LI.getLoopFor(BB); 10055 const BasicBlock *PredBB; 10056 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10057 PredBB = ContainingLoop->getLoopPredecessor(); 10058 else 10059 PredBB = BB->getSinglePredecessor(); 10060 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10061 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10062 if (ProveViaGuard(Pair.first)) 10063 return true; 10064 10065 const BranchInst *LoopEntryPredicate = 10066 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10067 if (!LoopEntryPredicate || 10068 LoopEntryPredicate->isUnconditional()) 10069 continue; 10070 10071 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10072 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10073 return true; 10074 } 10075 10076 // Check conditions due to any @llvm.assume intrinsics. 10077 for (auto &AssumeVH : AC.assumptions()) { 10078 if (!AssumeVH) 10079 continue; 10080 auto *CI = cast<CallInst>(AssumeVH); 10081 if (!DT.dominates(CI, BB)) 10082 continue; 10083 10084 if (ProveViaCond(CI->getArgOperand(0), false)) 10085 return true; 10086 } 10087 10088 return false; 10089 } 10090 10091 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10092 ICmpInst::Predicate Pred, 10093 const SCEV *LHS, 10094 const SCEV *RHS) { 10095 // Interpret a null as meaning no loop, where there is obviously no guard 10096 // (interprocedural conditions notwithstanding). 10097 if (!L) 10098 return false; 10099 10100 // Both LHS and RHS must be available at loop entry. 10101 assert(isAvailableAtLoopEntry(LHS, L) && 10102 "LHS is not available at Loop Entry"); 10103 assert(isAvailableAtLoopEntry(RHS, L) && 10104 "RHS is not available at Loop Entry"); 10105 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10106 } 10107 10108 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10109 const SCEV *RHS, 10110 const Value *FoundCondValue, bool Inverse, 10111 const Instruction *Context) { 10112 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10113 return false; 10114 10115 auto ClearOnExit = 10116 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10117 10118 // Recursively handle And and Or conditions. 10119 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 10120 if (BO->getOpcode() == Instruction::And) { 10121 if (!Inverse) 10122 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 10123 Context) || 10124 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 10125 Context); 10126 } else if (BO->getOpcode() == Instruction::Or) { 10127 if (Inverse) 10128 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 10129 Context) || 10130 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 10131 Context); 10132 } 10133 } 10134 10135 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10136 if (!ICI) return false; 10137 10138 // Now that we found a conditional branch that dominates the loop or controls 10139 // the loop latch. Check to see if it is the comparison we are looking for. 10140 ICmpInst::Predicate FoundPred; 10141 if (Inverse) 10142 FoundPred = ICI->getInversePredicate(); 10143 else 10144 FoundPred = ICI->getPredicate(); 10145 10146 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10147 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10148 10149 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10150 } 10151 10152 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10153 const SCEV *RHS, 10154 ICmpInst::Predicate FoundPred, 10155 const SCEV *FoundLHS, const SCEV *FoundRHS, 10156 const Instruction *Context) { 10157 // Balance the types. 10158 if (getTypeSizeInBits(LHS->getType()) < 10159 getTypeSizeInBits(FoundLHS->getType())) { 10160 // For unsigned and equality predicates, try to prove that both found 10161 // operands fit into narrow unsigned range. If so, try to prove facts in 10162 // narrow types. 10163 if (!CmpInst::isSigned(FoundPred)) { 10164 auto *NarrowType = LHS->getType(); 10165 auto *WideType = FoundLHS->getType(); 10166 auto BitWidth = getTypeSizeInBits(NarrowType); 10167 const SCEV *MaxValue = getZeroExtendExpr( 10168 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10169 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10170 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10171 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10172 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10173 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10174 TruncFoundRHS, Context)) 10175 return true; 10176 } 10177 } 10178 10179 if (CmpInst::isSigned(Pred)) { 10180 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10181 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10182 } else { 10183 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10184 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10185 } 10186 } else if (getTypeSizeInBits(LHS->getType()) > 10187 getTypeSizeInBits(FoundLHS->getType())) { 10188 if (CmpInst::isSigned(FoundPred)) { 10189 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10190 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10191 } else { 10192 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10193 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10194 } 10195 } 10196 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10197 FoundRHS, Context); 10198 } 10199 10200 bool ScalarEvolution::isImpliedCondBalancedTypes( 10201 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10202 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10203 const Instruction *Context) { 10204 assert(getTypeSizeInBits(LHS->getType()) == 10205 getTypeSizeInBits(FoundLHS->getType()) && 10206 "Types should be balanced!"); 10207 // Canonicalize the query to match the way instcombine will have 10208 // canonicalized the comparison. 10209 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10210 if (LHS == RHS) 10211 return CmpInst::isTrueWhenEqual(Pred); 10212 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10213 if (FoundLHS == FoundRHS) 10214 return CmpInst::isFalseWhenEqual(FoundPred); 10215 10216 // Check to see if we can make the LHS or RHS match. 10217 if (LHS == FoundRHS || RHS == FoundLHS) { 10218 if (isa<SCEVConstant>(RHS)) { 10219 std::swap(FoundLHS, FoundRHS); 10220 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10221 } else { 10222 std::swap(LHS, RHS); 10223 Pred = ICmpInst::getSwappedPredicate(Pred); 10224 } 10225 } 10226 10227 // Check whether the found predicate is the same as the desired predicate. 10228 if (FoundPred == Pred) 10229 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10230 10231 // Check whether swapping the found predicate makes it the same as the 10232 // desired predicate. 10233 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10234 if (isa<SCEVConstant>(RHS)) 10235 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10236 else 10237 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS, 10238 LHS, FoundLHS, FoundRHS, Context); 10239 } 10240 10241 // Unsigned comparison is the same as signed comparison when both the operands 10242 // are non-negative. 10243 if (CmpInst::isUnsigned(FoundPred) && 10244 CmpInst::getSignedPredicate(FoundPred) == Pred && 10245 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10246 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10247 10248 // Check if we can make progress by sharpening ranges. 10249 if (FoundPred == ICmpInst::ICMP_NE && 10250 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10251 10252 const SCEVConstant *C = nullptr; 10253 const SCEV *V = nullptr; 10254 10255 if (isa<SCEVConstant>(FoundLHS)) { 10256 C = cast<SCEVConstant>(FoundLHS); 10257 V = FoundRHS; 10258 } else { 10259 C = cast<SCEVConstant>(FoundRHS); 10260 V = FoundLHS; 10261 } 10262 10263 // The guarding predicate tells us that C != V. If the known range 10264 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10265 // range we consider has to correspond to same signedness as the 10266 // predicate we're interested in folding. 10267 10268 APInt Min = ICmpInst::isSigned(Pred) ? 10269 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10270 10271 if (Min == C->getAPInt()) { 10272 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10273 // This is true even if (Min + 1) wraps around -- in case of 10274 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10275 10276 APInt SharperMin = Min + 1; 10277 10278 switch (Pred) { 10279 case ICmpInst::ICMP_SGE: 10280 case ICmpInst::ICMP_UGE: 10281 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10282 // RHS, we're done. 10283 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10284 Context)) 10285 return true; 10286 LLVM_FALLTHROUGH; 10287 10288 case ICmpInst::ICMP_SGT: 10289 case ICmpInst::ICMP_UGT: 10290 // We know from the range information that (V `Pred` Min || 10291 // V == Min). We know from the guarding condition that !(V 10292 // == Min). This gives us 10293 // 10294 // V `Pred` Min || V == Min && !(V == Min) 10295 // => V `Pred` Min 10296 // 10297 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10298 10299 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10300 Context)) 10301 return true; 10302 break; 10303 10304 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10305 case ICmpInst::ICMP_SLE: 10306 case ICmpInst::ICMP_ULE: 10307 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10308 LHS, V, getConstant(SharperMin), Context)) 10309 return true; 10310 LLVM_FALLTHROUGH; 10311 10312 case ICmpInst::ICMP_SLT: 10313 case ICmpInst::ICMP_ULT: 10314 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10315 LHS, V, getConstant(Min), Context)) 10316 return true; 10317 break; 10318 10319 default: 10320 // No change 10321 break; 10322 } 10323 } 10324 } 10325 10326 // Check whether the actual condition is beyond sufficient. 10327 if (FoundPred == ICmpInst::ICMP_EQ) 10328 if (ICmpInst::isTrueWhenEqual(Pred)) 10329 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10330 return true; 10331 if (Pred == ICmpInst::ICMP_NE) 10332 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10333 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10334 Context)) 10335 return true; 10336 10337 // Otherwise assume the worst. 10338 return false; 10339 } 10340 10341 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10342 const SCEV *&L, const SCEV *&R, 10343 SCEV::NoWrapFlags &Flags) { 10344 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10345 if (!AE || AE->getNumOperands() != 2) 10346 return false; 10347 10348 L = AE->getOperand(0); 10349 R = AE->getOperand(1); 10350 Flags = AE->getNoWrapFlags(); 10351 return true; 10352 } 10353 10354 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10355 const SCEV *Less) { 10356 // We avoid subtracting expressions here because this function is usually 10357 // fairly deep in the call stack (i.e. is called many times). 10358 10359 // X - X = 0. 10360 if (More == Less) 10361 return APInt(getTypeSizeInBits(More->getType()), 0); 10362 10363 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10364 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10365 const auto *MAR = cast<SCEVAddRecExpr>(More); 10366 10367 if (LAR->getLoop() != MAR->getLoop()) 10368 return None; 10369 10370 // We look at affine expressions only; not for correctness but to keep 10371 // getStepRecurrence cheap. 10372 if (!LAR->isAffine() || !MAR->isAffine()) 10373 return None; 10374 10375 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10376 return None; 10377 10378 Less = LAR->getStart(); 10379 More = MAR->getStart(); 10380 10381 // fall through 10382 } 10383 10384 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10385 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10386 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10387 return M - L; 10388 } 10389 10390 SCEV::NoWrapFlags Flags; 10391 const SCEV *LLess = nullptr, *RLess = nullptr; 10392 const SCEV *LMore = nullptr, *RMore = nullptr; 10393 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10394 // Compare (X + C1) vs X. 10395 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10396 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10397 if (RLess == More) 10398 return -(C1->getAPInt()); 10399 10400 // Compare X vs (X + C2). 10401 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10402 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10403 if (RMore == Less) 10404 return C2->getAPInt(); 10405 10406 // Compare (X + C1) vs (X + C2). 10407 if (C1 && C2 && RLess == RMore) 10408 return C2->getAPInt() - C1->getAPInt(); 10409 10410 return None; 10411 } 10412 10413 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10414 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10415 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10416 // Try to recognize the following pattern: 10417 // 10418 // FoundRHS = ... 10419 // ... 10420 // loop: 10421 // FoundLHS = {Start,+,W} 10422 // context_bb: // Basic block from the same loop 10423 // known(Pred, FoundLHS, FoundRHS) 10424 // 10425 // If some predicate is known in the context of a loop, it is also known on 10426 // each iteration of this loop, including the first iteration. Therefore, in 10427 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10428 // prove the original pred using this fact. 10429 if (!Context) 10430 return false; 10431 const BasicBlock *ContextBB = Context->getParent(); 10432 // Make sure AR varies in the context block. 10433 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10434 const Loop *L = AR->getLoop(); 10435 // Make sure that context belongs to the loop and executes on 1st iteration 10436 // (if it ever executes at all). 10437 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10438 return false; 10439 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10440 return false; 10441 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10442 } 10443 10444 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10445 const Loop *L = AR->getLoop(); 10446 // Make sure that context belongs to the loop and executes on 1st iteration 10447 // (if it ever executes at all). 10448 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10449 return false; 10450 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10451 return false; 10452 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10453 } 10454 10455 return false; 10456 } 10457 10458 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10459 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10460 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10461 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10462 return false; 10463 10464 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10465 if (!AddRecLHS) 10466 return false; 10467 10468 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10469 if (!AddRecFoundLHS) 10470 return false; 10471 10472 // We'd like to let SCEV reason about control dependencies, so we constrain 10473 // both the inequalities to be about add recurrences on the same loop. This 10474 // way we can use isLoopEntryGuardedByCond later. 10475 10476 const Loop *L = AddRecFoundLHS->getLoop(); 10477 if (L != AddRecLHS->getLoop()) 10478 return false; 10479 10480 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10481 // 10482 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10483 // ... (2) 10484 // 10485 // Informal proof for (2), assuming (1) [*]: 10486 // 10487 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10488 // 10489 // Then 10490 // 10491 // FoundLHS s< FoundRHS s< INT_MIN - C 10492 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10493 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10494 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10495 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10496 // <=> FoundLHS + C s< FoundRHS + C 10497 // 10498 // [*]: (1) can be proved by ruling out overflow. 10499 // 10500 // [**]: This can be proved by analyzing all the four possibilities: 10501 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10502 // (A s>= 0, B s>= 0). 10503 // 10504 // Note: 10505 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10506 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10507 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10508 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10509 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10510 // C)". 10511 10512 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10513 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10514 if (!LDiff || !RDiff || *LDiff != *RDiff) 10515 return false; 10516 10517 if (LDiff->isMinValue()) 10518 return true; 10519 10520 APInt FoundRHSLimit; 10521 10522 if (Pred == CmpInst::ICMP_ULT) { 10523 FoundRHSLimit = -(*RDiff); 10524 } else { 10525 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10526 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10527 } 10528 10529 // Try to prove (1) or (2), as needed. 10530 return isAvailableAtLoopEntry(FoundRHS, L) && 10531 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10532 getConstant(FoundRHSLimit)); 10533 } 10534 10535 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10536 const SCEV *LHS, const SCEV *RHS, 10537 const SCEV *FoundLHS, 10538 const SCEV *FoundRHS, unsigned Depth) { 10539 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10540 10541 auto ClearOnExit = make_scope_exit([&]() { 10542 if (LPhi) { 10543 bool Erased = PendingMerges.erase(LPhi); 10544 assert(Erased && "Failed to erase LPhi!"); 10545 (void)Erased; 10546 } 10547 if (RPhi) { 10548 bool Erased = PendingMerges.erase(RPhi); 10549 assert(Erased && "Failed to erase RPhi!"); 10550 (void)Erased; 10551 } 10552 }); 10553 10554 // Find respective Phis and check that they are not being pending. 10555 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10556 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10557 if (!PendingMerges.insert(Phi).second) 10558 return false; 10559 LPhi = Phi; 10560 } 10561 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10562 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10563 // If we detect a loop of Phi nodes being processed by this method, for 10564 // example: 10565 // 10566 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10567 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10568 // 10569 // we don't want to deal with a case that complex, so return conservative 10570 // answer false. 10571 if (!PendingMerges.insert(Phi).second) 10572 return false; 10573 RPhi = Phi; 10574 } 10575 10576 // If none of LHS, RHS is a Phi, nothing to do here. 10577 if (!LPhi && !RPhi) 10578 return false; 10579 10580 // If there is a SCEVUnknown Phi we are interested in, make it left. 10581 if (!LPhi) { 10582 std::swap(LHS, RHS); 10583 std::swap(FoundLHS, FoundRHS); 10584 std::swap(LPhi, RPhi); 10585 Pred = ICmpInst::getSwappedPredicate(Pred); 10586 } 10587 10588 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10589 const BasicBlock *LBB = LPhi->getParent(); 10590 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10591 10592 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10593 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10594 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10595 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10596 }; 10597 10598 if (RPhi && RPhi->getParent() == LBB) { 10599 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10600 // If we compare two Phis from the same block, and for each entry block 10601 // the predicate is true for incoming values from this block, then the 10602 // predicate is also true for the Phis. 10603 for (const BasicBlock *IncBB : predecessors(LBB)) { 10604 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10605 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10606 if (!ProvedEasily(L, R)) 10607 return false; 10608 } 10609 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10610 // Case two: RHS is also a Phi from the same basic block, and it is an 10611 // AddRec. It means that there is a loop which has both AddRec and Unknown 10612 // PHIs, for it we can compare incoming values of AddRec from above the loop 10613 // and latch with their respective incoming values of LPhi. 10614 // TODO: Generalize to handle loops with many inputs in a header. 10615 if (LPhi->getNumIncomingValues() != 2) return false; 10616 10617 auto *RLoop = RAR->getLoop(); 10618 auto *Predecessor = RLoop->getLoopPredecessor(); 10619 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10620 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10621 if (!ProvedEasily(L1, RAR->getStart())) 10622 return false; 10623 auto *Latch = RLoop->getLoopLatch(); 10624 assert(Latch && "Loop with AddRec with no latch?"); 10625 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10626 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10627 return false; 10628 } else { 10629 // In all other cases go over inputs of LHS and compare each of them to RHS, 10630 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10631 // At this point RHS is either a non-Phi, or it is a Phi from some block 10632 // different from LBB. 10633 for (const BasicBlock *IncBB : predecessors(LBB)) { 10634 // Check that RHS is available in this block. 10635 if (!dominates(RHS, IncBB)) 10636 return false; 10637 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10638 if (!ProvedEasily(L, RHS)) 10639 return false; 10640 } 10641 } 10642 return true; 10643 } 10644 10645 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10646 const SCEV *LHS, const SCEV *RHS, 10647 const SCEV *FoundLHS, 10648 const SCEV *FoundRHS, 10649 const Instruction *Context) { 10650 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10651 return true; 10652 10653 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10654 return true; 10655 10656 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 10657 Context)) 10658 return true; 10659 10660 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10661 FoundLHS, FoundRHS) || 10662 // ~x < ~y --> x > y 10663 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10664 getNotSCEV(FoundRHS), 10665 getNotSCEV(FoundLHS)); 10666 } 10667 10668 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10669 template <typename MinMaxExprType> 10670 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10671 const SCEV *Candidate) { 10672 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10673 if (!MinMaxExpr) 10674 return false; 10675 10676 return is_contained(MinMaxExpr->operands(), Candidate); 10677 } 10678 10679 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10680 ICmpInst::Predicate Pred, 10681 const SCEV *LHS, const SCEV *RHS) { 10682 // If both sides are affine addrecs for the same loop, with equal 10683 // steps, and we know the recurrences don't wrap, then we only 10684 // need to check the predicate on the starting values. 10685 10686 if (!ICmpInst::isRelational(Pred)) 10687 return false; 10688 10689 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10690 if (!LAR) 10691 return false; 10692 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10693 if (!RAR) 10694 return false; 10695 if (LAR->getLoop() != RAR->getLoop()) 10696 return false; 10697 if (!LAR->isAffine() || !RAR->isAffine()) 10698 return false; 10699 10700 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10701 return false; 10702 10703 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10704 SCEV::FlagNSW : SCEV::FlagNUW; 10705 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10706 return false; 10707 10708 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10709 } 10710 10711 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10712 /// expression? 10713 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10714 ICmpInst::Predicate Pred, 10715 const SCEV *LHS, const SCEV *RHS) { 10716 switch (Pred) { 10717 default: 10718 return false; 10719 10720 case ICmpInst::ICMP_SGE: 10721 std::swap(LHS, RHS); 10722 LLVM_FALLTHROUGH; 10723 case ICmpInst::ICMP_SLE: 10724 return 10725 // min(A, ...) <= A 10726 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10727 // A <= max(A, ...) 10728 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10729 10730 case ICmpInst::ICMP_UGE: 10731 std::swap(LHS, RHS); 10732 LLVM_FALLTHROUGH; 10733 case ICmpInst::ICMP_ULE: 10734 return 10735 // min(A, ...) <= A 10736 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10737 // A <= max(A, ...) 10738 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10739 } 10740 10741 llvm_unreachable("covered switch fell through?!"); 10742 } 10743 10744 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10745 const SCEV *LHS, const SCEV *RHS, 10746 const SCEV *FoundLHS, 10747 const SCEV *FoundRHS, 10748 unsigned Depth) { 10749 assert(getTypeSizeInBits(LHS->getType()) == 10750 getTypeSizeInBits(RHS->getType()) && 10751 "LHS and RHS have different sizes?"); 10752 assert(getTypeSizeInBits(FoundLHS->getType()) == 10753 getTypeSizeInBits(FoundRHS->getType()) && 10754 "FoundLHS and FoundRHS have different sizes?"); 10755 // We want to avoid hurting the compile time with analysis of too big trees. 10756 if (Depth > MaxSCEVOperationsImplicationDepth) 10757 return false; 10758 10759 // We only want to work with GT comparison so far. 10760 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 10761 Pred = CmpInst::getSwappedPredicate(Pred); 10762 std::swap(LHS, RHS); 10763 std::swap(FoundLHS, FoundRHS); 10764 } 10765 10766 // For unsigned, try to reduce it to corresponding signed comparison. 10767 if (Pred == ICmpInst::ICMP_UGT) 10768 // We can replace unsigned predicate with its signed counterpart if all 10769 // involved values are non-negative. 10770 // TODO: We could have better support for unsigned. 10771 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 10772 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 10773 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 10774 // use this fact to prove that LHS and RHS are non-negative. 10775 const SCEV *MinusOne = getMinusOne(LHS->getType()); 10776 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 10777 FoundRHS) && 10778 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 10779 FoundRHS)) 10780 Pred = ICmpInst::ICMP_SGT; 10781 } 10782 10783 if (Pred != ICmpInst::ICMP_SGT) 10784 return false; 10785 10786 auto GetOpFromSExt = [&](const SCEV *S) { 10787 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10788 return Ext->getOperand(); 10789 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10790 // the constant in some cases. 10791 return S; 10792 }; 10793 10794 // Acquire values from extensions. 10795 auto *OrigLHS = LHS; 10796 auto *OrigFoundLHS = FoundLHS; 10797 LHS = GetOpFromSExt(LHS); 10798 FoundLHS = GetOpFromSExt(FoundLHS); 10799 10800 // Is the SGT predicate can be proved trivially or using the found context. 10801 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10802 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10803 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10804 FoundRHS, Depth + 1); 10805 }; 10806 10807 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10808 // We want to avoid creation of any new non-constant SCEV. Since we are 10809 // going to compare the operands to RHS, we should be certain that we don't 10810 // need any size extensions for this. So let's decline all cases when the 10811 // sizes of types of LHS and RHS do not match. 10812 // TODO: Maybe try to get RHS from sext to catch more cases? 10813 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10814 return false; 10815 10816 // Should not overflow. 10817 if (!LHSAddExpr->hasNoSignedWrap()) 10818 return false; 10819 10820 auto *LL = LHSAddExpr->getOperand(0); 10821 auto *LR = LHSAddExpr->getOperand(1); 10822 auto *MinusOne = getMinusOne(RHS->getType()); 10823 10824 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10825 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10826 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10827 }; 10828 // Try to prove the following rule: 10829 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10830 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10831 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10832 return true; 10833 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10834 Value *LL, *LR; 10835 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10836 10837 using namespace llvm::PatternMatch; 10838 10839 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10840 // Rules for division. 10841 // We are going to perform some comparisons with Denominator and its 10842 // derivative expressions. In general case, creating a SCEV for it may 10843 // lead to a complex analysis of the entire graph, and in particular it 10844 // can request trip count recalculation for the same loop. This would 10845 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10846 // this, we only want to create SCEVs that are constants in this section. 10847 // So we bail if Denominator is not a constant. 10848 if (!isa<ConstantInt>(LR)) 10849 return false; 10850 10851 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10852 10853 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10854 // then a SCEV for the numerator already exists and matches with FoundLHS. 10855 auto *Numerator = getExistingSCEV(LL); 10856 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10857 return false; 10858 10859 // Make sure that the numerator matches with FoundLHS and the denominator 10860 // is positive. 10861 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10862 return false; 10863 10864 auto *DTy = Denominator->getType(); 10865 auto *FRHSTy = FoundRHS->getType(); 10866 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10867 // One of types is a pointer and another one is not. We cannot extend 10868 // them properly to a wider type, so let us just reject this case. 10869 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10870 // to avoid this check. 10871 return false; 10872 10873 // Given that: 10874 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10875 auto *WTy = getWiderType(DTy, FRHSTy); 10876 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10877 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10878 10879 // Try to prove the following rule: 10880 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10881 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10882 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10883 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10884 if (isKnownNonPositive(RHS) && 10885 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10886 return true; 10887 10888 // Try to prove the following rule: 10889 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10890 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10891 // If we divide it by Denominator > 2, then: 10892 // 1. If FoundLHS is negative, then the result is 0. 10893 // 2. If FoundLHS is non-negative, then the result is non-negative. 10894 // Anyways, the result is non-negative. 10895 auto *MinusOne = getMinusOne(WTy); 10896 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10897 if (isKnownNegative(RHS) && 10898 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10899 return true; 10900 } 10901 } 10902 10903 // If our expression contained SCEVUnknown Phis, and we split it down and now 10904 // need to prove something for them, try to prove the predicate for every 10905 // possible incoming values of those Phis. 10906 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10907 return true; 10908 10909 return false; 10910 } 10911 10912 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10913 const SCEV *LHS, const SCEV *RHS) { 10914 // zext x u<= sext x, sext x s<= zext x 10915 switch (Pred) { 10916 case ICmpInst::ICMP_SGE: 10917 std::swap(LHS, RHS); 10918 LLVM_FALLTHROUGH; 10919 case ICmpInst::ICMP_SLE: { 10920 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10921 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10922 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10923 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10924 return true; 10925 break; 10926 } 10927 case ICmpInst::ICMP_UGE: 10928 std::swap(LHS, RHS); 10929 LLVM_FALLTHROUGH; 10930 case ICmpInst::ICMP_ULE: { 10931 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10932 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10933 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10934 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10935 return true; 10936 break; 10937 } 10938 default: 10939 break; 10940 }; 10941 return false; 10942 } 10943 10944 bool 10945 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10946 const SCEV *LHS, const SCEV *RHS) { 10947 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10948 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10949 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10950 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10951 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10952 } 10953 10954 bool 10955 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10956 const SCEV *LHS, const SCEV *RHS, 10957 const SCEV *FoundLHS, 10958 const SCEV *FoundRHS) { 10959 switch (Pred) { 10960 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10961 case ICmpInst::ICMP_EQ: 10962 case ICmpInst::ICMP_NE: 10963 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10964 return true; 10965 break; 10966 case ICmpInst::ICMP_SLT: 10967 case ICmpInst::ICMP_SLE: 10968 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10969 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10970 return true; 10971 break; 10972 case ICmpInst::ICMP_SGT: 10973 case ICmpInst::ICMP_SGE: 10974 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10975 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10976 return true; 10977 break; 10978 case ICmpInst::ICMP_ULT: 10979 case ICmpInst::ICMP_ULE: 10980 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10981 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10982 return true; 10983 break; 10984 case ICmpInst::ICMP_UGT: 10985 case ICmpInst::ICMP_UGE: 10986 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10987 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10988 return true; 10989 break; 10990 } 10991 10992 // Maybe it can be proved via operations? 10993 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10994 return true; 10995 10996 return false; 10997 } 10998 10999 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11000 const SCEV *LHS, 11001 const SCEV *RHS, 11002 const SCEV *FoundLHS, 11003 const SCEV *FoundRHS) { 11004 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11005 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11006 // reduce the compile time impact of this optimization. 11007 return false; 11008 11009 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11010 if (!Addend) 11011 return false; 11012 11013 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11014 11015 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11016 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11017 ConstantRange FoundLHSRange = 11018 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 11019 11020 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11021 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11022 11023 // We can also compute the range of values for `LHS` that satisfy the 11024 // consequent, "`LHS` `Pred` `RHS`": 11025 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11026 ConstantRange SatisfyingLHSRange = 11027 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 11028 11029 // The antecedent implies the consequent if every value of `LHS` that 11030 // satisfies the antecedent also satisfies the consequent. 11031 return SatisfyingLHSRange.contains(LHSRange); 11032 } 11033 11034 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11035 bool IsSigned, bool NoWrap) { 11036 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11037 11038 if (NoWrap) return false; 11039 11040 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11041 const SCEV *One = getOne(Stride->getType()); 11042 11043 if (IsSigned) { 11044 APInt MaxRHS = getSignedRangeMax(RHS); 11045 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11046 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11047 11048 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11049 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11050 } 11051 11052 APInt MaxRHS = getUnsignedRangeMax(RHS); 11053 APInt MaxValue = APInt::getMaxValue(BitWidth); 11054 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11055 11056 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11057 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11058 } 11059 11060 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11061 bool IsSigned, bool NoWrap) { 11062 if (NoWrap) return false; 11063 11064 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11065 const SCEV *One = getOne(Stride->getType()); 11066 11067 if (IsSigned) { 11068 APInt MinRHS = getSignedRangeMin(RHS); 11069 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11070 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11071 11072 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11073 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11074 } 11075 11076 APInt MinRHS = getUnsignedRangeMin(RHS); 11077 APInt MinValue = APInt::getMinValue(BitWidth); 11078 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11079 11080 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11081 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11082 } 11083 11084 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 11085 bool Equality) { 11086 const SCEV *One = getOne(Step->getType()); 11087 Delta = Equality ? getAddExpr(Delta, Step) 11088 : getAddExpr(Delta, getMinusSCEV(Step, One)); 11089 return getUDivExpr(Delta, Step); 11090 } 11091 11092 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11093 const SCEV *Stride, 11094 const SCEV *End, 11095 unsigned BitWidth, 11096 bool IsSigned) { 11097 11098 assert(!isKnownNonPositive(Stride) && 11099 "Stride is expected strictly positive!"); 11100 // Calculate the maximum backedge count based on the range of values 11101 // permitted by Start, End, and Stride. 11102 const SCEV *MaxBECount; 11103 APInt MinStart = 11104 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11105 11106 APInt StrideForMaxBECount = 11107 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11108 11109 // We already know that the stride is positive, so we paper over conservatism 11110 // in our range computation by forcing StrideForMaxBECount to be at least one. 11111 // In theory this is unnecessary, but we expect MaxBECount to be a 11112 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 11113 // is nothing to constant fold it to). 11114 APInt One(BitWidth, 1, IsSigned); 11115 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 11116 11117 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11118 : APInt::getMaxValue(BitWidth); 11119 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11120 11121 // Although End can be a MAX expression we estimate MaxEnd considering only 11122 // the case End = RHS of the loop termination condition. This is safe because 11123 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11124 // taken count. 11125 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11126 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11127 11128 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 11129 getConstant(StrideForMaxBECount) /* Step */, 11130 false /* Equality */); 11131 11132 return MaxBECount; 11133 } 11134 11135 ScalarEvolution::ExitLimit 11136 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11137 const Loop *L, bool IsSigned, 11138 bool ControlsExit, bool AllowPredicates) { 11139 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11140 11141 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11142 bool PredicatedIV = false; 11143 11144 if (!IV && AllowPredicates) { 11145 // Try to make this an AddRec using runtime tests, in the first X 11146 // iterations of this loop, where X is the SCEV expression found by the 11147 // algorithm below. 11148 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11149 PredicatedIV = true; 11150 } 11151 11152 // Avoid weird loops 11153 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11154 return getCouldNotCompute(); 11155 11156 bool NoWrap = ControlsExit && 11157 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11158 11159 const SCEV *Stride = IV->getStepRecurrence(*this); 11160 11161 bool PositiveStride = isKnownPositive(Stride); 11162 11163 // Avoid negative or zero stride values. 11164 if (!PositiveStride) { 11165 // We can compute the correct backedge taken count for loops with unknown 11166 // strides if we can prove that the loop is not an infinite loop with side 11167 // effects. Here's the loop structure we are trying to handle - 11168 // 11169 // i = start 11170 // do { 11171 // A[i] = i; 11172 // i += s; 11173 // } while (i < end); 11174 // 11175 // The backedge taken count for such loops is evaluated as - 11176 // (max(end, start + stride) - start - 1) /u stride 11177 // 11178 // The additional preconditions that we need to check to prove correctness 11179 // of the above formula is as follows - 11180 // 11181 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11182 // NoWrap flag). 11183 // b) loop is single exit with no side effects. 11184 // 11185 // 11186 // Precondition a) implies that if the stride is negative, this is a single 11187 // trip loop. The backedge taken count formula reduces to zero in this case. 11188 // 11189 // Precondition b) implies that the unknown stride cannot be zero otherwise 11190 // we have UB. 11191 // 11192 // The positive stride case is the same as isKnownPositive(Stride) returning 11193 // true (original behavior of the function). 11194 // 11195 // We want to make sure that the stride is truly unknown as there are edge 11196 // cases where ScalarEvolution propagates no wrap flags to the 11197 // post-increment/decrement IV even though the increment/decrement operation 11198 // itself is wrapping. The computed backedge taken count may be wrong in 11199 // such cases. This is prevented by checking that the stride is not known to 11200 // be either positive or non-positive. For example, no wrap flags are 11201 // propagated to the post-increment IV of this loop with a trip count of 2 - 11202 // 11203 // unsigned char i; 11204 // for(i=127; i<128; i+=129) 11205 // A[i] = i; 11206 // 11207 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11208 !loopHasNoSideEffects(L)) 11209 return getCouldNotCompute(); 11210 } else if (!Stride->isOne() && 11211 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 11212 // Avoid proven overflow cases: this will ensure that the backedge taken 11213 // count will not generate any unsigned overflow. Relaxed no-overflow 11214 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11215 // undefined behaviors like the case of C language. 11216 return getCouldNotCompute(); 11217 11218 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 11219 : ICmpInst::ICMP_ULT; 11220 const SCEV *Start = IV->getStart(); 11221 const SCEV *End = RHS; 11222 // When the RHS is not invariant, we do not know the end bound of the loop and 11223 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11224 // calculate the MaxBECount, given the start, stride and max value for the end 11225 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11226 // checked above). 11227 if (!isLoopInvariant(RHS, L)) { 11228 const SCEV *MaxBECount = computeMaxBECountForLT( 11229 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11230 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11231 false /*MaxOrZero*/, Predicates); 11232 } 11233 // If the backedge is taken at least once, then it will be taken 11234 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 11235 // is the LHS value of the less-than comparison the first time it is evaluated 11236 // and End is the RHS. 11237 const SCEV *BECountIfBackedgeTaken = 11238 computeBECount(getMinusSCEV(End, Start), Stride, false); 11239 // If the loop entry is guarded by the result of the backedge test of the 11240 // first loop iteration, then we know the backedge will be taken at least 11241 // once and so the backedge taken count is as above. If not then we use the 11242 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 11243 // as if the backedge is taken at least once max(End,Start) is End and so the 11244 // result is as above, and if not max(End,Start) is Start so we get a backedge 11245 // count of zero. 11246 const SCEV *BECount; 11247 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 11248 BECount = BECountIfBackedgeTaken; 11249 else { 11250 // If we know that RHS >= Start in the context of loop, then we know that 11251 // max(RHS, Start) = RHS at this point. 11252 if (isLoopEntryGuardedByCond( 11253 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 11254 End = RHS; 11255 else 11256 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11257 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 11258 } 11259 11260 const SCEV *MaxBECount; 11261 bool MaxOrZero = false; 11262 if (isa<SCEVConstant>(BECount)) 11263 MaxBECount = BECount; 11264 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11265 // If we know exactly how many times the backedge will be taken if it's 11266 // taken at least once, then the backedge count will either be that or 11267 // zero. 11268 MaxBECount = BECountIfBackedgeTaken; 11269 MaxOrZero = true; 11270 } else { 11271 MaxBECount = computeMaxBECountForLT( 11272 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11273 } 11274 11275 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11276 !isa<SCEVCouldNotCompute>(BECount)) 11277 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11278 11279 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11280 } 11281 11282 ScalarEvolution::ExitLimit 11283 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11284 const Loop *L, bool IsSigned, 11285 bool ControlsExit, bool AllowPredicates) { 11286 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11287 // We handle only IV > Invariant 11288 if (!isLoopInvariant(RHS, L)) 11289 return getCouldNotCompute(); 11290 11291 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11292 if (!IV && AllowPredicates) 11293 // Try to make this an AddRec using runtime tests, in the first X 11294 // iterations of this loop, where X is the SCEV expression found by the 11295 // algorithm below. 11296 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11297 11298 // Avoid weird loops 11299 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11300 return getCouldNotCompute(); 11301 11302 bool NoWrap = ControlsExit && 11303 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11304 11305 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11306 11307 // Avoid negative or zero stride values 11308 if (!isKnownPositive(Stride)) 11309 return getCouldNotCompute(); 11310 11311 // Avoid proven overflow cases: this will ensure that the backedge taken count 11312 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11313 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11314 // behaviors like the case of C language. 11315 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 11316 return getCouldNotCompute(); 11317 11318 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 11319 : ICmpInst::ICMP_UGT; 11320 11321 const SCEV *Start = IV->getStart(); 11322 const SCEV *End = RHS; 11323 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11324 // If we know that Start >= RHS in the context of loop, then we know that 11325 // min(RHS, Start) = RHS at this point. 11326 if (isLoopEntryGuardedByCond( 11327 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11328 End = RHS; 11329 else 11330 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11331 } 11332 11333 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 11334 11335 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 11336 : getUnsignedRangeMax(Start); 11337 11338 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 11339 : getUnsignedRangeMin(Stride); 11340 11341 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 11342 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 11343 : APInt::getMinValue(BitWidth) + (MinStride - 1); 11344 11345 // Although End can be a MIN expression we estimate MinEnd considering only 11346 // the case End = RHS. This is safe because in the other case (Start - End) 11347 // is zero, leading to a zero maximum backedge taken count. 11348 APInt MinEnd = 11349 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 11350 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 11351 11352 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 11353 ? BECount 11354 : computeBECount(getConstant(MaxStart - MinEnd), 11355 getConstant(MinStride), false); 11356 11357 if (isa<SCEVCouldNotCompute>(MaxBECount)) 11358 MaxBECount = BECount; 11359 11360 return ExitLimit(BECount, MaxBECount, false, Predicates); 11361 } 11362 11363 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 11364 ScalarEvolution &SE) const { 11365 if (Range.isFullSet()) // Infinite loop. 11366 return SE.getCouldNotCompute(); 11367 11368 // If the start is a non-zero constant, shift the range to simplify things. 11369 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 11370 if (!SC->getValue()->isZero()) { 11371 SmallVector<const SCEV *, 4> Operands(operands()); 11372 Operands[0] = SE.getZero(SC->getType()); 11373 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 11374 getNoWrapFlags(FlagNW)); 11375 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 11376 return ShiftedAddRec->getNumIterationsInRange( 11377 Range.subtract(SC->getAPInt()), SE); 11378 // This is strange and shouldn't happen. 11379 return SE.getCouldNotCompute(); 11380 } 11381 11382 // The only time we can solve this is when we have all constant indices. 11383 // Otherwise, we cannot determine the overflow conditions. 11384 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 11385 return SE.getCouldNotCompute(); 11386 11387 // Okay at this point we know that all elements of the chrec are constants and 11388 // that the start element is zero. 11389 11390 // First check to see if the range contains zero. If not, the first 11391 // iteration exits. 11392 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 11393 if (!Range.contains(APInt(BitWidth, 0))) 11394 return SE.getZero(getType()); 11395 11396 if (isAffine()) { 11397 // If this is an affine expression then we have this situation: 11398 // Solve {0,+,A} in Range === Ax in Range 11399 11400 // We know that zero is in the range. If A is positive then we know that 11401 // the upper value of the range must be the first possible exit value. 11402 // If A is negative then the lower of the range is the last possible loop 11403 // value. Also note that we already checked for a full range. 11404 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 11405 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 11406 11407 // The exit value should be (End+A)/A. 11408 APInt ExitVal = (End + A).udiv(A); 11409 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 11410 11411 // Evaluate at the exit value. If we really did fall out of the valid 11412 // range, then we computed our trip count, otherwise wrap around or other 11413 // things must have happened. 11414 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 11415 if (Range.contains(Val->getValue())) 11416 return SE.getCouldNotCompute(); // Something strange happened 11417 11418 // Ensure that the previous value is in the range. This is a sanity check. 11419 assert(Range.contains( 11420 EvaluateConstantChrecAtConstant(this, 11421 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 11422 "Linear scev computation is off in a bad way!"); 11423 return SE.getConstant(ExitValue); 11424 } 11425 11426 if (isQuadratic()) { 11427 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11428 return SE.getConstant(S.getValue()); 11429 } 11430 11431 return SE.getCouldNotCompute(); 11432 } 11433 11434 const SCEVAddRecExpr * 11435 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11436 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11437 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11438 // but in this case we cannot guarantee that the value returned will be an 11439 // AddRec because SCEV does not have a fixed point where it stops 11440 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11441 // may happen if we reach arithmetic depth limit while simplifying. So we 11442 // construct the returned value explicitly. 11443 SmallVector<const SCEV *, 3> Ops; 11444 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11445 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11446 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11447 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11448 // We know that the last operand is not a constant zero (otherwise it would 11449 // have been popped out earlier). This guarantees us that if the result has 11450 // the same last operand, then it will also not be popped out, meaning that 11451 // the returned value will be an AddRec. 11452 const SCEV *Last = getOperand(getNumOperands() - 1); 11453 assert(!Last->isZero() && "Recurrency with zero step?"); 11454 Ops.push_back(Last); 11455 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11456 SCEV::FlagAnyWrap)); 11457 } 11458 11459 // Return true when S contains at least an undef value. 11460 static inline bool containsUndefs(const SCEV *S) { 11461 return SCEVExprContains(S, [](const SCEV *S) { 11462 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11463 return isa<UndefValue>(SU->getValue()); 11464 return false; 11465 }); 11466 } 11467 11468 namespace { 11469 11470 // Collect all steps of SCEV expressions. 11471 struct SCEVCollectStrides { 11472 ScalarEvolution &SE; 11473 SmallVectorImpl<const SCEV *> &Strides; 11474 11475 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11476 : SE(SE), Strides(S) {} 11477 11478 bool follow(const SCEV *S) { 11479 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11480 Strides.push_back(AR->getStepRecurrence(SE)); 11481 return true; 11482 } 11483 11484 bool isDone() const { return false; } 11485 }; 11486 11487 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11488 struct SCEVCollectTerms { 11489 SmallVectorImpl<const SCEV *> &Terms; 11490 11491 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11492 11493 bool follow(const SCEV *S) { 11494 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11495 isa<SCEVSignExtendExpr>(S)) { 11496 if (!containsUndefs(S)) 11497 Terms.push_back(S); 11498 11499 // Stop recursion: once we collected a term, do not walk its operands. 11500 return false; 11501 } 11502 11503 // Keep looking. 11504 return true; 11505 } 11506 11507 bool isDone() const { return false; } 11508 }; 11509 11510 // Check if a SCEV contains an AddRecExpr. 11511 struct SCEVHasAddRec { 11512 bool &ContainsAddRec; 11513 11514 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11515 ContainsAddRec = false; 11516 } 11517 11518 bool follow(const SCEV *S) { 11519 if (isa<SCEVAddRecExpr>(S)) { 11520 ContainsAddRec = true; 11521 11522 // Stop recursion: once we collected a term, do not walk its operands. 11523 return false; 11524 } 11525 11526 // Keep looking. 11527 return true; 11528 } 11529 11530 bool isDone() const { return false; } 11531 }; 11532 11533 // Find factors that are multiplied with an expression that (possibly as a 11534 // subexpression) contains an AddRecExpr. In the expression: 11535 // 11536 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11537 // 11538 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11539 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11540 // parameters as they form a product with an induction variable. 11541 // 11542 // This collector expects all array size parameters to be in the same MulExpr. 11543 // It might be necessary to later add support for collecting parameters that are 11544 // spread over different nested MulExpr. 11545 struct SCEVCollectAddRecMultiplies { 11546 SmallVectorImpl<const SCEV *> &Terms; 11547 ScalarEvolution &SE; 11548 11549 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11550 : Terms(T), SE(SE) {} 11551 11552 bool follow(const SCEV *S) { 11553 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11554 bool HasAddRec = false; 11555 SmallVector<const SCEV *, 0> Operands; 11556 for (auto Op : Mul->operands()) { 11557 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11558 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11559 Operands.push_back(Op); 11560 } else if (Unknown) { 11561 HasAddRec = true; 11562 } else { 11563 bool ContainsAddRec = false; 11564 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11565 visitAll(Op, ContiansAddRec); 11566 HasAddRec |= ContainsAddRec; 11567 } 11568 } 11569 if (Operands.size() == 0) 11570 return true; 11571 11572 if (!HasAddRec) 11573 return false; 11574 11575 Terms.push_back(SE.getMulExpr(Operands)); 11576 // Stop recursion: once we collected a term, do not walk its operands. 11577 return false; 11578 } 11579 11580 // Keep looking. 11581 return true; 11582 } 11583 11584 bool isDone() const { return false; } 11585 }; 11586 11587 } // end anonymous namespace 11588 11589 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11590 /// two places: 11591 /// 1) The strides of AddRec expressions. 11592 /// 2) Unknowns that are multiplied with AddRec expressions. 11593 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11594 SmallVectorImpl<const SCEV *> &Terms) { 11595 SmallVector<const SCEV *, 4> Strides; 11596 SCEVCollectStrides StrideCollector(*this, Strides); 11597 visitAll(Expr, StrideCollector); 11598 11599 LLVM_DEBUG({ 11600 dbgs() << "Strides:\n"; 11601 for (const SCEV *S : Strides) 11602 dbgs() << *S << "\n"; 11603 }); 11604 11605 for (const SCEV *S : Strides) { 11606 SCEVCollectTerms TermCollector(Terms); 11607 visitAll(S, TermCollector); 11608 } 11609 11610 LLVM_DEBUG({ 11611 dbgs() << "Terms:\n"; 11612 for (const SCEV *T : Terms) 11613 dbgs() << *T << "\n"; 11614 }); 11615 11616 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11617 visitAll(Expr, MulCollector); 11618 } 11619 11620 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11621 SmallVectorImpl<const SCEV *> &Terms, 11622 SmallVectorImpl<const SCEV *> &Sizes) { 11623 int Last = Terms.size() - 1; 11624 const SCEV *Step = Terms[Last]; 11625 11626 // End of recursion. 11627 if (Last == 0) { 11628 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11629 SmallVector<const SCEV *, 2> Qs; 11630 for (const SCEV *Op : M->operands()) 11631 if (!isa<SCEVConstant>(Op)) 11632 Qs.push_back(Op); 11633 11634 Step = SE.getMulExpr(Qs); 11635 } 11636 11637 Sizes.push_back(Step); 11638 return true; 11639 } 11640 11641 for (const SCEV *&Term : Terms) { 11642 // Normalize the terms before the next call to findArrayDimensionsRec. 11643 const SCEV *Q, *R; 11644 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11645 11646 // Bail out when GCD does not evenly divide one of the terms. 11647 if (!R->isZero()) 11648 return false; 11649 11650 Term = Q; 11651 } 11652 11653 // Remove all SCEVConstants. 11654 erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }); 11655 11656 if (Terms.size() > 0) 11657 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11658 return false; 11659 11660 Sizes.push_back(Step); 11661 return true; 11662 } 11663 11664 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11665 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11666 for (const SCEV *T : Terms) 11667 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11668 return true; 11669 11670 return false; 11671 } 11672 11673 // Return the number of product terms in S. 11674 static inline int numberOfTerms(const SCEV *S) { 11675 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11676 return Expr->getNumOperands(); 11677 return 1; 11678 } 11679 11680 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11681 if (isa<SCEVConstant>(T)) 11682 return nullptr; 11683 11684 if (isa<SCEVUnknown>(T)) 11685 return T; 11686 11687 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11688 SmallVector<const SCEV *, 2> Factors; 11689 for (const SCEV *Op : M->operands()) 11690 if (!isa<SCEVConstant>(Op)) 11691 Factors.push_back(Op); 11692 11693 return SE.getMulExpr(Factors); 11694 } 11695 11696 return T; 11697 } 11698 11699 /// Return the size of an element read or written by Inst. 11700 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11701 Type *Ty; 11702 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11703 Ty = Store->getValueOperand()->getType(); 11704 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11705 Ty = Load->getType(); 11706 else 11707 return nullptr; 11708 11709 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11710 return getSizeOfExpr(ETy, Ty); 11711 } 11712 11713 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11714 SmallVectorImpl<const SCEV *> &Sizes, 11715 const SCEV *ElementSize) { 11716 if (Terms.size() < 1 || !ElementSize) 11717 return; 11718 11719 // Early return when Terms do not contain parameters: we do not delinearize 11720 // non parametric SCEVs. 11721 if (!containsParameters(Terms)) 11722 return; 11723 11724 LLVM_DEBUG({ 11725 dbgs() << "Terms:\n"; 11726 for (const SCEV *T : Terms) 11727 dbgs() << *T << "\n"; 11728 }); 11729 11730 // Remove duplicates. 11731 array_pod_sort(Terms.begin(), Terms.end()); 11732 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11733 11734 // Put larger terms first. 11735 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11736 return numberOfTerms(LHS) > numberOfTerms(RHS); 11737 }); 11738 11739 // Try to divide all terms by the element size. If term is not divisible by 11740 // element size, proceed with the original term. 11741 for (const SCEV *&Term : Terms) { 11742 const SCEV *Q, *R; 11743 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11744 if (!Q->isZero()) 11745 Term = Q; 11746 } 11747 11748 SmallVector<const SCEV *, 4> NewTerms; 11749 11750 // Remove constant factors. 11751 for (const SCEV *T : Terms) 11752 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11753 NewTerms.push_back(NewT); 11754 11755 LLVM_DEBUG({ 11756 dbgs() << "Terms after sorting:\n"; 11757 for (const SCEV *T : NewTerms) 11758 dbgs() << *T << "\n"; 11759 }); 11760 11761 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11762 Sizes.clear(); 11763 return; 11764 } 11765 11766 // The last element to be pushed into Sizes is the size of an element. 11767 Sizes.push_back(ElementSize); 11768 11769 LLVM_DEBUG({ 11770 dbgs() << "Sizes:\n"; 11771 for (const SCEV *S : Sizes) 11772 dbgs() << *S << "\n"; 11773 }); 11774 } 11775 11776 void ScalarEvolution::computeAccessFunctions( 11777 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11778 SmallVectorImpl<const SCEV *> &Sizes) { 11779 // Early exit in case this SCEV is not an affine multivariate function. 11780 if (Sizes.empty()) 11781 return; 11782 11783 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11784 if (!AR->isAffine()) 11785 return; 11786 11787 const SCEV *Res = Expr; 11788 int Last = Sizes.size() - 1; 11789 for (int i = Last; i >= 0; i--) { 11790 const SCEV *Q, *R; 11791 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11792 11793 LLVM_DEBUG({ 11794 dbgs() << "Res: " << *Res << "\n"; 11795 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11796 dbgs() << "Res divided by Sizes[i]:\n"; 11797 dbgs() << "Quotient: " << *Q << "\n"; 11798 dbgs() << "Remainder: " << *R << "\n"; 11799 }); 11800 11801 Res = Q; 11802 11803 // Do not record the last subscript corresponding to the size of elements in 11804 // the array. 11805 if (i == Last) { 11806 11807 // Bail out if the remainder is too complex. 11808 if (isa<SCEVAddRecExpr>(R)) { 11809 Subscripts.clear(); 11810 Sizes.clear(); 11811 return; 11812 } 11813 11814 continue; 11815 } 11816 11817 // Record the access function for the current subscript. 11818 Subscripts.push_back(R); 11819 } 11820 11821 // Also push in last position the remainder of the last division: it will be 11822 // the access function of the innermost dimension. 11823 Subscripts.push_back(Res); 11824 11825 std::reverse(Subscripts.begin(), Subscripts.end()); 11826 11827 LLVM_DEBUG({ 11828 dbgs() << "Subscripts:\n"; 11829 for (const SCEV *S : Subscripts) 11830 dbgs() << *S << "\n"; 11831 }); 11832 } 11833 11834 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11835 /// sizes of an array access. Returns the remainder of the delinearization that 11836 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11837 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11838 /// expressions in the stride and base of a SCEV corresponding to the 11839 /// computation of a GCD (greatest common divisor) of base and stride. When 11840 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11841 /// 11842 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11843 /// 11844 /// void foo(long n, long m, long o, double A[n][m][o]) { 11845 /// 11846 /// for (long i = 0; i < n; i++) 11847 /// for (long j = 0; j < m; j++) 11848 /// for (long k = 0; k < o; k++) 11849 /// A[i][j][k] = 1.0; 11850 /// } 11851 /// 11852 /// the delinearization input is the following AddRec SCEV: 11853 /// 11854 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11855 /// 11856 /// From this SCEV, we are able to say that the base offset of the access is %A 11857 /// because it appears as an offset that does not divide any of the strides in 11858 /// the loops: 11859 /// 11860 /// CHECK: Base offset: %A 11861 /// 11862 /// and then SCEV->delinearize determines the size of some of the dimensions of 11863 /// the array as these are the multiples by which the strides are happening: 11864 /// 11865 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11866 /// 11867 /// Note that the outermost dimension remains of UnknownSize because there are 11868 /// no strides that would help identifying the size of the last dimension: when 11869 /// the array has been statically allocated, one could compute the size of that 11870 /// dimension by dividing the overall size of the array by the size of the known 11871 /// dimensions: %m * %o * 8. 11872 /// 11873 /// Finally delinearize provides the access functions for the array reference 11874 /// that does correspond to A[i][j][k] of the above C testcase: 11875 /// 11876 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11877 /// 11878 /// The testcases are checking the output of a function pass: 11879 /// DelinearizationPass that walks through all loads and stores of a function 11880 /// asking for the SCEV of the memory access with respect to all enclosing 11881 /// loops, calling SCEV->delinearize on that and printing the results. 11882 void ScalarEvolution::delinearize(const SCEV *Expr, 11883 SmallVectorImpl<const SCEV *> &Subscripts, 11884 SmallVectorImpl<const SCEV *> &Sizes, 11885 const SCEV *ElementSize) { 11886 // First step: collect parametric terms. 11887 SmallVector<const SCEV *, 4> Terms; 11888 collectParametricTerms(Expr, Terms); 11889 11890 if (Terms.empty()) 11891 return; 11892 11893 // Second step: find subscript sizes. 11894 findArrayDimensions(Terms, Sizes, ElementSize); 11895 11896 if (Sizes.empty()) 11897 return; 11898 11899 // Third step: compute the access functions for each subscript. 11900 computeAccessFunctions(Expr, Subscripts, Sizes); 11901 11902 if (Subscripts.empty()) 11903 return; 11904 11905 LLVM_DEBUG({ 11906 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11907 dbgs() << "ArrayDecl[UnknownSize]"; 11908 for (const SCEV *S : Sizes) 11909 dbgs() << "[" << *S << "]"; 11910 11911 dbgs() << "\nArrayRef"; 11912 for (const SCEV *S : Subscripts) 11913 dbgs() << "[" << *S << "]"; 11914 dbgs() << "\n"; 11915 }); 11916 } 11917 11918 bool ScalarEvolution::getIndexExpressionsFromGEP( 11919 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11920 SmallVectorImpl<int> &Sizes) { 11921 assert(Subscripts.empty() && Sizes.empty() && 11922 "Expected output lists to be empty on entry to this function."); 11923 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11924 Type *Ty = GEP->getPointerOperandType(); 11925 bool DroppedFirstDim = false; 11926 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11927 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11928 if (i == 1) { 11929 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11930 Ty = PtrTy->getElementType(); 11931 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11932 Ty = ArrayTy->getElementType(); 11933 } else { 11934 Subscripts.clear(); 11935 Sizes.clear(); 11936 return false; 11937 } 11938 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11939 if (Const->getValue()->isZero()) { 11940 DroppedFirstDim = true; 11941 continue; 11942 } 11943 Subscripts.push_back(Expr); 11944 continue; 11945 } 11946 11947 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11948 if (!ArrayTy) { 11949 Subscripts.clear(); 11950 Sizes.clear(); 11951 return false; 11952 } 11953 11954 Subscripts.push_back(Expr); 11955 if (!(DroppedFirstDim && i == 2)) 11956 Sizes.push_back(ArrayTy->getNumElements()); 11957 11958 Ty = ArrayTy->getElementType(); 11959 } 11960 return !Subscripts.empty(); 11961 } 11962 11963 //===----------------------------------------------------------------------===// 11964 // SCEVCallbackVH Class Implementation 11965 //===----------------------------------------------------------------------===// 11966 11967 void ScalarEvolution::SCEVCallbackVH::deleted() { 11968 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11969 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11970 SE->ConstantEvolutionLoopExitValue.erase(PN); 11971 SE->eraseValueFromMap(getValPtr()); 11972 // this now dangles! 11973 } 11974 11975 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11976 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11977 11978 // Forget all the expressions associated with users of the old value, 11979 // so that future queries will recompute the expressions using the new 11980 // value. 11981 Value *Old = getValPtr(); 11982 SmallVector<User *, 16> Worklist(Old->users()); 11983 SmallPtrSet<User *, 8> Visited; 11984 while (!Worklist.empty()) { 11985 User *U = Worklist.pop_back_val(); 11986 // Deleting the Old value will cause this to dangle. Postpone 11987 // that until everything else is done. 11988 if (U == Old) 11989 continue; 11990 if (!Visited.insert(U).second) 11991 continue; 11992 if (PHINode *PN = dyn_cast<PHINode>(U)) 11993 SE->ConstantEvolutionLoopExitValue.erase(PN); 11994 SE->eraseValueFromMap(U); 11995 llvm::append_range(Worklist, U->users()); 11996 } 11997 // Delete the Old value. 11998 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11999 SE->ConstantEvolutionLoopExitValue.erase(PN); 12000 SE->eraseValueFromMap(Old); 12001 // this now dangles! 12002 } 12003 12004 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12005 : CallbackVH(V), SE(se) {} 12006 12007 //===----------------------------------------------------------------------===// 12008 // ScalarEvolution Class Implementation 12009 //===----------------------------------------------------------------------===// 12010 12011 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12012 AssumptionCache &AC, DominatorTree &DT, 12013 LoopInfo &LI) 12014 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12015 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12016 LoopDispositions(64), BlockDispositions(64) { 12017 // To use guards for proving predicates, we need to scan every instruction in 12018 // relevant basic blocks, and not just terminators. Doing this is a waste of 12019 // time if the IR does not actually contain any calls to 12020 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12021 // 12022 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12023 // to _add_ guards to the module when there weren't any before, and wants 12024 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12025 // efficient in lieu of being smart in that rather obscure case. 12026 12027 auto *GuardDecl = F.getParent()->getFunction( 12028 Intrinsic::getName(Intrinsic::experimental_guard)); 12029 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12030 } 12031 12032 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12033 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12034 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12035 ValueExprMap(std::move(Arg.ValueExprMap)), 12036 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12037 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12038 PendingMerges(std::move(Arg.PendingMerges)), 12039 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12040 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12041 PredicatedBackedgeTakenCounts( 12042 std::move(Arg.PredicatedBackedgeTakenCounts)), 12043 ConstantEvolutionLoopExitValue( 12044 std::move(Arg.ConstantEvolutionLoopExitValue)), 12045 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12046 LoopDispositions(std::move(Arg.LoopDispositions)), 12047 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12048 BlockDispositions(std::move(Arg.BlockDispositions)), 12049 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12050 SignedRanges(std::move(Arg.SignedRanges)), 12051 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12052 UniquePreds(std::move(Arg.UniquePreds)), 12053 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12054 LoopUsers(std::move(Arg.LoopUsers)), 12055 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12056 FirstUnknown(Arg.FirstUnknown) { 12057 Arg.FirstUnknown = nullptr; 12058 } 12059 12060 ScalarEvolution::~ScalarEvolution() { 12061 // Iterate through all the SCEVUnknown instances and call their 12062 // destructors, so that they release their references to their values. 12063 for (SCEVUnknown *U = FirstUnknown; U;) { 12064 SCEVUnknown *Tmp = U; 12065 U = U->Next; 12066 Tmp->~SCEVUnknown(); 12067 } 12068 FirstUnknown = nullptr; 12069 12070 ExprValueMap.clear(); 12071 ValueExprMap.clear(); 12072 HasRecMap.clear(); 12073 12074 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 12075 // that a loop had multiple computable exits. 12076 for (auto &BTCI : BackedgeTakenCounts) 12077 BTCI.second.clear(); 12078 for (auto &BTCI : PredicatedBackedgeTakenCounts) 12079 BTCI.second.clear(); 12080 12081 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12082 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12083 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12084 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12085 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12086 } 12087 12088 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12089 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12090 } 12091 12092 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12093 const Loop *L) { 12094 // Print all inner loops first 12095 for (Loop *I : *L) 12096 PrintLoopInfo(OS, SE, I); 12097 12098 OS << "Loop "; 12099 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12100 OS << ": "; 12101 12102 SmallVector<BasicBlock *, 8> ExitingBlocks; 12103 L->getExitingBlocks(ExitingBlocks); 12104 if (ExitingBlocks.size() != 1) 12105 OS << "<multiple exits> "; 12106 12107 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12108 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12109 else 12110 OS << "Unpredictable backedge-taken count.\n"; 12111 12112 if (ExitingBlocks.size() > 1) 12113 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12114 OS << " exit count for " << ExitingBlock->getName() << ": " 12115 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12116 } 12117 12118 OS << "Loop "; 12119 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12120 OS << ": "; 12121 12122 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12123 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12124 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12125 OS << ", actual taken count either this or zero."; 12126 } else { 12127 OS << "Unpredictable max backedge-taken count. "; 12128 } 12129 12130 OS << "\n" 12131 "Loop "; 12132 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12133 OS << ": "; 12134 12135 SCEVUnionPredicate Pred; 12136 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12137 if (!isa<SCEVCouldNotCompute>(PBT)) { 12138 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12139 OS << " Predicates:\n"; 12140 Pred.print(OS, 4); 12141 } else { 12142 OS << "Unpredictable predicated backedge-taken count. "; 12143 } 12144 OS << "\n"; 12145 12146 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12147 OS << "Loop "; 12148 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12149 OS << ": "; 12150 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12151 } 12152 } 12153 12154 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12155 switch (LD) { 12156 case ScalarEvolution::LoopVariant: 12157 return "Variant"; 12158 case ScalarEvolution::LoopInvariant: 12159 return "Invariant"; 12160 case ScalarEvolution::LoopComputable: 12161 return "Computable"; 12162 } 12163 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12164 } 12165 12166 void ScalarEvolution::print(raw_ostream &OS) const { 12167 // ScalarEvolution's implementation of the print method is to print 12168 // out SCEV values of all instructions that are interesting. Doing 12169 // this potentially causes it to create new SCEV objects though, 12170 // which technically conflicts with the const qualifier. This isn't 12171 // observable from outside the class though, so casting away the 12172 // const isn't dangerous. 12173 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12174 12175 if (ClassifyExpressions) { 12176 OS << "Classifying expressions for: "; 12177 F.printAsOperand(OS, /*PrintType=*/false); 12178 OS << "\n"; 12179 for (Instruction &I : instructions(F)) 12180 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12181 OS << I << '\n'; 12182 OS << " --> "; 12183 const SCEV *SV = SE.getSCEV(&I); 12184 SV->print(OS); 12185 if (!isa<SCEVCouldNotCompute>(SV)) { 12186 OS << " U: "; 12187 SE.getUnsignedRange(SV).print(OS); 12188 OS << " S: "; 12189 SE.getSignedRange(SV).print(OS); 12190 } 12191 12192 const Loop *L = LI.getLoopFor(I.getParent()); 12193 12194 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12195 if (AtUse != SV) { 12196 OS << " --> "; 12197 AtUse->print(OS); 12198 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12199 OS << " U: "; 12200 SE.getUnsignedRange(AtUse).print(OS); 12201 OS << " S: "; 12202 SE.getSignedRange(AtUse).print(OS); 12203 } 12204 } 12205 12206 if (L) { 12207 OS << "\t\t" "Exits: "; 12208 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12209 if (!SE.isLoopInvariant(ExitValue, L)) { 12210 OS << "<<Unknown>>"; 12211 } else { 12212 OS << *ExitValue; 12213 } 12214 12215 bool First = true; 12216 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12217 if (First) { 12218 OS << "\t\t" "LoopDispositions: { "; 12219 First = false; 12220 } else { 12221 OS << ", "; 12222 } 12223 12224 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12225 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12226 } 12227 12228 for (auto *InnerL : depth_first(L)) { 12229 if (InnerL == L) 12230 continue; 12231 if (First) { 12232 OS << "\t\t" "LoopDispositions: { "; 12233 First = false; 12234 } else { 12235 OS << ", "; 12236 } 12237 12238 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12239 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12240 } 12241 12242 OS << " }"; 12243 } 12244 12245 OS << "\n"; 12246 } 12247 } 12248 12249 OS << "Determining loop execution counts for: "; 12250 F.printAsOperand(OS, /*PrintType=*/false); 12251 OS << "\n"; 12252 for (Loop *I : LI) 12253 PrintLoopInfo(OS, &SE, I); 12254 } 12255 12256 ScalarEvolution::LoopDisposition 12257 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12258 auto &Values = LoopDispositions[S]; 12259 for (auto &V : Values) { 12260 if (V.getPointer() == L) 12261 return V.getInt(); 12262 } 12263 Values.emplace_back(L, LoopVariant); 12264 LoopDisposition D = computeLoopDisposition(S, L); 12265 auto &Values2 = LoopDispositions[S]; 12266 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12267 if (V.getPointer() == L) { 12268 V.setInt(D); 12269 break; 12270 } 12271 } 12272 return D; 12273 } 12274 12275 ScalarEvolution::LoopDisposition 12276 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12277 switch (S->getSCEVType()) { 12278 case scConstant: 12279 return LoopInvariant; 12280 case scPtrToInt: 12281 case scTruncate: 12282 case scZeroExtend: 12283 case scSignExtend: 12284 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12285 case scAddRecExpr: { 12286 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12287 12288 // If L is the addrec's loop, it's computable. 12289 if (AR->getLoop() == L) 12290 return LoopComputable; 12291 12292 // Add recurrences are never invariant in the function-body (null loop). 12293 if (!L) 12294 return LoopVariant; 12295 12296 // Everything that is not defined at loop entry is variant. 12297 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12298 return LoopVariant; 12299 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12300 " dominate the contained loop's header?"); 12301 12302 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12303 if (AR->getLoop()->contains(L)) 12304 return LoopInvariant; 12305 12306 // This recurrence is variant w.r.t. L if any of its operands 12307 // are variant. 12308 for (auto *Op : AR->operands()) 12309 if (!isLoopInvariant(Op, L)) 12310 return LoopVariant; 12311 12312 // Otherwise it's loop-invariant. 12313 return LoopInvariant; 12314 } 12315 case scAddExpr: 12316 case scMulExpr: 12317 case scUMaxExpr: 12318 case scSMaxExpr: 12319 case scUMinExpr: 12320 case scSMinExpr: { 12321 bool HasVarying = false; 12322 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12323 LoopDisposition D = getLoopDisposition(Op, L); 12324 if (D == LoopVariant) 12325 return LoopVariant; 12326 if (D == LoopComputable) 12327 HasVarying = true; 12328 } 12329 return HasVarying ? LoopComputable : LoopInvariant; 12330 } 12331 case scUDivExpr: { 12332 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12333 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12334 if (LD == LoopVariant) 12335 return LoopVariant; 12336 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12337 if (RD == LoopVariant) 12338 return LoopVariant; 12339 return (LD == LoopInvariant && RD == LoopInvariant) ? 12340 LoopInvariant : LoopComputable; 12341 } 12342 case scUnknown: 12343 // All non-instruction values are loop invariant. All instructions are loop 12344 // invariant if they are not contained in the specified loop. 12345 // Instructions are never considered invariant in the function body 12346 // (null loop) because they are defined within the "loop". 12347 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12348 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12349 return LoopInvariant; 12350 case scCouldNotCompute: 12351 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12352 } 12353 llvm_unreachable("Unknown SCEV kind!"); 12354 } 12355 12356 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12357 return getLoopDisposition(S, L) == LoopInvariant; 12358 } 12359 12360 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12361 return getLoopDisposition(S, L) == LoopComputable; 12362 } 12363 12364 ScalarEvolution::BlockDisposition 12365 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12366 auto &Values = BlockDispositions[S]; 12367 for (auto &V : Values) { 12368 if (V.getPointer() == BB) 12369 return V.getInt(); 12370 } 12371 Values.emplace_back(BB, DoesNotDominateBlock); 12372 BlockDisposition D = computeBlockDisposition(S, BB); 12373 auto &Values2 = BlockDispositions[S]; 12374 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12375 if (V.getPointer() == BB) { 12376 V.setInt(D); 12377 break; 12378 } 12379 } 12380 return D; 12381 } 12382 12383 ScalarEvolution::BlockDisposition 12384 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12385 switch (S->getSCEVType()) { 12386 case scConstant: 12387 return ProperlyDominatesBlock; 12388 case scPtrToInt: 12389 case scTruncate: 12390 case scZeroExtend: 12391 case scSignExtend: 12392 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12393 case scAddRecExpr: { 12394 // This uses a "dominates" query instead of "properly dominates" query 12395 // to test for proper dominance too, because the instruction which 12396 // produces the addrec's value is a PHI, and a PHI effectively properly 12397 // dominates its entire containing block. 12398 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12399 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12400 return DoesNotDominateBlock; 12401 12402 // Fall through into SCEVNAryExpr handling. 12403 LLVM_FALLTHROUGH; 12404 } 12405 case scAddExpr: 12406 case scMulExpr: 12407 case scUMaxExpr: 12408 case scSMaxExpr: 12409 case scUMinExpr: 12410 case scSMinExpr: { 12411 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12412 bool Proper = true; 12413 for (const SCEV *NAryOp : NAry->operands()) { 12414 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12415 if (D == DoesNotDominateBlock) 12416 return DoesNotDominateBlock; 12417 if (D == DominatesBlock) 12418 Proper = false; 12419 } 12420 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12421 } 12422 case scUDivExpr: { 12423 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12424 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12425 BlockDisposition LD = getBlockDisposition(LHS, BB); 12426 if (LD == DoesNotDominateBlock) 12427 return DoesNotDominateBlock; 12428 BlockDisposition RD = getBlockDisposition(RHS, BB); 12429 if (RD == DoesNotDominateBlock) 12430 return DoesNotDominateBlock; 12431 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12432 ProperlyDominatesBlock : DominatesBlock; 12433 } 12434 case scUnknown: 12435 if (Instruction *I = 12436 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12437 if (I->getParent() == BB) 12438 return DominatesBlock; 12439 if (DT.properlyDominates(I->getParent(), BB)) 12440 return ProperlyDominatesBlock; 12441 return DoesNotDominateBlock; 12442 } 12443 return ProperlyDominatesBlock; 12444 case scCouldNotCompute: 12445 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12446 } 12447 llvm_unreachable("Unknown SCEV kind!"); 12448 } 12449 12450 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12451 return getBlockDisposition(S, BB) >= DominatesBlock; 12452 } 12453 12454 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12455 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12456 } 12457 12458 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12459 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12460 } 12461 12462 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 12463 auto IsS = [&](const SCEV *X) { return S == X; }; 12464 auto ContainsS = [&](const SCEV *X) { 12465 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 12466 }; 12467 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 12468 } 12469 12470 void 12471 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12472 ValuesAtScopes.erase(S); 12473 LoopDispositions.erase(S); 12474 BlockDispositions.erase(S); 12475 UnsignedRanges.erase(S); 12476 SignedRanges.erase(S); 12477 ExprValueMap.erase(S); 12478 HasRecMap.erase(S); 12479 MinTrailingZerosCache.erase(S); 12480 12481 for (auto I = PredicatedSCEVRewrites.begin(); 12482 I != PredicatedSCEVRewrites.end();) { 12483 std::pair<const SCEV *, const Loop *> Entry = I->first; 12484 if (Entry.first == S) 12485 PredicatedSCEVRewrites.erase(I++); 12486 else 12487 ++I; 12488 } 12489 12490 auto RemoveSCEVFromBackedgeMap = 12491 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12492 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12493 BackedgeTakenInfo &BEInfo = I->second; 12494 if (BEInfo.hasOperand(S, this)) { 12495 BEInfo.clear(); 12496 Map.erase(I++); 12497 } else 12498 ++I; 12499 } 12500 }; 12501 12502 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12503 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12504 } 12505 12506 void 12507 ScalarEvolution::getUsedLoops(const SCEV *S, 12508 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12509 struct FindUsedLoops { 12510 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12511 : LoopsUsed(LoopsUsed) {} 12512 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12513 bool follow(const SCEV *S) { 12514 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12515 LoopsUsed.insert(AR->getLoop()); 12516 return true; 12517 } 12518 12519 bool isDone() const { return false; } 12520 }; 12521 12522 FindUsedLoops F(LoopsUsed); 12523 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12524 } 12525 12526 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12527 SmallPtrSet<const Loop *, 8> LoopsUsed; 12528 getUsedLoops(S, LoopsUsed); 12529 for (auto *L : LoopsUsed) 12530 LoopUsers[L].push_back(S); 12531 } 12532 12533 void ScalarEvolution::verify() const { 12534 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12535 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12536 12537 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12538 12539 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12540 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12541 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12542 12543 const SCEV *visitConstant(const SCEVConstant *Constant) { 12544 return SE.getConstant(Constant->getAPInt()); 12545 } 12546 12547 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12548 return SE.getUnknown(Expr->getValue()); 12549 } 12550 12551 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12552 return SE.getCouldNotCompute(); 12553 } 12554 }; 12555 12556 SCEVMapper SCM(SE2); 12557 12558 while (!LoopStack.empty()) { 12559 auto *L = LoopStack.pop_back_val(); 12560 llvm::append_range(LoopStack, *L); 12561 12562 auto *CurBECount = SCM.visit( 12563 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12564 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12565 12566 if (CurBECount == SE2.getCouldNotCompute() || 12567 NewBECount == SE2.getCouldNotCompute()) { 12568 // NB! This situation is legal, but is very suspicious -- whatever pass 12569 // change the loop to make a trip count go from could not compute to 12570 // computable or vice-versa *should have* invalidated SCEV. However, we 12571 // choose not to assert here (for now) since we don't want false 12572 // positives. 12573 continue; 12574 } 12575 12576 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12577 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12578 // not propagate undef aggressively). This means we can (and do) fail 12579 // verification in cases where a transform makes the trip count of a loop 12580 // go from "undef" to "undef+1" (say). The transform is fine, since in 12581 // both cases the loop iterates "undef" times, but SCEV thinks we 12582 // increased the trip count of the loop by 1 incorrectly. 12583 continue; 12584 } 12585 12586 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12587 SE.getTypeSizeInBits(NewBECount->getType())) 12588 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12589 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12590 SE.getTypeSizeInBits(NewBECount->getType())) 12591 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12592 12593 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12594 12595 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12596 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12597 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12598 dbgs() << "Old: " << *CurBECount << "\n"; 12599 dbgs() << "New: " << *NewBECount << "\n"; 12600 dbgs() << "Delta: " << *Delta << "\n"; 12601 std::abort(); 12602 } 12603 } 12604 12605 // Collect all valid loops currently in LoopInfo. 12606 SmallPtrSet<Loop *, 32> ValidLoops; 12607 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12608 while (!Worklist.empty()) { 12609 Loop *L = Worklist.pop_back_val(); 12610 if (ValidLoops.contains(L)) 12611 continue; 12612 ValidLoops.insert(L); 12613 Worklist.append(L->begin(), L->end()); 12614 } 12615 // Check for SCEV expressions referencing invalid/deleted loops. 12616 for (auto &KV : ValueExprMap) { 12617 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12618 if (!AR) 12619 continue; 12620 assert(ValidLoops.contains(AR->getLoop()) && 12621 "AddRec references invalid loop"); 12622 } 12623 } 12624 12625 bool ScalarEvolution::invalidate( 12626 Function &F, const PreservedAnalyses &PA, 12627 FunctionAnalysisManager::Invalidator &Inv) { 12628 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12629 // of its dependencies is invalidated. 12630 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12631 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12632 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12633 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12634 Inv.invalidate<LoopAnalysis>(F, PA); 12635 } 12636 12637 AnalysisKey ScalarEvolutionAnalysis::Key; 12638 12639 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12640 FunctionAnalysisManager &AM) { 12641 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12642 AM.getResult<AssumptionAnalysis>(F), 12643 AM.getResult<DominatorTreeAnalysis>(F), 12644 AM.getResult<LoopAnalysis>(F)); 12645 } 12646 12647 PreservedAnalyses 12648 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12649 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12650 return PreservedAnalyses::all(); 12651 } 12652 12653 PreservedAnalyses 12654 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12655 // For compatibility with opt's -analyze feature under legacy pass manager 12656 // which was not ported to NPM. This keeps tests using 12657 // update_analyze_test_checks.py working. 12658 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12659 << F.getName() << "':\n"; 12660 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12661 return PreservedAnalyses::all(); 12662 } 12663 12664 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12665 "Scalar Evolution Analysis", false, true) 12666 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12667 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12668 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12669 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12670 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12671 "Scalar Evolution Analysis", false, true) 12672 12673 char ScalarEvolutionWrapperPass::ID = 0; 12674 12675 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12676 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12677 } 12678 12679 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12680 SE.reset(new ScalarEvolution( 12681 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12682 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12683 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12684 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12685 return false; 12686 } 12687 12688 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12689 12690 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12691 SE->print(OS); 12692 } 12693 12694 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12695 if (!VerifySCEV) 12696 return; 12697 12698 SE->verify(); 12699 } 12700 12701 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12702 AU.setPreservesAll(); 12703 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12704 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12705 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12706 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12707 } 12708 12709 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12710 const SCEV *RHS) { 12711 FoldingSetNodeID ID; 12712 assert(LHS->getType() == RHS->getType() && 12713 "Type mismatch between LHS and RHS"); 12714 // Unique this node based on the arguments 12715 ID.AddInteger(SCEVPredicate::P_Equal); 12716 ID.AddPointer(LHS); 12717 ID.AddPointer(RHS); 12718 void *IP = nullptr; 12719 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12720 return S; 12721 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12722 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12723 UniquePreds.InsertNode(Eq, IP); 12724 return Eq; 12725 } 12726 12727 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12728 const SCEVAddRecExpr *AR, 12729 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12730 FoldingSetNodeID ID; 12731 // Unique this node based on the arguments 12732 ID.AddInteger(SCEVPredicate::P_Wrap); 12733 ID.AddPointer(AR); 12734 ID.AddInteger(AddedFlags); 12735 void *IP = nullptr; 12736 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12737 return S; 12738 auto *OF = new (SCEVAllocator) 12739 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12740 UniquePreds.InsertNode(OF, IP); 12741 return OF; 12742 } 12743 12744 namespace { 12745 12746 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12747 public: 12748 12749 /// Rewrites \p S in the context of a loop L and the SCEV predication 12750 /// infrastructure. 12751 /// 12752 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12753 /// equivalences present in \p Pred. 12754 /// 12755 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12756 /// \p NewPreds such that the result will be an AddRecExpr. 12757 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12758 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12759 SCEVUnionPredicate *Pred) { 12760 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12761 return Rewriter.visit(S); 12762 } 12763 12764 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12765 if (Pred) { 12766 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12767 for (auto *Pred : ExprPreds) 12768 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12769 if (IPred->getLHS() == Expr) 12770 return IPred->getRHS(); 12771 } 12772 return convertToAddRecWithPreds(Expr); 12773 } 12774 12775 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12776 const SCEV *Operand = visit(Expr->getOperand()); 12777 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12778 if (AR && AR->getLoop() == L && AR->isAffine()) { 12779 // This couldn't be folded because the operand didn't have the nuw 12780 // flag. Add the nusw flag as an assumption that we could make. 12781 const SCEV *Step = AR->getStepRecurrence(SE); 12782 Type *Ty = Expr->getType(); 12783 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12784 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12785 SE.getSignExtendExpr(Step, Ty), L, 12786 AR->getNoWrapFlags()); 12787 } 12788 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12789 } 12790 12791 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12792 const SCEV *Operand = visit(Expr->getOperand()); 12793 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12794 if (AR && AR->getLoop() == L && AR->isAffine()) { 12795 // This couldn't be folded because the operand didn't have the nsw 12796 // flag. Add the nssw flag as an assumption that we could make. 12797 const SCEV *Step = AR->getStepRecurrence(SE); 12798 Type *Ty = Expr->getType(); 12799 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12800 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12801 SE.getSignExtendExpr(Step, Ty), L, 12802 AR->getNoWrapFlags()); 12803 } 12804 return SE.getSignExtendExpr(Operand, Expr->getType()); 12805 } 12806 12807 private: 12808 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12809 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12810 SCEVUnionPredicate *Pred) 12811 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12812 12813 bool addOverflowAssumption(const SCEVPredicate *P) { 12814 if (!NewPreds) { 12815 // Check if we've already made this assumption. 12816 return Pred && Pred->implies(P); 12817 } 12818 NewPreds->insert(P); 12819 return true; 12820 } 12821 12822 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12823 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12824 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12825 return addOverflowAssumption(A); 12826 } 12827 12828 // If \p Expr represents a PHINode, we try to see if it can be represented 12829 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12830 // to add this predicate as a runtime overflow check, we return the AddRec. 12831 // If \p Expr does not meet these conditions (is not a PHI node, or we 12832 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12833 // return \p Expr. 12834 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12835 if (!isa<PHINode>(Expr->getValue())) 12836 return Expr; 12837 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12838 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12839 if (!PredicatedRewrite) 12840 return Expr; 12841 for (auto *P : PredicatedRewrite->second){ 12842 // Wrap predicates from outer loops are not supported. 12843 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12844 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12845 if (L != AR->getLoop()) 12846 return Expr; 12847 } 12848 if (!addOverflowAssumption(P)) 12849 return Expr; 12850 } 12851 return PredicatedRewrite->first; 12852 } 12853 12854 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12855 SCEVUnionPredicate *Pred; 12856 const Loop *L; 12857 }; 12858 12859 } // end anonymous namespace 12860 12861 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12862 SCEVUnionPredicate &Preds) { 12863 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12864 } 12865 12866 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12867 const SCEV *S, const Loop *L, 12868 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12869 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12870 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12871 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12872 12873 if (!AddRec) 12874 return nullptr; 12875 12876 // Since the transformation was successful, we can now transfer the SCEV 12877 // predicates. 12878 for (auto *P : TransformPreds) 12879 Preds.insert(P); 12880 12881 return AddRec; 12882 } 12883 12884 /// SCEV predicates 12885 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12886 SCEVPredicateKind Kind) 12887 : FastID(ID), Kind(Kind) {} 12888 12889 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12890 const SCEV *LHS, const SCEV *RHS) 12891 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12892 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12893 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12894 } 12895 12896 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12897 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12898 12899 if (!Op) 12900 return false; 12901 12902 return Op->LHS == LHS && Op->RHS == RHS; 12903 } 12904 12905 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12906 12907 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12908 12909 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12910 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12911 } 12912 12913 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12914 const SCEVAddRecExpr *AR, 12915 IncrementWrapFlags Flags) 12916 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12917 12918 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12919 12920 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12921 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12922 12923 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12924 } 12925 12926 bool SCEVWrapPredicate::isAlwaysTrue() const { 12927 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12928 IncrementWrapFlags IFlags = Flags; 12929 12930 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12931 IFlags = clearFlags(IFlags, IncrementNSSW); 12932 12933 return IFlags == IncrementAnyWrap; 12934 } 12935 12936 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12937 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12938 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12939 OS << "<nusw>"; 12940 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12941 OS << "<nssw>"; 12942 OS << "\n"; 12943 } 12944 12945 SCEVWrapPredicate::IncrementWrapFlags 12946 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12947 ScalarEvolution &SE) { 12948 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12949 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12950 12951 // We can safely transfer the NSW flag as NSSW. 12952 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12953 ImpliedFlags = IncrementNSSW; 12954 12955 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12956 // If the increment is positive, the SCEV NUW flag will also imply the 12957 // WrapPredicate NUSW flag. 12958 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12959 if (Step->getValue()->getValue().isNonNegative()) 12960 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12961 } 12962 12963 return ImpliedFlags; 12964 } 12965 12966 /// Union predicates don't get cached so create a dummy set ID for it. 12967 SCEVUnionPredicate::SCEVUnionPredicate() 12968 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12969 12970 bool SCEVUnionPredicate::isAlwaysTrue() const { 12971 return all_of(Preds, 12972 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12973 } 12974 12975 ArrayRef<const SCEVPredicate *> 12976 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12977 auto I = SCEVToPreds.find(Expr); 12978 if (I == SCEVToPreds.end()) 12979 return ArrayRef<const SCEVPredicate *>(); 12980 return I->second; 12981 } 12982 12983 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12984 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12985 return all_of(Set->Preds, 12986 [this](const SCEVPredicate *I) { return this->implies(I); }); 12987 12988 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12989 if (ScevPredsIt == SCEVToPreds.end()) 12990 return false; 12991 auto &SCEVPreds = ScevPredsIt->second; 12992 12993 return any_of(SCEVPreds, 12994 [N](const SCEVPredicate *I) { return I->implies(N); }); 12995 } 12996 12997 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12998 12999 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13000 for (auto Pred : Preds) 13001 Pred->print(OS, Depth); 13002 } 13003 13004 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13005 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13006 for (auto Pred : Set->Preds) 13007 add(Pred); 13008 return; 13009 } 13010 13011 if (implies(N)) 13012 return; 13013 13014 const SCEV *Key = N->getExpr(); 13015 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13016 " associated expression!"); 13017 13018 SCEVToPreds[Key].push_back(N); 13019 Preds.push_back(N); 13020 } 13021 13022 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13023 Loop &L) 13024 : SE(SE), L(L) {} 13025 13026 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13027 const SCEV *Expr = SE.getSCEV(V); 13028 RewriteEntry &Entry = RewriteMap[Expr]; 13029 13030 // If we already have an entry and the version matches, return it. 13031 if (Entry.second && Generation == Entry.first) 13032 return Entry.second; 13033 13034 // We found an entry but it's stale. Rewrite the stale entry 13035 // according to the current predicate. 13036 if (Entry.second) 13037 Expr = Entry.second; 13038 13039 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13040 Entry = {Generation, NewSCEV}; 13041 13042 return NewSCEV; 13043 } 13044 13045 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13046 if (!BackedgeCount) { 13047 SCEVUnionPredicate BackedgePred; 13048 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13049 addPredicate(BackedgePred); 13050 } 13051 return BackedgeCount; 13052 } 13053 13054 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13055 if (Preds.implies(&Pred)) 13056 return; 13057 Preds.add(&Pred); 13058 updateGeneration(); 13059 } 13060 13061 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13062 return Preds; 13063 } 13064 13065 void PredicatedScalarEvolution::updateGeneration() { 13066 // If the generation number wrapped recompute everything. 13067 if (++Generation == 0) { 13068 for (auto &II : RewriteMap) { 13069 const SCEV *Rewritten = II.second.second; 13070 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13071 } 13072 } 13073 } 13074 13075 void PredicatedScalarEvolution::setNoOverflow( 13076 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13077 const SCEV *Expr = getSCEV(V); 13078 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13079 13080 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13081 13082 // Clear the statically implied flags. 13083 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13084 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13085 13086 auto II = FlagsMap.insert({V, Flags}); 13087 if (!II.second) 13088 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13089 } 13090 13091 bool PredicatedScalarEvolution::hasNoOverflow( 13092 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13093 const SCEV *Expr = getSCEV(V); 13094 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13095 13096 Flags = SCEVWrapPredicate::clearFlags( 13097 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13098 13099 auto II = FlagsMap.find(V); 13100 13101 if (II != FlagsMap.end()) 13102 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13103 13104 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13105 } 13106 13107 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13108 const SCEV *Expr = this->getSCEV(V); 13109 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13110 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13111 13112 if (!New) 13113 return nullptr; 13114 13115 for (auto *P : NewPreds) 13116 Preds.add(P); 13117 13118 updateGeneration(); 13119 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13120 return New; 13121 } 13122 13123 PredicatedScalarEvolution::PredicatedScalarEvolution( 13124 const PredicatedScalarEvolution &Init) 13125 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13126 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13127 for (auto I : Init.FlagsMap) 13128 FlagsMap.insert(I); 13129 } 13130 13131 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13132 // For each block. 13133 for (auto *BB : L.getBlocks()) 13134 for (auto &I : *BB) { 13135 if (!SE.isSCEVable(I.getType())) 13136 continue; 13137 13138 auto *Expr = SE.getSCEV(&I); 13139 auto II = RewriteMap.find(Expr); 13140 13141 if (II == RewriteMap.end()) 13142 continue; 13143 13144 // Don't print things that are not interesting. 13145 if (II->second.second == Expr) 13146 continue; 13147 13148 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13149 OS.indent(Depth + 2) << *Expr << "\n"; 13150 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13151 } 13152 } 13153 13154 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13155 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13156 // for URem with constant power-of-2 second operands. 13157 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13158 // 4, A / B becomes X / 8). 13159 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13160 const SCEV *&RHS) { 13161 // Try to match 'zext (trunc A to iB) to iY', which is used 13162 // for URem with constant power-of-2 second operands. Make sure the size of 13163 // the operand A matches the size of the whole expressions. 13164 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13165 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13166 LHS = Trunc->getOperand(); 13167 // Bail out if the type of the LHS is larger than the type of the 13168 // expression for now. 13169 if (getTypeSizeInBits(LHS->getType()) > 13170 getTypeSizeInBits(Expr->getType())) 13171 return false; 13172 if (LHS->getType() != Expr->getType()) 13173 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13174 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13175 << getTypeSizeInBits(Trunc->getType())); 13176 return true; 13177 } 13178 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13179 if (Add == nullptr || Add->getNumOperands() != 2) 13180 return false; 13181 13182 const SCEV *A = Add->getOperand(1); 13183 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13184 13185 if (Mul == nullptr) 13186 return false; 13187 13188 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13189 // (SomeExpr + (-(SomeExpr / B) * B)). 13190 if (Expr == getURemExpr(A, B)) { 13191 LHS = A; 13192 RHS = B; 13193 return true; 13194 } 13195 return false; 13196 }; 13197 13198 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13199 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13200 return MatchURemWithDivisor(Mul->getOperand(1)) || 13201 MatchURemWithDivisor(Mul->getOperand(2)); 13202 13203 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13204 if (Mul->getNumOperands() == 2) 13205 return MatchURemWithDivisor(Mul->getOperand(1)) || 13206 MatchURemWithDivisor(Mul->getOperand(0)) || 13207 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13208 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13209 return false; 13210 } 13211 13212 const SCEV * 13213 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13214 SmallVector<BasicBlock*, 16> ExitingBlocks; 13215 L->getExitingBlocks(ExitingBlocks); 13216 13217 // Form an expression for the maximum exit count possible for this loop. We 13218 // merge the max and exact information to approximate a version of 13219 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13220 SmallVector<const SCEV*, 4> ExitCounts; 13221 for (BasicBlock *ExitingBB : ExitingBlocks) { 13222 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13223 if (isa<SCEVCouldNotCompute>(ExitCount)) 13224 ExitCount = getExitCount(L, ExitingBB, 13225 ScalarEvolution::ConstantMaximum); 13226 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13227 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13228 "We should only have known counts for exiting blocks that " 13229 "dominate latch!"); 13230 ExitCounts.push_back(ExitCount); 13231 } 13232 } 13233 if (ExitCounts.empty()) 13234 return getCouldNotCompute(); 13235 return getUMinFromMismatchedTypes(ExitCounts); 13236 } 13237 13238 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13239 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13240 /// we cannot guarantee that the replacement is loop invariant in the loop of 13241 /// the AddRec. 13242 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13243 ValueToSCEVMapTy ⤅ 13244 13245 public: 13246 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13247 : SCEVRewriteVisitor(SE), Map(M) {} 13248 13249 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13250 13251 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13252 auto I = Map.find(Expr->getValue()); 13253 if (I == Map.end()) 13254 return Expr; 13255 return I->second; 13256 } 13257 }; 13258 13259 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13260 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13261 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13262 // If we have LHS == 0, check if LHS is computing a property of some unknown 13263 // SCEV %v which we can rewrite %v to express explicitly. 13264 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13265 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13266 RHSC->getValue()->isNullValue()) { 13267 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13268 // explicitly express that. 13269 const SCEV *URemLHS = nullptr; 13270 const SCEV *URemRHS = nullptr; 13271 if (matchURem(LHS, URemLHS, URemRHS)) { 13272 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13273 Value *V = LHSUnknown->getValue(); 13274 auto Multiple = 13275 getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS, 13276 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 13277 RewriteMap[V] = Multiple; 13278 return; 13279 } 13280 } 13281 } 13282 13283 if (!isa<SCEVUnknown>(LHS)) { 13284 std::swap(LHS, RHS); 13285 Predicate = CmpInst::getSwappedPredicate(Predicate); 13286 } 13287 13288 // For now, limit to conditions that provide information about unknown 13289 // expressions. 13290 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13291 if (!LHSUnknown) 13292 return; 13293 13294 // TODO: use information from more predicates. 13295 switch (Predicate) { 13296 case CmpInst::ICMP_ULT: { 13297 if (!containsAddRecurrence(RHS)) { 13298 const SCEV *Base = LHS; 13299 auto I = RewriteMap.find(LHSUnknown->getValue()); 13300 if (I != RewriteMap.end()) 13301 Base = I->second; 13302 13303 RewriteMap[LHSUnknown->getValue()] = 13304 getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType()))); 13305 } 13306 break; 13307 } 13308 case CmpInst::ICMP_ULE: { 13309 if (!containsAddRecurrence(RHS)) { 13310 const SCEV *Base = LHS; 13311 auto I = RewriteMap.find(LHSUnknown->getValue()); 13312 if (I != RewriteMap.end()) 13313 Base = I->second; 13314 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS); 13315 } 13316 break; 13317 } 13318 case CmpInst::ICMP_EQ: 13319 if (isa<SCEVConstant>(RHS)) 13320 RewriteMap[LHSUnknown->getValue()] = RHS; 13321 break; 13322 case CmpInst::ICMP_NE: 13323 if (isa<SCEVConstant>(RHS) && 13324 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13325 RewriteMap[LHSUnknown->getValue()] = 13326 getUMaxExpr(LHS, getOne(RHS->getType())); 13327 break; 13328 default: 13329 break; 13330 } 13331 }; 13332 // Starting at the loop predecessor, climb up the predecessor chain, as long 13333 // as there are predecessors that can be found that have unique successors 13334 // leading to the original header. 13335 // TODO: share this logic with isLoopEntryGuardedByCond. 13336 ValueToSCEVMapTy RewriteMap; 13337 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13338 L->getLoopPredecessor(), L->getHeader()); 13339 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13340 13341 const BranchInst *LoopEntryPredicate = 13342 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13343 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13344 continue; 13345 13346 // TODO: use information from more complex conditions, e.g. AND expressions. 13347 auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 13348 if (!Cmp) 13349 continue; 13350 13351 auto Predicate = Cmp->getPredicate(); 13352 if (LoopEntryPredicate->getSuccessor(1) == Pair.second) 13353 Predicate = CmpInst::getInversePredicate(Predicate); 13354 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13355 getSCEV(Cmp->getOperand(1)), RewriteMap); 13356 } 13357 13358 // Also collect information from assumptions dominating the loop. 13359 for (auto &AssumeVH : AC.assumptions()) { 13360 if (!AssumeVH) 13361 continue; 13362 auto *AssumeI = cast<CallInst>(AssumeVH); 13363 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13364 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13365 continue; 13366 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13367 getSCEV(Cmp->getOperand(1)), RewriteMap); 13368 } 13369 13370 if (RewriteMap.empty()) 13371 return Expr; 13372 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13373 return Rewriter.visit(Expr); 13374 } 13375