xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision a25b537bf437864232cb5826539eb4cee7c47b74)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389   case scMulExpr:
390   case scUMaxExpr:
391   case scSMaxExpr:
392   case scUMinExpr:
393   case scSMinExpr:
394     return cast<SCEVNAryExpr>(this)->getType();
395   case scAddExpr:
396     return cast<SCEVAddExpr>(this)->getType();
397   case scUDivExpr:
398     return cast<SCEVUDivExpr>(this)->getType();
399   case scUnknown:
400     return cast<SCEVUnknown>(this)->getType();
401   case scCouldNotCompute:
402     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
403   }
404   llvm_unreachable("Unknown SCEV kind!");
405 }
406 
407 bool SCEV::isZero() const {
408   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
409     return SC->getValue()->isZero();
410   return false;
411 }
412 
413 bool SCEV::isOne() const {
414   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
415     return SC->getValue()->isOne();
416   return false;
417 }
418 
419 bool SCEV::isAllOnesValue() const {
420   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
421     return SC->getValue()->isMinusOne();
422   return false;
423 }
424 
425 bool SCEV::isNonConstantNegative() const {
426   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
427   if (!Mul) return false;
428 
429   // If there is a constant factor, it will be first.
430   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
431   if (!SC) return false;
432 
433   // Return true if the value is negative, this matches things like (-42 * V).
434   return SC->getAPInt().isNegative();
435 }
436 
437 SCEVCouldNotCompute::SCEVCouldNotCompute() :
438   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
439 
440 bool SCEVCouldNotCompute::classof(const SCEV *S) {
441   return S->getSCEVType() == scCouldNotCompute;
442 }
443 
444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
445   FoldingSetNodeID ID;
446   ID.AddInteger(scConstant);
447   ID.AddPointer(V);
448   void *IP = nullptr;
449   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
450   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
451   UniqueSCEVs.InsertNode(S, IP);
452   return S;
453 }
454 
455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
456   return getConstant(ConstantInt::get(getContext(), Val));
457 }
458 
459 const SCEV *
460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
461   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
462   return getConstant(ConstantInt::get(ITy, V, isSigned));
463 }
464 
465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
466                            const SCEV *op, Type *ty)
467     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
468   Operands[0] = op;
469 }
470 
471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
472                                    Type *ITy)
473     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
474   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
475          "Must be a non-bit-width-changing pointer-to-integer cast!");
476 }
477 
478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
479                                            SCEVTypes SCEVTy, const SCEV *op,
480                                            Type *ty)
481     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
482 
483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
484                                    Type *ty)
485     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
486   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
487          "Cannot truncate non-integer value!");
488 }
489 
490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
491                                        const SCEV *op, Type *ty)
492     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
493   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
494          "Cannot zero extend non-integer value!");
495 }
496 
497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
498                                        const SCEV *op, Type *ty)
499     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
500   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
501          "Cannot sign extend non-integer value!");
502 }
503 
504 void SCEVUnknown::deleted() {
505   // Clear this SCEVUnknown from various maps.
506   SE->forgetMemoizedResults(this);
507 
508   // Remove this SCEVUnknown from the uniquing map.
509   SE->UniqueSCEVs.RemoveNode(this);
510 
511   // Release the value.
512   setValPtr(nullptr);
513 }
514 
515 void SCEVUnknown::allUsesReplacedWith(Value *New) {
516   // Remove this SCEVUnknown from the uniquing map.
517   SE->UniqueSCEVs.RemoveNode(this);
518 
519   // Update this SCEVUnknown to point to the new value. This is needed
520   // because there may still be outstanding SCEVs which still point to
521   // this SCEVUnknown.
522   setValPtr(New);
523 }
524 
525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
526   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
527     if (VCE->getOpcode() == Instruction::PtrToInt)
528       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
529         if (CE->getOpcode() == Instruction::GetElementPtr &&
530             CE->getOperand(0)->isNullValue() &&
531             CE->getNumOperands() == 2)
532           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
533             if (CI->isOne()) {
534               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
535                                  ->getElementType();
536               return true;
537             }
538 
539   return false;
540 }
541 
542 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
543   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
544     if (VCE->getOpcode() == Instruction::PtrToInt)
545       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
546         if (CE->getOpcode() == Instruction::GetElementPtr &&
547             CE->getOperand(0)->isNullValue()) {
548           Type *Ty =
549             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty =
576             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
577           // Ignore vector types here so that ScalarEvolutionExpander doesn't
578           // emit getelementptrs that index into vectors.
579           if (Ty->isStructTy() || Ty->isArrayTy()) {
580             CTy = Ty;
581             FieldNo = CE->getOperand(2);
582             return true;
583           }
584         }
585 
586   return false;
587 }
588 
589 //===----------------------------------------------------------------------===//
590 //                               SCEV Utilities
591 //===----------------------------------------------------------------------===//
592 
593 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
594 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
595 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
596 /// have been previously deemed to be "equally complex" by this routine.  It is
597 /// intended to avoid exponential time complexity in cases like:
598 ///
599 ///   %a = f(%x, %y)
600 ///   %b = f(%a, %a)
601 ///   %c = f(%b, %b)
602 ///
603 ///   %d = f(%x, %y)
604 ///   %e = f(%d, %d)
605 ///   %f = f(%e, %e)
606 ///
607 ///   CompareValueComplexity(%f, %c)
608 ///
609 /// Since we do not continue running this routine on expression trees once we
610 /// have seen unequal values, there is no need to track them in the cache.
611 static int
612 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
613                        const LoopInfo *const LI, Value *LV, Value *RV,
614                        unsigned Depth) {
615   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
616     return 0;
617 
618   // Order pointer values after integer values. This helps SCEVExpander form
619   // GEPs.
620   bool LIsPointer = LV->getType()->isPointerTy(),
621        RIsPointer = RV->getType()->isPointerTy();
622   if (LIsPointer != RIsPointer)
623     return (int)LIsPointer - (int)RIsPointer;
624 
625   // Compare getValueID values.
626   unsigned LID = LV->getValueID(), RID = RV->getValueID();
627   if (LID != RID)
628     return (int)LID - (int)RID;
629 
630   // Sort arguments by their position.
631   if (const auto *LA = dyn_cast<Argument>(LV)) {
632     const auto *RA = cast<Argument>(RV);
633     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
634     return (int)LArgNo - (int)RArgNo;
635   }
636 
637   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
638     const auto *RGV = cast<GlobalValue>(RV);
639 
640     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
641       auto LT = GV->getLinkage();
642       return !(GlobalValue::isPrivateLinkage(LT) ||
643                GlobalValue::isInternalLinkage(LT));
644     };
645 
646     // Use the names to distinguish the two values, but only if the
647     // names are semantically important.
648     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
649       return LGV->getName().compare(RGV->getName());
650   }
651 
652   // For instructions, compare their loop depth, and their operand count.  This
653   // is pretty loose.
654   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
655     const auto *RInst = cast<Instruction>(RV);
656 
657     // Compare loop depths.
658     const BasicBlock *LParent = LInst->getParent(),
659                      *RParent = RInst->getParent();
660     if (LParent != RParent) {
661       unsigned LDepth = LI->getLoopDepth(LParent),
662                RDepth = LI->getLoopDepth(RParent);
663       if (LDepth != RDepth)
664         return (int)LDepth - (int)RDepth;
665     }
666 
667     // Compare the number of operands.
668     unsigned LNumOps = LInst->getNumOperands(),
669              RNumOps = RInst->getNumOperands();
670     if (LNumOps != RNumOps)
671       return (int)LNumOps - (int)RNumOps;
672 
673     for (unsigned Idx : seq(0u, LNumOps)) {
674       int Result =
675           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
676                                  RInst->getOperand(Idx), Depth + 1);
677       if (Result != 0)
678         return Result;
679     }
680   }
681 
682   EqCacheValue.unionSets(LV, RV);
683   return 0;
684 }
685 
686 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
687 // than RHS, respectively. A three-way result allows recursive comparisons to be
688 // more efficient.
689 // If the max analysis depth was reached, return None, assuming we do not know
690 // if they are equivalent for sure.
691 static Optional<int>
692 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
693                       EquivalenceClasses<const Value *> &EqCacheValue,
694                       const LoopInfo *const LI, const SCEV *LHS,
695                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
696   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
697   if (LHS == RHS)
698     return 0;
699 
700   // Primarily, sort the SCEVs by their getSCEVType().
701   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
702   if (LType != RType)
703     return (int)LType - (int)RType;
704 
705   if (EqCacheSCEV.isEquivalent(LHS, RHS))
706     return 0;
707 
708   if (Depth > MaxSCEVCompareDepth)
709     return None;
710 
711   // Aside from the getSCEVType() ordering, the particular ordering
712   // isn't very important except that it's beneficial to be consistent,
713   // so that (a + b) and (b + a) don't end up as different expressions.
714   switch (LType) {
715   case scUnknown: {
716     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
717     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
718 
719     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
720                                    RU->getValue(), Depth + 1);
721     if (X == 0)
722       EqCacheSCEV.unionSets(LHS, RHS);
723     return X;
724   }
725 
726   case scConstant: {
727     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
728     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
729 
730     // Compare constant values.
731     const APInt &LA = LC->getAPInt();
732     const APInt &RA = RC->getAPInt();
733     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
734     if (LBitWidth != RBitWidth)
735       return (int)LBitWidth - (int)RBitWidth;
736     return LA.ult(RA) ? -1 : 1;
737   }
738 
739   case scAddRecExpr: {
740     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
741     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
742 
743     // There is always a dominance between two recs that are used by one SCEV,
744     // so we can safely sort recs by loop header dominance. We require such
745     // order in getAddExpr.
746     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
747     if (LLoop != RLoop) {
748       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
749       assert(LHead != RHead && "Two loops share the same header?");
750       if (DT.dominates(LHead, RHead))
751         return 1;
752       else
753         assert(DT.dominates(RHead, LHead) &&
754                "No dominance between recurrences used by one SCEV?");
755       return -1;
756     }
757 
758     // Addrec complexity grows with operand count.
759     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
760     if (LNumOps != RNumOps)
761       return (int)LNumOps - (int)RNumOps;
762 
763     // Lexicographically compare.
764     for (unsigned i = 0; i != LNumOps; ++i) {
765       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
766                                      LA->getOperand(i), RA->getOperand(i), DT,
767                                      Depth + 1);
768       if (X != 0)
769         return X;
770     }
771     EqCacheSCEV.unionSets(LHS, RHS);
772     return 0;
773   }
774 
775   case scAddExpr:
776   case scMulExpr:
777   case scSMaxExpr:
778   case scUMaxExpr:
779   case scSMinExpr:
780   case scUMinExpr: {
781     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
782     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
783 
784     // Lexicographically compare n-ary expressions.
785     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
786     if (LNumOps != RNumOps)
787       return (int)LNumOps - (int)RNumOps;
788 
789     for (unsigned i = 0; i != LNumOps; ++i) {
790       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
791                                      LC->getOperand(i), RC->getOperand(i), DT,
792                                      Depth + 1);
793       if (X != 0)
794         return X;
795     }
796     EqCacheSCEV.unionSets(LHS, RHS);
797     return 0;
798   }
799 
800   case scUDivExpr: {
801     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
802     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
803 
804     // Lexicographically compare udiv expressions.
805     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
806                                    RC->getLHS(), DT, Depth + 1);
807     if (X != 0)
808       return X;
809     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
810                               RC->getRHS(), DT, Depth + 1);
811     if (X == 0)
812       EqCacheSCEV.unionSets(LHS, RHS);
813     return X;
814   }
815 
816   case scPtrToInt:
817   case scTruncate:
818   case scZeroExtend:
819   case scSignExtend: {
820     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
821     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
822 
823     // Compare cast expressions by operand.
824     auto X =
825         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
826                               RC->getOperand(), DT, Depth + 1);
827     if (X == 0)
828       EqCacheSCEV.unionSets(LHS, RHS);
829     return X;
830   }
831 
832   case scCouldNotCompute:
833     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
834   }
835   llvm_unreachable("Unknown SCEV kind!");
836 }
837 
838 /// Given a list of SCEV objects, order them by their complexity, and group
839 /// objects of the same complexity together by value.  When this routine is
840 /// finished, we know that any duplicates in the vector are consecutive and that
841 /// complexity is monotonically increasing.
842 ///
843 /// Note that we go take special precautions to ensure that we get deterministic
844 /// results from this routine.  In other words, we don't want the results of
845 /// this to depend on where the addresses of various SCEV objects happened to
846 /// land in memory.
847 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
848                               LoopInfo *LI, DominatorTree &DT) {
849   if (Ops.size() < 2) return;  // Noop
850 
851   EquivalenceClasses<const SCEV *> EqCacheSCEV;
852   EquivalenceClasses<const Value *> EqCacheValue;
853 
854   // Whether LHS has provably less complexity than RHS.
855   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
856     auto Complexity =
857         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
858     return Complexity && *Complexity < 0;
859   };
860   if (Ops.size() == 2) {
861     // This is the common case, which also happens to be trivially simple.
862     // Special case it.
863     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
864     if (IsLessComplex(RHS, LHS))
865       std::swap(LHS, RHS);
866     return;
867   }
868 
869   // Do the rough sort by complexity.
870   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
871     return IsLessComplex(LHS, RHS);
872   });
873 
874   // Now that we are sorted by complexity, group elements of the same
875   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
876   // be extremely short in practice.  Note that we take this approach because we
877   // do not want to depend on the addresses of the objects we are grouping.
878   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
879     const SCEV *S = Ops[i];
880     unsigned Complexity = S->getSCEVType();
881 
882     // If there are any objects of the same complexity and same value as this
883     // one, group them.
884     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
885       if (Ops[j] == S) { // Found a duplicate.
886         // Move it to immediately after i'th element.
887         std::swap(Ops[i+1], Ops[j]);
888         ++i;   // no need to rescan it.
889         if (i == e-2) return;  // Done!
890       }
891     }
892   }
893 }
894 
895 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
896 /// least HugeExprThreshold nodes).
897 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
898   return any_of(Ops, [](const SCEV *S) {
899     return S->getExpressionSize() >= HugeExprThreshold;
900   });
901 }
902 
903 //===----------------------------------------------------------------------===//
904 //                      Simple SCEV method implementations
905 //===----------------------------------------------------------------------===//
906 
907 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
908 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
909                                        ScalarEvolution &SE,
910                                        Type *ResultTy) {
911   // Handle the simplest case efficiently.
912   if (K == 1)
913     return SE.getTruncateOrZeroExtend(It, ResultTy);
914 
915   // We are using the following formula for BC(It, K):
916   //
917   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
918   //
919   // Suppose, W is the bitwidth of the return value.  We must be prepared for
920   // overflow.  Hence, we must assure that the result of our computation is
921   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
922   // safe in modular arithmetic.
923   //
924   // However, this code doesn't use exactly that formula; the formula it uses
925   // is something like the following, where T is the number of factors of 2 in
926   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
927   // exponentiation:
928   //
929   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
930   //
931   // This formula is trivially equivalent to the previous formula.  However,
932   // this formula can be implemented much more efficiently.  The trick is that
933   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
934   // arithmetic.  To do exact division in modular arithmetic, all we have
935   // to do is multiply by the inverse.  Therefore, this step can be done at
936   // width W.
937   //
938   // The next issue is how to safely do the division by 2^T.  The way this
939   // is done is by doing the multiplication step at a width of at least W + T
940   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
941   // when we perform the division by 2^T (which is equivalent to a right shift
942   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
943   // truncated out after the division by 2^T.
944   //
945   // In comparison to just directly using the first formula, this technique
946   // is much more efficient; using the first formula requires W * K bits,
947   // but this formula less than W + K bits. Also, the first formula requires
948   // a division step, whereas this formula only requires multiplies and shifts.
949   //
950   // It doesn't matter whether the subtraction step is done in the calculation
951   // width or the input iteration count's width; if the subtraction overflows,
952   // the result must be zero anyway.  We prefer here to do it in the width of
953   // the induction variable because it helps a lot for certain cases; CodeGen
954   // isn't smart enough to ignore the overflow, which leads to much less
955   // efficient code if the width of the subtraction is wider than the native
956   // register width.
957   //
958   // (It's possible to not widen at all by pulling out factors of 2 before
959   // the multiplication; for example, K=2 can be calculated as
960   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
961   // extra arithmetic, so it's not an obvious win, and it gets
962   // much more complicated for K > 3.)
963 
964   // Protection from insane SCEVs; this bound is conservative,
965   // but it probably doesn't matter.
966   if (K > 1000)
967     return SE.getCouldNotCompute();
968 
969   unsigned W = SE.getTypeSizeInBits(ResultTy);
970 
971   // Calculate K! / 2^T and T; we divide out the factors of two before
972   // multiplying for calculating K! / 2^T to avoid overflow.
973   // Other overflow doesn't matter because we only care about the bottom
974   // W bits of the result.
975   APInt OddFactorial(W, 1);
976   unsigned T = 1;
977   for (unsigned i = 3; i <= K; ++i) {
978     APInt Mult(W, i);
979     unsigned TwoFactors = Mult.countTrailingZeros();
980     T += TwoFactors;
981     Mult.lshrInPlace(TwoFactors);
982     OddFactorial *= Mult;
983   }
984 
985   // We need at least W + T bits for the multiplication step
986   unsigned CalculationBits = W + T;
987 
988   // Calculate 2^T, at width T+W.
989   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
990 
991   // Calculate the multiplicative inverse of K! / 2^T;
992   // this multiplication factor will perform the exact division by
993   // K! / 2^T.
994   APInt Mod = APInt::getSignedMinValue(W+1);
995   APInt MultiplyFactor = OddFactorial.zext(W+1);
996   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
997   MultiplyFactor = MultiplyFactor.trunc(W);
998 
999   // Calculate the product, at width T+W
1000   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1001                                                       CalculationBits);
1002   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1003   for (unsigned i = 1; i != K; ++i) {
1004     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1005     Dividend = SE.getMulExpr(Dividend,
1006                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1007   }
1008 
1009   // Divide by 2^T
1010   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1011 
1012   // Truncate the result, and divide by K! / 2^T.
1013 
1014   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1015                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1016 }
1017 
1018 /// Return the value of this chain of recurrences at the specified iteration
1019 /// number.  We can evaluate this recurrence by multiplying each element in the
1020 /// chain by the binomial coefficient corresponding to it.  In other words, we
1021 /// can evaluate {A,+,B,+,C,+,D} as:
1022 ///
1023 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1024 ///
1025 /// where BC(It, k) stands for binomial coefficient.
1026 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1027                                                 ScalarEvolution &SE) const {
1028   const SCEV *Result = getStart();
1029   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1030     // The computation is correct in the face of overflow provided that the
1031     // multiplication is performed _after_ the evaluation of the binomial
1032     // coefficient.
1033     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1034     if (isa<SCEVCouldNotCompute>(Coeff))
1035       return Coeff;
1036 
1037     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1038   }
1039   return Result;
1040 }
1041 
1042 //===----------------------------------------------------------------------===//
1043 //                    SCEV Expression folder implementations
1044 //===----------------------------------------------------------------------===//
1045 
1046 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty,
1047                                              unsigned Depth) {
1048   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1049   assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once.");
1050 
1051   // We could be called with an integer-typed operands during SCEV rewrites.
1052   // Since the operand is an integer already, just perform zext/trunc/self cast.
1053   if (!Op->getType()->isPointerTy())
1054     return getTruncateOrZeroExtend(Op, Ty);
1055 
1056   // What would be an ID for such a SCEV cast expression?
1057   FoldingSetNodeID ID;
1058   ID.AddInteger(scPtrToInt);
1059   ID.AddPointer(Op);
1060 
1061   void *IP = nullptr;
1062 
1063   // Is there already an expression for such a cast?
1064   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1065     return getTruncateOrZeroExtend(S, Ty);
1066 
1067   // If not, is this expression something we can't reduce any further?
1068   if (isa<SCEVUnknown>(Op)) {
1069     // Create an explicit cast node.
1070     // We can reuse the existing insert position since if we get here,
1071     // we won't have made any changes which would invalidate it.
1072     Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1073     assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(
1074                Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) &&
1075            "We can only model ptrtoint if SCEV's effective (integer) type is "
1076            "sufficiently wide to represent all possible pointer values.");
1077     SCEV *S = new (SCEVAllocator)
1078         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1079     UniqueSCEVs.InsertNode(S, IP);
1080     addToLoopUseLists(S);
1081     return getTruncateOrZeroExtend(S, Ty);
1082   }
1083 
1084   assert(Depth == 0 &&
1085          "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's.");
1086 
1087   // Otherwise, we've got some expression that is more complex than just a
1088   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1089   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1090   // only, and the expressions must otherwise be integer-typed.
1091   // So sink the cast down to the SCEVUnknown's.
1092 
1093   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1094   /// which computes a pointer-typed value, and rewrites the whole expression
1095   /// tree so that *all* the computations are done on integers, and the only
1096   /// pointer-typed operands in the expression are SCEVUnknown.
1097   class SCEVPtrToIntSinkingRewriter
1098       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1099     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1100 
1101   public:
1102     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1103 
1104     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1105       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1106       return Rewriter.visit(Scev);
1107     }
1108 
1109     const SCEV *visit(const SCEV *S) {
1110       Type *STy = S->getType();
1111       // If the expression is not pointer-typed, just keep it as-is.
1112       if (!STy->isPointerTy())
1113         return S;
1114       // Else, recursively sink the cast down into it.
1115       return Base::visit(S);
1116     }
1117 
1118     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1119       SmallVector<const SCEV *, 2> Operands;
1120       bool Changed = false;
1121       for (auto *Op : Expr->operands()) {
1122         Operands.push_back(visit(Op));
1123         Changed |= Op != Operands.back();
1124       }
1125       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1126     }
1127 
1128     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1129       SmallVector<const SCEV *, 2> Operands;
1130       bool Changed = false;
1131       for (auto *Op : Expr->operands()) {
1132         Operands.push_back(visit(Op));
1133         Changed |= Op != Operands.back();
1134       }
1135       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1136     }
1137 
1138     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1139       Type *ExprPtrTy = Expr->getType();
1140       assert(ExprPtrTy->isPointerTy() &&
1141              "Should only reach pointer-typed SCEVUnknown's.");
1142       Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy);
1143       return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1);
1144     }
1145   };
1146 
1147   // And actually perform the cast sinking.
1148   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1149   assert(IntOp->getType()->isIntegerTy() &&
1150          "We must have succeeded in sinking the cast, "
1151          "and ending up with an integer-typed expression!");
1152   return getTruncateOrZeroExtend(IntOp, Ty);
1153 }
1154 
1155 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1156                                              unsigned Depth) {
1157   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1158          "This is not a truncating conversion!");
1159   assert(isSCEVable(Ty) &&
1160          "This is not a conversion to a SCEVable type!");
1161   Ty = getEffectiveSCEVType(Ty);
1162 
1163   FoldingSetNodeID ID;
1164   ID.AddInteger(scTruncate);
1165   ID.AddPointer(Op);
1166   ID.AddPointer(Ty);
1167   void *IP = nullptr;
1168   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1169 
1170   // Fold if the operand is constant.
1171   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1172     return getConstant(
1173       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1174 
1175   // trunc(trunc(x)) --> trunc(x)
1176   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1177     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1178 
1179   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1180   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1181     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1182 
1183   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1184   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1185     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1186 
1187   if (Depth > MaxCastDepth) {
1188     SCEV *S =
1189         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1190     UniqueSCEVs.InsertNode(S, IP);
1191     addToLoopUseLists(S);
1192     return S;
1193   }
1194 
1195   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1196   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1197   // if after transforming we have at most one truncate, not counting truncates
1198   // that replace other casts.
1199   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1200     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1201     SmallVector<const SCEV *, 4> Operands;
1202     unsigned numTruncs = 0;
1203     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1204          ++i) {
1205       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1206       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1207           isa<SCEVTruncateExpr>(S))
1208         numTruncs++;
1209       Operands.push_back(S);
1210     }
1211     if (numTruncs < 2) {
1212       if (isa<SCEVAddExpr>(Op))
1213         return getAddExpr(Operands);
1214       else if (isa<SCEVMulExpr>(Op))
1215         return getMulExpr(Operands);
1216       else
1217         llvm_unreachable("Unexpected SCEV type for Op.");
1218     }
1219     // Although we checked in the beginning that ID is not in the cache, it is
1220     // possible that during recursion and different modification ID was inserted
1221     // into the cache. So if we find it, just return it.
1222     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1223       return S;
1224   }
1225 
1226   // If the input value is a chrec scev, truncate the chrec's operands.
1227   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1228     SmallVector<const SCEV *, 4> Operands;
1229     for (const SCEV *Op : AddRec->operands())
1230       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1231     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1232   }
1233 
1234   // Return zero if truncating to known zeros.
1235   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1236   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1237     return getZero(Ty);
1238 
1239   // The cast wasn't folded; create an explicit cast node. We can reuse
1240   // the existing insert position since if we get here, we won't have
1241   // made any changes which would invalidate it.
1242   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1243                                                  Op, Ty);
1244   UniqueSCEVs.InsertNode(S, IP);
1245   addToLoopUseLists(S);
1246   return S;
1247 }
1248 
1249 // Get the limit of a recurrence such that incrementing by Step cannot cause
1250 // signed overflow as long as the value of the recurrence within the
1251 // loop does not exceed this limit before incrementing.
1252 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1253                                                  ICmpInst::Predicate *Pred,
1254                                                  ScalarEvolution *SE) {
1255   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1256   if (SE->isKnownPositive(Step)) {
1257     *Pred = ICmpInst::ICMP_SLT;
1258     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1259                            SE->getSignedRangeMax(Step));
1260   }
1261   if (SE->isKnownNegative(Step)) {
1262     *Pred = ICmpInst::ICMP_SGT;
1263     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1264                            SE->getSignedRangeMin(Step));
1265   }
1266   return nullptr;
1267 }
1268 
1269 // Get the limit of a recurrence such that incrementing by Step cannot cause
1270 // unsigned overflow as long as the value of the recurrence within the loop does
1271 // not exceed this limit before incrementing.
1272 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1273                                                    ICmpInst::Predicate *Pred,
1274                                                    ScalarEvolution *SE) {
1275   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1276   *Pred = ICmpInst::ICMP_ULT;
1277 
1278   return SE->getConstant(APInt::getMinValue(BitWidth) -
1279                          SE->getUnsignedRangeMax(Step));
1280 }
1281 
1282 namespace {
1283 
1284 struct ExtendOpTraitsBase {
1285   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1286                                                           unsigned);
1287 };
1288 
1289 // Used to make code generic over signed and unsigned overflow.
1290 template <typename ExtendOp> struct ExtendOpTraits {
1291   // Members present:
1292   //
1293   // static const SCEV::NoWrapFlags WrapType;
1294   //
1295   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1296   //
1297   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1298   //                                           ICmpInst::Predicate *Pred,
1299   //                                           ScalarEvolution *SE);
1300 };
1301 
1302 template <>
1303 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1304   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1305 
1306   static const GetExtendExprTy GetExtendExpr;
1307 
1308   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1309                                              ICmpInst::Predicate *Pred,
1310                                              ScalarEvolution *SE) {
1311     return getSignedOverflowLimitForStep(Step, Pred, SE);
1312   }
1313 };
1314 
1315 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1316     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1317 
1318 template <>
1319 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1320   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1321 
1322   static const GetExtendExprTy GetExtendExpr;
1323 
1324   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1325                                              ICmpInst::Predicate *Pred,
1326                                              ScalarEvolution *SE) {
1327     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1328   }
1329 };
1330 
1331 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1332     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1333 
1334 } // end anonymous namespace
1335 
1336 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1337 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1338 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1339 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1340 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1341 // expression "Step + sext/zext(PreIncAR)" is congruent with
1342 // "sext/zext(PostIncAR)"
1343 template <typename ExtendOpTy>
1344 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1345                                         ScalarEvolution *SE, unsigned Depth) {
1346   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1347   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1348 
1349   const Loop *L = AR->getLoop();
1350   const SCEV *Start = AR->getStart();
1351   const SCEV *Step = AR->getStepRecurrence(*SE);
1352 
1353   // Check for a simple looking step prior to loop entry.
1354   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1355   if (!SA)
1356     return nullptr;
1357 
1358   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1359   // subtraction is expensive. For this purpose, perform a quick and dirty
1360   // difference, by checking for Step in the operand list.
1361   SmallVector<const SCEV *, 4> DiffOps;
1362   for (const SCEV *Op : SA->operands())
1363     if (Op != Step)
1364       DiffOps.push_back(Op);
1365 
1366   if (DiffOps.size() == SA->getNumOperands())
1367     return nullptr;
1368 
1369   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1370   // `Step`:
1371 
1372   // 1. NSW/NUW flags on the step increment.
1373   auto PreStartFlags =
1374     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1375   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1376   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1377       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1378 
1379   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1380   // "S+X does not sign/unsign-overflow".
1381   //
1382 
1383   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1384   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1385       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1386     return PreStart;
1387 
1388   // 2. Direct overflow check on the step operation's expression.
1389   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1390   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1391   const SCEV *OperandExtendedStart =
1392       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1393                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1394   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1395     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1396       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1397       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1398       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1399       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1400     }
1401     return PreStart;
1402   }
1403 
1404   // 3. Loop precondition.
1405   ICmpInst::Predicate Pred;
1406   const SCEV *OverflowLimit =
1407       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1408 
1409   if (OverflowLimit &&
1410       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1411     return PreStart;
1412 
1413   return nullptr;
1414 }
1415 
1416 // Get the normalized zero or sign extended expression for this AddRec's Start.
1417 template <typename ExtendOpTy>
1418 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1419                                         ScalarEvolution *SE,
1420                                         unsigned Depth) {
1421   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1422 
1423   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1424   if (!PreStart)
1425     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1426 
1427   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1428                                              Depth),
1429                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1430 }
1431 
1432 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1433 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1434 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1435 //
1436 // Formally:
1437 //
1438 //     {S,+,X} == {S-T,+,X} + T
1439 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1440 //
1441 // If ({S-T,+,X} + T) does not overflow  ... (1)
1442 //
1443 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1444 //
1445 // If {S-T,+,X} does not overflow  ... (2)
1446 //
1447 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1448 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1449 //
1450 // If (S-T)+T does not overflow  ... (3)
1451 //
1452 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1453 //      == {Ext(S),+,Ext(X)} == LHS
1454 //
1455 // Thus, if (1), (2) and (3) are true for some T, then
1456 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1457 //
1458 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1459 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1460 // to check for (1) and (2).
1461 //
1462 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1463 // is `Delta` (defined below).
1464 template <typename ExtendOpTy>
1465 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1466                                                 const SCEV *Step,
1467                                                 const Loop *L) {
1468   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1469 
1470   // We restrict `Start` to a constant to prevent SCEV from spending too much
1471   // time here.  It is correct (but more expensive) to continue with a
1472   // non-constant `Start` and do a general SCEV subtraction to compute
1473   // `PreStart` below.
1474   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1475   if (!StartC)
1476     return false;
1477 
1478   APInt StartAI = StartC->getAPInt();
1479 
1480   for (unsigned Delta : {-2, -1, 1, 2}) {
1481     const SCEV *PreStart = getConstant(StartAI - Delta);
1482 
1483     FoldingSetNodeID ID;
1484     ID.AddInteger(scAddRecExpr);
1485     ID.AddPointer(PreStart);
1486     ID.AddPointer(Step);
1487     ID.AddPointer(L);
1488     void *IP = nullptr;
1489     const auto *PreAR =
1490       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1491 
1492     // Give up if we don't already have the add recurrence we need because
1493     // actually constructing an add recurrence is relatively expensive.
1494     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1495       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1496       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1497       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1498           DeltaS, &Pred, this);
1499       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1500         return true;
1501     }
1502   }
1503 
1504   return false;
1505 }
1506 
1507 // Finds an integer D for an expression (C + x + y + ...) such that the top
1508 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1509 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1510 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1511 // the (C + x + y + ...) expression is \p WholeAddExpr.
1512 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1513                                             const SCEVConstant *ConstantTerm,
1514                                             const SCEVAddExpr *WholeAddExpr) {
1515   const APInt &C = ConstantTerm->getAPInt();
1516   const unsigned BitWidth = C.getBitWidth();
1517   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1518   uint32_t TZ = BitWidth;
1519   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1520     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1521   if (TZ) {
1522     // Set D to be as many least significant bits of C as possible while still
1523     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1524     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1525   }
1526   return APInt(BitWidth, 0);
1527 }
1528 
1529 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1530 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1531 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1532 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1533 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1534                                             const APInt &ConstantStart,
1535                                             const SCEV *Step) {
1536   const unsigned BitWidth = ConstantStart.getBitWidth();
1537   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1538   if (TZ)
1539     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1540                          : ConstantStart;
1541   return APInt(BitWidth, 0);
1542 }
1543 
1544 const SCEV *
1545 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1546   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1547          "This is not an extending conversion!");
1548   assert(isSCEVable(Ty) &&
1549          "This is not a conversion to a SCEVable type!");
1550   Ty = getEffectiveSCEVType(Ty);
1551 
1552   // Fold if the operand is constant.
1553   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1554     return getConstant(
1555       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1556 
1557   // zext(zext(x)) --> zext(x)
1558   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1559     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1560 
1561   // Before doing any expensive analysis, check to see if we've already
1562   // computed a SCEV for this Op and Ty.
1563   FoldingSetNodeID ID;
1564   ID.AddInteger(scZeroExtend);
1565   ID.AddPointer(Op);
1566   ID.AddPointer(Ty);
1567   void *IP = nullptr;
1568   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1569   if (Depth > MaxCastDepth) {
1570     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1571                                                      Op, Ty);
1572     UniqueSCEVs.InsertNode(S, IP);
1573     addToLoopUseLists(S);
1574     return S;
1575   }
1576 
1577   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1578   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1579     // It's possible the bits taken off by the truncate were all zero bits. If
1580     // so, we should be able to simplify this further.
1581     const SCEV *X = ST->getOperand();
1582     ConstantRange CR = getUnsignedRange(X);
1583     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1584     unsigned NewBits = getTypeSizeInBits(Ty);
1585     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1586             CR.zextOrTrunc(NewBits)))
1587       return getTruncateOrZeroExtend(X, Ty, Depth);
1588   }
1589 
1590   // If the input value is a chrec scev, and we can prove that the value
1591   // did not overflow the old, smaller, value, we can zero extend all of the
1592   // operands (often constants).  This allows analysis of something like
1593   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1594   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1595     if (AR->isAffine()) {
1596       const SCEV *Start = AR->getStart();
1597       const SCEV *Step = AR->getStepRecurrence(*this);
1598       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1599       const Loop *L = AR->getLoop();
1600 
1601       if (!AR->hasNoUnsignedWrap()) {
1602         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1603         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1604       }
1605 
1606       // If we have special knowledge that this addrec won't overflow,
1607       // we don't need to do any further analysis.
1608       if (AR->hasNoUnsignedWrap())
1609         return getAddRecExpr(
1610             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1611             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1612 
1613       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1614       // Note that this serves two purposes: It filters out loops that are
1615       // simply not analyzable, and it covers the case where this code is
1616       // being called from within backedge-taken count analysis, such that
1617       // attempting to ask for the backedge-taken count would likely result
1618       // in infinite recursion. In the later case, the analysis code will
1619       // cope with a conservative value, and it will take care to purge
1620       // that value once it has finished.
1621       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1622       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1623         // Manually compute the final value for AR, checking for overflow.
1624 
1625         // Check whether the backedge-taken count can be losslessly casted to
1626         // the addrec's type. The count is always unsigned.
1627         const SCEV *CastedMaxBECount =
1628             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1629         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1630             CastedMaxBECount, MaxBECount->getType(), Depth);
1631         if (MaxBECount == RecastedMaxBECount) {
1632           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1633           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1634           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1635                                         SCEV::FlagAnyWrap, Depth + 1);
1636           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1637                                                           SCEV::FlagAnyWrap,
1638                                                           Depth + 1),
1639                                                WideTy, Depth + 1);
1640           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1641           const SCEV *WideMaxBECount =
1642             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1643           const SCEV *OperandExtendedAdd =
1644             getAddExpr(WideStart,
1645                        getMulExpr(WideMaxBECount,
1646                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1647                                   SCEV::FlagAnyWrap, Depth + 1),
1648                        SCEV::FlagAnyWrap, Depth + 1);
1649           if (ZAdd == OperandExtendedAdd) {
1650             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1651             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1652             // Return the expression with the addrec on the outside.
1653             return getAddRecExpr(
1654                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1655                                                          Depth + 1),
1656                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1657                 AR->getNoWrapFlags());
1658           }
1659           // Similar to above, only this time treat the step value as signed.
1660           // This covers loops that count down.
1661           OperandExtendedAdd =
1662             getAddExpr(WideStart,
1663                        getMulExpr(WideMaxBECount,
1664                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1665                                   SCEV::FlagAnyWrap, Depth + 1),
1666                        SCEV::FlagAnyWrap, Depth + 1);
1667           if (ZAdd == OperandExtendedAdd) {
1668             // Cache knowledge of AR NW, which is propagated to this AddRec.
1669             // Negative step causes unsigned wrap, but it still can't self-wrap.
1670             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1671             // Return the expression with the addrec on the outside.
1672             return getAddRecExpr(
1673                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1674                                                          Depth + 1),
1675                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1676                 AR->getNoWrapFlags());
1677           }
1678         }
1679       }
1680 
1681       // Normally, in the cases we can prove no-overflow via a
1682       // backedge guarding condition, we can also compute a backedge
1683       // taken count for the loop.  The exceptions are assumptions and
1684       // guards present in the loop -- SCEV is not great at exploiting
1685       // these to compute max backedge taken counts, but can still use
1686       // these to prove lack of overflow.  Use this fact to avoid
1687       // doing extra work that may not pay off.
1688       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1689           !AC.assumptions().empty()) {
1690 
1691         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1692         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1693         if (AR->hasNoUnsignedWrap()) {
1694           // Same as nuw case above - duplicated here to avoid a compile time
1695           // issue.  It's not clear that the order of checks does matter, but
1696           // it's one of two issue possible causes for a change which was
1697           // reverted.  Be conservative for the moment.
1698           return getAddRecExpr(
1699                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1700                                                          Depth + 1),
1701                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1702                 AR->getNoWrapFlags());
1703         }
1704 
1705         // For a negative step, we can extend the operands iff doing so only
1706         // traverses values in the range zext([0,UINT_MAX]).
1707         if (isKnownNegative(Step)) {
1708           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1709                                       getSignedRangeMin(Step));
1710           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1711               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1712             // Cache knowledge of AR NW, which is propagated to this
1713             // AddRec.  Negative step causes unsigned wrap, but it
1714             // still can't self-wrap.
1715             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1716             // Return the expression with the addrec on the outside.
1717             return getAddRecExpr(
1718                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1719                                                          Depth + 1),
1720                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1721                 AR->getNoWrapFlags());
1722           }
1723         }
1724       }
1725 
1726       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1727       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1728       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1729       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1730         const APInt &C = SC->getAPInt();
1731         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1732         if (D != 0) {
1733           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1734           const SCEV *SResidual =
1735               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1736           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1737           return getAddExpr(SZExtD, SZExtR,
1738                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1739                             Depth + 1);
1740         }
1741       }
1742 
1743       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1744         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1745         return getAddRecExpr(
1746             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1747             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1748       }
1749     }
1750 
1751   // zext(A % B) --> zext(A) % zext(B)
1752   {
1753     const SCEV *LHS;
1754     const SCEV *RHS;
1755     if (matchURem(Op, LHS, RHS))
1756       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1757                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1758   }
1759 
1760   // zext(A / B) --> zext(A) / zext(B).
1761   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1762     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1763                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1764 
1765   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1766     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1767     if (SA->hasNoUnsignedWrap()) {
1768       // If the addition does not unsign overflow then we can, by definition,
1769       // commute the zero extension with the addition operation.
1770       SmallVector<const SCEV *, 4> Ops;
1771       for (const auto *Op : SA->operands())
1772         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1773       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1774     }
1775 
1776     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1777     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1778     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1779     //
1780     // Often address arithmetics contain expressions like
1781     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1782     // This transformation is useful while proving that such expressions are
1783     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1784     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1785       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1786       if (D != 0) {
1787         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1788         const SCEV *SResidual =
1789             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1790         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1791         return getAddExpr(SZExtD, SZExtR,
1792                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1793                           Depth + 1);
1794       }
1795     }
1796   }
1797 
1798   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1799     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1800     if (SM->hasNoUnsignedWrap()) {
1801       // If the multiply does not unsign overflow then we can, by definition,
1802       // commute the zero extension with the multiply operation.
1803       SmallVector<const SCEV *, 4> Ops;
1804       for (const auto *Op : SM->operands())
1805         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1806       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1807     }
1808 
1809     // zext(2^K * (trunc X to iN)) to iM ->
1810     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1811     //
1812     // Proof:
1813     //
1814     //     zext(2^K * (trunc X to iN)) to iM
1815     //   = zext((trunc X to iN) << K) to iM
1816     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1817     //     (because shl removes the top K bits)
1818     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1819     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1820     //
1821     if (SM->getNumOperands() == 2)
1822       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1823         if (MulLHS->getAPInt().isPowerOf2())
1824           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1825             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1826                                MulLHS->getAPInt().logBase2();
1827             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1828             return getMulExpr(
1829                 getZeroExtendExpr(MulLHS, Ty),
1830                 getZeroExtendExpr(
1831                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1832                 SCEV::FlagNUW, Depth + 1);
1833           }
1834   }
1835 
1836   // The cast wasn't folded; create an explicit cast node.
1837   // Recompute the insert position, as it may have been invalidated.
1838   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1839   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1840                                                    Op, Ty);
1841   UniqueSCEVs.InsertNode(S, IP);
1842   addToLoopUseLists(S);
1843   return S;
1844 }
1845 
1846 const SCEV *
1847 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1848   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1849          "This is not an extending conversion!");
1850   assert(isSCEVable(Ty) &&
1851          "This is not a conversion to a SCEVable type!");
1852   Ty = getEffectiveSCEVType(Ty);
1853 
1854   // Fold if the operand is constant.
1855   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1856     return getConstant(
1857       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1858 
1859   // sext(sext(x)) --> sext(x)
1860   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1861     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1862 
1863   // sext(zext(x)) --> zext(x)
1864   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1865     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1866 
1867   // Before doing any expensive analysis, check to see if we've already
1868   // computed a SCEV for this Op and Ty.
1869   FoldingSetNodeID ID;
1870   ID.AddInteger(scSignExtend);
1871   ID.AddPointer(Op);
1872   ID.AddPointer(Ty);
1873   void *IP = nullptr;
1874   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1875   // Limit recursion depth.
1876   if (Depth > MaxCastDepth) {
1877     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1878                                                      Op, Ty);
1879     UniqueSCEVs.InsertNode(S, IP);
1880     addToLoopUseLists(S);
1881     return S;
1882   }
1883 
1884   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1885   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1886     // It's possible the bits taken off by the truncate were all sign bits. If
1887     // so, we should be able to simplify this further.
1888     const SCEV *X = ST->getOperand();
1889     ConstantRange CR = getSignedRange(X);
1890     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1891     unsigned NewBits = getTypeSizeInBits(Ty);
1892     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1893             CR.sextOrTrunc(NewBits)))
1894       return getTruncateOrSignExtend(X, Ty, Depth);
1895   }
1896 
1897   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1898     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1899     if (SA->hasNoSignedWrap()) {
1900       // If the addition does not sign overflow then we can, by definition,
1901       // commute the sign extension with the addition operation.
1902       SmallVector<const SCEV *, 4> Ops;
1903       for (const auto *Op : SA->operands())
1904         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1905       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1906     }
1907 
1908     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1909     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1910     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1911     //
1912     // For instance, this will bring two seemingly different expressions:
1913     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1914     //         sext(6 + 20 * %x + 24 * %y)
1915     // to the same form:
1916     //     2 + sext(4 + 20 * %x + 24 * %y)
1917     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1918       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1919       if (D != 0) {
1920         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1921         const SCEV *SResidual =
1922             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1923         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1924         return getAddExpr(SSExtD, SSExtR,
1925                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1926                           Depth + 1);
1927       }
1928     }
1929   }
1930   // If the input value is a chrec scev, and we can prove that the value
1931   // did not overflow the old, smaller, value, we can sign extend all of the
1932   // operands (often constants).  This allows analysis of something like
1933   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1934   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1935     if (AR->isAffine()) {
1936       const SCEV *Start = AR->getStart();
1937       const SCEV *Step = AR->getStepRecurrence(*this);
1938       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1939       const Loop *L = AR->getLoop();
1940 
1941       if (!AR->hasNoSignedWrap()) {
1942         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1943         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1944       }
1945 
1946       // If we have special knowledge that this addrec won't overflow,
1947       // we don't need to do any further analysis.
1948       if (AR->hasNoSignedWrap())
1949         return getAddRecExpr(
1950             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1951             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1952 
1953       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1954       // Note that this serves two purposes: It filters out loops that are
1955       // simply not analyzable, and it covers the case where this code is
1956       // being called from within backedge-taken count analysis, such that
1957       // attempting to ask for the backedge-taken count would likely result
1958       // in infinite recursion. In the later case, the analysis code will
1959       // cope with a conservative value, and it will take care to purge
1960       // that value once it has finished.
1961       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1962       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1963         // Manually compute the final value for AR, checking for
1964         // overflow.
1965 
1966         // Check whether the backedge-taken count can be losslessly casted to
1967         // the addrec's type. The count is always unsigned.
1968         const SCEV *CastedMaxBECount =
1969             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1970         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1971             CastedMaxBECount, MaxBECount->getType(), Depth);
1972         if (MaxBECount == RecastedMaxBECount) {
1973           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1974           // Check whether Start+Step*MaxBECount has no signed overflow.
1975           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1976                                         SCEV::FlagAnyWrap, Depth + 1);
1977           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1978                                                           SCEV::FlagAnyWrap,
1979                                                           Depth + 1),
1980                                                WideTy, Depth + 1);
1981           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1982           const SCEV *WideMaxBECount =
1983             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1984           const SCEV *OperandExtendedAdd =
1985             getAddExpr(WideStart,
1986                        getMulExpr(WideMaxBECount,
1987                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1988                                   SCEV::FlagAnyWrap, Depth + 1),
1989                        SCEV::FlagAnyWrap, Depth + 1);
1990           if (SAdd == OperandExtendedAdd) {
1991             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1992             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
1993             // Return the expression with the addrec on the outside.
1994             return getAddRecExpr(
1995                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1996                                                          Depth + 1),
1997                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1998                 AR->getNoWrapFlags());
1999           }
2000           // Similar to above, only this time treat the step value as unsigned.
2001           // This covers loops that count up with an unsigned step.
2002           OperandExtendedAdd =
2003             getAddExpr(WideStart,
2004                        getMulExpr(WideMaxBECount,
2005                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2006                                   SCEV::FlagAnyWrap, Depth + 1),
2007                        SCEV::FlagAnyWrap, Depth + 1);
2008           if (SAdd == OperandExtendedAdd) {
2009             // If AR wraps around then
2010             //
2011             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2012             // => SAdd != OperandExtendedAdd
2013             //
2014             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2015             // (SAdd == OperandExtendedAdd => AR is NW)
2016 
2017             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2018 
2019             // Return the expression with the addrec on the outside.
2020             return getAddRecExpr(
2021                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2022                                                          Depth + 1),
2023                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2024                 AR->getNoWrapFlags());
2025           }
2026         }
2027       }
2028 
2029       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2030       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2031       if (AR->hasNoSignedWrap()) {
2032         // Same as nsw case above - duplicated here to avoid a compile time
2033         // issue.  It's not clear that the order of checks does matter, but
2034         // it's one of two issue possible causes for a change which was
2035         // reverted.  Be conservative for the moment.
2036         return getAddRecExpr(
2037             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2038             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2039       }
2040 
2041       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2042       // if D + (C - D + Step * n) could be proven to not signed wrap
2043       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2044       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2045         const APInt &C = SC->getAPInt();
2046         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2047         if (D != 0) {
2048           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2049           const SCEV *SResidual =
2050               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2051           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2052           return getAddExpr(SSExtD, SSExtR,
2053                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2054                             Depth + 1);
2055         }
2056       }
2057 
2058       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2059         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2060         return getAddRecExpr(
2061             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2062             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2063       }
2064     }
2065 
2066   // If the input value is provably positive and we could not simplify
2067   // away the sext build a zext instead.
2068   if (isKnownNonNegative(Op))
2069     return getZeroExtendExpr(Op, Ty, Depth + 1);
2070 
2071   // The cast wasn't folded; create an explicit cast node.
2072   // Recompute the insert position, as it may have been invalidated.
2073   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2074   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2075                                                    Op, Ty);
2076   UniqueSCEVs.InsertNode(S, IP);
2077   addToLoopUseLists(S);
2078   return S;
2079 }
2080 
2081 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2082 /// unspecified bits out to the given type.
2083 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2084                                               Type *Ty) {
2085   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2086          "This is not an extending conversion!");
2087   assert(isSCEVable(Ty) &&
2088          "This is not a conversion to a SCEVable type!");
2089   Ty = getEffectiveSCEVType(Ty);
2090 
2091   // Sign-extend negative constants.
2092   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2093     if (SC->getAPInt().isNegative())
2094       return getSignExtendExpr(Op, Ty);
2095 
2096   // Peel off a truncate cast.
2097   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2098     const SCEV *NewOp = T->getOperand();
2099     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2100       return getAnyExtendExpr(NewOp, Ty);
2101     return getTruncateOrNoop(NewOp, Ty);
2102   }
2103 
2104   // Next try a zext cast. If the cast is folded, use it.
2105   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2106   if (!isa<SCEVZeroExtendExpr>(ZExt))
2107     return ZExt;
2108 
2109   // Next try a sext cast. If the cast is folded, use it.
2110   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2111   if (!isa<SCEVSignExtendExpr>(SExt))
2112     return SExt;
2113 
2114   // Force the cast to be folded into the operands of an addrec.
2115   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2116     SmallVector<const SCEV *, 4> Ops;
2117     for (const SCEV *Op : AR->operands())
2118       Ops.push_back(getAnyExtendExpr(Op, Ty));
2119     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2120   }
2121 
2122   // If the expression is obviously signed, use the sext cast value.
2123   if (isa<SCEVSMaxExpr>(Op))
2124     return SExt;
2125 
2126   // Absent any other information, use the zext cast value.
2127   return ZExt;
2128 }
2129 
2130 /// Process the given Ops list, which is a list of operands to be added under
2131 /// the given scale, update the given map. This is a helper function for
2132 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2133 /// that would form an add expression like this:
2134 ///
2135 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2136 ///
2137 /// where A and B are constants, update the map with these values:
2138 ///
2139 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2140 ///
2141 /// and add 13 + A*B*29 to AccumulatedConstant.
2142 /// This will allow getAddRecExpr to produce this:
2143 ///
2144 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2145 ///
2146 /// This form often exposes folding opportunities that are hidden in
2147 /// the original operand list.
2148 ///
2149 /// Return true iff it appears that any interesting folding opportunities
2150 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2151 /// the common case where no interesting opportunities are present, and
2152 /// is also used as a check to avoid infinite recursion.
2153 static bool
2154 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2155                              SmallVectorImpl<const SCEV *> &NewOps,
2156                              APInt &AccumulatedConstant,
2157                              const SCEV *const *Ops, size_t NumOperands,
2158                              const APInt &Scale,
2159                              ScalarEvolution &SE) {
2160   bool Interesting = false;
2161 
2162   // Iterate over the add operands. They are sorted, with constants first.
2163   unsigned i = 0;
2164   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2165     ++i;
2166     // Pull a buried constant out to the outside.
2167     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2168       Interesting = true;
2169     AccumulatedConstant += Scale * C->getAPInt();
2170   }
2171 
2172   // Next comes everything else. We're especially interested in multiplies
2173   // here, but they're in the middle, so just visit the rest with one loop.
2174   for (; i != NumOperands; ++i) {
2175     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2176     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2177       APInt NewScale =
2178           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2179       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2180         // A multiplication of a constant with another add; recurse.
2181         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2182         Interesting |=
2183           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2184                                        Add->op_begin(), Add->getNumOperands(),
2185                                        NewScale, SE);
2186       } else {
2187         // A multiplication of a constant with some other value. Update
2188         // the map.
2189         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2190         const SCEV *Key = SE.getMulExpr(MulOps);
2191         auto Pair = M.insert({Key, NewScale});
2192         if (Pair.second) {
2193           NewOps.push_back(Pair.first->first);
2194         } else {
2195           Pair.first->second += NewScale;
2196           // The map already had an entry for this value, which may indicate
2197           // a folding opportunity.
2198           Interesting = true;
2199         }
2200       }
2201     } else {
2202       // An ordinary operand. Update the map.
2203       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2204           M.insert({Ops[i], Scale});
2205       if (Pair.second) {
2206         NewOps.push_back(Pair.first->first);
2207       } else {
2208         Pair.first->second += Scale;
2209         // The map already had an entry for this value, which may indicate
2210         // a folding opportunity.
2211         Interesting = true;
2212       }
2213     }
2214   }
2215 
2216   return Interesting;
2217 }
2218 
2219 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2220 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2221 // can't-overflow flags for the operation if possible.
2222 static SCEV::NoWrapFlags
2223 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2224                       const ArrayRef<const SCEV *> Ops,
2225                       SCEV::NoWrapFlags Flags) {
2226   using namespace std::placeholders;
2227 
2228   using OBO = OverflowingBinaryOperator;
2229 
2230   bool CanAnalyze =
2231       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2232   (void)CanAnalyze;
2233   assert(CanAnalyze && "don't call from other places!");
2234 
2235   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2236   SCEV::NoWrapFlags SignOrUnsignWrap =
2237       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2238 
2239   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2240   auto IsKnownNonNegative = [&](const SCEV *S) {
2241     return SE->isKnownNonNegative(S);
2242   };
2243 
2244   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2245     Flags =
2246         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2247 
2248   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2249 
2250   if (SignOrUnsignWrap != SignOrUnsignMask &&
2251       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2252       isa<SCEVConstant>(Ops[0])) {
2253 
2254     auto Opcode = [&] {
2255       switch (Type) {
2256       case scAddExpr:
2257         return Instruction::Add;
2258       case scMulExpr:
2259         return Instruction::Mul;
2260       default:
2261         llvm_unreachable("Unexpected SCEV op.");
2262       }
2263     }();
2264 
2265     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2266 
2267     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2268     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2269       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2270           Opcode, C, OBO::NoSignedWrap);
2271       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2272         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2273     }
2274 
2275     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2276     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2277       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2278           Opcode, C, OBO::NoUnsignedWrap);
2279       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2280         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2281     }
2282   }
2283 
2284   return Flags;
2285 }
2286 
2287 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2288   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2289 }
2290 
2291 /// Get a canonical add expression, or something simpler if possible.
2292 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2293                                         SCEV::NoWrapFlags OrigFlags,
2294                                         unsigned Depth) {
2295   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2296          "only nuw or nsw allowed");
2297   assert(!Ops.empty() && "Cannot get empty add!");
2298   if (Ops.size() == 1) return Ops[0];
2299 #ifndef NDEBUG
2300   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2301   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2302     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2303            "SCEVAddExpr operand types don't match!");
2304 #endif
2305 
2306   // Sort by complexity, this groups all similar expression types together.
2307   GroupByComplexity(Ops, &LI, DT);
2308 
2309   // If there are any constants, fold them together.
2310   unsigned Idx = 0;
2311   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2312     ++Idx;
2313     assert(Idx < Ops.size());
2314     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2315       // We found two constants, fold them together!
2316       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2317       if (Ops.size() == 2) return Ops[0];
2318       Ops.erase(Ops.begin()+1);  // Erase the folded element
2319       LHSC = cast<SCEVConstant>(Ops[0]);
2320     }
2321 
2322     // If we are left with a constant zero being added, strip it off.
2323     if (LHSC->getValue()->isZero()) {
2324       Ops.erase(Ops.begin());
2325       --Idx;
2326     }
2327 
2328     if (Ops.size() == 1) return Ops[0];
2329   }
2330 
2331   // Delay expensive flag strengthening until necessary.
2332   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2333     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2334   };
2335 
2336   // Limit recursion calls depth.
2337   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2338     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2339 
2340   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2341     // Don't strengthen flags if we have no new information.
2342     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2343     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2344       Add->setNoWrapFlags(ComputeFlags(Ops));
2345     return S;
2346   }
2347 
2348   // Okay, check to see if the same value occurs in the operand list more than
2349   // once.  If so, merge them together into an multiply expression.  Since we
2350   // sorted the list, these values are required to be adjacent.
2351   Type *Ty = Ops[0]->getType();
2352   bool FoundMatch = false;
2353   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2354     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2355       // Scan ahead to count how many equal operands there are.
2356       unsigned Count = 2;
2357       while (i+Count != e && Ops[i+Count] == Ops[i])
2358         ++Count;
2359       // Merge the values into a multiply.
2360       const SCEV *Scale = getConstant(Ty, Count);
2361       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2362       if (Ops.size() == Count)
2363         return Mul;
2364       Ops[i] = Mul;
2365       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2366       --i; e -= Count - 1;
2367       FoundMatch = true;
2368     }
2369   if (FoundMatch)
2370     return getAddExpr(Ops, OrigFlags, Depth + 1);
2371 
2372   // Check for truncates. If all the operands are truncated from the same
2373   // type, see if factoring out the truncate would permit the result to be
2374   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2375   // if the contents of the resulting outer trunc fold to something simple.
2376   auto FindTruncSrcType = [&]() -> Type * {
2377     // We're ultimately looking to fold an addrec of truncs and muls of only
2378     // constants and truncs, so if we find any other types of SCEV
2379     // as operands of the addrec then we bail and return nullptr here.
2380     // Otherwise, we return the type of the operand of a trunc that we find.
2381     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2382       return T->getOperand()->getType();
2383     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2384       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2385       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2386         return T->getOperand()->getType();
2387     }
2388     return nullptr;
2389   };
2390   if (auto *SrcType = FindTruncSrcType()) {
2391     SmallVector<const SCEV *, 8> LargeOps;
2392     bool Ok = true;
2393     // Check all the operands to see if they can be represented in the
2394     // source type of the truncate.
2395     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2396       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2397         if (T->getOperand()->getType() != SrcType) {
2398           Ok = false;
2399           break;
2400         }
2401         LargeOps.push_back(T->getOperand());
2402       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2403         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2404       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2405         SmallVector<const SCEV *, 8> LargeMulOps;
2406         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2407           if (const SCEVTruncateExpr *T =
2408                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2409             if (T->getOperand()->getType() != SrcType) {
2410               Ok = false;
2411               break;
2412             }
2413             LargeMulOps.push_back(T->getOperand());
2414           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2415             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2416           } else {
2417             Ok = false;
2418             break;
2419           }
2420         }
2421         if (Ok)
2422           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2423       } else {
2424         Ok = false;
2425         break;
2426       }
2427     }
2428     if (Ok) {
2429       // Evaluate the expression in the larger type.
2430       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2431       // If it folds to something simple, use it. Otherwise, don't.
2432       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2433         return getTruncateExpr(Fold, Ty);
2434     }
2435   }
2436 
2437   // Skip past any other cast SCEVs.
2438   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2439     ++Idx;
2440 
2441   // If there are add operands they would be next.
2442   if (Idx < Ops.size()) {
2443     bool DeletedAdd = false;
2444     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2445       if (Ops.size() > AddOpsInlineThreshold ||
2446           Add->getNumOperands() > AddOpsInlineThreshold)
2447         break;
2448       // If we have an add, expand the add operands onto the end of the operands
2449       // list.
2450       Ops.erase(Ops.begin()+Idx);
2451       Ops.append(Add->op_begin(), Add->op_end());
2452       DeletedAdd = true;
2453     }
2454 
2455     // If we deleted at least one add, we added operands to the end of the list,
2456     // and they are not necessarily sorted.  Recurse to resort and resimplify
2457     // any operands we just acquired.
2458     if (DeletedAdd)
2459       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2460   }
2461 
2462   // Skip over the add expression until we get to a multiply.
2463   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2464     ++Idx;
2465 
2466   // Check to see if there are any folding opportunities present with
2467   // operands multiplied by constant values.
2468   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2469     uint64_t BitWidth = getTypeSizeInBits(Ty);
2470     DenseMap<const SCEV *, APInt> M;
2471     SmallVector<const SCEV *, 8> NewOps;
2472     APInt AccumulatedConstant(BitWidth, 0);
2473     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2474                                      Ops.data(), Ops.size(),
2475                                      APInt(BitWidth, 1), *this)) {
2476       struct APIntCompare {
2477         bool operator()(const APInt &LHS, const APInt &RHS) const {
2478           return LHS.ult(RHS);
2479         }
2480       };
2481 
2482       // Some interesting folding opportunity is present, so its worthwhile to
2483       // re-generate the operands list. Group the operands by constant scale,
2484       // to avoid multiplying by the same constant scale multiple times.
2485       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2486       for (const SCEV *NewOp : NewOps)
2487         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2488       // Re-generate the operands list.
2489       Ops.clear();
2490       if (AccumulatedConstant != 0)
2491         Ops.push_back(getConstant(AccumulatedConstant));
2492       for (auto &MulOp : MulOpLists)
2493         if (MulOp.first != 0)
2494           Ops.push_back(getMulExpr(
2495               getConstant(MulOp.first),
2496               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2497               SCEV::FlagAnyWrap, Depth + 1));
2498       if (Ops.empty())
2499         return getZero(Ty);
2500       if (Ops.size() == 1)
2501         return Ops[0];
2502       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2503     }
2504   }
2505 
2506   // If we are adding something to a multiply expression, make sure the
2507   // something is not already an operand of the multiply.  If so, merge it into
2508   // the multiply.
2509   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2510     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2511     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2512       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2513       if (isa<SCEVConstant>(MulOpSCEV))
2514         continue;
2515       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2516         if (MulOpSCEV == Ops[AddOp]) {
2517           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2518           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2519           if (Mul->getNumOperands() != 2) {
2520             // If the multiply has more than two operands, we must get the
2521             // Y*Z term.
2522             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2523                                                 Mul->op_begin()+MulOp);
2524             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2525             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2526           }
2527           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2528           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2529           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2530                                             SCEV::FlagAnyWrap, Depth + 1);
2531           if (Ops.size() == 2) return OuterMul;
2532           if (AddOp < Idx) {
2533             Ops.erase(Ops.begin()+AddOp);
2534             Ops.erase(Ops.begin()+Idx-1);
2535           } else {
2536             Ops.erase(Ops.begin()+Idx);
2537             Ops.erase(Ops.begin()+AddOp-1);
2538           }
2539           Ops.push_back(OuterMul);
2540           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2541         }
2542 
2543       // Check this multiply against other multiplies being added together.
2544       for (unsigned OtherMulIdx = Idx+1;
2545            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2546            ++OtherMulIdx) {
2547         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2548         // If MulOp occurs in OtherMul, we can fold the two multiplies
2549         // together.
2550         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2551              OMulOp != e; ++OMulOp)
2552           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2553             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2554             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2555             if (Mul->getNumOperands() != 2) {
2556               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2557                                                   Mul->op_begin()+MulOp);
2558               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2559               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2560             }
2561             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2562             if (OtherMul->getNumOperands() != 2) {
2563               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2564                                                   OtherMul->op_begin()+OMulOp);
2565               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2566               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2567             }
2568             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2569             const SCEV *InnerMulSum =
2570                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2571             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2572                                               SCEV::FlagAnyWrap, Depth + 1);
2573             if (Ops.size() == 2) return OuterMul;
2574             Ops.erase(Ops.begin()+Idx);
2575             Ops.erase(Ops.begin()+OtherMulIdx-1);
2576             Ops.push_back(OuterMul);
2577             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2578           }
2579       }
2580     }
2581   }
2582 
2583   // If there are any add recurrences in the operands list, see if any other
2584   // added values are loop invariant.  If so, we can fold them into the
2585   // recurrence.
2586   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2587     ++Idx;
2588 
2589   // Scan over all recurrences, trying to fold loop invariants into them.
2590   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2591     // Scan all of the other operands to this add and add them to the vector if
2592     // they are loop invariant w.r.t. the recurrence.
2593     SmallVector<const SCEV *, 8> LIOps;
2594     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2595     const Loop *AddRecLoop = AddRec->getLoop();
2596     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2597       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2598         LIOps.push_back(Ops[i]);
2599         Ops.erase(Ops.begin()+i);
2600         --i; --e;
2601       }
2602 
2603     // If we found some loop invariants, fold them into the recurrence.
2604     if (!LIOps.empty()) {
2605       // Compute nowrap flags for the addition of the loop-invariant ops and
2606       // the addrec. Temporarily push it as an operand for that purpose.
2607       LIOps.push_back(AddRec);
2608       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2609       LIOps.pop_back();
2610 
2611       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2612       LIOps.push_back(AddRec->getStart());
2613 
2614       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2615       // This follows from the fact that the no-wrap flags on the outer add
2616       // expression are applicable on the 0th iteration, when the add recurrence
2617       // will be equal to its start value.
2618       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2619 
2620       // Build the new addrec. Propagate the NUW and NSW flags if both the
2621       // outer add and the inner addrec are guaranteed to have no overflow.
2622       // Always propagate NW.
2623       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2624       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2625 
2626       // If all of the other operands were loop invariant, we are done.
2627       if (Ops.size() == 1) return NewRec;
2628 
2629       // Otherwise, add the folded AddRec by the non-invariant parts.
2630       for (unsigned i = 0;; ++i)
2631         if (Ops[i] == AddRec) {
2632           Ops[i] = NewRec;
2633           break;
2634         }
2635       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2636     }
2637 
2638     // Okay, if there weren't any loop invariants to be folded, check to see if
2639     // there are multiple AddRec's with the same loop induction variable being
2640     // added together.  If so, we can fold them.
2641     for (unsigned OtherIdx = Idx+1;
2642          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2643          ++OtherIdx) {
2644       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2645       // so that the 1st found AddRecExpr is dominated by all others.
2646       assert(DT.dominates(
2647            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2648            AddRec->getLoop()->getHeader()) &&
2649         "AddRecExprs are not sorted in reverse dominance order?");
2650       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2651         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2652         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2653         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2654              ++OtherIdx) {
2655           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2656           if (OtherAddRec->getLoop() == AddRecLoop) {
2657             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2658                  i != e; ++i) {
2659               if (i >= AddRecOps.size()) {
2660                 AddRecOps.append(OtherAddRec->op_begin()+i,
2661                                  OtherAddRec->op_end());
2662                 break;
2663               }
2664               SmallVector<const SCEV *, 2> TwoOps = {
2665                   AddRecOps[i], OtherAddRec->getOperand(i)};
2666               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2667             }
2668             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2669           }
2670         }
2671         // Step size has changed, so we cannot guarantee no self-wraparound.
2672         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2673         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2674       }
2675     }
2676 
2677     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2678     // next one.
2679   }
2680 
2681   // Okay, it looks like we really DO need an add expr.  Check to see if we
2682   // already have one, otherwise create a new one.
2683   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2684 }
2685 
2686 const SCEV *
2687 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2688                                     SCEV::NoWrapFlags Flags) {
2689   FoldingSetNodeID ID;
2690   ID.AddInteger(scAddExpr);
2691   for (const SCEV *Op : Ops)
2692     ID.AddPointer(Op);
2693   void *IP = nullptr;
2694   SCEVAddExpr *S =
2695       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2696   if (!S) {
2697     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2698     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2699     S = new (SCEVAllocator)
2700         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2701     UniqueSCEVs.InsertNode(S, IP);
2702     addToLoopUseLists(S);
2703   }
2704   S->setNoWrapFlags(Flags);
2705   return S;
2706 }
2707 
2708 const SCEV *
2709 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2710                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2711   FoldingSetNodeID ID;
2712   ID.AddInteger(scAddRecExpr);
2713   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2714     ID.AddPointer(Ops[i]);
2715   ID.AddPointer(L);
2716   void *IP = nullptr;
2717   SCEVAddRecExpr *S =
2718       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2719   if (!S) {
2720     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2721     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2722     S = new (SCEVAllocator)
2723         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2724     UniqueSCEVs.InsertNode(S, IP);
2725     addToLoopUseLists(S);
2726   }
2727   setNoWrapFlags(S, Flags);
2728   return S;
2729 }
2730 
2731 const SCEV *
2732 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2733                                     SCEV::NoWrapFlags Flags) {
2734   FoldingSetNodeID ID;
2735   ID.AddInteger(scMulExpr);
2736   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2737     ID.AddPointer(Ops[i]);
2738   void *IP = nullptr;
2739   SCEVMulExpr *S =
2740     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2741   if (!S) {
2742     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2743     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2744     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2745                                         O, Ops.size());
2746     UniqueSCEVs.InsertNode(S, IP);
2747     addToLoopUseLists(S);
2748   }
2749   S->setNoWrapFlags(Flags);
2750   return S;
2751 }
2752 
2753 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2754   uint64_t k = i*j;
2755   if (j > 1 && k / j != i) Overflow = true;
2756   return k;
2757 }
2758 
2759 /// Compute the result of "n choose k", the binomial coefficient.  If an
2760 /// intermediate computation overflows, Overflow will be set and the return will
2761 /// be garbage. Overflow is not cleared on absence of overflow.
2762 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2763   // We use the multiplicative formula:
2764   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2765   // At each iteration, we take the n-th term of the numeral and divide by the
2766   // (k-n)th term of the denominator.  This division will always produce an
2767   // integral result, and helps reduce the chance of overflow in the
2768   // intermediate computations. However, we can still overflow even when the
2769   // final result would fit.
2770 
2771   if (n == 0 || n == k) return 1;
2772   if (k > n) return 0;
2773 
2774   if (k > n/2)
2775     k = n-k;
2776 
2777   uint64_t r = 1;
2778   for (uint64_t i = 1; i <= k; ++i) {
2779     r = umul_ov(r, n-(i-1), Overflow);
2780     r /= i;
2781   }
2782   return r;
2783 }
2784 
2785 /// Determine if any of the operands in this SCEV are a constant or if
2786 /// any of the add or multiply expressions in this SCEV contain a constant.
2787 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2788   struct FindConstantInAddMulChain {
2789     bool FoundConstant = false;
2790 
2791     bool follow(const SCEV *S) {
2792       FoundConstant |= isa<SCEVConstant>(S);
2793       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2794     }
2795 
2796     bool isDone() const {
2797       return FoundConstant;
2798     }
2799   };
2800 
2801   FindConstantInAddMulChain F;
2802   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2803   ST.visitAll(StartExpr);
2804   return F.FoundConstant;
2805 }
2806 
2807 /// Get a canonical multiply expression, or something simpler if possible.
2808 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2809                                         SCEV::NoWrapFlags OrigFlags,
2810                                         unsigned Depth) {
2811   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2812          "only nuw or nsw allowed");
2813   assert(!Ops.empty() && "Cannot get empty mul!");
2814   if (Ops.size() == 1) return Ops[0];
2815 #ifndef NDEBUG
2816   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2817   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2818     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2819            "SCEVMulExpr operand types don't match!");
2820 #endif
2821 
2822   // Sort by complexity, this groups all similar expression types together.
2823   GroupByComplexity(Ops, &LI, DT);
2824 
2825   // If there are any constants, fold them together.
2826   unsigned Idx = 0;
2827   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2828     ++Idx;
2829     assert(Idx < Ops.size());
2830     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2831       // We found two constants, fold them together!
2832       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2833       if (Ops.size() == 2) return Ops[0];
2834       Ops.erase(Ops.begin()+1);  // Erase the folded element
2835       LHSC = cast<SCEVConstant>(Ops[0]);
2836     }
2837 
2838     // If we have a multiply of zero, it will always be zero.
2839     if (LHSC->getValue()->isZero())
2840       return LHSC;
2841 
2842     // If we are left with a constant one being multiplied, strip it off.
2843     if (LHSC->getValue()->isOne()) {
2844       Ops.erase(Ops.begin());
2845       --Idx;
2846     }
2847 
2848     if (Ops.size() == 1)
2849       return Ops[0];
2850   }
2851 
2852   // Delay expensive flag strengthening until necessary.
2853   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2854     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
2855   };
2856 
2857   // Limit recursion calls depth.
2858   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2859     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
2860 
2861   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2862     // Don't strengthen flags if we have no new information.
2863     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
2864     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
2865       Mul->setNoWrapFlags(ComputeFlags(Ops));
2866     return S;
2867   }
2868 
2869   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2870     if (Ops.size() == 2) {
2871       // C1*(C2+V) -> C1*C2 + C1*V
2872       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2873         // If any of Add's ops are Adds or Muls with a constant, apply this
2874         // transformation as well.
2875         //
2876         // TODO: There are some cases where this transformation is not
2877         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2878         // this transformation should be narrowed down.
2879         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2880           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2881                                        SCEV::FlagAnyWrap, Depth + 1),
2882                             getMulExpr(LHSC, Add->getOperand(1),
2883                                        SCEV::FlagAnyWrap, Depth + 1),
2884                             SCEV::FlagAnyWrap, Depth + 1);
2885 
2886       if (Ops[0]->isAllOnesValue()) {
2887         // If we have a mul by -1 of an add, try distributing the -1 among the
2888         // add operands.
2889         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2890           SmallVector<const SCEV *, 4> NewOps;
2891           bool AnyFolded = false;
2892           for (const SCEV *AddOp : Add->operands()) {
2893             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2894                                          Depth + 1);
2895             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2896             NewOps.push_back(Mul);
2897           }
2898           if (AnyFolded)
2899             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2900         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2901           // Negation preserves a recurrence's no self-wrap property.
2902           SmallVector<const SCEV *, 4> Operands;
2903           for (const SCEV *AddRecOp : AddRec->operands())
2904             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2905                                           Depth + 1));
2906 
2907           return getAddRecExpr(Operands, AddRec->getLoop(),
2908                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2909         }
2910       }
2911     }
2912   }
2913 
2914   // Skip over the add expression until we get to a multiply.
2915   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2916     ++Idx;
2917 
2918   // If there are mul operands inline them all into this expression.
2919   if (Idx < Ops.size()) {
2920     bool DeletedMul = false;
2921     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2922       if (Ops.size() > MulOpsInlineThreshold)
2923         break;
2924       // If we have an mul, expand the mul operands onto the end of the
2925       // operands list.
2926       Ops.erase(Ops.begin()+Idx);
2927       Ops.append(Mul->op_begin(), Mul->op_end());
2928       DeletedMul = true;
2929     }
2930 
2931     // If we deleted at least one mul, we added operands to the end of the
2932     // list, and they are not necessarily sorted.  Recurse to resort and
2933     // resimplify any operands we just acquired.
2934     if (DeletedMul)
2935       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2936   }
2937 
2938   // If there are any add recurrences in the operands list, see if any other
2939   // added values are loop invariant.  If so, we can fold them into the
2940   // recurrence.
2941   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2942     ++Idx;
2943 
2944   // Scan over all recurrences, trying to fold loop invariants into them.
2945   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2946     // Scan all of the other operands to this mul and add them to the vector
2947     // if they are loop invariant w.r.t. the recurrence.
2948     SmallVector<const SCEV *, 8> LIOps;
2949     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2950     const Loop *AddRecLoop = AddRec->getLoop();
2951     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2952       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2953         LIOps.push_back(Ops[i]);
2954         Ops.erase(Ops.begin()+i);
2955         --i; --e;
2956       }
2957 
2958     // If we found some loop invariants, fold them into the recurrence.
2959     if (!LIOps.empty()) {
2960       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2961       SmallVector<const SCEV *, 4> NewOps;
2962       NewOps.reserve(AddRec->getNumOperands());
2963       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2964       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2965         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2966                                     SCEV::FlagAnyWrap, Depth + 1));
2967 
2968       // Build the new addrec. Propagate the NUW and NSW flags if both the
2969       // outer mul and the inner addrec are guaranteed to have no overflow.
2970       //
2971       // No self-wrap cannot be guaranteed after changing the step size, but
2972       // will be inferred if either NUW or NSW is true.
2973       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
2974       const SCEV *NewRec = getAddRecExpr(
2975           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
2976 
2977       // If all of the other operands were loop invariant, we are done.
2978       if (Ops.size() == 1) return NewRec;
2979 
2980       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2981       for (unsigned i = 0;; ++i)
2982         if (Ops[i] == AddRec) {
2983           Ops[i] = NewRec;
2984           break;
2985         }
2986       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2987     }
2988 
2989     // Okay, if there weren't any loop invariants to be folded, check to see
2990     // if there are multiple AddRec's with the same loop induction variable
2991     // being multiplied together.  If so, we can fold them.
2992 
2993     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2994     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2995     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2996     //   ]]],+,...up to x=2n}.
2997     // Note that the arguments to choose() are always integers with values
2998     // known at compile time, never SCEV objects.
2999     //
3000     // The implementation avoids pointless extra computations when the two
3001     // addrec's are of different length (mathematically, it's equivalent to
3002     // an infinite stream of zeros on the right).
3003     bool OpsModified = false;
3004     for (unsigned OtherIdx = Idx+1;
3005          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3006          ++OtherIdx) {
3007       const SCEVAddRecExpr *OtherAddRec =
3008         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3009       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3010         continue;
3011 
3012       // Limit max number of arguments to avoid creation of unreasonably big
3013       // SCEVAddRecs with very complex operands.
3014       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3015           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3016         continue;
3017 
3018       bool Overflow = false;
3019       Type *Ty = AddRec->getType();
3020       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3021       SmallVector<const SCEV*, 7> AddRecOps;
3022       for (int x = 0, xe = AddRec->getNumOperands() +
3023              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3024         SmallVector <const SCEV *, 7> SumOps;
3025         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3026           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3027           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3028                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3029                z < ze && !Overflow; ++z) {
3030             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3031             uint64_t Coeff;
3032             if (LargerThan64Bits)
3033               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3034             else
3035               Coeff = Coeff1*Coeff2;
3036             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3037             const SCEV *Term1 = AddRec->getOperand(y-z);
3038             const SCEV *Term2 = OtherAddRec->getOperand(z);
3039             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3040                                         SCEV::FlagAnyWrap, Depth + 1));
3041           }
3042         }
3043         if (SumOps.empty())
3044           SumOps.push_back(getZero(Ty));
3045         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3046       }
3047       if (!Overflow) {
3048         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3049                                               SCEV::FlagAnyWrap);
3050         if (Ops.size() == 2) return NewAddRec;
3051         Ops[Idx] = NewAddRec;
3052         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3053         OpsModified = true;
3054         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3055         if (!AddRec)
3056           break;
3057       }
3058     }
3059     if (OpsModified)
3060       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3061 
3062     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3063     // next one.
3064   }
3065 
3066   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3067   // already have one, otherwise create a new one.
3068   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3069 }
3070 
3071 /// Represents an unsigned remainder expression based on unsigned division.
3072 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3073                                          const SCEV *RHS) {
3074   assert(getEffectiveSCEVType(LHS->getType()) ==
3075          getEffectiveSCEVType(RHS->getType()) &&
3076          "SCEVURemExpr operand types don't match!");
3077 
3078   // Short-circuit easy cases
3079   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3080     // If constant is one, the result is trivial
3081     if (RHSC->getValue()->isOne())
3082       return getZero(LHS->getType()); // X urem 1 --> 0
3083 
3084     // If constant is a power of two, fold into a zext(trunc(LHS)).
3085     if (RHSC->getAPInt().isPowerOf2()) {
3086       Type *FullTy = LHS->getType();
3087       Type *TruncTy =
3088           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3089       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3090     }
3091   }
3092 
3093   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3094   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3095   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3096   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3097 }
3098 
3099 /// Get a canonical unsigned division expression, or something simpler if
3100 /// possible.
3101 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3102                                          const SCEV *RHS) {
3103   assert(getEffectiveSCEVType(LHS->getType()) ==
3104          getEffectiveSCEVType(RHS->getType()) &&
3105          "SCEVUDivExpr operand types don't match!");
3106 
3107   FoldingSetNodeID ID;
3108   ID.AddInteger(scUDivExpr);
3109   ID.AddPointer(LHS);
3110   ID.AddPointer(RHS);
3111   void *IP = nullptr;
3112   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3113     return S;
3114 
3115   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3116     if (RHSC->getValue()->isOne())
3117       return LHS;                               // X udiv 1 --> x
3118     // If the denominator is zero, the result of the udiv is undefined. Don't
3119     // try to analyze it, because the resolution chosen here may differ from
3120     // the resolution chosen in other parts of the compiler.
3121     if (!RHSC->getValue()->isZero()) {
3122       // Determine if the division can be folded into the operands of
3123       // its operands.
3124       // TODO: Generalize this to non-constants by using known-bits information.
3125       Type *Ty = LHS->getType();
3126       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3127       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3128       // For non-power-of-two values, effectively round the value up to the
3129       // nearest power of two.
3130       if (!RHSC->getAPInt().isPowerOf2())
3131         ++MaxShiftAmt;
3132       IntegerType *ExtTy =
3133         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3134       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3135         if (const SCEVConstant *Step =
3136             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3137           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3138           const APInt &StepInt = Step->getAPInt();
3139           const APInt &DivInt = RHSC->getAPInt();
3140           if (!StepInt.urem(DivInt) &&
3141               getZeroExtendExpr(AR, ExtTy) ==
3142               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3143                             getZeroExtendExpr(Step, ExtTy),
3144                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3145             SmallVector<const SCEV *, 4> Operands;
3146             for (const SCEV *Op : AR->operands())
3147               Operands.push_back(getUDivExpr(Op, RHS));
3148             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3149           }
3150           /// Get a canonical UDivExpr for a recurrence.
3151           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3152           // We can currently only fold X%N if X is constant.
3153           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3154           if (StartC && !DivInt.urem(StepInt) &&
3155               getZeroExtendExpr(AR, ExtTy) ==
3156               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3157                             getZeroExtendExpr(Step, ExtTy),
3158                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3159             const APInt &StartInt = StartC->getAPInt();
3160             const APInt &StartRem = StartInt.urem(StepInt);
3161             if (StartRem != 0) {
3162               const SCEV *NewLHS =
3163                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3164                                 AR->getLoop(), SCEV::FlagNW);
3165               if (LHS != NewLHS) {
3166                 LHS = NewLHS;
3167 
3168                 // Reset the ID to include the new LHS, and check if it is
3169                 // already cached.
3170                 ID.clear();
3171                 ID.AddInteger(scUDivExpr);
3172                 ID.AddPointer(LHS);
3173                 ID.AddPointer(RHS);
3174                 IP = nullptr;
3175                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3176                   return S;
3177               }
3178             }
3179           }
3180         }
3181       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3182       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3183         SmallVector<const SCEV *, 4> Operands;
3184         for (const SCEV *Op : M->operands())
3185           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3186         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3187           // Find an operand that's safely divisible.
3188           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3189             const SCEV *Op = M->getOperand(i);
3190             const SCEV *Div = getUDivExpr(Op, RHSC);
3191             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3192               Operands = SmallVector<const SCEV *, 4>(M->operands());
3193               Operands[i] = Div;
3194               return getMulExpr(Operands);
3195             }
3196           }
3197       }
3198 
3199       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3200       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3201         if (auto *DivisorConstant =
3202                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3203           bool Overflow = false;
3204           APInt NewRHS =
3205               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3206           if (Overflow) {
3207             return getConstant(RHSC->getType(), 0, false);
3208           }
3209           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3210         }
3211       }
3212 
3213       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3214       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3215         SmallVector<const SCEV *, 4> Operands;
3216         for (const SCEV *Op : A->operands())
3217           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3218         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3219           Operands.clear();
3220           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3221             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3222             if (isa<SCEVUDivExpr>(Op) ||
3223                 getMulExpr(Op, RHS) != A->getOperand(i))
3224               break;
3225             Operands.push_back(Op);
3226           }
3227           if (Operands.size() == A->getNumOperands())
3228             return getAddExpr(Operands);
3229         }
3230       }
3231 
3232       // Fold if both operands are constant.
3233       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3234         Constant *LHSCV = LHSC->getValue();
3235         Constant *RHSCV = RHSC->getValue();
3236         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3237                                                                    RHSCV)));
3238       }
3239     }
3240   }
3241 
3242   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3243   // changes). Make sure we get a new one.
3244   IP = nullptr;
3245   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3246   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3247                                              LHS, RHS);
3248   UniqueSCEVs.InsertNode(S, IP);
3249   addToLoopUseLists(S);
3250   return S;
3251 }
3252 
3253 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3254   APInt A = C1->getAPInt().abs();
3255   APInt B = C2->getAPInt().abs();
3256   uint32_t ABW = A.getBitWidth();
3257   uint32_t BBW = B.getBitWidth();
3258 
3259   if (ABW > BBW)
3260     B = B.zext(ABW);
3261   else if (ABW < BBW)
3262     A = A.zext(BBW);
3263 
3264   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3265 }
3266 
3267 /// Get a canonical unsigned division expression, or something simpler if
3268 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3269 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3270 /// it's not exact because the udiv may be clearing bits.
3271 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3272                                               const SCEV *RHS) {
3273   // TODO: we could try to find factors in all sorts of things, but for now we
3274   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3275   // end of this file for inspiration.
3276 
3277   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3278   if (!Mul || !Mul->hasNoUnsignedWrap())
3279     return getUDivExpr(LHS, RHS);
3280 
3281   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3282     // If the mulexpr multiplies by a constant, then that constant must be the
3283     // first element of the mulexpr.
3284     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3285       if (LHSCst == RHSCst) {
3286         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3287         return getMulExpr(Operands);
3288       }
3289 
3290       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3291       // that there's a factor provided by one of the other terms. We need to
3292       // check.
3293       APInt Factor = gcd(LHSCst, RHSCst);
3294       if (!Factor.isIntN(1)) {
3295         LHSCst =
3296             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3297         RHSCst =
3298             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3299         SmallVector<const SCEV *, 2> Operands;
3300         Operands.push_back(LHSCst);
3301         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3302         LHS = getMulExpr(Operands);
3303         RHS = RHSCst;
3304         Mul = dyn_cast<SCEVMulExpr>(LHS);
3305         if (!Mul)
3306           return getUDivExactExpr(LHS, RHS);
3307       }
3308     }
3309   }
3310 
3311   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3312     if (Mul->getOperand(i) == RHS) {
3313       SmallVector<const SCEV *, 2> Operands;
3314       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3315       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3316       return getMulExpr(Operands);
3317     }
3318   }
3319 
3320   return getUDivExpr(LHS, RHS);
3321 }
3322 
3323 /// Get an add recurrence expression for the specified loop.  Simplify the
3324 /// expression as much as possible.
3325 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3326                                            const Loop *L,
3327                                            SCEV::NoWrapFlags Flags) {
3328   SmallVector<const SCEV *, 4> Operands;
3329   Operands.push_back(Start);
3330   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3331     if (StepChrec->getLoop() == L) {
3332       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3333       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3334     }
3335 
3336   Operands.push_back(Step);
3337   return getAddRecExpr(Operands, L, Flags);
3338 }
3339 
3340 /// Get an add recurrence expression for the specified loop.  Simplify the
3341 /// expression as much as possible.
3342 const SCEV *
3343 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3344                                const Loop *L, SCEV::NoWrapFlags Flags) {
3345   if (Operands.size() == 1) return Operands[0];
3346 #ifndef NDEBUG
3347   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3348   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3349     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3350            "SCEVAddRecExpr operand types don't match!");
3351   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3352     assert(isLoopInvariant(Operands[i], L) &&
3353            "SCEVAddRecExpr operand is not loop-invariant!");
3354 #endif
3355 
3356   if (Operands.back()->isZero()) {
3357     Operands.pop_back();
3358     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3359   }
3360 
3361   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3362   // use that information to infer NUW and NSW flags. However, computing a
3363   // BE count requires calling getAddRecExpr, so we may not yet have a
3364   // meaningful BE count at this point (and if we don't, we'd be stuck
3365   // with a SCEVCouldNotCompute as the cached BE count).
3366 
3367   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3368 
3369   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3370   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3371     const Loop *NestedLoop = NestedAR->getLoop();
3372     if (L->contains(NestedLoop)
3373             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3374             : (!NestedLoop->contains(L) &&
3375                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3376       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3377       Operands[0] = NestedAR->getStart();
3378       // AddRecs require their operands be loop-invariant with respect to their
3379       // loops. Don't perform this transformation if it would break this
3380       // requirement.
3381       bool AllInvariant = all_of(
3382           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3383 
3384       if (AllInvariant) {
3385         // Create a recurrence for the outer loop with the same step size.
3386         //
3387         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3388         // inner recurrence has the same property.
3389         SCEV::NoWrapFlags OuterFlags =
3390           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3391 
3392         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3393         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3394           return isLoopInvariant(Op, NestedLoop);
3395         });
3396 
3397         if (AllInvariant) {
3398           // Ok, both add recurrences are valid after the transformation.
3399           //
3400           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3401           // the outer recurrence has the same property.
3402           SCEV::NoWrapFlags InnerFlags =
3403             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3404           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3405         }
3406       }
3407       // Reset Operands to its original state.
3408       Operands[0] = NestedAR;
3409     }
3410   }
3411 
3412   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3413   // already have one, otherwise create a new one.
3414   return getOrCreateAddRecExpr(Operands, L, Flags);
3415 }
3416 
3417 const SCEV *
3418 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3419                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3420   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3421   // getSCEV(Base)->getType() has the same address space as Base->getType()
3422   // because SCEV::getType() preserves the address space.
3423   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3424   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3425   // instruction to its SCEV, because the Instruction may be guarded by control
3426   // flow and the no-overflow bits may not be valid for the expression in any
3427   // context. This can be fixed similarly to how these flags are handled for
3428   // adds.
3429   SCEV::NoWrapFlags OffsetWrap =
3430       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3431 
3432   Type *CurTy = GEP->getType();
3433   bool FirstIter = true;
3434   SmallVector<const SCEV *, 4> Offsets;
3435   for (const SCEV *IndexExpr : IndexExprs) {
3436     // Compute the (potentially symbolic) offset in bytes for this index.
3437     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3438       // For a struct, add the member offset.
3439       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3440       unsigned FieldNo = Index->getZExtValue();
3441       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3442       Offsets.push_back(FieldOffset);
3443 
3444       // Update CurTy to the type of the field at Index.
3445       CurTy = STy->getTypeAtIndex(Index);
3446     } else {
3447       // Update CurTy to its element type.
3448       if (FirstIter) {
3449         assert(isa<PointerType>(CurTy) &&
3450                "The first index of a GEP indexes a pointer");
3451         CurTy = GEP->getSourceElementType();
3452         FirstIter = false;
3453       } else {
3454         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3455       }
3456       // For an array, add the element offset, explicitly scaled.
3457       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3458       // Getelementptr indices are signed.
3459       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3460 
3461       // Multiply the index by the element size to compute the element offset.
3462       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3463       Offsets.push_back(LocalOffset);
3464     }
3465   }
3466 
3467   // Handle degenerate case of GEP without offsets.
3468   if (Offsets.empty())
3469     return BaseExpr;
3470 
3471   // Add the offsets together, assuming nsw if inbounds.
3472   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3473   // Add the base address and the offset. We cannot use the nsw flag, as the
3474   // base address is unsigned. However, if we know that the offset is
3475   // non-negative, we can use nuw.
3476   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3477                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3478   return getAddExpr(BaseExpr, Offset, BaseWrap);
3479 }
3480 
3481 std::tuple<SCEV *, FoldingSetNodeID, void *>
3482 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3483                                          ArrayRef<const SCEV *> Ops) {
3484   FoldingSetNodeID ID;
3485   void *IP = nullptr;
3486   ID.AddInteger(SCEVType);
3487   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3488     ID.AddPointer(Ops[i]);
3489   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3490       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3491 }
3492 
3493 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3494   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3495   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3496 }
3497 
3498 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) {
3499   Type *Ty = Op->getType();
3500   return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty));
3501 }
3502 
3503 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3504                                            SmallVectorImpl<const SCEV *> &Ops) {
3505   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3506   if (Ops.size() == 1) return Ops[0];
3507 #ifndef NDEBUG
3508   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3509   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3510     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3511            "Operand types don't match!");
3512 #endif
3513 
3514   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3515   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3516 
3517   // Sort by complexity, this groups all similar expression types together.
3518   GroupByComplexity(Ops, &LI, DT);
3519 
3520   // Check if we have created the same expression before.
3521   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3522     return S;
3523   }
3524 
3525   // If there are any constants, fold them together.
3526   unsigned Idx = 0;
3527   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3528     ++Idx;
3529     assert(Idx < Ops.size());
3530     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3531       if (Kind == scSMaxExpr)
3532         return APIntOps::smax(LHS, RHS);
3533       else if (Kind == scSMinExpr)
3534         return APIntOps::smin(LHS, RHS);
3535       else if (Kind == scUMaxExpr)
3536         return APIntOps::umax(LHS, RHS);
3537       else if (Kind == scUMinExpr)
3538         return APIntOps::umin(LHS, RHS);
3539       llvm_unreachable("Unknown SCEV min/max opcode");
3540     };
3541 
3542     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3543       // We found two constants, fold them together!
3544       ConstantInt *Fold = ConstantInt::get(
3545           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3546       Ops[0] = getConstant(Fold);
3547       Ops.erase(Ops.begin()+1);  // Erase the folded element
3548       if (Ops.size() == 1) return Ops[0];
3549       LHSC = cast<SCEVConstant>(Ops[0]);
3550     }
3551 
3552     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3553     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3554 
3555     if (IsMax ? IsMinV : IsMaxV) {
3556       // If we are left with a constant minimum(/maximum)-int, strip it off.
3557       Ops.erase(Ops.begin());
3558       --Idx;
3559     } else if (IsMax ? IsMaxV : IsMinV) {
3560       // If we have a max(/min) with a constant maximum(/minimum)-int,
3561       // it will always be the extremum.
3562       return LHSC;
3563     }
3564 
3565     if (Ops.size() == 1) return Ops[0];
3566   }
3567 
3568   // Find the first operation of the same kind
3569   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3570     ++Idx;
3571 
3572   // Check to see if one of the operands is of the same kind. If so, expand its
3573   // operands onto our operand list, and recurse to simplify.
3574   if (Idx < Ops.size()) {
3575     bool DeletedAny = false;
3576     while (Ops[Idx]->getSCEVType() == Kind) {
3577       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3578       Ops.erase(Ops.begin()+Idx);
3579       Ops.append(SMME->op_begin(), SMME->op_end());
3580       DeletedAny = true;
3581     }
3582 
3583     if (DeletedAny)
3584       return getMinMaxExpr(Kind, Ops);
3585   }
3586 
3587   // Okay, check to see if the same value occurs in the operand list twice.  If
3588   // so, delete one.  Since we sorted the list, these values are required to
3589   // be adjacent.
3590   llvm::CmpInst::Predicate GEPred =
3591       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3592   llvm::CmpInst::Predicate LEPred =
3593       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3594   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3595   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3596   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3597     if (Ops[i] == Ops[i + 1] ||
3598         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3599       //  X op Y op Y  -->  X op Y
3600       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3601       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3602       --i;
3603       --e;
3604     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3605                                                Ops[i + 1])) {
3606       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3607       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3608       --i;
3609       --e;
3610     }
3611   }
3612 
3613   if (Ops.size() == 1) return Ops[0];
3614 
3615   assert(!Ops.empty() && "Reduced smax down to nothing!");
3616 
3617   // Okay, it looks like we really DO need an expr.  Check to see if we
3618   // already have one, otherwise create a new one.
3619   const SCEV *ExistingSCEV;
3620   FoldingSetNodeID ID;
3621   void *IP;
3622   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3623   if (ExistingSCEV)
3624     return ExistingSCEV;
3625   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3626   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3627   SCEV *S = new (SCEVAllocator)
3628       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3629 
3630   UniqueSCEVs.InsertNode(S, IP);
3631   addToLoopUseLists(S);
3632   return S;
3633 }
3634 
3635 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3636   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3637   return getSMaxExpr(Ops);
3638 }
3639 
3640 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3641   return getMinMaxExpr(scSMaxExpr, Ops);
3642 }
3643 
3644 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3645   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3646   return getUMaxExpr(Ops);
3647 }
3648 
3649 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3650   return getMinMaxExpr(scUMaxExpr, Ops);
3651 }
3652 
3653 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3654                                          const SCEV *RHS) {
3655   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3656   return getSMinExpr(Ops);
3657 }
3658 
3659 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3660   return getMinMaxExpr(scSMinExpr, Ops);
3661 }
3662 
3663 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3664                                          const SCEV *RHS) {
3665   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3666   return getUMinExpr(Ops);
3667 }
3668 
3669 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3670   return getMinMaxExpr(scUMinExpr, Ops);
3671 }
3672 
3673 const SCEV *
3674 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3675                                              ScalableVectorType *ScalableTy) {
3676   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3677   Constant *One = ConstantInt::get(IntTy, 1);
3678   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3679   // Note that the expression we created is the final expression, we don't
3680   // want to simplify it any further Also, if we call a normal getSCEV(),
3681   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3682   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3683 }
3684 
3685 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3686   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3687     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3688   // We can bypass creating a target-independent constant expression and then
3689   // folding it back into a ConstantInt. This is just a compile-time
3690   // optimization.
3691   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3692 }
3693 
3694 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3695   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3696     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3697   // We can bypass creating a target-independent constant expression and then
3698   // folding it back into a ConstantInt. This is just a compile-time
3699   // optimization.
3700   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3701 }
3702 
3703 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3704                                              StructType *STy,
3705                                              unsigned FieldNo) {
3706   // We can bypass creating a target-independent constant expression and then
3707   // folding it back into a ConstantInt. This is just a compile-time
3708   // optimization.
3709   return getConstant(
3710       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3711 }
3712 
3713 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3714   // Don't attempt to do anything other than create a SCEVUnknown object
3715   // here.  createSCEV only calls getUnknown after checking for all other
3716   // interesting possibilities, and any other code that calls getUnknown
3717   // is doing so in order to hide a value from SCEV canonicalization.
3718 
3719   FoldingSetNodeID ID;
3720   ID.AddInteger(scUnknown);
3721   ID.AddPointer(V);
3722   void *IP = nullptr;
3723   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3724     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3725            "Stale SCEVUnknown in uniquing map!");
3726     return S;
3727   }
3728   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3729                                             FirstUnknown);
3730   FirstUnknown = cast<SCEVUnknown>(S);
3731   UniqueSCEVs.InsertNode(S, IP);
3732   return S;
3733 }
3734 
3735 //===----------------------------------------------------------------------===//
3736 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3737 //
3738 
3739 /// Test if values of the given type are analyzable within the SCEV
3740 /// framework. This primarily includes integer types, and it can optionally
3741 /// include pointer types if the ScalarEvolution class has access to
3742 /// target-specific information.
3743 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3744   // Integers and pointers are always SCEVable.
3745   return Ty->isIntOrPtrTy();
3746 }
3747 
3748 /// Return the size in bits of the specified type, for which isSCEVable must
3749 /// return true.
3750 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3751   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3752   if (Ty->isPointerTy())
3753     return getDataLayout().getIndexTypeSizeInBits(Ty);
3754   return getDataLayout().getTypeSizeInBits(Ty);
3755 }
3756 
3757 /// Return a type with the same bitwidth as the given type and which represents
3758 /// how SCEV will treat the given type, for which isSCEVable must return
3759 /// true. For pointer types, this is the pointer index sized integer type.
3760 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3761   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3762 
3763   if (Ty->isIntegerTy())
3764     return Ty;
3765 
3766   // The only other support type is pointer.
3767   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3768   return getDataLayout().getIndexType(Ty);
3769 }
3770 
3771 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3772   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3773 }
3774 
3775 const SCEV *ScalarEvolution::getCouldNotCompute() {
3776   return CouldNotCompute.get();
3777 }
3778 
3779 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3780   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3781     auto *SU = dyn_cast<SCEVUnknown>(S);
3782     return SU && SU->getValue() == nullptr;
3783   });
3784 
3785   return !ContainsNulls;
3786 }
3787 
3788 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3789   HasRecMapType::iterator I = HasRecMap.find(S);
3790   if (I != HasRecMap.end())
3791     return I->second;
3792 
3793   bool FoundAddRec =
3794       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3795   HasRecMap.insert({S, FoundAddRec});
3796   return FoundAddRec;
3797 }
3798 
3799 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3800 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3801 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3802 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3803   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3804   if (!Add)
3805     return {S, nullptr};
3806 
3807   if (Add->getNumOperands() != 2)
3808     return {S, nullptr};
3809 
3810   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3811   if (!ConstOp)
3812     return {S, nullptr};
3813 
3814   return {Add->getOperand(1), ConstOp->getValue()};
3815 }
3816 
3817 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3818 /// by the value and offset from any ValueOffsetPair in the set.
3819 SetVector<ScalarEvolution::ValueOffsetPair> *
3820 ScalarEvolution::getSCEVValues(const SCEV *S) {
3821   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3822   if (SI == ExprValueMap.end())
3823     return nullptr;
3824 #ifndef NDEBUG
3825   if (VerifySCEVMap) {
3826     // Check there is no dangling Value in the set returned.
3827     for (const auto &VE : SI->second)
3828       assert(ValueExprMap.count(VE.first));
3829   }
3830 #endif
3831   return &SI->second;
3832 }
3833 
3834 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3835 /// cannot be used separately. eraseValueFromMap should be used to remove
3836 /// V from ValueExprMap and ExprValueMap at the same time.
3837 void ScalarEvolution::eraseValueFromMap(Value *V) {
3838   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3839   if (I != ValueExprMap.end()) {
3840     const SCEV *S = I->second;
3841     // Remove {V, 0} from the set of ExprValueMap[S]
3842     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3843       SV->remove({V, nullptr});
3844 
3845     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3846     const SCEV *Stripped;
3847     ConstantInt *Offset;
3848     std::tie(Stripped, Offset) = splitAddExpr(S);
3849     if (Offset != nullptr) {
3850       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3851         SV->remove({V, Offset});
3852     }
3853     ValueExprMap.erase(V);
3854   }
3855 }
3856 
3857 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3858 /// TODO: In reality it is better to check the poison recursively
3859 /// but this is better than nothing.
3860 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3861   if (auto *I = dyn_cast<Instruction>(V)) {
3862     if (isa<OverflowingBinaryOperator>(I)) {
3863       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3864         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3865           return true;
3866         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3867           return true;
3868       }
3869     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3870       return true;
3871   }
3872   return false;
3873 }
3874 
3875 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3876 /// create a new one.
3877 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3878   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3879 
3880   const SCEV *S = getExistingSCEV(V);
3881   if (S == nullptr) {
3882     S = createSCEV(V);
3883     // During PHI resolution, it is possible to create two SCEVs for the same
3884     // V, so it is needed to double check whether V->S is inserted into
3885     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3886     std::pair<ValueExprMapType::iterator, bool> Pair =
3887         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3888     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3889       ExprValueMap[S].insert({V, nullptr});
3890 
3891       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3892       // ExprValueMap.
3893       const SCEV *Stripped = S;
3894       ConstantInt *Offset = nullptr;
3895       std::tie(Stripped, Offset) = splitAddExpr(S);
3896       // If stripped is SCEVUnknown, don't bother to save
3897       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3898       // increase the complexity of the expansion code.
3899       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3900       // because it may generate add/sub instead of GEP in SCEV expansion.
3901       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3902           !isa<GetElementPtrInst>(V))
3903         ExprValueMap[Stripped].insert({V, Offset});
3904     }
3905   }
3906   return S;
3907 }
3908 
3909 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3910   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3911 
3912   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3913   if (I != ValueExprMap.end()) {
3914     const SCEV *S = I->second;
3915     if (checkValidity(S))
3916       return S;
3917     eraseValueFromMap(V);
3918     forgetMemoizedResults(S);
3919   }
3920   return nullptr;
3921 }
3922 
3923 /// Return a SCEV corresponding to -V = -1*V
3924 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3925                                              SCEV::NoWrapFlags Flags) {
3926   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3927     return getConstant(
3928                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3929 
3930   Type *Ty = V->getType();
3931   Ty = getEffectiveSCEVType(Ty);
3932   return getMulExpr(V, getMinusOne(Ty), Flags);
3933 }
3934 
3935 /// If Expr computes ~A, return A else return nullptr
3936 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3937   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3938   if (!Add || Add->getNumOperands() != 2 ||
3939       !Add->getOperand(0)->isAllOnesValue())
3940     return nullptr;
3941 
3942   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3943   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3944       !AddRHS->getOperand(0)->isAllOnesValue())
3945     return nullptr;
3946 
3947   return AddRHS->getOperand(1);
3948 }
3949 
3950 /// Return a SCEV corresponding to ~V = -1-V
3951 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3952   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3953     return getConstant(
3954                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3955 
3956   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3957   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3958     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3959       SmallVector<const SCEV *, 2> MatchedOperands;
3960       for (const SCEV *Operand : MME->operands()) {
3961         const SCEV *Matched = MatchNotExpr(Operand);
3962         if (!Matched)
3963           return (const SCEV *)nullptr;
3964         MatchedOperands.push_back(Matched);
3965       }
3966       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
3967                            MatchedOperands);
3968     };
3969     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3970       return Replaced;
3971   }
3972 
3973   Type *Ty = V->getType();
3974   Ty = getEffectiveSCEVType(Ty);
3975   return getMinusSCEV(getMinusOne(Ty), V);
3976 }
3977 
3978 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3979                                           SCEV::NoWrapFlags Flags,
3980                                           unsigned Depth) {
3981   // Fast path: X - X --> 0.
3982   if (LHS == RHS)
3983     return getZero(LHS->getType());
3984 
3985   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3986   // makes it so that we cannot make much use of NUW.
3987   auto AddFlags = SCEV::FlagAnyWrap;
3988   const bool RHSIsNotMinSigned =
3989       !getSignedRangeMin(RHS).isMinSignedValue();
3990   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3991     // Let M be the minimum representable signed value. Then (-1)*RHS
3992     // signed-wraps if and only if RHS is M. That can happen even for
3993     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3994     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3995     // (-1)*RHS, we need to prove that RHS != M.
3996     //
3997     // If LHS is non-negative and we know that LHS - RHS does not
3998     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3999     // either by proving that RHS > M or that LHS >= 0.
4000     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4001       AddFlags = SCEV::FlagNSW;
4002     }
4003   }
4004 
4005   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4006   // RHS is NSW and LHS >= 0.
4007   //
4008   // The difficulty here is that the NSW flag may have been proven
4009   // relative to a loop that is to be found in a recurrence in LHS and
4010   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4011   // larger scope than intended.
4012   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4013 
4014   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4015 }
4016 
4017 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4018                                                      unsigned Depth) {
4019   Type *SrcTy = V->getType();
4020   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4021          "Cannot truncate or zero extend with non-integer arguments!");
4022   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4023     return V;  // No conversion
4024   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4025     return getTruncateExpr(V, Ty, Depth);
4026   return getZeroExtendExpr(V, Ty, Depth);
4027 }
4028 
4029 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4030                                                      unsigned Depth) {
4031   Type *SrcTy = V->getType();
4032   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4033          "Cannot truncate or zero extend with non-integer arguments!");
4034   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4035     return V;  // No conversion
4036   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4037     return getTruncateExpr(V, Ty, Depth);
4038   return getSignExtendExpr(V, Ty, Depth);
4039 }
4040 
4041 const SCEV *
4042 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4043   Type *SrcTy = V->getType();
4044   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4045          "Cannot noop or zero extend with non-integer arguments!");
4046   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4047          "getNoopOrZeroExtend cannot truncate!");
4048   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4049     return V;  // No conversion
4050   return getZeroExtendExpr(V, Ty);
4051 }
4052 
4053 const SCEV *
4054 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4055   Type *SrcTy = V->getType();
4056   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4057          "Cannot noop or sign extend with non-integer arguments!");
4058   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4059          "getNoopOrSignExtend cannot truncate!");
4060   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4061     return V;  // No conversion
4062   return getSignExtendExpr(V, Ty);
4063 }
4064 
4065 const SCEV *
4066 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4067   Type *SrcTy = V->getType();
4068   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4069          "Cannot noop or any extend with non-integer arguments!");
4070   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4071          "getNoopOrAnyExtend cannot truncate!");
4072   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4073     return V;  // No conversion
4074   return getAnyExtendExpr(V, Ty);
4075 }
4076 
4077 const SCEV *
4078 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4079   Type *SrcTy = V->getType();
4080   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4081          "Cannot truncate or noop with non-integer arguments!");
4082   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4083          "getTruncateOrNoop cannot extend!");
4084   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4085     return V;  // No conversion
4086   return getTruncateExpr(V, Ty);
4087 }
4088 
4089 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4090                                                         const SCEV *RHS) {
4091   const SCEV *PromotedLHS = LHS;
4092   const SCEV *PromotedRHS = RHS;
4093 
4094   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4095     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4096   else
4097     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4098 
4099   return getUMaxExpr(PromotedLHS, PromotedRHS);
4100 }
4101 
4102 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4103                                                         const SCEV *RHS) {
4104   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4105   return getUMinFromMismatchedTypes(Ops);
4106 }
4107 
4108 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4109     SmallVectorImpl<const SCEV *> &Ops) {
4110   assert(!Ops.empty() && "At least one operand must be!");
4111   // Trivial case.
4112   if (Ops.size() == 1)
4113     return Ops[0];
4114 
4115   // Find the max type first.
4116   Type *MaxType = nullptr;
4117   for (auto *S : Ops)
4118     if (MaxType)
4119       MaxType = getWiderType(MaxType, S->getType());
4120     else
4121       MaxType = S->getType();
4122   assert(MaxType && "Failed to find maximum type!");
4123 
4124   // Extend all ops to max type.
4125   SmallVector<const SCEV *, 2> PromotedOps;
4126   for (auto *S : Ops)
4127     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4128 
4129   // Generate umin.
4130   return getUMinExpr(PromotedOps);
4131 }
4132 
4133 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4134   // A pointer operand may evaluate to a nonpointer expression, such as null.
4135   if (!V->getType()->isPointerTy())
4136     return V;
4137 
4138   while (true) {
4139     if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
4140       V = Cast->getOperand();
4141     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4142       const SCEV *PtrOp = nullptr;
4143       for (const SCEV *NAryOp : NAry->operands()) {
4144         if (NAryOp->getType()->isPointerTy()) {
4145           // Cannot find the base of an expression with multiple pointer ops.
4146           if (PtrOp)
4147             return V;
4148           PtrOp = NAryOp;
4149         }
4150       }
4151       if (!PtrOp) // All operands were non-pointer.
4152         return V;
4153       V = PtrOp;
4154     } else // Not something we can look further into.
4155       return V;
4156   }
4157 }
4158 
4159 /// Push users of the given Instruction onto the given Worklist.
4160 static void
4161 PushDefUseChildren(Instruction *I,
4162                    SmallVectorImpl<Instruction *> &Worklist) {
4163   // Push the def-use children onto the Worklist stack.
4164   for (User *U : I->users())
4165     Worklist.push_back(cast<Instruction>(U));
4166 }
4167 
4168 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4169   SmallVector<Instruction *, 16> Worklist;
4170   PushDefUseChildren(PN, Worklist);
4171 
4172   SmallPtrSet<Instruction *, 8> Visited;
4173   Visited.insert(PN);
4174   while (!Worklist.empty()) {
4175     Instruction *I = Worklist.pop_back_val();
4176     if (!Visited.insert(I).second)
4177       continue;
4178 
4179     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4180     if (It != ValueExprMap.end()) {
4181       const SCEV *Old = It->second;
4182 
4183       // Short-circuit the def-use traversal if the symbolic name
4184       // ceases to appear in expressions.
4185       if (Old != SymName && !hasOperand(Old, SymName))
4186         continue;
4187 
4188       // SCEVUnknown for a PHI either means that it has an unrecognized
4189       // structure, it's a PHI that's in the progress of being computed
4190       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4191       // additional loop trip count information isn't going to change anything.
4192       // In the second case, createNodeForPHI will perform the necessary
4193       // updates on its own when it gets to that point. In the third, we do
4194       // want to forget the SCEVUnknown.
4195       if (!isa<PHINode>(I) ||
4196           !isa<SCEVUnknown>(Old) ||
4197           (I != PN && Old == SymName)) {
4198         eraseValueFromMap(It->first);
4199         forgetMemoizedResults(Old);
4200       }
4201     }
4202 
4203     PushDefUseChildren(I, Worklist);
4204   }
4205 }
4206 
4207 namespace {
4208 
4209 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4210 /// expression in case its Loop is L. If it is not L then
4211 /// if IgnoreOtherLoops is true then use AddRec itself
4212 /// otherwise rewrite cannot be done.
4213 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4214 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4215 public:
4216   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4217                              bool IgnoreOtherLoops = true) {
4218     SCEVInitRewriter Rewriter(L, SE);
4219     const SCEV *Result = Rewriter.visit(S);
4220     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4221       return SE.getCouldNotCompute();
4222     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4223                ? SE.getCouldNotCompute()
4224                : Result;
4225   }
4226 
4227   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4228     if (!SE.isLoopInvariant(Expr, L))
4229       SeenLoopVariantSCEVUnknown = true;
4230     return Expr;
4231   }
4232 
4233   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4234     // Only re-write AddRecExprs for this loop.
4235     if (Expr->getLoop() == L)
4236       return Expr->getStart();
4237     SeenOtherLoops = true;
4238     return Expr;
4239   }
4240 
4241   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4242 
4243   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4244 
4245 private:
4246   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4247       : SCEVRewriteVisitor(SE), L(L) {}
4248 
4249   const Loop *L;
4250   bool SeenLoopVariantSCEVUnknown = false;
4251   bool SeenOtherLoops = false;
4252 };
4253 
4254 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4255 /// increment expression in case its Loop is L. If it is not L then
4256 /// use AddRec itself.
4257 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4258 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4259 public:
4260   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4261     SCEVPostIncRewriter Rewriter(L, SE);
4262     const SCEV *Result = Rewriter.visit(S);
4263     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4264         ? SE.getCouldNotCompute()
4265         : Result;
4266   }
4267 
4268   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4269     if (!SE.isLoopInvariant(Expr, L))
4270       SeenLoopVariantSCEVUnknown = true;
4271     return Expr;
4272   }
4273 
4274   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4275     // Only re-write AddRecExprs for this loop.
4276     if (Expr->getLoop() == L)
4277       return Expr->getPostIncExpr(SE);
4278     SeenOtherLoops = true;
4279     return Expr;
4280   }
4281 
4282   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4283 
4284   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4285 
4286 private:
4287   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4288       : SCEVRewriteVisitor(SE), L(L) {}
4289 
4290   const Loop *L;
4291   bool SeenLoopVariantSCEVUnknown = false;
4292   bool SeenOtherLoops = false;
4293 };
4294 
4295 /// This class evaluates the compare condition by matching it against the
4296 /// condition of loop latch. If there is a match we assume a true value
4297 /// for the condition while building SCEV nodes.
4298 class SCEVBackedgeConditionFolder
4299     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4300 public:
4301   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4302                              ScalarEvolution &SE) {
4303     bool IsPosBECond = false;
4304     Value *BECond = nullptr;
4305     if (BasicBlock *Latch = L->getLoopLatch()) {
4306       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4307       if (BI && BI->isConditional()) {
4308         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4309                "Both outgoing branches should not target same header!");
4310         BECond = BI->getCondition();
4311         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4312       } else {
4313         return S;
4314       }
4315     }
4316     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4317     return Rewriter.visit(S);
4318   }
4319 
4320   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4321     const SCEV *Result = Expr;
4322     bool InvariantF = SE.isLoopInvariant(Expr, L);
4323 
4324     if (!InvariantF) {
4325       Instruction *I = cast<Instruction>(Expr->getValue());
4326       switch (I->getOpcode()) {
4327       case Instruction::Select: {
4328         SelectInst *SI = cast<SelectInst>(I);
4329         Optional<const SCEV *> Res =
4330             compareWithBackedgeCondition(SI->getCondition());
4331         if (Res.hasValue()) {
4332           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4333           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4334         }
4335         break;
4336       }
4337       default: {
4338         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4339         if (Res.hasValue())
4340           Result = Res.getValue();
4341         break;
4342       }
4343       }
4344     }
4345     return Result;
4346   }
4347 
4348 private:
4349   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4350                                        bool IsPosBECond, ScalarEvolution &SE)
4351       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4352         IsPositiveBECond(IsPosBECond) {}
4353 
4354   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4355 
4356   const Loop *L;
4357   /// Loop back condition.
4358   Value *BackedgeCond = nullptr;
4359   /// Set to true if loop back is on positive branch condition.
4360   bool IsPositiveBECond;
4361 };
4362 
4363 Optional<const SCEV *>
4364 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4365 
4366   // If value matches the backedge condition for loop latch,
4367   // then return a constant evolution node based on loopback
4368   // branch taken.
4369   if (BackedgeCond == IC)
4370     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4371                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4372   return None;
4373 }
4374 
4375 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4376 public:
4377   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4378                              ScalarEvolution &SE) {
4379     SCEVShiftRewriter Rewriter(L, SE);
4380     const SCEV *Result = Rewriter.visit(S);
4381     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4382   }
4383 
4384   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4385     // Only allow AddRecExprs for this loop.
4386     if (!SE.isLoopInvariant(Expr, L))
4387       Valid = false;
4388     return Expr;
4389   }
4390 
4391   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4392     if (Expr->getLoop() == L && Expr->isAffine())
4393       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4394     Valid = false;
4395     return Expr;
4396   }
4397 
4398   bool isValid() { return Valid; }
4399 
4400 private:
4401   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4402       : SCEVRewriteVisitor(SE), L(L) {}
4403 
4404   const Loop *L;
4405   bool Valid = true;
4406 };
4407 
4408 } // end anonymous namespace
4409 
4410 SCEV::NoWrapFlags
4411 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4412   if (!AR->isAffine())
4413     return SCEV::FlagAnyWrap;
4414 
4415   using OBO = OverflowingBinaryOperator;
4416 
4417   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4418 
4419   if (!AR->hasNoSignedWrap()) {
4420     ConstantRange AddRecRange = getSignedRange(AR);
4421     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4422 
4423     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4424         Instruction::Add, IncRange, OBO::NoSignedWrap);
4425     if (NSWRegion.contains(AddRecRange))
4426       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4427   }
4428 
4429   if (!AR->hasNoUnsignedWrap()) {
4430     ConstantRange AddRecRange = getUnsignedRange(AR);
4431     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4432 
4433     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4434         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4435     if (NUWRegion.contains(AddRecRange))
4436       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4437   }
4438 
4439   return Result;
4440 }
4441 
4442 SCEV::NoWrapFlags
4443 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4444   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4445 
4446   if (AR->hasNoSignedWrap())
4447     return Result;
4448 
4449   if (!AR->isAffine())
4450     return Result;
4451 
4452   const SCEV *Step = AR->getStepRecurrence(*this);
4453   const Loop *L = AR->getLoop();
4454 
4455   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4456   // Note that this serves two purposes: It filters out loops that are
4457   // simply not analyzable, and it covers the case where this code is
4458   // being called from within backedge-taken count analysis, such that
4459   // attempting to ask for the backedge-taken count would likely result
4460   // in infinite recursion. In the later case, the analysis code will
4461   // cope with a conservative value, and it will take care to purge
4462   // that value once it has finished.
4463   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4464 
4465   // Normally, in the cases we can prove no-overflow via a
4466   // backedge guarding condition, we can also compute a backedge
4467   // taken count for the loop.  The exceptions are assumptions and
4468   // guards present in the loop -- SCEV is not great at exploiting
4469   // these to compute max backedge taken counts, but can still use
4470   // these to prove lack of overflow.  Use this fact to avoid
4471   // doing extra work that may not pay off.
4472 
4473   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4474       AC.assumptions().empty())
4475     return Result;
4476 
4477   // If the backedge is guarded by a comparison with the pre-inc  value the
4478   // addrec is safe. Also, if the entry is guarded by a comparison with the
4479   // start value and the backedge is guarded by a comparison with the post-inc
4480   // value, the addrec is safe.
4481   ICmpInst::Predicate Pred;
4482   const SCEV *OverflowLimit =
4483     getSignedOverflowLimitForStep(Step, &Pred, this);
4484   if (OverflowLimit &&
4485       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4486        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4487     Result = setFlags(Result, SCEV::FlagNSW);
4488   }
4489   return Result;
4490 }
4491 SCEV::NoWrapFlags
4492 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4493   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4494 
4495   if (AR->hasNoUnsignedWrap())
4496     return Result;
4497 
4498   if (!AR->isAffine())
4499     return Result;
4500 
4501   const SCEV *Step = AR->getStepRecurrence(*this);
4502   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4503   const Loop *L = AR->getLoop();
4504 
4505   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4506   // Note that this serves two purposes: It filters out loops that are
4507   // simply not analyzable, and it covers the case where this code is
4508   // being called from within backedge-taken count analysis, such that
4509   // attempting to ask for the backedge-taken count would likely result
4510   // in infinite recursion. In the later case, the analysis code will
4511   // cope with a conservative value, and it will take care to purge
4512   // that value once it has finished.
4513   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4514 
4515   // Normally, in the cases we can prove no-overflow via a
4516   // backedge guarding condition, we can also compute a backedge
4517   // taken count for the loop.  The exceptions are assumptions and
4518   // guards present in the loop -- SCEV is not great at exploiting
4519   // these to compute max backedge taken counts, but can still use
4520   // these to prove lack of overflow.  Use this fact to avoid
4521   // doing extra work that may not pay off.
4522 
4523   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4524       AC.assumptions().empty())
4525     return Result;
4526 
4527   // If the backedge is guarded by a comparison with the pre-inc  value the
4528   // addrec is safe. Also, if the entry is guarded by a comparison with the
4529   // start value and the backedge is guarded by a comparison with the post-inc
4530   // value, the addrec is safe.
4531   if (isKnownPositive(Step)) {
4532     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4533                                 getUnsignedRangeMax(Step));
4534     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4535         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4536       Result = setFlags(Result, SCEV::FlagNUW);
4537     }
4538   }
4539 
4540   return Result;
4541 }
4542 
4543 namespace {
4544 
4545 /// Represents an abstract binary operation.  This may exist as a
4546 /// normal instruction or constant expression, or may have been
4547 /// derived from an expression tree.
4548 struct BinaryOp {
4549   unsigned Opcode;
4550   Value *LHS;
4551   Value *RHS;
4552   bool IsNSW = false;
4553   bool IsNUW = false;
4554   bool IsExact = false;
4555 
4556   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4557   /// constant expression.
4558   Operator *Op = nullptr;
4559 
4560   explicit BinaryOp(Operator *Op)
4561       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4562         Op(Op) {
4563     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4564       IsNSW = OBO->hasNoSignedWrap();
4565       IsNUW = OBO->hasNoUnsignedWrap();
4566     }
4567     if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op))
4568       IsExact = PEO->isExact();
4569   }
4570 
4571   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4572                     bool IsNUW = false, bool IsExact = false)
4573       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
4574         IsExact(IsExact) {}
4575 };
4576 
4577 } // end anonymous namespace
4578 
4579 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4580 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4581   auto *Op = dyn_cast<Operator>(V);
4582   if (!Op)
4583     return None;
4584 
4585   // Implementation detail: all the cleverness here should happen without
4586   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4587   // SCEV expressions when possible, and we should not break that.
4588 
4589   switch (Op->getOpcode()) {
4590   case Instruction::Add:
4591   case Instruction::Sub:
4592   case Instruction::Mul:
4593   case Instruction::UDiv:
4594   case Instruction::URem:
4595   case Instruction::And:
4596   case Instruction::Or:
4597   case Instruction::AShr:
4598   case Instruction::Shl:
4599     return BinaryOp(Op);
4600 
4601   case Instruction::Xor:
4602     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4603       // If the RHS of the xor is a signmask, then this is just an add.
4604       // Instcombine turns add of signmask into xor as a strength reduction step.
4605       if (RHSC->getValue().isSignMask())
4606         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4607     return BinaryOp(Op);
4608 
4609   case Instruction::LShr:
4610     // Turn logical shift right of a constant into a unsigned divide.
4611     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4612       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4613 
4614       // If the shift count is not less than the bitwidth, the result of
4615       // the shift is undefined. Don't try to analyze it, because the
4616       // resolution chosen here may differ from the resolution chosen in
4617       // other parts of the compiler.
4618       if (SA->getValue().ult(BitWidth)) {
4619         Constant *X =
4620             ConstantInt::get(SA->getContext(),
4621                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4622         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4623       }
4624     }
4625     return BinaryOp(Op);
4626 
4627   case Instruction::ExtractValue: {
4628     auto *EVI = cast<ExtractValueInst>(Op);
4629     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4630       break;
4631 
4632     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4633     if (!WO)
4634       break;
4635 
4636     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4637     bool Signed = WO->isSigned();
4638     // TODO: Should add nuw/nsw flags for mul as well.
4639     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4640       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4641 
4642     // Now that we know that all uses of the arithmetic-result component of
4643     // CI are guarded by the overflow check, we can go ahead and pretend
4644     // that the arithmetic is non-overflowing.
4645     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4646                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4647   }
4648 
4649   default:
4650     break;
4651   }
4652 
4653   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4654   // semantics as a Sub, return a binary sub expression.
4655   if (auto *II = dyn_cast<IntrinsicInst>(V))
4656     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4657       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4658 
4659   return None;
4660 }
4661 
4662 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4663 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4664 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4665 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4666 /// follows one of the following patterns:
4667 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4668 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4669 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4670 /// we return the type of the truncation operation, and indicate whether the
4671 /// truncated type should be treated as signed/unsigned by setting
4672 /// \p Signed to true/false, respectively.
4673 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4674                                bool &Signed, ScalarEvolution &SE) {
4675   // The case where Op == SymbolicPHI (that is, with no type conversions on
4676   // the way) is handled by the regular add recurrence creating logic and
4677   // would have already been triggered in createAddRecForPHI. Reaching it here
4678   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4679   // because one of the other operands of the SCEVAddExpr updating this PHI is
4680   // not invariant).
4681   //
4682   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4683   // this case predicates that allow us to prove that Op == SymbolicPHI will
4684   // be added.
4685   if (Op == SymbolicPHI)
4686     return nullptr;
4687 
4688   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4689   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4690   if (SourceBits != NewBits)
4691     return nullptr;
4692 
4693   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4694   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4695   if (!SExt && !ZExt)
4696     return nullptr;
4697   const SCEVTruncateExpr *Trunc =
4698       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4699            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4700   if (!Trunc)
4701     return nullptr;
4702   const SCEV *X = Trunc->getOperand();
4703   if (X != SymbolicPHI)
4704     return nullptr;
4705   Signed = SExt != nullptr;
4706   return Trunc->getType();
4707 }
4708 
4709 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4710   if (!PN->getType()->isIntegerTy())
4711     return nullptr;
4712   const Loop *L = LI.getLoopFor(PN->getParent());
4713   if (!L || L->getHeader() != PN->getParent())
4714     return nullptr;
4715   return L;
4716 }
4717 
4718 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4719 // computation that updates the phi follows the following pattern:
4720 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4721 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4722 // If so, try to see if it can be rewritten as an AddRecExpr under some
4723 // Predicates. If successful, return them as a pair. Also cache the results
4724 // of the analysis.
4725 //
4726 // Example usage scenario:
4727 //    Say the Rewriter is called for the following SCEV:
4728 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4729 //    where:
4730 //         %X = phi i64 (%Start, %BEValue)
4731 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4732 //    and call this function with %SymbolicPHI = %X.
4733 //
4734 //    The analysis will find that the value coming around the backedge has
4735 //    the following SCEV:
4736 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4737 //    Upon concluding that this matches the desired pattern, the function
4738 //    will return the pair {NewAddRec, SmallPredsVec} where:
4739 //         NewAddRec = {%Start,+,%Step}
4740 //         SmallPredsVec = {P1, P2, P3} as follows:
4741 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4742 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4743 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4744 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4745 //    under the predicates {P1,P2,P3}.
4746 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4747 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4748 //
4749 // TODO's:
4750 //
4751 // 1) Extend the Induction descriptor to also support inductions that involve
4752 //    casts: When needed (namely, when we are called in the context of the
4753 //    vectorizer induction analysis), a Set of cast instructions will be
4754 //    populated by this method, and provided back to isInductionPHI. This is
4755 //    needed to allow the vectorizer to properly record them to be ignored by
4756 //    the cost model and to avoid vectorizing them (otherwise these casts,
4757 //    which are redundant under the runtime overflow checks, will be
4758 //    vectorized, which can be costly).
4759 //
4760 // 2) Support additional induction/PHISCEV patterns: We also want to support
4761 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4762 //    after the induction update operation (the induction increment):
4763 //
4764 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4765 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4766 //
4767 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4768 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4769 //
4770 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4771 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4772 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4773   SmallVector<const SCEVPredicate *, 3> Predicates;
4774 
4775   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4776   // return an AddRec expression under some predicate.
4777 
4778   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4779   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4780   assert(L && "Expecting an integer loop header phi");
4781 
4782   // The loop may have multiple entrances or multiple exits; we can analyze
4783   // this phi as an addrec if it has a unique entry value and a unique
4784   // backedge value.
4785   Value *BEValueV = nullptr, *StartValueV = nullptr;
4786   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4787     Value *V = PN->getIncomingValue(i);
4788     if (L->contains(PN->getIncomingBlock(i))) {
4789       if (!BEValueV) {
4790         BEValueV = V;
4791       } else if (BEValueV != V) {
4792         BEValueV = nullptr;
4793         break;
4794       }
4795     } else if (!StartValueV) {
4796       StartValueV = V;
4797     } else if (StartValueV != V) {
4798       StartValueV = nullptr;
4799       break;
4800     }
4801   }
4802   if (!BEValueV || !StartValueV)
4803     return None;
4804 
4805   const SCEV *BEValue = getSCEV(BEValueV);
4806 
4807   // If the value coming around the backedge is an add with the symbolic
4808   // value we just inserted, possibly with casts that we can ignore under
4809   // an appropriate runtime guard, then we found a simple induction variable!
4810   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4811   if (!Add)
4812     return None;
4813 
4814   // If there is a single occurrence of the symbolic value, possibly
4815   // casted, replace it with a recurrence.
4816   unsigned FoundIndex = Add->getNumOperands();
4817   Type *TruncTy = nullptr;
4818   bool Signed;
4819   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4820     if ((TruncTy =
4821              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4822       if (FoundIndex == e) {
4823         FoundIndex = i;
4824         break;
4825       }
4826 
4827   if (FoundIndex == Add->getNumOperands())
4828     return None;
4829 
4830   // Create an add with everything but the specified operand.
4831   SmallVector<const SCEV *, 8> Ops;
4832   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4833     if (i != FoundIndex)
4834       Ops.push_back(Add->getOperand(i));
4835   const SCEV *Accum = getAddExpr(Ops);
4836 
4837   // The runtime checks will not be valid if the step amount is
4838   // varying inside the loop.
4839   if (!isLoopInvariant(Accum, L))
4840     return None;
4841 
4842   // *** Part2: Create the predicates
4843 
4844   // Analysis was successful: we have a phi-with-cast pattern for which we
4845   // can return an AddRec expression under the following predicates:
4846   //
4847   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4848   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4849   // P2: An Equal predicate that guarantees that
4850   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4851   // P3: An Equal predicate that guarantees that
4852   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4853   //
4854   // As we next prove, the above predicates guarantee that:
4855   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4856   //
4857   //
4858   // More formally, we want to prove that:
4859   //     Expr(i+1) = Start + (i+1) * Accum
4860   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4861   //
4862   // Given that:
4863   // 1) Expr(0) = Start
4864   // 2) Expr(1) = Start + Accum
4865   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4866   // 3) Induction hypothesis (step i):
4867   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4868   //
4869   // Proof:
4870   //  Expr(i+1) =
4871   //   = Start + (i+1)*Accum
4872   //   = (Start + i*Accum) + Accum
4873   //   = Expr(i) + Accum
4874   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4875   //                                                             :: from step i
4876   //
4877   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4878   //
4879   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4880   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4881   //     + Accum                                                     :: from P3
4882   //
4883   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4884   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4885   //
4886   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4887   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4888   //
4889   // By induction, the same applies to all iterations 1<=i<n:
4890   //
4891 
4892   // Create a truncated addrec for which we will add a no overflow check (P1).
4893   const SCEV *StartVal = getSCEV(StartValueV);
4894   const SCEV *PHISCEV =
4895       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4896                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4897 
4898   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4899   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4900   // will be constant.
4901   //
4902   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4903   // add P1.
4904   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4905     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4906         Signed ? SCEVWrapPredicate::IncrementNSSW
4907                : SCEVWrapPredicate::IncrementNUSW;
4908     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4909     Predicates.push_back(AddRecPred);
4910   }
4911 
4912   // Create the Equal Predicates P2,P3:
4913 
4914   // It is possible that the predicates P2 and/or P3 are computable at
4915   // compile time due to StartVal and/or Accum being constants.
4916   // If either one is, then we can check that now and escape if either P2
4917   // or P3 is false.
4918 
4919   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4920   // for each of StartVal and Accum
4921   auto getExtendedExpr = [&](const SCEV *Expr,
4922                              bool CreateSignExtend) -> const SCEV * {
4923     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4924     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4925     const SCEV *ExtendedExpr =
4926         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4927                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4928     return ExtendedExpr;
4929   };
4930 
4931   // Given:
4932   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4933   //               = getExtendedExpr(Expr)
4934   // Determine whether the predicate P: Expr == ExtendedExpr
4935   // is known to be false at compile time
4936   auto PredIsKnownFalse = [&](const SCEV *Expr,
4937                               const SCEV *ExtendedExpr) -> bool {
4938     return Expr != ExtendedExpr &&
4939            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4940   };
4941 
4942   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4943   if (PredIsKnownFalse(StartVal, StartExtended)) {
4944     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4945     return None;
4946   }
4947 
4948   // The Step is always Signed (because the overflow checks are either
4949   // NSSW or NUSW)
4950   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4951   if (PredIsKnownFalse(Accum, AccumExtended)) {
4952     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4953     return None;
4954   }
4955 
4956   auto AppendPredicate = [&](const SCEV *Expr,
4957                              const SCEV *ExtendedExpr) -> void {
4958     if (Expr != ExtendedExpr &&
4959         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4960       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4961       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4962       Predicates.push_back(Pred);
4963     }
4964   };
4965 
4966   AppendPredicate(StartVal, StartExtended);
4967   AppendPredicate(Accum, AccumExtended);
4968 
4969   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4970   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4971   // into NewAR if it will also add the runtime overflow checks specified in
4972   // Predicates.
4973   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4974 
4975   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4976       std::make_pair(NewAR, Predicates);
4977   // Remember the result of the analysis for this SCEV at this locayyytion.
4978   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4979   return PredRewrite;
4980 }
4981 
4982 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4983 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4984   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4985   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4986   if (!L)
4987     return None;
4988 
4989   // Check to see if we already analyzed this PHI.
4990   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4991   if (I != PredicatedSCEVRewrites.end()) {
4992     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4993         I->second;
4994     // Analysis was done before and failed to create an AddRec:
4995     if (Rewrite.first == SymbolicPHI)
4996       return None;
4997     // Analysis was done before and succeeded to create an AddRec under
4998     // a predicate:
4999     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5000     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5001     return Rewrite;
5002   }
5003 
5004   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5005     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5006 
5007   // Record in the cache that the analysis failed
5008   if (!Rewrite) {
5009     SmallVector<const SCEVPredicate *, 3> Predicates;
5010     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5011     return None;
5012   }
5013 
5014   return Rewrite;
5015 }
5016 
5017 // FIXME: This utility is currently required because the Rewriter currently
5018 // does not rewrite this expression:
5019 // {0, +, (sext ix (trunc iy to ix) to iy)}
5020 // into {0, +, %step},
5021 // even when the following Equal predicate exists:
5022 // "%step == (sext ix (trunc iy to ix) to iy)".
5023 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5024     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5025   if (AR1 == AR2)
5026     return true;
5027 
5028   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5029     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5030         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5031       return false;
5032     return true;
5033   };
5034 
5035   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5036       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5037     return false;
5038   return true;
5039 }
5040 
5041 /// A helper function for createAddRecFromPHI to handle simple cases.
5042 ///
5043 /// This function tries to find an AddRec expression for the simplest (yet most
5044 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5045 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5046 /// technique for finding the AddRec expression.
5047 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5048                                                       Value *BEValueV,
5049                                                       Value *StartValueV) {
5050   const Loop *L = LI.getLoopFor(PN->getParent());
5051   assert(L && L->getHeader() == PN->getParent());
5052   assert(BEValueV && StartValueV);
5053 
5054   auto BO = MatchBinaryOp(BEValueV, DT);
5055   if (!BO)
5056     return nullptr;
5057 
5058   if (BO->Opcode != Instruction::Add)
5059     return nullptr;
5060 
5061   const SCEV *Accum = nullptr;
5062   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5063     Accum = getSCEV(BO->RHS);
5064   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5065     Accum = getSCEV(BO->LHS);
5066 
5067   if (!Accum)
5068     return nullptr;
5069 
5070   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5071   if (BO->IsNUW)
5072     Flags = setFlags(Flags, SCEV::FlagNUW);
5073   if (BO->IsNSW)
5074     Flags = setFlags(Flags, SCEV::FlagNSW);
5075 
5076   const SCEV *StartVal = getSCEV(StartValueV);
5077   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5078 
5079   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5080 
5081   // We can add Flags to the post-inc expression only if we
5082   // know that it is *undefined behavior* for BEValueV to
5083   // overflow.
5084   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5085     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5086       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5087 
5088   return PHISCEV;
5089 }
5090 
5091 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5092   const Loop *L = LI.getLoopFor(PN->getParent());
5093   if (!L || L->getHeader() != PN->getParent())
5094     return nullptr;
5095 
5096   // The loop may have multiple entrances or multiple exits; we can analyze
5097   // this phi as an addrec if it has a unique entry value and a unique
5098   // backedge value.
5099   Value *BEValueV = nullptr, *StartValueV = nullptr;
5100   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5101     Value *V = PN->getIncomingValue(i);
5102     if (L->contains(PN->getIncomingBlock(i))) {
5103       if (!BEValueV) {
5104         BEValueV = V;
5105       } else if (BEValueV != V) {
5106         BEValueV = nullptr;
5107         break;
5108       }
5109     } else if (!StartValueV) {
5110       StartValueV = V;
5111     } else if (StartValueV != V) {
5112       StartValueV = nullptr;
5113       break;
5114     }
5115   }
5116   if (!BEValueV || !StartValueV)
5117     return nullptr;
5118 
5119   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5120          "PHI node already processed?");
5121 
5122   // First, try to find AddRec expression without creating a fictituos symbolic
5123   // value for PN.
5124   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5125     return S;
5126 
5127   // Handle PHI node value symbolically.
5128   const SCEV *SymbolicName = getUnknown(PN);
5129   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5130 
5131   // Using this symbolic name for the PHI, analyze the value coming around
5132   // the back-edge.
5133   const SCEV *BEValue = getSCEV(BEValueV);
5134 
5135   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5136   // has a special value for the first iteration of the loop.
5137 
5138   // If the value coming around the backedge is an add with the symbolic
5139   // value we just inserted, then we found a simple induction variable!
5140   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5141     // If there is a single occurrence of the symbolic value, replace it
5142     // with a recurrence.
5143     unsigned FoundIndex = Add->getNumOperands();
5144     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5145       if (Add->getOperand(i) == SymbolicName)
5146         if (FoundIndex == e) {
5147           FoundIndex = i;
5148           break;
5149         }
5150 
5151     if (FoundIndex != Add->getNumOperands()) {
5152       // Create an add with everything but the specified operand.
5153       SmallVector<const SCEV *, 8> Ops;
5154       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5155         if (i != FoundIndex)
5156           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5157                                                              L, *this));
5158       const SCEV *Accum = getAddExpr(Ops);
5159 
5160       // This is not a valid addrec if the step amount is varying each
5161       // loop iteration, but is not itself an addrec in this loop.
5162       if (isLoopInvariant(Accum, L) ||
5163           (isa<SCEVAddRecExpr>(Accum) &&
5164            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5165         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5166 
5167         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5168           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5169             if (BO->IsNUW)
5170               Flags = setFlags(Flags, SCEV::FlagNUW);
5171             if (BO->IsNSW)
5172               Flags = setFlags(Flags, SCEV::FlagNSW);
5173           }
5174         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5175           // If the increment is an inbounds GEP, then we know the address
5176           // space cannot be wrapped around. We cannot make any guarantee
5177           // about signed or unsigned overflow because pointers are
5178           // unsigned but we may have a negative index from the base
5179           // pointer. We can guarantee that no unsigned wrap occurs if the
5180           // indices form a positive value.
5181           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5182             Flags = setFlags(Flags, SCEV::FlagNW);
5183 
5184             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5185             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5186               Flags = setFlags(Flags, SCEV::FlagNUW);
5187           }
5188 
5189           // We cannot transfer nuw and nsw flags from subtraction
5190           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5191           // for instance.
5192         }
5193 
5194         const SCEV *StartVal = getSCEV(StartValueV);
5195         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5196 
5197         // Okay, for the entire analysis of this edge we assumed the PHI
5198         // to be symbolic.  We now need to go back and purge all of the
5199         // entries for the scalars that use the symbolic expression.
5200         forgetSymbolicName(PN, SymbolicName);
5201         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5202 
5203         // We can add Flags to the post-inc expression only if we
5204         // know that it is *undefined behavior* for BEValueV to
5205         // overflow.
5206         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5207           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5208             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5209 
5210         return PHISCEV;
5211       }
5212     }
5213   } else {
5214     // Otherwise, this could be a loop like this:
5215     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5216     // In this case, j = {1,+,1}  and BEValue is j.
5217     // Because the other in-value of i (0) fits the evolution of BEValue
5218     // i really is an addrec evolution.
5219     //
5220     // We can generalize this saying that i is the shifted value of BEValue
5221     // by one iteration:
5222     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5223     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5224     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5225     if (Shifted != getCouldNotCompute() &&
5226         Start != getCouldNotCompute()) {
5227       const SCEV *StartVal = getSCEV(StartValueV);
5228       if (Start == StartVal) {
5229         // Okay, for the entire analysis of this edge we assumed the PHI
5230         // to be symbolic.  We now need to go back and purge all of the
5231         // entries for the scalars that use the symbolic expression.
5232         forgetSymbolicName(PN, SymbolicName);
5233         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5234         return Shifted;
5235       }
5236     }
5237   }
5238 
5239   // Remove the temporary PHI node SCEV that has been inserted while intending
5240   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5241   // as it will prevent later (possibly simpler) SCEV expressions to be added
5242   // to the ValueExprMap.
5243   eraseValueFromMap(PN);
5244 
5245   return nullptr;
5246 }
5247 
5248 // Checks if the SCEV S is available at BB.  S is considered available at BB
5249 // if S can be materialized at BB without introducing a fault.
5250 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5251                                BasicBlock *BB) {
5252   struct CheckAvailable {
5253     bool TraversalDone = false;
5254     bool Available = true;
5255 
5256     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5257     BasicBlock *BB = nullptr;
5258     DominatorTree &DT;
5259 
5260     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5261       : L(L), BB(BB), DT(DT) {}
5262 
5263     bool setUnavailable() {
5264       TraversalDone = true;
5265       Available = false;
5266       return false;
5267     }
5268 
5269     bool follow(const SCEV *S) {
5270       switch (S->getSCEVType()) {
5271       case scConstant:
5272       case scPtrToInt:
5273       case scTruncate:
5274       case scZeroExtend:
5275       case scSignExtend:
5276       case scAddExpr:
5277       case scMulExpr:
5278       case scUMaxExpr:
5279       case scSMaxExpr:
5280       case scUMinExpr:
5281       case scSMinExpr:
5282         // These expressions are available if their operand(s) is/are.
5283         return true;
5284 
5285       case scAddRecExpr: {
5286         // We allow add recurrences that are on the loop BB is in, or some
5287         // outer loop.  This guarantees availability because the value of the
5288         // add recurrence at BB is simply the "current" value of the induction
5289         // variable.  We can relax this in the future; for instance an add
5290         // recurrence on a sibling dominating loop is also available at BB.
5291         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5292         if (L && (ARLoop == L || ARLoop->contains(L)))
5293           return true;
5294 
5295         return setUnavailable();
5296       }
5297 
5298       case scUnknown: {
5299         // For SCEVUnknown, we check for simple dominance.
5300         const auto *SU = cast<SCEVUnknown>(S);
5301         Value *V = SU->getValue();
5302 
5303         if (isa<Argument>(V))
5304           return false;
5305 
5306         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5307           return false;
5308 
5309         return setUnavailable();
5310       }
5311 
5312       case scUDivExpr:
5313       case scCouldNotCompute:
5314         // We do not try to smart about these at all.
5315         return setUnavailable();
5316       }
5317       llvm_unreachable("Unknown SCEV kind!");
5318     }
5319 
5320     bool isDone() { return TraversalDone; }
5321   };
5322 
5323   CheckAvailable CA(L, BB, DT);
5324   SCEVTraversal<CheckAvailable> ST(CA);
5325 
5326   ST.visitAll(S);
5327   return CA.Available;
5328 }
5329 
5330 // Try to match a control flow sequence that branches out at BI and merges back
5331 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5332 // match.
5333 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5334                           Value *&C, Value *&LHS, Value *&RHS) {
5335   C = BI->getCondition();
5336 
5337   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5338   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5339 
5340   if (!LeftEdge.isSingleEdge())
5341     return false;
5342 
5343   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5344 
5345   Use &LeftUse = Merge->getOperandUse(0);
5346   Use &RightUse = Merge->getOperandUse(1);
5347 
5348   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5349     LHS = LeftUse;
5350     RHS = RightUse;
5351     return true;
5352   }
5353 
5354   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5355     LHS = RightUse;
5356     RHS = LeftUse;
5357     return true;
5358   }
5359 
5360   return false;
5361 }
5362 
5363 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5364   auto IsReachable =
5365       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5366   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5367     const Loop *L = LI.getLoopFor(PN->getParent());
5368 
5369     // We don't want to break LCSSA, even in a SCEV expression tree.
5370     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5371       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5372         return nullptr;
5373 
5374     // Try to match
5375     //
5376     //  br %cond, label %left, label %right
5377     // left:
5378     //  br label %merge
5379     // right:
5380     //  br label %merge
5381     // merge:
5382     //  V = phi [ %x, %left ], [ %y, %right ]
5383     //
5384     // as "select %cond, %x, %y"
5385 
5386     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5387     assert(IDom && "At least the entry block should dominate PN");
5388 
5389     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5390     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5391 
5392     if (BI && BI->isConditional() &&
5393         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5394         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5395         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5396       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5397   }
5398 
5399   return nullptr;
5400 }
5401 
5402 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5403   if (const SCEV *S = createAddRecFromPHI(PN))
5404     return S;
5405 
5406   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5407     return S;
5408 
5409   // If the PHI has a single incoming value, follow that value, unless the
5410   // PHI's incoming blocks are in a different loop, in which case doing so
5411   // risks breaking LCSSA form. Instcombine would normally zap these, but
5412   // it doesn't have DominatorTree information, so it may miss cases.
5413   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5414     if (LI.replacementPreservesLCSSAForm(PN, V))
5415       return getSCEV(V);
5416 
5417   // If it's not a loop phi, we can't handle it yet.
5418   return getUnknown(PN);
5419 }
5420 
5421 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5422                                                       Value *Cond,
5423                                                       Value *TrueVal,
5424                                                       Value *FalseVal) {
5425   // Handle "constant" branch or select. This can occur for instance when a
5426   // loop pass transforms an inner loop and moves on to process the outer loop.
5427   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5428     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5429 
5430   // Try to match some simple smax or umax patterns.
5431   auto *ICI = dyn_cast<ICmpInst>(Cond);
5432   if (!ICI)
5433     return getUnknown(I);
5434 
5435   Value *LHS = ICI->getOperand(0);
5436   Value *RHS = ICI->getOperand(1);
5437 
5438   switch (ICI->getPredicate()) {
5439   case ICmpInst::ICMP_SLT:
5440   case ICmpInst::ICMP_SLE:
5441     std::swap(LHS, RHS);
5442     LLVM_FALLTHROUGH;
5443   case ICmpInst::ICMP_SGT:
5444   case ICmpInst::ICMP_SGE:
5445     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5446     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5447     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5448       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5449       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5450       const SCEV *LA = getSCEV(TrueVal);
5451       const SCEV *RA = getSCEV(FalseVal);
5452       const SCEV *LDiff = getMinusSCEV(LA, LS);
5453       const SCEV *RDiff = getMinusSCEV(RA, RS);
5454       if (LDiff == RDiff)
5455         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5456       LDiff = getMinusSCEV(LA, RS);
5457       RDiff = getMinusSCEV(RA, LS);
5458       if (LDiff == RDiff)
5459         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5460     }
5461     break;
5462   case ICmpInst::ICMP_ULT:
5463   case ICmpInst::ICMP_ULE:
5464     std::swap(LHS, RHS);
5465     LLVM_FALLTHROUGH;
5466   case ICmpInst::ICMP_UGT:
5467   case ICmpInst::ICMP_UGE:
5468     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5469     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5470     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5471       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5472       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5473       const SCEV *LA = getSCEV(TrueVal);
5474       const SCEV *RA = getSCEV(FalseVal);
5475       const SCEV *LDiff = getMinusSCEV(LA, LS);
5476       const SCEV *RDiff = getMinusSCEV(RA, RS);
5477       if (LDiff == RDiff)
5478         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5479       LDiff = getMinusSCEV(LA, RS);
5480       RDiff = getMinusSCEV(RA, LS);
5481       if (LDiff == RDiff)
5482         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5483     }
5484     break;
5485   case ICmpInst::ICMP_NE:
5486     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5487     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5488         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5489       const SCEV *One = getOne(I->getType());
5490       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5491       const SCEV *LA = getSCEV(TrueVal);
5492       const SCEV *RA = getSCEV(FalseVal);
5493       const SCEV *LDiff = getMinusSCEV(LA, LS);
5494       const SCEV *RDiff = getMinusSCEV(RA, One);
5495       if (LDiff == RDiff)
5496         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5497     }
5498     break;
5499   case ICmpInst::ICMP_EQ:
5500     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5501     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5502         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5503       const SCEV *One = getOne(I->getType());
5504       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5505       const SCEV *LA = getSCEV(TrueVal);
5506       const SCEV *RA = getSCEV(FalseVal);
5507       const SCEV *LDiff = getMinusSCEV(LA, One);
5508       const SCEV *RDiff = getMinusSCEV(RA, LS);
5509       if (LDiff == RDiff)
5510         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5511     }
5512     break;
5513   default:
5514     break;
5515   }
5516 
5517   return getUnknown(I);
5518 }
5519 
5520 /// Expand GEP instructions into add and multiply operations. This allows them
5521 /// to be analyzed by regular SCEV code.
5522 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5523   // Don't attempt to analyze GEPs over unsized objects.
5524   if (!GEP->getSourceElementType()->isSized())
5525     return getUnknown(GEP);
5526 
5527   SmallVector<const SCEV *, 4> IndexExprs;
5528   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5529     IndexExprs.push_back(getSCEV(*Index));
5530   return getGEPExpr(GEP, IndexExprs);
5531 }
5532 
5533 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5534   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5535     return C->getAPInt().countTrailingZeros();
5536 
5537   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5538     return GetMinTrailingZeros(I->getOperand());
5539 
5540   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5541     return std::min(GetMinTrailingZeros(T->getOperand()),
5542                     (uint32_t)getTypeSizeInBits(T->getType()));
5543 
5544   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5545     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5546     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5547                ? getTypeSizeInBits(E->getType())
5548                : OpRes;
5549   }
5550 
5551   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5552     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5553     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5554                ? getTypeSizeInBits(E->getType())
5555                : OpRes;
5556   }
5557 
5558   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5559     // The result is the min of all operands results.
5560     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5561     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5562       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5563     return MinOpRes;
5564   }
5565 
5566   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5567     // The result is the sum of all operands results.
5568     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5569     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5570     for (unsigned i = 1, e = M->getNumOperands();
5571          SumOpRes != BitWidth && i != e; ++i)
5572       SumOpRes =
5573           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5574     return SumOpRes;
5575   }
5576 
5577   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5578     // The result is the min of all operands results.
5579     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5580     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5581       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5582     return MinOpRes;
5583   }
5584 
5585   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5586     // The result is the min of all operands results.
5587     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5588     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5589       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5590     return MinOpRes;
5591   }
5592 
5593   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5594     // The result is the min of all operands results.
5595     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5596     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5597       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5598     return MinOpRes;
5599   }
5600 
5601   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5602     // For a SCEVUnknown, ask ValueTracking.
5603     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5604     return Known.countMinTrailingZeros();
5605   }
5606 
5607   // SCEVUDivExpr
5608   return 0;
5609 }
5610 
5611 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5612   auto I = MinTrailingZerosCache.find(S);
5613   if (I != MinTrailingZerosCache.end())
5614     return I->second;
5615 
5616   uint32_t Result = GetMinTrailingZerosImpl(S);
5617   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5618   assert(InsertPair.second && "Should insert a new key");
5619   return InsertPair.first->second;
5620 }
5621 
5622 /// Helper method to assign a range to V from metadata present in the IR.
5623 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5624   if (Instruction *I = dyn_cast<Instruction>(V))
5625     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5626       return getConstantRangeFromMetadata(*MD);
5627 
5628   return None;
5629 }
5630 
5631 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5632                                      SCEV::NoWrapFlags Flags) {
5633   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5634     AddRec->setNoWrapFlags(Flags);
5635     UnsignedRanges.erase(AddRec);
5636     SignedRanges.erase(AddRec);
5637   }
5638 }
5639 
5640 /// Determine the range for a particular SCEV.  If SignHint is
5641 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5642 /// with a "cleaner" unsigned (resp. signed) representation.
5643 const ConstantRange &
5644 ScalarEvolution::getRangeRef(const SCEV *S,
5645                              ScalarEvolution::RangeSignHint SignHint) {
5646   DenseMap<const SCEV *, ConstantRange> &Cache =
5647       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5648                                                        : SignedRanges;
5649   ConstantRange::PreferredRangeType RangeType =
5650       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5651           ? ConstantRange::Unsigned : ConstantRange::Signed;
5652 
5653   // See if we've computed this range already.
5654   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5655   if (I != Cache.end())
5656     return I->second;
5657 
5658   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5659     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5660 
5661   unsigned BitWidth = getTypeSizeInBits(S->getType());
5662   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5663   using OBO = OverflowingBinaryOperator;
5664 
5665   // If the value has known zeros, the maximum value will have those known zeros
5666   // as well.
5667   uint32_t TZ = GetMinTrailingZeros(S);
5668   if (TZ != 0) {
5669     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5670       ConservativeResult =
5671           ConstantRange(APInt::getMinValue(BitWidth),
5672                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5673     else
5674       ConservativeResult = ConstantRange(
5675           APInt::getSignedMinValue(BitWidth),
5676           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5677   }
5678 
5679   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5680     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5681     unsigned WrapType = OBO::AnyWrap;
5682     if (Add->hasNoSignedWrap())
5683       WrapType |= OBO::NoSignedWrap;
5684     if (Add->hasNoUnsignedWrap())
5685       WrapType |= OBO::NoUnsignedWrap;
5686     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5687       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5688                           WrapType, RangeType);
5689     return setRange(Add, SignHint,
5690                     ConservativeResult.intersectWith(X, RangeType));
5691   }
5692 
5693   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5694     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5695     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5696       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5697     return setRange(Mul, SignHint,
5698                     ConservativeResult.intersectWith(X, RangeType));
5699   }
5700 
5701   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5702     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5703     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5704       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5705     return setRange(SMax, SignHint,
5706                     ConservativeResult.intersectWith(X, RangeType));
5707   }
5708 
5709   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5710     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5711     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5712       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5713     return setRange(UMax, SignHint,
5714                     ConservativeResult.intersectWith(X, RangeType));
5715   }
5716 
5717   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5718     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5719     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5720       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5721     return setRange(SMin, SignHint,
5722                     ConservativeResult.intersectWith(X, RangeType));
5723   }
5724 
5725   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5726     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5727     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5728       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5729     return setRange(UMin, SignHint,
5730                     ConservativeResult.intersectWith(X, RangeType));
5731   }
5732 
5733   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5734     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5735     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5736     return setRange(UDiv, SignHint,
5737                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5738   }
5739 
5740   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5741     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5742     return setRange(ZExt, SignHint,
5743                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5744                                                      RangeType));
5745   }
5746 
5747   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5748     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5749     return setRange(SExt, SignHint,
5750                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5751                                                      RangeType));
5752   }
5753 
5754   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
5755     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
5756     return setRange(PtrToInt, SignHint, X);
5757   }
5758 
5759   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5760     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5761     return setRange(Trunc, SignHint,
5762                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5763                                                      RangeType));
5764   }
5765 
5766   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5767     // If there's no unsigned wrap, the value will never be less than its
5768     // initial value.
5769     if (AddRec->hasNoUnsignedWrap()) {
5770       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5771       if (!UnsignedMinValue.isNullValue())
5772         ConservativeResult = ConservativeResult.intersectWith(
5773             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5774     }
5775 
5776     // If there's no signed wrap, and all the operands except initial value have
5777     // the same sign or zero, the value won't ever be:
5778     // 1: smaller than initial value if operands are non negative,
5779     // 2: bigger than initial value if operands are non positive.
5780     // For both cases, value can not cross signed min/max boundary.
5781     if (AddRec->hasNoSignedWrap()) {
5782       bool AllNonNeg = true;
5783       bool AllNonPos = true;
5784       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5785         if (!isKnownNonNegative(AddRec->getOperand(i)))
5786           AllNonNeg = false;
5787         if (!isKnownNonPositive(AddRec->getOperand(i)))
5788           AllNonPos = false;
5789       }
5790       if (AllNonNeg)
5791         ConservativeResult = ConservativeResult.intersectWith(
5792             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5793                                        APInt::getSignedMinValue(BitWidth)),
5794             RangeType);
5795       else if (AllNonPos)
5796         ConservativeResult = ConservativeResult.intersectWith(
5797             ConstantRange::getNonEmpty(
5798                 APInt::getSignedMinValue(BitWidth),
5799                 getSignedRangeMax(AddRec->getStart()) + 1),
5800             RangeType);
5801     }
5802 
5803     // TODO: non-affine addrec
5804     if (AddRec->isAffine()) {
5805       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5806       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5807           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5808         auto RangeFromAffine = getRangeForAffineAR(
5809             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5810             BitWidth);
5811         ConservativeResult =
5812             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5813 
5814         auto RangeFromFactoring = getRangeViaFactoring(
5815             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5816             BitWidth);
5817         ConservativeResult =
5818             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5819       }
5820 
5821       // Now try symbolic BE count and more powerful methods.
5822       if (UseExpensiveRangeSharpening) {
5823         const SCEV *SymbolicMaxBECount =
5824             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
5825         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
5826             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5827             AddRec->hasNoSelfWrap()) {
5828           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
5829               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
5830           ConservativeResult =
5831               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
5832         }
5833       }
5834     }
5835 
5836     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5837   }
5838 
5839   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5840     // Check if the IR explicitly contains !range metadata.
5841     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5842     if (MDRange.hasValue())
5843       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5844                                                             RangeType);
5845 
5846     // See if ValueTracking can give us a useful range.
5847     const DataLayout &DL = getDataLayout();
5848     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5849     if (Known.getBitWidth() != BitWidth)
5850       Known = Known.zextOrTrunc(BitWidth);
5851 
5852     // ValueTracking may be able to compute a tighter result for the number of
5853     // sign bits than for the value of those sign bits.
5854     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5855     if (U->getType()->isPointerTy()) {
5856       // If the pointer size is larger than the index size type, this can cause
5857       // NS to be larger than BitWidth. So compensate for this.
5858       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5859       int ptrIdxDiff = ptrSize - BitWidth;
5860       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5861         NS -= ptrIdxDiff;
5862     }
5863 
5864     if (NS > 1) {
5865       // If we know any of the sign bits, we know all of the sign bits.
5866       if (!Known.Zero.getHiBits(NS).isNullValue())
5867         Known.Zero.setHighBits(NS);
5868       if (!Known.One.getHiBits(NS).isNullValue())
5869         Known.One.setHighBits(NS);
5870     }
5871 
5872     if (Known.getMinValue() != Known.getMaxValue() + 1)
5873       ConservativeResult = ConservativeResult.intersectWith(
5874           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5875           RangeType);
5876     if (NS > 1)
5877       ConservativeResult = ConservativeResult.intersectWith(
5878           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5879                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5880           RangeType);
5881 
5882     // A range of Phi is a subset of union of all ranges of its input.
5883     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5884       // Make sure that we do not run over cycled Phis.
5885       if (PendingPhiRanges.insert(Phi).second) {
5886         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5887         for (auto &Op : Phi->operands()) {
5888           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5889           RangeFromOps = RangeFromOps.unionWith(OpRange);
5890           // No point to continue if we already have a full set.
5891           if (RangeFromOps.isFullSet())
5892             break;
5893         }
5894         ConservativeResult =
5895             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5896         bool Erased = PendingPhiRanges.erase(Phi);
5897         assert(Erased && "Failed to erase Phi properly?");
5898         (void) Erased;
5899       }
5900     }
5901 
5902     return setRange(U, SignHint, std::move(ConservativeResult));
5903   }
5904 
5905   return setRange(S, SignHint, std::move(ConservativeResult));
5906 }
5907 
5908 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5909 // values that the expression can take. Initially, the expression has a value
5910 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5911 // argument defines if we treat Step as signed or unsigned.
5912 static ConstantRange getRangeForAffineARHelper(APInt Step,
5913                                                const ConstantRange &StartRange,
5914                                                const APInt &MaxBECount,
5915                                                unsigned BitWidth, bool Signed) {
5916   // If either Step or MaxBECount is 0, then the expression won't change, and we
5917   // just need to return the initial range.
5918   if (Step == 0 || MaxBECount == 0)
5919     return StartRange;
5920 
5921   // If we don't know anything about the initial value (i.e. StartRange is
5922   // FullRange), then we don't know anything about the final range either.
5923   // Return FullRange.
5924   if (StartRange.isFullSet())
5925     return ConstantRange::getFull(BitWidth);
5926 
5927   // If Step is signed and negative, then we use its absolute value, but we also
5928   // note that we're moving in the opposite direction.
5929   bool Descending = Signed && Step.isNegative();
5930 
5931   if (Signed)
5932     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5933     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5934     // This equations hold true due to the well-defined wrap-around behavior of
5935     // APInt.
5936     Step = Step.abs();
5937 
5938   // Check if Offset is more than full span of BitWidth. If it is, the
5939   // expression is guaranteed to overflow.
5940   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5941     return ConstantRange::getFull(BitWidth);
5942 
5943   // Offset is by how much the expression can change. Checks above guarantee no
5944   // overflow here.
5945   APInt Offset = Step * MaxBECount;
5946 
5947   // Minimum value of the final range will match the minimal value of StartRange
5948   // if the expression is increasing and will be decreased by Offset otherwise.
5949   // Maximum value of the final range will match the maximal value of StartRange
5950   // if the expression is decreasing and will be increased by Offset otherwise.
5951   APInt StartLower = StartRange.getLower();
5952   APInt StartUpper = StartRange.getUpper() - 1;
5953   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5954                                    : (StartUpper + std::move(Offset));
5955 
5956   // It's possible that the new minimum/maximum value will fall into the initial
5957   // range (due to wrap around). This means that the expression can take any
5958   // value in this bitwidth, and we have to return full range.
5959   if (StartRange.contains(MovedBoundary))
5960     return ConstantRange::getFull(BitWidth);
5961 
5962   APInt NewLower =
5963       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5964   APInt NewUpper =
5965       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5966   NewUpper += 1;
5967 
5968   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5969   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5970 }
5971 
5972 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5973                                                    const SCEV *Step,
5974                                                    const SCEV *MaxBECount,
5975                                                    unsigned BitWidth) {
5976   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5977          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5978          "Precondition!");
5979 
5980   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5981   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5982 
5983   // First, consider step signed.
5984   ConstantRange StartSRange = getSignedRange(Start);
5985   ConstantRange StepSRange = getSignedRange(Step);
5986 
5987   // If Step can be both positive and negative, we need to find ranges for the
5988   // maximum absolute step values in both directions and union them.
5989   ConstantRange SR =
5990       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5991                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5992   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5993                                               StartSRange, MaxBECountValue,
5994                                               BitWidth, /* Signed = */ true));
5995 
5996   // Next, consider step unsigned.
5997   ConstantRange UR = getRangeForAffineARHelper(
5998       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5999       MaxBECountValue, BitWidth, /* Signed = */ false);
6000 
6001   // Finally, intersect signed and unsigned ranges.
6002   return SR.intersectWith(UR, ConstantRange::Smallest);
6003 }
6004 
6005 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6006     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6007     ScalarEvolution::RangeSignHint SignHint) {
6008   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6009   assert(AddRec->hasNoSelfWrap() &&
6010          "This only works for non-self-wrapping AddRecs!");
6011   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6012   const SCEV *Step = AddRec->getStepRecurrence(*this);
6013   // Only deal with constant step to save compile time.
6014   if (!isa<SCEVConstant>(Step))
6015     return ConstantRange::getFull(BitWidth);
6016   // Let's make sure that we can prove that we do not self-wrap during
6017   // MaxBECount iterations. We need this because MaxBECount is a maximum
6018   // iteration count estimate, and we might infer nw from some exit for which we
6019   // do not know max exit count (or any other side reasoning).
6020   // TODO: Turn into assert at some point.
6021   if (getTypeSizeInBits(MaxBECount->getType()) >
6022       getTypeSizeInBits(AddRec->getType()))
6023     return ConstantRange::getFull(BitWidth);
6024   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6025   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6026   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6027   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6028   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6029                                          MaxItersWithoutWrap))
6030     return ConstantRange::getFull(BitWidth);
6031 
6032   ICmpInst::Predicate LEPred =
6033       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6034   ICmpInst::Predicate GEPred =
6035       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6036   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6037 
6038   // We know that there is no self-wrap. Let's take Start and End values and
6039   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6040   // the iteration. They either lie inside the range [Min(Start, End),
6041   // Max(Start, End)] or outside it:
6042   //
6043   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6044   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6045   //
6046   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6047   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6048   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6049   // Start <= End and step is positive, or Start >= End and step is negative.
6050   const SCEV *Start = AddRec->getStart();
6051   ConstantRange StartRange = getRangeRef(Start, SignHint);
6052   ConstantRange EndRange = getRangeRef(End, SignHint);
6053   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6054   // If they already cover full iteration space, we will know nothing useful
6055   // even if we prove what we want to prove.
6056   if (RangeBetween.isFullSet())
6057     return RangeBetween;
6058   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6059   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6060                                : RangeBetween.isWrappedSet();
6061   if (IsWrappedSet)
6062     return ConstantRange::getFull(BitWidth);
6063 
6064   if (isKnownPositive(Step) &&
6065       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6066     return RangeBetween;
6067   else if (isKnownNegative(Step) &&
6068            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6069     return RangeBetween;
6070   return ConstantRange::getFull(BitWidth);
6071 }
6072 
6073 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6074                                                     const SCEV *Step,
6075                                                     const SCEV *MaxBECount,
6076                                                     unsigned BitWidth) {
6077   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6078   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6079 
6080   struct SelectPattern {
6081     Value *Condition = nullptr;
6082     APInt TrueValue;
6083     APInt FalseValue;
6084 
6085     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6086                            const SCEV *S) {
6087       Optional<unsigned> CastOp;
6088       APInt Offset(BitWidth, 0);
6089 
6090       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6091              "Should be!");
6092 
6093       // Peel off a constant offset:
6094       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6095         // In the future we could consider being smarter here and handle
6096         // {Start+Step,+,Step} too.
6097         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6098           return;
6099 
6100         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6101         S = SA->getOperand(1);
6102       }
6103 
6104       // Peel off a cast operation
6105       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6106         CastOp = SCast->getSCEVType();
6107         S = SCast->getOperand();
6108       }
6109 
6110       using namespace llvm::PatternMatch;
6111 
6112       auto *SU = dyn_cast<SCEVUnknown>(S);
6113       const APInt *TrueVal, *FalseVal;
6114       if (!SU ||
6115           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6116                                           m_APInt(FalseVal)))) {
6117         Condition = nullptr;
6118         return;
6119       }
6120 
6121       TrueValue = *TrueVal;
6122       FalseValue = *FalseVal;
6123 
6124       // Re-apply the cast we peeled off earlier
6125       if (CastOp.hasValue())
6126         switch (*CastOp) {
6127         default:
6128           llvm_unreachable("Unknown SCEV cast type!");
6129 
6130         case scTruncate:
6131           TrueValue = TrueValue.trunc(BitWidth);
6132           FalseValue = FalseValue.trunc(BitWidth);
6133           break;
6134         case scZeroExtend:
6135           TrueValue = TrueValue.zext(BitWidth);
6136           FalseValue = FalseValue.zext(BitWidth);
6137           break;
6138         case scSignExtend:
6139           TrueValue = TrueValue.sext(BitWidth);
6140           FalseValue = FalseValue.sext(BitWidth);
6141           break;
6142         }
6143 
6144       // Re-apply the constant offset we peeled off earlier
6145       TrueValue += Offset;
6146       FalseValue += Offset;
6147     }
6148 
6149     bool isRecognized() { return Condition != nullptr; }
6150   };
6151 
6152   SelectPattern StartPattern(*this, BitWidth, Start);
6153   if (!StartPattern.isRecognized())
6154     return ConstantRange::getFull(BitWidth);
6155 
6156   SelectPattern StepPattern(*this, BitWidth, Step);
6157   if (!StepPattern.isRecognized())
6158     return ConstantRange::getFull(BitWidth);
6159 
6160   if (StartPattern.Condition != StepPattern.Condition) {
6161     // We don't handle this case today; but we could, by considering four
6162     // possibilities below instead of two. I'm not sure if there are cases where
6163     // that will help over what getRange already does, though.
6164     return ConstantRange::getFull(BitWidth);
6165   }
6166 
6167   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6168   // construct arbitrary general SCEV expressions here.  This function is called
6169   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6170   // say) can end up caching a suboptimal value.
6171 
6172   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6173   // C2352 and C2512 (otherwise it isn't needed).
6174 
6175   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6176   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6177   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6178   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6179 
6180   ConstantRange TrueRange =
6181       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6182   ConstantRange FalseRange =
6183       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6184 
6185   return TrueRange.unionWith(FalseRange);
6186 }
6187 
6188 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6189   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6190   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6191 
6192   // Return early if there are no flags to propagate to the SCEV.
6193   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6194   if (BinOp->hasNoUnsignedWrap())
6195     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6196   if (BinOp->hasNoSignedWrap())
6197     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6198   if (Flags == SCEV::FlagAnyWrap)
6199     return SCEV::FlagAnyWrap;
6200 
6201   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6202 }
6203 
6204 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6205   // Here we check that I is in the header of the innermost loop containing I,
6206   // since we only deal with instructions in the loop header. The actual loop we
6207   // need to check later will come from an add recurrence, but getting that
6208   // requires computing the SCEV of the operands, which can be expensive. This
6209   // check we can do cheaply to rule out some cases early.
6210   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6211   if (InnermostContainingLoop == nullptr ||
6212       InnermostContainingLoop->getHeader() != I->getParent())
6213     return false;
6214 
6215   // Only proceed if we can prove that I does not yield poison.
6216   if (!programUndefinedIfPoison(I))
6217     return false;
6218 
6219   // At this point we know that if I is executed, then it does not wrap
6220   // according to at least one of NSW or NUW. If I is not executed, then we do
6221   // not know if the calculation that I represents would wrap. Multiple
6222   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6223   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6224   // derived from other instructions that map to the same SCEV. We cannot make
6225   // that guarantee for cases where I is not executed. So we need to find the
6226   // loop that I is considered in relation to and prove that I is executed for
6227   // every iteration of that loop. That implies that the value that I
6228   // calculates does not wrap anywhere in the loop, so then we can apply the
6229   // flags to the SCEV.
6230   //
6231   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6232   // from different loops, so that we know which loop to prove that I is
6233   // executed in.
6234   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6235     // I could be an extractvalue from a call to an overflow intrinsic.
6236     // TODO: We can do better here in some cases.
6237     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6238       return false;
6239     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6240     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6241       bool AllOtherOpsLoopInvariant = true;
6242       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6243            ++OtherOpIndex) {
6244         if (OtherOpIndex != OpIndex) {
6245           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6246           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6247             AllOtherOpsLoopInvariant = false;
6248             break;
6249           }
6250         }
6251       }
6252       if (AllOtherOpsLoopInvariant &&
6253           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6254         return true;
6255     }
6256   }
6257   return false;
6258 }
6259 
6260 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6261   // If we know that \c I can never be poison period, then that's enough.
6262   if (isSCEVExprNeverPoison(I))
6263     return true;
6264 
6265   // For an add recurrence specifically, we assume that infinite loops without
6266   // side effects are undefined behavior, and then reason as follows:
6267   //
6268   // If the add recurrence is poison in any iteration, it is poison on all
6269   // future iterations (since incrementing poison yields poison). If the result
6270   // of the add recurrence is fed into the loop latch condition and the loop
6271   // does not contain any throws or exiting blocks other than the latch, we now
6272   // have the ability to "choose" whether the backedge is taken or not (by
6273   // choosing a sufficiently evil value for the poison feeding into the branch)
6274   // for every iteration including and after the one in which \p I first became
6275   // poison.  There are two possibilities (let's call the iteration in which \p
6276   // I first became poison as K):
6277   //
6278   //  1. In the set of iterations including and after K, the loop body executes
6279   //     no side effects.  In this case executing the backege an infinte number
6280   //     of times will yield undefined behavior.
6281   //
6282   //  2. In the set of iterations including and after K, the loop body executes
6283   //     at least one side effect.  In this case, that specific instance of side
6284   //     effect is control dependent on poison, which also yields undefined
6285   //     behavior.
6286 
6287   auto *ExitingBB = L->getExitingBlock();
6288   auto *LatchBB = L->getLoopLatch();
6289   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6290     return false;
6291 
6292   SmallPtrSet<const Instruction *, 16> Pushed;
6293   SmallVector<const Instruction *, 8> PoisonStack;
6294 
6295   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6296   // things that are known to be poison under that assumption go on the
6297   // PoisonStack.
6298   Pushed.insert(I);
6299   PoisonStack.push_back(I);
6300 
6301   bool LatchControlDependentOnPoison = false;
6302   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6303     const Instruction *Poison = PoisonStack.pop_back_val();
6304 
6305     for (auto *PoisonUser : Poison->users()) {
6306       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6307         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6308           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6309       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6310         assert(BI->isConditional() && "Only possibility!");
6311         if (BI->getParent() == LatchBB) {
6312           LatchControlDependentOnPoison = true;
6313           break;
6314         }
6315       }
6316     }
6317   }
6318 
6319   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6320 }
6321 
6322 ScalarEvolution::LoopProperties
6323 ScalarEvolution::getLoopProperties(const Loop *L) {
6324   using LoopProperties = ScalarEvolution::LoopProperties;
6325 
6326   auto Itr = LoopPropertiesCache.find(L);
6327   if (Itr == LoopPropertiesCache.end()) {
6328     auto HasSideEffects = [](Instruction *I) {
6329       if (auto *SI = dyn_cast<StoreInst>(I))
6330         return !SI->isSimple();
6331 
6332       return I->mayHaveSideEffects();
6333     };
6334 
6335     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6336                          /*HasNoSideEffects*/ true};
6337 
6338     for (auto *BB : L->getBlocks())
6339       for (auto &I : *BB) {
6340         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6341           LP.HasNoAbnormalExits = false;
6342         if (HasSideEffects(&I))
6343           LP.HasNoSideEffects = false;
6344         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6345           break; // We're already as pessimistic as we can get.
6346       }
6347 
6348     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6349     assert(InsertPair.second && "We just checked!");
6350     Itr = InsertPair.first;
6351   }
6352 
6353   return Itr->second;
6354 }
6355 
6356 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6357   if (!isSCEVable(V->getType()))
6358     return getUnknown(V);
6359 
6360   if (Instruction *I = dyn_cast<Instruction>(V)) {
6361     // Don't attempt to analyze instructions in blocks that aren't
6362     // reachable. Such instructions don't matter, and they aren't required
6363     // to obey basic rules for definitions dominating uses which this
6364     // analysis depends on.
6365     if (!DT.isReachableFromEntry(I->getParent()))
6366       return getUnknown(UndefValue::get(V->getType()));
6367   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6368     return getConstant(CI);
6369   else if (isa<ConstantPointerNull>(V))
6370     // FIXME: we shouldn't special-case null pointer constant.
6371     return getZero(V->getType());
6372   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6373     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6374   else if (!isa<ConstantExpr>(V))
6375     return getUnknown(V);
6376 
6377   Operator *U = cast<Operator>(V);
6378   if (auto BO = MatchBinaryOp(U, DT)) {
6379     switch (BO->Opcode) {
6380     case Instruction::Add: {
6381       // The simple thing to do would be to just call getSCEV on both operands
6382       // and call getAddExpr with the result. However if we're looking at a
6383       // bunch of things all added together, this can be quite inefficient,
6384       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6385       // Instead, gather up all the operands and make a single getAddExpr call.
6386       // LLVM IR canonical form means we need only traverse the left operands.
6387       SmallVector<const SCEV *, 4> AddOps;
6388       do {
6389         if (BO->Op) {
6390           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6391             AddOps.push_back(OpSCEV);
6392             break;
6393           }
6394 
6395           // If a NUW or NSW flag can be applied to the SCEV for this
6396           // addition, then compute the SCEV for this addition by itself
6397           // with a separate call to getAddExpr. We need to do that
6398           // instead of pushing the operands of the addition onto AddOps,
6399           // since the flags are only known to apply to this particular
6400           // addition - they may not apply to other additions that can be
6401           // formed with operands from AddOps.
6402           const SCEV *RHS = getSCEV(BO->RHS);
6403           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6404           if (Flags != SCEV::FlagAnyWrap) {
6405             const SCEV *LHS = getSCEV(BO->LHS);
6406             if (BO->Opcode == Instruction::Sub)
6407               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6408             else
6409               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6410             break;
6411           }
6412         }
6413 
6414         if (BO->Opcode == Instruction::Sub)
6415           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6416         else
6417           AddOps.push_back(getSCEV(BO->RHS));
6418 
6419         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6420         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6421                        NewBO->Opcode != Instruction::Sub)) {
6422           AddOps.push_back(getSCEV(BO->LHS));
6423           break;
6424         }
6425         BO = NewBO;
6426       } while (true);
6427 
6428       return getAddExpr(AddOps);
6429     }
6430 
6431     case Instruction::Mul: {
6432       SmallVector<const SCEV *, 4> MulOps;
6433       do {
6434         if (BO->Op) {
6435           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6436             MulOps.push_back(OpSCEV);
6437             break;
6438           }
6439 
6440           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6441           if (Flags != SCEV::FlagAnyWrap) {
6442             MulOps.push_back(
6443                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6444             break;
6445           }
6446         }
6447 
6448         MulOps.push_back(getSCEV(BO->RHS));
6449         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6450         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6451           MulOps.push_back(getSCEV(BO->LHS));
6452           break;
6453         }
6454         BO = NewBO;
6455       } while (true);
6456 
6457       return getMulExpr(MulOps);
6458     }
6459     case Instruction::UDiv:
6460       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6461     case Instruction::URem:
6462       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6463     case Instruction::Sub: {
6464       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6465       if (BO->Op)
6466         Flags = getNoWrapFlagsFromUB(BO->Op);
6467       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6468     }
6469     case Instruction::And:
6470       // For an expression like x&255 that merely masks off the high bits,
6471       // use zext(trunc(x)) as the SCEV expression.
6472       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6473         if (CI->isZero())
6474           return getSCEV(BO->RHS);
6475         if (CI->isMinusOne())
6476           return getSCEV(BO->LHS);
6477         const APInt &A = CI->getValue();
6478 
6479         // Instcombine's ShrinkDemandedConstant may strip bits out of
6480         // constants, obscuring what would otherwise be a low-bits mask.
6481         // Use computeKnownBits to compute what ShrinkDemandedConstant
6482         // knew about to reconstruct a low-bits mask value.
6483         unsigned LZ = A.countLeadingZeros();
6484         unsigned TZ = A.countTrailingZeros();
6485         unsigned BitWidth = A.getBitWidth();
6486         KnownBits Known(BitWidth);
6487         computeKnownBits(BO->LHS, Known, getDataLayout(),
6488                          0, &AC, nullptr, &DT);
6489 
6490         APInt EffectiveMask =
6491             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6492         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6493           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6494           const SCEV *LHS = getSCEV(BO->LHS);
6495           const SCEV *ShiftedLHS = nullptr;
6496           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6497             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6498               // For an expression like (x * 8) & 8, simplify the multiply.
6499               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6500               unsigned GCD = std::min(MulZeros, TZ);
6501               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6502               SmallVector<const SCEV*, 4> MulOps;
6503               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6504               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6505               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6506               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6507             }
6508           }
6509           if (!ShiftedLHS)
6510             ShiftedLHS = getUDivExpr(LHS, MulCount);
6511           return getMulExpr(
6512               getZeroExtendExpr(
6513                   getTruncateExpr(ShiftedLHS,
6514                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6515                   BO->LHS->getType()),
6516               MulCount);
6517         }
6518       }
6519       break;
6520 
6521     case Instruction::Or:
6522       // If the RHS of the Or is a constant, we may have something like:
6523       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6524       // optimizations will transparently handle this case.
6525       //
6526       // In order for this transformation to be safe, the LHS must be of the
6527       // form X*(2^n) and the Or constant must be less than 2^n.
6528       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6529         const SCEV *LHS = getSCEV(BO->LHS);
6530         const APInt &CIVal = CI->getValue();
6531         if (GetMinTrailingZeros(LHS) >=
6532             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6533           // Build a plain add SCEV.
6534           return getAddExpr(LHS, getSCEV(CI),
6535                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6536         }
6537       }
6538       break;
6539 
6540     case Instruction::Xor:
6541       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6542         // If the RHS of xor is -1, then this is a not operation.
6543         if (CI->isMinusOne())
6544           return getNotSCEV(getSCEV(BO->LHS));
6545 
6546         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6547         // This is a variant of the check for xor with -1, and it handles
6548         // the case where instcombine has trimmed non-demanded bits out
6549         // of an xor with -1.
6550         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6551           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6552             if (LBO->getOpcode() == Instruction::And &&
6553                 LCI->getValue() == CI->getValue())
6554               if (const SCEVZeroExtendExpr *Z =
6555                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6556                 Type *UTy = BO->LHS->getType();
6557                 const SCEV *Z0 = Z->getOperand();
6558                 Type *Z0Ty = Z0->getType();
6559                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6560 
6561                 // If C is a low-bits mask, the zero extend is serving to
6562                 // mask off the high bits. Complement the operand and
6563                 // re-apply the zext.
6564                 if (CI->getValue().isMask(Z0TySize))
6565                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6566 
6567                 // If C is a single bit, it may be in the sign-bit position
6568                 // before the zero-extend. In this case, represent the xor
6569                 // using an add, which is equivalent, and re-apply the zext.
6570                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6571                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6572                     Trunc.isSignMask())
6573                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6574                                            UTy);
6575               }
6576       }
6577       break;
6578 
6579     case Instruction::Shl:
6580       // Turn shift left of a constant amount into a multiply.
6581       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6582         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6583 
6584         // If the shift count is not less than the bitwidth, the result of
6585         // the shift is undefined. Don't try to analyze it, because the
6586         // resolution chosen here may differ from the resolution chosen in
6587         // other parts of the compiler.
6588         if (SA->getValue().uge(BitWidth))
6589           break;
6590 
6591         // We can safely preserve the nuw flag in all cases. It's also safe to
6592         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6593         // requires special handling. It can be preserved as long as we're not
6594         // left shifting by bitwidth - 1.
6595         auto Flags = SCEV::FlagAnyWrap;
6596         if (BO->Op) {
6597           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6598           if ((MulFlags & SCEV::FlagNSW) &&
6599               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6600             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6601           if (MulFlags & SCEV::FlagNUW)
6602             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6603         }
6604 
6605         Constant *X = ConstantInt::get(
6606             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6607         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6608       }
6609       break;
6610 
6611     case Instruction::AShr: {
6612       // AShr X, C, where C is a constant.
6613       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6614       if (!CI)
6615         break;
6616 
6617       Type *OuterTy = BO->LHS->getType();
6618       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6619       // If the shift count is not less than the bitwidth, the result of
6620       // the shift is undefined. Don't try to analyze it, because the
6621       // resolution chosen here may differ from the resolution chosen in
6622       // other parts of the compiler.
6623       if (CI->getValue().uge(BitWidth))
6624         break;
6625 
6626       if (CI->isZero())
6627         return getSCEV(BO->LHS); // shift by zero --> noop
6628 
6629       uint64_t AShrAmt = CI->getZExtValue();
6630       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6631 
6632       Operator *L = dyn_cast<Operator>(BO->LHS);
6633       if (L && L->getOpcode() == Instruction::Shl) {
6634         // X = Shl A, n
6635         // Y = AShr X, m
6636         // Both n and m are constant.
6637 
6638         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6639         if (L->getOperand(1) == BO->RHS)
6640           // For a two-shift sext-inreg, i.e. n = m,
6641           // use sext(trunc(x)) as the SCEV expression.
6642           return getSignExtendExpr(
6643               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6644 
6645         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6646         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6647           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6648           if (ShlAmt > AShrAmt) {
6649             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6650             // expression. We already checked that ShlAmt < BitWidth, so
6651             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6652             // ShlAmt - AShrAmt < Amt.
6653             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6654                                             ShlAmt - AShrAmt);
6655             return getSignExtendExpr(
6656                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6657                 getConstant(Mul)), OuterTy);
6658           }
6659         }
6660       }
6661       if (BO->IsExact) {
6662         // Given exact arithmetic in-bounds right-shift by a constant,
6663         // we can lower it into:  (abs(x) EXACT/u (1<<C)) * signum(x)
6664         const SCEV *X = getSCEV(BO->LHS);
6665         const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false);
6666         APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt);
6667         const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult));
6668         return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW);
6669       }
6670       break;
6671     }
6672     }
6673   }
6674 
6675   switch (U->getOpcode()) {
6676   case Instruction::Trunc:
6677     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6678 
6679   case Instruction::ZExt:
6680     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6681 
6682   case Instruction::SExt:
6683     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6684       // The NSW flag of a subtract does not always survive the conversion to
6685       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6686       // more likely to preserve NSW and allow later AddRec optimisations.
6687       //
6688       // NOTE: This is effectively duplicating this logic from getSignExtend:
6689       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6690       // but by that point the NSW information has potentially been lost.
6691       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6692         Type *Ty = U->getType();
6693         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6694         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6695         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6696       }
6697     }
6698     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6699 
6700   case Instruction::BitCast:
6701     // BitCasts are no-op casts so we just eliminate the cast.
6702     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6703       return getSCEV(U->getOperand(0));
6704     break;
6705 
6706   case Instruction::PtrToInt: {
6707     // Pointer to integer cast is straight-forward, so do model it.
6708     Value *Ptr = U->getOperand(0);
6709     const SCEV *Op = getSCEV(Ptr);
6710     Type *DstIntTy = U->getType();
6711     // SCEV doesn't have constant pointer expression type, but it supports
6712     // nullptr constant (and only that one), which is modelled in SCEV as a
6713     // zero integer constant. So just skip the ptrtoint cast for constants.
6714     if (isa<SCEVConstant>(Op))
6715       return getTruncateOrZeroExtend(Op, DstIntTy);
6716     Type *PtrTy = Ptr->getType();
6717     Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy);
6718     // But only if effective SCEV (integer) type is wide enough to represent
6719     // all possible pointer values.
6720     if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) !=
6721         getDataLayout().getTypeSizeInBits(IntPtrTy))
6722       return getUnknown(V);
6723     return getPtrToIntExpr(Op, DstIntTy);
6724   }
6725   case Instruction::IntToPtr:
6726     // Just don't deal with inttoptr casts.
6727     return getUnknown(V);
6728 
6729   case Instruction::SDiv:
6730     // If both operands are non-negative, this is just an udiv.
6731     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6732         isKnownNonNegative(getSCEV(U->getOperand(1))))
6733       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6734     break;
6735 
6736   case Instruction::SRem:
6737     // If both operands are non-negative, this is just an urem.
6738     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6739         isKnownNonNegative(getSCEV(U->getOperand(1))))
6740       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6741     break;
6742 
6743   case Instruction::GetElementPtr:
6744     return createNodeForGEP(cast<GEPOperator>(U));
6745 
6746   case Instruction::PHI:
6747     return createNodeForPHI(cast<PHINode>(U));
6748 
6749   case Instruction::Select:
6750     // U can also be a select constant expr, which let fall through.  Since
6751     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6752     // constant expressions cannot have instructions as operands, we'd have
6753     // returned getUnknown for a select constant expressions anyway.
6754     if (isa<Instruction>(U))
6755       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6756                                       U->getOperand(1), U->getOperand(2));
6757     break;
6758 
6759   case Instruction::Call:
6760   case Instruction::Invoke:
6761     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6762       return getSCEV(RV);
6763 
6764     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6765       switch (II->getIntrinsicID()) {
6766       case Intrinsic::abs:
6767         return getAbsExpr(
6768             getSCEV(II->getArgOperand(0)),
6769             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6770       case Intrinsic::umax:
6771         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6772                            getSCEV(II->getArgOperand(1)));
6773       case Intrinsic::umin:
6774         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6775                            getSCEV(II->getArgOperand(1)));
6776       case Intrinsic::smax:
6777         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6778                            getSCEV(II->getArgOperand(1)));
6779       case Intrinsic::smin:
6780         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6781                            getSCEV(II->getArgOperand(1)));
6782       case Intrinsic::usub_sat: {
6783         const SCEV *X = getSCEV(II->getArgOperand(0));
6784         const SCEV *Y = getSCEV(II->getArgOperand(1));
6785         const SCEV *ClampedY = getUMinExpr(X, Y);
6786         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6787       }
6788       case Intrinsic::uadd_sat: {
6789         const SCEV *X = getSCEV(II->getArgOperand(0));
6790         const SCEV *Y = getSCEV(II->getArgOperand(1));
6791         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6792         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6793       }
6794       case Intrinsic::start_loop_iterations:
6795         // A start_loop_iterations is just equivalent to the first operand for
6796         // SCEV purposes.
6797         return getSCEV(II->getArgOperand(0));
6798       default:
6799         break;
6800       }
6801     }
6802     break;
6803   }
6804 
6805   return getUnknown(V);
6806 }
6807 
6808 //===----------------------------------------------------------------------===//
6809 //                   Iteration Count Computation Code
6810 //
6811 
6812 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6813   if (!ExitCount)
6814     return 0;
6815 
6816   ConstantInt *ExitConst = ExitCount->getValue();
6817 
6818   // Guard against huge trip counts.
6819   if (ExitConst->getValue().getActiveBits() > 32)
6820     return 0;
6821 
6822   // In case of integer overflow, this returns 0, which is correct.
6823   return ((unsigned)ExitConst->getZExtValue()) + 1;
6824 }
6825 
6826 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6827   if (BasicBlock *ExitingBB = L->getExitingBlock())
6828     return getSmallConstantTripCount(L, ExitingBB);
6829 
6830   // No trip count information for multiple exits.
6831   return 0;
6832 }
6833 
6834 unsigned
6835 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6836                                            const BasicBlock *ExitingBlock) {
6837   assert(ExitingBlock && "Must pass a non-null exiting block!");
6838   assert(L->isLoopExiting(ExitingBlock) &&
6839          "Exiting block must actually branch out of the loop!");
6840   const SCEVConstant *ExitCount =
6841       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6842   return getConstantTripCount(ExitCount);
6843 }
6844 
6845 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6846   const auto *MaxExitCount =
6847       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6848   return getConstantTripCount(MaxExitCount);
6849 }
6850 
6851 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6852   if (BasicBlock *ExitingBB = L->getExitingBlock())
6853     return getSmallConstantTripMultiple(L, ExitingBB);
6854 
6855   // No trip multiple information for multiple exits.
6856   return 0;
6857 }
6858 
6859 /// Returns the largest constant divisor of the trip count of this loop as a
6860 /// normal unsigned value, if possible. This means that the actual trip count is
6861 /// always a multiple of the returned value (don't forget the trip count could
6862 /// very well be zero as well!).
6863 ///
6864 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6865 /// multiple of a constant (which is also the case if the trip count is simply
6866 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6867 /// if the trip count is very large (>= 2^32).
6868 ///
6869 /// As explained in the comments for getSmallConstantTripCount, this assumes
6870 /// that control exits the loop via ExitingBlock.
6871 unsigned
6872 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6873                                               const BasicBlock *ExitingBlock) {
6874   assert(ExitingBlock && "Must pass a non-null exiting block!");
6875   assert(L->isLoopExiting(ExitingBlock) &&
6876          "Exiting block must actually branch out of the loop!");
6877   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6878   if (ExitCount == getCouldNotCompute())
6879     return 1;
6880 
6881   // Get the trip count from the BE count by adding 1.
6882   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6883 
6884   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6885   if (!TC)
6886     // Attempt to factor more general cases. Returns the greatest power of
6887     // two divisor. If overflow happens, the trip count expression is still
6888     // divisible by the greatest power of 2 divisor returned.
6889     return 1U << std::min((uint32_t)31,
6890                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
6891 
6892   ConstantInt *Result = TC->getValue();
6893 
6894   // Guard against huge trip counts (this requires checking
6895   // for zero to handle the case where the trip count == -1 and the
6896   // addition wraps).
6897   if (!Result || Result->getValue().getActiveBits() > 32 ||
6898       Result->getValue().getActiveBits() == 0)
6899     return 1;
6900 
6901   return (unsigned)Result->getZExtValue();
6902 }
6903 
6904 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6905                                           const BasicBlock *ExitingBlock,
6906                                           ExitCountKind Kind) {
6907   switch (Kind) {
6908   case Exact:
6909   case SymbolicMaximum:
6910     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6911   case ConstantMaximum:
6912     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
6913   };
6914   llvm_unreachable("Invalid ExitCountKind!");
6915 }
6916 
6917 const SCEV *
6918 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6919                                                  SCEVUnionPredicate &Preds) {
6920   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6921 }
6922 
6923 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6924                                                    ExitCountKind Kind) {
6925   switch (Kind) {
6926   case Exact:
6927     return getBackedgeTakenInfo(L).getExact(L, this);
6928   case ConstantMaximum:
6929     return getBackedgeTakenInfo(L).getConstantMax(this);
6930   case SymbolicMaximum:
6931     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
6932   };
6933   llvm_unreachable("Invalid ExitCountKind!");
6934 }
6935 
6936 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6937   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
6938 }
6939 
6940 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6941 static void
6942 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6943   BasicBlock *Header = L->getHeader();
6944 
6945   // Push all Loop-header PHIs onto the Worklist stack.
6946   for (PHINode &PN : Header->phis())
6947     Worklist.push_back(&PN);
6948 }
6949 
6950 const ScalarEvolution::BackedgeTakenInfo &
6951 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6952   auto &BTI = getBackedgeTakenInfo(L);
6953   if (BTI.hasFullInfo())
6954     return BTI;
6955 
6956   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6957 
6958   if (!Pair.second)
6959     return Pair.first->second;
6960 
6961   BackedgeTakenInfo Result =
6962       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6963 
6964   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6965 }
6966 
6967 ScalarEvolution::BackedgeTakenInfo &
6968 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6969   // Initially insert an invalid entry for this loop. If the insertion
6970   // succeeds, proceed to actually compute a backedge-taken count and
6971   // update the value. The temporary CouldNotCompute value tells SCEV
6972   // code elsewhere that it shouldn't attempt to request a new
6973   // backedge-taken count, which could result in infinite recursion.
6974   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6975       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6976   if (!Pair.second)
6977     return Pair.first->second;
6978 
6979   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6980   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6981   // must be cleared in this scope.
6982   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6983 
6984   // In product build, there are no usage of statistic.
6985   (void)NumTripCountsComputed;
6986   (void)NumTripCountsNotComputed;
6987 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6988   const SCEV *BEExact = Result.getExact(L, this);
6989   if (BEExact != getCouldNotCompute()) {
6990     assert(isLoopInvariant(BEExact, L) &&
6991            isLoopInvariant(Result.getConstantMax(this), L) &&
6992            "Computed backedge-taken count isn't loop invariant for loop!");
6993     ++NumTripCountsComputed;
6994   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
6995              isa<PHINode>(L->getHeader()->begin())) {
6996     // Only count loops that have phi nodes as not being computable.
6997     ++NumTripCountsNotComputed;
6998   }
6999 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7000 
7001   // Now that we know more about the trip count for this loop, forget any
7002   // existing SCEV values for PHI nodes in this loop since they are only
7003   // conservative estimates made without the benefit of trip count
7004   // information. This is similar to the code in forgetLoop, except that
7005   // it handles SCEVUnknown PHI nodes specially.
7006   if (Result.hasAnyInfo()) {
7007     SmallVector<Instruction *, 16> Worklist;
7008     PushLoopPHIs(L, Worklist);
7009 
7010     SmallPtrSet<Instruction *, 8> Discovered;
7011     while (!Worklist.empty()) {
7012       Instruction *I = Worklist.pop_back_val();
7013 
7014       ValueExprMapType::iterator It =
7015         ValueExprMap.find_as(static_cast<Value *>(I));
7016       if (It != ValueExprMap.end()) {
7017         const SCEV *Old = It->second;
7018 
7019         // SCEVUnknown for a PHI either means that it has an unrecognized
7020         // structure, or it's a PHI that's in the progress of being computed
7021         // by createNodeForPHI.  In the former case, additional loop trip
7022         // count information isn't going to change anything. In the later
7023         // case, createNodeForPHI will perform the necessary updates on its
7024         // own when it gets to that point.
7025         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7026           eraseValueFromMap(It->first);
7027           forgetMemoizedResults(Old);
7028         }
7029         if (PHINode *PN = dyn_cast<PHINode>(I))
7030           ConstantEvolutionLoopExitValue.erase(PN);
7031       }
7032 
7033       // Since we don't need to invalidate anything for correctness and we're
7034       // only invalidating to make SCEV's results more precise, we get to stop
7035       // early to avoid invalidating too much.  This is especially important in
7036       // cases like:
7037       //
7038       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7039       // loop0:
7040       //   %pn0 = phi
7041       //   ...
7042       // loop1:
7043       //   %pn1 = phi
7044       //   ...
7045       //
7046       // where both loop0 and loop1's backedge taken count uses the SCEV
7047       // expression for %v.  If we don't have the early stop below then in cases
7048       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7049       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7050       // count for loop1, effectively nullifying SCEV's trip count cache.
7051       for (auto *U : I->users())
7052         if (auto *I = dyn_cast<Instruction>(U)) {
7053           auto *LoopForUser = LI.getLoopFor(I->getParent());
7054           if (LoopForUser && L->contains(LoopForUser) &&
7055               Discovered.insert(I).second)
7056             Worklist.push_back(I);
7057         }
7058     }
7059   }
7060 
7061   // Re-lookup the insert position, since the call to
7062   // computeBackedgeTakenCount above could result in a
7063   // recusive call to getBackedgeTakenInfo (on a different
7064   // loop), which would invalidate the iterator computed
7065   // earlier.
7066   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7067 }
7068 
7069 void ScalarEvolution::forgetAllLoops() {
7070   // This method is intended to forget all info about loops. It should
7071   // invalidate caches as if the following happened:
7072   // - The trip counts of all loops have changed arbitrarily
7073   // - Every llvm::Value has been updated in place to produce a different
7074   // result.
7075   BackedgeTakenCounts.clear();
7076   PredicatedBackedgeTakenCounts.clear();
7077   LoopPropertiesCache.clear();
7078   ConstantEvolutionLoopExitValue.clear();
7079   ValueExprMap.clear();
7080   ValuesAtScopes.clear();
7081   LoopDispositions.clear();
7082   BlockDispositions.clear();
7083   UnsignedRanges.clear();
7084   SignedRanges.clear();
7085   ExprValueMap.clear();
7086   HasRecMap.clear();
7087   MinTrailingZerosCache.clear();
7088   PredicatedSCEVRewrites.clear();
7089 }
7090 
7091 void ScalarEvolution::forgetLoop(const Loop *L) {
7092   // Drop any stored trip count value.
7093   auto RemoveLoopFromBackedgeMap =
7094       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
7095         auto BTCPos = Map.find(L);
7096         if (BTCPos != Map.end()) {
7097           BTCPos->second.clear();
7098           Map.erase(BTCPos);
7099         }
7100       };
7101 
7102   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7103   SmallVector<Instruction *, 32> Worklist;
7104   SmallPtrSet<Instruction *, 16> Visited;
7105 
7106   // Iterate over all the loops and sub-loops to drop SCEV information.
7107   while (!LoopWorklist.empty()) {
7108     auto *CurrL = LoopWorklist.pop_back_val();
7109 
7110     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
7111     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
7112 
7113     // Drop information about predicated SCEV rewrites for this loop.
7114     for (auto I = PredicatedSCEVRewrites.begin();
7115          I != PredicatedSCEVRewrites.end();) {
7116       std::pair<const SCEV *, const Loop *> Entry = I->first;
7117       if (Entry.second == CurrL)
7118         PredicatedSCEVRewrites.erase(I++);
7119       else
7120         ++I;
7121     }
7122 
7123     auto LoopUsersItr = LoopUsers.find(CurrL);
7124     if (LoopUsersItr != LoopUsers.end()) {
7125       for (auto *S : LoopUsersItr->second)
7126         forgetMemoizedResults(S);
7127       LoopUsers.erase(LoopUsersItr);
7128     }
7129 
7130     // Drop information about expressions based on loop-header PHIs.
7131     PushLoopPHIs(CurrL, Worklist);
7132 
7133     while (!Worklist.empty()) {
7134       Instruction *I = Worklist.pop_back_val();
7135       if (!Visited.insert(I).second)
7136         continue;
7137 
7138       ValueExprMapType::iterator It =
7139           ValueExprMap.find_as(static_cast<Value *>(I));
7140       if (It != ValueExprMap.end()) {
7141         eraseValueFromMap(It->first);
7142         forgetMemoizedResults(It->second);
7143         if (PHINode *PN = dyn_cast<PHINode>(I))
7144           ConstantEvolutionLoopExitValue.erase(PN);
7145       }
7146 
7147       PushDefUseChildren(I, Worklist);
7148     }
7149 
7150     LoopPropertiesCache.erase(CurrL);
7151     // Forget all contained loops too, to avoid dangling entries in the
7152     // ValuesAtScopes map.
7153     LoopWorklist.append(CurrL->begin(), CurrL->end());
7154   }
7155 }
7156 
7157 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7158   while (Loop *Parent = L->getParentLoop())
7159     L = Parent;
7160   forgetLoop(L);
7161 }
7162 
7163 void ScalarEvolution::forgetValue(Value *V) {
7164   Instruction *I = dyn_cast<Instruction>(V);
7165   if (!I) return;
7166 
7167   // Drop information about expressions based on loop-header PHIs.
7168   SmallVector<Instruction *, 16> Worklist;
7169   Worklist.push_back(I);
7170 
7171   SmallPtrSet<Instruction *, 8> Visited;
7172   while (!Worklist.empty()) {
7173     I = Worklist.pop_back_val();
7174     if (!Visited.insert(I).second)
7175       continue;
7176 
7177     ValueExprMapType::iterator It =
7178       ValueExprMap.find_as(static_cast<Value *>(I));
7179     if (It != ValueExprMap.end()) {
7180       eraseValueFromMap(It->first);
7181       forgetMemoizedResults(It->second);
7182       if (PHINode *PN = dyn_cast<PHINode>(I))
7183         ConstantEvolutionLoopExitValue.erase(PN);
7184     }
7185 
7186     PushDefUseChildren(I, Worklist);
7187   }
7188 }
7189 
7190 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7191   LoopDispositions.clear();
7192 }
7193 
7194 /// Get the exact loop backedge taken count considering all loop exits. A
7195 /// computable result can only be returned for loops with all exiting blocks
7196 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7197 /// is never skipped. This is a valid assumption as long as the loop exits via
7198 /// that test. For precise results, it is the caller's responsibility to specify
7199 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7200 const SCEV *
7201 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7202                                              SCEVUnionPredicate *Preds) const {
7203   // If any exits were not computable, the loop is not computable.
7204   if (!isComplete() || ExitNotTaken.empty())
7205     return SE->getCouldNotCompute();
7206 
7207   const BasicBlock *Latch = L->getLoopLatch();
7208   // All exiting blocks we have collected must dominate the only backedge.
7209   if (!Latch)
7210     return SE->getCouldNotCompute();
7211 
7212   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7213   // count is simply a minimum out of all these calculated exit counts.
7214   SmallVector<const SCEV *, 2> Ops;
7215   for (auto &ENT : ExitNotTaken) {
7216     const SCEV *BECount = ENT.ExactNotTaken;
7217     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7218     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7219            "We should only have known counts for exiting blocks that dominate "
7220            "latch!");
7221 
7222     Ops.push_back(BECount);
7223 
7224     if (Preds && !ENT.hasAlwaysTruePredicate())
7225       Preds->add(ENT.Predicate.get());
7226 
7227     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7228            "Predicate should be always true!");
7229   }
7230 
7231   return SE->getUMinFromMismatchedTypes(Ops);
7232 }
7233 
7234 /// Get the exact not taken count for this loop exit.
7235 const SCEV *
7236 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7237                                              ScalarEvolution *SE) const {
7238   for (auto &ENT : ExitNotTaken)
7239     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7240       return ENT.ExactNotTaken;
7241 
7242   return SE->getCouldNotCompute();
7243 }
7244 
7245 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7246     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7247   for (auto &ENT : ExitNotTaken)
7248     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7249       return ENT.MaxNotTaken;
7250 
7251   return SE->getCouldNotCompute();
7252 }
7253 
7254 /// getConstantMax - Get the constant max backedge taken count for the loop.
7255 const SCEV *
7256 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7257   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7258     return !ENT.hasAlwaysTruePredicate();
7259   };
7260 
7261   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7262     return SE->getCouldNotCompute();
7263 
7264   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7265           isa<SCEVConstant>(getConstantMax())) &&
7266          "No point in having a non-constant max backedge taken count!");
7267   return getConstantMax();
7268 }
7269 
7270 const SCEV *
7271 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7272                                                    ScalarEvolution *SE) {
7273   if (!SymbolicMax)
7274     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7275   return SymbolicMax;
7276 }
7277 
7278 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7279     ScalarEvolution *SE) const {
7280   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7281     return !ENT.hasAlwaysTruePredicate();
7282   };
7283   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7284 }
7285 
7286 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7287                                                     ScalarEvolution *SE) const {
7288   if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() &&
7289       SE->hasOperand(getConstantMax(), S))
7290     return true;
7291 
7292   for (auto &ENT : ExitNotTaken)
7293     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7294         SE->hasOperand(ENT.ExactNotTaken, S))
7295       return true;
7296 
7297   return false;
7298 }
7299 
7300 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7301     : ExactNotTaken(E), MaxNotTaken(E) {
7302   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7303           isa<SCEVConstant>(MaxNotTaken)) &&
7304          "No point in having a non-constant max backedge taken count!");
7305 }
7306 
7307 ScalarEvolution::ExitLimit::ExitLimit(
7308     const SCEV *E, const SCEV *M, bool MaxOrZero,
7309     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7310     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7311   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7312           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7313          "Exact is not allowed to be less precise than Max");
7314   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7315           isa<SCEVConstant>(MaxNotTaken)) &&
7316          "No point in having a non-constant max backedge taken count!");
7317   for (auto *PredSet : PredSetList)
7318     for (auto *P : *PredSet)
7319       addPredicate(P);
7320 }
7321 
7322 ScalarEvolution::ExitLimit::ExitLimit(
7323     const SCEV *E, const SCEV *M, bool MaxOrZero,
7324     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7325     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7326   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7327           isa<SCEVConstant>(MaxNotTaken)) &&
7328          "No point in having a non-constant max backedge taken count!");
7329 }
7330 
7331 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7332                                       bool MaxOrZero)
7333     : ExitLimit(E, M, MaxOrZero, None) {
7334   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7335           isa<SCEVConstant>(MaxNotTaken)) &&
7336          "No point in having a non-constant max backedge taken count!");
7337 }
7338 
7339 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7340 /// computable exit into a persistent ExitNotTakenInfo array.
7341 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7342     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7343     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7344     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7345   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7346 
7347   ExitNotTaken.reserve(ExitCounts.size());
7348   std::transform(
7349       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7350       [&](const EdgeExitInfo &EEI) {
7351         BasicBlock *ExitBB = EEI.first;
7352         const ExitLimit &EL = EEI.second;
7353         if (EL.Predicates.empty())
7354           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7355                                   nullptr);
7356 
7357         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7358         for (auto *Pred : EL.Predicates)
7359           Predicate->add(Pred);
7360 
7361         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7362                                 std::move(Predicate));
7363       });
7364   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7365           isa<SCEVConstant>(ConstantMax)) &&
7366          "No point in having a non-constant max backedge taken count!");
7367 }
7368 
7369 /// Invalidate this result and free the ExitNotTakenInfo array.
7370 void ScalarEvolution::BackedgeTakenInfo::clear() {
7371   ExitNotTaken.clear();
7372 }
7373 
7374 /// Compute the number of times the backedge of the specified loop will execute.
7375 ScalarEvolution::BackedgeTakenInfo
7376 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7377                                            bool AllowPredicates) {
7378   SmallVector<BasicBlock *, 8> ExitingBlocks;
7379   L->getExitingBlocks(ExitingBlocks);
7380 
7381   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7382 
7383   SmallVector<EdgeExitInfo, 4> ExitCounts;
7384   bool CouldComputeBECount = true;
7385   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7386   const SCEV *MustExitMaxBECount = nullptr;
7387   const SCEV *MayExitMaxBECount = nullptr;
7388   bool MustExitMaxOrZero = false;
7389 
7390   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7391   // and compute maxBECount.
7392   // Do a union of all the predicates here.
7393   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7394     BasicBlock *ExitBB = ExitingBlocks[i];
7395 
7396     // We canonicalize untaken exits to br (constant), ignore them so that
7397     // proving an exit untaken doesn't negatively impact our ability to reason
7398     // about the loop as whole.
7399     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7400       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7401         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7402         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7403           continue;
7404       }
7405 
7406     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7407 
7408     assert((AllowPredicates || EL.Predicates.empty()) &&
7409            "Predicated exit limit when predicates are not allowed!");
7410 
7411     // 1. For each exit that can be computed, add an entry to ExitCounts.
7412     // CouldComputeBECount is true only if all exits can be computed.
7413     if (EL.ExactNotTaken == getCouldNotCompute())
7414       // We couldn't compute an exact value for this exit, so
7415       // we won't be able to compute an exact value for the loop.
7416       CouldComputeBECount = false;
7417     else
7418       ExitCounts.emplace_back(ExitBB, EL);
7419 
7420     // 2. Derive the loop's MaxBECount from each exit's max number of
7421     // non-exiting iterations. Partition the loop exits into two kinds:
7422     // LoopMustExits and LoopMayExits.
7423     //
7424     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7425     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7426     // MaxBECount is the minimum EL.MaxNotTaken of computable
7427     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7428     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7429     // computable EL.MaxNotTaken.
7430     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7431         DT.dominates(ExitBB, Latch)) {
7432       if (!MustExitMaxBECount) {
7433         MustExitMaxBECount = EL.MaxNotTaken;
7434         MustExitMaxOrZero = EL.MaxOrZero;
7435       } else {
7436         MustExitMaxBECount =
7437             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7438       }
7439     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7440       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7441         MayExitMaxBECount = EL.MaxNotTaken;
7442       else {
7443         MayExitMaxBECount =
7444             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7445       }
7446     }
7447   }
7448   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7449     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7450   // The loop backedge will be taken the maximum or zero times if there's
7451   // a single exit that must be taken the maximum or zero times.
7452   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7453   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7454                            MaxBECount, MaxOrZero);
7455 }
7456 
7457 ScalarEvolution::ExitLimit
7458 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7459                                       bool AllowPredicates) {
7460   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7461   // If our exiting block does not dominate the latch, then its connection with
7462   // loop's exit limit may be far from trivial.
7463   const BasicBlock *Latch = L->getLoopLatch();
7464   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7465     return getCouldNotCompute();
7466 
7467   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7468   Instruction *Term = ExitingBlock->getTerminator();
7469   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7470     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7471     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7472     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7473            "It should have one successor in loop and one exit block!");
7474     // Proceed to the next level to examine the exit condition expression.
7475     return computeExitLimitFromCond(
7476         L, BI->getCondition(), ExitIfTrue,
7477         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7478   }
7479 
7480   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7481     // For switch, make sure that there is a single exit from the loop.
7482     BasicBlock *Exit = nullptr;
7483     for (auto *SBB : successors(ExitingBlock))
7484       if (!L->contains(SBB)) {
7485         if (Exit) // Multiple exit successors.
7486           return getCouldNotCompute();
7487         Exit = SBB;
7488       }
7489     assert(Exit && "Exiting block must have at least one exit");
7490     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7491                                                 /*ControlsExit=*/IsOnlyExit);
7492   }
7493 
7494   return getCouldNotCompute();
7495 }
7496 
7497 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7498     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7499     bool ControlsExit, bool AllowPredicates) {
7500   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7501   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7502                                         ControlsExit, AllowPredicates);
7503 }
7504 
7505 Optional<ScalarEvolution::ExitLimit>
7506 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7507                                       bool ExitIfTrue, bool ControlsExit,
7508                                       bool AllowPredicates) {
7509   (void)this->L;
7510   (void)this->ExitIfTrue;
7511   (void)this->AllowPredicates;
7512 
7513   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7514          this->AllowPredicates == AllowPredicates &&
7515          "Variance in assumed invariant key components!");
7516   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7517   if (Itr == TripCountMap.end())
7518     return None;
7519   return Itr->second;
7520 }
7521 
7522 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7523                                              bool ExitIfTrue,
7524                                              bool ControlsExit,
7525                                              bool AllowPredicates,
7526                                              const ExitLimit &EL) {
7527   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7528          this->AllowPredicates == AllowPredicates &&
7529          "Variance in assumed invariant key components!");
7530 
7531   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7532   assert(InsertResult.second && "Expected successful insertion!");
7533   (void)InsertResult;
7534   (void)ExitIfTrue;
7535 }
7536 
7537 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7538     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7539     bool ControlsExit, bool AllowPredicates) {
7540 
7541   if (auto MaybeEL =
7542           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7543     return *MaybeEL;
7544 
7545   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7546                                               ControlsExit, AllowPredicates);
7547   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7548   return EL;
7549 }
7550 
7551 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7552     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7553     bool ControlsExit, bool AllowPredicates) {
7554   // Handle BinOp conditions (And, Or).
7555   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7556           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7557     return *LimitFromBinOp;
7558 
7559   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7560   // Proceed to the next level to examine the icmp.
7561   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7562     ExitLimit EL =
7563         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7564     if (EL.hasFullInfo() || !AllowPredicates)
7565       return EL;
7566 
7567     // Try again, but use SCEV predicates this time.
7568     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7569                                     /*AllowPredicates=*/true);
7570   }
7571 
7572   // Check for a constant condition. These are normally stripped out by
7573   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7574   // preserve the CFG and is temporarily leaving constant conditions
7575   // in place.
7576   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7577     if (ExitIfTrue == !CI->getZExtValue())
7578       // The backedge is always taken.
7579       return getCouldNotCompute();
7580     else
7581       // The backedge is never taken.
7582       return getZero(CI->getType());
7583   }
7584 
7585   // If it's not an integer or pointer comparison then compute it the hard way.
7586   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7587 }
7588 
7589 Optional<ScalarEvolution::ExitLimit>
7590 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7591     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7592     bool ControlsExit, bool AllowPredicates) {
7593   // Check if the controlling expression for this loop is an And or Or.
7594   Value *Op0, *Op1;
7595   bool IsAnd = false;
7596   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7597     IsAnd = true;
7598   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7599     IsAnd = false;
7600   else
7601     return None;
7602 
7603   // EitherMayExit is true in these two cases:
7604   //   br (and Op0 Op1), loop, exit
7605   //   br (or  Op0 Op1), exit, loop
7606   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7607   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7608                                                  ControlsExit && !EitherMayExit,
7609                                                  AllowPredicates);
7610   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7611                                                  ControlsExit && !EitherMayExit,
7612                                                  AllowPredicates);
7613 
7614   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7615   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7616   if (isa<ConstantInt>(Op1))
7617     return Op1 == NeutralElement ? EL0 : EL1;
7618   if (isa<ConstantInt>(Op0))
7619     return Op0 == NeutralElement ? EL1 : EL0;
7620 
7621   const SCEV *BECount = getCouldNotCompute();
7622   const SCEV *MaxBECount = getCouldNotCompute();
7623   if (EitherMayExit) {
7624     // Both conditions must be same for the loop to continue executing.
7625     // Choose the less conservative count.
7626     // If ExitCond is a short-circuit form (select), using
7627     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7628     // To see the detailed examples, please see
7629     // test/Analysis/ScalarEvolution/exit-count-select.ll
7630     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7631     if (!PoisonSafe)
7632       // Even if ExitCond is select, we can safely derive BECount using both
7633       // EL0 and EL1 in these cases:
7634       // (1) EL0.ExactNotTaken is non-zero
7635       // (2) EL1.ExactNotTaken is non-poison
7636       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7637       //     it cannot be umin(0, ..))
7638       // The PoisonSafe assignment below is simplified and the assertion after
7639       // BECount calculation fully guarantees the condition (3).
7640       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7641                    isa<SCEVConstant>(EL1.ExactNotTaken);
7642     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7643         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7644       BECount =
7645           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7646 
7647       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7648       // it should have been simplified to zero (see the condition (3) above)
7649       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7650              BECount->isZero());
7651     }
7652     if (EL0.MaxNotTaken == getCouldNotCompute())
7653       MaxBECount = EL1.MaxNotTaken;
7654     else if (EL1.MaxNotTaken == getCouldNotCompute())
7655       MaxBECount = EL0.MaxNotTaken;
7656     else
7657       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7658   } else {
7659     // Both conditions must be same at the same time for the loop to exit.
7660     // For now, be conservative.
7661     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7662       BECount = EL0.ExactNotTaken;
7663   }
7664 
7665   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7666   // to be more aggressive when computing BECount than when computing
7667   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7668   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7669   // to not.
7670   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7671       !isa<SCEVCouldNotCompute>(BECount))
7672     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7673 
7674   return ExitLimit(BECount, MaxBECount, false,
7675                    { &EL0.Predicates, &EL1.Predicates });
7676 }
7677 
7678 ScalarEvolution::ExitLimit
7679 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7680                                           ICmpInst *ExitCond,
7681                                           bool ExitIfTrue,
7682                                           bool ControlsExit,
7683                                           bool AllowPredicates) {
7684   // If the condition was exit on true, convert the condition to exit on false
7685   ICmpInst::Predicate Pred;
7686   if (!ExitIfTrue)
7687     Pred = ExitCond->getPredicate();
7688   else
7689     Pred = ExitCond->getInversePredicate();
7690   const ICmpInst::Predicate OriginalPred = Pred;
7691 
7692   // Handle common loops like: for (X = "string"; *X; ++X)
7693   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7694     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7695       ExitLimit ItCnt =
7696         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7697       if (ItCnt.hasAnyInfo())
7698         return ItCnt;
7699     }
7700 
7701   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7702   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7703 
7704   // Try to evaluate any dependencies out of the loop.
7705   LHS = getSCEVAtScope(LHS, L);
7706   RHS = getSCEVAtScope(RHS, L);
7707 
7708   // At this point, we would like to compute how many iterations of the
7709   // loop the predicate will return true for these inputs.
7710   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7711     // If there is a loop-invariant, force it into the RHS.
7712     std::swap(LHS, RHS);
7713     Pred = ICmpInst::getSwappedPredicate(Pred);
7714   }
7715 
7716   // Simplify the operands before analyzing them.
7717   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7718 
7719   // If we have a comparison of a chrec against a constant, try to use value
7720   // ranges to answer this query.
7721   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7722     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7723       if (AddRec->getLoop() == L) {
7724         // Form the constant range.
7725         ConstantRange CompRange =
7726             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7727 
7728         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7729         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7730       }
7731 
7732   switch (Pred) {
7733   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7734     // Convert to: while (X-Y != 0)
7735     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7736                                 AllowPredicates);
7737     if (EL.hasAnyInfo()) return EL;
7738     break;
7739   }
7740   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7741     // Convert to: while (X-Y == 0)
7742     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7743     if (EL.hasAnyInfo()) return EL;
7744     break;
7745   }
7746   case ICmpInst::ICMP_SLT:
7747   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7748     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7749     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7750                                     AllowPredicates);
7751     if (EL.hasAnyInfo()) return EL;
7752     break;
7753   }
7754   case ICmpInst::ICMP_SGT:
7755   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7756     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7757     ExitLimit EL =
7758         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7759                             AllowPredicates);
7760     if (EL.hasAnyInfo()) return EL;
7761     break;
7762   }
7763   default:
7764     break;
7765   }
7766 
7767   auto *ExhaustiveCount =
7768       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7769 
7770   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7771     return ExhaustiveCount;
7772 
7773   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7774                                       ExitCond->getOperand(1), L, OriginalPred);
7775 }
7776 
7777 ScalarEvolution::ExitLimit
7778 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7779                                                       SwitchInst *Switch,
7780                                                       BasicBlock *ExitingBlock,
7781                                                       bool ControlsExit) {
7782   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7783 
7784   // Give up if the exit is the default dest of a switch.
7785   if (Switch->getDefaultDest() == ExitingBlock)
7786     return getCouldNotCompute();
7787 
7788   assert(L->contains(Switch->getDefaultDest()) &&
7789          "Default case must not exit the loop!");
7790   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7791   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7792 
7793   // while (X != Y) --> while (X-Y != 0)
7794   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7795   if (EL.hasAnyInfo())
7796     return EL;
7797 
7798   return getCouldNotCompute();
7799 }
7800 
7801 static ConstantInt *
7802 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7803                                 ScalarEvolution &SE) {
7804   const SCEV *InVal = SE.getConstant(C);
7805   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7806   assert(isa<SCEVConstant>(Val) &&
7807          "Evaluation of SCEV at constant didn't fold correctly?");
7808   return cast<SCEVConstant>(Val)->getValue();
7809 }
7810 
7811 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7812 /// compute the backedge execution count.
7813 ScalarEvolution::ExitLimit
7814 ScalarEvolution::computeLoadConstantCompareExitLimit(
7815   LoadInst *LI,
7816   Constant *RHS,
7817   const Loop *L,
7818   ICmpInst::Predicate predicate) {
7819   if (LI->isVolatile()) return getCouldNotCompute();
7820 
7821   // Check to see if the loaded pointer is a getelementptr of a global.
7822   // TODO: Use SCEV instead of manually grubbing with GEPs.
7823   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7824   if (!GEP) return getCouldNotCompute();
7825 
7826   // Make sure that it is really a constant global we are gepping, with an
7827   // initializer, and make sure the first IDX is really 0.
7828   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7829   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7830       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7831       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7832     return getCouldNotCompute();
7833 
7834   // Okay, we allow one non-constant index into the GEP instruction.
7835   Value *VarIdx = nullptr;
7836   std::vector<Constant*> Indexes;
7837   unsigned VarIdxNum = 0;
7838   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7839     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7840       Indexes.push_back(CI);
7841     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7842       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7843       VarIdx = GEP->getOperand(i);
7844       VarIdxNum = i-2;
7845       Indexes.push_back(nullptr);
7846     }
7847 
7848   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7849   if (!VarIdx)
7850     return getCouldNotCompute();
7851 
7852   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7853   // Check to see if X is a loop variant variable value now.
7854   const SCEV *Idx = getSCEV(VarIdx);
7855   Idx = getSCEVAtScope(Idx, L);
7856 
7857   // We can only recognize very limited forms of loop index expressions, in
7858   // particular, only affine AddRec's like {C1,+,C2}<L>.
7859   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7860   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
7861       isLoopInvariant(IdxExpr, L) ||
7862       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7863       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7864     return getCouldNotCompute();
7865 
7866   unsigned MaxSteps = MaxBruteForceIterations;
7867   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7868     ConstantInt *ItCst = ConstantInt::get(
7869                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7870     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7871 
7872     // Form the GEP offset.
7873     Indexes[VarIdxNum] = Val;
7874 
7875     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7876                                                          Indexes);
7877     if (!Result) break;  // Cannot compute!
7878 
7879     // Evaluate the condition for this iteration.
7880     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7881     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7882     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7883       ++NumArrayLenItCounts;
7884       return getConstant(ItCst);   // Found terminating iteration!
7885     }
7886   }
7887   return getCouldNotCompute();
7888 }
7889 
7890 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7891     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7892   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7893   if (!RHS)
7894     return getCouldNotCompute();
7895 
7896   const BasicBlock *Latch = L->getLoopLatch();
7897   if (!Latch)
7898     return getCouldNotCompute();
7899 
7900   const BasicBlock *Predecessor = L->getLoopPredecessor();
7901   if (!Predecessor)
7902     return getCouldNotCompute();
7903 
7904   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7905   // Return LHS in OutLHS and shift_opt in OutOpCode.
7906   auto MatchPositiveShift =
7907       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7908 
7909     using namespace PatternMatch;
7910 
7911     ConstantInt *ShiftAmt;
7912     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7913       OutOpCode = Instruction::LShr;
7914     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7915       OutOpCode = Instruction::AShr;
7916     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7917       OutOpCode = Instruction::Shl;
7918     else
7919       return false;
7920 
7921     return ShiftAmt->getValue().isStrictlyPositive();
7922   };
7923 
7924   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7925   //
7926   // loop:
7927   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7928   //   %iv.shifted = lshr i32 %iv, <positive constant>
7929   //
7930   // Return true on a successful match.  Return the corresponding PHI node (%iv
7931   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7932   auto MatchShiftRecurrence =
7933       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7934     Optional<Instruction::BinaryOps> PostShiftOpCode;
7935 
7936     {
7937       Instruction::BinaryOps OpC;
7938       Value *V;
7939 
7940       // If we encounter a shift instruction, "peel off" the shift operation,
7941       // and remember that we did so.  Later when we inspect %iv's backedge
7942       // value, we will make sure that the backedge value uses the same
7943       // operation.
7944       //
7945       // Note: the peeled shift operation does not have to be the same
7946       // instruction as the one feeding into the PHI's backedge value.  We only
7947       // really care about it being the same *kind* of shift instruction --
7948       // that's all that is required for our later inferences to hold.
7949       if (MatchPositiveShift(LHS, V, OpC)) {
7950         PostShiftOpCode = OpC;
7951         LHS = V;
7952       }
7953     }
7954 
7955     PNOut = dyn_cast<PHINode>(LHS);
7956     if (!PNOut || PNOut->getParent() != L->getHeader())
7957       return false;
7958 
7959     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7960     Value *OpLHS;
7961 
7962     return
7963         // The backedge value for the PHI node must be a shift by a positive
7964         // amount
7965         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7966 
7967         // of the PHI node itself
7968         OpLHS == PNOut &&
7969 
7970         // and the kind of shift should be match the kind of shift we peeled
7971         // off, if any.
7972         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7973   };
7974 
7975   PHINode *PN;
7976   Instruction::BinaryOps OpCode;
7977   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7978     return getCouldNotCompute();
7979 
7980   const DataLayout &DL = getDataLayout();
7981 
7982   // The key rationale for this optimization is that for some kinds of shift
7983   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7984   // within a finite number of iterations.  If the condition guarding the
7985   // backedge (in the sense that the backedge is taken if the condition is true)
7986   // is false for the value the shift recurrence stabilizes to, then we know
7987   // that the backedge is taken only a finite number of times.
7988 
7989   ConstantInt *StableValue = nullptr;
7990   switch (OpCode) {
7991   default:
7992     llvm_unreachable("Impossible case!");
7993 
7994   case Instruction::AShr: {
7995     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7996     // bitwidth(K) iterations.
7997     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7998     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
7999                                        Predecessor->getTerminator(), &DT);
8000     auto *Ty = cast<IntegerType>(RHS->getType());
8001     if (Known.isNonNegative())
8002       StableValue = ConstantInt::get(Ty, 0);
8003     else if (Known.isNegative())
8004       StableValue = ConstantInt::get(Ty, -1, true);
8005     else
8006       return getCouldNotCompute();
8007 
8008     break;
8009   }
8010   case Instruction::LShr:
8011   case Instruction::Shl:
8012     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8013     // stabilize to 0 in at most bitwidth(K) iterations.
8014     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8015     break;
8016   }
8017 
8018   auto *Result =
8019       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8020   assert(Result->getType()->isIntegerTy(1) &&
8021          "Otherwise cannot be an operand to a branch instruction");
8022 
8023   if (Result->isZeroValue()) {
8024     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8025     const SCEV *UpperBound =
8026         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8027     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8028   }
8029 
8030   return getCouldNotCompute();
8031 }
8032 
8033 /// Return true if we can constant fold an instruction of the specified type,
8034 /// assuming that all operands were constants.
8035 static bool CanConstantFold(const Instruction *I) {
8036   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8037       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8038       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8039     return true;
8040 
8041   if (const CallInst *CI = dyn_cast<CallInst>(I))
8042     if (const Function *F = CI->getCalledFunction())
8043       return canConstantFoldCallTo(CI, F);
8044   return false;
8045 }
8046 
8047 /// Determine whether this instruction can constant evolve within this loop
8048 /// assuming its operands can all constant evolve.
8049 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8050   // An instruction outside of the loop can't be derived from a loop PHI.
8051   if (!L->contains(I)) return false;
8052 
8053   if (isa<PHINode>(I)) {
8054     // We don't currently keep track of the control flow needed to evaluate
8055     // PHIs, so we cannot handle PHIs inside of loops.
8056     return L->getHeader() == I->getParent();
8057   }
8058 
8059   // If we won't be able to constant fold this expression even if the operands
8060   // are constants, bail early.
8061   return CanConstantFold(I);
8062 }
8063 
8064 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8065 /// recursing through each instruction operand until reaching a loop header phi.
8066 static PHINode *
8067 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8068                                DenseMap<Instruction *, PHINode *> &PHIMap,
8069                                unsigned Depth) {
8070   if (Depth > MaxConstantEvolvingDepth)
8071     return nullptr;
8072 
8073   // Otherwise, we can evaluate this instruction if all of its operands are
8074   // constant or derived from a PHI node themselves.
8075   PHINode *PHI = nullptr;
8076   for (Value *Op : UseInst->operands()) {
8077     if (isa<Constant>(Op)) continue;
8078 
8079     Instruction *OpInst = dyn_cast<Instruction>(Op);
8080     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8081 
8082     PHINode *P = dyn_cast<PHINode>(OpInst);
8083     if (!P)
8084       // If this operand is already visited, reuse the prior result.
8085       // We may have P != PHI if this is the deepest point at which the
8086       // inconsistent paths meet.
8087       P = PHIMap.lookup(OpInst);
8088     if (!P) {
8089       // Recurse and memoize the results, whether a phi is found or not.
8090       // This recursive call invalidates pointers into PHIMap.
8091       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8092       PHIMap[OpInst] = P;
8093     }
8094     if (!P)
8095       return nullptr;  // Not evolving from PHI
8096     if (PHI && PHI != P)
8097       return nullptr;  // Evolving from multiple different PHIs.
8098     PHI = P;
8099   }
8100   // This is a expression evolving from a constant PHI!
8101   return PHI;
8102 }
8103 
8104 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8105 /// in the loop that V is derived from.  We allow arbitrary operations along the
8106 /// way, but the operands of an operation must either be constants or a value
8107 /// derived from a constant PHI.  If this expression does not fit with these
8108 /// constraints, return null.
8109 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8110   Instruction *I = dyn_cast<Instruction>(V);
8111   if (!I || !canConstantEvolve(I, L)) return nullptr;
8112 
8113   if (PHINode *PN = dyn_cast<PHINode>(I))
8114     return PN;
8115 
8116   // Record non-constant instructions contained by the loop.
8117   DenseMap<Instruction *, PHINode *> PHIMap;
8118   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8119 }
8120 
8121 /// EvaluateExpression - Given an expression that passes the
8122 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8123 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8124 /// reason, return null.
8125 static Constant *EvaluateExpression(Value *V, const Loop *L,
8126                                     DenseMap<Instruction *, Constant *> &Vals,
8127                                     const DataLayout &DL,
8128                                     const TargetLibraryInfo *TLI) {
8129   // Convenient constant check, but redundant for recursive calls.
8130   if (Constant *C = dyn_cast<Constant>(V)) return C;
8131   Instruction *I = dyn_cast<Instruction>(V);
8132   if (!I) return nullptr;
8133 
8134   if (Constant *C = Vals.lookup(I)) return C;
8135 
8136   // An instruction inside the loop depends on a value outside the loop that we
8137   // weren't given a mapping for, or a value such as a call inside the loop.
8138   if (!canConstantEvolve(I, L)) return nullptr;
8139 
8140   // An unmapped PHI can be due to a branch or another loop inside this loop,
8141   // or due to this not being the initial iteration through a loop where we
8142   // couldn't compute the evolution of this particular PHI last time.
8143   if (isa<PHINode>(I)) return nullptr;
8144 
8145   std::vector<Constant*> Operands(I->getNumOperands());
8146 
8147   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8148     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8149     if (!Operand) {
8150       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8151       if (!Operands[i]) return nullptr;
8152       continue;
8153     }
8154     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8155     Vals[Operand] = C;
8156     if (!C) return nullptr;
8157     Operands[i] = C;
8158   }
8159 
8160   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8161     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8162                                            Operands[1], DL, TLI);
8163   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8164     if (!LI->isVolatile())
8165       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8166   }
8167   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8168 }
8169 
8170 
8171 // If every incoming value to PN except the one for BB is a specific Constant,
8172 // return that, else return nullptr.
8173 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8174   Constant *IncomingVal = nullptr;
8175 
8176   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8177     if (PN->getIncomingBlock(i) == BB)
8178       continue;
8179 
8180     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8181     if (!CurrentVal)
8182       return nullptr;
8183 
8184     if (IncomingVal != CurrentVal) {
8185       if (IncomingVal)
8186         return nullptr;
8187       IncomingVal = CurrentVal;
8188     }
8189   }
8190 
8191   return IncomingVal;
8192 }
8193 
8194 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8195 /// in the header of its containing loop, we know the loop executes a
8196 /// constant number of times, and the PHI node is just a recurrence
8197 /// involving constants, fold it.
8198 Constant *
8199 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8200                                                    const APInt &BEs,
8201                                                    const Loop *L) {
8202   auto I = ConstantEvolutionLoopExitValue.find(PN);
8203   if (I != ConstantEvolutionLoopExitValue.end())
8204     return I->second;
8205 
8206   if (BEs.ugt(MaxBruteForceIterations))
8207     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8208 
8209   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8210 
8211   DenseMap<Instruction *, Constant *> CurrentIterVals;
8212   BasicBlock *Header = L->getHeader();
8213   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8214 
8215   BasicBlock *Latch = L->getLoopLatch();
8216   if (!Latch)
8217     return nullptr;
8218 
8219   for (PHINode &PHI : Header->phis()) {
8220     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8221       CurrentIterVals[&PHI] = StartCST;
8222   }
8223   if (!CurrentIterVals.count(PN))
8224     return RetVal = nullptr;
8225 
8226   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8227 
8228   // Execute the loop symbolically to determine the exit value.
8229   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8230          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8231 
8232   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8233   unsigned IterationNum = 0;
8234   const DataLayout &DL = getDataLayout();
8235   for (; ; ++IterationNum) {
8236     if (IterationNum == NumIterations)
8237       return RetVal = CurrentIterVals[PN];  // Got exit value!
8238 
8239     // Compute the value of the PHIs for the next iteration.
8240     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8241     DenseMap<Instruction *, Constant *> NextIterVals;
8242     Constant *NextPHI =
8243         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8244     if (!NextPHI)
8245       return nullptr;        // Couldn't evaluate!
8246     NextIterVals[PN] = NextPHI;
8247 
8248     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8249 
8250     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8251     // cease to be able to evaluate one of them or if they stop evolving,
8252     // because that doesn't necessarily prevent us from computing PN.
8253     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8254     for (const auto &I : CurrentIterVals) {
8255       PHINode *PHI = dyn_cast<PHINode>(I.first);
8256       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8257       PHIsToCompute.emplace_back(PHI, I.second);
8258     }
8259     // We use two distinct loops because EvaluateExpression may invalidate any
8260     // iterators into CurrentIterVals.
8261     for (const auto &I : PHIsToCompute) {
8262       PHINode *PHI = I.first;
8263       Constant *&NextPHI = NextIterVals[PHI];
8264       if (!NextPHI) {   // Not already computed.
8265         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8266         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8267       }
8268       if (NextPHI != I.second)
8269         StoppedEvolving = false;
8270     }
8271 
8272     // If all entries in CurrentIterVals == NextIterVals then we can stop
8273     // iterating, the loop can't continue to change.
8274     if (StoppedEvolving)
8275       return RetVal = CurrentIterVals[PN];
8276 
8277     CurrentIterVals.swap(NextIterVals);
8278   }
8279 }
8280 
8281 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8282                                                           Value *Cond,
8283                                                           bool ExitWhen) {
8284   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8285   if (!PN) return getCouldNotCompute();
8286 
8287   // If the loop is canonicalized, the PHI will have exactly two entries.
8288   // That's the only form we support here.
8289   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8290 
8291   DenseMap<Instruction *, Constant *> CurrentIterVals;
8292   BasicBlock *Header = L->getHeader();
8293   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8294 
8295   BasicBlock *Latch = L->getLoopLatch();
8296   assert(Latch && "Should follow from NumIncomingValues == 2!");
8297 
8298   for (PHINode &PHI : Header->phis()) {
8299     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8300       CurrentIterVals[&PHI] = StartCST;
8301   }
8302   if (!CurrentIterVals.count(PN))
8303     return getCouldNotCompute();
8304 
8305   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8306   // the loop symbolically to determine when the condition gets a value of
8307   // "ExitWhen".
8308   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8309   const DataLayout &DL = getDataLayout();
8310   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8311     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8312         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8313 
8314     // Couldn't symbolically evaluate.
8315     if (!CondVal) return getCouldNotCompute();
8316 
8317     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8318       ++NumBruteForceTripCountsComputed;
8319       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8320     }
8321 
8322     // Update all the PHI nodes for the next iteration.
8323     DenseMap<Instruction *, Constant *> NextIterVals;
8324 
8325     // Create a list of which PHIs we need to compute. We want to do this before
8326     // calling EvaluateExpression on them because that may invalidate iterators
8327     // into CurrentIterVals.
8328     SmallVector<PHINode *, 8> PHIsToCompute;
8329     for (const auto &I : CurrentIterVals) {
8330       PHINode *PHI = dyn_cast<PHINode>(I.first);
8331       if (!PHI || PHI->getParent() != Header) continue;
8332       PHIsToCompute.push_back(PHI);
8333     }
8334     for (PHINode *PHI : PHIsToCompute) {
8335       Constant *&NextPHI = NextIterVals[PHI];
8336       if (NextPHI) continue;    // Already computed!
8337 
8338       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8339       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8340     }
8341     CurrentIterVals.swap(NextIterVals);
8342   }
8343 
8344   // Too many iterations were needed to evaluate.
8345   return getCouldNotCompute();
8346 }
8347 
8348 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8349   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8350       ValuesAtScopes[V];
8351   // Check to see if we've folded this expression at this loop before.
8352   for (auto &LS : Values)
8353     if (LS.first == L)
8354       return LS.second ? LS.second : V;
8355 
8356   Values.emplace_back(L, nullptr);
8357 
8358   // Otherwise compute it.
8359   const SCEV *C = computeSCEVAtScope(V, L);
8360   for (auto &LS : reverse(ValuesAtScopes[V]))
8361     if (LS.first == L) {
8362       LS.second = C;
8363       break;
8364     }
8365   return C;
8366 }
8367 
8368 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8369 /// will return Constants for objects which aren't represented by a
8370 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8371 /// Returns NULL if the SCEV isn't representable as a Constant.
8372 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8373   switch (V->getSCEVType()) {
8374   case scCouldNotCompute:
8375   case scAddRecExpr:
8376     return nullptr;
8377   case scConstant:
8378     return cast<SCEVConstant>(V)->getValue();
8379   case scUnknown:
8380     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8381   case scSignExtend: {
8382     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8383     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8384       return ConstantExpr::getSExt(CastOp, SS->getType());
8385     return nullptr;
8386   }
8387   case scZeroExtend: {
8388     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8389     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8390       return ConstantExpr::getZExt(CastOp, SZ->getType());
8391     return nullptr;
8392   }
8393   case scPtrToInt: {
8394     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8395     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8396       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8397 
8398     return nullptr;
8399   }
8400   case scTruncate: {
8401     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8402     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8403       return ConstantExpr::getTrunc(CastOp, ST->getType());
8404     return nullptr;
8405   }
8406   case scAddExpr: {
8407     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8408     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8409       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8410         unsigned AS = PTy->getAddressSpace();
8411         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8412         C = ConstantExpr::getBitCast(C, DestPtrTy);
8413       }
8414       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8415         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8416         if (!C2)
8417           return nullptr;
8418 
8419         // First pointer!
8420         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8421           unsigned AS = C2->getType()->getPointerAddressSpace();
8422           std::swap(C, C2);
8423           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8424           // The offsets have been converted to bytes.  We can add bytes to an
8425           // i8* by GEP with the byte count in the first index.
8426           C = ConstantExpr::getBitCast(C, DestPtrTy);
8427         }
8428 
8429         // Don't bother trying to sum two pointers. We probably can't
8430         // statically compute a load that results from it anyway.
8431         if (C2->getType()->isPointerTy())
8432           return nullptr;
8433 
8434         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8435           if (PTy->getElementType()->isStructTy())
8436             C2 = ConstantExpr::getIntegerCast(
8437                 C2, Type::getInt32Ty(C->getContext()), true);
8438           C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8439         } else
8440           C = ConstantExpr::getAdd(C, C2);
8441       }
8442       return C;
8443     }
8444     return nullptr;
8445   }
8446   case scMulExpr: {
8447     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8448     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8449       // Don't bother with pointers at all.
8450       if (C->getType()->isPointerTy())
8451         return nullptr;
8452       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8453         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8454         if (!C2 || C2->getType()->isPointerTy())
8455           return nullptr;
8456         C = ConstantExpr::getMul(C, C2);
8457       }
8458       return C;
8459     }
8460     return nullptr;
8461   }
8462   case scUDivExpr: {
8463     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8464     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8465       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8466         if (LHS->getType() == RHS->getType())
8467           return ConstantExpr::getUDiv(LHS, RHS);
8468     return nullptr;
8469   }
8470   case scSMaxExpr:
8471   case scUMaxExpr:
8472   case scSMinExpr:
8473   case scUMinExpr:
8474     return nullptr; // TODO: smax, umax, smin, umax.
8475   }
8476   llvm_unreachable("Unknown SCEV kind!");
8477 }
8478 
8479 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8480   if (isa<SCEVConstant>(V)) return V;
8481 
8482   // If this instruction is evolved from a constant-evolving PHI, compute the
8483   // exit value from the loop without using SCEVs.
8484   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8485     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8486       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8487         const Loop *CurrLoop = this->LI[I->getParent()];
8488         // Looking for loop exit value.
8489         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8490             PN->getParent() == CurrLoop->getHeader()) {
8491           // Okay, there is no closed form solution for the PHI node.  Check
8492           // to see if the loop that contains it has a known backedge-taken
8493           // count.  If so, we may be able to force computation of the exit
8494           // value.
8495           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8496           // This trivial case can show up in some degenerate cases where
8497           // the incoming IR has not yet been fully simplified.
8498           if (BackedgeTakenCount->isZero()) {
8499             Value *InitValue = nullptr;
8500             bool MultipleInitValues = false;
8501             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8502               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8503                 if (!InitValue)
8504                   InitValue = PN->getIncomingValue(i);
8505                 else if (InitValue != PN->getIncomingValue(i)) {
8506                   MultipleInitValues = true;
8507                   break;
8508                 }
8509               }
8510             }
8511             if (!MultipleInitValues && InitValue)
8512               return getSCEV(InitValue);
8513           }
8514           // Do we have a loop invariant value flowing around the backedge
8515           // for a loop which must execute the backedge?
8516           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8517               isKnownPositive(BackedgeTakenCount) &&
8518               PN->getNumIncomingValues() == 2) {
8519 
8520             unsigned InLoopPred =
8521                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8522             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8523             if (CurrLoop->isLoopInvariant(BackedgeVal))
8524               return getSCEV(BackedgeVal);
8525           }
8526           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8527             // Okay, we know how many times the containing loop executes.  If
8528             // this is a constant evolving PHI node, get the final value at
8529             // the specified iteration number.
8530             Constant *RV = getConstantEvolutionLoopExitValue(
8531                 PN, BTCC->getAPInt(), CurrLoop);
8532             if (RV) return getSCEV(RV);
8533           }
8534         }
8535 
8536         // If there is a single-input Phi, evaluate it at our scope. If we can
8537         // prove that this replacement does not break LCSSA form, use new value.
8538         if (PN->getNumOperands() == 1) {
8539           const SCEV *Input = getSCEV(PN->getOperand(0));
8540           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8541           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8542           // for the simplest case just support constants.
8543           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8544         }
8545       }
8546 
8547       // Okay, this is an expression that we cannot symbolically evaluate
8548       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8549       // the arguments into constants, and if so, try to constant propagate the
8550       // result.  This is particularly useful for computing loop exit values.
8551       if (CanConstantFold(I)) {
8552         SmallVector<Constant *, 4> Operands;
8553         bool MadeImprovement = false;
8554         for (Value *Op : I->operands()) {
8555           if (Constant *C = dyn_cast<Constant>(Op)) {
8556             Operands.push_back(C);
8557             continue;
8558           }
8559 
8560           // If any of the operands is non-constant and if they are
8561           // non-integer and non-pointer, don't even try to analyze them
8562           // with scev techniques.
8563           if (!isSCEVable(Op->getType()))
8564             return V;
8565 
8566           const SCEV *OrigV = getSCEV(Op);
8567           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8568           MadeImprovement |= OrigV != OpV;
8569 
8570           Constant *C = BuildConstantFromSCEV(OpV);
8571           if (!C) return V;
8572           if (C->getType() != Op->getType())
8573             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8574                                                               Op->getType(),
8575                                                               false),
8576                                       C, Op->getType());
8577           Operands.push_back(C);
8578         }
8579 
8580         // Check to see if getSCEVAtScope actually made an improvement.
8581         if (MadeImprovement) {
8582           Constant *C = nullptr;
8583           const DataLayout &DL = getDataLayout();
8584           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8585             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8586                                                 Operands[1], DL, &TLI);
8587           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8588             if (!Load->isVolatile())
8589               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8590                                                DL);
8591           } else
8592             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8593           if (!C) return V;
8594           return getSCEV(C);
8595         }
8596       }
8597     }
8598 
8599     // This is some other type of SCEVUnknown, just return it.
8600     return V;
8601   }
8602 
8603   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8604     // Avoid performing the look-up in the common case where the specified
8605     // expression has no loop-variant portions.
8606     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8607       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8608       if (OpAtScope != Comm->getOperand(i)) {
8609         // Okay, at least one of these operands is loop variant but might be
8610         // foldable.  Build a new instance of the folded commutative expression.
8611         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8612                                             Comm->op_begin()+i);
8613         NewOps.push_back(OpAtScope);
8614 
8615         for (++i; i != e; ++i) {
8616           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8617           NewOps.push_back(OpAtScope);
8618         }
8619         if (isa<SCEVAddExpr>(Comm))
8620           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8621         if (isa<SCEVMulExpr>(Comm))
8622           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8623         if (isa<SCEVMinMaxExpr>(Comm))
8624           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8625         llvm_unreachable("Unknown commutative SCEV type!");
8626       }
8627     }
8628     // If we got here, all operands are loop invariant.
8629     return Comm;
8630   }
8631 
8632   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8633     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8634     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8635     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8636       return Div;   // must be loop invariant
8637     return getUDivExpr(LHS, RHS);
8638   }
8639 
8640   // If this is a loop recurrence for a loop that does not contain L, then we
8641   // are dealing with the final value computed by the loop.
8642   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8643     // First, attempt to evaluate each operand.
8644     // Avoid performing the look-up in the common case where the specified
8645     // expression has no loop-variant portions.
8646     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8647       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8648       if (OpAtScope == AddRec->getOperand(i))
8649         continue;
8650 
8651       // Okay, at least one of these operands is loop variant but might be
8652       // foldable.  Build a new instance of the folded commutative expression.
8653       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8654                                           AddRec->op_begin()+i);
8655       NewOps.push_back(OpAtScope);
8656       for (++i; i != e; ++i)
8657         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8658 
8659       const SCEV *FoldedRec =
8660         getAddRecExpr(NewOps, AddRec->getLoop(),
8661                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8662       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8663       // The addrec may be folded to a nonrecurrence, for example, if the
8664       // induction variable is multiplied by zero after constant folding. Go
8665       // ahead and return the folded value.
8666       if (!AddRec)
8667         return FoldedRec;
8668       break;
8669     }
8670 
8671     // If the scope is outside the addrec's loop, evaluate it by using the
8672     // loop exit value of the addrec.
8673     if (!AddRec->getLoop()->contains(L)) {
8674       // To evaluate this recurrence, we need to know how many times the AddRec
8675       // loop iterates.  Compute this now.
8676       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8677       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8678 
8679       // Then, evaluate the AddRec.
8680       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8681     }
8682 
8683     return AddRec;
8684   }
8685 
8686   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8687     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8688     if (Op == Cast->getOperand())
8689       return Cast;  // must be loop invariant
8690     return getZeroExtendExpr(Op, Cast->getType());
8691   }
8692 
8693   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8694     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8695     if (Op == Cast->getOperand())
8696       return Cast;  // must be loop invariant
8697     return getSignExtendExpr(Op, Cast->getType());
8698   }
8699 
8700   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8701     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8702     if (Op == Cast->getOperand())
8703       return Cast;  // must be loop invariant
8704     return getTruncateExpr(Op, Cast->getType());
8705   }
8706 
8707   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
8708     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8709     if (Op == Cast->getOperand())
8710       return Cast; // must be loop invariant
8711     return getPtrToIntExpr(Op, Cast->getType());
8712   }
8713 
8714   llvm_unreachable("Unknown SCEV type!");
8715 }
8716 
8717 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8718   return getSCEVAtScope(getSCEV(V), L);
8719 }
8720 
8721 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8722   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8723     return stripInjectiveFunctions(ZExt->getOperand());
8724   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8725     return stripInjectiveFunctions(SExt->getOperand());
8726   return S;
8727 }
8728 
8729 /// Finds the minimum unsigned root of the following equation:
8730 ///
8731 ///     A * X = B (mod N)
8732 ///
8733 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8734 /// A and B isn't important.
8735 ///
8736 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8737 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8738                                                ScalarEvolution &SE) {
8739   uint32_t BW = A.getBitWidth();
8740   assert(BW == SE.getTypeSizeInBits(B->getType()));
8741   assert(A != 0 && "A must be non-zero.");
8742 
8743   // 1. D = gcd(A, N)
8744   //
8745   // The gcd of A and N may have only one prime factor: 2. The number of
8746   // trailing zeros in A is its multiplicity
8747   uint32_t Mult2 = A.countTrailingZeros();
8748   // D = 2^Mult2
8749 
8750   // 2. Check if B is divisible by D.
8751   //
8752   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8753   // is not less than multiplicity of this prime factor for D.
8754   if (SE.GetMinTrailingZeros(B) < Mult2)
8755     return SE.getCouldNotCompute();
8756 
8757   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8758   // modulo (N / D).
8759   //
8760   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8761   // (N / D) in general. The inverse itself always fits into BW bits, though,
8762   // so we immediately truncate it.
8763   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8764   APInt Mod(BW + 1, 0);
8765   Mod.setBit(BW - Mult2);  // Mod = N / D
8766   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8767 
8768   // 4. Compute the minimum unsigned root of the equation:
8769   // I * (B / D) mod (N / D)
8770   // To simplify the computation, we factor out the divide by D:
8771   // (I * B mod N) / D
8772   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8773   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8774 }
8775 
8776 /// For a given quadratic addrec, generate coefficients of the corresponding
8777 /// quadratic equation, multiplied by a common value to ensure that they are
8778 /// integers.
8779 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8780 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8781 /// were multiplied by, and BitWidth is the bit width of the original addrec
8782 /// coefficients.
8783 /// This function returns None if the addrec coefficients are not compile-
8784 /// time constants.
8785 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8786 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8787   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8788   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8789   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8790   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8791   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8792                     << *AddRec << '\n');
8793 
8794   // We currently can only solve this if the coefficients are constants.
8795   if (!LC || !MC || !NC) {
8796     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8797     return None;
8798   }
8799 
8800   APInt L = LC->getAPInt();
8801   APInt M = MC->getAPInt();
8802   APInt N = NC->getAPInt();
8803   assert(!N.isNullValue() && "This is not a quadratic addrec");
8804 
8805   unsigned BitWidth = LC->getAPInt().getBitWidth();
8806   unsigned NewWidth = BitWidth + 1;
8807   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8808                     << BitWidth << '\n');
8809   // The sign-extension (as opposed to a zero-extension) here matches the
8810   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8811   N = N.sext(NewWidth);
8812   M = M.sext(NewWidth);
8813   L = L.sext(NewWidth);
8814 
8815   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8816   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8817   //   L+M, L+2M+N, L+3M+3N, ...
8818   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8819   //
8820   // The equation Acc = 0 is then
8821   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8822   // In a quadratic form it becomes:
8823   //   N n^2 + (2M-N) n + 2L = 0.
8824 
8825   APInt A = N;
8826   APInt B = 2 * M - A;
8827   APInt C = 2 * L;
8828   APInt T = APInt(NewWidth, 2);
8829   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8830                     << "x + " << C << ", coeff bw: " << NewWidth
8831                     << ", multiplied by " << T << '\n');
8832   return std::make_tuple(A, B, C, T, BitWidth);
8833 }
8834 
8835 /// Helper function to compare optional APInts:
8836 /// (a) if X and Y both exist, return min(X, Y),
8837 /// (b) if neither X nor Y exist, return None,
8838 /// (c) if exactly one of X and Y exists, return that value.
8839 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8840   if (X.hasValue() && Y.hasValue()) {
8841     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8842     APInt XW = X->sextOrSelf(W);
8843     APInt YW = Y->sextOrSelf(W);
8844     return XW.slt(YW) ? *X : *Y;
8845   }
8846   if (!X.hasValue() && !Y.hasValue())
8847     return None;
8848   return X.hasValue() ? *X : *Y;
8849 }
8850 
8851 /// Helper function to truncate an optional APInt to a given BitWidth.
8852 /// When solving addrec-related equations, it is preferable to return a value
8853 /// that has the same bit width as the original addrec's coefficients. If the
8854 /// solution fits in the original bit width, truncate it (except for i1).
8855 /// Returning a value of a different bit width may inhibit some optimizations.
8856 ///
8857 /// In general, a solution to a quadratic equation generated from an addrec
8858 /// may require BW+1 bits, where BW is the bit width of the addrec's
8859 /// coefficients. The reason is that the coefficients of the quadratic
8860 /// equation are BW+1 bits wide (to avoid truncation when converting from
8861 /// the addrec to the equation).
8862 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8863   if (!X.hasValue())
8864     return None;
8865   unsigned W = X->getBitWidth();
8866   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8867     return X->trunc(BitWidth);
8868   return X;
8869 }
8870 
8871 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8872 /// iterations. The values L, M, N are assumed to be signed, and they
8873 /// should all have the same bit widths.
8874 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8875 /// where BW is the bit width of the addrec's coefficients.
8876 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8877 /// returned as such, otherwise the bit width of the returned value may
8878 /// be greater than BW.
8879 ///
8880 /// This function returns None if
8881 /// (a) the addrec coefficients are not constant, or
8882 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8883 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8884 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8885 static Optional<APInt>
8886 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8887   APInt A, B, C, M;
8888   unsigned BitWidth;
8889   auto T = GetQuadraticEquation(AddRec);
8890   if (!T.hasValue())
8891     return None;
8892 
8893   std::tie(A, B, C, M, BitWidth) = *T;
8894   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8895   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8896   if (!X.hasValue())
8897     return None;
8898 
8899   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8900   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8901   if (!V->isZero())
8902     return None;
8903 
8904   return TruncIfPossible(X, BitWidth);
8905 }
8906 
8907 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8908 /// iterations. The values M, N are assumed to be signed, and they
8909 /// should all have the same bit widths.
8910 /// Find the least n such that c(n) does not belong to the given range,
8911 /// while c(n-1) does.
8912 ///
8913 /// This function returns None if
8914 /// (a) the addrec coefficients are not constant, or
8915 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8916 ///     bounds of the range.
8917 static Optional<APInt>
8918 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8919                           const ConstantRange &Range, ScalarEvolution &SE) {
8920   assert(AddRec->getOperand(0)->isZero() &&
8921          "Starting value of addrec should be 0");
8922   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8923                     << Range << ", addrec " << *AddRec << '\n');
8924   // This case is handled in getNumIterationsInRange. Here we can assume that
8925   // we start in the range.
8926   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8927          "Addrec's initial value should be in range");
8928 
8929   APInt A, B, C, M;
8930   unsigned BitWidth;
8931   auto T = GetQuadraticEquation(AddRec);
8932   if (!T.hasValue())
8933     return None;
8934 
8935   // Be careful about the return value: there can be two reasons for not
8936   // returning an actual number. First, if no solutions to the equations
8937   // were found, and second, if the solutions don't leave the given range.
8938   // The first case means that the actual solution is "unknown", the second
8939   // means that it's known, but not valid. If the solution is unknown, we
8940   // cannot make any conclusions.
8941   // Return a pair: the optional solution and a flag indicating if the
8942   // solution was found.
8943   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8944     // Solve for signed overflow and unsigned overflow, pick the lower
8945     // solution.
8946     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8947                       << Bound << " (before multiplying by " << M << ")\n");
8948     Bound *= M; // The quadratic equation multiplier.
8949 
8950     Optional<APInt> SO = None;
8951     if (BitWidth > 1) {
8952       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8953                            "signed overflow\n");
8954       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8955     }
8956     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8957                          "unsigned overflow\n");
8958     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8959                                                               BitWidth+1);
8960 
8961     auto LeavesRange = [&] (const APInt &X) {
8962       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8963       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8964       if (Range.contains(V0->getValue()))
8965         return false;
8966       // X should be at least 1, so X-1 is non-negative.
8967       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8968       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8969       if (Range.contains(V1->getValue()))
8970         return true;
8971       return false;
8972     };
8973 
8974     // If SolveQuadraticEquationWrap returns None, it means that there can
8975     // be a solution, but the function failed to find it. We cannot treat it
8976     // as "no solution".
8977     if (!SO.hasValue() || !UO.hasValue())
8978       return { None, false };
8979 
8980     // Check the smaller value first to see if it leaves the range.
8981     // At this point, both SO and UO must have values.
8982     Optional<APInt> Min = MinOptional(SO, UO);
8983     if (LeavesRange(*Min))
8984       return { Min, true };
8985     Optional<APInt> Max = Min == SO ? UO : SO;
8986     if (LeavesRange(*Max))
8987       return { Max, true };
8988 
8989     // Solutions were found, but were eliminated, hence the "true".
8990     return { None, true };
8991   };
8992 
8993   std::tie(A, B, C, M, BitWidth) = *T;
8994   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8995   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8996   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8997   auto SL = SolveForBoundary(Lower);
8998   auto SU = SolveForBoundary(Upper);
8999   // If any of the solutions was unknown, no meaninigful conclusions can
9000   // be made.
9001   if (!SL.second || !SU.second)
9002     return None;
9003 
9004   // Claim: The correct solution is not some value between Min and Max.
9005   //
9006   // Justification: Assuming that Min and Max are different values, one of
9007   // them is when the first signed overflow happens, the other is when the
9008   // first unsigned overflow happens. Crossing the range boundary is only
9009   // possible via an overflow (treating 0 as a special case of it, modeling
9010   // an overflow as crossing k*2^W for some k).
9011   //
9012   // The interesting case here is when Min was eliminated as an invalid
9013   // solution, but Max was not. The argument is that if there was another
9014   // overflow between Min and Max, it would also have been eliminated if
9015   // it was considered.
9016   //
9017   // For a given boundary, it is possible to have two overflows of the same
9018   // type (signed/unsigned) without having the other type in between: this
9019   // can happen when the vertex of the parabola is between the iterations
9020   // corresponding to the overflows. This is only possible when the two
9021   // overflows cross k*2^W for the same k. In such case, if the second one
9022   // left the range (and was the first one to do so), the first overflow
9023   // would have to enter the range, which would mean that either we had left
9024   // the range before or that we started outside of it. Both of these cases
9025   // are contradictions.
9026   //
9027   // Claim: In the case where SolveForBoundary returns None, the correct
9028   // solution is not some value between the Max for this boundary and the
9029   // Min of the other boundary.
9030   //
9031   // Justification: Assume that we had such Max_A and Min_B corresponding
9032   // to range boundaries A and B and such that Max_A < Min_B. If there was
9033   // a solution between Max_A and Min_B, it would have to be caused by an
9034   // overflow corresponding to either A or B. It cannot correspond to B,
9035   // since Min_B is the first occurrence of such an overflow. If it
9036   // corresponded to A, it would have to be either a signed or an unsigned
9037   // overflow that is larger than both eliminated overflows for A. But
9038   // between the eliminated overflows and this overflow, the values would
9039   // cover the entire value space, thus crossing the other boundary, which
9040   // is a contradiction.
9041 
9042   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9043 }
9044 
9045 ScalarEvolution::ExitLimit
9046 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9047                               bool AllowPredicates) {
9048 
9049   // This is only used for loops with a "x != y" exit test. The exit condition
9050   // is now expressed as a single expression, V = x-y. So the exit test is
9051   // effectively V != 0.  We know and take advantage of the fact that this
9052   // expression only being used in a comparison by zero context.
9053 
9054   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9055   // If the value is a constant
9056   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9057     // If the value is already zero, the branch will execute zero times.
9058     if (C->getValue()->isZero()) return C;
9059     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9060   }
9061 
9062   const SCEVAddRecExpr *AddRec =
9063       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9064 
9065   if (!AddRec && AllowPredicates)
9066     // Try to make this an AddRec using runtime tests, in the first X
9067     // iterations of this loop, where X is the SCEV expression found by the
9068     // algorithm below.
9069     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9070 
9071   if (!AddRec || AddRec->getLoop() != L)
9072     return getCouldNotCompute();
9073 
9074   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9075   // the quadratic equation to solve it.
9076   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9077     // We can only use this value if the chrec ends up with an exact zero
9078     // value at this index.  When solving for "X*X != 5", for example, we
9079     // should not accept a root of 2.
9080     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9081       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9082       return ExitLimit(R, R, false, Predicates);
9083     }
9084     return getCouldNotCompute();
9085   }
9086 
9087   // Otherwise we can only handle this if it is affine.
9088   if (!AddRec->isAffine())
9089     return getCouldNotCompute();
9090 
9091   // If this is an affine expression, the execution count of this branch is
9092   // the minimum unsigned root of the following equation:
9093   //
9094   //     Start + Step*N = 0 (mod 2^BW)
9095   //
9096   // equivalent to:
9097   //
9098   //             Step*N = -Start (mod 2^BW)
9099   //
9100   // where BW is the common bit width of Start and Step.
9101 
9102   // Get the initial value for the loop.
9103   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9104   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9105 
9106   // For now we handle only constant steps.
9107   //
9108   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9109   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9110   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9111   // We have not yet seen any such cases.
9112   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9113   if (!StepC || StepC->getValue()->isZero())
9114     return getCouldNotCompute();
9115 
9116   // For positive steps (counting up until unsigned overflow):
9117   //   N = -Start/Step (as unsigned)
9118   // For negative steps (counting down to zero):
9119   //   N = Start/-Step
9120   // First compute the unsigned distance from zero in the direction of Step.
9121   bool CountDown = StepC->getAPInt().isNegative();
9122   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9123 
9124   // Handle unitary steps, which cannot wraparound.
9125   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9126   //   N = Distance (as unsigned)
9127   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9128     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9129     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9130     if (MaxBECountBase.ult(MaxBECount))
9131       MaxBECount = MaxBECountBase;
9132 
9133     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9134     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9135     // case, and see if we can improve the bound.
9136     //
9137     // Explicitly handling this here is necessary because getUnsignedRange
9138     // isn't context-sensitive; it doesn't know that we only care about the
9139     // range inside the loop.
9140     const SCEV *Zero = getZero(Distance->getType());
9141     const SCEV *One = getOne(Distance->getType());
9142     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9143     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9144       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9145       // as "unsigned_max(Distance + 1) - 1".
9146       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9147       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9148     }
9149     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9150   }
9151 
9152   // If the condition controls loop exit (the loop exits only if the expression
9153   // is true) and the addition is no-wrap we can use unsigned divide to
9154   // compute the backedge count.  In this case, the step may not divide the
9155   // distance, but we don't care because if the condition is "missed" the loop
9156   // will have undefined behavior due to wrapping.
9157   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9158       loopHasNoAbnormalExits(AddRec->getLoop())) {
9159     const SCEV *Exact =
9160         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9161     const SCEV *Max =
9162         Exact == getCouldNotCompute()
9163             ? Exact
9164             : getConstant(getUnsignedRangeMax(Exact));
9165     return ExitLimit(Exact, Max, false, Predicates);
9166   }
9167 
9168   // Solve the general equation.
9169   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9170                                                getNegativeSCEV(Start), *this);
9171   const SCEV *M = E == getCouldNotCompute()
9172                       ? E
9173                       : getConstant(getUnsignedRangeMax(E));
9174   return ExitLimit(E, M, false, Predicates);
9175 }
9176 
9177 ScalarEvolution::ExitLimit
9178 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9179   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9180   // handle them yet except for the trivial case.  This could be expanded in the
9181   // future as needed.
9182 
9183   // If the value is a constant, check to see if it is known to be non-zero
9184   // already.  If so, the backedge will execute zero times.
9185   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9186     if (!C->getValue()->isZero())
9187       return getZero(C->getType());
9188     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9189   }
9190 
9191   // We could implement others, but I really doubt anyone writes loops like
9192   // this, and if they did, they would already be constant folded.
9193   return getCouldNotCompute();
9194 }
9195 
9196 std::pair<const BasicBlock *, const BasicBlock *>
9197 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9198     const {
9199   // If the block has a unique predecessor, then there is no path from the
9200   // predecessor to the block that does not go through the direct edge
9201   // from the predecessor to the block.
9202   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9203     return {Pred, BB};
9204 
9205   // A loop's header is defined to be a block that dominates the loop.
9206   // If the header has a unique predecessor outside the loop, it must be
9207   // a block that has exactly one successor that can reach the loop.
9208   if (const Loop *L = LI.getLoopFor(BB))
9209     return {L->getLoopPredecessor(), L->getHeader()};
9210 
9211   return {nullptr, nullptr};
9212 }
9213 
9214 /// SCEV structural equivalence is usually sufficient for testing whether two
9215 /// expressions are equal, however for the purposes of looking for a condition
9216 /// guarding a loop, it can be useful to be a little more general, since a
9217 /// front-end may have replicated the controlling expression.
9218 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9219   // Quick check to see if they are the same SCEV.
9220   if (A == B) return true;
9221 
9222   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9223     // Not all instructions that are "identical" compute the same value.  For
9224     // instance, two distinct alloca instructions allocating the same type are
9225     // identical and do not read memory; but compute distinct values.
9226     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9227   };
9228 
9229   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9230   // two different instructions with the same value. Check for this case.
9231   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9232     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9233       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9234         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9235           if (ComputesEqualValues(AI, BI))
9236             return true;
9237 
9238   // Otherwise assume they may have a different value.
9239   return false;
9240 }
9241 
9242 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9243                                            const SCEV *&LHS, const SCEV *&RHS,
9244                                            unsigned Depth) {
9245   bool Changed = false;
9246   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9247   // '0 != 0'.
9248   auto TrivialCase = [&](bool TriviallyTrue) {
9249     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9250     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9251     return true;
9252   };
9253   // If we hit the max recursion limit bail out.
9254   if (Depth >= 3)
9255     return false;
9256 
9257   // Canonicalize a constant to the right side.
9258   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9259     // Check for both operands constant.
9260     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9261       if (ConstantExpr::getICmp(Pred,
9262                                 LHSC->getValue(),
9263                                 RHSC->getValue())->isNullValue())
9264         return TrivialCase(false);
9265       else
9266         return TrivialCase(true);
9267     }
9268     // Otherwise swap the operands to put the constant on the right.
9269     std::swap(LHS, RHS);
9270     Pred = ICmpInst::getSwappedPredicate(Pred);
9271     Changed = true;
9272   }
9273 
9274   // If we're comparing an addrec with a value which is loop-invariant in the
9275   // addrec's loop, put the addrec on the left. Also make a dominance check,
9276   // as both operands could be addrecs loop-invariant in each other's loop.
9277   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9278     const Loop *L = AR->getLoop();
9279     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9280       std::swap(LHS, RHS);
9281       Pred = ICmpInst::getSwappedPredicate(Pred);
9282       Changed = true;
9283     }
9284   }
9285 
9286   // If there's a constant operand, canonicalize comparisons with boundary
9287   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9288   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9289     const APInt &RA = RC->getAPInt();
9290 
9291     bool SimplifiedByConstantRange = false;
9292 
9293     if (!ICmpInst::isEquality(Pred)) {
9294       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9295       if (ExactCR.isFullSet())
9296         return TrivialCase(true);
9297       else if (ExactCR.isEmptySet())
9298         return TrivialCase(false);
9299 
9300       APInt NewRHS;
9301       CmpInst::Predicate NewPred;
9302       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9303           ICmpInst::isEquality(NewPred)) {
9304         // We were able to convert an inequality to an equality.
9305         Pred = NewPred;
9306         RHS = getConstant(NewRHS);
9307         Changed = SimplifiedByConstantRange = true;
9308       }
9309     }
9310 
9311     if (!SimplifiedByConstantRange) {
9312       switch (Pred) {
9313       default:
9314         break;
9315       case ICmpInst::ICMP_EQ:
9316       case ICmpInst::ICMP_NE:
9317         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9318         if (!RA)
9319           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9320             if (const SCEVMulExpr *ME =
9321                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9322               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9323                   ME->getOperand(0)->isAllOnesValue()) {
9324                 RHS = AE->getOperand(1);
9325                 LHS = ME->getOperand(1);
9326                 Changed = true;
9327               }
9328         break;
9329 
9330 
9331         // The "Should have been caught earlier!" messages refer to the fact
9332         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9333         // should have fired on the corresponding cases, and canonicalized the
9334         // check to trivial case.
9335 
9336       case ICmpInst::ICMP_UGE:
9337         assert(!RA.isMinValue() && "Should have been caught earlier!");
9338         Pred = ICmpInst::ICMP_UGT;
9339         RHS = getConstant(RA - 1);
9340         Changed = true;
9341         break;
9342       case ICmpInst::ICMP_ULE:
9343         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9344         Pred = ICmpInst::ICMP_ULT;
9345         RHS = getConstant(RA + 1);
9346         Changed = true;
9347         break;
9348       case ICmpInst::ICMP_SGE:
9349         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9350         Pred = ICmpInst::ICMP_SGT;
9351         RHS = getConstant(RA - 1);
9352         Changed = true;
9353         break;
9354       case ICmpInst::ICMP_SLE:
9355         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9356         Pred = ICmpInst::ICMP_SLT;
9357         RHS = getConstant(RA + 1);
9358         Changed = true;
9359         break;
9360       }
9361     }
9362   }
9363 
9364   // Check for obvious equality.
9365   if (HasSameValue(LHS, RHS)) {
9366     if (ICmpInst::isTrueWhenEqual(Pred))
9367       return TrivialCase(true);
9368     if (ICmpInst::isFalseWhenEqual(Pred))
9369       return TrivialCase(false);
9370   }
9371 
9372   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9373   // adding or subtracting 1 from one of the operands.
9374   switch (Pred) {
9375   case ICmpInst::ICMP_SLE:
9376     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9377       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9378                        SCEV::FlagNSW);
9379       Pred = ICmpInst::ICMP_SLT;
9380       Changed = true;
9381     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9382       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9383                        SCEV::FlagNSW);
9384       Pred = ICmpInst::ICMP_SLT;
9385       Changed = true;
9386     }
9387     break;
9388   case ICmpInst::ICMP_SGE:
9389     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9390       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9391                        SCEV::FlagNSW);
9392       Pred = ICmpInst::ICMP_SGT;
9393       Changed = true;
9394     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9395       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9396                        SCEV::FlagNSW);
9397       Pred = ICmpInst::ICMP_SGT;
9398       Changed = true;
9399     }
9400     break;
9401   case ICmpInst::ICMP_ULE:
9402     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9403       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9404                        SCEV::FlagNUW);
9405       Pred = ICmpInst::ICMP_ULT;
9406       Changed = true;
9407     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9408       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9409       Pred = ICmpInst::ICMP_ULT;
9410       Changed = true;
9411     }
9412     break;
9413   case ICmpInst::ICMP_UGE:
9414     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9415       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9416       Pred = ICmpInst::ICMP_UGT;
9417       Changed = true;
9418     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9419       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9420                        SCEV::FlagNUW);
9421       Pred = ICmpInst::ICMP_UGT;
9422       Changed = true;
9423     }
9424     break;
9425   default:
9426     break;
9427   }
9428 
9429   // TODO: More simplifications are possible here.
9430 
9431   // Recursively simplify until we either hit a recursion limit or nothing
9432   // changes.
9433   if (Changed)
9434     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9435 
9436   return Changed;
9437 }
9438 
9439 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9440   return getSignedRangeMax(S).isNegative();
9441 }
9442 
9443 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9444   return getSignedRangeMin(S).isStrictlyPositive();
9445 }
9446 
9447 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9448   return !getSignedRangeMin(S).isNegative();
9449 }
9450 
9451 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9452   return !getSignedRangeMax(S).isStrictlyPositive();
9453 }
9454 
9455 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9456   return isKnownNegative(S) || isKnownPositive(S);
9457 }
9458 
9459 std::pair<const SCEV *, const SCEV *>
9460 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9461   // Compute SCEV on entry of loop L.
9462   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9463   if (Start == getCouldNotCompute())
9464     return { Start, Start };
9465   // Compute post increment SCEV for loop L.
9466   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9467   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9468   return { Start, PostInc };
9469 }
9470 
9471 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9472                                           const SCEV *LHS, const SCEV *RHS) {
9473   // First collect all loops.
9474   SmallPtrSet<const Loop *, 8> LoopsUsed;
9475   getUsedLoops(LHS, LoopsUsed);
9476   getUsedLoops(RHS, LoopsUsed);
9477 
9478   if (LoopsUsed.empty())
9479     return false;
9480 
9481   // Domination relationship must be a linear order on collected loops.
9482 #ifndef NDEBUG
9483   for (auto *L1 : LoopsUsed)
9484     for (auto *L2 : LoopsUsed)
9485       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9486               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9487              "Domination relationship is not a linear order");
9488 #endif
9489 
9490   const Loop *MDL =
9491       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9492                         [&](const Loop *L1, const Loop *L2) {
9493          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9494        });
9495 
9496   // Get init and post increment value for LHS.
9497   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9498   // if LHS contains unknown non-invariant SCEV then bail out.
9499   if (SplitLHS.first == getCouldNotCompute())
9500     return false;
9501   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9502   // Get init and post increment value for RHS.
9503   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9504   // if RHS contains unknown non-invariant SCEV then bail out.
9505   if (SplitRHS.first == getCouldNotCompute())
9506     return false;
9507   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9508   // It is possible that init SCEV contains an invariant load but it does
9509   // not dominate MDL and is not available at MDL loop entry, so we should
9510   // check it here.
9511   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9512       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9513     return false;
9514 
9515   // It seems backedge guard check is faster than entry one so in some cases
9516   // it can speed up whole estimation by short circuit
9517   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9518                                      SplitRHS.second) &&
9519          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9520 }
9521 
9522 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9523                                        const SCEV *LHS, const SCEV *RHS) {
9524   // Canonicalize the inputs first.
9525   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9526 
9527   if (isKnownViaInduction(Pred, LHS, RHS))
9528     return true;
9529 
9530   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9531     return true;
9532 
9533   // Otherwise see what can be done with some simple reasoning.
9534   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9535 }
9536 
9537 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9538                                          const SCEV *LHS, const SCEV *RHS,
9539                                          const Instruction *Context) {
9540   // TODO: Analyze guards and assumes from Context's block.
9541   return isKnownPredicate(Pred, LHS, RHS) ||
9542          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9543 }
9544 
9545 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9546                                               const SCEVAddRecExpr *LHS,
9547                                               const SCEV *RHS) {
9548   const Loop *L = LHS->getLoop();
9549   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9550          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9551 }
9552 
9553 Optional<ScalarEvolution::MonotonicPredicateType>
9554 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9555                                            ICmpInst::Predicate Pred) {
9556   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9557 
9558 #ifndef NDEBUG
9559   // Verify an invariant: inverting the predicate should turn a monotonically
9560   // increasing change to a monotonically decreasing one, and vice versa.
9561   if (Result) {
9562     auto ResultSwapped =
9563         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9564 
9565     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9566     assert(ResultSwapped.getValue() != Result.getValue() &&
9567            "monotonicity should flip as we flip the predicate");
9568   }
9569 #endif
9570 
9571   return Result;
9572 }
9573 
9574 Optional<ScalarEvolution::MonotonicPredicateType>
9575 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9576                                                ICmpInst::Predicate Pred) {
9577   // A zero step value for LHS means the induction variable is essentially a
9578   // loop invariant value. We don't really depend on the predicate actually
9579   // flipping from false to true (for increasing predicates, and the other way
9580   // around for decreasing predicates), all we care about is that *if* the
9581   // predicate changes then it only changes from false to true.
9582   //
9583   // A zero step value in itself is not very useful, but there may be places
9584   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9585   // as general as possible.
9586 
9587   // Only handle LE/LT/GE/GT predicates.
9588   if (!ICmpInst::isRelational(Pred))
9589     return None;
9590 
9591   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9592   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9593          "Should be greater or less!");
9594 
9595   // Check that AR does not wrap.
9596   if (ICmpInst::isUnsigned(Pred)) {
9597     if (!LHS->hasNoUnsignedWrap())
9598       return None;
9599     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9600   } else {
9601     assert(ICmpInst::isSigned(Pred) &&
9602            "Relational predicate is either signed or unsigned!");
9603     if (!LHS->hasNoSignedWrap())
9604       return None;
9605 
9606     const SCEV *Step = LHS->getStepRecurrence(*this);
9607 
9608     if (isKnownNonNegative(Step))
9609       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9610 
9611     if (isKnownNonPositive(Step))
9612       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9613 
9614     return None;
9615   }
9616 }
9617 
9618 Optional<ScalarEvolution::LoopInvariantPredicate>
9619 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
9620                                            const SCEV *LHS, const SCEV *RHS,
9621                                            const Loop *L) {
9622 
9623   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9624   if (!isLoopInvariant(RHS, L)) {
9625     if (!isLoopInvariant(LHS, L))
9626       return None;
9627 
9628     std::swap(LHS, RHS);
9629     Pred = ICmpInst::getSwappedPredicate(Pred);
9630   }
9631 
9632   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9633   if (!ArLHS || ArLHS->getLoop() != L)
9634     return None;
9635 
9636   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
9637   if (!MonotonicType)
9638     return None;
9639   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9640   // true as the loop iterates, and the backedge is control dependent on
9641   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9642   //
9643   //   * if the predicate was false in the first iteration then the predicate
9644   //     is never evaluated again, since the loop exits without taking the
9645   //     backedge.
9646   //   * if the predicate was true in the first iteration then it will
9647   //     continue to be true for all future iterations since it is
9648   //     monotonically increasing.
9649   //
9650   // For both the above possibilities, we can replace the loop varying
9651   // predicate with its value on the first iteration of the loop (which is
9652   // loop invariant).
9653   //
9654   // A similar reasoning applies for a monotonically decreasing predicate, by
9655   // replacing true with false and false with true in the above two bullets.
9656   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
9657   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9658 
9659   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9660     return None;
9661 
9662   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
9663 }
9664 
9665 Optional<ScalarEvolution::LoopInvariantPredicate>
9666 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
9667     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9668     const Instruction *Context, const SCEV *MaxIter) {
9669   // Try to prove the following set of facts:
9670   // - The predicate is monotonic in the iteration space.
9671   // - If the check does not fail on the 1st iteration:
9672   //   - No overflow will happen during first MaxIter iterations;
9673   //   - It will not fail on the MaxIter'th iteration.
9674   // If the check does fail on the 1st iteration, we leave the loop and no
9675   // other checks matter.
9676 
9677   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9678   if (!isLoopInvariant(RHS, L)) {
9679     if (!isLoopInvariant(LHS, L))
9680       return None;
9681 
9682     std::swap(LHS, RHS);
9683     Pred = ICmpInst::getSwappedPredicate(Pred);
9684   }
9685 
9686   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9687   if (!AR || AR->getLoop() != L)
9688     return None;
9689 
9690   // The predicate must be relational (i.e. <, <=, >=, >).
9691   if (!ICmpInst::isRelational(Pred))
9692     return None;
9693 
9694   // TODO: Support steps other than +/- 1.
9695   const SCEV *Step = AR->getStepRecurrence(*this);
9696   auto *One = getOne(Step->getType());
9697   auto *MinusOne = getNegativeSCEV(One);
9698   if (Step != One && Step != MinusOne)
9699     return None;
9700 
9701   // Type mismatch here means that MaxIter is potentially larger than max
9702   // unsigned value in start type, which mean we cannot prove no wrap for the
9703   // indvar.
9704   if (AR->getType() != MaxIter->getType())
9705     return None;
9706 
9707   // Value of IV on suggested last iteration.
9708   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
9709   // Does it still meet the requirement?
9710   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
9711     return None;
9712   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
9713   // not exceed max unsigned value of this type), this effectively proves
9714   // that there is no wrap during the iteration. To prove that there is no
9715   // signed/unsigned wrap, we need to check that
9716   // Start <= Last for step = 1 or Start >= Last for step = -1.
9717   ICmpInst::Predicate NoOverflowPred =
9718       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9719   if (Step == MinusOne)
9720     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
9721   const SCEV *Start = AR->getStart();
9722   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
9723     return None;
9724 
9725   // Everything is fine.
9726   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
9727 }
9728 
9729 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9730     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9731   if (HasSameValue(LHS, RHS))
9732     return ICmpInst::isTrueWhenEqual(Pred);
9733 
9734   // This code is split out from isKnownPredicate because it is called from
9735   // within isLoopEntryGuardedByCond.
9736 
9737   auto CheckRanges =
9738       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9739     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9740         .contains(RangeLHS);
9741   };
9742 
9743   // The check at the top of the function catches the case where the values are
9744   // known to be equal.
9745   if (Pred == CmpInst::ICMP_EQ)
9746     return false;
9747 
9748   if (Pred == CmpInst::ICMP_NE)
9749     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9750            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9751            isKnownNonZero(getMinusSCEV(LHS, RHS));
9752 
9753   if (CmpInst::isSigned(Pred))
9754     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9755 
9756   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9757 }
9758 
9759 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9760                                                     const SCEV *LHS,
9761                                                     const SCEV *RHS) {
9762   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9763   // Return Y via OutY.
9764   auto MatchBinaryAddToConst =
9765       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9766              SCEV::NoWrapFlags ExpectedFlags) {
9767     const SCEV *NonConstOp, *ConstOp;
9768     SCEV::NoWrapFlags FlagsPresent;
9769 
9770     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9771         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9772       return false;
9773 
9774     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9775     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9776   };
9777 
9778   APInt C;
9779 
9780   switch (Pred) {
9781   default:
9782     break;
9783 
9784   case ICmpInst::ICMP_SGE:
9785     std::swap(LHS, RHS);
9786     LLVM_FALLTHROUGH;
9787   case ICmpInst::ICMP_SLE:
9788     // X s<= (X + C)<nsw> if C >= 0
9789     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9790       return true;
9791 
9792     // (X + C)<nsw> s<= X if C <= 0
9793     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9794         !C.isStrictlyPositive())
9795       return true;
9796     break;
9797 
9798   case ICmpInst::ICMP_SGT:
9799     std::swap(LHS, RHS);
9800     LLVM_FALLTHROUGH;
9801   case ICmpInst::ICMP_SLT:
9802     // X s< (X + C)<nsw> if C > 0
9803     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9804         C.isStrictlyPositive())
9805       return true;
9806 
9807     // (X + C)<nsw> s< X if C < 0
9808     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9809       return true;
9810     break;
9811 
9812   case ICmpInst::ICMP_UGE:
9813     std::swap(LHS, RHS);
9814     LLVM_FALLTHROUGH;
9815   case ICmpInst::ICMP_ULE:
9816     // X u<= (X + C)<nuw> for any C
9817     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9818       return true;
9819     break;
9820 
9821   case ICmpInst::ICMP_UGT:
9822     std::swap(LHS, RHS);
9823     LLVM_FALLTHROUGH;
9824   case ICmpInst::ICMP_ULT:
9825     // X u< (X + C)<nuw> if C != 0
9826     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9827       return true;
9828     break;
9829   }
9830 
9831   return false;
9832 }
9833 
9834 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9835                                                    const SCEV *LHS,
9836                                                    const SCEV *RHS) {
9837   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9838     return false;
9839 
9840   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9841   // the stack can result in exponential time complexity.
9842   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9843 
9844   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9845   //
9846   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9847   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9848   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9849   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9850   // use isKnownPredicate later if needed.
9851   return isKnownNonNegative(RHS) &&
9852          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9853          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9854 }
9855 
9856 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9857                                         ICmpInst::Predicate Pred,
9858                                         const SCEV *LHS, const SCEV *RHS) {
9859   // No need to even try if we know the module has no guards.
9860   if (!HasGuards)
9861     return false;
9862 
9863   return any_of(*BB, [&](const Instruction &I) {
9864     using namespace llvm::PatternMatch;
9865 
9866     Value *Condition;
9867     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9868                          m_Value(Condition))) &&
9869            isImpliedCond(Pred, LHS, RHS, Condition, false);
9870   });
9871 }
9872 
9873 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9874 /// protected by a conditional between LHS and RHS.  This is used to
9875 /// to eliminate casts.
9876 bool
9877 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9878                                              ICmpInst::Predicate Pred,
9879                                              const SCEV *LHS, const SCEV *RHS) {
9880   // Interpret a null as meaning no loop, where there is obviously no guard
9881   // (interprocedural conditions notwithstanding).
9882   if (!L) return true;
9883 
9884   if (VerifyIR)
9885     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9886            "This cannot be done on broken IR!");
9887 
9888 
9889   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9890     return true;
9891 
9892   BasicBlock *Latch = L->getLoopLatch();
9893   if (!Latch)
9894     return false;
9895 
9896   BranchInst *LoopContinuePredicate =
9897     dyn_cast<BranchInst>(Latch->getTerminator());
9898   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9899       isImpliedCond(Pred, LHS, RHS,
9900                     LoopContinuePredicate->getCondition(),
9901                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9902     return true;
9903 
9904   // We don't want more than one activation of the following loops on the stack
9905   // -- that can lead to O(n!) time complexity.
9906   if (WalkingBEDominatingConds)
9907     return false;
9908 
9909   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9910 
9911   // See if we can exploit a trip count to prove the predicate.
9912   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9913   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9914   if (LatchBECount != getCouldNotCompute()) {
9915     // We know that Latch branches back to the loop header exactly
9916     // LatchBECount times.  This means the backdege condition at Latch is
9917     // equivalent to  "{0,+,1} u< LatchBECount".
9918     Type *Ty = LatchBECount->getType();
9919     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9920     const SCEV *LoopCounter =
9921       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9922     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9923                       LatchBECount))
9924       return true;
9925   }
9926 
9927   // Check conditions due to any @llvm.assume intrinsics.
9928   for (auto &AssumeVH : AC.assumptions()) {
9929     if (!AssumeVH)
9930       continue;
9931     auto *CI = cast<CallInst>(AssumeVH);
9932     if (!DT.dominates(CI, Latch->getTerminator()))
9933       continue;
9934 
9935     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9936       return true;
9937   }
9938 
9939   // If the loop is not reachable from the entry block, we risk running into an
9940   // infinite loop as we walk up into the dom tree.  These loops do not matter
9941   // anyway, so we just return a conservative answer when we see them.
9942   if (!DT.isReachableFromEntry(L->getHeader()))
9943     return false;
9944 
9945   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9946     return true;
9947 
9948   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9949        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9950     assert(DTN && "should reach the loop header before reaching the root!");
9951 
9952     BasicBlock *BB = DTN->getBlock();
9953     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9954       return true;
9955 
9956     BasicBlock *PBB = BB->getSinglePredecessor();
9957     if (!PBB)
9958       continue;
9959 
9960     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9961     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9962       continue;
9963 
9964     Value *Condition = ContinuePredicate->getCondition();
9965 
9966     // If we have an edge `E` within the loop body that dominates the only
9967     // latch, the condition guarding `E` also guards the backedge.  This
9968     // reasoning works only for loops with a single latch.
9969 
9970     BasicBlockEdge DominatingEdge(PBB, BB);
9971     if (DominatingEdge.isSingleEdge()) {
9972       // We're constructively (and conservatively) enumerating edges within the
9973       // loop body that dominate the latch.  The dominator tree better agree
9974       // with us on this:
9975       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9976 
9977       if (isImpliedCond(Pred, LHS, RHS, Condition,
9978                         BB != ContinuePredicate->getSuccessor(0)))
9979         return true;
9980     }
9981   }
9982 
9983   return false;
9984 }
9985 
9986 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
9987                                                      ICmpInst::Predicate Pred,
9988                                                      const SCEV *LHS,
9989                                                      const SCEV *RHS) {
9990   if (VerifyIR)
9991     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
9992            "This cannot be done on broken IR!");
9993 
9994   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9995     return true;
9996 
9997   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9998   // the facts (a >= b && a != b) separately. A typical situation is when the
9999   // non-strict comparison is known from ranges and non-equality is known from
10000   // dominating predicates. If we are proving strict comparison, we always try
10001   // to prove non-equality and non-strict comparison separately.
10002   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10003   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10004   bool ProvedNonStrictComparison = false;
10005   bool ProvedNonEquality = false;
10006 
10007   if (ProvingStrictComparison) {
10008     ProvedNonStrictComparison =
10009         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
10010     ProvedNonEquality =
10011         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
10012     if (ProvedNonStrictComparison && ProvedNonEquality)
10013       return true;
10014   }
10015 
10016   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10017   auto ProveViaGuard = [&](const BasicBlock *Block) {
10018     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10019       return true;
10020     if (ProvingStrictComparison) {
10021       if (!ProvedNonStrictComparison)
10022         ProvedNonStrictComparison =
10023             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
10024       if (!ProvedNonEquality)
10025         ProvedNonEquality =
10026             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
10027       if (ProvedNonStrictComparison && ProvedNonEquality)
10028         return true;
10029     }
10030     return false;
10031   };
10032 
10033   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10034   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10035     const Instruction *Context = &BB->front();
10036     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10037       return true;
10038     if (ProvingStrictComparison) {
10039       if (!ProvedNonStrictComparison)
10040         ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS,
10041                                                   Condition, Inverse, Context);
10042       if (!ProvedNonEquality)
10043         ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS,
10044                                           Condition, Inverse, Context);
10045       if (ProvedNonStrictComparison && ProvedNonEquality)
10046         return true;
10047     }
10048     return false;
10049   };
10050 
10051   // Starting at the block's predecessor, climb up the predecessor chain, as long
10052   // as there are predecessors that can be found that have unique successors
10053   // leading to the original block.
10054   const Loop *ContainingLoop = LI.getLoopFor(BB);
10055   const BasicBlock *PredBB;
10056   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10057     PredBB = ContainingLoop->getLoopPredecessor();
10058   else
10059     PredBB = BB->getSinglePredecessor();
10060   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10061        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10062     if (ProveViaGuard(Pair.first))
10063       return true;
10064 
10065     const BranchInst *LoopEntryPredicate =
10066         dyn_cast<BranchInst>(Pair.first->getTerminator());
10067     if (!LoopEntryPredicate ||
10068         LoopEntryPredicate->isUnconditional())
10069       continue;
10070 
10071     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10072                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10073       return true;
10074   }
10075 
10076   // Check conditions due to any @llvm.assume intrinsics.
10077   for (auto &AssumeVH : AC.assumptions()) {
10078     if (!AssumeVH)
10079       continue;
10080     auto *CI = cast<CallInst>(AssumeVH);
10081     if (!DT.dominates(CI, BB))
10082       continue;
10083 
10084     if (ProveViaCond(CI->getArgOperand(0), false))
10085       return true;
10086   }
10087 
10088   return false;
10089 }
10090 
10091 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10092                                                ICmpInst::Predicate Pred,
10093                                                const SCEV *LHS,
10094                                                const SCEV *RHS) {
10095   // Interpret a null as meaning no loop, where there is obviously no guard
10096   // (interprocedural conditions notwithstanding).
10097   if (!L)
10098     return false;
10099 
10100   // Both LHS and RHS must be available at loop entry.
10101   assert(isAvailableAtLoopEntry(LHS, L) &&
10102          "LHS is not available at Loop Entry");
10103   assert(isAvailableAtLoopEntry(RHS, L) &&
10104          "RHS is not available at Loop Entry");
10105   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10106 }
10107 
10108 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10109                                     const SCEV *RHS,
10110                                     const Value *FoundCondValue, bool Inverse,
10111                                     const Instruction *Context) {
10112   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10113     return false;
10114 
10115   auto ClearOnExit =
10116       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10117 
10118   // Recursively handle And and Or conditions.
10119   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
10120     if (BO->getOpcode() == Instruction::And) {
10121       if (!Inverse)
10122         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10123                              Context) ||
10124                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10125                              Context);
10126     } else if (BO->getOpcode() == Instruction::Or) {
10127       if (Inverse)
10128         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10129                              Context) ||
10130                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10131                              Context);
10132     }
10133   }
10134 
10135   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10136   if (!ICI) return false;
10137 
10138   // Now that we found a conditional branch that dominates the loop or controls
10139   // the loop latch. Check to see if it is the comparison we are looking for.
10140   ICmpInst::Predicate FoundPred;
10141   if (Inverse)
10142     FoundPred = ICI->getInversePredicate();
10143   else
10144     FoundPred = ICI->getPredicate();
10145 
10146   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10147   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10148 
10149   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10150 }
10151 
10152 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10153                                     const SCEV *RHS,
10154                                     ICmpInst::Predicate FoundPred,
10155                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10156                                     const Instruction *Context) {
10157   // Balance the types.
10158   if (getTypeSizeInBits(LHS->getType()) <
10159       getTypeSizeInBits(FoundLHS->getType())) {
10160     // For unsigned and equality predicates, try to prove that both found
10161     // operands fit into narrow unsigned range. If so, try to prove facts in
10162     // narrow types.
10163     if (!CmpInst::isSigned(FoundPred)) {
10164       auto *NarrowType = LHS->getType();
10165       auto *WideType = FoundLHS->getType();
10166       auto BitWidth = getTypeSizeInBits(NarrowType);
10167       const SCEV *MaxValue = getZeroExtendExpr(
10168           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10169       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10170           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10171         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10172         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10173         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10174                                        TruncFoundRHS, Context))
10175           return true;
10176       }
10177     }
10178 
10179     if (CmpInst::isSigned(Pred)) {
10180       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10181       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10182     } else {
10183       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10184       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10185     }
10186   } else if (getTypeSizeInBits(LHS->getType()) >
10187       getTypeSizeInBits(FoundLHS->getType())) {
10188     if (CmpInst::isSigned(FoundPred)) {
10189       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10190       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10191     } else {
10192       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10193       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10194     }
10195   }
10196   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10197                                     FoundRHS, Context);
10198 }
10199 
10200 bool ScalarEvolution::isImpliedCondBalancedTypes(
10201     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10202     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10203     const Instruction *Context) {
10204   assert(getTypeSizeInBits(LHS->getType()) ==
10205              getTypeSizeInBits(FoundLHS->getType()) &&
10206          "Types should be balanced!");
10207   // Canonicalize the query to match the way instcombine will have
10208   // canonicalized the comparison.
10209   if (SimplifyICmpOperands(Pred, LHS, RHS))
10210     if (LHS == RHS)
10211       return CmpInst::isTrueWhenEqual(Pred);
10212   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10213     if (FoundLHS == FoundRHS)
10214       return CmpInst::isFalseWhenEqual(FoundPred);
10215 
10216   // Check to see if we can make the LHS or RHS match.
10217   if (LHS == FoundRHS || RHS == FoundLHS) {
10218     if (isa<SCEVConstant>(RHS)) {
10219       std::swap(FoundLHS, FoundRHS);
10220       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10221     } else {
10222       std::swap(LHS, RHS);
10223       Pred = ICmpInst::getSwappedPredicate(Pred);
10224     }
10225   }
10226 
10227   // Check whether the found predicate is the same as the desired predicate.
10228   if (FoundPred == Pred)
10229     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10230 
10231   // Check whether swapping the found predicate makes it the same as the
10232   // desired predicate.
10233   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10234     if (isa<SCEVConstant>(RHS))
10235       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10236     else
10237       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
10238                                    LHS, FoundLHS, FoundRHS, Context);
10239   }
10240 
10241   // Unsigned comparison is the same as signed comparison when both the operands
10242   // are non-negative.
10243   if (CmpInst::isUnsigned(FoundPred) &&
10244       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10245       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10246     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10247 
10248   // Check if we can make progress by sharpening ranges.
10249   if (FoundPred == ICmpInst::ICMP_NE &&
10250       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10251 
10252     const SCEVConstant *C = nullptr;
10253     const SCEV *V = nullptr;
10254 
10255     if (isa<SCEVConstant>(FoundLHS)) {
10256       C = cast<SCEVConstant>(FoundLHS);
10257       V = FoundRHS;
10258     } else {
10259       C = cast<SCEVConstant>(FoundRHS);
10260       V = FoundLHS;
10261     }
10262 
10263     // The guarding predicate tells us that C != V. If the known range
10264     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10265     // range we consider has to correspond to same signedness as the
10266     // predicate we're interested in folding.
10267 
10268     APInt Min = ICmpInst::isSigned(Pred) ?
10269         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10270 
10271     if (Min == C->getAPInt()) {
10272       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10273       // This is true even if (Min + 1) wraps around -- in case of
10274       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10275 
10276       APInt SharperMin = Min + 1;
10277 
10278       switch (Pred) {
10279         case ICmpInst::ICMP_SGE:
10280         case ICmpInst::ICMP_UGE:
10281           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10282           // RHS, we're done.
10283           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10284                                     Context))
10285             return true;
10286           LLVM_FALLTHROUGH;
10287 
10288         case ICmpInst::ICMP_SGT:
10289         case ICmpInst::ICMP_UGT:
10290           // We know from the range information that (V `Pred` Min ||
10291           // V == Min).  We know from the guarding condition that !(V
10292           // == Min).  This gives us
10293           //
10294           //       V `Pred` Min || V == Min && !(V == Min)
10295           //   =>  V `Pred` Min
10296           //
10297           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10298 
10299           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10300                                     Context))
10301             return true;
10302           break;
10303 
10304         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10305         case ICmpInst::ICMP_SLE:
10306         case ICmpInst::ICMP_ULE:
10307           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10308                                     LHS, V, getConstant(SharperMin), Context))
10309             return true;
10310           LLVM_FALLTHROUGH;
10311 
10312         case ICmpInst::ICMP_SLT:
10313         case ICmpInst::ICMP_ULT:
10314           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10315                                     LHS, V, getConstant(Min), Context))
10316             return true;
10317           break;
10318 
10319         default:
10320           // No change
10321           break;
10322       }
10323     }
10324   }
10325 
10326   // Check whether the actual condition is beyond sufficient.
10327   if (FoundPred == ICmpInst::ICMP_EQ)
10328     if (ICmpInst::isTrueWhenEqual(Pred))
10329       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10330         return true;
10331   if (Pred == ICmpInst::ICMP_NE)
10332     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10333       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10334                                 Context))
10335         return true;
10336 
10337   // Otherwise assume the worst.
10338   return false;
10339 }
10340 
10341 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10342                                      const SCEV *&L, const SCEV *&R,
10343                                      SCEV::NoWrapFlags &Flags) {
10344   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10345   if (!AE || AE->getNumOperands() != 2)
10346     return false;
10347 
10348   L = AE->getOperand(0);
10349   R = AE->getOperand(1);
10350   Flags = AE->getNoWrapFlags();
10351   return true;
10352 }
10353 
10354 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10355                                                            const SCEV *Less) {
10356   // We avoid subtracting expressions here because this function is usually
10357   // fairly deep in the call stack (i.e. is called many times).
10358 
10359   // X - X = 0.
10360   if (More == Less)
10361     return APInt(getTypeSizeInBits(More->getType()), 0);
10362 
10363   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10364     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10365     const auto *MAR = cast<SCEVAddRecExpr>(More);
10366 
10367     if (LAR->getLoop() != MAR->getLoop())
10368       return None;
10369 
10370     // We look at affine expressions only; not for correctness but to keep
10371     // getStepRecurrence cheap.
10372     if (!LAR->isAffine() || !MAR->isAffine())
10373       return None;
10374 
10375     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10376       return None;
10377 
10378     Less = LAR->getStart();
10379     More = MAR->getStart();
10380 
10381     // fall through
10382   }
10383 
10384   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10385     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10386     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10387     return M - L;
10388   }
10389 
10390   SCEV::NoWrapFlags Flags;
10391   const SCEV *LLess = nullptr, *RLess = nullptr;
10392   const SCEV *LMore = nullptr, *RMore = nullptr;
10393   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10394   // Compare (X + C1) vs X.
10395   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10396     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10397       if (RLess == More)
10398         return -(C1->getAPInt());
10399 
10400   // Compare X vs (X + C2).
10401   if (splitBinaryAdd(More, LMore, RMore, Flags))
10402     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10403       if (RMore == Less)
10404         return C2->getAPInt();
10405 
10406   // Compare (X + C1) vs (X + C2).
10407   if (C1 && C2 && RLess == RMore)
10408     return C2->getAPInt() - C1->getAPInt();
10409 
10410   return None;
10411 }
10412 
10413 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10414     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10415     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10416   // Try to recognize the following pattern:
10417   //
10418   //   FoundRHS = ...
10419   // ...
10420   // loop:
10421   //   FoundLHS = {Start,+,W}
10422   // context_bb: // Basic block from the same loop
10423   //   known(Pred, FoundLHS, FoundRHS)
10424   //
10425   // If some predicate is known in the context of a loop, it is also known on
10426   // each iteration of this loop, including the first iteration. Therefore, in
10427   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10428   // prove the original pred using this fact.
10429   if (!Context)
10430     return false;
10431   const BasicBlock *ContextBB = Context->getParent();
10432   // Make sure AR varies in the context block.
10433   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10434     const Loop *L = AR->getLoop();
10435     // Make sure that context belongs to the loop and executes on 1st iteration
10436     // (if it ever executes at all).
10437     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10438       return false;
10439     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10440       return false;
10441     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10442   }
10443 
10444   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10445     const Loop *L = AR->getLoop();
10446     // Make sure that context belongs to the loop and executes on 1st iteration
10447     // (if it ever executes at all).
10448     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10449       return false;
10450     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10451       return false;
10452     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10453   }
10454 
10455   return false;
10456 }
10457 
10458 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10459     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10460     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10461   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10462     return false;
10463 
10464   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10465   if (!AddRecLHS)
10466     return false;
10467 
10468   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10469   if (!AddRecFoundLHS)
10470     return false;
10471 
10472   // We'd like to let SCEV reason about control dependencies, so we constrain
10473   // both the inequalities to be about add recurrences on the same loop.  This
10474   // way we can use isLoopEntryGuardedByCond later.
10475 
10476   const Loop *L = AddRecFoundLHS->getLoop();
10477   if (L != AddRecLHS->getLoop())
10478     return false;
10479 
10480   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10481   //
10482   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10483   //                                                                  ... (2)
10484   //
10485   // Informal proof for (2), assuming (1) [*]:
10486   //
10487   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10488   //
10489   // Then
10490   //
10491   //       FoundLHS s< FoundRHS s< INT_MIN - C
10492   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10493   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10494   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10495   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10496   // <=>  FoundLHS + C s< FoundRHS + C
10497   //
10498   // [*]: (1) can be proved by ruling out overflow.
10499   //
10500   // [**]: This can be proved by analyzing all the four possibilities:
10501   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10502   //    (A s>= 0, B s>= 0).
10503   //
10504   // Note:
10505   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10506   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10507   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10508   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10509   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10510   // C)".
10511 
10512   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10513   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10514   if (!LDiff || !RDiff || *LDiff != *RDiff)
10515     return false;
10516 
10517   if (LDiff->isMinValue())
10518     return true;
10519 
10520   APInt FoundRHSLimit;
10521 
10522   if (Pred == CmpInst::ICMP_ULT) {
10523     FoundRHSLimit = -(*RDiff);
10524   } else {
10525     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10526     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10527   }
10528 
10529   // Try to prove (1) or (2), as needed.
10530   return isAvailableAtLoopEntry(FoundRHS, L) &&
10531          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10532                                   getConstant(FoundRHSLimit));
10533 }
10534 
10535 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10536                                         const SCEV *LHS, const SCEV *RHS,
10537                                         const SCEV *FoundLHS,
10538                                         const SCEV *FoundRHS, unsigned Depth) {
10539   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10540 
10541   auto ClearOnExit = make_scope_exit([&]() {
10542     if (LPhi) {
10543       bool Erased = PendingMerges.erase(LPhi);
10544       assert(Erased && "Failed to erase LPhi!");
10545       (void)Erased;
10546     }
10547     if (RPhi) {
10548       bool Erased = PendingMerges.erase(RPhi);
10549       assert(Erased && "Failed to erase RPhi!");
10550       (void)Erased;
10551     }
10552   });
10553 
10554   // Find respective Phis and check that they are not being pending.
10555   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10556     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10557       if (!PendingMerges.insert(Phi).second)
10558         return false;
10559       LPhi = Phi;
10560     }
10561   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10562     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10563       // If we detect a loop of Phi nodes being processed by this method, for
10564       // example:
10565       //
10566       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10567       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10568       //
10569       // we don't want to deal with a case that complex, so return conservative
10570       // answer false.
10571       if (!PendingMerges.insert(Phi).second)
10572         return false;
10573       RPhi = Phi;
10574     }
10575 
10576   // If none of LHS, RHS is a Phi, nothing to do here.
10577   if (!LPhi && !RPhi)
10578     return false;
10579 
10580   // If there is a SCEVUnknown Phi we are interested in, make it left.
10581   if (!LPhi) {
10582     std::swap(LHS, RHS);
10583     std::swap(FoundLHS, FoundRHS);
10584     std::swap(LPhi, RPhi);
10585     Pred = ICmpInst::getSwappedPredicate(Pred);
10586   }
10587 
10588   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10589   const BasicBlock *LBB = LPhi->getParent();
10590   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10591 
10592   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10593     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10594            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10595            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10596   };
10597 
10598   if (RPhi && RPhi->getParent() == LBB) {
10599     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10600     // If we compare two Phis from the same block, and for each entry block
10601     // the predicate is true for incoming values from this block, then the
10602     // predicate is also true for the Phis.
10603     for (const BasicBlock *IncBB : predecessors(LBB)) {
10604       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10605       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10606       if (!ProvedEasily(L, R))
10607         return false;
10608     }
10609   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10610     // Case two: RHS is also a Phi from the same basic block, and it is an
10611     // AddRec. It means that there is a loop which has both AddRec and Unknown
10612     // PHIs, for it we can compare incoming values of AddRec from above the loop
10613     // and latch with their respective incoming values of LPhi.
10614     // TODO: Generalize to handle loops with many inputs in a header.
10615     if (LPhi->getNumIncomingValues() != 2) return false;
10616 
10617     auto *RLoop = RAR->getLoop();
10618     auto *Predecessor = RLoop->getLoopPredecessor();
10619     assert(Predecessor && "Loop with AddRec with no predecessor?");
10620     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10621     if (!ProvedEasily(L1, RAR->getStart()))
10622       return false;
10623     auto *Latch = RLoop->getLoopLatch();
10624     assert(Latch && "Loop with AddRec with no latch?");
10625     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10626     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10627       return false;
10628   } else {
10629     // In all other cases go over inputs of LHS and compare each of them to RHS,
10630     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10631     // At this point RHS is either a non-Phi, or it is a Phi from some block
10632     // different from LBB.
10633     for (const BasicBlock *IncBB : predecessors(LBB)) {
10634       // Check that RHS is available in this block.
10635       if (!dominates(RHS, IncBB))
10636         return false;
10637       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10638       if (!ProvedEasily(L, RHS))
10639         return false;
10640     }
10641   }
10642   return true;
10643 }
10644 
10645 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10646                                             const SCEV *LHS, const SCEV *RHS,
10647                                             const SCEV *FoundLHS,
10648                                             const SCEV *FoundRHS,
10649                                             const Instruction *Context) {
10650   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10651     return true;
10652 
10653   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10654     return true;
10655 
10656   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10657                                           Context))
10658     return true;
10659 
10660   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10661                                      FoundLHS, FoundRHS) ||
10662          // ~x < ~y --> x > y
10663          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10664                                      getNotSCEV(FoundRHS),
10665                                      getNotSCEV(FoundLHS));
10666 }
10667 
10668 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10669 template <typename MinMaxExprType>
10670 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10671                                  const SCEV *Candidate) {
10672   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10673   if (!MinMaxExpr)
10674     return false;
10675 
10676   return is_contained(MinMaxExpr->operands(), Candidate);
10677 }
10678 
10679 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10680                                            ICmpInst::Predicate Pred,
10681                                            const SCEV *LHS, const SCEV *RHS) {
10682   // If both sides are affine addrecs for the same loop, with equal
10683   // steps, and we know the recurrences don't wrap, then we only
10684   // need to check the predicate on the starting values.
10685 
10686   if (!ICmpInst::isRelational(Pred))
10687     return false;
10688 
10689   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10690   if (!LAR)
10691     return false;
10692   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10693   if (!RAR)
10694     return false;
10695   if (LAR->getLoop() != RAR->getLoop())
10696     return false;
10697   if (!LAR->isAffine() || !RAR->isAffine())
10698     return false;
10699 
10700   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10701     return false;
10702 
10703   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10704                          SCEV::FlagNSW : SCEV::FlagNUW;
10705   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10706     return false;
10707 
10708   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10709 }
10710 
10711 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10712 /// expression?
10713 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10714                                         ICmpInst::Predicate Pred,
10715                                         const SCEV *LHS, const SCEV *RHS) {
10716   switch (Pred) {
10717   default:
10718     return false;
10719 
10720   case ICmpInst::ICMP_SGE:
10721     std::swap(LHS, RHS);
10722     LLVM_FALLTHROUGH;
10723   case ICmpInst::ICMP_SLE:
10724     return
10725         // min(A, ...) <= A
10726         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10727         // A <= max(A, ...)
10728         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10729 
10730   case ICmpInst::ICMP_UGE:
10731     std::swap(LHS, RHS);
10732     LLVM_FALLTHROUGH;
10733   case ICmpInst::ICMP_ULE:
10734     return
10735         // min(A, ...) <= A
10736         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10737         // A <= max(A, ...)
10738         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10739   }
10740 
10741   llvm_unreachable("covered switch fell through?!");
10742 }
10743 
10744 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10745                                              const SCEV *LHS, const SCEV *RHS,
10746                                              const SCEV *FoundLHS,
10747                                              const SCEV *FoundRHS,
10748                                              unsigned Depth) {
10749   assert(getTypeSizeInBits(LHS->getType()) ==
10750              getTypeSizeInBits(RHS->getType()) &&
10751          "LHS and RHS have different sizes?");
10752   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10753              getTypeSizeInBits(FoundRHS->getType()) &&
10754          "FoundLHS and FoundRHS have different sizes?");
10755   // We want to avoid hurting the compile time with analysis of too big trees.
10756   if (Depth > MaxSCEVOperationsImplicationDepth)
10757     return false;
10758 
10759   // We only want to work with GT comparison so far.
10760   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10761     Pred = CmpInst::getSwappedPredicate(Pred);
10762     std::swap(LHS, RHS);
10763     std::swap(FoundLHS, FoundRHS);
10764   }
10765 
10766   // For unsigned, try to reduce it to corresponding signed comparison.
10767   if (Pred == ICmpInst::ICMP_UGT)
10768     // We can replace unsigned predicate with its signed counterpart if all
10769     // involved values are non-negative.
10770     // TODO: We could have better support for unsigned.
10771     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10772       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10773       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10774       // use this fact to prove that LHS and RHS are non-negative.
10775       const SCEV *MinusOne = getMinusOne(LHS->getType());
10776       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10777                                 FoundRHS) &&
10778           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10779                                 FoundRHS))
10780         Pred = ICmpInst::ICMP_SGT;
10781     }
10782 
10783   if (Pred != ICmpInst::ICMP_SGT)
10784     return false;
10785 
10786   auto GetOpFromSExt = [&](const SCEV *S) {
10787     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10788       return Ext->getOperand();
10789     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10790     // the constant in some cases.
10791     return S;
10792   };
10793 
10794   // Acquire values from extensions.
10795   auto *OrigLHS = LHS;
10796   auto *OrigFoundLHS = FoundLHS;
10797   LHS = GetOpFromSExt(LHS);
10798   FoundLHS = GetOpFromSExt(FoundLHS);
10799 
10800   // Is the SGT predicate can be proved trivially or using the found context.
10801   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10802     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10803            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10804                                   FoundRHS, Depth + 1);
10805   };
10806 
10807   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10808     // We want to avoid creation of any new non-constant SCEV. Since we are
10809     // going to compare the operands to RHS, we should be certain that we don't
10810     // need any size extensions for this. So let's decline all cases when the
10811     // sizes of types of LHS and RHS do not match.
10812     // TODO: Maybe try to get RHS from sext to catch more cases?
10813     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10814       return false;
10815 
10816     // Should not overflow.
10817     if (!LHSAddExpr->hasNoSignedWrap())
10818       return false;
10819 
10820     auto *LL = LHSAddExpr->getOperand(0);
10821     auto *LR = LHSAddExpr->getOperand(1);
10822     auto *MinusOne = getMinusOne(RHS->getType());
10823 
10824     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10825     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10826       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10827     };
10828     // Try to prove the following rule:
10829     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10830     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10831     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10832       return true;
10833   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10834     Value *LL, *LR;
10835     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10836 
10837     using namespace llvm::PatternMatch;
10838 
10839     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10840       // Rules for division.
10841       // We are going to perform some comparisons with Denominator and its
10842       // derivative expressions. In general case, creating a SCEV for it may
10843       // lead to a complex analysis of the entire graph, and in particular it
10844       // can request trip count recalculation for the same loop. This would
10845       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10846       // this, we only want to create SCEVs that are constants in this section.
10847       // So we bail if Denominator is not a constant.
10848       if (!isa<ConstantInt>(LR))
10849         return false;
10850 
10851       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10852 
10853       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10854       // then a SCEV for the numerator already exists and matches with FoundLHS.
10855       auto *Numerator = getExistingSCEV(LL);
10856       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10857         return false;
10858 
10859       // Make sure that the numerator matches with FoundLHS and the denominator
10860       // is positive.
10861       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10862         return false;
10863 
10864       auto *DTy = Denominator->getType();
10865       auto *FRHSTy = FoundRHS->getType();
10866       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10867         // One of types is a pointer and another one is not. We cannot extend
10868         // them properly to a wider type, so let us just reject this case.
10869         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10870         // to avoid this check.
10871         return false;
10872 
10873       // Given that:
10874       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10875       auto *WTy = getWiderType(DTy, FRHSTy);
10876       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10877       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10878 
10879       // Try to prove the following rule:
10880       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10881       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10882       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10883       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10884       if (isKnownNonPositive(RHS) &&
10885           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10886         return true;
10887 
10888       // Try to prove the following rule:
10889       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10890       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10891       // If we divide it by Denominator > 2, then:
10892       // 1. If FoundLHS is negative, then the result is 0.
10893       // 2. If FoundLHS is non-negative, then the result is non-negative.
10894       // Anyways, the result is non-negative.
10895       auto *MinusOne = getMinusOne(WTy);
10896       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10897       if (isKnownNegative(RHS) &&
10898           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10899         return true;
10900     }
10901   }
10902 
10903   // If our expression contained SCEVUnknown Phis, and we split it down and now
10904   // need to prove something for them, try to prove the predicate for every
10905   // possible incoming values of those Phis.
10906   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10907     return true;
10908 
10909   return false;
10910 }
10911 
10912 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10913                                         const SCEV *LHS, const SCEV *RHS) {
10914   // zext x u<= sext x, sext x s<= zext x
10915   switch (Pred) {
10916   case ICmpInst::ICMP_SGE:
10917     std::swap(LHS, RHS);
10918     LLVM_FALLTHROUGH;
10919   case ICmpInst::ICMP_SLE: {
10920     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10921     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10922     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10923     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10924       return true;
10925     break;
10926   }
10927   case ICmpInst::ICMP_UGE:
10928     std::swap(LHS, RHS);
10929     LLVM_FALLTHROUGH;
10930   case ICmpInst::ICMP_ULE: {
10931     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10932     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10933     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10934     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10935       return true;
10936     break;
10937   }
10938   default:
10939     break;
10940   };
10941   return false;
10942 }
10943 
10944 bool
10945 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10946                                            const SCEV *LHS, const SCEV *RHS) {
10947   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10948          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10949          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10950          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10951          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10952 }
10953 
10954 bool
10955 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10956                                              const SCEV *LHS, const SCEV *RHS,
10957                                              const SCEV *FoundLHS,
10958                                              const SCEV *FoundRHS) {
10959   switch (Pred) {
10960   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10961   case ICmpInst::ICMP_EQ:
10962   case ICmpInst::ICMP_NE:
10963     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10964       return true;
10965     break;
10966   case ICmpInst::ICMP_SLT:
10967   case ICmpInst::ICMP_SLE:
10968     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10969         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10970       return true;
10971     break;
10972   case ICmpInst::ICMP_SGT:
10973   case ICmpInst::ICMP_SGE:
10974     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10975         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10976       return true;
10977     break;
10978   case ICmpInst::ICMP_ULT:
10979   case ICmpInst::ICMP_ULE:
10980     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10981         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10982       return true;
10983     break;
10984   case ICmpInst::ICMP_UGT:
10985   case ICmpInst::ICMP_UGE:
10986     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10987         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10988       return true;
10989     break;
10990   }
10991 
10992   // Maybe it can be proved via operations?
10993   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10994     return true;
10995 
10996   return false;
10997 }
10998 
10999 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11000                                                      const SCEV *LHS,
11001                                                      const SCEV *RHS,
11002                                                      const SCEV *FoundLHS,
11003                                                      const SCEV *FoundRHS) {
11004   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11005     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11006     // reduce the compile time impact of this optimization.
11007     return false;
11008 
11009   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11010   if (!Addend)
11011     return false;
11012 
11013   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11014 
11015   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11016   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11017   ConstantRange FoundLHSRange =
11018       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
11019 
11020   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11021   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11022 
11023   // We can also compute the range of values for `LHS` that satisfy the
11024   // consequent, "`LHS` `Pred` `RHS`":
11025   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11026   ConstantRange SatisfyingLHSRange =
11027       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
11028 
11029   // The antecedent implies the consequent if every value of `LHS` that
11030   // satisfies the antecedent also satisfies the consequent.
11031   return SatisfyingLHSRange.contains(LHSRange);
11032 }
11033 
11034 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11035                                          bool IsSigned, bool NoWrap) {
11036   assert(isKnownPositive(Stride) && "Positive stride expected!");
11037 
11038   if (NoWrap) return false;
11039 
11040   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11041   const SCEV *One = getOne(Stride->getType());
11042 
11043   if (IsSigned) {
11044     APInt MaxRHS = getSignedRangeMax(RHS);
11045     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11046     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11047 
11048     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11049     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11050   }
11051 
11052   APInt MaxRHS = getUnsignedRangeMax(RHS);
11053   APInt MaxValue = APInt::getMaxValue(BitWidth);
11054   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11055 
11056   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11057   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11058 }
11059 
11060 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11061                                          bool IsSigned, bool NoWrap) {
11062   if (NoWrap) return false;
11063 
11064   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11065   const SCEV *One = getOne(Stride->getType());
11066 
11067   if (IsSigned) {
11068     APInt MinRHS = getSignedRangeMin(RHS);
11069     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11070     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11071 
11072     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11073     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11074   }
11075 
11076   APInt MinRHS = getUnsignedRangeMin(RHS);
11077   APInt MinValue = APInt::getMinValue(BitWidth);
11078   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11079 
11080   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11081   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11082 }
11083 
11084 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
11085                                             bool Equality) {
11086   const SCEV *One = getOne(Step->getType());
11087   Delta = Equality ? getAddExpr(Delta, Step)
11088                    : getAddExpr(Delta, getMinusSCEV(Step, One));
11089   return getUDivExpr(Delta, Step);
11090 }
11091 
11092 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11093                                                     const SCEV *Stride,
11094                                                     const SCEV *End,
11095                                                     unsigned BitWidth,
11096                                                     bool IsSigned) {
11097 
11098   assert(!isKnownNonPositive(Stride) &&
11099          "Stride is expected strictly positive!");
11100   // Calculate the maximum backedge count based on the range of values
11101   // permitted by Start, End, and Stride.
11102   const SCEV *MaxBECount;
11103   APInt MinStart =
11104       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11105 
11106   APInt StrideForMaxBECount =
11107       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11108 
11109   // We already know that the stride is positive, so we paper over conservatism
11110   // in our range computation by forcing StrideForMaxBECount to be at least one.
11111   // In theory this is unnecessary, but we expect MaxBECount to be a
11112   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
11113   // is nothing to constant fold it to).
11114   APInt One(BitWidth, 1, IsSigned);
11115   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
11116 
11117   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11118                             : APInt::getMaxValue(BitWidth);
11119   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11120 
11121   // Although End can be a MAX expression we estimate MaxEnd considering only
11122   // the case End = RHS of the loop termination condition. This is safe because
11123   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11124   // taken count.
11125   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11126                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11127 
11128   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
11129                               getConstant(StrideForMaxBECount) /* Step */,
11130                               false /* Equality */);
11131 
11132   return MaxBECount;
11133 }
11134 
11135 ScalarEvolution::ExitLimit
11136 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11137                                   const Loop *L, bool IsSigned,
11138                                   bool ControlsExit, bool AllowPredicates) {
11139   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11140 
11141   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11142   bool PredicatedIV = false;
11143 
11144   if (!IV && AllowPredicates) {
11145     // Try to make this an AddRec using runtime tests, in the first X
11146     // iterations of this loop, where X is the SCEV expression found by the
11147     // algorithm below.
11148     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11149     PredicatedIV = true;
11150   }
11151 
11152   // Avoid weird loops
11153   if (!IV || IV->getLoop() != L || !IV->isAffine())
11154     return getCouldNotCompute();
11155 
11156   bool NoWrap = ControlsExit &&
11157                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11158 
11159   const SCEV *Stride = IV->getStepRecurrence(*this);
11160 
11161   bool PositiveStride = isKnownPositive(Stride);
11162 
11163   // Avoid negative or zero stride values.
11164   if (!PositiveStride) {
11165     // We can compute the correct backedge taken count for loops with unknown
11166     // strides if we can prove that the loop is not an infinite loop with side
11167     // effects. Here's the loop structure we are trying to handle -
11168     //
11169     // i = start
11170     // do {
11171     //   A[i] = i;
11172     //   i += s;
11173     // } while (i < end);
11174     //
11175     // The backedge taken count for such loops is evaluated as -
11176     // (max(end, start + stride) - start - 1) /u stride
11177     //
11178     // The additional preconditions that we need to check to prove correctness
11179     // of the above formula is as follows -
11180     //
11181     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11182     //    NoWrap flag).
11183     // b) loop is single exit with no side effects.
11184     //
11185     //
11186     // Precondition a) implies that if the stride is negative, this is a single
11187     // trip loop. The backedge taken count formula reduces to zero in this case.
11188     //
11189     // Precondition b) implies that the unknown stride cannot be zero otherwise
11190     // we have UB.
11191     //
11192     // The positive stride case is the same as isKnownPositive(Stride) returning
11193     // true (original behavior of the function).
11194     //
11195     // We want to make sure that the stride is truly unknown as there are edge
11196     // cases where ScalarEvolution propagates no wrap flags to the
11197     // post-increment/decrement IV even though the increment/decrement operation
11198     // itself is wrapping. The computed backedge taken count may be wrong in
11199     // such cases. This is prevented by checking that the stride is not known to
11200     // be either positive or non-positive. For example, no wrap flags are
11201     // propagated to the post-increment IV of this loop with a trip count of 2 -
11202     //
11203     // unsigned char i;
11204     // for(i=127; i<128; i+=129)
11205     //   A[i] = i;
11206     //
11207     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11208         !loopHasNoSideEffects(L))
11209       return getCouldNotCompute();
11210   } else if (!Stride->isOne() &&
11211              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
11212     // Avoid proven overflow cases: this will ensure that the backedge taken
11213     // count will not generate any unsigned overflow. Relaxed no-overflow
11214     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11215     // undefined behaviors like the case of C language.
11216     return getCouldNotCompute();
11217 
11218   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
11219                                       : ICmpInst::ICMP_ULT;
11220   const SCEV *Start = IV->getStart();
11221   const SCEV *End = RHS;
11222   // When the RHS is not invariant, we do not know the end bound of the loop and
11223   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11224   // calculate the MaxBECount, given the start, stride and max value for the end
11225   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11226   // checked above).
11227   if (!isLoopInvariant(RHS, L)) {
11228     const SCEV *MaxBECount = computeMaxBECountForLT(
11229         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11230     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11231                      false /*MaxOrZero*/, Predicates);
11232   }
11233   // If the backedge is taken at least once, then it will be taken
11234   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
11235   // is the LHS value of the less-than comparison the first time it is evaluated
11236   // and End is the RHS.
11237   const SCEV *BECountIfBackedgeTaken =
11238     computeBECount(getMinusSCEV(End, Start), Stride, false);
11239   // If the loop entry is guarded by the result of the backedge test of the
11240   // first loop iteration, then we know the backedge will be taken at least
11241   // once and so the backedge taken count is as above. If not then we use the
11242   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
11243   // as if the backedge is taken at least once max(End,Start) is End and so the
11244   // result is as above, and if not max(End,Start) is Start so we get a backedge
11245   // count of zero.
11246   const SCEV *BECount;
11247   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
11248     BECount = BECountIfBackedgeTaken;
11249   else {
11250     // If we know that RHS >= Start in the context of loop, then we know that
11251     // max(RHS, Start) = RHS at this point.
11252     if (isLoopEntryGuardedByCond(
11253             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
11254       End = RHS;
11255     else
11256       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11257     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
11258   }
11259 
11260   const SCEV *MaxBECount;
11261   bool MaxOrZero = false;
11262   if (isa<SCEVConstant>(BECount))
11263     MaxBECount = BECount;
11264   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11265     // If we know exactly how many times the backedge will be taken if it's
11266     // taken at least once, then the backedge count will either be that or
11267     // zero.
11268     MaxBECount = BECountIfBackedgeTaken;
11269     MaxOrZero = true;
11270   } else {
11271     MaxBECount = computeMaxBECountForLT(
11272         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11273   }
11274 
11275   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11276       !isa<SCEVCouldNotCompute>(BECount))
11277     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11278 
11279   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11280 }
11281 
11282 ScalarEvolution::ExitLimit
11283 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11284                                      const Loop *L, bool IsSigned,
11285                                      bool ControlsExit, bool AllowPredicates) {
11286   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11287   // We handle only IV > Invariant
11288   if (!isLoopInvariant(RHS, L))
11289     return getCouldNotCompute();
11290 
11291   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11292   if (!IV && AllowPredicates)
11293     // Try to make this an AddRec using runtime tests, in the first X
11294     // iterations of this loop, where X is the SCEV expression found by the
11295     // algorithm below.
11296     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11297 
11298   // Avoid weird loops
11299   if (!IV || IV->getLoop() != L || !IV->isAffine())
11300     return getCouldNotCompute();
11301 
11302   bool NoWrap = ControlsExit &&
11303                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11304 
11305   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11306 
11307   // Avoid negative or zero stride values
11308   if (!isKnownPositive(Stride))
11309     return getCouldNotCompute();
11310 
11311   // Avoid proven overflow cases: this will ensure that the backedge taken count
11312   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11313   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11314   // behaviors like the case of C language.
11315   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
11316     return getCouldNotCompute();
11317 
11318   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
11319                                       : ICmpInst::ICMP_UGT;
11320 
11321   const SCEV *Start = IV->getStart();
11322   const SCEV *End = RHS;
11323   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11324     // If we know that Start >= RHS in the context of loop, then we know that
11325     // min(RHS, Start) = RHS at this point.
11326     if (isLoopEntryGuardedByCond(
11327             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11328       End = RHS;
11329     else
11330       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11331   }
11332 
11333   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
11334 
11335   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
11336                             : getUnsignedRangeMax(Start);
11337 
11338   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
11339                              : getUnsignedRangeMin(Stride);
11340 
11341   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
11342   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
11343                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
11344 
11345   // Although End can be a MIN expression we estimate MinEnd considering only
11346   // the case End = RHS. This is safe because in the other case (Start - End)
11347   // is zero, leading to a zero maximum backedge taken count.
11348   APInt MinEnd =
11349     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
11350              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
11351 
11352   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
11353                                ? BECount
11354                                : computeBECount(getConstant(MaxStart - MinEnd),
11355                                                 getConstant(MinStride), false);
11356 
11357   if (isa<SCEVCouldNotCompute>(MaxBECount))
11358     MaxBECount = BECount;
11359 
11360   return ExitLimit(BECount, MaxBECount, false, Predicates);
11361 }
11362 
11363 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
11364                                                     ScalarEvolution &SE) const {
11365   if (Range.isFullSet())  // Infinite loop.
11366     return SE.getCouldNotCompute();
11367 
11368   // If the start is a non-zero constant, shift the range to simplify things.
11369   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
11370     if (!SC->getValue()->isZero()) {
11371       SmallVector<const SCEV *, 4> Operands(operands());
11372       Operands[0] = SE.getZero(SC->getType());
11373       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
11374                                              getNoWrapFlags(FlagNW));
11375       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
11376         return ShiftedAddRec->getNumIterationsInRange(
11377             Range.subtract(SC->getAPInt()), SE);
11378       // This is strange and shouldn't happen.
11379       return SE.getCouldNotCompute();
11380     }
11381 
11382   // The only time we can solve this is when we have all constant indices.
11383   // Otherwise, we cannot determine the overflow conditions.
11384   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
11385     return SE.getCouldNotCompute();
11386 
11387   // Okay at this point we know that all elements of the chrec are constants and
11388   // that the start element is zero.
11389 
11390   // First check to see if the range contains zero.  If not, the first
11391   // iteration exits.
11392   unsigned BitWidth = SE.getTypeSizeInBits(getType());
11393   if (!Range.contains(APInt(BitWidth, 0)))
11394     return SE.getZero(getType());
11395 
11396   if (isAffine()) {
11397     // If this is an affine expression then we have this situation:
11398     //   Solve {0,+,A} in Range  ===  Ax in Range
11399 
11400     // We know that zero is in the range.  If A is positive then we know that
11401     // the upper value of the range must be the first possible exit value.
11402     // If A is negative then the lower of the range is the last possible loop
11403     // value.  Also note that we already checked for a full range.
11404     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
11405     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
11406 
11407     // The exit value should be (End+A)/A.
11408     APInt ExitVal = (End + A).udiv(A);
11409     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
11410 
11411     // Evaluate at the exit value.  If we really did fall out of the valid
11412     // range, then we computed our trip count, otherwise wrap around or other
11413     // things must have happened.
11414     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
11415     if (Range.contains(Val->getValue()))
11416       return SE.getCouldNotCompute();  // Something strange happened
11417 
11418     // Ensure that the previous value is in the range.  This is a sanity check.
11419     assert(Range.contains(
11420            EvaluateConstantChrecAtConstant(this,
11421            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
11422            "Linear scev computation is off in a bad way!");
11423     return SE.getConstant(ExitValue);
11424   }
11425 
11426   if (isQuadratic()) {
11427     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
11428       return SE.getConstant(S.getValue());
11429   }
11430 
11431   return SE.getCouldNotCompute();
11432 }
11433 
11434 const SCEVAddRecExpr *
11435 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
11436   assert(getNumOperands() > 1 && "AddRec with zero step?");
11437   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
11438   // but in this case we cannot guarantee that the value returned will be an
11439   // AddRec because SCEV does not have a fixed point where it stops
11440   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
11441   // may happen if we reach arithmetic depth limit while simplifying. So we
11442   // construct the returned value explicitly.
11443   SmallVector<const SCEV *, 3> Ops;
11444   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
11445   // (this + Step) is {A+B,+,B+C,+...,+,N}.
11446   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
11447     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
11448   // We know that the last operand is not a constant zero (otherwise it would
11449   // have been popped out earlier). This guarantees us that if the result has
11450   // the same last operand, then it will also not be popped out, meaning that
11451   // the returned value will be an AddRec.
11452   const SCEV *Last = getOperand(getNumOperands() - 1);
11453   assert(!Last->isZero() && "Recurrency with zero step?");
11454   Ops.push_back(Last);
11455   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
11456                                                SCEV::FlagAnyWrap));
11457 }
11458 
11459 // Return true when S contains at least an undef value.
11460 static inline bool containsUndefs(const SCEV *S) {
11461   return SCEVExprContains(S, [](const SCEV *S) {
11462     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11463       return isa<UndefValue>(SU->getValue());
11464     return false;
11465   });
11466 }
11467 
11468 namespace {
11469 
11470 // Collect all steps of SCEV expressions.
11471 struct SCEVCollectStrides {
11472   ScalarEvolution &SE;
11473   SmallVectorImpl<const SCEV *> &Strides;
11474 
11475   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11476       : SE(SE), Strides(S) {}
11477 
11478   bool follow(const SCEV *S) {
11479     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11480       Strides.push_back(AR->getStepRecurrence(SE));
11481     return true;
11482   }
11483 
11484   bool isDone() const { return false; }
11485 };
11486 
11487 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11488 struct SCEVCollectTerms {
11489   SmallVectorImpl<const SCEV *> &Terms;
11490 
11491   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11492 
11493   bool follow(const SCEV *S) {
11494     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11495         isa<SCEVSignExtendExpr>(S)) {
11496       if (!containsUndefs(S))
11497         Terms.push_back(S);
11498 
11499       // Stop recursion: once we collected a term, do not walk its operands.
11500       return false;
11501     }
11502 
11503     // Keep looking.
11504     return true;
11505   }
11506 
11507   bool isDone() const { return false; }
11508 };
11509 
11510 // Check if a SCEV contains an AddRecExpr.
11511 struct SCEVHasAddRec {
11512   bool &ContainsAddRec;
11513 
11514   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11515     ContainsAddRec = false;
11516   }
11517 
11518   bool follow(const SCEV *S) {
11519     if (isa<SCEVAddRecExpr>(S)) {
11520       ContainsAddRec = true;
11521 
11522       // Stop recursion: once we collected a term, do not walk its operands.
11523       return false;
11524     }
11525 
11526     // Keep looking.
11527     return true;
11528   }
11529 
11530   bool isDone() const { return false; }
11531 };
11532 
11533 // Find factors that are multiplied with an expression that (possibly as a
11534 // subexpression) contains an AddRecExpr. In the expression:
11535 //
11536 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11537 //
11538 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11539 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11540 // parameters as they form a product with an induction variable.
11541 //
11542 // This collector expects all array size parameters to be in the same MulExpr.
11543 // It might be necessary to later add support for collecting parameters that are
11544 // spread over different nested MulExpr.
11545 struct SCEVCollectAddRecMultiplies {
11546   SmallVectorImpl<const SCEV *> &Terms;
11547   ScalarEvolution &SE;
11548 
11549   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11550       : Terms(T), SE(SE) {}
11551 
11552   bool follow(const SCEV *S) {
11553     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11554       bool HasAddRec = false;
11555       SmallVector<const SCEV *, 0> Operands;
11556       for (auto Op : Mul->operands()) {
11557         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11558         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11559           Operands.push_back(Op);
11560         } else if (Unknown) {
11561           HasAddRec = true;
11562         } else {
11563           bool ContainsAddRec = false;
11564           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11565           visitAll(Op, ContiansAddRec);
11566           HasAddRec |= ContainsAddRec;
11567         }
11568       }
11569       if (Operands.size() == 0)
11570         return true;
11571 
11572       if (!HasAddRec)
11573         return false;
11574 
11575       Terms.push_back(SE.getMulExpr(Operands));
11576       // Stop recursion: once we collected a term, do not walk its operands.
11577       return false;
11578     }
11579 
11580     // Keep looking.
11581     return true;
11582   }
11583 
11584   bool isDone() const { return false; }
11585 };
11586 
11587 } // end anonymous namespace
11588 
11589 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11590 /// two places:
11591 ///   1) The strides of AddRec expressions.
11592 ///   2) Unknowns that are multiplied with AddRec expressions.
11593 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11594     SmallVectorImpl<const SCEV *> &Terms) {
11595   SmallVector<const SCEV *, 4> Strides;
11596   SCEVCollectStrides StrideCollector(*this, Strides);
11597   visitAll(Expr, StrideCollector);
11598 
11599   LLVM_DEBUG({
11600     dbgs() << "Strides:\n";
11601     for (const SCEV *S : Strides)
11602       dbgs() << *S << "\n";
11603   });
11604 
11605   for (const SCEV *S : Strides) {
11606     SCEVCollectTerms TermCollector(Terms);
11607     visitAll(S, TermCollector);
11608   }
11609 
11610   LLVM_DEBUG({
11611     dbgs() << "Terms:\n";
11612     for (const SCEV *T : Terms)
11613       dbgs() << *T << "\n";
11614   });
11615 
11616   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11617   visitAll(Expr, MulCollector);
11618 }
11619 
11620 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11621                                    SmallVectorImpl<const SCEV *> &Terms,
11622                                    SmallVectorImpl<const SCEV *> &Sizes) {
11623   int Last = Terms.size() - 1;
11624   const SCEV *Step = Terms[Last];
11625 
11626   // End of recursion.
11627   if (Last == 0) {
11628     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11629       SmallVector<const SCEV *, 2> Qs;
11630       for (const SCEV *Op : M->operands())
11631         if (!isa<SCEVConstant>(Op))
11632           Qs.push_back(Op);
11633 
11634       Step = SE.getMulExpr(Qs);
11635     }
11636 
11637     Sizes.push_back(Step);
11638     return true;
11639   }
11640 
11641   for (const SCEV *&Term : Terms) {
11642     // Normalize the terms before the next call to findArrayDimensionsRec.
11643     const SCEV *Q, *R;
11644     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11645 
11646     // Bail out when GCD does not evenly divide one of the terms.
11647     if (!R->isZero())
11648       return false;
11649 
11650     Term = Q;
11651   }
11652 
11653   // Remove all SCEVConstants.
11654   erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
11655 
11656   if (Terms.size() > 0)
11657     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11658       return false;
11659 
11660   Sizes.push_back(Step);
11661   return true;
11662 }
11663 
11664 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11665 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11666   for (const SCEV *T : Terms)
11667     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11668       return true;
11669 
11670   return false;
11671 }
11672 
11673 // Return the number of product terms in S.
11674 static inline int numberOfTerms(const SCEV *S) {
11675   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11676     return Expr->getNumOperands();
11677   return 1;
11678 }
11679 
11680 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11681   if (isa<SCEVConstant>(T))
11682     return nullptr;
11683 
11684   if (isa<SCEVUnknown>(T))
11685     return T;
11686 
11687   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11688     SmallVector<const SCEV *, 2> Factors;
11689     for (const SCEV *Op : M->operands())
11690       if (!isa<SCEVConstant>(Op))
11691         Factors.push_back(Op);
11692 
11693     return SE.getMulExpr(Factors);
11694   }
11695 
11696   return T;
11697 }
11698 
11699 /// Return the size of an element read or written by Inst.
11700 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11701   Type *Ty;
11702   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11703     Ty = Store->getValueOperand()->getType();
11704   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11705     Ty = Load->getType();
11706   else
11707     return nullptr;
11708 
11709   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11710   return getSizeOfExpr(ETy, Ty);
11711 }
11712 
11713 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11714                                           SmallVectorImpl<const SCEV *> &Sizes,
11715                                           const SCEV *ElementSize) {
11716   if (Terms.size() < 1 || !ElementSize)
11717     return;
11718 
11719   // Early return when Terms do not contain parameters: we do not delinearize
11720   // non parametric SCEVs.
11721   if (!containsParameters(Terms))
11722     return;
11723 
11724   LLVM_DEBUG({
11725     dbgs() << "Terms:\n";
11726     for (const SCEV *T : Terms)
11727       dbgs() << *T << "\n";
11728   });
11729 
11730   // Remove duplicates.
11731   array_pod_sort(Terms.begin(), Terms.end());
11732   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11733 
11734   // Put larger terms first.
11735   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11736     return numberOfTerms(LHS) > numberOfTerms(RHS);
11737   });
11738 
11739   // Try to divide all terms by the element size. If term is not divisible by
11740   // element size, proceed with the original term.
11741   for (const SCEV *&Term : Terms) {
11742     const SCEV *Q, *R;
11743     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11744     if (!Q->isZero())
11745       Term = Q;
11746   }
11747 
11748   SmallVector<const SCEV *, 4> NewTerms;
11749 
11750   // Remove constant factors.
11751   for (const SCEV *T : Terms)
11752     if (const SCEV *NewT = removeConstantFactors(*this, T))
11753       NewTerms.push_back(NewT);
11754 
11755   LLVM_DEBUG({
11756     dbgs() << "Terms after sorting:\n";
11757     for (const SCEV *T : NewTerms)
11758       dbgs() << *T << "\n";
11759   });
11760 
11761   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11762     Sizes.clear();
11763     return;
11764   }
11765 
11766   // The last element to be pushed into Sizes is the size of an element.
11767   Sizes.push_back(ElementSize);
11768 
11769   LLVM_DEBUG({
11770     dbgs() << "Sizes:\n";
11771     for (const SCEV *S : Sizes)
11772       dbgs() << *S << "\n";
11773   });
11774 }
11775 
11776 void ScalarEvolution::computeAccessFunctions(
11777     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11778     SmallVectorImpl<const SCEV *> &Sizes) {
11779   // Early exit in case this SCEV is not an affine multivariate function.
11780   if (Sizes.empty())
11781     return;
11782 
11783   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11784     if (!AR->isAffine())
11785       return;
11786 
11787   const SCEV *Res = Expr;
11788   int Last = Sizes.size() - 1;
11789   for (int i = Last; i >= 0; i--) {
11790     const SCEV *Q, *R;
11791     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11792 
11793     LLVM_DEBUG({
11794       dbgs() << "Res: " << *Res << "\n";
11795       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11796       dbgs() << "Res divided by Sizes[i]:\n";
11797       dbgs() << "Quotient: " << *Q << "\n";
11798       dbgs() << "Remainder: " << *R << "\n";
11799     });
11800 
11801     Res = Q;
11802 
11803     // Do not record the last subscript corresponding to the size of elements in
11804     // the array.
11805     if (i == Last) {
11806 
11807       // Bail out if the remainder is too complex.
11808       if (isa<SCEVAddRecExpr>(R)) {
11809         Subscripts.clear();
11810         Sizes.clear();
11811         return;
11812       }
11813 
11814       continue;
11815     }
11816 
11817     // Record the access function for the current subscript.
11818     Subscripts.push_back(R);
11819   }
11820 
11821   // Also push in last position the remainder of the last division: it will be
11822   // the access function of the innermost dimension.
11823   Subscripts.push_back(Res);
11824 
11825   std::reverse(Subscripts.begin(), Subscripts.end());
11826 
11827   LLVM_DEBUG({
11828     dbgs() << "Subscripts:\n";
11829     for (const SCEV *S : Subscripts)
11830       dbgs() << *S << "\n";
11831   });
11832 }
11833 
11834 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11835 /// sizes of an array access. Returns the remainder of the delinearization that
11836 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11837 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11838 /// expressions in the stride and base of a SCEV corresponding to the
11839 /// computation of a GCD (greatest common divisor) of base and stride.  When
11840 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11841 ///
11842 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11843 ///
11844 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11845 ///
11846 ///    for (long i = 0; i < n; i++)
11847 ///      for (long j = 0; j < m; j++)
11848 ///        for (long k = 0; k < o; k++)
11849 ///          A[i][j][k] = 1.0;
11850 ///  }
11851 ///
11852 /// the delinearization input is the following AddRec SCEV:
11853 ///
11854 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11855 ///
11856 /// From this SCEV, we are able to say that the base offset of the access is %A
11857 /// because it appears as an offset that does not divide any of the strides in
11858 /// the loops:
11859 ///
11860 ///  CHECK: Base offset: %A
11861 ///
11862 /// and then SCEV->delinearize determines the size of some of the dimensions of
11863 /// the array as these are the multiples by which the strides are happening:
11864 ///
11865 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11866 ///
11867 /// Note that the outermost dimension remains of UnknownSize because there are
11868 /// no strides that would help identifying the size of the last dimension: when
11869 /// the array has been statically allocated, one could compute the size of that
11870 /// dimension by dividing the overall size of the array by the size of the known
11871 /// dimensions: %m * %o * 8.
11872 ///
11873 /// Finally delinearize provides the access functions for the array reference
11874 /// that does correspond to A[i][j][k] of the above C testcase:
11875 ///
11876 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11877 ///
11878 /// The testcases are checking the output of a function pass:
11879 /// DelinearizationPass that walks through all loads and stores of a function
11880 /// asking for the SCEV of the memory access with respect to all enclosing
11881 /// loops, calling SCEV->delinearize on that and printing the results.
11882 void ScalarEvolution::delinearize(const SCEV *Expr,
11883                                  SmallVectorImpl<const SCEV *> &Subscripts,
11884                                  SmallVectorImpl<const SCEV *> &Sizes,
11885                                  const SCEV *ElementSize) {
11886   // First step: collect parametric terms.
11887   SmallVector<const SCEV *, 4> Terms;
11888   collectParametricTerms(Expr, Terms);
11889 
11890   if (Terms.empty())
11891     return;
11892 
11893   // Second step: find subscript sizes.
11894   findArrayDimensions(Terms, Sizes, ElementSize);
11895 
11896   if (Sizes.empty())
11897     return;
11898 
11899   // Third step: compute the access functions for each subscript.
11900   computeAccessFunctions(Expr, Subscripts, Sizes);
11901 
11902   if (Subscripts.empty())
11903     return;
11904 
11905   LLVM_DEBUG({
11906     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11907     dbgs() << "ArrayDecl[UnknownSize]";
11908     for (const SCEV *S : Sizes)
11909       dbgs() << "[" << *S << "]";
11910 
11911     dbgs() << "\nArrayRef";
11912     for (const SCEV *S : Subscripts)
11913       dbgs() << "[" << *S << "]";
11914     dbgs() << "\n";
11915   });
11916 }
11917 
11918 bool ScalarEvolution::getIndexExpressionsFromGEP(
11919     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11920     SmallVectorImpl<int> &Sizes) {
11921   assert(Subscripts.empty() && Sizes.empty() &&
11922          "Expected output lists to be empty on entry to this function.");
11923   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11924   Type *Ty = GEP->getPointerOperandType();
11925   bool DroppedFirstDim = false;
11926   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11927     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11928     if (i == 1) {
11929       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11930         Ty = PtrTy->getElementType();
11931       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11932         Ty = ArrayTy->getElementType();
11933       } else {
11934         Subscripts.clear();
11935         Sizes.clear();
11936         return false;
11937       }
11938       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11939         if (Const->getValue()->isZero()) {
11940           DroppedFirstDim = true;
11941           continue;
11942         }
11943       Subscripts.push_back(Expr);
11944       continue;
11945     }
11946 
11947     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11948     if (!ArrayTy) {
11949       Subscripts.clear();
11950       Sizes.clear();
11951       return false;
11952     }
11953 
11954     Subscripts.push_back(Expr);
11955     if (!(DroppedFirstDim && i == 2))
11956       Sizes.push_back(ArrayTy->getNumElements());
11957 
11958     Ty = ArrayTy->getElementType();
11959   }
11960   return !Subscripts.empty();
11961 }
11962 
11963 //===----------------------------------------------------------------------===//
11964 //                   SCEVCallbackVH Class Implementation
11965 //===----------------------------------------------------------------------===//
11966 
11967 void ScalarEvolution::SCEVCallbackVH::deleted() {
11968   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11969   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11970     SE->ConstantEvolutionLoopExitValue.erase(PN);
11971   SE->eraseValueFromMap(getValPtr());
11972   // this now dangles!
11973 }
11974 
11975 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11976   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11977 
11978   // Forget all the expressions associated with users of the old value,
11979   // so that future queries will recompute the expressions using the new
11980   // value.
11981   Value *Old = getValPtr();
11982   SmallVector<User *, 16> Worklist(Old->users());
11983   SmallPtrSet<User *, 8> Visited;
11984   while (!Worklist.empty()) {
11985     User *U = Worklist.pop_back_val();
11986     // Deleting the Old value will cause this to dangle. Postpone
11987     // that until everything else is done.
11988     if (U == Old)
11989       continue;
11990     if (!Visited.insert(U).second)
11991       continue;
11992     if (PHINode *PN = dyn_cast<PHINode>(U))
11993       SE->ConstantEvolutionLoopExitValue.erase(PN);
11994     SE->eraseValueFromMap(U);
11995     llvm::append_range(Worklist, U->users());
11996   }
11997   // Delete the Old value.
11998   if (PHINode *PN = dyn_cast<PHINode>(Old))
11999     SE->ConstantEvolutionLoopExitValue.erase(PN);
12000   SE->eraseValueFromMap(Old);
12001   // this now dangles!
12002 }
12003 
12004 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12005   : CallbackVH(V), SE(se) {}
12006 
12007 //===----------------------------------------------------------------------===//
12008 //                   ScalarEvolution Class Implementation
12009 //===----------------------------------------------------------------------===//
12010 
12011 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12012                                  AssumptionCache &AC, DominatorTree &DT,
12013                                  LoopInfo &LI)
12014     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12015       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12016       LoopDispositions(64), BlockDispositions(64) {
12017   // To use guards for proving predicates, we need to scan every instruction in
12018   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12019   // time if the IR does not actually contain any calls to
12020   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12021   //
12022   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12023   // to _add_ guards to the module when there weren't any before, and wants
12024   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12025   // efficient in lieu of being smart in that rather obscure case.
12026 
12027   auto *GuardDecl = F.getParent()->getFunction(
12028       Intrinsic::getName(Intrinsic::experimental_guard));
12029   HasGuards = GuardDecl && !GuardDecl->use_empty();
12030 }
12031 
12032 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12033     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12034       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12035       ValueExprMap(std::move(Arg.ValueExprMap)),
12036       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12037       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12038       PendingMerges(std::move(Arg.PendingMerges)),
12039       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12040       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12041       PredicatedBackedgeTakenCounts(
12042           std::move(Arg.PredicatedBackedgeTakenCounts)),
12043       ConstantEvolutionLoopExitValue(
12044           std::move(Arg.ConstantEvolutionLoopExitValue)),
12045       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12046       LoopDispositions(std::move(Arg.LoopDispositions)),
12047       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12048       BlockDispositions(std::move(Arg.BlockDispositions)),
12049       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12050       SignedRanges(std::move(Arg.SignedRanges)),
12051       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12052       UniquePreds(std::move(Arg.UniquePreds)),
12053       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12054       LoopUsers(std::move(Arg.LoopUsers)),
12055       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12056       FirstUnknown(Arg.FirstUnknown) {
12057   Arg.FirstUnknown = nullptr;
12058 }
12059 
12060 ScalarEvolution::~ScalarEvolution() {
12061   // Iterate through all the SCEVUnknown instances and call their
12062   // destructors, so that they release their references to their values.
12063   for (SCEVUnknown *U = FirstUnknown; U;) {
12064     SCEVUnknown *Tmp = U;
12065     U = U->Next;
12066     Tmp->~SCEVUnknown();
12067   }
12068   FirstUnknown = nullptr;
12069 
12070   ExprValueMap.clear();
12071   ValueExprMap.clear();
12072   HasRecMap.clear();
12073 
12074   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
12075   // that a loop had multiple computable exits.
12076   for (auto &BTCI : BackedgeTakenCounts)
12077     BTCI.second.clear();
12078   for (auto &BTCI : PredicatedBackedgeTakenCounts)
12079     BTCI.second.clear();
12080 
12081   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12082   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12083   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12084   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12085   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12086 }
12087 
12088 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12089   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12090 }
12091 
12092 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12093                           const Loop *L) {
12094   // Print all inner loops first
12095   for (Loop *I : *L)
12096     PrintLoopInfo(OS, SE, I);
12097 
12098   OS << "Loop ";
12099   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12100   OS << ": ";
12101 
12102   SmallVector<BasicBlock *, 8> ExitingBlocks;
12103   L->getExitingBlocks(ExitingBlocks);
12104   if (ExitingBlocks.size() != 1)
12105     OS << "<multiple exits> ";
12106 
12107   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12108     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12109   else
12110     OS << "Unpredictable backedge-taken count.\n";
12111 
12112   if (ExitingBlocks.size() > 1)
12113     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12114       OS << "  exit count for " << ExitingBlock->getName() << ": "
12115          << *SE->getExitCount(L, ExitingBlock) << "\n";
12116     }
12117 
12118   OS << "Loop ";
12119   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12120   OS << ": ";
12121 
12122   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12123     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12124     if (SE->isBackedgeTakenCountMaxOrZero(L))
12125       OS << ", actual taken count either this or zero.";
12126   } else {
12127     OS << "Unpredictable max backedge-taken count. ";
12128   }
12129 
12130   OS << "\n"
12131         "Loop ";
12132   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12133   OS << ": ";
12134 
12135   SCEVUnionPredicate Pred;
12136   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12137   if (!isa<SCEVCouldNotCompute>(PBT)) {
12138     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12139     OS << " Predicates:\n";
12140     Pred.print(OS, 4);
12141   } else {
12142     OS << "Unpredictable predicated backedge-taken count. ";
12143   }
12144   OS << "\n";
12145 
12146   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12147     OS << "Loop ";
12148     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12149     OS << ": ";
12150     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12151   }
12152 }
12153 
12154 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12155   switch (LD) {
12156   case ScalarEvolution::LoopVariant:
12157     return "Variant";
12158   case ScalarEvolution::LoopInvariant:
12159     return "Invariant";
12160   case ScalarEvolution::LoopComputable:
12161     return "Computable";
12162   }
12163   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12164 }
12165 
12166 void ScalarEvolution::print(raw_ostream &OS) const {
12167   // ScalarEvolution's implementation of the print method is to print
12168   // out SCEV values of all instructions that are interesting. Doing
12169   // this potentially causes it to create new SCEV objects though,
12170   // which technically conflicts with the const qualifier. This isn't
12171   // observable from outside the class though, so casting away the
12172   // const isn't dangerous.
12173   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12174 
12175   if (ClassifyExpressions) {
12176     OS << "Classifying expressions for: ";
12177     F.printAsOperand(OS, /*PrintType=*/false);
12178     OS << "\n";
12179     for (Instruction &I : instructions(F))
12180       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12181         OS << I << '\n';
12182         OS << "  -->  ";
12183         const SCEV *SV = SE.getSCEV(&I);
12184         SV->print(OS);
12185         if (!isa<SCEVCouldNotCompute>(SV)) {
12186           OS << " U: ";
12187           SE.getUnsignedRange(SV).print(OS);
12188           OS << " S: ";
12189           SE.getSignedRange(SV).print(OS);
12190         }
12191 
12192         const Loop *L = LI.getLoopFor(I.getParent());
12193 
12194         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12195         if (AtUse != SV) {
12196           OS << "  -->  ";
12197           AtUse->print(OS);
12198           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12199             OS << " U: ";
12200             SE.getUnsignedRange(AtUse).print(OS);
12201             OS << " S: ";
12202             SE.getSignedRange(AtUse).print(OS);
12203           }
12204         }
12205 
12206         if (L) {
12207           OS << "\t\t" "Exits: ";
12208           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12209           if (!SE.isLoopInvariant(ExitValue, L)) {
12210             OS << "<<Unknown>>";
12211           } else {
12212             OS << *ExitValue;
12213           }
12214 
12215           bool First = true;
12216           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12217             if (First) {
12218               OS << "\t\t" "LoopDispositions: { ";
12219               First = false;
12220             } else {
12221               OS << ", ";
12222             }
12223 
12224             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12225             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12226           }
12227 
12228           for (auto *InnerL : depth_first(L)) {
12229             if (InnerL == L)
12230               continue;
12231             if (First) {
12232               OS << "\t\t" "LoopDispositions: { ";
12233               First = false;
12234             } else {
12235               OS << ", ";
12236             }
12237 
12238             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12239             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12240           }
12241 
12242           OS << " }";
12243         }
12244 
12245         OS << "\n";
12246       }
12247   }
12248 
12249   OS << "Determining loop execution counts for: ";
12250   F.printAsOperand(OS, /*PrintType=*/false);
12251   OS << "\n";
12252   for (Loop *I : LI)
12253     PrintLoopInfo(OS, &SE, I);
12254 }
12255 
12256 ScalarEvolution::LoopDisposition
12257 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12258   auto &Values = LoopDispositions[S];
12259   for (auto &V : Values) {
12260     if (V.getPointer() == L)
12261       return V.getInt();
12262   }
12263   Values.emplace_back(L, LoopVariant);
12264   LoopDisposition D = computeLoopDisposition(S, L);
12265   auto &Values2 = LoopDispositions[S];
12266   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12267     if (V.getPointer() == L) {
12268       V.setInt(D);
12269       break;
12270     }
12271   }
12272   return D;
12273 }
12274 
12275 ScalarEvolution::LoopDisposition
12276 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12277   switch (S->getSCEVType()) {
12278   case scConstant:
12279     return LoopInvariant;
12280   case scPtrToInt:
12281   case scTruncate:
12282   case scZeroExtend:
12283   case scSignExtend:
12284     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12285   case scAddRecExpr: {
12286     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12287 
12288     // If L is the addrec's loop, it's computable.
12289     if (AR->getLoop() == L)
12290       return LoopComputable;
12291 
12292     // Add recurrences are never invariant in the function-body (null loop).
12293     if (!L)
12294       return LoopVariant;
12295 
12296     // Everything that is not defined at loop entry is variant.
12297     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12298       return LoopVariant;
12299     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12300            " dominate the contained loop's header?");
12301 
12302     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12303     if (AR->getLoop()->contains(L))
12304       return LoopInvariant;
12305 
12306     // This recurrence is variant w.r.t. L if any of its operands
12307     // are variant.
12308     for (auto *Op : AR->operands())
12309       if (!isLoopInvariant(Op, L))
12310         return LoopVariant;
12311 
12312     // Otherwise it's loop-invariant.
12313     return LoopInvariant;
12314   }
12315   case scAddExpr:
12316   case scMulExpr:
12317   case scUMaxExpr:
12318   case scSMaxExpr:
12319   case scUMinExpr:
12320   case scSMinExpr: {
12321     bool HasVarying = false;
12322     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12323       LoopDisposition D = getLoopDisposition(Op, L);
12324       if (D == LoopVariant)
12325         return LoopVariant;
12326       if (D == LoopComputable)
12327         HasVarying = true;
12328     }
12329     return HasVarying ? LoopComputable : LoopInvariant;
12330   }
12331   case scUDivExpr: {
12332     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12333     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12334     if (LD == LoopVariant)
12335       return LoopVariant;
12336     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12337     if (RD == LoopVariant)
12338       return LoopVariant;
12339     return (LD == LoopInvariant && RD == LoopInvariant) ?
12340            LoopInvariant : LoopComputable;
12341   }
12342   case scUnknown:
12343     // All non-instruction values are loop invariant.  All instructions are loop
12344     // invariant if they are not contained in the specified loop.
12345     // Instructions are never considered invariant in the function body
12346     // (null loop) because they are defined within the "loop".
12347     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12348       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12349     return LoopInvariant;
12350   case scCouldNotCompute:
12351     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12352   }
12353   llvm_unreachable("Unknown SCEV kind!");
12354 }
12355 
12356 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12357   return getLoopDisposition(S, L) == LoopInvariant;
12358 }
12359 
12360 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12361   return getLoopDisposition(S, L) == LoopComputable;
12362 }
12363 
12364 ScalarEvolution::BlockDisposition
12365 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12366   auto &Values = BlockDispositions[S];
12367   for (auto &V : Values) {
12368     if (V.getPointer() == BB)
12369       return V.getInt();
12370   }
12371   Values.emplace_back(BB, DoesNotDominateBlock);
12372   BlockDisposition D = computeBlockDisposition(S, BB);
12373   auto &Values2 = BlockDispositions[S];
12374   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12375     if (V.getPointer() == BB) {
12376       V.setInt(D);
12377       break;
12378     }
12379   }
12380   return D;
12381 }
12382 
12383 ScalarEvolution::BlockDisposition
12384 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12385   switch (S->getSCEVType()) {
12386   case scConstant:
12387     return ProperlyDominatesBlock;
12388   case scPtrToInt:
12389   case scTruncate:
12390   case scZeroExtend:
12391   case scSignExtend:
12392     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12393   case scAddRecExpr: {
12394     // This uses a "dominates" query instead of "properly dominates" query
12395     // to test for proper dominance too, because the instruction which
12396     // produces the addrec's value is a PHI, and a PHI effectively properly
12397     // dominates its entire containing block.
12398     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12399     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12400       return DoesNotDominateBlock;
12401 
12402     // Fall through into SCEVNAryExpr handling.
12403     LLVM_FALLTHROUGH;
12404   }
12405   case scAddExpr:
12406   case scMulExpr:
12407   case scUMaxExpr:
12408   case scSMaxExpr:
12409   case scUMinExpr:
12410   case scSMinExpr: {
12411     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12412     bool Proper = true;
12413     for (const SCEV *NAryOp : NAry->operands()) {
12414       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12415       if (D == DoesNotDominateBlock)
12416         return DoesNotDominateBlock;
12417       if (D == DominatesBlock)
12418         Proper = false;
12419     }
12420     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12421   }
12422   case scUDivExpr: {
12423     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12424     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12425     BlockDisposition LD = getBlockDisposition(LHS, BB);
12426     if (LD == DoesNotDominateBlock)
12427       return DoesNotDominateBlock;
12428     BlockDisposition RD = getBlockDisposition(RHS, BB);
12429     if (RD == DoesNotDominateBlock)
12430       return DoesNotDominateBlock;
12431     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12432       ProperlyDominatesBlock : DominatesBlock;
12433   }
12434   case scUnknown:
12435     if (Instruction *I =
12436           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12437       if (I->getParent() == BB)
12438         return DominatesBlock;
12439       if (DT.properlyDominates(I->getParent(), BB))
12440         return ProperlyDominatesBlock;
12441       return DoesNotDominateBlock;
12442     }
12443     return ProperlyDominatesBlock;
12444   case scCouldNotCompute:
12445     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12446   }
12447   llvm_unreachable("Unknown SCEV kind!");
12448 }
12449 
12450 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12451   return getBlockDisposition(S, BB) >= DominatesBlock;
12452 }
12453 
12454 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12455   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12456 }
12457 
12458 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12459   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12460 }
12461 
12462 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
12463   auto IsS = [&](const SCEV *X) { return S == X; };
12464   auto ContainsS = [&](const SCEV *X) {
12465     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
12466   };
12467   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
12468 }
12469 
12470 void
12471 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12472   ValuesAtScopes.erase(S);
12473   LoopDispositions.erase(S);
12474   BlockDispositions.erase(S);
12475   UnsignedRanges.erase(S);
12476   SignedRanges.erase(S);
12477   ExprValueMap.erase(S);
12478   HasRecMap.erase(S);
12479   MinTrailingZerosCache.erase(S);
12480 
12481   for (auto I = PredicatedSCEVRewrites.begin();
12482        I != PredicatedSCEVRewrites.end();) {
12483     std::pair<const SCEV *, const Loop *> Entry = I->first;
12484     if (Entry.first == S)
12485       PredicatedSCEVRewrites.erase(I++);
12486     else
12487       ++I;
12488   }
12489 
12490   auto RemoveSCEVFromBackedgeMap =
12491       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12492         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12493           BackedgeTakenInfo &BEInfo = I->second;
12494           if (BEInfo.hasOperand(S, this)) {
12495             BEInfo.clear();
12496             Map.erase(I++);
12497           } else
12498             ++I;
12499         }
12500       };
12501 
12502   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12503   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12504 }
12505 
12506 void
12507 ScalarEvolution::getUsedLoops(const SCEV *S,
12508                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12509   struct FindUsedLoops {
12510     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12511         : LoopsUsed(LoopsUsed) {}
12512     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12513     bool follow(const SCEV *S) {
12514       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12515         LoopsUsed.insert(AR->getLoop());
12516       return true;
12517     }
12518 
12519     bool isDone() const { return false; }
12520   };
12521 
12522   FindUsedLoops F(LoopsUsed);
12523   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12524 }
12525 
12526 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12527   SmallPtrSet<const Loop *, 8> LoopsUsed;
12528   getUsedLoops(S, LoopsUsed);
12529   for (auto *L : LoopsUsed)
12530     LoopUsers[L].push_back(S);
12531 }
12532 
12533 void ScalarEvolution::verify() const {
12534   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12535   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12536 
12537   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12538 
12539   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12540   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12541     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12542 
12543     const SCEV *visitConstant(const SCEVConstant *Constant) {
12544       return SE.getConstant(Constant->getAPInt());
12545     }
12546 
12547     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12548       return SE.getUnknown(Expr->getValue());
12549     }
12550 
12551     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12552       return SE.getCouldNotCompute();
12553     }
12554   };
12555 
12556   SCEVMapper SCM(SE2);
12557 
12558   while (!LoopStack.empty()) {
12559     auto *L = LoopStack.pop_back_val();
12560     llvm::append_range(LoopStack, *L);
12561 
12562     auto *CurBECount = SCM.visit(
12563         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12564     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12565 
12566     if (CurBECount == SE2.getCouldNotCompute() ||
12567         NewBECount == SE2.getCouldNotCompute()) {
12568       // NB! This situation is legal, but is very suspicious -- whatever pass
12569       // change the loop to make a trip count go from could not compute to
12570       // computable or vice-versa *should have* invalidated SCEV.  However, we
12571       // choose not to assert here (for now) since we don't want false
12572       // positives.
12573       continue;
12574     }
12575 
12576     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12577       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12578       // not propagate undef aggressively).  This means we can (and do) fail
12579       // verification in cases where a transform makes the trip count of a loop
12580       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12581       // both cases the loop iterates "undef" times, but SCEV thinks we
12582       // increased the trip count of the loop by 1 incorrectly.
12583       continue;
12584     }
12585 
12586     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12587         SE.getTypeSizeInBits(NewBECount->getType()))
12588       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12589     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12590              SE.getTypeSizeInBits(NewBECount->getType()))
12591       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12592 
12593     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12594 
12595     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12596     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12597       dbgs() << "Trip Count for " << *L << " Changed!\n";
12598       dbgs() << "Old: " << *CurBECount << "\n";
12599       dbgs() << "New: " << *NewBECount << "\n";
12600       dbgs() << "Delta: " << *Delta << "\n";
12601       std::abort();
12602     }
12603   }
12604 
12605   // Collect all valid loops currently in LoopInfo.
12606   SmallPtrSet<Loop *, 32> ValidLoops;
12607   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12608   while (!Worklist.empty()) {
12609     Loop *L = Worklist.pop_back_val();
12610     if (ValidLoops.contains(L))
12611       continue;
12612     ValidLoops.insert(L);
12613     Worklist.append(L->begin(), L->end());
12614   }
12615   // Check for SCEV expressions referencing invalid/deleted loops.
12616   for (auto &KV : ValueExprMap) {
12617     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12618     if (!AR)
12619       continue;
12620     assert(ValidLoops.contains(AR->getLoop()) &&
12621            "AddRec references invalid loop");
12622   }
12623 }
12624 
12625 bool ScalarEvolution::invalidate(
12626     Function &F, const PreservedAnalyses &PA,
12627     FunctionAnalysisManager::Invalidator &Inv) {
12628   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12629   // of its dependencies is invalidated.
12630   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12631   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12632          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12633          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12634          Inv.invalidate<LoopAnalysis>(F, PA);
12635 }
12636 
12637 AnalysisKey ScalarEvolutionAnalysis::Key;
12638 
12639 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12640                                              FunctionAnalysisManager &AM) {
12641   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12642                          AM.getResult<AssumptionAnalysis>(F),
12643                          AM.getResult<DominatorTreeAnalysis>(F),
12644                          AM.getResult<LoopAnalysis>(F));
12645 }
12646 
12647 PreservedAnalyses
12648 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12649   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12650   return PreservedAnalyses::all();
12651 }
12652 
12653 PreservedAnalyses
12654 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12655   // For compatibility with opt's -analyze feature under legacy pass manager
12656   // which was not ported to NPM. This keeps tests using
12657   // update_analyze_test_checks.py working.
12658   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12659      << F.getName() << "':\n";
12660   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12661   return PreservedAnalyses::all();
12662 }
12663 
12664 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12665                       "Scalar Evolution Analysis", false, true)
12666 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12667 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12668 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12669 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12670 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12671                     "Scalar Evolution Analysis", false, true)
12672 
12673 char ScalarEvolutionWrapperPass::ID = 0;
12674 
12675 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12676   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12677 }
12678 
12679 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12680   SE.reset(new ScalarEvolution(
12681       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12682       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12683       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12684       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12685   return false;
12686 }
12687 
12688 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12689 
12690 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12691   SE->print(OS);
12692 }
12693 
12694 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12695   if (!VerifySCEV)
12696     return;
12697 
12698   SE->verify();
12699 }
12700 
12701 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12702   AU.setPreservesAll();
12703   AU.addRequiredTransitive<AssumptionCacheTracker>();
12704   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12705   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12706   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12707 }
12708 
12709 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12710                                                         const SCEV *RHS) {
12711   FoldingSetNodeID ID;
12712   assert(LHS->getType() == RHS->getType() &&
12713          "Type mismatch between LHS and RHS");
12714   // Unique this node based on the arguments
12715   ID.AddInteger(SCEVPredicate::P_Equal);
12716   ID.AddPointer(LHS);
12717   ID.AddPointer(RHS);
12718   void *IP = nullptr;
12719   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12720     return S;
12721   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12722       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12723   UniquePreds.InsertNode(Eq, IP);
12724   return Eq;
12725 }
12726 
12727 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12728     const SCEVAddRecExpr *AR,
12729     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12730   FoldingSetNodeID ID;
12731   // Unique this node based on the arguments
12732   ID.AddInteger(SCEVPredicate::P_Wrap);
12733   ID.AddPointer(AR);
12734   ID.AddInteger(AddedFlags);
12735   void *IP = nullptr;
12736   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12737     return S;
12738   auto *OF = new (SCEVAllocator)
12739       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12740   UniquePreds.InsertNode(OF, IP);
12741   return OF;
12742 }
12743 
12744 namespace {
12745 
12746 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12747 public:
12748 
12749   /// Rewrites \p S in the context of a loop L and the SCEV predication
12750   /// infrastructure.
12751   ///
12752   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12753   /// equivalences present in \p Pred.
12754   ///
12755   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12756   /// \p NewPreds such that the result will be an AddRecExpr.
12757   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12758                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12759                              SCEVUnionPredicate *Pred) {
12760     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12761     return Rewriter.visit(S);
12762   }
12763 
12764   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12765     if (Pred) {
12766       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12767       for (auto *Pred : ExprPreds)
12768         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12769           if (IPred->getLHS() == Expr)
12770             return IPred->getRHS();
12771     }
12772     return convertToAddRecWithPreds(Expr);
12773   }
12774 
12775   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12776     const SCEV *Operand = visit(Expr->getOperand());
12777     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12778     if (AR && AR->getLoop() == L && AR->isAffine()) {
12779       // This couldn't be folded because the operand didn't have the nuw
12780       // flag. Add the nusw flag as an assumption that we could make.
12781       const SCEV *Step = AR->getStepRecurrence(SE);
12782       Type *Ty = Expr->getType();
12783       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12784         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12785                                 SE.getSignExtendExpr(Step, Ty), L,
12786                                 AR->getNoWrapFlags());
12787     }
12788     return SE.getZeroExtendExpr(Operand, Expr->getType());
12789   }
12790 
12791   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12792     const SCEV *Operand = visit(Expr->getOperand());
12793     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12794     if (AR && AR->getLoop() == L && AR->isAffine()) {
12795       // This couldn't be folded because the operand didn't have the nsw
12796       // flag. Add the nssw flag as an assumption that we could make.
12797       const SCEV *Step = AR->getStepRecurrence(SE);
12798       Type *Ty = Expr->getType();
12799       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12800         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12801                                 SE.getSignExtendExpr(Step, Ty), L,
12802                                 AR->getNoWrapFlags());
12803     }
12804     return SE.getSignExtendExpr(Operand, Expr->getType());
12805   }
12806 
12807 private:
12808   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12809                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12810                         SCEVUnionPredicate *Pred)
12811       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12812 
12813   bool addOverflowAssumption(const SCEVPredicate *P) {
12814     if (!NewPreds) {
12815       // Check if we've already made this assumption.
12816       return Pred && Pred->implies(P);
12817     }
12818     NewPreds->insert(P);
12819     return true;
12820   }
12821 
12822   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12823                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12824     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12825     return addOverflowAssumption(A);
12826   }
12827 
12828   // If \p Expr represents a PHINode, we try to see if it can be represented
12829   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12830   // to add this predicate as a runtime overflow check, we return the AddRec.
12831   // If \p Expr does not meet these conditions (is not a PHI node, or we
12832   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12833   // return \p Expr.
12834   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12835     if (!isa<PHINode>(Expr->getValue()))
12836       return Expr;
12837     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12838     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12839     if (!PredicatedRewrite)
12840       return Expr;
12841     for (auto *P : PredicatedRewrite->second){
12842       // Wrap predicates from outer loops are not supported.
12843       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12844         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12845         if (L != AR->getLoop())
12846           return Expr;
12847       }
12848       if (!addOverflowAssumption(P))
12849         return Expr;
12850     }
12851     return PredicatedRewrite->first;
12852   }
12853 
12854   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12855   SCEVUnionPredicate *Pred;
12856   const Loop *L;
12857 };
12858 
12859 } // end anonymous namespace
12860 
12861 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12862                                                    SCEVUnionPredicate &Preds) {
12863   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12864 }
12865 
12866 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12867     const SCEV *S, const Loop *L,
12868     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12869   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12870   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12871   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12872 
12873   if (!AddRec)
12874     return nullptr;
12875 
12876   // Since the transformation was successful, we can now transfer the SCEV
12877   // predicates.
12878   for (auto *P : TransformPreds)
12879     Preds.insert(P);
12880 
12881   return AddRec;
12882 }
12883 
12884 /// SCEV predicates
12885 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12886                              SCEVPredicateKind Kind)
12887     : FastID(ID), Kind(Kind) {}
12888 
12889 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12890                                        const SCEV *LHS, const SCEV *RHS)
12891     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12892   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12893   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12894 }
12895 
12896 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12897   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12898 
12899   if (!Op)
12900     return false;
12901 
12902   return Op->LHS == LHS && Op->RHS == RHS;
12903 }
12904 
12905 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12906 
12907 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12908 
12909 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12910   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12911 }
12912 
12913 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12914                                      const SCEVAddRecExpr *AR,
12915                                      IncrementWrapFlags Flags)
12916     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12917 
12918 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12919 
12920 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12921   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12922 
12923   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12924 }
12925 
12926 bool SCEVWrapPredicate::isAlwaysTrue() const {
12927   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12928   IncrementWrapFlags IFlags = Flags;
12929 
12930   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12931     IFlags = clearFlags(IFlags, IncrementNSSW);
12932 
12933   return IFlags == IncrementAnyWrap;
12934 }
12935 
12936 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12937   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12938   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12939     OS << "<nusw>";
12940   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12941     OS << "<nssw>";
12942   OS << "\n";
12943 }
12944 
12945 SCEVWrapPredicate::IncrementWrapFlags
12946 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12947                                    ScalarEvolution &SE) {
12948   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12949   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12950 
12951   // We can safely transfer the NSW flag as NSSW.
12952   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12953     ImpliedFlags = IncrementNSSW;
12954 
12955   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12956     // If the increment is positive, the SCEV NUW flag will also imply the
12957     // WrapPredicate NUSW flag.
12958     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12959       if (Step->getValue()->getValue().isNonNegative())
12960         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12961   }
12962 
12963   return ImpliedFlags;
12964 }
12965 
12966 /// Union predicates don't get cached so create a dummy set ID for it.
12967 SCEVUnionPredicate::SCEVUnionPredicate()
12968     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12969 
12970 bool SCEVUnionPredicate::isAlwaysTrue() const {
12971   return all_of(Preds,
12972                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12973 }
12974 
12975 ArrayRef<const SCEVPredicate *>
12976 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12977   auto I = SCEVToPreds.find(Expr);
12978   if (I == SCEVToPreds.end())
12979     return ArrayRef<const SCEVPredicate *>();
12980   return I->second;
12981 }
12982 
12983 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12984   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12985     return all_of(Set->Preds,
12986                   [this](const SCEVPredicate *I) { return this->implies(I); });
12987 
12988   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12989   if (ScevPredsIt == SCEVToPreds.end())
12990     return false;
12991   auto &SCEVPreds = ScevPredsIt->second;
12992 
12993   return any_of(SCEVPreds,
12994                 [N](const SCEVPredicate *I) { return I->implies(N); });
12995 }
12996 
12997 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12998 
12999 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13000   for (auto Pred : Preds)
13001     Pred->print(OS, Depth);
13002 }
13003 
13004 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13005   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13006     for (auto Pred : Set->Preds)
13007       add(Pred);
13008     return;
13009   }
13010 
13011   if (implies(N))
13012     return;
13013 
13014   const SCEV *Key = N->getExpr();
13015   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13016                 " associated expression!");
13017 
13018   SCEVToPreds[Key].push_back(N);
13019   Preds.push_back(N);
13020 }
13021 
13022 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13023                                                      Loop &L)
13024     : SE(SE), L(L) {}
13025 
13026 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13027   const SCEV *Expr = SE.getSCEV(V);
13028   RewriteEntry &Entry = RewriteMap[Expr];
13029 
13030   // If we already have an entry and the version matches, return it.
13031   if (Entry.second && Generation == Entry.first)
13032     return Entry.second;
13033 
13034   // We found an entry but it's stale. Rewrite the stale entry
13035   // according to the current predicate.
13036   if (Entry.second)
13037     Expr = Entry.second;
13038 
13039   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13040   Entry = {Generation, NewSCEV};
13041 
13042   return NewSCEV;
13043 }
13044 
13045 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13046   if (!BackedgeCount) {
13047     SCEVUnionPredicate BackedgePred;
13048     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13049     addPredicate(BackedgePred);
13050   }
13051   return BackedgeCount;
13052 }
13053 
13054 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13055   if (Preds.implies(&Pred))
13056     return;
13057   Preds.add(&Pred);
13058   updateGeneration();
13059 }
13060 
13061 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13062   return Preds;
13063 }
13064 
13065 void PredicatedScalarEvolution::updateGeneration() {
13066   // If the generation number wrapped recompute everything.
13067   if (++Generation == 0) {
13068     for (auto &II : RewriteMap) {
13069       const SCEV *Rewritten = II.second.second;
13070       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13071     }
13072   }
13073 }
13074 
13075 void PredicatedScalarEvolution::setNoOverflow(
13076     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13077   const SCEV *Expr = getSCEV(V);
13078   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13079 
13080   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13081 
13082   // Clear the statically implied flags.
13083   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13084   addPredicate(*SE.getWrapPredicate(AR, Flags));
13085 
13086   auto II = FlagsMap.insert({V, Flags});
13087   if (!II.second)
13088     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13089 }
13090 
13091 bool PredicatedScalarEvolution::hasNoOverflow(
13092     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13093   const SCEV *Expr = getSCEV(V);
13094   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13095 
13096   Flags = SCEVWrapPredicate::clearFlags(
13097       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13098 
13099   auto II = FlagsMap.find(V);
13100 
13101   if (II != FlagsMap.end())
13102     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13103 
13104   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13105 }
13106 
13107 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13108   const SCEV *Expr = this->getSCEV(V);
13109   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13110   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13111 
13112   if (!New)
13113     return nullptr;
13114 
13115   for (auto *P : NewPreds)
13116     Preds.add(P);
13117 
13118   updateGeneration();
13119   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13120   return New;
13121 }
13122 
13123 PredicatedScalarEvolution::PredicatedScalarEvolution(
13124     const PredicatedScalarEvolution &Init)
13125     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13126       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13127   for (auto I : Init.FlagsMap)
13128     FlagsMap.insert(I);
13129 }
13130 
13131 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13132   // For each block.
13133   for (auto *BB : L.getBlocks())
13134     for (auto &I : *BB) {
13135       if (!SE.isSCEVable(I.getType()))
13136         continue;
13137 
13138       auto *Expr = SE.getSCEV(&I);
13139       auto II = RewriteMap.find(Expr);
13140 
13141       if (II == RewriteMap.end())
13142         continue;
13143 
13144       // Don't print things that are not interesting.
13145       if (II->second.second == Expr)
13146         continue;
13147 
13148       OS.indent(Depth) << "[PSE]" << I << ":\n";
13149       OS.indent(Depth + 2) << *Expr << "\n";
13150       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13151     }
13152 }
13153 
13154 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13155 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13156 // for URem with constant power-of-2 second operands.
13157 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13158 // 4, A / B becomes X / 8).
13159 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13160                                 const SCEV *&RHS) {
13161   // Try to match 'zext (trunc A to iB) to iY', which is used
13162   // for URem with constant power-of-2 second operands. Make sure the size of
13163   // the operand A matches the size of the whole expressions.
13164   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13165     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13166       LHS = Trunc->getOperand();
13167       // Bail out if the type of the LHS is larger than the type of the
13168       // expression for now.
13169       if (getTypeSizeInBits(LHS->getType()) >
13170           getTypeSizeInBits(Expr->getType()))
13171         return false;
13172       if (LHS->getType() != Expr->getType())
13173         LHS = getZeroExtendExpr(LHS, Expr->getType());
13174       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13175                         << getTypeSizeInBits(Trunc->getType()));
13176       return true;
13177     }
13178   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13179   if (Add == nullptr || Add->getNumOperands() != 2)
13180     return false;
13181 
13182   const SCEV *A = Add->getOperand(1);
13183   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13184 
13185   if (Mul == nullptr)
13186     return false;
13187 
13188   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13189     // (SomeExpr + (-(SomeExpr / B) * B)).
13190     if (Expr == getURemExpr(A, B)) {
13191       LHS = A;
13192       RHS = B;
13193       return true;
13194     }
13195     return false;
13196   };
13197 
13198   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13199   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13200     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13201            MatchURemWithDivisor(Mul->getOperand(2));
13202 
13203   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13204   if (Mul->getNumOperands() == 2)
13205     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13206            MatchURemWithDivisor(Mul->getOperand(0)) ||
13207            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13208            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13209   return false;
13210 }
13211 
13212 const SCEV *
13213 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13214   SmallVector<BasicBlock*, 16> ExitingBlocks;
13215   L->getExitingBlocks(ExitingBlocks);
13216 
13217   // Form an expression for the maximum exit count possible for this loop. We
13218   // merge the max and exact information to approximate a version of
13219   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13220   SmallVector<const SCEV*, 4> ExitCounts;
13221   for (BasicBlock *ExitingBB : ExitingBlocks) {
13222     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13223     if (isa<SCEVCouldNotCompute>(ExitCount))
13224       ExitCount = getExitCount(L, ExitingBB,
13225                                   ScalarEvolution::ConstantMaximum);
13226     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13227       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13228              "We should only have known counts for exiting blocks that "
13229              "dominate latch!");
13230       ExitCounts.push_back(ExitCount);
13231     }
13232   }
13233   if (ExitCounts.empty())
13234     return getCouldNotCompute();
13235   return getUMinFromMismatchedTypes(ExitCounts);
13236 }
13237 
13238 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13239 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13240 /// we cannot guarantee that the replacement is loop invariant in the loop of
13241 /// the AddRec.
13242 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13243   ValueToSCEVMapTy &Map;
13244 
13245 public:
13246   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13247       : SCEVRewriteVisitor(SE), Map(M) {}
13248 
13249   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13250 
13251   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13252     auto I = Map.find(Expr->getValue());
13253     if (I == Map.end())
13254       return Expr;
13255     return I->second;
13256   }
13257 };
13258 
13259 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13260   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13261                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13262     // If we have LHS == 0, check if LHS is computing a property of some unknown
13263     // SCEV %v which we can rewrite %v to express explicitly.
13264     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13265     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13266         RHSC->getValue()->isNullValue()) {
13267       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13268       // explicitly express that.
13269       const SCEV *URemLHS = nullptr;
13270       const SCEV *URemRHS = nullptr;
13271       if (matchURem(LHS, URemLHS, URemRHS)) {
13272         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13273           Value *V = LHSUnknown->getValue();
13274           auto Multiple =
13275               getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS,
13276                          (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
13277           RewriteMap[V] = Multiple;
13278           return;
13279         }
13280       }
13281     }
13282 
13283     if (!isa<SCEVUnknown>(LHS)) {
13284       std::swap(LHS, RHS);
13285       Predicate = CmpInst::getSwappedPredicate(Predicate);
13286     }
13287 
13288     // For now, limit to conditions that provide information about unknown
13289     // expressions.
13290     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13291     if (!LHSUnknown)
13292       return;
13293 
13294     // TODO: use information from more predicates.
13295     switch (Predicate) {
13296     case CmpInst::ICMP_ULT: {
13297       if (!containsAddRecurrence(RHS)) {
13298         const SCEV *Base = LHS;
13299         auto I = RewriteMap.find(LHSUnknown->getValue());
13300         if (I != RewriteMap.end())
13301           Base = I->second;
13302 
13303         RewriteMap[LHSUnknown->getValue()] =
13304             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
13305       }
13306       break;
13307     }
13308     case CmpInst::ICMP_ULE: {
13309       if (!containsAddRecurrence(RHS)) {
13310         const SCEV *Base = LHS;
13311         auto I = RewriteMap.find(LHSUnknown->getValue());
13312         if (I != RewriteMap.end())
13313           Base = I->second;
13314         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
13315       }
13316       break;
13317     }
13318     case CmpInst::ICMP_EQ:
13319       if (isa<SCEVConstant>(RHS))
13320         RewriteMap[LHSUnknown->getValue()] = RHS;
13321       break;
13322     case CmpInst::ICMP_NE:
13323       if (isa<SCEVConstant>(RHS) &&
13324           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13325         RewriteMap[LHSUnknown->getValue()] =
13326             getUMaxExpr(LHS, getOne(RHS->getType()));
13327       break;
13328     default:
13329       break;
13330     }
13331   };
13332   // Starting at the loop predecessor, climb up the predecessor chain, as long
13333   // as there are predecessors that can be found that have unique successors
13334   // leading to the original header.
13335   // TODO: share this logic with isLoopEntryGuardedByCond.
13336   ValueToSCEVMapTy RewriteMap;
13337   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13338            L->getLoopPredecessor(), L->getHeader());
13339        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13340 
13341     const BranchInst *LoopEntryPredicate =
13342         dyn_cast<BranchInst>(Pair.first->getTerminator());
13343     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13344       continue;
13345 
13346     // TODO: use information from more complex conditions, e.g. AND expressions.
13347     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
13348     if (!Cmp)
13349       continue;
13350 
13351     auto Predicate = Cmp->getPredicate();
13352     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
13353       Predicate = CmpInst::getInversePredicate(Predicate);
13354     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13355                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13356   }
13357 
13358   // Also collect information from assumptions dominating the loop.
13359   for (auto &AssumeVH : AC.assumptions()) {
13360     if (!AssumeVH)
13361       continue;
13362     auto *AssumeI = cast<CallInst>(AssumeVH);
13363     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13364     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13365       continue;
13366     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13367                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13368   }
13369 
13370   if (RewriteMap.empty())
13371     return Expr;
13372   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13373   return Rewriter.visit(Expr);
13374 }
13375