1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 #endif 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (const SCEV *Op : AddRec->operands()) 1136 Operands.push_back(getTruncateExpr(Op, Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1274 1275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1276 // "S+X does not sign/unsign-overflow". 1277 // 1278 1279 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1282 return PreStart; 1283 1284 // 2. Direct overflow check on the step operation's expression. 1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1287 const SCEV *OperandExtendedStart = 1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1289 (SE->*GetExtendExpr)(Step, WideTy)); 1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1291 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1296 } 1297 return PreStart; 1298 } 1299 1300 // 3. Loop precondition. 1301 ICmpInst::Predicate Pred; 1302 const SCEV *OverflowLimit = 1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1304 1305 if (OverflowLimit && 1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1307 return PreStart; 1308 1309 return nullptr; 1310 } 1311 1312 // Get the normalized zero or sign extended expression for this AddRec's Start. 1313 template <typename ExtendOpTy> 1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1315 ScalarEvolution *SE) { 1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1317 1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1319 if (!PreStart) 1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1321 1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1323 (SE->*GetExtendExpr)(PreStart, Ty)); 1324 } 1325 1326 // Try to prove away overflow by looking at "nearby" add recurrences. A 1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1329 // 1330 // Formally: 1331 // 1332 // {S,+,X} == {S-T,+,X} + T 1333 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1334 // 1335 // If ({S-T,+,X} + T) does not overflow ... (1) 1336 // 1337 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1338 // 1339 // If {S-T,+,X} does not overflow ... (2) 1340 // 1341 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1342 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1343 // 1344 // If (S-T)+T does not overflow ... (3) 1345 // 1346 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1347 // == {Ext(S),+,Ext(X)} == LHS 1348 // 1349 // Thus, if (1), (2) and (3) are true for some T, then 1350 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1351 // 1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1353 // does not overflow" restricted to the 0th iteration. Therefore we only need 1354 // to check for (1) and (2). 1355 // 1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1357 // is `Delta` (defined below). 1358 // 1359 template <typename ExtendOpTy> 1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1361 const SCEV *Step, 1362 const Loop *L) { 1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1364 1365 // We restrict `Start` to a constant to prevent SCEV from spending too much 1366 // time here. It is correct (but more expensive) to continue with a 1367 // non-constant `Start` and do a general SCEV subtraction to compute 1368 // `PreStart` below. 1369 // 1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1371 if (!StartC) 1372 return false; 1373 1374 APInt StartAI = StartC->getValue()->getValue(); 1375 1376 for (unsigned Delta : {-2, -1, 1, 2}) { 1377 const SCEV *PreStart = getConstant(StartAI - Delta); 1378 1379 // Give up if we don't already have the add recurrence we need because 1380 // actually constructing an add recurrence is relatively expensive. 1381 const SCEVAddRecExpr *PreAR = [&]() { 1382 FoldingSetNodeID ID; 1383 ID.AddInteger(scAddRecExpr); 1384 ID.AddPointer(PreStart); 1385 ID.AddPointer(Step); 1386 ID.AddPointer(L); 1387 void *IP = nullptr; 1388 return static_cast<SCEVAddRecExpr *>( 1389 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1390 }(); 1391 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 // The cast wasn't folded; create an explicit cast node. 1563 // Recompute the insert position, as it may have been invalidated. 1564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1565 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1566 Op, Ty); 1567 UniqueSCEVs.InsertNode(S, IP); 1568 return S; 1569 } 1570 1571 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1572 Type *Ty) { 1573 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1574 "This is not an extending conversion!"); 1575 assert(isSCEVable(Ty) && 1576 "This is not a conversion to a SCEVable type!"); 1577 Ty = getEffectiveSCEVType(Ty); 1578 1579 // Fold if the operand is constant. 1580 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1581 return getConstant( 1582 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1583 1584 // sext(sext(x)) --> sext(x) 1585 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1586 return getSignExtendExpr(SS->getOperand(), Ty); 1587 1588 // sext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scSignExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 1601 // If the input value is provably positive, build a zext instead. 1602 if (isKnownNonNegative(Op)) 1603 return getZeroExtendExpr(Op, Ty); 1604 1605 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1606 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1607 // It's possible the bits taken off by the truncate were all sign bits. If 1608 // so, we should be able to simplify this further. 1609 const SCEV *X = ST->getOperand(); 1610 ConstantRange CR = getSignedRange(X); 1611 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1612 unsigned NewBits = getTypeSizeInBits(Ty); 1613 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1614 CR.sextOrTrunc(NewBits))) 1615 return getTruncateOrSignExtend(X, Ty); 1616 } 1617 1618 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1619 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1620 if (SA->getNumOperands() == 2) { 1621 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1622 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1623 if (SMul && SC1) { 1624 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1625 const APInt &C1 = SC1->getValue()->getValue(); 1626 const APInt &C2 = SC2->getValue()->getValue(); 1627 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1628 C2.ugt(C1) && C2.isPowerOf2()) 1629 return getAddExpr(getSignExtendExpr(SC1, Ty), 1630 getSignExtendExpr(SMul, Ty)); 1631 } 1632 } 1633 } 1634 1635 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1636 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1637 // If the addition does not sign overflow then we can, by definition, 1638 // commute the sign extension with the addition operation. 1639 SmallVector<const SCEV *, 4> Ops; 1640 for (const auto *Op : SA->operands()) 1641 Ops.push_back(getSignExtendExpr(Op, Ty)); 1642 return getAddExpr(Ops, SCEV::FlagNSW); 1643 } 1644 } 1645 // If the input value is a chrec scev, and we can prove that the value 1646 // did not overflow the old, smaller, value, we can sign extend all of the 1647 // operands (often constants). This allows analysis of something like 1648 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1649 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1650 if (AR->isAffine()) { 1651 const SCEV *Start = AR->getStart(); 1652 const SCEV *Step = AR->getStepRecurrence(*this); 1653 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1654 const Loop *L = AR->getLoop(); 1655 1656 // If we have special knowledge that this addrec won't overflow, 1657 // we don't need to do any further analysis. 1658 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1659 return getAddRecExpr( 1660 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1661 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1662 1663 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1664 // Note that this serves two purposes: It filters out loops that are 1665 // simply not analyzable, and it covers the case where this code is 1666 // being called from within backedge-taken count analysis, such that 1667 // attempting to ask for the backedge-taken count would likely result 1668 // in infinite recursion. In the later case, the analysis code will 1669 // cope with a conservative value, and it will take care to purge 1670 // that value once it has finished. 1671 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1672 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1673 // Manually compute the final value for AR, checking for 1674 // overflow. 1675 1676 // Check whether the backedge-taken count can be losslessly casted to 1677 // the addrec's type. The count is always unsigned. 1678 const SCEV *CastedMaxBECount = 1679 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1680 const SCEV *RecastedMaxBECount = 1681 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1682 if (MaxBECount == RecastedMaxBECount) { 1683 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1684 // Check whether Start+Step*MaxBECount has no signed overflow. 1685 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1686 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1687 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1688 const SCEV *WideMaxBECount = 1689 getZeroExtendExpr(CastedMaxBECount, WideTy); 1690 const SCEV *OperandExtendedAdd = 1691 getAddExpr(WideStart, 1692 getMulExpr(WideMaxBECount, 1693 getSignExtendExpr(Step, WideTy))); 1694 if (SAdd == OperandExtendedAdd) { 1695 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1696 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1697 // Return the expression with the addrec on the outside. 1698 return getAddRecExpr( 1699 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1700 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1701 } 1702 // Similar to above, only this time treat the step value as unsigned. 1703 // This covers loops that count up with an unsigned step. 1704 OperandExtendedAdd = 1705 getAddExpr(WideStart, 1706 getMulExpr(WideMaxBECount, 1707 getZeroExtendExpr(Step, WideTy))); 1708 if (SAdd == OperandExtendedAdd) { 1709 // If AR wraps around then 1710 // 1711 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1712 // => SAdd != OperandExtendedAdd 1713 // 1714 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1715 // (SAdd == OperandExtendedAdd => AR is NW) 1716 1717 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1718 1719 // Return the expression with the addrec on the outside. 1720 return getAddRecExpr( 1721 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1722 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1723 } 1724 } 1725 1726 // If the backedge is guarded by a comparison with the pre-inc value 1727 // the addrec is safe. Also, if the entry is guarded by a comparison 1728 // with the start value and the backedge is guarded by a comparison 1729 // with the post-inc value, the addrec is safe. 1730 ICmpInst::Predicate Pred; 1731 const SCEV *OverflowLimit = 1732 getSignedOverflowLimitForStep(Step, &Pred, this); 1733 if (OverflowLimit && 1734 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1735 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1736 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1737 OverflowLimit)))) { 1738 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1739 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1740 return getAddRecExpr( 1741 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1742 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1743 } 1744 } 1745 // If Start and Step are constants, check if we can apply this 1746 // transformation: 1747 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1748 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1749 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1750 if (SC1 && SC2) { 1751 const APInt &C1 = SC1->getValue()->getValue(); 1752 const APInt &C2 = SC2->getValue()->getValue(); 1753 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1754 C2.isPowerOf2()) { 1755 Start = getSignExtendExpr(Start, Ty); 1756 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1757 AR->getNoWrapFlags()); 1758 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1759 } 1760 } 1761 1762 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1763 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1764 return getAddRecExpr( 1765 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1766 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1767 } 1768 } 1769 1770 // The cast wasn't folded; create an explicit cast node. 1771 // Recompute the insert position, as it may have been invalidated. 1772 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1773 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1774 Op, Ty); 1775 UniqueSCEVs.InsertNode(S, IP); 1776 return S; 1777 } 1778 1779 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1780 /// unspecified bits out to the given type. 1781 /// 1782 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1783 Type *Ty) { 1784 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1785 "This is not an extending conversion!"); 1786 assert(isSCEVable(Ty) && 1787 "This is not a conversion to a SCEVable type!"); 1788 Ty = getEffectiveSCEVType(Ty); 1789 1790 // Sign-extend negative constants. 1791 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1792 if (SC->getValue()->getValue().isNegative()) 1793 return getSignExtendExpr(Op, Ty); 1794 1795 // Peel off a truncate cast. 1796 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1797 const SCEV *NewOp = T->getOperand(); 1798 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1799 return getAnyExtendExpr(NewOp, Ty); 1800 return getTruncateOrNoop(NewOp, Ty); 1801 } 1802 1803 // Next try a zext cast. If the cast is folded, use it. 1804 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1805 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1806 return ZExt; 1807 1808 // Next try a sext cast. If the cast is folded, use it. 1809 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1810 if (!isa<SCEVSignExtendExpr>(SExt)) 1811 return SExt; 1812 1813 // Force the cast to be folded into the operands of an addrec. 1814 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1815 SmallVector<const SCEV *, 4> Ops; 1816 for (const SCEV *Op : AR->operands()) 1817 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1818 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1819 } 1820 1821 // If the expression is obviously signed, use the sext cast value. 1822 if (isa<SCEVSMaxExpr>(Op)) 1823 return SExt; 1824 1825 // Absent any other information, use the zext cast value. 1826 return ZExt; 1827 } 1828 1829 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1830 /// a list of operands to be added under the given scale, update the given 1831 /// map. This is a helper function for getAddRecExpr. As an example of 1832 /// what it does, given a sequence of operands that would form an add 1833 /// expression like this: 1834 /// 1835 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1836 /// 1837 /// where A and B are constants, update the map with these values: 1838 /// 1839 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1840 /// 1841 /// and add 13 + A*B*29 to AccumulatedConstant. 1842 /// This will allow getAddRecExpr to produce this: 1843 /// 1844 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1845 /// 1846 /// This form often exposes folding opportunities that are hidden in 1847 /// the original operand list. 1848 /// 1849 /// Return true iff it appears that any interesting folding opportunities 1850 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1851 /// the common case where no interesting opportunities are present, and 1852 /// is also used as a check to avoid infinite recursion. 1853 /// 1854 static bool 1855 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1856 SmallVectorImpl<const SCEV *> &NewOps, 1857 APInt &AccumulatedConstant, 1858 const SCEV *const *Ops, size_t NumOperands, 1859 const APInt &Scale, 1860 ScalarEvolution &SE) { 1861 bool Interesting = false; 1862 1863 // Iterate over the add operands. They are sorted, with constants first. 1864 unsigned i = 0; 1865 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1866 ++i; 1867 // Pull a buried constant out to the outside. 1868 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1869 Interesting = true; 1870 AccumulatedConstant += Scale * C->getValue()->getValue(); 1871 } 1872 1873 // Next comes everything else. We're especially interested in multiplies 1874 // here, but they're in the middle, so just visit the rest with one loop. 1875 for (; i != NumOperands; ++i) { 1876 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1877 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1878 APInt NewScale = 1879 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1880 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1881 // A multiplication of a constant with another add; recurse. 1882 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1883 Interesting |= 1884 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1885 Add->op_begin(), Add->getNumOperands(), 1886 NewScale, SE); 1887 } else { 1888 // A multiplication of a constant with some other value. Update 1889 // the map. 1890 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1891 const SCEV *Key = SE.getMulExpr(MulOps); 1892 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1893 if (Pair.second) { 1894 NewOps.push_back(Pair.first->first); 1895 } else { 1896 Pair.first->second += NewScale; 1897 // The map already had an entry for this value, which may indicate 1898 // a folding opportunity. 1899 Interesting = true; 1900 } 1901 } 1902 } else { 1903 // An ordinary operand. Update the map. 1904 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1905 M.insert(std::make_pair(Ops[i], Scale)); 1906 if (Pair.second) { 1907 NewOps.push_back(Pair.first->first); 1908 } else { 1909 Pair.first->second += Scale; 1910 // The map already had an entry for this value, which may indicate 1911 // a folding opportunity. 1912 Interesting = true; 1913 } 1914 } 1915 } 1916 1917 return Interesting; 1918 } 1919 1920 namespace { 1921 struct APIntCompare { 1922 bool operator()(const APInt &LHS, const APInt &RHS) const { 1923 return LHS.ult(RHS); 1924 } 1925 }; 1926 } 1927 1928 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1929 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1930 // can't-overflow flags for the operation if possible. 1931 static SCEV::NoWrapFlags 1932 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1933 const SmallVectorImpl<const SCEV *> &Ops, 1934 SCEV::NoWrapFlags Flags) { 1935 using namespace std::placeholders; 1936 typedef OverflowingBinaryOperator OBO; 1937 1938 bool CanAnalyze = 1939 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1940 (void)CanAnalyze; 1941 assert(CanAnalyze && "don't call from other places!"); 1942 1943 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1944 SCEV::NoWrapFlags SignOrUnsignWrap = 1945 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1946 1947 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1948 auto IsKnownNonNegative = 1949 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1950 1951 if (SignOrUnsignWrap == SCEV::FlagNSW && 1952 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1953 Flags = 1954 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1955 1956 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1957 1958 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1959 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1960 1961 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1962 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1963 1964 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue(); 1965 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1966 auto NSWRegion = 1967 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1968 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1969 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1970 } 1971 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1972 auto NUWRegion = 1973 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1974 OBO::NoUnsignedWrap); 1975 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1976 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1977 } 1978 } 1979 1980 return Flags; 1981 } 1982 1983 /// getAddExpr - Get a canonical add expression, or something simpler if 1984 /// possible. 1985 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1986 SCEV::NoWrapFlags Flags) { 1987 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1988 "only nuw or nsw allowed"); 1989 assert(!Ops.empty() && "Cannot get empty add!"); 1990 if (Ops.size() == 1) return Ops[0]; 1991 #ifndef NDEBUG 1992 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1993 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1994 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1995 "SCEVAddExpr operand types don't match!"); 1996 #endif 1997 1998 // Sort by complexity, this groups all similar expression types together. 1999 GroupByComplexity(Ops, &LI); 2000 2001 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2002 2003 // If there are any constants, fold them together. 2004 unsigned Idx = 0; 2005 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2006 ++Idx; 2007 assert(Idx < Ops.size()); 2008 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2009 // We found two constants, fold them together! 2010 Ops[0] = getConstant(LHSC->getValue()->getValue() + 2011 RHSC->getValue()->getValue()); 2012 if (Ops.size() == 2) return Ops[0]; 2013 Ops.erase(Ops.begin()+1); // Erase the folded element 2014 LHSC = cast<SCEVConstant>(Ops[0]); 2015 } 2016 2017 // If we are left with a constant zero being added, strip it off. 2018 if (LHSC->getValue()->isZero()) { 2019 Ops.erase(Ops.begin()); 2020 --Idx; 2021 } 2022 2023 if (Ops.size() == 1) return Ops[0]; 2024 } 2025 2026 // Okay, check to see if the same value occurs in the operand list more than 2027 // once. If so, merge them together into an multiply expression. Since we 2028 // sorted the list, these values are required to be adjacent. 2029 Type *Ty = Ops[0]->getType(); 2030 bool FoundMatch = false; 2031 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2032 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2033 // Scan ahead to count how many equal operands there are. 2034 unsigned Count = 2; 2035 while (i+Count != e && Ops[i+Count] == Ops[i]) 2036 ++Count; 2037 // Merge the values into a multiply. 2038 const SCEV *Scale = getConstant(Ty, Count); 2039 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2040 if (Ops.size() == Count) 2041 return Mul; 2042 Ops[i] = Mul; 2043 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2044 --i; e -= Count - 1; 2045 FoundMatch = true; 2046 } 2047 if (FoundMatch) 2048 return getAddExpr(Ops, Flags); 2049 2050 // Check for truncates. If all the operands are truncated from the same 2051 // type, see if factoring out the truncate would permit the result to be 2052 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2053 // if the contents of the resulting outer trunc fold to something simple. 2054 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2055 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2056 Type *DstType = Trunc->getType(); 2057 Type *SrcType = Trunc->getOperand()->getType(); 2058 SmallVector<const SCEV *, 8> LargeOps; 2059 bool Ok = true; 2060 // Check all the operands to see if they can be represented in the 2061 // source type of the truncate. 2062 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2063 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2064 if (T->getOperand()->getType() != SrcType) { 2065 Ok = false; 2066 break; 2067 } 2068 LargeOps.push_back(T->getOperand()); 2069 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2070 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2071 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2072 SmallVector<const SCEV *, 8> LargeMulOps; 2073 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2074 if (const SCEVTruncateExpr *T = 2075 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2076 if (T->getOperand()->getType() != SrcType) { 2077 Ok = false; 2078 break; 2079 } 2080 LargeMulOps.push_back(T->getOperand()); 2081 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2082 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2083 } else { 2084 Ok = false; 2085 break; 2086 } 2087 } 2088 if (Ok) 2089 LargeOps.push_back(getMulExpr(LargeMulOps)); 2090 } else { 2091 Ok = false; 2092 break; 2093 } 2094 } 2095 if (Ok) { 2096 // Evaluate the expression in the larger type. 2097 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2098 // If it folds to something simple, use it. Otherwise, don't. 2099 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2100 return getTruncateExpr(Fold, DstType); 2101 } 2102 } 2103 2104 // Skip past any other cast SCEVs. 2105 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2106 ++Idx; 2107 2108 // If there are add operands they would be next. 2109 if (Idx < Ops.size()) { 2110 bool DeletedAdd = false; 2111 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2112 // If we have an add, expand the add operands onto the end of the operands 2113 // list. 2114 Ops.erase(Ops.begin()+Idx); 2115 Ops.append(Add->op_begin(), Add->op_end()); 2116 DeletedAdd = true; 2117 } 2118 2119 // If we deleted at least one add, we added operands to the end of the list, 2120 // and they are not necessarily sorted. Recurse to resort and resimplify 2121 // any operands we just acquired. 2122 if (DeletedAdd) 2123 return getAddExpr(Ops); 2124 } 2125 2126 // Skip over the add expression until we get to a multiply. 2127 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2128 ++Idx; 2129 2130 // Check to see if there are any folding opportunities present with 2131 // operands multiplied by constant values. 2132 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2133 uint64_t BitWidth = getTypeSizeInBits(Ty); 2134 DenseMap<const SCEV *, APInt> M; 2135 SmallVector<const SCEV *, 8> NewOps; 2136 APInt AccumulatedConstant(BitWidth, 0); 2137 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2138 Ops.data(), Ops.size(), 2139 APInt(BitWidth, 1), *this)) { 2140 // Some interesting folding opportunity is present, so its worthwhile to 2141 // re-generate the operands list. Group the operands by constant scale, 2142 // to avoid multiplying by the same constant scale multiple times. 2143 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2144 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2145 E = NewOps.end(); I != E; ++I) 2146 MulOpLists[M.find(*I)->second].push_back(*I); 2147 // Re-generate the operands list. 2148 Ops.clear(); 2149 if (AccumulatedConstant != 0) 2150 Ops.push_back(getConstant(AccumulatedConstant)); 2151 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2152 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2153 if (I->first != 0) 2154 Ops.push_back(getMulExpr(getConstant(I->first), 2155 getAddExpr(I->second))); 2156 if (Ops.empty()) 2157 return getZero(Ty); 2158 if (Ops.size() == 1) 2159 return Ops[0]; 2160 return getAddExpr(Ops); 2161 } 2162 } 2163 2164 // If we are adding something to a multiply expression, make sure the 2165 // something is not already an operand of the multiply. If so, merge it into 2166 // the multiply. 2167 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2168 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2169 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2170 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2171 if (isa<SCEVConstant>(MulOpSCEV)) 2172 continue; 2173 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2174 if (MulOpSCEV == Ops[AddOp]) { 2175 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2176 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2177 if (Mul->getNumOperands() != 2) { 2178 // If the multiply has more than two operands, we must get the 2179 // Y*Z term. 2180 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2181 Mul->op_begin()+MulOp); 2182 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2183 InnerMul = getMulExpr(MulOps); 2184 } 2185 const SCEV *One = getOne(Ty); 2186 const SCEV *AddOne = getAddExpr(One, InnerMul); 2187 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2188 if (Ops.size() == 2) return OuterMul; 2189 if (AddOp < Idx) { 2190 Ops.erase(Ops.begin()+AddOp); 2191 Ops.erase(Ops.begin()+Idx-1); 2192 } else { 2193 Ops.erase(Ops.begin()+Idx); 2194 Ops.erase(Ops.begin()+AddOp-1); 2195 } 2196 Ops.push_back(OuterMul); 2197 return getAddExpr(Ops); 2198 } 2199 2200 // Check this multiply against other multiplies being added together. 2201 for (unsigned OtherMulIdx = Idx+1; 2202 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2203 ++OtherMulIdx) { 2204 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2205 // If MulOp occurs in OtherMul, we can fold the two multiplies 2206 // together. 2207 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2208 OMulOp != e; ++OMulOp) 2209 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2210 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2211 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2212 if (Mul->getNumOperands() != 2) { 2213 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2214 Mul->op_begin()+MulOp); 2215 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2216 InnerMul1 = getMulExpr(MulOps); 2217 } 2218 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2219 if (OtherMul->getNumOperands() != 2) { 2220 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2221 OtherMul->op_begin()+OMulOp); 2222 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2223 InnerMul2 = getMulExpr(MulOps); 2224 } 2225 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2226 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2227 if (Ops.size() == 2) return OuterMul; 2228 Ops.erase(Ops.begin()+Idx); 2229 Ops.erase(Ops.begin()+OtherMulIdx-1); 2230 Ops.push_back(OuterMul); 2231 return getAddExpr(Ops); 2232 } 2233 } 2234 } 2235 } 2236 2237 // If there are any add recurrences in the operands list, see if any other 2238 // added values are loop invariant. If so, we can fold them into the 2239 // recurrence. 2240 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2241 ++Idx; 2242 2243 // Scan over all recurrences, trying to fold loop invariants into them. 2244 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2245 // Scan all of the other operands to this add and add them to the vector if 2246 // they are loop invariant w.r.t. the recurrence. 2247 SmallVector<const SCEV *, 8> LIOps; 2248 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2249 const Loop *AddRecLoop = AddRec->getLoop(); 2250 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2251 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2252 LIOps.push_back(Ops[i]); 2253 Ops.erase(Ops.begin()+i); 2254 --i; --e; 2255 } 2256 2257 // If we found some loop invariants, fold them into the recurrence. 2258 if (!LIOps.empty()) { 2259 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2260 LIOps.push_back(AddRec->getStart()); 2261 2262 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2263 AddRec->op_end()); 2264 AddRecOps[0] = getAddExpr(LIOps); 2265 2266 // Build the new addrec. Propagate the NUW and NSW flags if both the 2267 // outer add and the inner addrec are guaranteed to have no overflow. 2268 // Always propagate NW. 2269 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2270 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2271 2272 // If all of the other operands were loop invariant, we are done. 2273 if (Ops.size() == 1) return NewRec; 2274 2275 // Otherwise, add the folded AddRec by the non-invariant parts. 2276 for (unsigned i = 0;; ++i) 2277 if (Ops[i] == AddRec) { 2278 Ops[i] = NewRec; 2279 break; 2280 } 2281 return getAddExpr(Ops); 2282 } 2283 2284 // Okay, if there weren't any loop invariants to be folded, check to see if 2285 // there are multiple AddRec's with the same loop induction variable being 2286 // added together. If so, we can fold them. 2287 for (unsigned OtherIdx = Idx+1; 2288 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2289 ++OtherIdx) 2290 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2291 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2292 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2293 AddRec->op_end()); 2294 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2295 ++OtherIdx) 2296 if (const SCEVAddRecExpr *OtherAddRec = 2297 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2298 if (OtherAddRec->getLoop() == AddRecLoop) { 2299 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2300 i != e; ++i) { 2301 if (i >= AddRecOps.size()) { 2302 AddRecOps.append(OtherAddRec->op_begin()+i, 2303 OtherAddRec->op_end()); 2304 break; 2305 } 2306 AddRecOps[i] = getAddExpr(AddRecOps[i], 2307 OtherAddRec->getOperand(i)); 2308 } 2309 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2310 } 2311 // Step size has changed, so we cannot guarantee no self-wraparound. 2312 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2313 return getAddExpr(Ops); 2314 } 2315 2316 // Otherwise couldn't fold anything into this recurrence. Move onto the 2317 // next one. 2318 } 2319 2320 // Okay, it looks like we really DO need an add expr. Check to see if we 2321 // already have one, otherwise create a new one. 2322 FoldingSetNodeID ID; 2323 ID.AddInteger(scAddExpr); 2324 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2325 ID.AddPointer(Ops[i]); 2326 void *IP = nullptr; 2327 SCEVAddExpr *S = 2328 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2329 if (!S) { 2330 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2331 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2332 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2333 O, Ops.size()); 2334 UniqueSCEVs.InsertNode(S, IP); 2335 } 2336 S->setNoWrapFlags(Flags); 2337 return S; 2338 } 2339 2340 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2341 uint64_t k = i*j; 2342 if (j > 1 && k / j != i) Overflow = true; 2343 return k; 2344 } 2345 2346 /// Compute the result of "n choose k", the binomial coefficient. If an 2347 /// intermediate computation overflows, Overflow will be set and the return will 2348 /// be garbage. Overflow is not cleared on absence of overflow. 2349 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2350 // We use the multiplicative formula: 2351 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2352 // At each iteration, we take the n-th term of the numeral and divide by the 2353 // (k-n)th term of the denominator. This division will always produce an 2354 // integral result, and helps reduce the chance of overflow in the 2355 // intermediate computations. However, we can still overflow even when the 2356 // final result would fit. 2357 2358 if (n == 0 || n == k) return 1; 2359 if (k > n) return 0; 2360 2361 if (k > n/2) 2362 k = n-k; 2363 2364 uint64_t r = 1; 2365 for (uint64_t i = 1; i <= k; ++i) { 2366 r = umul_ov(r, n-(i-1), Overflow); 2367 r /= i; 2368 } 2369 return r; 2370 } 2371 2372 /// Determine if any of the operands in this SCEV are a constant or if 2373 /// any of the add or multiply expressions in this SCEV contain a constant. 2374 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2375 SmallVector<const SCEV *, 4> Ops; 2376 Ops.push_back(StartExpr); 2377 while (!Ops.empty()) { 2378 const SCEV *CurrentExpr = Ops.pop_back_val(); 2379 if (isa<SCEVConstant>(*CurrentExpr)) 2380 return true; 2381 2382 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2383 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2384 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2385 } 2386 } 2387 return false; 2388 } 2389 2390 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2391 /// possible. 2392 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2393 SCEV::NoWrapFlags Flags) { 2394 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2395 "only nuw or nsw allowed"); 2396 assert(!Ops.empty() && "Cannot get empty mul!"); 2397 if (Ops.size() == 1) return Ops[0]; 2398 #ifndef NDEBUG 2399 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2400 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2401 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2402 "SCEVMulExpr operand types don't match!"); 2403 #endif 2404 2405 // Sort by complexity, this groups all similar expression types together. 2406 GroupByComplexity(Ops, &LI); 2407 2408 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2409 2410 // If there are any constants, fold them together. 2411 unsigned Idx = 0; 2412 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2413 2414 // C1*(C2+V) -> C1*C2 + C1*V 2415 if (Ops.size() == 2) 2416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2417 // If any of Add's ops are Adds or Muls with a constant, 2418 // apply this transformation as well. 2419 if (Add->getNumOperands() == 2) 2420 if (containsConstantSomewhere(Add)) 2421 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2422 getMulExpr(LHSC, Add->getOperand(1))); 2423 2424 ++Idx; 2425 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2426 // We found two constants, fold them together! 2427 ConstantInt *Fold = ConstantInt::get(getContext(), 2428 LHSC->getValue()->getValue() * 2429 RHSC->getValue()->getValue()); 2430 Ops[0] = getConstant(Fold); 2431 Ops.erase(Ops.begin()+1); // Erase the folded element 2432 if (Ops.size() == 1) return Ops[0]; 2433 LHSC = cast<SCEVConstant>(Ops[0]); 2434 } 2435 2436 // If we are left with a constant one being multiplied, strip it off. 2437 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2438 Ops.erase(Ops.begin()); 2439 --Idx; 2440 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2441 // If we have a multiply of zero, it will always be zero. 2442 return Ops[0]; 2443 } else if (Ops[0]->isAllOnesValue()) { 2444 // If we have a mul by -1 of an add, try distributing the -1 among the 2445 // add operands. 2446 if (Ops.size() == 2) { 2447 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2448 SmallVector<const SCEV *, 4> NewOps; 2449 bool AnyFolded = false; 2450 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2451 E = Add->op_end(); I != E; ++I) { 2452 const SCEV *Mul = getMulExpr(Ops[0], *I); 2453 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2454 NewOps.push_back(Mul); 2455 } 2456 if (AnyFolded) 2457 return getAddExpr(NewOps); 2458 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2459 // Negation preserves a recurrence's no self-wrap property. 2460 SmallVector<const SCEV *, 4> Operands; 2461 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2462 E = AddRec->op_end(); I != E; ++I) { 2463 Operands.push_back(getMulExpr(Ops[0], *I)); 2464 } 2465 return getAddRecExpr(Operands, AddRec->getLoop(), 2466 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2467 } 2468 } 2469 } 2470 2471 if (Ops.size() == 1) 2472 return Ops[0]; 2473 } 2474 2475 // Skip over the add expression until we get to a multiply. 2476 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2477 ++Idx; 2478 2479 // If there are mul operands inline them all into this expression. 2480 if (Idx < Ops.size()) { 2481 bool DeletedMul = false; 2482 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2483 // If we have an mul, expand the mul operands onto the end of the operands 2484 // list. 2485 Ops.erase(Ops.begin()+Idx); 2486 Ops.append(Mul->op_begin(), Mul->op_end()); 2487 DeletedMul = true; 2488 } 2489 2490 // If we deleted at least one mul, we added operands to the end of the list, 2491 // and they are not necessarily sorted. Recurse to resort and resimplify 2492 // any operands we just acquired. 2493 if (DeletedMul) 2494 return getMulExpr(Ops); 2495 } 2496 2497 // If there are any add recurrences in the operands list, see if any other 2498 // added values are loop invariant. If so, we can fold them into the 2499 // recurrence. 2500 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2501 ++Idx; 2502 2503 // Scan over all recurrences, trying to fold loop invariants into them. 2504 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2505 // Scan all of the other operands to this mul and add them to the vector if 2506 // they are loop invariant w.r.t. the recurrence. 2507 SmallVector<const SCEV *, 8> LIOps; 2508 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2509 const Loop *AddRecLoop = AddRec->getLoop(); 2510 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2511 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2512 LIOps.push_back(Ops[i]); 2513 Ops.erase(Ops.begin()+i); 2514 --i; --e; 2515 } 2516 2517 // If we found some loop invariants, fold them into the recurrence. 2518 if (!LIOps.empty()) { 2519 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2520 SmallVector<const SCEV *, 4> NewOps; 2521 NewOps.reserve(AddRec->getNumOperands()); 2522 const SCEV *Scale = getMulExpr(LIOps); 2523 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2524 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2525 2526 // Build the new addrec. Propagate the NUW and NSW flags if both the 2527 // outer mul and the inner addrec are guaranteed to have no overflow. 2528 // 2529 // No self-wrap cannot be guaranteed after changing the step size, but 2530 // will be inferred if either NUW or NSW is true. 2531 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2532 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2533 2534 // If all of the other operands were loop invariant, we are done. 2535 if (Ops.size() == 1) return NewRec; 2536 2537 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2538 for (unsigned i = 0;; ++i) 2539 if (Ops[i] == AddRec) { 2540 Ops[i] = NewRec; 2541 break; 2542 } 2543 return getMulExpr(Ops); 2544 } 2545 2546 // Okay, if there weren't any loop invariants to be folded, check to see if 2547 // there are multiple AddRec's with the same loop induction variable being 2548 // multiplied together. If so, we can fold them. 2549 2550 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2551 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2552 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2553 // ]]],+,...up to x=2n}. 2554 // Note that the arguments to choose() are always integers with values 2555 // known at compile time, never SCEV objects. 2556 // 2557 // The implementation avoids pointless extra computations when the two 2558 // addrec's are of different length (mathematically, it's equivalent to 2559 // an infinite stream of zeros on the right). 2560 bool OpsModified = false; 2561 for (unsigned OtherIdx = Idx+1; 2562 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2563 ++OtherIdx) { 2564 const SCEVAddRecExpr *OtherAddRec = 2565 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2566 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2567 continue; 2568 2569 bool Overflow = false; 2570 Type *Ty = AddRec->getType(); 2571 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2572 SmallVector<const SCEV*, 7> AddRecOps; 2573 for (int x = 0, xe = AddRec->getNumOperands() + 2574 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2575 const SCEV *Term = getZero(Ty); 2576 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2577 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2578 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2579 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2580 z < ze && !Overflow; ++z) { 2581 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2582 uint64_t Coeff; 2583 if (LargerThan64Bits) 2584 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2585 else 2586 Coeff = Coeff1*Coeff2; 2587 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2588 const SCEV *Term1 = AddRec->getOperand(y-z); 2589 const SCEV *Term2 = OtherAddRec->getOperand(z); 2590 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2591 } 2592 } 2593 AddRecOps.push_back(Term); 2594 } 2595 if (!Overflow) { 2596 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2597 SCEV::FlagAnyWrap); 2598 if (Ops.size() == 2) return NewAddRec; 2599 Ops[Idx] = NewAddRec; 2600 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2601 OpsModified = true; 2602 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2603 if (!AddRec) 2604 break; 2605 } 2606 } 2607 if (OpsModified) 2608 return getMulExpr(Ops); 2609 2610 // Otherwise couldn't fold anything into this recurrence. Move onto the 2611 // next one. 2612 } 2613 2614 // Okay, it looks like we really DO need an mul expr. Check to see if we 2615 // already have one, otherwise create a new one. 2616 FoldingSetNodeID ID; 2617 ID.AddInteger(scMulExpr); 2618 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2619 ID.AddPointer(Ops[i]); 2620 void *IP = nullptr; 2621 SCEVMulExpr *S = 2622 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2623 if (!S) { 2624 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2625 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2626 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2627 O, Ops.size()); 2628 UniqueSCEVs.InsertNode(S, IP); 2629 } 2630 S->setNoWrapFlags(Flags); 2631 return S; 2632 } 2633 2634 /// getUDivExpr - Get a canonical unsigned division expression, or something 2635 /// simpler if possible. 2636 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2637 const SCEV *RHS) { 2638 assert(getEffectiveSCEVType(LHS->getType()) == 2639 getEffectiveSCEVType(RHS->getType()) && 2640 "SCEVUDivExpr operand types don't match!"); 2641 2642 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2643 if (RHSC->getValue()->equalsInt(1)) 2644 return LHS; // X udiv 1 --> x 2645 // If the denominator is zero, the result of the udiv is undefined. Don't 2646 // try to analyze it, because the resolution chosen here may differ from 2647 // the resolution chosen in other parts of the compiler. 2648 if (!RHSC->getValue()->isZero()) { 2649 // Determine if the division can be folded into the operands of 2650 // its operands. 2651 // TODO: Generalize this to non-constants by using known-bits information. 2652 Type *Ty = LHS->getType(); 2653 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2654 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2655 // For non-power-of-two values, effectively round the value up to the 2656 // nearest power of two. 2657 if (!RHSC->getValue()->getValue().isPowerOf2()) 2658 ++MaxShiftAmt; 2659 IntegerType *ExtTy = 2660 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2662 if (const SCEVConstant *Step = 2663 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2664 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2665 const APInt &StepInt = Step->getValue()->getValue(); 2666 const APInt &DivInt = RHSC->getValue()->getValue(); 2667 if (!StepInt.urem(DivInt) && 2668 getZeroExtendExpr(AR, ExtTy) == 2669 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2670 getZeroExtendExpr(Step, ExtTy), 2671 AR->getLoop(), SCEV::FlagAnyWrap)) { 2672 SmallVector<const SCEV *, 4> Operands; 2673 for (const SCEV *Op : AR->operands()) 2674 Operands.push_back(getUDivExpr(Op, RHS)); 2675 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2676 } 2677 /// Get a canonical UDivExpr for a recurrence. 2678 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2679 // We can currently only fold X%N if X is constant. 2680 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2681 if (StartC && !DivInt.urem(StepInt) && 2682 getZeroExtendExpr(AR, ExtTy) == 2683 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2684 getZeroExtendExpr(Step, ExtTy), 2685 AR->getLoop(), SCEV::FlagAnyWrap)) { 2686 const APInt &StartInt = StartC->getValue()->getValue(); 2687 const APInt &StartRem = StartInt.urem(StepInt); 2688 if (StartRem != 0) 2689 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2690 AR->getLoop(), SCEV::FlagNW); 2691 } 2692 } 2693 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2694 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2695 SmallVector<const SCEV *, 4> Operands; 2696 for (const SCEV *Op : M->operands()) 2697 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2698 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2699 // Find an operand that's safely divisible. 2700 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2701 const SCEV *Op = M->getOperand(i); 2702 const SCEV *Div = getUDivExpr(Op, RHSC); 2703 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2704 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2705 M->op_end()); 2706 Operands[i] = Div; 2707 return getMulExpr(Operands); 2708 } 2709 } 2710 } 2711 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2712 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2713 SmallVector<const SCEV *, 4> Operands; 2714 for (const SCEV *Op : A->operands()) 2715 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2716 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2717 Operands.clear(); 2718 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2719 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2720 if (isa<SCEVUDivExpr>(Op) || 2721 getMulExpr(Op, RHS) != A->getOperand(i)) 2722 break; 2723 Operands.push_back(Op); 2724 } 2725 if (Operands.size() == A->getNumOperands()) 2726 return getAddExpr(Operands); 2727 } 2728 } 2729 2730 // Fold if both operands are constant. 2731 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2732 Constant *LHSCV = LHSC->getValue(); 2733 Constant *RHSCV = RHSC->getValue(); 2734 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2735 RHSCV))); 2736 } 2737 } 2738 } 2739 2740 FoldingSetNodeID ID; 2741 ID.AddInteger(scUDivExpr); 2742 ID.AddPointer(LHS); 2743 ID.AddPointer(RHS); 2744 void *IP = nullptr; 2745 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2746 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2747 LHS, RHS); 2748 UniqueSCEVs.InsertNode(S, IP); 2749 return S; 2750 } 2751 2752 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2753 APInt A = C1->getValue()->getValue().abs(); 2754 APInt B = C2->getValue()->getValue().abs(); 2755 uint32_t ABW = A.getBitWidth(); 2756 uint32_t BBW = B.getBitWidth(); 2757 2758 if (ABW > BBW) 2759 B = B.zext(ABW); 2760 else if (ABW < BBW) 2761 A = A.zext(BBW); 2762 2763 return APIntOps::GreatestCommonDivisor(A, B); 2764 } 2765 2766 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2767 /// something simpler if possible. There is no representation for an exact udiv 2768 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2769 /// We can't do this when it's not exact because the udiv may be clearing bits. 2770 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2771 const SCEV *RHS) { 2772 // TODO: we could try to find factors in all sorts of things, but for now we 2773 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2774 // end of this file for inspiration. 2775 2776 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2777 if (!Mul) 2778 return getUDivExpr(LHS, RHS); 2779 2780 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2781 // If the mulexpr multiplies by a constant, then that constant must be the 2782 // first element of the mulexpr. 2783 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2784 if (LHSCst == RHSCst) { 2785 SmallVector<const SCEV *, 2> Operands; 2786 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2787 return getMulExpr(Operands); 2788 } 2789 2790 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2791 // that there's a factor provided by one of the other terms. We need to 2792 // check. 2793 APInt Factor = gcd(LHSCst, RHSCst); 2794 if (!Factor.isIntN(1)) { 2795 LHSCst = cast<SCEVConstant>( 2796 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2797 RHSCst = cast<SCEVConstant>( 2798 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2799 SmallVector<const SCEV *, 2> Operands; 2800 Operands.push_back(LHSCst); 2801 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2802 LHS = getMulExpr(Operands); 2803 RHS = RHSCst; 2804 Mul = dyn_cast<SCEVMulExpr>(LHS); 2805 if (!Mul) 2806 return getUDivExactExpr(LHS, RHS); 2807 } 2808 } 2809 } 2810 2811 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2812 if (Mul->getOperand(i) == RHS) { 2813 SmallVector<const SCEV *, 2> Operands; 2814 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2815 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2816 return getMulExpr(Operands); 2817 } 2818 } 2819 2820 return getUDivExpr(LHS, RHS); 2821 } 2822 2823 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2824 /// Simplify the expression as much as possible. 2825 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2826 const Loop *L, 2827 SCEV::NoWrapFlags Flags) { 2828 SmallVector<const SCEV *, 4> Operands; 2829 Operands.push_back(Start); 2830 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2831 if (StepChrec->getLoop() == L) { 2832 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2833 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2834 } 2835 2836 Operands.push_back(Step); 2837 return getAddRecExpr(Operands, L, Flags); 2838 } 2839 2840 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2841 /// Simplify the expression as much as possible. 2842 const SCEV * 2843 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2844 const Loop *L, SCEV::NoWrapFlags Flags) { 2845 if (Operands.size() == 1) return Operands[0]; 2846 #ifndef NDEBUG 2847 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2848 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2849 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2850 "SCEVAddRecExpr operand types don't match!"); 2851 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2852 assert(isLoopInvariant(Operands[i], L) && 2853 "SCEVAddRecExpr operand is not loop-invariant!"); 2854 #endif 2855 2856 if (Operands.back()->isZero()) { 2857 Operands.pop_back(); 2858 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2859 } 2860 2861 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2862 // use that information to infer NUW and NSW flags. However, computing a 2863 // BE count requires calling getAddRecExpr, so we may not yet have a 2864 // meaningful BE count at this point (and if we don't, we'd be stuck 2865 // with a SCEVCouldNotCompute as the cached BE count). 2866 2867 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2868 2869 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2870 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2871 const Loop *NestedLoop = NestedAR->getLoop(); 2872 if (L->contains(NestedLoop) 2873 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2874 : (!NestedLoop->contains(L) && 2875 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2876 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2877 NestedAR->op_end()); 2878 Operands[0] = NestedAR->getStart(); 2879 // AddRecs require their operands be loop-invariant with respect to their 2880 // loops. Don't perform this transformation if it would break this 2881 // requirement. 2882 bool AllInvariant = 2883 std::all_of(Operands.begin(), Operands.end(), 2884 [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2885 2886 if (AllInvariant) { 2887 // Create a recurrence for the outer loop with the same step size. 2888 // 2889 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2890 // inner recurrence has the same property. 2891 SCEV::NoWrapFlags OuterFlags = 2892 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2893 2894 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2895 AllInvariant = std::all_of( 2896 NestedOperands.begin(), NestedOperands.end(), 2897 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); }); 2898 2899 if (AllInvariant) { 2900 // Ok, both add recurrences are valid after the transformation. 2901 // 2902 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2903 // the outer recurrence has the same property. 2904 SCEV::NoWrapFlags InnerFlags = 2905 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2906 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2907 } 2908 } 2909 // Reset Operands to its original state. 2910 Operands[0] = NestedAR; 2911 } 2912 } 2913 2914 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2915 // already have one, otherwise create a new one. 2916 FoldingSetNodeID ID; 2917 ID.AddInteger(scAddRecExpr); 2918 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2919 ID.AddPointer(Operands[i]); 2920 ID.AddPointer(L); 2921 void *IP = nullptr; 2922 SCEVAddRecExpr *S = 2923 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2924 if (!S) { 2925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2926 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2927 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2928 O, Operands.size(), L); 2929 UniqueSCEVs.InsertNode(S, IP); 2930 } 2931 S->setNoWrapFlags(Flags); 2932 return S; 2933 } 2934 2935 const SCEV * 2936 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2937 const SmallVectorImpl<const SCEV *> &IndexExprs, 2938 bool InBounds) { 2939 // getSCEV(Base)->getType() has the same address space as Base->getType() 2940 // because SCEV::getType() preserves the address space. 2941 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2942 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2943 // instruction to its SCEV, because the Instruction may be guarded by control 2944 // flow and the no-overflow bits may not be valid for the expression in any 2945 // context. This can be fixed similarly to how these flags are handled for 2946 // adds. 2947 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2948 2949 const SCEV *TotalOffset = getZero(IntPtrTy); 2950 // The address space is unimportant. The first thing we do on CurTy is getting 2951 // its element type. 2952 Type *CurTy = PointerType::getUnqual(PointeeType); 2953 for (const SCEV *IndexExpr : IndexExprs) { 2954 // Compute the (potentially symbolic) offset in bytes for this index. 2955 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2956 // For a struct, add the member offset. 2957 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2958 unsigned FieldNo = Index->getZExtValue(); 2959 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2960 2961 // Add the field offset to the running total offset. 2962 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2963 2964 // Update CurTy to the type of the field at Index. 2965 CurTy = STy->getTypeAtIndex(Index); 2966 } else { 2967 // Update CurTy to its element type. 2968 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2969 // For an array, add the element offset, explicitly scaled. 2970 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2971 // Getelementptr indices are signed. 2972 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2973 2974 // Multiply the index by the element size to compute the element offset. 2975 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2976 2977 // Add the element offset to the running total offset. 2978 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2979 } 2980 } 2981 2982 // Add the total offset from all the GEP indices to the base. 2983 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2984 } 2985 2986 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2987 const SCEV *RHS) { 2988 SmallVector<const SCEV *, 2> Ops; 2989 Ops.push_back(LHS); 2990 Ops.push_back(RHS); 2991 return getSMaxExpr(Ops); 2992 } 2993 2994 const SCEV * 2995 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2996 assert(!Ops.empty() && "Cannot get empty smax!"); 2997 if (Ops.size() == 1) return Ops[0]; 2998 #ifndef NDEBUG 2999 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3000 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3001 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3002 "SCEVSMaxExpr operand types don't match!"); 3003 #endif 3004 3005 // Sort by complexity, this groups all similar expression types together. 3006 GroupByComplexity(Ops, &LI); 3007 3008 // If there are any constants, fold them together. 3009 unsigned Idx = 0; 3010 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3011 ++Idx; 3012 assert(Idx < Ops.size()); 3013 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3014 // We found two constants, fold them together! 3015 ConstantInt *Fold = ConstantInt::get(getContext(), 3016 APIntOps::smax(LHSC->getValue()->getValue(), 3017 RHSC->getValue()->getValue())); 3018 Ops[0] = getConstant(Fold); 3019 Ops.erase(Ops.begin()+1); // Erase the folded element 3020 if (Ops.size() == 1) return Ops[0]; 3021 LHSC = cast<SCEVConstant>(Ops[0]); 3022 } 3023 3024 // If we are left with a constant minimum-int, strip it off. 3025 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3026 Ops.erase(Ops.begin()); 3027 --Idx; 3028 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3029 // If we have an smax with a constant maximum-int, it will always be 3030 // maximum-int. 3031 return Ops[0]; 3032 } 3033 3034 if (Ops.size() == 1) return Ops[0]; 3035 } 3036 3037 // Find the first SMax 3038 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3039 ++Idx; 3040 3041 // Check to see if one of the operands is an SMax. If so, expand its operands 3042 // onto our operand list, and recurse to simplify. 3043 if (Idx < Ops.size()) { 3044 bool DeletedSMax = false; 3045 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3046 Ops.erase(Ops.begin()+Idx); 3047 Ops.append(SMax->op_begin(), SMax->op_end()); 3048 DeletedSMax = true; 3049 } 3050 3051 if (DeletedSMax) 3052 return getSMaxExpr(Ops); 3053 } 3054 3055 // Okay, check to see if the same value occurs in the operand list twice. If 3056 // so, delete one. Since we sorted the list, these values are required to 3057 // be adjacent. 3058 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3059 // X smax Y smax Y --> X smax Y 3060 // X smax Y --> X, if X is always greater than Y 3061 if (Ops[i] == Ops[i+1] || 3062 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3063 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3064 --i; --e; 3065 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3066 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3067 --i; --e; 3068 } 3069 3070 if (Ops.size() == 1) return Ops[0]; 3071 3072 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3073 3074 // Okay, it looks like we really DO need an smax expr. Check to see if we 3075 // already have one, otherwise create a new one. 3076 FoldingSetNodeID ID; 3077 ID.AddInteger(scSMaxExpr); 3078 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3079 ID.AddPointer(Ops[i]); 3080 void *IP = nullptr; 3081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3082 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3083 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3084 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3085 O, Ops.size()); 3086 UniqueSCEVs.InsertNode(S, IP); 3087 return S; 3088 } 3089 3090 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3091 const SCEV *RHS) { 3092 SmallVector<const SCEV *, 2> Ops; 3093 Ops.push_back(LHS); 3094 Ops.push_back(RHS); 3095 return getUMaxExpr(Ops); 3096 } 3097 3098 const SCEV * 3099 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3100 assert(!Ops.empty() && "Cannot get empty umax!"); 3101 if (Ops.size() == 1) return Ops[0]; 3102 #ifndef NDEBUG 3103 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3104 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3105 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3106 "SCEVUMaxExpr operand types don't match!"); 3107 #endif 3108 3109 // Sort by complexity, this groups all similar expression types together. 3110 GroupByComplexity(Ops, &LI); 3111 3112 // If there are any constants, fold them together. 3113 unsigned Idx = 0; 3114 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3115 ++Idx; 3116 assert(Idx < Ops.size()); 3117 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3118 // We found two constants, fold them together! 3119 ConstantInt *Fold = ConstantInt::get(getContext(), 3120 APIntOps::umax(LHSC->getValue()->getValue(), 3121 RHSC->getValue()->getValue())); 3122 Ops[0] = getConstant(Fold); 3123 Ops.erase(Ops.begin()+1); // Erase the folded element 3124 if (Ops.size() == 1) return Ops[0]; 3125 LHSC = cast<SCEVConstant>(Ops[0]); 3126 } 3127 3128 // If we are left with a constant minimum-int, strip it off. 3129 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3130 Ops.erase(Ops.begin()); 3131 --Idx; 3132 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3133 // If we have an umax with a constant maximum-int, it will always be 3134 // maximum-int. 3135 return Ops[0]; 3136 } 3137 3138 if (Ops.size() == 1) return Ops[0]; 3139 } 3140 3141 // Find the first UMax 3142 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3143 ++Idx; 3144 3145 // Check to see if one of the operands is a UMax. If so, expand its operands 3146 // onto our operand list, and recurse to simplify. 3147 if (Idx < Ops.size()) { 3148 bool DeletedUMax = false; 3149 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3150 Ops.erase(Ops.begin()+Idx); 3151 Ops.append(UMax->op_begin(), UMax->op_end()); 3152 DeletedUMax = true; 3153 } 3154 3155 if (DeletedUMax) 3156 return getUMaxExpr(Ops); 3157 } 3158 3159 // Okay, check to see if the same value occurs in the operand list twice. If 3160 // so, delete one. Since we sorted the list, these values are required to 3161 // be adjacent. 3162 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3163 // X umax Y umax Y --> X umax Y 3164 // X umax Y --> X, if X is always greater than Y 3165 if (Ops[i] == Ops[i+1] || 3166 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3167 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3168 --i; --e; 3169 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3170 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3171 --i; --e; 3172 } 3173 3174 if (Ops.size() == 1) return Ops[0]; 3175 3176 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3177 3178 // Okay, it looks like we really DO need a umax expr. Check to see if we 3179 // already have one, otherwise create a new one. 3180 FoldingSetNodeID ID; 3181 ID.AddInteger(scUMaxExpr); 3182 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3183 ID.AddPointer(Ops[i]); 3184 void *IP = nullptr; 3185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3186 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3187 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3188 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3189 O, Ops.size()); 3190 UniqueSCEVs.InsertNode(S, IP); 3191 return S; 3192 } 3193 3194 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3195 const SCEV *RHS) { 3196 // ~smax(~x, ~y) == smin(x, y). 3197 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3198 } 3199 3200 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3201 const SCEV *RHS) { 3202 // ~umax(~x, ~y) == umin(x, y) 3203 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3204 } 3205 3206 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3207 // We can bypass creating a target-independent 3208 // constant expression and then folding it back into a ConstantInt. 3209 // This is just a compile-time optimization. 3210 return getConstant(IntTy, 3211 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3212 } 3213 3214 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3215 StructType *STy, 3216 unsigned FieldNo) { 3217 // We can bypass creating a target-independent 3218 // constant expression and then folding it back into a ConstantInt. 3219 // This is just a compile-time optimization. 3220 return getConstant( 3221 IntTy, 3222 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3223 FieldNo)); 3224 } 3225 3226 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3227 // Don't attempt to do anything other than create a SCEVUnknown object 3228 // here. createSCEV only calls getUnknown after checking for all other 3229 // interesting possibilities, and any other code that calls getUnknown 3230 // is doing so in order to hide a value from SCEV canonicalization. 3231 3232 FoldingSetNodeID ID; 3233 ID.AddInteger(scUnknown); 3234 ID.AddPointer(V); 3235 void *IP = nullptr; 3236 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3237 assert(cast<SCEVUnknown>(S)->getValue() == V && 3238 "Stale SCEVUnknown in uniquing map!"); 3239 return S; 3240 } 3241 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3242 FirstUnknown); 3243 FirstUnknown = cast<SCEVUnknown>(S); 3244 UniqueSCEVs.InsertNode(S, IP); 3245 return S; 3246 } 3247 3248 //===----------------------------------------------------------------------===// 3249 // Basic SCEV Analysis and PHI Idiom Recognition Code 3250 // 3251 3252 /// isSCEVable - Test if values of the given type are analyzable within 3253 /// the SCEV framework. This primarily includes integer types, and it 3254 /// can optionally include pointer types if the ScalarEvolution class 3255 /// has access to target-specific information. 3256 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3257 // Integers and pointers are always SCEVable. 3258 return Ty->isIntegerTy() || Ty->isPointerTy(); 3259 } 3260 3261 /// getTypeSizeInBits - Return the size in bits of the specified type, 3262 /// for which isSCEVable must return true. 3263 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3264 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3265 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3266 } 3267 3268 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3269 /// the given type and which represents how SCEV will treat the given 3270 /// type, for which isSCEVable must return true. For pointer types, 3271 /// this is the pointer-sized integer type. 3272 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3273 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3274 3275 if (Ty->isIntegerTy()) 3276 return Ty; 3277 3278 // The only other support type is pointer. 3279 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3280 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3281 } 3282 3283 const SCEV *ScalarEvolution::getCouldNotCompute() { 3284 return CouldNotCompute.get(); 3285 } 3286 3287 namespace { 3288 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3289 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3290 // is set iff if find such SCEVUnknown. 3291 // 3292 struct FindInvalidSCEVUnknown { 3293 bool FindOne; 3294 FindInvalidSCEVUnknown() { FindOne = false; } 3295 bool follow(const SCEV *S) { 3296 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3297 case scConstant: 3298 return false; 3299 case scUnknown: 3300 if (!cast<SCEVUnknown>(S)->getValue()) 3301 FindOne = true; 3302 return false; 3303 default: 3304 return true; 3305 } 3306 } 3307 bool isDone() const { return FindOne; } 3308 }; 3309 } 3310 3311 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3312 FindInvalidSCEVUnknown F; 3313 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3314 ST.visitAll(S); 3315 3316 return !F.FindOne; 3317 } 3318 3319 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3320 /// expression and create a new one. 3321 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3322 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3323 3324 const SCEV *S = getExistingSCEV(V); 3325 if (S == nullptr) { 3326 S = createSCEV(V); 3327 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3328 } 3329 return S; 3330 } 3331 3332 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3333 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3334 3335 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3336 if (I != ValueExprMap.end()) { 3337 const SCEV *S = I->second; 3338 if (checkValidity(S)) 3339 return S; 3340 ValueExprMap.erase(I); 3341 } 3342 return nullptr; 3343 } 3344 3345 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3346 /// 3347 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3348 SCEV::NoWrapFlags Flags) { 3349 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3350 return getConstant( 3351 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3352 3353 Type *Ty = V->getType(); 3354 Ty = getEffectiveSCEVType(Ty); 3355 return getMulExpr( 3356 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3357 } 3358 3359 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3360 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3361 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3362 return getConstant( 3363 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3364 3365 Type *Ty = V->getType(); 3366 Ty = getEffectiveSCEVType(Ty); 3367 const SCEV *AllOnes = 3368 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3369 return getMinusSCEV(AllOnes, V); 3370 } 3371 3372 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3373 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3374 SCEV::NoWrapFlags Flags) { 3375 // Fast path: X - X --> 0. 3376 if (LHS == RHS) 3377 return getZero(LHS->getType()); 3378 3379 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3380 // makes it so that we cannot make much use of NUW. 3381 auto AddFlags = SCEV::FlagAnyWrap; 3382 const bool RHSIsNotMinSigned = 3383 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3384 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3385 // Let M be the minimum representable signed value. Then (-1)*RHS 3386 // signed-wraps if and only if RHS is M. That can happen even for 3387 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3388 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3389 // (-1)*RHS, we need to prove that RHS != M. 3390 // 3391 // If LHS is non-negative and we know that LHS - RHS does not 3392 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3393 // either by proving that RHS > M or that LHS >= 0. 3394 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3395 AddFlags = SCEV::FlagNSW; 3396 } 3397 } 3398 3399 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3400 // RHS is NSW and LHS >= 0. 3401 // 3402 // The difficulty here is that the NSW flag may have been proven 3403 // relative to a loop that is to be found in a recurrence in LHS and 3404 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3405 // larger scope than intended. 3406 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3407 3408 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3409 } 3410 3411 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3412 /// input value to the specified type. If the type must be extended, it is zero 3413 /// extended. 3414 const SCEV * 3415 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3416 Type *SrcTy = V->getType(); 3417 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3418 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3419 "Cannot truncate or zero extend with non-integer arguments!"); 3420 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3421 return V; // No conversion 3422 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3423 return getTruncateExpr(V, Ty); 3424 return getZeroExtendExpr(V, Ty); 3425 } 3426 3427 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3428 /// input value to the specified type. If the type must be extended, it is sign 3429 /// extended. 3430 const SCEV * 3431 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3432 Type *Ty) { 3433 Type *SrcTy = V->getType(); 3434 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3435 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3436 "Cannot truncate or zero extend with non-integer arguments!"); 3437 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3438 return V; // No conversion 3439 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3440 return getTruncateExpr(V, Ty); 3441 return getSignExtendExpr(V, Ty); 3442 } 3443 3444 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3445 /// input value to the specified type. If the type must be extended, it is zero 3446 /// extended. The conversion must not be narrowing. 3447 const SCEV * 3448 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3449 Type *SrcTy = V->getType(); 3450 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3451 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3452 "Cannot noop or zero extend with non-integer arguments!"); 3453 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3454 "getNoopOrZeroExtend cannot truncate!"); 3455 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3456 return V; // No conversion 3457 return getZeroExtendExpr(V, Ty); 3458 } 3459 3460 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3461 /// input value to the specified type. If the type must be extended, it is sign 3462 /// extended. The conversion must not be narrowing. 3463 const SCEV * 3464 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3465 Type *SrcTy = V->getType(); 3466 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3467 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3468 "Cannot noop or sign extend with non-integer arguments!"); 3469 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3470 "getNoopOrSignExtend cannot truncate!"); 3471 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3472 return V; // No conversion 3473 return getSignExtendExpr(V, Ty); 3474 } 3475 3476 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3477 /// the input value to the specified type. If the type must be extended, 3478 /// it is extended with unspecified bits. The conversion must not be 3479 /// narrowing. 3480 const SCEV * 3481 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3482 Type *SrcTy = V->getType(); 3483 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3484 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3485 "Cannot noop or any extend with non-integer arguments!"); 3486 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3487 "getNoopOrAnyExtend cannot truncate!"); 3488 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3489 return V; // No conversion 3490 return getAnyExtendExpr(V, Ty); 3491 } 3492 3493 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3494 /// input value to the specified type. The conversion must not be widening. 3495 const SCEV * 3496 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3497 Type *SrcTy = V->getType(); 3498 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3499 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3500 "Cannot truncate or noop with non-integer arguments!"); 3501 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3502 "getTruncateOrNoop cannot extend!"); 3503 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3504 return V; // No conversion 3505 return getTruncateExpr(V, Ty); 3506 } 3507 3508 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3509 /// the types using zero-extension, and then perform a umax operation 3510 /// with them. 3511 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3512 const SCEV *RHS) { 3513 const SCEV *PromotedLHS = LHS; 3514 const SCEV *PromotedRHS = RHS; 3515 3516 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3517 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3518 else 3519 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3520 3521 return getUMaxExpr(PromotedLHS, PromotedRHS); 3522 } 3523 3524 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3525 /// the types using zero-extension, and then perform a umin operation 3526 /// with them. 3527 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3528 const SCEV *RHS) { 3529 const SCEV *PromotedLHS = LHS; 3530 const SCEV *PromotedRHS = RHS; 3531 3532 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3533 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3534 else 3535 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3536 3537 return getUMinExpr(PromotedLHS, PromotedRHS); 3538 } 3539 3540 /// getPointerBase - Transitively follow the chain of pointer-type operands 3541 /// until reaching a SCEV that does not have a single pointer operand. This 3542 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3543 /// but corner cases do exist. 3544 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3545 // A pointer operand may evaluate to a nonpointer expression, such as null. 3546 if (!V->getType()->isPointerTy()) 3547 return V; 3548 3549 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3550 return getPointerBase(Cast->getOperand()); 3551 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3552 const SCEV *PtrOp = nullptr; 3553 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3554 I != E; ++I) { 3555 if ((*I)->getType()->isPointerTy()) { 3556 // Cannot find the base of an expression with multiple pointer operands. 3557 if (PtrOp) 3558 return V; 3559 PtrOp = *I; 3560 } 3561 } 3562 if (!PtrOp) 3563 return V; 3564 return getPointerBase(PtrOp); 3565 } 3566 return V; 3567 } 3568 3569 /// PushDefUseChildren - Push users of the given Instruction 3570 /// onto the given Worklist. 3571 static void 3572 PushDefUseChildren(Instruction *I, 3573 SmallVectorImpl<Instruction *> &Worklist) { 3574 // Push the def-use children onto the Worklist stack. 3575 for (User *U : I->users()) 3576 Worklist.push_back(cast<Instruction>(U)); 3577 } 3578 3579 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3580 /// instructions that depend on the given instruction and removes them from 3581 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3582 /// resolution. 3583 void 3584 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3585 SmallVector<Instruction *, 16> Worklist; 3586 PushDefUseChildren(PN, Worklist); 3587 3588 SmallPtrSet<Instruction *, 8> Visited; 3589 Visited.insert(PN); 3590 while (!Worklist.empty()) { 3591 Instruction *I = Worklist.pop_back_val(); 3592 if (!Visited.insert(I).second) 3593 continue; 3594 3595 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3596 if (It != ValueExprMap.end()) { 3597 const SCEV *Old = It->second; 3598 3599 // Short-circuit the def-use traversal if the symbolic name 3600 // ceases to appear in expressions. 3601 if (Old != SymName && !hasOperand(Old, SymName)) 3602 continue; 3603 3604 // SCEVUnknown for a PHI either means that it has an unrecognized 3605 // structure, it's a PHI that's in the progress of being computed 3606 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3607 // additional loop trip count information isn't going to change anything. 3608 // In the second case, createNodeForPHI will perform the necessary 3609 // updates on its own when it gets to that point. In the third, we do 3610 // want to forget the SCEVUnknown. 3611 if (!isa<PHINode>(I) || 3612 !isa<SCEVUnknown>(Old) || 3613 (I != PN && Old == SymName)) { 3614 forgetMemoizedResults(Old); 3615 ValueExprMap.erase(It); 3616 } 3617 } 3618 3619 PushDefUseChildren(I, Worklist); 3620 } 3621 } 3622 3623 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3624 const Loop *L = LI.getLoopFor(PN->getParent()); 3625 if (!L || L->getHeader() != PN->getParent()) 3626 return nullptr; 3627 3628 // The loop may have multiple entrances or multiple exits; we can analyze 3629 // this phi as an addrec if it has a unique entry value and a unique 3630 // backedge value. 3631 Value *BEValueV = nullptr, *StartValueV = nullptr; 3632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3633 Value *V = PN->getIncomingValue(i); 3634 if (L->contains(PN->getIncomingBlock(i))) { 3635 if (!BEValueV) { 3636 BEValueV = V; 3637 } else if (BEValueV != V) { 3638 BEValueV = nullptr; 3639 break; 3640 } 3641 } else if (!StartValueV) { 3642 StartValueV = V; 3643 } else if (StartValueV != V) { 3644 StartValueV = nullptr; 3645 break; 3646 } 3647 } 3648 if (BEValueV && StartValueV) { 3649 // While we are analyzing this PHI node, handle its value symbolically. 3650 const SCEV *SymbolicName = getUnknown(PN); 3651 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3652 "PHI node already processed?"); 3653 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3654 3655 // Using this symbolic name for the PHI, analyze the value coming around 3656 // the back-edge. 3657 const SCEV *BEValue = getSCEV(BEValueV); 3658 3659 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3660 // has a special value for the first iteration of the loop. 3661 3662 // If the value coming around the backedge is an add with the symbolic 3663 // value we just inserted, then we found a simple induction variable! 3664 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3665 // If there is a single occurrence of the symbolic value, replace it 3666 // with a recurrence. 3667 unsigned FoundIndex = Add->getNumOperands(); 3668 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3669 if (Add->getOperand(i) == SymbolicName) 3670 if (FoundIndex == e) { 3671 FoundIndex = i; 3672 break; 3673 } 3674 3675 if (FoundIndex != Add->getNumOperands()) { 3676 // Create an add with everything but the specified operand. 3677 SmallVector<const SCEV *, 8> Ops; 3678 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3679 if (i != FoundIndex) 3680 Ops.push_back(Add->getOperand(i)); 3681 const SCEV *Accum = getAddExpr(Ops); 3682 3683 // This is not a valid addrec if the step amount is varying each 3684 // loop iteration, but is not itself an addrec in this loop. 3685 if (isLoopInvariant(Accum, L) || 3686 (isa<SCEVAddRecExpr>(Accum) && 3687 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3688 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3689 3690 // If the increment doesn't overflow, then neither the addrec nor 3691 // the post-increment will overflow. 3692 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3693 if (OBO->getOperand(0) == PN) { 3694 if (OBO->hasNoUnsignedWrap()) 3695 Flags = setFlags(Flags, SCEV::FlagNUW); 3696 if (OBO->hasNoSignedWrap()) 3697 Flags = setFlags(Flags, SCEV::FlagNSW); 3698 } 3699 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3700 // If the increment is an inbounds GEP, then we know the address 3701 // space cannot be wrapped around. We cannot make any guarantee 3702 // about signed or unsigned overflow because pointers are 3703 // unsigned but we may have a negative index from the base 3704 // pointer. We can guarantee that no unsigned wrap occurs if the 3705 // indices form a positive value. 3706 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3707 Flags = setFlags(Flags, SCEV::FlagNW); 3708 3709 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3710 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3711 Flags = setFlags(Flags, SCEV::FlagNUW); 3712 } 3713 3714 // We cannot transfer nuw and nsw flags from subtraction 3715 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3716 // for instance. 3717 } 3718 3719 const SCEV *StartVal = getSCEV(StartValueV); 3720 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3721 3722 // Since the no-wrap flags are on the increment, they apply to the 3723 // post-incremented value as well. 3724 if (isLoopInvariant(Accum, L)) 3725 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3726 3727 // Okay, for the entire analysis of this edge we assumed the PHI 3728 // to be symbolic. We now need to go back and purge all of the 3729 // entries for the scalars that use the symbolic expression. 3730 ForgetSymbolicName(PN, SymbolicName); 3731 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3732 return PHISCEV; 3733 } 3734 } 3735 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 3736 // Otherwise, this could be a loop like this: 3737 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3738 // In this case, j = {1,+,1} and BEValue is j. 3739 // Because the other in-value of i (0) fits the evolution of BEValue 3740 // i really is an addrec evolution. 3741 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3742 const SCEV *StartVal = getSCEV(StartValueV); 3743 3744 // If StartVal = j.start - j.stride, we can use StartVal as the 3745 // initial step of the addrec evolution. 3746 if (StartVal == 3747 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { 3748 // FIXME: For constant StartVal, we should be able to infer 3749 // no-wrap flags. 3750 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), 3751 L, SCEV::FlagAnyWrap); 3752 3753 // Okay, for the entire analysis of this edge we assumed the PHI 3754 // to be symbolic. We now need to go back and purge all of the 3755 // entries for the scalars that use the symbolic expression. 3756 ForgetSymbolicName(PN, SymbolicName); 3757 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3758 return PHISCEV; 3759 } 3760 } 3761 } 3762 } 3763 3764 return nullptr; 3765 } 3766 3767 // Checks if the SCEV S is available at BB. S is considered available at BB 3768 // if S can be materialized at BB without introducing a fault. 3769 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3770 BasicBlock *BB) { 3771 struct CheckAvailable { 3772 bool TraversalDone = false; 3773 bool Available = true; 3774 3775 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3776 BasicBlock *BB = nullptr; 3777 DominatorTree &DT; 3778 3779 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3780 : L(L), BB(BB), DT(DT) {} 3781 3782 bool setUnavailable() { 3783 TraversalDone = true; 3784 Available = false; 3785 return false; 3786 } 3787 3788 bool follow(const SCEV *S) { 3789 switch (S->getSCEVType()) { 3790 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3791 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3792 // These expressions are available if their operand(s) is/are. 3793 return true; 3794 3795 case scAddRecExpr: { 3796 // We allow add recurrences that are on the loop BB is in, or some 3797 // outer loop. This guarantees availability because the value of the 3798 // add recurrence at BB is simply the "current" value of the induction 3799 // variable. We can relax this in the future; for instance an add 3800 // recurrence on a sibling dominating loop is also available at BB. 3801 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3802 if (L && (ARLoop == L || ARLoop->contains(L))) 3803 return true; 3804 3805 return setUnavailable(); 3806 } 3807 3808 case scUnknown: { 3809 // For SCEVUnknown, we check for simple dominance. 3810 const auto *SU = cast<SCEVUnknown>(S); 3811 Value *V = SU->getValue(); 3812 3813 if (isa<Argument>(V)) 3814 return false; 3815 3816 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3817 return false; 3818 3819 return setUnavailable(); 3820 } 3821 3822 case scUDivExpr: 3823 case scCouldNotCompute: 3824 // We do not try to smart about these at all. 3825 return setUnavailable(); 3826 } 3827 llvm_unreachable("switch should be fully covered!"); 3828 } 3829 3830 bool isDone() { return TraversalDone; } 3831 }; 3832 3833 CheckAvailable CA(L, BB, DT); 3834 SCEVTraversal<CheckAvailable> ST(CA); 3835 3836 ST.visitAll(S); 3837 return CA.Available; 3838 } 3839 3840 // Try to match a control flow sequence that branches out at BI and merges back 3841 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3842 // match. 3843 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3844 Value *&C, Value *&LHS, Value *&RHS) { 3845 C = BI->getCondition(); 3846 3847 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3848 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3849 3850 if (!LeftEdge.isSingleEdge()) 3851 return false; 3852 3853 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3854 3855 Use &LeftUse = Merge->getOperandUse(0); 3856 Use &RightUse = Merge->getOperandUse(1); 3857 3858 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3859 LHS = LeftUse; 3860 RHS = RightUse; 3861 return true; 3862 } 3863 3864 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3865 LHS = RightUse; 3866 RHS = LeftUse; 3867 return true; 3868 } 3869 3870 return false; 3871 } 3872 3873 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3874 if (PN->getNumIncomingValues() == 2) { 3875 const Loop *L = LI.getLoopFor(PN->getParent()); 3876 3877 // Try to match 3878 // 3879 // br %cond, label %left, label %right 3880 // left: 3881 // br label %merge 3882 // right: 3883 // br label %merge 3884 // merge: 3885 // V = phi [ %x, %left ], [ %y, %right ] 3886 // 3887 // as "select %cond, %x, %y" 3888 3889 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3890 assert(IDom && "At least the entry block should dominate PN"); 3891 3892 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3893 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3894 3895 if (BI && BI->isConditional() && 3896 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3897 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3898 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3899 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3900 } 3901 3902 return nullptr; 3903 } 3904 3905 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3906 if (const SCEV *S = createAddRecFromPHI(PN)) 3907 return S; 3908 3909 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3910 return S; 3911 3912 // If the PHI has a single incoming value, follow that value, unless the 3913 // PHI's incoming blocks are in a different loop, in which case doing so 3914 // risks breaking LCSSA form. Instcombine would normally zap these, but 3915 // it doesn't have DominatorTree information, so it may miss cases. 3916 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3917 &DT, &AC)) 3918 if (LI.replacementPreservesLCSSAForm(PN, V)) 3919 return getSCEV(V); 3920 3921 // If it's not a loop phi, we can't handle it yet. 3922 return getUnknown(PN); 3923 } 3924 3925 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3926 Value *Cond, 3927 Value *TrueVal, 3928 Value *FalseVal) { 3929 // Handle "constant" branch or select. This can occur for instance when a 3930 // loop pass transforms an inner loop and moves on to process the outer loop. 3931 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 3932 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 3933 3934 // Try to match some simple smax or umax patterns. 3935 auto *ICI = dyn_cast<ICmpInst>(Cond); 3936 if (!ICI) 3937 return getUnknown(I); 3938 3939 Value *LHS = ICI->getOperand(0); 3940 Value *RHS = ICI->getOperand(1); 3941 3942 switch (ICI->getPredicate()) { 3943 case ICmpInst::ICMP_SLT: 3944 case ICmpInst::ICMP_SLE: 3945 std::swap(LHS, RHS); 3946 // fall through 3947 case ICmpInst::ICMP_SGT: 3948 case ICmpInst::ICMP_SGE: 3949 // a >s b ? a+x : b+x -> smax(a, b)+x 3950 // a >s b ? b+x : a+x -> smin(a, b)+x 3951 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3952 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 3953 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 3954 const SCEV *LA = getSCEV(TrueVal); 3955 const SCEV *RA = getSCEV(FalseVal); 3956 const SCEV *LDiff = getMinusSCEV(LA, LS); 3957 const SCEV *RDiff = getMinusSCEV(RA, RS); 3958 if (LDiff == RDiff) 3959 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3960 LDiff = getMinusSCEV(LA, RS); 3961 RDiff = getMinusSCEV(RA, LS); 3962 if (LDiff == RDiff) 3963 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3964 } 3965 break; 3966 case ICmpInst::ICMP_ULT: 3967 case ICmpInst::ICMP_ULE: 3968 std::swap(LHS, RHS); 3969 // fall through 3970 case ICmpInst::ICMP_UGT: 3971 case ICmpInst::ICMP_UGE: 3972 // a >u b ? a+x : b+x -> umax(a, b)+x 3973 // a >u b ? b+x : a+x -> umin(a, b)+x 3974 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3975 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3976 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 3977 const SCEV *LA = getSCEV(TrueVal); 3978 const SCEV *RA = getSCEV(FalseVal); 3979 const SCEV *LDiff = getMinusSCEV(LA, LS); 3980 const SCEV *RDiff = getMinusSCEV(RA, RS); 3981 if (LDiff == RDiff) 3982 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3983 LDiff = getMinusSCEV(LA, RS); 3984 RDiff = getMinusSCEV(RA, LS); 3985 if (LDiff == RDiff) 3986 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3987 } 3988 break; 3989 case ICmpInst::ICMP_NE: 3990 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3991 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3992 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 3993 const SCEV *One = getOne(I->getType()); 3994 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3995 const SCEV *LA = getSCEV(TrueVal); 3996 const SCEV *RA = getSCEV(FalseVal); 3997 const SCEV *LDiff = getMinusSCEV(LA, LS); 3998 const SCEV *RDiff = getMinusSCEV(RA, One); 3999 if (LDiff == RDiff) 4000 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4001 } 4002 break; 4003 case ICmpInst::ICMP_EQ: 4004 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4005 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4006 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4007 const SCEV *One = getOne(I->getType()); 4008 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4009 const SCEV *LA = getSCEV(TrueVal); 4010 const SCEV *RA = getSCEV(FalseVal); 4011 const SCEV *LDiff = getMinusSCEV(LA, One); 4012 const SCEV *RDiff = getMinusSCEV(RA, LS); 4013 if (LDiff == RDiff) 4014 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4015 } 4016 break; 4017 default: 4018 break; 4019 } 4020 4021 return getUnknown(I); 4022 } 4023 4024 /// createNodeForGEP - Expand GEP instructions into add and multiply 4025 /// operations. This allows them to be analyzed by regular SCEV code. 4026 /// 4027 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4028 Value *Base = GEP->getOperand(0); 4029 // Don't attempt to analyze GEPs over unsized objects. 4030 if (!Base->getType()->getPointerElementType()->isSized()) 4031 return getUnknown(GEP); 4032 4033 SmallVector<const SCEV *, 4> IndexExprs; 4034 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4035 IndexExprs.push_back(getSCEV(*Index)); 4036 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4037 GEP->isInBounds()); 4038 } 4039 4040 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4041 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4042 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4043 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4044 uint32_t 4045 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4046 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4047 return C->getValue()->getValue().countTrailingZeros(); 4048 4049 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4050 return std::min(GetMinTrailingZeros(T->getOperand()), 4051 (uint32_t)getTypeSizeInBits(T->getType())); 4052 4053 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4054 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4055 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4056 getTypeSizeInBits(E->getType()) : OpRes; 4057 } 4058 4059 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4060 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4061 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4062 getTypeSizeInBits(E->getType()) : OpRes; 4063 } 4064 4065 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4066 // The result is the min of all operands results. 4067 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4068 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4069 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4070 return MinOpRes; 4071 } 4072 4073 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4074 // The result is the sum of all operands results. 4075 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4076 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4077 for (unsigned i = 1, e = M->getNumOperands(); 4078 SumOpRes != BitWidth && i != e; ++i) 4079 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4080 BitWidth); 4081 return SumOpRes; 4082 } 4083 4084 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4085 // The result is the min of all operands results. 4086 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4087 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4088 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4089 return MinOpRes; 4090 } 4091 4092 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4093 // The result is the min of all operands results. 4094 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4095 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4096 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4097 return MinOpRes; 4098 } 4099 4100 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4101 // The result is the min of all operands results. 4102 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4103 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4104 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4105 return MinOpRes; 4106 } 4107 4108 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4109 // For a SCEVUnknown, ask ValueTracking. 4110 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4111 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4112 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 4113 0, &AC, nullptr, &DT); 4114 return Zeros.countTrailingOnes(); 4115 } 4116 4117 // SCEVUDivExpr 4118 return 0; 4119 } 4120 4121 /// GetRangeFromMetadata - Helper method to assign a range to V from 4122 /// metadata present in the IR. 4123 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4124 if (Instruction *I = dyn_cast<Instruction>(V)) { 4125 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 4126 ConstantRange TotalRange( 4127 cast<IntegerType>(I->getType())->getBitWidth(), false); 4128 4129 unsigned NumRanges = MD->getNumOperands() / 2; 4130 assert(NumRanges >= 1); 4131 4132 for (unsigned i = 0; i < NumRanges; ++i) { 4133 ConstantInt *Lower = 4134 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 4135 ConstantInt *Upper = 4136 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 4137 ConstantRange Range(Lower->getValue(), Upper->getValue()); 4138 TotalRange = TotalRange.unionWith(Range); 4139 } 4140 4141 return TotalRange; 4142 } 4143 } 4144 4145 return None; 4146 } 4147 4148 /// getRange - Determine the range for a particular SCEV. If SignHint is 4149 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4150 /// with a "cleaner" unsigned (resp. signed) representation. 4151 /// 4152 ConstantRange 4153 ScalarEvolution::getRange(const SCEV *S, 4154 ScalarEvolution::RangeSignHint SignHint) { 4155 DenseMap<const SCEV *, ConstantRange> &Cache = 4156 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4157 : SignedRanges; 4158 4159 // See if we've computed this range already. 4160 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4161 if (I != Cache.end()) 4162 return I->second; 4163 4164 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4165 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4166 4167 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4168 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4169 4170 // If the value has known zeros, the maximum value will have those known zeros 4171 // as well. 4172 uint32_t TZ = GetMinTrailingZeros(S); 4173 if (TZ != 0) { 4174 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4175 ConservativeResult = 4176 ConstantRange(APInt::getMinValue(BitWidth), 4177 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4178 else 4179 ConservativeResult = ConstantRange( 4180 APInt::getSignedMinValue(BitWidth), 4181 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4182 } 4183 4184 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4185 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4186 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4187 X = X.add(getRange(Add->getOperand(i), SignHint)); 4188 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4189 } 4190 4191 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4192 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4193 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4194 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4195 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4196 } 4197 4198 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4199 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4200 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4201 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4202 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4203 } 4204 4205 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4206 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4207 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4208 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4209 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4210 } 4211 4212 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4213 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4214 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4215 return setRange(UDiv, SignHint, 4216 ConservativeResult.intersectWith(X.udiv(Y))); 4217 } 4218 4219 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4220 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4221 return setRange(ZExt, SignHint, 4222 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4223 } 4224 4225 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4226 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4227 return setRange(SExt, SignHint, 4228 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4229 } 4230 4231 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4232 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4233 return setRange(Trunc, SignHint, 4234 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4235 } 4236 4237 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4238 // If there's no unsigned wrap, the value will never be less than its 4239 // initial value. 4240 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4241 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4242 if (!C->getValue()->isZero()) 4243 ConservativeResult = 4244 ConservativeResult.intersectWith( 4245 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4246 4247 // If there's no signed wrap, and all the operands have the same sign or 4248 // zero, the value won't ever change sign. 4249 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4250 bool AllNonNeg = true; 4251 bool AllNonPos = true; 4252 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4253 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4254 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4255 } 4256 if (AllNonNeg) 4257 ConservativeResult = ConservativeResult.intersectWith( 4258 ConstantRange(APInt(BitWidth, 0), 4259 APInt::getSignedMinValue(BitWidth))); 4260 else if (AllNonPos) 4261 ConservativeResult = ConservativeResult.intersectWith( 4262 ConstantRange(APInt::getSignedMinValue(BitWidth), 4263 APInt(BitWidth, 1))); 4264 } 4265 4266 // TODO: non-affine addrec 4267 if (AddRec->isAffine()) { 4268 Type *Ty = AddRec->getType(); 4269 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4270 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4271 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4272 4273 // Check for overflow. This must be done with ConstantRange arithmetic 4274 // because we could be called from within the ScalarEvolution overflow 4275 // checking code. 4276 4277 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4278 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4279 ConstantRange ZExtMaxBECountRange = 4280 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4281 4282 const SCEV *Start = AddRec->getStart(); 4283 const SCEV *Step = AddRec->getStepRecurrence(*this); 4284 ConstantRange StepSRange = getSignedRange(Step); 4285 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4286 4287 ConstantRange StartURange = getUnsignedRange(Start); 4288 ConstantRange EndURange = 4289 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4290 4291 // Check for unsigned overflow. 4292 ConstantRange ZExtStartURange = 4293 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4294 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4295 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4296 ZExtEndURange) { 4297 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4298 EndURange.getUnsignedMin()); 4299 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4300 EndURange.getUnsignedMax()); 4301 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4302 if (!IsFullRange) 4303 ConservativeResult = 4304 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4305 } 4306 4307 ConstantRange StartSRange = getSignedRange(Start); 4308 ConstantRange EndSRange = 4309 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4310 4311 // Check for signed overflow. This must be done with ConstantRange 4312 // arithmetic because we could be called from within the ScalarEvolution 4313 // overflow checking code. 4314 ConstantRange SExtStartSRange = 4315 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4316 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4317 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4318 SExtEndSRange) { 4319 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4320 EndSRange.getSignedMin()); 4321 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4322 EndSRange.getSignedMax()); 4323 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4324 if (!IsFullRange) 4325 ConservativeResult = 4326 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4327 } 4328 } 4329 } 4330 4331 return setRange(AddRec, SignHint, ConservativeResult); 4332 } 4333 4334 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4335 // Check if the IR explicitly contains !range metadata. 4336 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4337 if (MDRange.hasValue()) 4338 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4339 4340 // Split here to avoid paying the compile-time cost of calling both 4341 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4342 // if needed. 4343 const DataLayout &DL = F.getParent()->getDataLayout(); 4344 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4345 // For a SCEVUnknown, ask ValueTracking. 4346 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4347 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4348 if (Ones != ~Zeros + 1) 4349 ConservativeResult = 4350 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4351 } else { 4352 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4353 "generalize as needed!"); 4354 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4355 if (NS > 1) 4356 ConservativeResult = ConservativeResult.intersectWith( 4357 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4358 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4359 } 4360 4361 return setRange(U, SignHint, ConservativeResult); 4362 } 4363 4364 return setRange(S, SignHint, ConservativeResult); 4365 } 4366 4367 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4368 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4369 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4370 4371 // Return early if there are no flags to propagate to the SCEV. 4372 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4373 if (BinOp->hasNoUnsignedWrap()) 4374 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4375 if (BinOp->hasNoSignedWrap()) 4376 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4377 if (Flags == SCEV::FlagAnyWrap) { 4378 return SCEV::FlagAnyWrap; 4379 } 4380 4381 // Here we check that BinOp is in the header of the innermost loop 4382 // containing BinOp, since we only deal with instructions in the loop 4383 // header. The actual loop we need to check later will come from an add 4384 // recurrence, but getting that requires computing the SCEV of the operands, 4385 // which can be expensive. This check we can do cheaply to rule out some 4386 // cases early. 4387 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4388 if (innermostContainingLoop == nullptr || 4389 innermostContainingLoop->getHeader() != BinOp->getParent()) 4390 return SCEV::FlagAnyWrap; 4391 4392 // Only proceed if we can prove that BinOp does not yield poison. 4393 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4394 4395 // At this point we know that if V is executed, then it does not wrap 4396 // according to at least one of NSW or NUW. If V is not executed, then we do 4397 // not know if the calculation that V represents would wrap. Multiple 4398 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4399 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4400 // derived from other instructions that map to the same SCEV. We cannot make 4401 // that guarantee for cases where V is not executed. So we need to find the 4402 // loop that V is considered in relation to and prove that V is executed for 4403 // every iteration of that loop. That implies that the value that V 4404 // calculates does not wrap anywhere in the loop, so then we can apply the 4405 // flags to the SCEV. 4406 // 4407 // We check isLoopInvariant to disambiguate in case we are adding two 4408 // recurrences from different loops, so that we know which loop to prove 4409 // that V is executed in. 4410 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4411 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4412 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4413 const int OtherOpIndex = 1 - OpIndex; 4414 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4415 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4416 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4417 return Flags; 4418 } 4419 } 4420 return SCEV::FlagAnyWrap; 4421 } 4422 4423 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4424 /// the expression. 4425 /// 4426 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4427 if (!isSCEVable(V->getType())) 4428 return getUnknown(V); 4429 4430 unsigned Opcode = Instruction::UserOp1; 4431 if (Instruction *I = dyn_cast<Instruction>(V)) { 4432 Opcode = I->getOpcode(); 4433 4434 // Don't attempt to analyze instructions in blocks that aren't 4435 // reachable. Such instructions don't matter, and they aren't required 4436 // to obey basic rules for definitions dominating uses which this 4437 // analysis depends on. 4438 if (!DT.isReachableFromEntry(I->getParent())) 4439 return getUnknown(V); 4440 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4441 Opcode = CE->getOpcode(); 4442 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4443 return getConstant(CI); 4444 else if (isa<ConstantPointerNull>(V)) 4445 return getZero(V->getType()); 4446 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4447 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4448 else 4449 return getUnknown(V); 4450 4451 Operator *U = cast<Operator>(V); 4452 switch (Opcode) { 4453 case Instruction::Add: { 4454 // The simple thing to do would be to just call getSCEV on both operands 4455 // and call getAddExpr with the result. However if we're looking at a 4456 // bunch of things all added together, this can be quite inefficient, 4457 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4458 // Instead, gather up all the operands and make a single getAddExpr call. 4459 // LLVM IR canonical form means we need only traverse the left operands. 4460 SmallVector<const SCEV *, 4> AddOps; 4461 for (Value *Op = U;; Op = U->getOperand(0)) { 4462 U = dyn_cast<Operator>(Op); 4463 unsigned Opcode = U ? U->getOpcode() : 0; 4464 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4465 assert(Op != V && "V should be an add"); 4466 AddOps.push_back(getSCEV(Op)); 4467 break; 4468 } 4469 4470 if (auto *OpSCEV = getExistingSCEV(U)) { 4471 AddOps.push_back(OpSCEV); 4472 break; 4473 } 4474 4475 // If a NUW or NSW flag can be applied to the SCEV for this 4476 // addition, then compute the SCEV for this addition by itself 4477 // with a separate call to getAddExpr. We need to do that 4478 // instead of pushing the operands of the addition onto AddOps, 4479 // since the flags are only known to apply to this particular 4480 // addition - they may not apply to other additions that can be 4481 // formed with operands from AddOps. 4482 const SCEV *RHS = getSCEV(U->getOperand(1)); 4483 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4484 if (Flags != SCEV::FlagAnyWrap) { 4485 const SCEV *LHS = getSCEV(U->getOperand(0)); 4486 if (Opcode == Instruction::Sub) 4487 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4488 else 4489 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4490 break; 4491 } 4492 4493 if (Opcode == Instruction::Sub) 4494 AddOps.push_back(getNegativeSCEV(RHS)); 4495 else 4496 AddOps.push_back(RHS); 4497 } 4498 return getAddExpr(AddOps); 4499 } 4500 4501 case Instruction::Mul: { 4502 SmallVector<const SCEV *, 4> MulOps; 4503 for (Value *Op = U;; Op = U->getOperand(0)) { 4504 U = dyn_cast<Operator>(Op); 4505 if (!U || U->getOpcode() != Instruction::Mul) { 4506 assert(Op != V && "V should be a mul"); 4507 MulOps.push_back(getSCEV(Op)); 4508 break; 4509 } 4510 4511 if (auto *OpSCEV = getExistingSCEV(U)) { 4512 MulOps.push_back(OpSCEV); 4513 break; 4514 } 4515 4516 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4517 if (Flags != SCEV::FlagAnyWrap) { 4518 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4519 getSCEV(U->getOperand(1)), Flags)); 4520 break; 4521 } 4522 4523 MulOps.push_back(getSCEV(U->getOperand(1))); 4524 } 4525 return getMulExpr(MulOps); 4526 } 4527 case Instruction::UDiv: 4528 return getUDivExpr(getSCEV(U->getOperand(0)), 4529 getSCEV(U->getOperand(1))); 4530 case Instruction::Sub: 4531 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4532 getNoWrapFlagsFromUB(U)); 4533 case Instruction::And: 4534 // For an expression like x&255 that merely masks off the high bits, 4535 // use zext(trunc(x)) as the SCEV expression. 4536 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4537 if (CI->isNullValue()) 4538 return getSCEV(U->getOperand(1)); 4539 if (CI->isAllOnesValue()) 4540 return getSCEV(U->getOperand(0)); 4541 const APInt &A = CI->getValue(); 4542 4543 // Instcombine's ShrinkDemandedConstant may strip bits out of 4544 // constants, obscuring what would otherwise be a low-bits mask. 4545 // Use computeKnownBits to compute what ShrinkDemandedConstant 4546 // knew about to reconstruct a low-bits mask value. 4547 unsigned LZ = A.countLeadingZeros(); 4548 unsigned TZ = A.countTrailingZeros(); 4549 unsigned BitWidth = A.getBitWidth(); 4550 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4551 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4552 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4553 4554 APInt EffectiveMask = 4555 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4556 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4557 const SCEV *MulCount = getConstant( 4558 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4559 return getMulExpr( 4560 getZeroExtendExpr( 4561 getTruncateExpr( 4562 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4563 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4564 U->getType()), 4565 MulCount); 4566 } 4567 } 4568 break; 4569 4570 case Instruction::Or: 4571 // If the RHS of the Or is a constant, we may have something like: 4572 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4573 // optimizations will transparently handle this case. 4574 // 4575 // In order for this transformation to be safe, the LHS must be of the 4576 // form X*(2^n) and the Or constant must be less than 2^n. 4577 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4578 const SCEV *LHS = getSCEV(U->getOperand(0)); 4579 const APInt &CIVal = CI->getValue(); 4580 if (GetMinTrailingZeros(LHS) >= 4581 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4582 // Build a plain add SCEV. 4583 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4584 // If the LHS of the add was an addrec and it has no-wrap flags, 4585 // transfer the no-wrap flags, since an or won't introduce a wrap. 4586 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4587 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4588 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4589 OldAR->getNoWrapFlags()); 4590 } 4591 return S; 4592 } 4593 } 4594 break; 4595 case Instruction::Xor: 4596 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4597 // If the RHS of the xor is a signbit, then this is just an add. 4598 // Instcombine turns add of signbit into xor as a strength reduction step. 4599 if (CI->getValue().isSignBit()) 4600 return getAddExpr(getSCEV(U->getOperand(0)), 4601 getSCEV(U->getOperand(1))); 4602 4603 // If the RHS of xor is -1, then this is a not operation. 4604 if (CI->isAllOnesValue()) 4605 return getNotSCEV(getSCEV(U->getOperand(0))); 4606 4607 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4608 // This is a variant of the check for xor with -1, and it handles 4609 // the case where instcombine has trimmed non-demanded bits out 4610 // of an xor with -1. 4611 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4612 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4613 if (BO->getOpcode() == Instruction::And && 4614 LCI->getValue() == CI->getValue()) 4615 if (const SCEVZeroExtendExpr *Z = 4616 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4617 Type *UTy = U->getType(); 4618 const SCEV *Z0 = Z->getOperand(); 4619 Type *Z0Ty = Z0->getType(); 4620 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4621 4622 // If C is a low-bits mask, the zero extend is serving to 4623 // mask off the high bits. Complement the operand and 4624 // re-apply the zext. 4625 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4626 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4627 4628 // If C is a single bit, it may be in the sign-bit position 4629 // before the zero-extend. In this case, represent the xor 4630 // using an add, which is equivalent, and re-apply the zext. 4631 APInt Trunc = CI->getValue().trunc(Z0TySize); 4632 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4633 Trunc.isSignBit()) 4634 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4635 UTy); 4636 } 4637 } 4638 break; 4639 4640 case Instruction::Shl: 4641 // Turn shift left of a constant amount into a multiply. 4642 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4643 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4644 4645 // If the shift count is not less than the bitwidth, the result of 4646 // the shift is undefined. Don't try to analyze it, because the 4647 // resolution chosen here may differ from the resolution chosen in 4648 // other parts of the compiler. 4649 if (SA->getValue().uge(BitWidth)) 4650 break; 4651 4652 // It is currently not resolved how to interpret NSW for left 4653 // shift by BitWidth - 1, so we avoid applying flags in that 4654 // case. Remove this check (or this comment) once the situation 4655 // is resolved. See 4656 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4657 // and http://reviews.llvm.org/D8890 . 4658 auto Flags = SCEV::FlagAnyWrap; 4659 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4660 4661 Constant *X = ConstantInt::get(getContext(), 4662 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4663 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4664 } 4665 break; 4666 4667 case Instruction::LShr: 4668 // Turn logical shift right of a constant into a unsigned divide. 4669 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4670 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4671 4672 // If the shift count is not less than the bitwidth, the result of 4673 // the shift is undefined. Don't try to analyze it, because the 4674 // resolution chosen here may differ from the resolution chosen in 4675 // other parts of the compiler. 4676 if (SA->getValue().uge(BitWidth)) 4677 break; 4678 4679 Constant *X = ConstantInt::get(getContext(), 4680 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4681 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4682 } 4683 break; 4684 4685 case Instruction::AShr: 4686 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4687 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4688 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4689 if (L->getOpcode() == Instruction::Shl && 4690 L->getOperand(1) == U->getOperand(1)) { 4691 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4692 4693 // If the shift count is not less than the bitwidth, the result of 4694 // the shift is undefined. Don't try to analyze it, because the 4695 // resolution chosen here may differ from the resolution chosen in 4696 // other parts of the compiler. 4697 if (CI->getValue().uge(BitWidth)) 4698 break; 4699 4700 uint64_t Amt = BitWidth - CI->getZExtValue(); 4701 if (Amt == BitWidth) 4702 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4703 return 4704 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4705 IntegerType::get(getContext(), 4706 Amt)), 4707 U->getType()); 4708 } 4709 break; 4710 4711 case Instruction::Trunc: 4712 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4713 4714 case Instruction::ZExt: 4715 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4716 4717 case Instruction::SExt: 4718 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4719 4720 case Instruction::BitCast: 4721 // BitCasts are no-op casts so we just eliminate the cast. 4722 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4723 return getSCEV(U->getOperand(0)); 4724 break; 4725 4726 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4727 // lead to pointer expressions which cannot safely be expanded to GEPs, 4728 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4729 // simplifying integer expressions. 4730 4731 case Instruction::GetElementPtr: 4732 return createNodeForGEP(cast<GEPOperator>(U)); 4733 4734 case Instruction::PHI: 4735 return createNodeForPHI(cast<PHINode>(U)); 4736 4737 case Instruction::Select: 4738 // U can also be a select constant expr, which let fall through. Since 4739 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4740 // constant expressions cannot have instructions as operands, we'd have 4741 // returned getUnknown for a select constant expressions anyway. 4742 if (isa<Instruction>(U)) 4743 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4744 U->getOperand(1), U->getOperand(2)); 4745 4746 default: // We cannot analyze this expression. 4747 break; 4748 } 4749 4750 return getUnknown(V); 4751 } 4752 4753 4754 4755 //===----------------------------------------------------------------------===// 4756 // Iteration Count Computation Code 4757 // 4758 4759 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4760 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4761 return getSmallConstantTripCount(L, ExitingBB); 4762 4763 // No trip count information for multiple exits. 4764 return 0; 4765 } 4766 4767 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4768 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4769 /// constant. Will also return 0 if the maximum trip count is very large (>= 4770 /// 2^32). 4771 /// 4772 /// This "trip count" assumes that control exits via ExitingBlock. More 4773 /// precisely, it is the number of times that control may reach ExitingBlock 4774 /// before taking the branch. For loops with multiple exits, it may not be the 4775 /// number times that the loop header executes because the loop may exit 4776 /// prematurely via another branch. 4777 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4778 BasicBlock *ExitingBlock) { 4779 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4780 assert(L->isLoopExiting(ExitingBlock) && 4781 "Exiting block must actually branch out of the loop!"); 4782 const SCEVConstant *ExitCount = 4783 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4784 if (!ExitCount) 4785 return 0; 4786 4787 ConstantInt *ExitConst = ExitCount->getValue(); 4788 4789 // Guard against huge trip counts. 4790 if (ExitConst->getValue().getActiveBits() > 32) 4791 return 0; 4792 4793 // In case of integer overflow, this returns 0, which is correct. 4794 return ((unsigned)ExitConst->getZExtValue()) + 1; 4795 } 4796 4797 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4798 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4799 return getSmallConstantTripMultiple(L, ExitingBB); 4800 4801 // No trip multiple information for multiple exits. 4802 return 0; 4803 } 4804 4805 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4806 /// trip count of this loop as a normal unsigned value, if possible. This 4807 /// means that the actual trip count is always a multiple of the returned 4808 /// value (don't forget the trip count could very well be zero as well!). 4809 /// 4810 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4811 /// multiple of a constant (which is also the case if the trip count is simply 4812 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4813 /// if the trip count is very large (>= 2^32). 4814 /// 4815 /// As explained in the comments for getSmallConstantTripCount, this assumes 4816 /// that control exits the loop via ExitingBlock. 4817 unsigned 4818 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4819 BasicBlock *ExitingBlock) { 4820 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4821 assert(L->isLoopExiting(ExitingBlock) && 4822 "Exiting block must actually branch out of the loop!"); 4823 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4824 if (ExitCount == getCouldNotCompute()) 4825 return 1; 4826 4827 // Get the trip count from the BE count by adding 1. 4828 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4829 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4830 // to factor simple cases. 4831 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4832 TCMul = Mul->getOperand(0); 4833 4834 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4835 if (!MulC) 4836 return 1; 4837 4838 ConstantInt *Result = MulC->getValue(); 4839 4840 // Guard against huge trip counts (this requires checking 4841 // for zero to handle the case where the trip count == -1 and the 4842 // addition wraps). 4843 if (!Result || Result->getValue().getActiveBits() > 32 || 4844 Result->getValue().getActiveBits() == 0) 4845 return 1; 4846 4847 return (unsigned)Result->getZExtValue(); 4848 } 4849 4850 // getExitCount - Get the expression for the number of loop iterations for which 4851 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4852 // SCEVCouldNotCompute. 4853 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4854 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4855 } 4856 4857 /// getBackedgeTakenCount - If the specified loop has a predictable 4858 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4859 /// object. The backedge-taken count is the number of times the loop header 4860 /// will be branched to from within the loop. This is one less than the 4861 /// trip count of the loop, since it doesn't count the first iteration, 4862 /// when the header is branched to from outside the loop. 4863 /// 4864 /// Note that it is not valid to call this method on a loop without a 4865 /// loop-invariant backedge-taken count (see 4866 /// hasLoopInvariantBackedgeTakenCount). 4867 /// 4868 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4869 return getBackedgeTakenInfo(L).getExact(this); 4870 } 4871 4872 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4873 /// return the least SCEV value that is known never to be less than the 4874 /// actual backedge taken count. 4875 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4876 return getBackedgeTakenInfo(L).getMax(this); 4877 } 4878 4879 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4880 /// onto the given Worklist. 4881 static void 4882 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4883 BasicBlock *Header = L->getHeader(); 4884 4885 // Push all Loop-header PHIs onto the Worklist stack. 4886 for (BasicBlock::iterator I = Header->begin(); 4887 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4888 Worklist.push_back(PN); 4889 } 4890 4891 const ScalarEvolution::BackedgeTakenInfo & 4892 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4893 // Initially insert an invalid entry for this loop. If the insertion 4894 // succeeds, proceed to actually compute a backedge-taken count and 4895 // update the value. The temporary CouldNotCompute value tells SCEV 4896 // code elsewhere that it shouldn't attempt to request a new 4897 // backedge-taken count, which could result in infinite recursion. 4898 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4899 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4900 if (!Pair.second) 4901 return Pair.first->second; 4902 4903 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4904 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4905 // must be cleared in this scope. 4906 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4907 4908 if (Result.getExact(this) != getCouldNotCompute()) { 4909 assert(isLoopInvariant(Result.getExact(this), L) && 4910 isLoopInvariant(Result.getMax(this), L) && 4911 "Computed backedge-taken count isn't loop invariant for loop!"); 4912 ++NumTripCountsComputed; 4913 } 4914 else if (Result.getMax(this) == getCouldNotCompute() && 4915 isa<PHINode>(L->getHeader()->begin())) { 4916 // Only count loops that have phi nodes as not being computable. 4917 ++NumTripCountsNotComputed; 4918 } 4919 4920 // Now that we know more about the trip count for this loop, forget any 4921 // existing SCEV values for PHI nodes in this loop since they are only 4922 // conservative estimates made without the benefit of trip count 4923 // information. This is similar to the code in forgetLoop, except that 4924 // it handles SCEVUnknown PHI nodes specially. 4925 if (Result.hasAnyInfo()) { 4926 SmallVector<Instruction *, 16> Worklist; 4927 PushLoopPHIs(L, Worklist); 4928 4929 SmallPtrSet<Instruction *, 8> Visited; 4930 while (!Worklist.empty()) { 4931 Instruction *I = Worklist.pop_back_val(); 4932 if (!Visited.insert(I).second) 4933 continue; 4934 4935 ValueExprMapType::iterator It = 4936 ValueExprMap.find_as(static_cast<Value *>(I)); 4937 if (It != ValueExprMap.end()) { 4938 const SCEV *Old = It->second; 4939 4940 // SCEVUnknown for a PHI either means that it has an unrecognized 4941 // structure, or it's a PHI that's in the progress of being computed 4942 // by createNodeForPHI. In the former case, additional loop trip 4943 // count information isn't going to change anything. In the later 4944 // case, createNodeForPHI will perform the necessary updates on its 4945 // own when it gets to that point. 4946 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4947 forgetMemoizedResults(Old); 4948 ValueExprMap.erase(It); 4949 } 4950 if (PHINode *PN = dyn_cast<PHINode>(I)) 4951 ConstantEvolutionLoopExitValue.erase(PN); 4952 } 4953 4954 PushDefUseChildren(I, Worklist); 4955 } 4956 } 4957 4958 // Re-lookup the insert position, since the call to 4959 // computeBackedgeTakenCount above could result in a 4960 // recusive call to getBackedgeTakenInfo (on a different 4961 // loop), which would invalidate the iterator computed 4962 // earlier. 4963 return BackedgeTakenCounts.find(L)->second = Result; 4964 } 4965 4966 /// forgetLoop - This method should be called by the client when it has 4967 /// changed a loop in a way that may effect ScalarEvolution's ability to 4968 /// compute a trip count, or if the loop is deleted. 4969 void ScalarEvolution::forgetLoop(const Loop *L) { 4970 // Drop any stored trip count value. 4971 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4972 BackedgeTakenCounts.find(L); 4973 if (BTCPos != BackedgeTakenCounts.end()) { 4974 BTCPos->second.clear(); 4975 BackedgeTakenCounts.erase(BTCPos); 4976 } 4977 4978 // Drop information about expressions based on loop-header PHIs. 4979 SmallVector<Instruction *, 16> Worklist; 4980 PushLoopPHIs(L, Worklist); 4981 4982 SmallPtrSet<Instruction *, 8> Visited; 4983 while (!Worklist.empty()) { 4984 Instruction *I = Worklist.pop_back_val(); 4985 if (!Visited.insert(I).second) 4986 continue; 4987 4988 ValueExprMapType::iterator It = 4989 ValueExprMap.find_as(static_cast<Value *>(I)); 4990 if (It != ValueExprMap.end()) { 4991 forgetMemoizedResults(It->second); 4992 ValueExprMap.erase(It); 4993 if (PHINode *PN = dyn_cast<PHINode>(I)) 4994 ConstantEvolutionLoopExitValue.erase(PN); 4995 } 4996 4997 PushDefUseChildren(I, Worklist); 4998 } 4999 5000 // Forget all contained loops too, to avoid dangling entries in the 5001 // ValuesAtScopes map. 5002 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5003 forgetLoop(*I); 5004 } 5005 5006 /// forgetValue - This method should be called by the client when it has 5007 /// changed a value in a way that may effect its value, or which may 5008 /// disconnect it from a def-use chain linking it to a loop. 5009 void ScalarEvolution::forgetValue(Value *V) { 5010 Instruction *I = dyn_cast<Instruction>(V); 5011 if (!I) return; 5012 5013 // Drop information about expressions based on loop-header PHIs. 5014 SmallVector<Instruction *, 16> Worklist; 5015 Worklist.push_back(I); 5016 5017 SmallPtrSet<Instruction *, 8> Visited; 5018 while (!Worklist.empty()) { 5019 I = Worklist.pop_back_val(); 5020 if (!Visited.insert(I).second) 5021 continue; 5022 5023 ValueExprMapType::iterator It = 5024 ValueExprMap.find_as(static_cast<Value *>(I)); 5025 if (It != ValueExprMap.end()) { 5026 forgetMemoizedResults(It->second); 5027 ValueExprMap.erase(It); 5028 if (PHINode *PN = dyn_cast<PHINode>(I)) 5029 ConstantEvolutionLoopExitValue.erase(PN); 5030 } 5031 5032 PushDefUseChildren(I, Worklist); 5033 } 5034 } 5035 5036 /// getExact - Get the exact loop backedge taken count considering all loop 5037 /// exits. A computable result can only be returned for loops with a single 5038 /// exit. Returning the minimum taken count among all exits is incorrect 5039 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5040 /// assumes that the limit of each loop test is never skipped. This is a valid 5041 /// assumption as long as the loop exits via that test. For precise results, it 5042 /// is the caller's responsibility to specify the relevant loop exit using 5043 /// getExact(ExitingBlock, SE). 5044 const SCEV * 5045 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5046 // If any exits were not computable, the loop is not computable. 5047 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5048 5049 // We need exactly one computable exit. 5050 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5051 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5052 5053 const SCEV *BECount = nullptr; 5054 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5055 ENT != nullptr; ENT = ENT->getNextExit()) { 5056 5057 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5058 5059 if (!BECount) 5060 BECount = ENT->ExactNotTaken; 5061 else if (BECount != ENT->ExactNotTaken) 5062 return SE->getCouldNotCompute(); 5063 } 5064 assert(BECount && "Invalid not taken count for loop exit"); 5065 return BECount; 5066 } 5067 5068 /// getExact - Get the exact not taken count for this loop exit. 5069 const SCEV * 5070 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5071 ScalarEvolution *SE) const { 5072 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5073 ENT != nullptr; ENT = ENT->getNextExit()) { 5074 5075 if (ENT->ExitingBlock == ExitingBlock) 5076 return ENT->ExactNotTaken; 5077 } 5078 return SE->getCouldNotCompute(); 5079 } 5080 5081 /// getMax - Get the max backedge taken count for the loop. 5082 const SCEV * 5083 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5084 return Max ? Max : SE->getCouldNotCompute(); 5085 } 5086 5087 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5088 ScalarEvolution *SE) const { 5089 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5090 return true; 5091 5092 if (!ExitNotTaken.ExitingBlock) 5093 return false; 5094 5095 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5096 ENT != nullptr; ENT = ENT->getNextExit()) { 5097 5098 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5099 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5100 return true; 5101 } 5102 } 5103 return false; 5104 } 5105 5106 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5107 /// computable exit into a persistent ExitNotTakenInfo array. 5108 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5109 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5110 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5111 5112 if (!Complete) 5113 ExitNotTaken.setIncomplete(); 5114 5115 unsigned NumExits = ExitCounts.size(); 5116 if (NumExits == 0) return; 5117 5118 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5119 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5120 if (NumExits == 1) return; 5121 5122 // Handle the rare case of multiple computable exits. 5123 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5124 5125 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5126 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5127 PrevENT->setNextExit(ENT); 5128 ENT->ExitingBlock = ExitCounts[i].first; 5129 ENT->ExactNotTaken = ExitCounts[i].second; 5130 } 5131 } 5132 5133 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5134 void ScalarEvolution::BackedgeTakenInfo::clear() { 5135 ExitNotTaken.ExitingBlock = nullptr; 5136 ExitNotTaken.ExactNotTaken = nullptr; 5137 delete[] ExitNotTaken.getNextExit(); 5138 } 5139 5140 /// computeBackedgeTakenCount - Compute the number of times the backedge 5141 /// of the specified loop will execute. 5142 ScalarEvolution::BackedgeTakenInfo 5143 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5144 SmallVector<BasicBlock *, 8> ExitingBlocks; 5145 L->getExitingBlocks(ExitingBlocks); 5146 5147 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5148 bool CouldComputeBECount = true; 5149 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5150 const SCEV *MustExitMaxBECount = nullptr; 5151 const SCEV *MayExitMaxBECount = nullptr; 5152 5153 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5154 // and compute maxBECount. 5155 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5156 BasicBlock *ExitBB = ExitingBlocks[i]; 5157 ExitLimit EL = computeExitLimit(L, ExitBB); 5158 5159 // 1. For each exit that can be computed, add an entry to ExitCounts. 5160 // CouldComputeBECount is true only if all exits can be computed. 5161 if (EL.Exact == getCouldNotCompute()) 5162 // We couldn't compute an exact value for this exit, so 5163 // we won't be able to compute an exact value for the loop. 5164 CouldComputeBECount = false; 5165 else 5166 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5167 5168 // 2. Derive the loop's MaxBECount from each exit's max number of 5169 // non-exiting iterations. Partition the loop exits into two kinds: 5170 // LoopMustExits and LoopMayExits. 5171 // 5172 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5173 // is a LoopMayExit. If any computable LoopMustExit is found, then 5174 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5175 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5176 // considered greater than any computable EL.Max. 5177 if (EL.Max != getCouldNotCompute() && Latch && 5178 DT.dominates(ExitBB, Latch)) { 5179 if (!MustExitMaxBECount) 5180 MustExitMaxBECount = EL.Max; 5181 else { 5182 MustExitMaxBECount = 5183 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5184 } 5185 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5186 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5187 MayExitMaxBECount = EL.Max; 5188 else { 5189 MayExitMaxBECount = 5190 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5191 } 5192 } 5193 } 5194 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5195 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5196 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5197 } 5198 5199 ScalarEvolution::ExitLimit 5200 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5201 5202 // Okay, we've chosen an exiting block. See what condition causes us to exit 5203 // at this block and remember the exit block and whether all other targets 5204 // lead to the loop header. 5205 bool MustExecuteLoopHeader = true; 5206 BasicBlock *Exit = nullptr; 5207 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5208 SI != SE; ++SI) 5209 if (!L->contains(*SI)) { 5210 if (Exit) // Multiple exit successors. 5211 return getCouldNotCompute(); 5212 Exit = *SI; 5213 } else if (*SI != L->getHeader()) { 5214 MustExecuteLoopHeader = false; 5215 } 5216 5217 // At this point, we know we have a conditional branch that determines whether 5218 // the loop is exited. However, we don't know if the branch is executed each 5219 // time through the loop. If not, then the execution count of the branch will 5220 // not be equal to the trip count of the loop. 5221 // 5222 // Currently we check for this by checking to see if the Exit branch goes to 5223 // the loop header. If so, we know it will always execute the same number of 5224 // times as the loop. We also handle the case where the exit block *is* the 5225 // loop header. This is common for un-rotated loops. 5226 // 5227 // If both of those tests fail, walk up the unique predecessor chain to the 5228 // header, stopping if there is an edge that doesn't exit the loop. If the 5229 // header is reached, the execution count of the branch will be equal to the 5230 // trip count of the loop. 5231 // 5232 // More extensive analysis could be done to handle more cases here. 5233 // 5234 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5235 // The simple checks failed, try climbing the unique predecessor chain 5236 // up to the header. 5237 bool Ok = false; 5238 for (BasicBlock *BB = ExitingBlock; BB; ) { 5239 BasicBlock *Pred = BB->getUniquePredecessor(); 5240 if (!Pred) 5241 return getCouldNotCompute(); 5242 TerminatorInst *PredTerm = Pred->getTerminator(); 5243 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5244 if (PredSucc == BB) 5245 continue; 5246 // If the predecessor has a successor that isn't BB and isn't 5247 // outside the loop, assume the worst. 5248 if (L->contains(PredSucc)) 5249 return getCouldNotCompute(); 5250 } 5251 if (Pred == L->getHeader()) { 5252 Ok = true; 5253 break; 5254 } 5255 BB = Pred; 5256 } 5257 if (!Ok) 5258 return getCouldNotCompute(); 5259 } 5260 5261 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5262 TerminatorInst *Term = ExitingBlock->getTerminator(); 5263 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5264 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5265 // Proceed to the next level to examine the exit condition expression. 5266 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5267 BI->getSuccessor(1), 5268 /*ControlsExit=*/IsOnlyExit); 5269 } 5270 5271 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5272 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5273 /*ControlsExit=*/IsOnlyExit); 5274 5275 return getCouldNotCompute(); 5276 } 5277 5278 /// computeExitLimitFromCond - Compute the number of times the 5279 /// backedge of the specified loop will execute if its exit condition 5280 /// were a conditional branch of ExitCond, TBB, and FBB. 5281 /// 5282 /// @param ControlsExit is true if ExitCond directly controls the exit 5283 /// branch. In this case, we can assume that the loop exits only if the 5284 /// condition is true and can infer that failing to meet the condition prior to 5285 /// integer wraparound results in undefined behavior. 5286 ScalarEvolution::ExitLimit 5287 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5288 Value *ExitCond, 5289 BasicBlock *TBB, 5290 BasicBlock *FBB, 5291 bool ControlsExit) { 5292 // Check if the controlling expression for this loop is an And or Or. 5293 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5294 if (BO->getOpcode() == Instruction::And) { 5295 // Recurse on the operands of the and. 5296 bool EitherMayExit = L->contains(TBB); 5297 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5298 ControlsExit && !EitherMayExit); 5299 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5300 ControlsExit && !EitherMayExit); 5301 const SCEV *BECount = getCouldNotCompute(); 5302 const SCEV *MaxBECount = getCouldNotCompute(); 5303 if (EitherMayExit) { 5304 // Both conditions must be true for the loop to continue executing. 5305 // Choose the less conservative count. 5306 if (EL0.Exact == getCouldNotCompute() || 5307 EL1.Exact == getCouldNotCompute()) 5308 BECount = getCouldNotCompute(); 5309 else 5310 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5311 if (EL0.Max == getCouldNotCompute()) 5312 MaxBECount = EL1.Max; 5313 else if (EL1.Max == getCouldNotCompute()) 5314 MaxBECount = EL0.Max; 5315 else 5316 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5317 } else { 5318 // Both conditions must be true at the same time for the loop to exit. 5319 // For now, be conservative. 5320 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5321 if (EL0.Max == EL1.Max) 5322 MaxBECount = EL0.Max; 5323 if (EL0.Exact == EL1.Exact) 5324 BECount = EL0.Exact; 5325 } 5326 5327 return ExitLimit(BECount, MaxBECount); 5328 } 5329 if (BO->getOpcode() == Instruction::Or) { 5330 // Recurse on the operands of the or. 5331 bool EitherMayExit = L->contains(FBB); 5332 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5333 ControlsExit && !EitherMayExit); 5334 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5335 ControlsExit && !EitherMayExit); 5336 const SCEV *BECount = getCouldNotCompute(); 5337 const SCEV *MaxBECount = getCouldNotCompute(); 5338 if (EitherMayExit) { 5339 // Both conditions must be false for the loop to continue executing. 5340 // Choose the less conservative count. 5341 if (EL0.Exact == getCouldNotCompute() || 5342 EL1.Exact == getCouldNotCompute()) 5343 BECount = getCouldNotCompute(); 5344 else 5345 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5346 if (EL0.Max == getCouldNotCompute()) 5347 MaxBECount = EL1.Max; 5348 else if (EL1.Max == getCouldNotCompute()) 5349 MaxBECount = EL0.Max; 5350 else 5351 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5352 } else { 5353 // Both conditions must be false at the same time for the loop to exit. 5354 // For now, be conservative. 5355 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5356 if (EL0.Max == EL1.Max) 5357 MaxBECount = EL0.Max; 5358 if (EL0.Exact == EL1.Exact) 5359 BECount = EL0.Exact; 5360 } 5361 5362 return ExitLimit(BECount, MaxBECount); 5363 } 5364 } 5365 5366 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5367 // Proceed to the next level to examine the icmp. 5368 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5369 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5370 5371 // Check for a constant condition. These are normally stripped out by 5372 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5373 // preserve the CFG and is temporarily leaving constant conditions 5374 // in place. 5375 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5376 if (L->contains(FBB) == !CI->getZExtValue()) 5377 // The backedge is always taken. 5378 return getCouldNotCompute(); 5379 else 5380 // The backedge is never taken. 5381 return getZero(CI->getType()); 5382 } 5383 5384 // If it's not an integer or pointer comparison then compute it the hard way. 5385 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5386 } 5387 5388 ScalarEvolution::ExitLimit 5389 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5390 ICmpInst *ExitCond, 5391 BasicBlock *TBB, 5392 BasicBlock *FBB, 5393 bool ControlsExit) { 5394 5395 // If the condition was exit on true, convert the condition to exit on false 5396 ICmpInst::Predicate Cond; 5397 if (!L->contains(FBB)) 5398 Cond = ExitCond->getPredicate(); 5399 else 5400 Cond = ExitCond->getInversePredicate(); 5401 5402 // Handle common loops like: for (X = "string"; *X; ++X) 5403 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5404 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5405 ExitLimit ItCnt = 5406 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5407 if (ItCnt.hasAnyInfo()) 5408 return ItCnt; 5409 } 5410 5411 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5412 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5413 5414 // Try to evaluate any dependencies out of the loop. 5415 LHS = getSCEVAtScope(LHS, L); 5416 RHS = getSCEVAtScope(RHS, L); 5417 5418 // At this point, we would like to compute how many iterations of the 5419 // loop the predicate will return true for these inputs. 5420 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5421 // If there is a loop-invariant, force it into the RHS. 5422 std::swap(LHS, RHS); 5423 Cond = ICmpInst::getSwappedPredicate(Cond); 5424 } 5425 5426 // Simplify the operands before analyzing them. 5427 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5428 5429 // If we have a comparison of a chrec against a constant, try to use value 5430 // ranges to answer this query. 5431 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5432 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5433 if (AddRec->getLoop() == L) { 5434 // Form the constant range. 5435 ConstantRange CompRange( 5436 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5437 5438 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5439 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5440 } 5441 5442 switch (Cond) { 5443 case ICmpInst::ICMP_NE: { // while (X != Y) 5444 // Convert to: while (X-Y != 0) 5445 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5446 if (EL.hasAnyInfo()) return EL; 5447 break; 5448 } 5449 case ICmpInst::ICMP_EQ: { // while (X == Y) 5450 // Convert to: while (X-Y == 0) 5451 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5452 if (EL.hasAnyInfo()) return EL; 5453 break; 5454 } 5455 case ICmpInst::ICMP_SLT: 5456 case ICmpInst::ICMP_ULT: { // while (X < Y) 5457 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5458 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5459 if (EL.hasAnyInfo()) return EL; 5460 break; 5461 } 5462 case ICmpInst::ICMP_SGT: 5463 case ICmpInst::ICMP_UGT: { // while (X > Y) 5464 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5465 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5466 if (EL.hasAnyInfo()) return EL; 5467 break; 5468 } 5469 default: 5470 #if 0 5471 dbgs() << "computeBackedgeTakenCount "; 5472 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5473 dbgs() << "[unsigned] "; 5474 dbgs() << *LHS << " " 5475 << Instruction::getOpcodeName(Instruction::ICmp) 5476 << " " << *RHS << "\n"; 5477 #endif 5478 break; 5479 } 5480 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5481 } 5482 5483 ScalarEvolution::ExitLimit 5484 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5485 SwitchInst *Switch, 5486 BasicBlock *ExitingBlock, 5487 bool ControlsExit) { 5488 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5489 5490 // Give up if the exit is the default dest of a switch. 5491 if (Switch->getDefaultDest() == ExitingBlock) 5492 return getCouldNotCompute(); 5493 5494 assert(L->contains(Switch->getDefaultDest()) && 5495 "Default case must not exit the loop!"); 5496 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5497 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5498 5499 // while (X != Y) --> while (X-Y != 0) 5500 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5501 if (EL.hasAnyInfo()) 5502 return EL; 5503 5504 return getCouldNotCompute(); 5505 } 5506 5507 static ConstantInt * 5508 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5509 ScalarEvolution &SE) { 5510 const SCEV *InVal = SE.getConstant(C); 5511 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5512 assert(isa<SCEVConstant>(Val) && 5513 "Evaluation of SCEV at constant didn't fold correctly?"); 5514 return cast<SCEVConstant>(Val)->getValue(); 5515 } 5516 5517 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5518 /// 'icmp op load X, cst', try to see if we can compute the backedge 5519 /// execution count. 5520 ScalarEvolution::ExitLimit 5521 ScalarEvolution::computeLoadConstantCompareExitLimit( 5522 LoadInst *LI, 5523 Constant *RHS, 5524 const Loop *L, 5525 ICmpInst::Predicate predicate) { 5526 5527 if (LI->isVolatile()) return getCouldNotCompute(); 5528 5529 // Check to see if the loaded pointer is a getelementptr of a global. 5530 // TODO: Use SCEV instead of manually grubbing with GEPs. 5531 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5532 if (!GEP) return getCouldNotCompute(); 5533 5534 // Make sure that it is really a constant global we are gepping, with an 5535 // initializer, and make sure the first IDX is really 0. 5536 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5537 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5538 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5539 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5540 return getCouldNotCompute(); 5541 5542 // Okay, we allow one non-constant index into the GEP instruction. 5543 Value *VarIdx = nullptr; 5544 std::vector<Constant*> Indexes; 5545 unsigned VarIdxNum = 0; 5546 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5547 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5548 Indexes.push_back(CI); 5549 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5550 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5551 VarIdx = GEP->getOperand(i); 5552 VarIdxNum = i-2; 5553 Indexes.push_back(nullptr); 5554 } 5555 5556 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5557 if (!VarIdx) 5558 return getCouldNotCompute(); 5559 5560 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5561 // Check to see if X is a loop variant variable value now. 5562 const SCEV *Idx = getSCEV(VarIdx); 5563 Idx = getSCEVAtScope(Idx, L); 5564 5565 // We can only recognize very limited forms of loop index expressions, in 5566 // particular, only affine AddRec's like {C1,+,C2}. 5567 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5568 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5569 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5570 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5571 return getCouldNotCompute(); 5572 5573 unsigned MaxSteps = MaxBruteForceIterations; 5574 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5575 ConstantInt *ItCst = ConstantInt::get( 5576 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5577 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5578 5579 // Form the GEP offset. 5580 Indexes[VarIdxNum] = Val; 5581 5582 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5583 Indexes); 5584 if (!Result) break; // Cannot compute! 5585 5586 // Evaluate the condition for this iteration. 5587 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5588 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5589 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5590 #if 0 5591 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5592 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5593 << "***\n"; 5594 #endif 5595 ++NumArrayLenItCounts; 5596 return getConstant(ItCst); // Found terminating iteration! 5597 } 5598 } 5599 return getCouldNotCompute(); 5600 } 5601 5602 5603 /// CanConstantFold - Return true if we can constant fold an instruction of the 5604 /// specified type, assuming that all operands were constants. 5605 static bool CanConstantFold(const Instruction *I) { 5606 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5607 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5608 isa<LoadInst>(I)) 5609 return true; 5610 5611 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5612 if (const Function *F = CI->getCalledFunction()) 5613 return canConstantFoldCallTo(F); 5614 return false; 5615 } 5616 5617 /// Determine whether this instruction can constant evolve within this loop 5618 /// assuming its operands can all constant evolve. 5619 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5620 // An instruction outside of the loop can't be derived from a loop PHI. 5621 if (!L->contains(I)) return false; 5622 5623 if (isa<PHINode>(I)) { 5624 // We don't currently keep track of the control flow needed to evaluate 5625 // PHIs, so we cannot handle PHIs inside of loops. 5626 return L->getHeader() == I->getParent(); 5627 } 5628 5629 // If we won't be able to constant fold this expression even if the operands 5630 // are constants, bail early. 5631 return CanConstantFold(I); 5632 } 5633 5634 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5635 /// recursing through each instruction operand until reaching a loop header phi. 5636 static PHINode * 5637 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5638 DenseMap<Instruction *, PHINode *> &PHIMap) { 5639 5640 // Otherwise, we can evaluate this instruction if all of its operands are 5641 // constant or derived from a PHI node themselves. 5642 PHINode *PHI = nullptr; 5643 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5644 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5645 5646 if (isa<Constant>(*OpI)) continue; 5647 5648 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5649 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5650 5651 PHINode *P = dyn_cast<PHINode>(OpInst); 5652 if (!P) 5653 // If this operand is already visited, reuse the prior result. 5654 // We may have P != PHI if this is the deepest point at which the 5655 // inconsistent paths meet. 5656 P = PHIMap.lookup(OpInst); 5657 if (!P) { 5658 // Recurse and memoize the results, whether a phi is found or not. 5659 // This recursive call invalidates pointers into PHIMap. 5660 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5661 PHIMap[OpInst] = P; 5662 } 5663 if (!P) 5664 return nullptr; // Not evolving from PHI 5665 if (PHI && PHI != P) 5666 return nullptr; // Evolving from multiple different PHIs. 5667 PHI = P; 5668 } 5669 // This is a expression evolving from a constant PHI! 5670 return PHI; 5671 } 5672 5673 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5674 /// in the loop that V is derived from. We allow arbitrary operations along the 5675 /// way, but the operands of an operation must either be constants or a value 5676 /// derived from a constant PHI. If this expression does not fit with these 5677 /// constraints, return null. 5678 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5679 Instruction *I = dyn_cast<Instruction>(V); 5680 if (!I || !canConstantEvolve(I, L)) return nullptr; 5681 5682 if (PHINode *PN = dyn_cast<PHINode>(I)) 5683 return PN; 5684 5685 // Record non-constant instructions contained by the loop. 5686 DenseMap<Instruction *, PHINode *> PHIMap; 5687 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5688 } 5689 5690 /// EvaluateExpression - Given an expression that passes the 5691 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5692 /// in the loop has the value PHIVal. If we can't fold this expression for some 5693 /// reason, return null. 5694 static Constant *EvaluateExpression(Value *V, const Loop *L, 5695 DenseMap<Instruction *, Constant *> &Vals, 5696 const DataLayout &DL, 5697 const TargetLibraryInfo *TLI) { 5698 // Convenient constant check, but redundant for recursive calls. 5699 if (Constant *C = dyn_cast<Constant>(V)) return C; 5700 Instruction *I = dyn_cast<Instruction>(V); 5701 if (!I) return nullptr; 5702 5703 if (Constant *C = Vals.lookup(I)) return C; 5704 5705 // An instruction inside the loop depends on a value outside the loop that we 5706 // weren't given a mapping for, or a value such as a call inside the loop. 5707 if (!canConstantEvolve(I, L)) return nullptr; 5708 5709 // An unmapped PHI can be due to a branch or another loop inside this loop, 5710 // or due to this not being the initial iteration through a loop where we 5711 // couldn't compute the evolution of this particular PHI last time. 5712 if (isa<PHINode>(I)) return nullptr; 5713 5714 std::vector<Constant*> Operands(I->getNumOperands()); 5715 5716 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5717 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5718 if (!Operand) { 5719 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5720 if (!Operands[i]) return nullptr; 5721 continue; 5722 } 5723 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5724 Vals[Operand] = C; 5725 if (!C) return nullptr; 5726 Operands[i] = C; 5727 } 5728 5729 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5730 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5731 Operands[1], DL, TLI); 5732 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5733 if (!LI->isVolatile()) 5734 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5735 } 5736 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5737 TLI); 5738 } 5739 5740 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5741 /// in the header of its containing loop, we know the loop executes a 5742 /// constant number of times, and the PHI node is just a recurrence 5743 /// involving constants, fold it. 5744 Constant * 5745 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5746 const APInt &BEs, 5747 const Loop *L) { 5748 auto I = ConstantEvolutionLoopExitValue.find(PN); 5749 if (I != ConstantEvolutionLoopExitValue.end()) 5750 return I->second; 5751 5752 if (BEs.ugt(MaxBruteForceIterations)) 5753 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5754 5755 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5756 5757 DenseMap<Instruction *, Constant *> CurrentIterVals; 5758 BasicBlock *Header = L->getHeader(); 5759 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5760 5761 BasicBlock *Latch = L->getLoopLatch(); 5762 if (!Latch) 5763 return nullptr; 5764 5765 // Since the loop has one latch, the PHI node must have two entries. One 5766 // entry must be a constant (coming in from outside of the loop), and the 5767 // second must be derived from the same PHI. 5768 5769 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5770 ? PN->getIncomingBlock(1) 5771 : PN->getIncomingBlock(0); 5772 5773 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!"); 5774 5775 // Note: not all PHI nodes in the same block have to have their incoming 5776 // values in the same order, so we use the basic block to look up the incoming 5777 // value, not an index. 5778 5779 for (auto &I : *Header) { 5780 PHINode *PHI = dyn_cast<PHINode>(&I); 5781 if (!PHI) break; 5782 auto *StartCST = 5783 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5784 if (!StartCST) continue; 5785 CurrentIterVals[PHI] = StartCST; 5786 } 5787 if (!CurrentIterVals.count(PN)) 5788 return RetVal = nullptr; 5789 5790 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5791 5792 // Execute the loop symbolically to determine the exit value. 5793 if (BEs.getActiveBits() >= 32) 5794 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5795 5796 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5797 unsigned IterationNum = 0; 5798 const DataLayout &DL = F.getParent()->getDataLayout(); 5799 for (; ; ++IterationNum) { 5800 if (IterationNum == NumIterations) 5801 return RetVal = CurrentIterVals[PN]; // Got exit value! 5802 5803 // Compute the value of the PHIs for the next iteration. 5804 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5805 DenseMap<Instruction *, Constant *> NextIterVals; 5806 Constant *NextPHI = 5807 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5808 if (!NextPHI) 5809 return nullptr; // Couldn't evaluate! 5810 NextIterVals[PN] = NextPHI; 5811 5812 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5813 5814 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5815 // cease to be able to evaluate one of them or if they stop evolving, 5816 // because that doesn't necessarily prevent us from computing PN. 5817 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5818 for (const auto &I : CurrentIterVals) { 5819 PHINode *PHI = dyn_cast<PHINode>(I.first); 5820 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5821 PHIsToCompute.emplace_back(PHI, I.second); 5822 } 5823 // We use two distinct loops because EvaluateExpression may invalidate any 5824 // iterators into CurrentIterVals. 5825 for (const auto &I : PHIsToCompute) { 5826 PHINode *PHI = I.first; 5827 Constant *&NextPHI = NextIterVals[PHI]; 5828 if (!NextPHI) { // Not already computed. 5829 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5830 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5831 } 5832 if (NextPHI != I.second) 5833 StoppedEvolving = false; 5834 } 5835 5836 // If all entries in CurrentIterVals == NextIterVals then we can stop 5837 // iterating, the loop can't continue to change. 5838 if (StoppedEvolving) 5839 return RetVal = CurrentIterVals[PN]; 5840 5841 CurrentIterVals.swap(NextIterVals); 5842 } 5843 } 5844 5845 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 5846 Value *Cond, 5847 bool ExitWhen) { 5848 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5849 if (!PN) return getCouldNotCompute(); 5850 5851 // If the loop is canonicalized, the PHI will have exactly two entries. 5852 // That's the only form we support here. 5853 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5854 5855 DenseMap<Instruction *, Constant *> CurrentIterVals; 5856 BasicBlock *Header = L->getHeader(); 5857 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5858 5859 BasicBlock *Latch = L->getLoopLatch(); 5860 assert(Latch && "Should follow from NumIncomingValues == 2!"); 5861 5862 // NonLatch is the preheader, or something equivalent. 5863 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5864 ? PN->getIncomingBlock(1) 5865 : PN->getIncomingBlock(0); 5866 5867 // Note: not all PHI nodes in the same block have to have their incoming 5868 // values in the same order, so we use the basic block to look up the incoming 5869 // value, not an index. 5870 5871 for (auto &I : *Header) { 5872 PHINode *PHI = dyn_cast<PHINode>(&I); 5873 if (!PHI) 5874 break; 5875 auto *StartCST = 5876 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5877 if (!StartCST) continue; 5878 CurrentIterVals[PHI] = StartCST; 5879 } 5880 if (!CurrentIterVals.count(PN)) 5881 return getCouldNotCompute(); 5882 5883 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5884 // the loop symbolically to determine when the condition gets a value of 5885 // "ExitWhen". 5886 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5887 const DataLayout &DL = F.getParent()->getDataLayout(); 5888 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5889 auto *CondVal = dyn_cast_or_null<ConstantInt>( 5890 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5891 5892 // Couldn't symbolically evaluate. 5893 if (!CondVal) return getCouldNotCompute(); 5894 5895 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5896 ++NumBruteForceTripCountsComputed; 5897 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5898 } 5899 5900 // Update all the PHI nodes for the next iteration. 5901 DenseMap<Instruction *, Constant *> NextIterVals; 5902 5903 // Create a list of which PHIs we need to compute. We want to do this before 5904 // calling EvaluateExpression on them because that may invalidate iterators 5905 // into CurrentIterVals. 5906 SmallVector<PHINode *, 8> PHIsToCompute; 5907 for (const auto &I : CurrentIterVals) { 5908 PHINode *PHI = dyn_cast<PHINode>(I.first); 5909 if (!PHI || PHI->getParent() != Header) continue; 5910 PHIsToCompute.push_back(PHI); 5911 } 5912 for (PHINode *PHI : PHIsToCompute) { 5913 Constant *&NextPHI = NextIterVals[PHI]; 5914 if (NextPHI) continue; // Already computed! 5915 5916 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5917 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5918 } 5919 CurrentIterVals.swap(NextIterVals); 5920 } 5921 5922 // Too many iterations were needed to evaluate. 5923 return getCouldNotCompute(); 5924 } 5925 5926 /// getSCEVAtScope - Return a SCEV expression for the specified value 5927 /// at the specified scope in the program. The L value specifies a loop 5928 /// nest to evaluate the expression at, where null is the top-level or a 5929 /// specified loop is immediately inside of the loop. 5930 /// 5931 /// This method can be used to compute the exit value for a variable defined 5932 /// in a loop by querying what the value will hold in the parent loop. 5933 /// 5934 /// In the case that a relevant loop exit value cannot be computed, the 5935 /// original value V is returned. 5936 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5937 // Check to see if we've folded this expression at this loop before. 5938 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5939 for (unsigned u = 0; u < Values.size(); u++) { 5940 if (Values[u].first == L) 5941 return Values[u].second ? Values[u].second : V; 5942 } 5943 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5944 // Otherwise compute it. 5945 const SCEV *C = computeSCEVAtScope(V, L); 5946 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5947 for (unsigned u = Values2.size(); u > 0; u--) { 5948 if (Values2[u - 1].first == L) { 5949 Values2[u - 1].second = C; 5950 break; 5951 } 5952 } 5953 return C; 5954 } 5955 5956 /// This builds up a Constant using the ConstantExpr interface. That way, we 5957 /// will return Constants for objects which aren't represented by a 5958 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5959 /// Returns NULL if the SCEV isn't representable as a Constant. 5960 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5961 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5962 case scCouldNotCompute: 5963 case scAddRecExpr: 5964 break; 5965 case scConstant: 5966 return cast<SCEVConstant>(V)->getValue(); 5967 case scUnknown: 5968 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5969 case scSignExtend: { 5970 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5971 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5972 return ConstantExpr::getSExt(CastOp, SS->getType()); 5973 break; 5974 } 5975 case scZeroExtend: { 5976 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5977 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5978 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5979 break; 5980 } 5981 case scTruncate: { 5982 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5983 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5984 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5985 break; 5986 } 5987 case scAddExpr: { 5988 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5989 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5990 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5991 unsigned AS = PTy->getAddressSpace(); 5992 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5993 C = ConstantExpr::getBitCast(C, DestPtrTy); 5994 } 5995 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5996 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5997 if (!C2) return nullptr; 5998 5999 // First pointer! 6000 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6001 unsigned AS = C2->getType()->getPointerAddressSpace(); 6002 std::swap(C, C2); 6003 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6004 // The offsets have been converted to bytes. We can add bytes to an 6005 // i8* by GEP with the byte count in the first index. 6006 C = ConstantExpr::getBitCast(C, DestPtrTy); 6007 } 6008 6009 // Don't bother trying to sum two pointers. We probably can't 6010 // statically compute a load that results from it anyway. 6011 if (C2->getType()->isPointerTy()) 6012 return nullptr; 6013 6014 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6015 if (PTy->getElementType()->isStructTy()) 6016 C2 = ConstantExpr::getIntegerCast( 6017 C2, Type::getInt32Ty(C->getContext()), true); 6018 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6019 } else 6020 C = ConstantExpr::getAdd(C, C2); 6021 } 6022 return C; 6023 } 6024 break; 6025 } 6026 case scMulExpr: { 6027 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6028 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6029 // Don't bother with pointers at all. 6030 if (C->getType()->isPointerTy()) return nullptr; 6031 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6032 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6033 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6034 C = ConstantExpr::getMul(C, C2); 6035 } 6036 return C; 6037 } 6038 break; 6039 } 6040 case scUDivExpr: { 6041 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6042 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6043 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6044 if (LHS->getType() == RHS->getType()) 6045 return ConstantExpr::getUDiv(LHS, RHS); 6046 break; 6047 } 6048 case scSMaxExpr: 6049 case scUMaxExpr: 6050 break; // TODO: smax, umax. 6051 } 6052 return nullptr; 6053 } 6054 6055 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6056 if (isa<SCEVConstant>(V)) return V; 6057 6058 // If this instruction is evolved from a constant-evolving PHI, compute the 6059 // exit value from the loop without using SCEVs. 6060 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6061 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6062 const Loop *LI = this->LI[I->getParent()]; 6063 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6064 if (PHINode *PN = dyn_cast<PHINode>(I)) 6065 if (PN->getParent() == LI->getHeader()) { 6066 // Okay, there is no closed form solution for the PHI node. Check 6067 // to see if the loop that contains it has a known backedge-taken 6068 // count. If so, we may be able to force computation of the exit 6069 // value. 6070 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6071 if (const SCEVConstant *BTCC = 6072 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6073 // Okay, we know how many times the containing loop executes. If 6074 // this is a constant evolving PHI node, get the final value at 6075 // the specified iteration number. 6076 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6077 BTCC->getValue()->getValue(), 6078 LI); 6079 if (RV) return getSCEV(RV); 6080 } 6081 } 6082 6083 // Okay, this is an expression that we cannot symbolically evaluate 6084 // into a SCEV. Check to see if it's possible to symbolically evaluate 6085 // the arguments into constants, and if so, try to constant propagate the 6086 // result. This is particularly useful for computing loop exit values. 6087 if (CanConstantFold(I)) { 6088 SmallVector<Constant *, 4> Operands; 6089 bool MadeImprovement = false; 6090 for (Value *Op : I->operands()) { 6091 if (Constant *C = dyn_cast<Constant>(Op)) { 6092 Operands.push_back(C); 6093 continue; 6094 } 6095 6096 // If any of the operands is non-constant and if they are 6097 // non-integer and non-pointer, don't even try to analyze them 6098 // with scev techniques. 6099 if (!isSCEVable(Op->getType())) 6100 return V; 6101 6102 const SCEV *OrigV = getSCEV(Op); 6103 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6104 MadeImprovement |= OrigV != OpV; 6105 6106 Constant *C = BuildConstantFromSCEV(OpV); 6107 if (!C) return V; 6108 if (C->getType() != Op->getType()) 6109 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6110 Op->getType(), 6111 false), 6112 C, Op->getType()); 6113 Operands.push_back(C); 6114 } 6115 6116 // Check to see if getSCEVAtScope actually made an improvement. 6117 if (MadeImprovement) { 6118 Constant *C = nullptr; 6119 const DataLayout &DL = F.getParent()->getDataLayout(); 6120 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6121 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6122 Operands[1], DL, &TLI); 6123 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6124 if (!LI->isVolatile()) 6125 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6126 } else 6127 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6128 DL, &TLI); 6129 if (!C) return V; 6130 return getSCEV(C); 6131 } 6132 } 6133 } 6134 6135 // This is some other type of SCEVUnknown, just return it. 6136 return V; 6137 } 6138 6139 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6140 // Avoid performing the look-up in the common case where the specified 6141 // expression has no loop-variant portions. 6142 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6143 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6144 if (OpAtScope != Comm->getOperand(i)) { 6145 // Okay, at least one of these operands is loop variant but might be 6146 // foldable. Build a new instance of the folded commutative expression. 6147 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6148 Comm->op_begin()+i); 6149 NewOps.push_back(OpAtScope); 6150 6151 for (++i; i != e; ++i) { 6152 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6153 NewOps.push_back(OpAtScope); 6154 } 6155 if (isa<SCEVAddExpr>(Comm)) 6156 return getAddExpr(NewOps); 6157 if (isa<SCEVMulExpr>(Comm)) 6158 return getMulExpr(NewOps); 6159 if (isa<SCEVSMaxExpr>(Comm)) 6160 return getSMaxExpr(NewOps); 6161 if (isa<SCEVUMaxExpr>(Comm)) 6162 return getUMaxExpr(NewOps); 6163 llvm_unreachable("Unknown commutative SCEV type!"); 6164 } 6165 } 6166 // If we got here, all operands are loop invariant. 6167 return Comm; 6168 } 6169 6170 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6171 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6172 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6173 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6174 return Div; // must be loop invariant 6175 return getUDivExpr(LHS, RHS); 6176 } 6177 6178 // If this is a loop recurrence for a loop that does not contain L, then we 6179 // are dealing with the final value computed by the loop. 6180 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6181 // First, attempt to evaluate each operand. 6182 // Avoid performing the look-up in the common case where the specified 6183 // expression has no loop-variant portions. 6184 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6185 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6186 if (OpAtScope == AddRec->getOperand(i)) 6187 continue; 6188 6189 // Okay, at least one of these operands is loop variant but might be 6190 // foldable. Build a new instance of the folded commutative expression. 6191 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6192 AddRec->op_begin()+i); 6193 NewOps.push_back(OpAtScope); 6194 for (++i; i != e; ++i) 6195 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6196 6197 const SCEV *FoldedRec = 6198 getAddRecExpr(NewOps, AddRec->getLoop(), 6199 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6200 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6201 // The addrec may be folded to a nonrecurrence, for example, if the 6202 // induction variable is multiplied by zero after constant folding. Go 6203 // ahead and return the folded value. 6204 if (!AddRec) 6205 return FoldedRec; 6206 break; 6207 } 6208 6209 // If the scope is outside the addrec's loop, evaluate it by using the 6210 // loop exit value of the addrec. 6211 if (!AddRec->getLoop()->contains(L)) { 6212 // To evaluate this recurrence, we need to know how many times the AddRec 6213 // loop iterates. Compute this now. 6214 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6215 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6216 6217 // Then, evaluate the AddRec. 6218 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6219 } 6220 6221 return AddRec; 6222 } 6223 6224 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6225 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6226 if (Op == Cast->getOperand()) 6227 return Cast; // must be loop invariant 6228 return getZeroExtendExpr(Op, Cast->getType()); 6229 } 6230 6231 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6232 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6233 if (Op == Cast->getOperand()) 6234 return Cast; // must be loop invariant 6235 return getSignExtendExpr(Op, Cast->getType()); 6236 } 6237 6238 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6239 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6240 if (Op == Cast->getOperand()) 6241 return Cast; // must be loop invariant 6242 return getTruncateExpr(Op, Cast->getType()); 6243 } 6244 6245 llvm_unreachable("Unknown SCEV type!"); 6246 } 6247 6248 /// getSCEVAtScope - This is a convenience function which does 6249 /// getSCEVAtScope(getSCEV(V), L). 6250 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6251 return getSCEVAtScope(getSCEV(V), L); 6252 } 6253 6254 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6255 /// following equation: 6256 /// 6257 /// A * X = B (mod N) 6258 /// 6259 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6260 /// A and B isn't important. 6261 /// 6262 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6263 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6264 ScalarEvolution &SE) { 6265 uint32_t BW = A.getBitWidth(); 6266 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6267 assert(A != 0 && "A must be non-zero."); 6268 6269 // 1. D = gcd(A, N) 6270 // 6271 // The gcd of A and N may have only one prime factor: 2. The number of 6272 // trailing zeros in A is its multiplicity 6273 uint32_t Mult2 = A.countTrailingZeros(); 6274 // D = 2^Mult2 6275 6276 // 2. Check if B is divisible by D. 6277 // 6278 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6279 // is not less than multiplicity of this prime factor for D. 6280 if (B.countTrailingZeros() < Mult2) 6281 return SE.getCouldNotCompute(); 6282 6283 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6284 // modulo (N / D). 6285 // 6286 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6287 // bit width during computations. 6288 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6289 APInt Mod(BW + 1, 0); 6290 Mod.setBit(BW - Mult2); // Mod = N / D 6291 APInt I = AD.multiplicativeInverse(Mod); 6292 6293 // 4. Compute the minimum unsigned root of the equation: 6294 // I * (B / D) mod (N / D) 6295 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6296 6297 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6298 // bits. 6299 return SE.getConstant(Result.trunc(BW)); 6300 } 6301 6302 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6303 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6304 /// might be the same) or two SCEVCouldNotCompute objects. 6305 /// 6306 static std::pair<const SCEV *,const SCEV *> 6307 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6308 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6309 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6310 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6311 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6312 6313 // We currently can only solve this if the coefficients are constants. 6314 if (!LC || !MC || !NC) { 6315 const SCEV *CNC = SE.getCouldNotCompute(); 6316 return std::make_pair(CNC, CNC); 6317 } 6318 6319 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6320 const APInt &L = LC->getValue()->getValue(); 6321 const APInt &M = MC->getValue()->getValue(); 6322 const APInt &N = NC->getValue()->getValue(); 6323 APInt Two(BitWidth, 2); 6324 APInt Four(BitWidth, 4); 6325 6326 { 6327 using namespace APIntOps; 6328 const APInt& C = L; 6329 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6330 // The B coefficient is M-N/2 6331 APInt B(M); 6332 B -= sdiv(N,Two); 6333 6334 // The A coefficient is N/2 6335 APInt A(N.sdiv(Two)); 6336 6337 // Compute the B^2-4ac term. 6338 APInt SqrtTerm(B); 6339 SqrtTerm *= B; 6340 SqrtTerm -= Four * (A * C); 6341 6342 if (SqrtTerm.isNegative()) { 6343 // The loop is provably infinite. 6344 const SCEV *CNC = SE.getCouldNotCompute(); 6345 return std::make_pair(CNC, CNC); 6346 } 6347 6348 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6349 // integer value or else APInt::sqrt() will assert. 6350 APInt SqrtVal(SqrtTerm.sqrt()); 6351 6352 // Compute the two solutions for the quadratic formula. 6353 // The divisions must be performed as signed divisions. 6354 APInt NegB(-B); 6355 APInt TwoA(A << 1); 6356 if (TwoA.isMinValue()) { 6357 const SCEV *CNC = SE.getCouldNotCompute(); 6358 return std::make_pair(CNC, CNC); 6359 } 6360 6361 LLVMContext &Context = SE.getContext(); 6362 6363 ConstantInt *Solution1 = 6364 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6365 ConstantInt *Solution2 = 6366 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6367 6368 return std::make_pair(SE.getConstant(Solution1), 6369 SE.getConstant(Solution2)); 6370 } // end APIntOps namespace 6371 } 6372 6373 /// HowFarToZero - Return the number of times a backedge comparing the specified 6374 /// value to zero will execute. If not computable, return CouldNotCompute. 6375 /// 6376 /// This is only used for loops with a "x != y" exit test. The exit condition is 6377 /// now expressed as a single expression, V = x-y. So the exit test is 6378 /// effectively V != 0. We know and take advantage of the fact that this 6379 /// expression only being used in a comparison by zero context. 6380 ScalarEvolution::ExitLimit 6381 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6382 // If the value is a constant 6383 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6384 // If the value is already zero, the branch will execute zero times. 6385 if (C->getValue()->isZero()) return C; 6386 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6387 } 6388 6389 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6390 if (!AddRec || AddRec->getLoop() != L) 6391 return getCouldNotCompute(); 6392 6393 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6394 // the quadratic equation to solve it. 6395 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6396 std::pair<const SCEV *,const SCEV *> Roots = 6397 SolveQuadraticEquation(AddRec, *this); 6398 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6399 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6400 if (R1 && R2) { 6401 #if 0 6402 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6403 << " sol#2: " << *R2 << "\n"; 6404 #endif 6405 // Pick the smallest positive root value. 6406 if (ConstantInt *CB = 6407 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6408 R1->getValue(), 6409 R2->getValue()))) { 6410 if (!CB->getZExtValue()) 6411 std::swap(R1, R2); // R1 is the minimum root now. 6412 6413 // We can only use this value if the chrec ends up with an exact zero 6414 // value at this index. When solving for "X*X != 5", for example, we 6415 // should not accept a root of 2. 6416 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6417 if (Val->isZero()) 6418 return R1; // We found a quadratic root! 6419 } 6420 } 6421 return getCouldNotCompute(); 6422 } 6423 6424 // Otherwise we can only handle this if it is affine. 6425 if (!AddRec->isAffine()) 6426 return getCouldNotCompute(); 6427 6428 // If this is an affine expression, the execution count of this branch is 6429 // the minimum unsigned root of the following equation: 6430 // 6431 // Start + Step*N = 0 (mod 2^BW) 6432 // 6433 // equivalent to: 6434 // 6435 // Step*N = -Start (mod 2^BW) 6436 // 6437 // where BW is the common bit width of Start and Step. 6438 6439 // Get the initial value for the loop. 6440 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6441 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6442 6443 // For now we handle only constant steps. 6444 // 6445 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6446 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6447 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6448 // We have not yet seen any such cases. 6449 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6450 if (!StepC || StepC->getValue()->equalsInt(0)) 6451 return getCouldNotCompute(); 6452 6453 // For positive steps (counting up until unsigned overflow): 6454 // N = -Start/Step (as unsigned) 6455 // For negative steps (counting down to zero): 6456 // N = Start/-Step 6457 // First compute the unsigned distance from zero in the direction of Step. 6458 bool CountDown = StepC->getValue()->getValue().isNegative(); 6459 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6460 6461 // Handle unitary steps, which cannot wraparound. 6462 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6463 // N = Distance (as unsigned) 6464 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6465 ConstantRange CR = getUnsignedRange(Start); 6466 const SCEV *MaxBECount; 6467 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6468 // When counting up, the worst starting value is 1, not 0. 6469 MaxBECount = CR.getUnsignedMax().isMinValue() 6470 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6471 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6472 else 6473 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6474 : -CR.getUnsignedMin()); 6475 return ExitLimit(Distance, MaxBECount); 6476 } 6477 6478 // As a special case, handle the instance where Step is a positive power of 6479 // two. In this case, determining whether Step divides Distance evenly can be 6480 // done by counting and comparing the number of trailing zeros of Step and 6481 // Distance. 6482 if (!CountDown) { 6483 const APInt &StepV = StepC->getValue()->getValue(); 6484 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6485 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6486 // case is not handled as this code is guarded by !CountDown. 6487 if (StepV.isPowerOf2() && 6488 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6489 // Here we've constrained the equation to be of the form 6490 // 6491 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6492 // 6493 // where we're operating on a W bit wide integer domain and k is 6494 // non-negative. The smallest unsigned solution for X is the trip count. 6495 // 6496 // (0) is equivalent to: 6497 // 6498 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6499 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6500 // <=> 2^k * Distance' - X = L * 2^(W - N) 6501 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6502 // 6503 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6504 // by 2^(W - N). 6505 // 6506 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6507 // 6508 // E.g. say we're solving 6509 // 6510 // 2 * Val = 2 * X (in i8) ... (3) 6511 // 6512 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6513 // 6514 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6515 // necessarily the smallest unsigned value of X that satisfies (3). 6516 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6517 // is i8 1, not i8 -127 6518 6519 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6520 6521 // Since SCEV does not have a URem node, we construct one using a truncate 6522 // and a zero extend. 6523 6524 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6525 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6526 auto *WideTy = Distance->getType(); 6527 6528 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6529 } 6530 } 6531 6532 // If the condition controls loop exit (the loop exits only if the expression 6533 // is true) and the addition is no-wrap we can use unsigned divide to 6534 // compute the backedge count. In this case, the step may not divide the 6535 // distance, but we don't care because if the condition is "missed" the loop 6536 // will have undefined behavior due to wrapping. 6537 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6538 const SCEV *Exact = 6539 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6540 return ExitLimit(Exact, Exact); 6541 } 6542 6543 // Then, try to solve the above equation provided that Start is constant. 6544 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6545 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6546 -StartC->getValue()->getValue(), 6547 *this); 6548 return getCouldNotCompute(); 6549 } 6550 6551 /// HowFarToNonZero - Return the number of times a backedge checking the 6552 /// specified value for nonzero will execute. If not computable, return 6553 /// CouldNotCompute 6554 ScalarEvolution::ExitLimit 6555 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6556 // Loops that look like: while (X == 0) are very strange indeed. We don't 6557 // handle them yet except for the trivial case. This could be expanded in the 6558 // future as needed. 6559 6560 // If the value is a constant, check to see if it is known to be non-zero 6561 // already. If so, the backedge will execute zero times. 6562 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6563 if (!C->getValue()->isNullValue()) 6564 return getZero(C->getType()); 6565 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6566 } 6567 6568 // We could implement others, but I really doubt anyone writes loops like 6569 // this, and if they did, they would already be constant folded. 6570 return getCouldNotCompute(); 6571 } 6572 6573 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6574 /// (which may not be an immediate predecessor) which has exactly one 6575 /// successor from which BB is reachable, or null if no such block is 6576 /// found. 6577 /// 6578 std::pair<BasicBlock *, BasicBlock *> 6579 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6580 // If the block has a unique predecessor, then there is no path from the 6581 // predecessor to the block that does not go through the direct edge 6582 // from the predecessor to the block. 6583 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6584 return std::make_pair(Pred, BB); 6585 6586 // A loop's header is defined to be a block that dominates the loop. 6587 // If the header has a unique predecessor outside the loop, it must be 6588 // a block that has exactly one successor that can reach the loop. 6589 if (Loop *L = LI.getLoopFor(BB)) 6590 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6591 6592 return std::pair<BasicBlock *, BasicBlock *>(); 6593 } 6594 6595 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6596 /// testing whether two expressions are equal, however for the purposes of 6597 /// looking for a condition guarding a loop, it can be useful to be a little 6598 /// more general, since a front-end may have replicated the controlling 6599 /// expression. 6600 /// 6601 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6602 // Quick check to see if they are the same SCEV. 6603 if (A == B) return true; 6604 6605 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6606 // Not all instructions that are "identical" compute the same value. For 6607 // instance, two distinct alloca instructions allocating the same type are 6608 // identical and do not read memory; but compute distinct values. 6609 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6610 }; 6611 6612 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6613 // two different instructions with the same value. Check for this case. 6614 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6615 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6616 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6617 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6618 if (ComputesEqualValues(AI, BI)) 6619 return true; 6620 6621 // Otherwise assume they may have a different value. 6622 return false; 6623 } 6624 6625 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6626 /// predicate Pred. Return true iff any changes were made. 6627 /// 6628 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6629 const SCEV *&LHS, const SCEV *&RHS, 6630 unsigned Depth) { 6631 bool Changed = false; 6632 6633 // If we hit the max recursion limit bail out. 6634 if (Depth >= 3) 6635 return false; 6636 6637 // Canonicalize a constant to the right side. 6638 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6639 // Check for both operands constant. 6640 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6641 if (ConstantExpr::getICmp(Pred, 6642 LHSC->getValue(), 6643 RHSC->getValue())->isNullValue()) 6644 goto trivially_false; 6645 else 6646 goto trivially_true; 6647 } 6648 // Otherwise swap the operands to put the constant on the right. 6649 std::swap(LHS, RHS); 6650 Pred = ICmpInst::getSwappedPredicate(Pred); 6651 Changed = true; 6652 } 6653 6654 // If we're comparing an addrec with a value which is loop-invariant in the 6655 // addrec's loop, put the addrec on the left. Also make a dominance check, 6656 // as both operands could be addrecs loop-invariant in each other's loop. 6657 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6658 const Loop *L = AR->getLoop(); 6659 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6660 std::swap(LHS, RHS); 6661 Pred = ICmpInst::getSwappedPredicate(Pred); 6662 Changed = true; 6663 } 6664 } 6665 6666 // If there's a constant operand, canonicalize comparisons with boundary 6667 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6668 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6669 const APInt &RA = RC->getValue()->getValue(); 6670 switch (Pred) { 6671 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6672 case ICmpInst::ICMP_EQ: 6673 case ICmpInst::ICMP_NE: 6674 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6675 if (!RA) 6676 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6677 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6678 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6679 ME->getOperand(0)->isAllOnesValue()) { 6680 RHS = AE->getOperand(1); 6681 LHS = ME->getOperand(1); 6682 Changed = true; 6683 } 6684 break; 6685 case ICmpInst::ICMP_UGE: 6686 if ((RA - 1).isMinValue()) { 6687 Pred = ICmpInst::ICMP_NE; 6688 RHS = getConstant(RA - 1); 6689 Changed = true; 6690 break; 6691 } 6692 if (RA.isMaxValue()) { 6693 Pred = ICmpInst::ICMP_EQ; 6694 Changed = true; 6695 break; 6696 } 6697 if (RA.isMinValue()) goto trivially_true; 6698 6699 Pred = ICmpInst::ICMP_UGT; 6700 RHS = getConstant(RA - 1); 6701 Changed = true; 6702 break; 6703 case ICmpInst::ICMP_ULE: 6704 if ((RA + 1).isMaxValue()) { 6705 Pred = ICmpInst::ICMP_NE; 6706 RHS = getConstant(RA + 1); 6707 Changed = true; 6708 break; 6709 } 6710 if (RA.isMinValue()) { 6711 Pred = ICmpInst::ICMP_EQ; 6712 Changed = true; 6713 break; 6714 } 6715 if (RA.isMaxValue()) goto trivially_true; 6716 6717 Pred = ICmpInst::ICMP_ULT; 6718 RHS = getConstant(RA + 1); 6719 Changed = true; 6720 break; 6721 case ICmpInst::ICMP_SGE: 6722 if ((RA - 1).isMinSignedValue()) { 6723 Pred = ICmpInst::ICMP_NE; 6724 RHS = getConstant(RA - 1); 6725 Changed = true; 6726 break; 6727 } 6728 if (RA.isMaxSignedValue()) { 6729 Pred = ICmpInst::ICMP_EQ; 6730 Changed = true; 6731 break; 6732 } 6733 if (RA.isMinSignedValue()) goto trivially_true; 6734 6735 Pred = ICmpInst::ICMP_SGT; 6736 RHS = getConstant(RA - 1); 6737 Changed = true; 6738 break; 6739 case ICmpInst::ICMP_SLE: 6740 if ((RA + 1).isMaxSignedValue()) { 6741 Pred = ICmpInst::ICMP_NE; 6742 RHS = getConstant(RA + 1); 6743 Changed = true; 6744 break; 6745 } 6746 if (RA.isMinSignedValue()) { 6747 Pred = ICmpInst::ICMP_EQ; 6748 Changed = true; 6749 break; 6750 } 6751 if (RA.isMaxSignedValue()) goto trivially_true; 6752 6753 Pred = ICmpInst::ICMP_SLT; 6754 RHS = getConstant(RA + 1); 6755 Changed = true; 6756 break; 6757 case ICmpInst::ICMP_UGT: 6758 if (RA.isMinValue()) { 6759 Pred = ICmpInst::ICMP_NE; 6760 Changed = true; 6761 break; 6762 } 6763 if ((RA + 1).isMaxValue()) { 6764 Pred = ICmpInst::ICMP_EQ; 6765 RHS = getConstant(RA + 1); 6766 Changed = true; 6767 break; 6768 } 6769 if (RA.isMaxValue()) goto trivially_false; 6770 break; 6771 case ICmpInst::ICMP_ULT: 6772 if (RA.isMaxValue()) { 6773 Pred = ICmpInst::ICMP_NE; 6774 Changed = true; 6775 break; 6776 } 6777 if ((RA - 1).isMinValue()) { 6778 Pred = ICmpInst::ICMP_EQ; 6779 RHS = getConstant(RA - 1); 6780 Changed = true; 6781 break; 6782 } 6783 if (RA.isMinValue()) goto trivially_false; 6784 break; 6785 case ICmpInst::ICMP_SGT: 6786 if (RA.isMinSignedValue()) { 6787 Pred = ICmpInst::ICMP_NE; 6788 Changed = true; 6789 break; 6790 } 6791 if ((RA + 1).isMaxSignedValue()) { 6792 Pred = ICmpInst::ICMP_EQ; 6793 RHS = getConstant(RA + 1); 6794 Changed = true; 6795 break; 6796 } 6797 if (RA.isMaxSignedValue()) goto trivially_false; 6798 break; 6799 case ICmpInst::ICMP_SLT: 6800 if (RA.isMaxSignedValue()) { 6801 Pred = ICmpInst::ICMP_NE; 6802 Changed = true; 6803 break; 6804 } 6805 if ((RA - 1).isMinSignedValue()) { 6806 Pred = ICmpInst::ICMP_EQ; 6807 RHS = getConstant(RA - 1); 6808 Changed = true; 6809 break; 6810 } 6811 if (RA.isMinSignedValue()) goto trivially_false; 6812 break; 6813 } 6814 } 6815 6816 // Check for obvious equality. 6817 if (HasSameValue(LHS, RHS)) { 6818 if (ICmpInst::isTrueWhenEqual(Pred)) 6819 goto trivially_true; 6820 if (ICmpInst::isFalseWhenEqual(Pred)) 6821 goto trivially_false; 6822 } 6823 6824 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6825 // adding or subtracting 1 from one of the operands. 6826 switch (Pred) { 6827 case ICmpInst::ICMP_SLE: 6828 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6829 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6830 SCEV::FlagNSW); 6831 Pred = ICmpInst::ICMP_SLT; 6832 Changed = true; 6833 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6834 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6835 SCEV::FlagNSW); 6836 Pred = ICmpInst::ICMP_SLT; 6837 Changed = true; 6838 } 6839 break; 6840 case ICmpInst::ICMP_SGE: 6841 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6842 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6843 SCEV::FlagNSW); 6844 Pred = ICmpInst::ICMP_SGT; 6845 Changed = true; 6846 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6847 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6848 SCEV::FlagNSW); 6849 Pred = ICmpInst::ICMP_SGT; 6850 Changed = true; 6851 } 6852 break; 6853 case ICmpInst::ICMP_ULE: 6854 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6855 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6856 SCEV::FlagNUW); 6857 Pred = ICmpInst::ICMP_ULT; 6858 Changed = true; 6859 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6860 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6861 SCEV::FlagNUW); 6862 Pred = ICmpInst::ICMP_ULT; 6863 Changed = true; 6864 } 6865 break; 6866 case ICmpInst::ICMP_UGE: 6867 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6868 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6869 SCEV::FlagNUW); 6870 Pred = ICmpInst::ICMP_UGT; 6871 Changed = true; 6872 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6873 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6874 SCEV::FlagNUW); 6875 Pred = ICmpInst::ICMP_UGT; 6876 Changed = true; 6877 } 6878 break; 6879 default: 6880 break; 6881 } 6882 6883 // TODO: More simplifications are possible here. 6884 6885 // Recursively simplify until we either hit a recursion limit or nothing 6886 // changes. 6887 if (Changed) 6888 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6889 6890 return Changed; 6891 6892 trivially_true: 6893 // Return 0 == 0. 6894 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6895 Pred = ICmpInst::ICMP_EQ; 6896 return true; 6897 6898 trivially_false: 6899 // Return 0 != 0. 6900 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6901 Pred = ICmpInst::ICMP_NE; 6902 return true; 6903 } 6904 6905 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6906 return getSignedRange(S).getSignedMax().isNegative(); 6907 } 6908 6909 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6910 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6911 } 6912 6913 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6914 return !getSignedRange(S).getSignedMin().isNegative(); 6915 } 6916 6917 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6918 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6919 } 6920 6921 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6922 return isKnownNegative(S) || isKnownPositive(S); 6923 } 6924 6925 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6926 const SCEV *LHS, const SCEV *RHS) { 6927 // Canonicalize the inputs first. 6928 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6929 6930 // If LHS or RHS is an addrec, check to see if the condition is true in 6931 // every iteration of the loop. 6932 // If LHS and RHS are both addrec, both conditions must be true in 6933 // every iteration of the loop. 6934 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6935 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6936 bool LeftGuarded = false; 6937 bool RightGuarded = false; 6938 if (LAR) { 6939 const Loop *L = LAR->getLoop(); 6940 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6941 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6942 if (!RAR) return true; 6943 LeftGuarded = true; 6944 } 6945 } 6946 if (RAR) { 6947 const Loop *L = RAR->getLoop(); 6948 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6949 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6950 if (!LAR) return true; 6951 RightGuarded = true; 6952 } 6953 } 6954 if (LeftGuarded && RightGuarded) 6955 return true; 6956 6957 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 6958 return true; 6959 6960 // Otherwise see what can be done with known constant ranges. 6961 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6962 } 6963 6964 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6965 ICmpInst::Predicate Pred, 6966 bool &Increasing) { 6967 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6968 6969 #ifndef NDEBUG 6970 // Verify an invariant: inverting the predicate should turn a monotonically 6971 // increasing change to a monotonically decreasing one, and vice versa. 6972 bool IncreasingSwapped; 6973 bool ResultSwapped = isMonotonicPredicateImpl( 6974 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6975 6976 assert(Result == ResultSwapped && "should be able to analyze both!"); 6977 if (ResultSwapped) 6978 assert(Increasing == !IncreasingSwapped && 6979 "monotonicity should flip as we flip the predicate"); 6980 #endif 6981 6982 return Result; 6983 } 6984 6985 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6986 ICmpInst::Predicate Pred, 6987 bool &Increasing) { 6988 6989 // A zero step value for LHS means the induction variable is essentially a 6990 // loop invariant value. We don't really depend on the predicate actually 6991 // flipping from false to true (for increasing predicates, and the other way 6992 // around for decreasing predicates), all we care about is that *if* the 6993 // predicate changes then it only changes from false to true. 6994 // 6995 // A zero step value in itself is not very useful, but there may be places 6996 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6997 // as general as possible. 6998 6999 switch (Pred) { 7000 default: 7001 return false; // Conservative answer 7002 7003 case ICmpInst::ICMP_UGT: 7004 case ICmpInst::ICMP_UGE: 7005 case ICmpInst::ICMP_ULT: 7006 case ICmpInst::ICMP_ULE: 7007 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 7008 return false; 7009 7010 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7011 return true; 7012 7013 case ICmpInst::ICMP_SGT: 7014 case ICmpInst::ICMP_SGE: 7015 case ICmpInst::ICMP_SLT: 7016 case ICmpInst::ICMP_SLE: { 7017 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 7018 return false; 7019 7020 const SCEV *Step = LHS->getStepRecurrence(*this); 7021 7022 if (isKnownNonNegative(Step)) { 7023 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7024 return true; 7025 } 7026 7027 if (isKnownNonPositive(Step)) { 7028 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7029 return true; 7030 } 7031 7032 return false; 7033 } 7034 7035 } 7036 7037 llvm_unreachable("switch has default clause!"); 7038 } 7039 7040 bool ScalarEvolution::isLoopInvariantPredicate( 7041 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7042 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7043 const SCEV *&InvariantRHS) { 7044 7045 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7046 if (!isLoopInvariant(RHS, L)) { 7047 if (!isLoopInvariant(LHS, L)) 7048 return false; 7049 7050 std::swap(LHS, RHS); 7051 Pred = ICmpInst::getSwappedPredicate(Pred); 7052 } 7053 7054 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7055 if (!ArLHS || ArLHS->getLoop() != L) 7056 return false; 7057 7058 bool Increasing; 7059 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7060 return false; 7061 7062 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7063 // true as the loop iterates, and the backedge is control dependent on 7064 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7065 // 7066 // * if the predicate was false in the first iteration then the predicate 7067 // is never evaluated again, since the loop exits without taking the 7068 // backedge. 7069 // * if the predicate was true in the first iteration then it will 7070 // continue to be true for all future iterations since it is 7071 // monotonically increasing. 7072 // 7073 // For both the above possibilities, we can replace the loop varying 7074 // predicate with its value on the first iteration of the loop (which is 7075 // loop invariant). 7076 // 7077 // A similar reasoning applies for a monotonically decreasing predicate, by 7078 // replacing true with false and false with true in the above two bullets. 7079 7080 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7081 7082 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7083 return false; 7084 7085 InvariantPred = Pred; 7086 InvariantLHS = ArLHS->getStart(); 7087 InvariantRHS = RHS; 7088 return true; 7089 } 7090 7091 bool 7092 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7093 const SCEV *LHS, const SCEV *RHS) { 7094 if (HasSameValue(LHS, RHS)) 7095 return ICmpInst::isTrueWhenEqual(Pred); 7096 7097 // This code is split out from isKnownPredicate because it is called from 7098 // within isLoopEntryGuardedByCond. 7099 switch (Pred) { 7100 default: 7101 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7102 case ICmpInst::ICMP_SGT: 7103 std::swap(LHS, RHS); 7104 case ICmpInst::ICMP_SLT: { 7105 ConstantRange LHSRange = getSignedRange(LHS); 7106 ConstantRange RHSRange = getSignedRange(RHS); 7107 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7108 return true; 7109 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7110 return false; 7111 break; 7112 } 7113 case ICmpInst::ICMP_SGE: 7114 std::swap(LHS, RHS); 7115 case ICmpInst::ICMP_SLE: { 7116 ConstantRange LHSRange = getSignedRange(LHS); 7117 ConstantRange RHSRange = getSignedRange(RHS); 7118 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7119 return true; 7120 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7121 return false; 7122 break; 7123 } 7124 case ICmpInst::ICMP_UGT: 7125 std::swap(LHS, RHS); 7126 case ICmpInst::ICMP_ULT: { 7127 ConstantRange LHSRange = getUnsignedRange(LHS); 7128 ConstantRange RHSRange = getUnsignedRange(RHS); 7129 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7130 return true; 7131 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7132 return false; 7133 break; 7134 } 7135 case ICmpInst::ICMP_UGE: 7136 std::swap(LHS, RHS); 7137 case ICmpInst::ICMP_ULE: { 7138 ConstantRange LHSRange = getUnsignedRange(LHS); 7139 ConstantRange RHSRange = getUnsignedRange(RHS); 7140 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7141 return true; 7142 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7143 return false; 7144 break; 7145 } 7146 case ICmpInst::ICMP_NE: { 7147 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7148 return true; 7149 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7150 return true; 7151 7152 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7153 if (isKnownNonZero(Diff)) 7154 return true; 7155 break; 7156 } 7157 case ICmpInst::ICMP_EQ: 7158 // The check at the top of the function catches the case where 7159 // the values are known to be equal. 7160 break; 7161 } 7162 return false; 7163 } 7164 7165 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7166 const SCEV *LHS, 7167 const SCEV *RHS) { 7168 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7169 return false; 7170 7171 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7172 // the stack can result in exponential time complexity. 7173 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7174 7175 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7176 // 7177 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7178 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7179 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7180 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7181 // use isKnownPredicate later if needed. 7182 if (isKnownNonNegative(RHS) && 7183 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7184 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7185 return true; 7186 7187 return false; 7188 } 7189 7190 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7191 /// protected by a conditional between LHS and RHS. This is used to 7192 /// to eliminate casts. 7193 bool 7194 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7195 ICmpInst::Predicate Pred, 7196 const SCEV *LHS, const SCEV *RHS) { 7197 // Interpret a null as meaning no loop, where there is obviously no guard 7198 // (interprocedural conditions notwithstanding). 7199 if (!L) return true; 7200 7201 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7202 7203 BasicBlock *Latch = L->getLoopLatch(); 7204 if (!Latch) 7205 return false; 7206 7207 BranchInst *LoopContinuePredicate = 7208 dyn_cast<BranchInst>(Latch->getTerminator()); 7209 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7210 isImpliedCond(Pred, LHS, RHS, 7211 LoopContinuePredicate->getCondition(), 7212 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7213 return true; 7214 7215 // We don't want more than one activation of the following loops on the stack 7216 // -- that can lead to O(n!) time complexity. 7217 if (WalkingBEDominatingConds) 7218 return false; 7219 7220 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7221 7222 // See if we can exploit a trip count to prove the predicate. 7223 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7224 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7225 if (LatchBECount != getCouldNotCompute()) { 7226 // We know that Latch branches back to the loop header exactly 7227 // LatchBECount times. This means the backdege condition at Latch is 7228 // equivalent to "{0,+,1} u< LatchBECount". 7229 Type *Ty = LatchBECount->getType(); 7230 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7231 const SCEV *LoopCounter = 7232 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7233 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7234 LatchBECount)) 7235 return true; 7236 } 7237 7238 // Check conditions due to any @llvm.assume intrinsics. 7239 for (auto &AssumeVH : AC.assumptions()) { 7240 if (!AssumeVH) 7241 continue; 7242 auto *CI = cast<CallInst>(AssumeVH); 7243 if (!DT.dominates(CI, Latch->getTerminator())) 7244 continue; 7245 7246 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7247 return true; 7248 } 7249 7250 // If the loop is not reachable from the entry block, we risk running into an 7251 // infinite loop as we walk up into the dom tree. These loops do not matter 7252 // anyway, so we just return a conservative answer when we see them. 7253 if (!DT.isReachableFromEntry(L->getHeader())) 7254 return false; 7255 7256 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7257 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7258 7259 assert(DTN && "should reach the loop header before reaching the root!"); 7260 7261 BasicBlock *BB = DTN->getBlock(); 7262 BasicBlock *PBB = BB->getSinglePredecessor(); 7263 if (!PBB) 7264 continue; 7265 7266 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7267 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7268 continue; 7269 7270 Value *Condition = ContinuePredicate->getCondition(); 7271 7272 // If we have an edge `E` within the loop body that dominates the only 7273 // latch, the condition guarding `E` also guards the backedge. This 7274 // reasoning works only for loops with a single latch. 7275 7276 BasicBlockEdge DominatingEdge(PBB, BB); 7277 if (DominatingEdge.isSingleEdge()) { 7278 // We're constructively (and conservatively) enumerating edges within the 7279 // loop body that dominate the latch. The dominator tree better agree 7280 // with us on this: 7281 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7282 7283 if (isImpliedCond(Pred, LHS, RHS, Condition, 7284 BB != ContinuePredicate->getSuccessor(0))) 7285 return true; 7286 } 7287 } 7288 7289 return false; 7290 } 7291 7292 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7293 /// by a conditional between LHS and RHS. This is used to help avoid max 7294 /// expressions in loop trip counts, and to eliminate casts. 7295 bool 7296 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7297 ICmpInst::Predicate Pred, 7298 const SCEV *LHS, const SCEV *RHS) { 7299 // Interpret a null as meaning no loop, where there is obviously no guard 7300 // (interprocedural conditions notwithstanding). 7301 if (!L) return false; 7302 7303 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7304 7305 // Starting at the loop predecessor, climb up the predecessor chain, as long 7306 // as there are predecessors that can be found that have unique successors 7307 // leading to the original header. 7308 for (std::pair<BasicBlock *, BasicBlock *> 7309 Pair(L->getLoopPredecessor(), L->getHeader()); 7310 Pair.first; 7311 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7312 7313 BranchInst *LoopEntryPredicate = 7314 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7315 if (!LoopEntryPredicate || 7316 LoopEntryPredicate->isUnconditional()) 7317 continue; 7318 7319 if (isImpliedCond(Pred, LHS, RHS, 7320 LoopEntryPredicate->getCondition(), 7321 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7322 return true; 7323 } 7324 7325 // Check conditions due to any @llvm.assume intrinsics. 7326 for (auto &AssumeVH : AC.assumptions()) { 7327 if (!AssumeVH) 7328 continue; 7329 auto *CI = cast<CallInst>(AssumeVH); 7330 if (!DT.dominates(CI, L->getHeader())) 7331 continue; 7332 7333 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7334 return true; 7335 } 7336 7337 return false; 7338 } 7339 7340 /// RAII wrapper to prevent recursive application of isImpliedCond. 7341 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7342 /// currently evaluating isImpliedCond. 7343 struct MarkPendingLoopPredicate { 7344 Value *Cond; 7345 DenseSet<Value*> &LoopPreds; 7346 bool Pending; 7347 7348 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7349 : Cond(C), LoopPreds(LP) { 7350 Pending = !LoopPreds.insert(Cond).second; 7351 } 7352 ~MarkPendingLoopPredicate() { 7353 if (!Pending) 7354 LoopPreds.erase(Cond); 7355 } 7356 }; 7357 7358 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7359 /// and RHS is true whenever the given Cond value evaluates to true. 7360 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7361 const SCEV *LHS, const SCEV *RHS, 7362 Value *FoundCondValue, 7363 bool Inverse) { 7364 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7365 if (Mark.Pending) 7366 return false; 7367 7368 // Recursively handle And and Or conditions. 7369 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7370 if (BO->getOpcode() == Instruction::And) { 7371 if (!Inverse) 7372 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7373 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7374 } else if (BO->getOpcode() == Instruction::Or) { 7375 if (Inverse) 7376 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7377 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7378 } 7379 } 7380 7381 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7382 if (!ICI) return false; 7383 7384 // Now that we found a conditional branch that dominates the loop or controls 7385 // the loop latch. Check to see if it is the comparison we are looking for. 7386 ICmpInst::Predicate FoundPred; 7387 if (Inverse) 7388 FoundPred = ICI->getInversePredicate(); 7389 else 7390 FoundPred = ICI->getPredicate(); 7391 7392 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7393 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7394 7395 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7396 } 7397 7398 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7399 const SCEV *RHS, 7400 ICmpInst::Predicate FoundPred, 7401 const SCEV *FoundLHS, 7402 const SCEV *FoundRHS) { 7403 // Balance the types. 7404 if (getTypeSizeInBits(LHS->getType()) < 7405 getTypeSizeInBits(FoundLHS->getType())) { 7406 if (CmpInst::isSigned(Pred)) { 7407 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7408 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7409 } else { 7410 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7411 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7412 } 7413 } else if (getTypeSizeInBits(LHS->getType()) > 7414 getTypeSizeInBits(FoundLHS->getType())) { 7415 if (CmpInst::isSigned(FoundPred)) { 7416 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7417 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7418 } else { 7419 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7420 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7421 } 7422 } 7423 7424 // Canonicalize the query to match the way instcombine will have 7425 // canonicalized the comparison. 7426 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7427 if (LHS == RHS) 7428 return CmpInst::isTrueWhenEqual(Pred); 7429 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7430 if (FoundLHS == FoundRHS) 7431 return CmpInst::isFalseWhenEqual(FoundPred); 7432 7433 // Check to see if we can make the LHS or RHS match. 7434 if (LHS == FoundRHS || RHS == FoundLHS) { 7435 if (isa<SCEVConstant>(RHS)) { 7436 std::swap(FoundLHS, FoundRHS); 7437 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7438 } else { 7439 std::swap(LHS, RHS); 7440 Pred = ICmpInst::getSwappedPredicate(Pred); 7441 } 7442 } 7443 7444 // Check whether the found predicate is the same as the desired predicate. 7445 if (FoundPred == Pred) 7446 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7447 7448 // Check whether swapping the found predicate makes it the same as the 7449 // desired predicate. 7450 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7451 if (isa<SCEVConstant>(RHS)) 7452 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7453 else 7454 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7455 RHS, LHS, FoundLHS, FoundRHS); 7456 } 7457 7458 // Check if we can make progress by sharpening ranges. 7459 if (FoundPred == ICmpInst::ICMP_NE && 7460 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7461 7462 const SCEVConstant *C = nullptr; 7463 const SCEV *V = nullptr; 7464 7465 if (isa<SCEVConstant>(FoundLHS)) { 7466 C = cast<SCEVConstant>(FoundLHS); 7467 V = FoundRHS; 7468 } else { 7469 C = cast<SCEVConstant>(FoundRHS); 7470 V = FoundLHS; 7471 } 7472 7473 // The guarding predicate tells us that C != V. If the known range 7474 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7475 // range we consider has to correspond to same signedness as the 7476 // predicate we're interested in folding. 7477 7478 APInt Min = ICmpInst::isSigned(Pred) ? 7479 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7480 7481 if (Min == C->getValue()->getValue()) { 7482 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7483 // This is true even if (Min + 1) wraps around -- in case of 7484 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7485 7486 APInt SharperMin = Min + 1; 7487 7488 switch (Pred) { 7489 case ICmpInst::ICMP_SGE: 7490 case ICmpInst::ICMP_UGE: 7491 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7492 // RHS, we're done. 7493 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7494 getConstant(SharperMin))) 7495 return true; 7496 7497 case ICmpInst::ICMP_SGT: 7498 case ICmpInst::ICMP_UGT: 7499 // We know from the range information that (V `Pred` Min || 7500 // V == Min). We know from the guarding condition that !(V 7501 // == Min). This gives us 7502 // 7503 // V `Pred` Min || V == Min && !(V == Min) 7504 // => V `Pred` Min 7505 // 7506 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7507 7508 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7509 return true; 7510 7511 default: 7512 // No change 7513 break; 7514 } 7515 } 7516 } 7517 7518 // Check whether the actual condition is beyond sufficient. 7519 if (FoundPred == ICmpInst::ICMP_EQ) 7520 if (ICmpInst::isTrueWhenEqual(Pred)) 7521 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7522 return true; 7523 if (Pred == ICmpInst::ICMP_NE) 7524 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7525 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7526 return true; 7527 7528 // Otherwise assume the worst. 7529 return false; 7530 } 7531 7532 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7533 const SCEV *&L, const SCEV *&R, 7534 SCEV::NoWrapFlags &Flags) { 7535 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7536 if (!AE || AE->getNumOperands() != 2) 7537 return false; 7538 7539 L = AE->getOperand(0); 7540 R = AE->getOperand(1); 7541 Flags = AE->getNoWrapFlags(); 7542 return true; 7543 } 7544 7545 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7546 const SCEV *More, 7547 APInt &C) { 7548 // We avoid subtracting expressions here because this function is usually 7549 // fairly deep in the call stack (i.e. is called many times). 7550 7551 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7552 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7553 const auto *MAR = cast<SCEVAddRecExpr>(More); 7554 7555 if (LAR->getLoop() != MAR->getLoop()) 7556 return false; 7557 7558 // We look at affine expressions only; not for correctness but to keep 7559 // getStepRecurrence cheap. 7560 if (!LAR->isAffine() || !MAR->isAffine()) 7561 return false; 7562 7563 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7564 return false; 7565 7566 Less = LAR->getStart(); 7567 More = MAR->getStart(); 7568 7569 // fall through 7570 } 7571 7572 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7573 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7574 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7575 C = M - L; 7576 return true; 7577 } 7578 7579 const SCEV *L, *R; 7580 SCEV::NoWrapFlags Flags; 7581 if (splitBinaryAdd(Less, L, R, Flags)) 7582 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7583 if (R == More) { 7584 C = -(LC->getValue()->getValue()); 7585 return true; 7586 } 7587 7588 if (splitBinaryAdd(More, L, R, Flags)) 7589 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7590 if (R == Less) { 7591 C = LC->getValue()->getValue(); 7592 return true; 7593 } 7594 7595 return false; 7596 } 7597 7598 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7599 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7600 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7601 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7602 return false; 7603 7604 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7605 if (!AddRecLHS) 7606 return false; 7607 7608 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7609 if (!AddRecFoundLHS) 7610 return false; 7611 7612 // We'd like to let SCEV reason about control dependencies, so we constrain 7613 // both the inequalities to be about add recurrences on the same loop. This 7614 // way we can use isLoopEntryGuardedByCond later. 7615 7616 const Loop *L = AddRecFoundLHS->getLoop(); 7617 if (L != AddRecLHS->getLoop()) 7618 return false; 7619 7620 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7621 // 7622 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7623 // ... (2) 7624 // 7625 // Informal proof for (2), assuming (1) [*]: 7626 // 7627 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7628 // 7629 // Then 7630 // 7631 // FoundLHS s< FoundRHS s< INT_MIN - C 7632 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7633 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7634 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7635 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7636 // <=> FoundLHS + C s< FoundRHS + C 7637 // 7638 // [*]: (1) can be proved by ruling out overflow. 7639 // 7640 // [**]: This can be proved by analyzing all the four possibilities: 7641 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7642 // (A s>= 0, B s>= 0). 7643 // 7644 // Note: 7645 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7646 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7647 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7648 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7649 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7650 // C)". 7651 7652 APInt LDiff, RDiff; 7653 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7654 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7655 LDiff != RDiff) 7656 return false; 7657 7658 if (LDiff == 0) 7659 return true; 7660 7661 APInt FoundRHSLimit; 7662 7663 if (Pred == CmpInst::ICMP_ULT) { 7664 FoundRHSLimit = -RDiff; 7665 } else { 7666 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7667 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7668 } 7669 7670 // Try to prove (1) or (2), as needed. 7671 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7672 getConstant(FoundRHSLimit)); 7673 } 7674 7675 /// isImpliedCondOperands - Test whether the condition described by Pred, 7676 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7677 /// and FoundRHS is true. 7678 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7679 const SCEV *LHS, const SCEV *RHS, 7680 const SCEV *FoundLHS, 7681 const SCEV *FoundRHS) { 7682 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7683 return true; 7684 7685 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7686 return true; 7687 7688 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7689 FoundLHS, FoundRHS) || 7690 // ~x < ~y --> x > y 7691 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7692 getNotSCEV(FoundRHS), 7693 getNotSCEV(FoundLHS)); 7694 } 7695 7696 7697 /// If Expr computes ~A, return A else return nullptr 7698 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7699 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7700 if (!Add || Add->getNumOperands() != 2 || 7701 !Add->getOperand(0)->isAllOnesValue()) 7702 return nullptr; 7703 7704 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7705 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7706 !AddRHS->getOperand(0)->isAllOnesValue()) 7707 return nullptr; 7708 7709 return AddRHS->getOperand(1); 7710 } 7711 7712 7713 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7714 template<typename MaxExprType> 7715 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7716 const SCEV *Candidate) { 7717 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7718 if (!MaxExpr) return false; 7719 7720 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7721 return It != MaxExpr->op_end(); 7722 } 7723 7724 7725 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7726 template<typename MaxExprType> 7727 static bool IsMinConsistingOf(ScalarEvolution &SE, 7728 const SCEV *MaybeMinExpr, 7729 const SCEV *Candidate) { 7730 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7731 if (!MaybeMaxExpr) 7732 return false; 7733 7734 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7735 } 7736 7737 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7738 ICmpInst::Predicate Pred, 7739 const SCEV *LHS, const SCEV *RHS) { 7740 7741 // If both sides are affine addrecs for the same loop, with equal 7742 // steps, and we know the recurrences don't wrap, then we only 7743 // need to check the predicate on the starting values. 7744 7745 if (!ICmpInst::isRelational(Pred)) 7746 return false; 7747 7748 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7749 if (!LAR) 7750 return false; 7751 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7752 if (!RAR) 7753 return false; 7754 if (LAR->getLoop() != RAR->getLoop()) 7755 return false; 7756 if (!LAR->isAffine() || !RAR->isAffine()) 7757 return false; 7758 7759 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7760 return false; 7761 7762 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7763 SCEV::FlagNSW : SCEV::FlagNUW; 7764 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7765 return false; 7766 7767 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7768 } 7769 7770 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7771 /// expression? 7772 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7773 ICmpInst::Predicate Pred, 7774 const SCEV *LHS, const SCEV *RHS) { 7775 switch (Pred) { 7776 default: 7777 return false; 7778 7779 case ICmpInst::ICMP_SGE: 7780 std::swap(LHS, RHS); 7781 // fall through 7782 case ICmpInst::ICMP_SLE: 7783 return 7784 // min(A, ...) <= A 7785 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7786 // A <= max(A, ...) 7787 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7788 7789 case ICmpInst::ICMP_UGE: 7790 std::swap(LHS, RHS); 7791 // fall through 7792 case ICmpInst::ICMP_ULE: 7793 return 7794 // min(A, ...) <= A 7795 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7796 // A <= max(A, ...) 7797 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7798 } 7799 7800 llvm_unreachable("covered switch fell through?!"); 7801 } 7802 7803 /// isImpliedCondOperandsHelper - Test whether the condition described by 7804 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7805 /// FoundLHS, and FoundRHS is true. 7806 bool 7807 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7808 const SCEV *LHS, const SCEV *RHS, 7809 const SCEV *FoundLHS, 7810 const SCEV *FoundRHS) { 7811 auto IsKnownPredicateFull = 7812 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7813 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7814 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7815 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS); 7816 }; 7817 7818 switch (Pred) { 7819 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7820 case ICmpInst::ICMP_EQ: 7821 case ICmpInst::ICMP_NE: 7822 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7823 return true; 7824 break; 7825 case ICmpInst::ICMP_SLT: 7826 case ICmpInst::ICMP_SLE: 7827 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7828 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7829 return true; 7830 break; 7831 case ICmpInst::ICMP_SGT: 7832 case ICmpInst::ICMP_SGE: 7833 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7834 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7835 return true; 7836 break; 7837 case ICmpInst::ICMP_ULT: 7838 case ICmpInst::ICMP_ULE: 7839 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7840 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7841 return true; 7842 break; 7843 case ICmpInst::ICMP_UGT: 7844 case ICmpInst::ICMP_UGE: 7845 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7846 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7847 return true; 7848 break; 7849 } 7850 7851 return false; 7852 } 7853 7854 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7855 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7856 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7857 const SCEV *LHS, 7858 const SCEV *RHS, 7859 const SCEV *FoundLHS, 7860 const SCEV *FoundRHS) { 7861 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7862 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7863 // reduce the compile time impact of this optimization. 7864 return false; 7865 7866 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7867 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7868 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7869 return false; 7870 7871 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7872 7873 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7874 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7875 ConstantRange FoundLHSRange = 7876 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7877 7878 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7879 // for `LHS`: 7880 APInt Addend = 7881 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7882 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7883 7884 // We can also compute the range of values for `LHS` that satisfy the 7885 // consequent, "`LHS` `Pred` `RHS`": 7886 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7887 ConstantRange SatisfyingLHSRange = 7888 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7889 7890 // The antecedent implies the consequent if every value of `LHS` that 7891 // satisfies the antecedent also satisfies the consequent. 7892 return SatisfyingLHSRange.contains(LHSRange); 7893 } 7894 7895 // Verify if an linear IV with positive stride can overflow when in a 7896 // less-than comparison, knowing the invariant term of the comparison, the 7897 // stride and the knowledge of NSW/NUW flags on the recurrence. 7898 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7899 bool IsSigned, bool NoWrap) { 7900 if (NoWrap) return false; 7901 7902 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7903 const SCEV *One = getOne(Stride->getType()); 7904 7905 if (IsSigned) { 7906 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7907 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7908 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7909 .getSignedMax(); 7910 7911 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7912 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7913 } 7914 7915 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7916 APInt MaxValue = APInt::getMaxValue(BitWidth); 7917 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7918 .getUnsignedMax(); 7919 7920 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7921 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7922 } 7923 7924 // Verify if an linear IV with negative stride can overflow when in a 7925 // greater-than comparison, knowing the invariant term of the comparison, 7926 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7927 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7928 bool IsSigned, bool NoWrap) { 7929 if (NoWrap) return false; 7930 7931 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7932 const SCEV *One = getOne(Stride->getType()); 7933 7934 if (IsSigned) { 7935 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7936 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7937 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7938 .getSignedMax(); 7939 7940 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7941 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7942 } 7943 7944 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7945 APInt MinValue = APInt::getMinValue(BitWidth); 7946 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7947 .getUnsignedMax(); 7948 7949 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7950 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7951 } 7952 7953 // Compute the backedge taken count knowing the interval difference, the 7954 // stride and presence of the equality in the comparison. 7955 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7956 bool Equality) { 7957 const SCEV *One = getOne(Step->getType()); 7958 Delta = Equality ? getAddExpr(Delta, Step) 7959 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7960 return getUDivExpr(Delta, Step); 7961 } 7962 7963 /// HowManyLessThans - Return the number of times a backedge containing the 7964 /// specified less-than comparison will execute. If not computable, return 7965 /// CouldNotCompute. 7966 /// 7967 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7968 /// the branch (loops exits only if condition is true). In this case, we can use 7969 /// NoWrapFlags to skip overflow checks. 7970 ScalarEvolution::ExitLimit 7971 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7972 const Loop *L, bool IsSigned, 7973 bool ControlsExit) { 7974 // We handle only IV < Invariant 7975 if (!isLoopInvariant(RHS, L)) 7976 return getCouldNotCompute(); 7977 7978 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7979 7980 // Avoid weird loops 7981 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7982 return getCouldNotCompute(); 7983 7984 bool NoWrap = ControlsExit && 7985 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7986 7987 const SCEV *Stride = IV->getStepRecurrence(*this); 7988 7989 // Avoid negative or zero stride values 7990 if (!isKnownPositive(Stride)) 7991 return getCouldNotCompute(); 7992 7993 // Avoid proven overflow cases: this will ensure that the backedge taken count 7994 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7995 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7996 // behaviors like the case of C language. 7997 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7998 return getCouldNotCompute(); 7999 8000 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8001 : ICmpInst::ICMP_ULT; 8002 const SCEV *Start = IV->getStart(); 8003 const SCEV *End = RHS; 8004 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8005 const SCEV *Diff = getMinusSCEV(RHS, Start); 8006 // If we have NoWrap set, then we can assume that the increment won't 8007 // overflow, in which case if RHS - Start is a constant, we don't need to 8008 // do a max operation since we can just figure it out statically 8009 if (NoWrap && isa<SCEVConstant>(Diff)) { 8010 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8011 if (D.isNegative()) 8012 End = Start; 8013 } else 8014 End = IsSigned ? getSMaxExpr(RHS, Start) 8015 : getUMaxExpr(RHS, Start); 8016 } 8017 8018 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8019 8020 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8021 : getUnsignedRange(Start).getUnsignedMin(); 8022 8023 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8024 : getUnsignedRange(Stride).getUnsignedMin(); 8025 8026 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8027 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8028 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8029 8030 // Although End can be a MAX expression we estimate MaxEnd considering only 8031 // the case End = RHS. This is safe because in the other case (End - Start) 8032 // is zero, leading to a zero maximum backedge taken count. 8033 APInt MaxEnd = 8034 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8035 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8036 8037 const SCEV *MaxBECount; 8038 if (isa<SCEVConstant>(BECount)) 8039 MaxBECount = BECount; 8040 else 8041 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8042 getConstant(MinStride), false); 8043 8044 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8045 MaxBECount = BECount; 8046 8047 return ExitLimit(BECount, MaxBECount); 8048 } 8049 8050 ScalarEvolution::ExitLimit 8051 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8052 const Loop *L, bool IsSigned, 8053 bool ControlsExit) { 8054 // We handle only IV > Invariant 8055 if (!isLoopInvariant(RHS, L)) 8056 return getCouldNotCompute(); 8057 8058 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8059 8060 // Avoid weird loops 8061 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8062 return getCouldNotCompute(); 8063 8064 bool NoWrap = ControlsExit && 8065 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8066 8067 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8068 8069 // Avoid negative or zero stride values 8070 if (!isKnownPositive(Stride)) 8071 return getCouldNotCompute(); 8072 8073 // Avoid proven overflow cases: this will ensure that the backedge taken count 8074 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8075 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8076 // behaviors like the case of C language. 8077 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8078 return getCouldNotCompute(); 8079 8080 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8081 : ICmpInst::ICMP_UGT; 8082 8083 const SCEV *Start = IV->getStart(); 8084 const SCEV *End = RHS; 8085 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8086 const SCEV *Diff = getMinusSCEV(RHS, Start); 8087 // If we have NoWrap set, then we can assume that the increment won't 8088 // overflow, in which case if RHS - Start is a constant, we don't need to 8089 // do a max operation since we can just figure it out statically 8090 if (NoWrap && isa<SCEVConstant>(Diff)) { 8091 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8092 if (!D.isNegative()) 8093 End = Start; 8094 } else 8095 End = IsSigned ? getSMinExpr(RHS, Start) 8096 : getUMinExpr(RHS, Start); 8097 } 8098 8099 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8100 8101 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8102 : getUnsignedRange(Start).getUnsignedMax(); 8103 8104 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8105 : getUnsignedRange(Stride).getUnsignedMin(); 8106 8107 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8108 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8109 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8110 8111 // Although End can be a MIN expression we estimate MinEnd considering only 8112 // the case End = RHS. This is safe because in the other case (Start - End) 8113 // is zero, leading to a zero maximum backedge taken count. 8114 APInt MinEnd = 8115 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8116 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8117 8118 8119 const SCEV *MaxBECount = getCouldNotCompute(); 8120 if (isa<SCEVConstant>(BECount)) 8121 MaxBECount = BECount; 8122 else 8123 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8124 getConstant(MinStride), false); 8125 8126 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8127 MaxBECount = BECount; 8128 8129 return ExitLimit(BECount, MaxBECount); 8130 } 8131 8132 /// getNumIterationsInRange - Return the number of iterations of this loop that 8133 /// produce values in the specified constant range. Another way of looking at 8134 /// this is that it returns the first iteration number where the value is not in 8135 /// the condition, thus computing the exit count. If the iteration count can't 8136 /// be computed, an instance of SCEVCouldNotCompute is returned. 8137 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8138 ScalarEvolution &SE) const { 8139 if (Range.isFullSet()) // Infinite loop. 8140 return SE.getCouldNotCompute(); 8141 8142 // If the start is a non-zero constant, shift the range to simplify things. 8143 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8144 if (!SC->getValue()->isZero()) { 8145 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8146 Operands[0] = SE.getZero(SC->getType()); 8147 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8148 getNoWrapFlags(FlagNW)); 8149 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8150 return ShiftedAddRec->getNumIterationsInRange( 8151 Range.subtract(SC->getValue()->getValue()), SE); 8152 // This is strange and shouldn't happen. 8153 return SE.getCouldNotCompute(); 8154 } 8155 8156 // The only time we can solve this is when we have all constant indices. 8157 // Otherwise, we cannot determine the overflow conditions. 8158 if (std::any_of(op_begin(), op_end(), 8159 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);})) 8160 return SE.getCouldNotCompute(); 8161 8162 // Okay at this point we know that all elements of the chrec are constants and 8163 // that the start element is zero. 8164 8165 // First check to see if the range contains zero. If not, the first 8166 // iteration exits. 8167 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8168 if (!Range.contains(APInt(BitWidth, 0))) 8169 return SE.getZero(getType()); 8170 8171 if (isAffine()) { 8172 // If this is an affine expression then we have this situation: 8173 // Solve {0,+,A} in Range === Ax in Range 8174 8175 // We know that zero is in the range. If A is positive then we know that 8176 // the upper value of the range must be the first possible exit value. 8177 // If A is negative then the lower of the range is the last possible loop 8178 // value. Also note that we already checked for a full range. 8179 APInt One(BitWidth,1); 8180 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8181 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8182 8183 // The exit value should be (End+A)/A. 8184 APInt ExitVal = (End + A).udiv(A); 8185 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8186 8187 // Evaluate at the exit value. If we really did fall out of the valid 8188 // range, then we computed our trip count, otherwise wrap around or other 8189 // things must have happened. 8190 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8191 if (Range.contains(Val->getValue())) 8192 return SE.getCouldNotCompute(); // Something strange happened 8193 8194 // Ensure that the previous value is in the range. This is a sanity check. 8195 assert(Range.contains( 8196 EvaluateConstantChrecAtConstant(this, 8197 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8198 "Linear scev computation is off in a bad way!"); 8199 return SE.getConstant(ExitValue); 8200 } else if (isQuadratic()) { 8201 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8202 // quadratic equation to solve it. To do this, we must frame our problem in 8203 // terms of figuring out when zero is crossed, instead of when 8204 // Range.getUpper() is crossed. 8205 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8206 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8207 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8208 // getNoWrapFlags(FlagNW) 8209 FlagAnyWrap); 8210 8211 // Next, solve the constructed addrec 8212 std::pair<const SCEV *,const SCEV *> Roots = 8213 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8214 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8215 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8216 if (R1) { 8217 // Pick the smallest positive root value. 8218 if (ConstantInt *CB = 8219 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8220 R1->getValue(), R2->getValue()))) { 8221 if (!CB->getZExtValue()) 8222 std::swap(R1, R2); // R1 is the minimum root now. 8223 8224 // Make sure the root is not off by one. The returned iteration should 8225 // not be in the range, but the previous one should be. When solving 8226 // for "X*X < 5", for example, we should not return a root of 2. 8227 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8228 R1->getValue(), 8229 SE); 8230 if (Range.contains(R1Val->getValue())) { 8231 // The next iteration must be out of the range... 8232 ConstantInt *NextVal = 8233 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8234 8235 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8236 if (!Range.contains(R1Val->getValue())) 8237 return SE.getConstant(NextVal); 8238 return SE.getCouldNotCompute(); // Something strange happened 8239 } 8240 8241 // If R1 was not in the range, then it is a good return value. Make 8242 // sure that R1-1 WAS in the range though, just in case. 8243 ConstantInt *NextVal = 8244 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8245 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8246 if (Range.contains(R1Val->getValue())) 8247 return R1; 8248 return SE.getCouldNotCompute(); // Something strange happened 8249 } 8250 } 8251 } 8252 8253 return SE.getCouldNotCompute(); 8254 } 8255 8256 namespace { 8257 struct FindUndefs { 8258 bool Found; 8259 FindUndefs() : Found(false) {} 8260 8261 bool follow(const SCEV *S) { 8262 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8263 if (isa<UndefValue>(C->getValue())) 8264 Found = true; 8265 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8266 if (isa<UndefValue>(C->getValue())) 8267 Found = true; 8268 } 8269 8270 // Keep looking if we haven't found it yet. 8271 return !Found; 8272 } 8273 bool isDone() const { 8274 // Stop recursion if we have found an undef. 8275 return Found; 8276 } 8277 }; 8278 } 8279 8280 // Return true when S contains at least an undef value. 8281 static inline bool 8282 containsUndefs(const SCEV *S) { 8283 FindUndefs F; 8284 SCEVTraversal<FindUndefs> ST(F); 8285 ST.visitAll(S); 8286 8287 return F.Found; 8288 } 8289 8290 namespace { 8291 // Collect all steps of SCEV expressions. 8292 struct SCEVCollectStrides { 8293 ScalarEvolution &SE; 8294 SmallVectorImpl<const SCEV *> &Strides; 8295 8296 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8297 : SE(SE), Strides(S) {} 8298 8299 bool follow(const SCEV *S) { 8300 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8301 Strides.push_back(AR->getStepRecurrence(SE)); 8302 return true; 8303 } 8304 bool isDone() const { return false; } 8305 }; 8306 8307 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8308 struct SCEVCollectTerms { 8309 SmallVectorImpl<const SCEV *> &Terms; 8310 8311 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8312 : Terms(T) {} 8313 8314 bool follow(const SCEV *S) { 8315 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8316 if (!containsUndefs(S)) 8317 Terms.push_back(S); 8318 8319 // Stop recursion: once we collected a term, do not walk its operands. 8320 return false; 8321 } 8322 8323 // Keep looking. 8324 return true; 8325 } 8326 bool isDone() const { return false; } 8327 }; 8328 8329 // Check if a SCEV contains an AddRecExpr. 8330 struct SCEVHasAddRec { 8331 bool &ContainsAddRec; 8332 8333 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8334 ContainsAddRec = false; 8335 } 8336 8337 bool follow(const SCEV *S) { 8338 if (isa<SCEVAddRecExpr>(S)) { 8339 ContainsAddRec = true; 8340 8341 // Stop recursion: once we collected a term, do not walk its operands. 8342 return false; 8343 } 8344 8345 // Keep looking. 8346 return true; 8347 } 8348 bool isDone() const { return false; } 8349 }; 8350 8351 // Find factors that are multiplied with an expression that (possibly as a 8352 // subexpression) contains an AddRecExpr. In the expression: 8353 // 8354 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8355 // 8356 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8357 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8358 // parameters as they form a product with an induction variable. 8359 // 8360 // This collector expects all array size parameters to be in the same MulExpr. 8361 // It might be necessary to later add support for collecting parameters that are 8362 // spread over different nested MulExpr. 8363 struct SCEVCollectAddRecMultiplies { 8364 SmallVectorImpl<const SCEV *> &Terms; 8365 ScalarEvolution &SE; 8366 8367 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8368 : Terms(T), SE(SE) {} 8369 8370 bool follow(const SCEV *S) { 8371 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8372 bool HasAddRec = false; 8373 SmallVector<const SCEV *, 0> Operands; 8374 for (auto Op : Mul->operands()) { 8375 if (isa<SCEVUnknown>(Op)) { 8376 Operands.push_back(Op); 8377 } else { 8378 bool ContainsAddRec; 8379 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8380 visitAll(Op, ContiansAddRec); 8381 HasAddRec |= ContainsAddRec; 8382 } 8383 } 8384 if (Operands.size() == 0) 8385 return true; 8386 8387 if (!HasAddRec) 8388 return false; 8389 8390 Terms.push_back(SE.getMulExpr(Operands)); 8391 // Stop recursion: once we collected a term, do not walk its operands. 8392 return false; 8393 } 8394 8395 // Keep looking. 8396 return true; 8397 } 8398 bool isDone() const { return false; } 8399 }; 8400 } 8401 8402 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8403 /// two places: 8404 /// 1) The strides of AddRec expressions. 8405 /// 2) Unknowns that are multiplied with AddRec expressions. 8406 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8407 SmallVectorImpl<const SCEV *> &Terms) { 8408 SmallVector<const SCEV *, 4> Strides; 8409 SCEVCollectStrides StrideCollector(*this, Strides); 8410 visitAll(Expr, StrideCollector); 8411 8412 DEBUG({ 8413 dbgs() << "Strides:\n"; 8414 for (const SCEV *S : Strides) 8415 dbgs() << *S << "\n"; 8416 }); 8417 8418 for (const SCEV *S : Strides) { 8419 SCEVCollectTerms TermCollector(Terms); 8420 visitAll(S, TermCollector); 8421 } 8422 8423 DEBUG({ 8424 dbgs() << "Terms:\n"; 8425 for (const SCEV *T : Terms) 8426 dbgs() << *T << "\n"; 8427 }); 8428 8429 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8430 visitAll(Expr, MulCollector); 8431 } 8432 8433 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8434 SmallVectorImpl<const SCEV *> &Terms, 8435 SmallVectorImpl<const SCEV *> &Sizes) { 8436 int Last = Terms.size() - 1; 8437 const SCEV *Step = Terms[Last]; 8438 8439 // End of recursion. 8440 if (Last == 0) { 8441 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8442 SmallVector<const SCEV *, 2> Qs; 8443 for (const SCEV *Op : M->operands()) 8444 if (!isa<SCEVConstant>(Op)) 8445 Qs.push_back(Op); 8446 8447 Step = SE.getMulExpr(Qs); 8448 } 8449 8450 Sizes.push_back(Step); 8451 return true; 8452 } 8453 8454 for (const SCEV *&Term : Terms) { 8455 // Normalize the terms before the next call to findArrayDimensionsRec. 8456 const SCEV *Q, *R; 8457 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8458 8459 // Bail out when GCD does not evenly divide one of the terms. 8460 if (!R->isZero()) 8461 return false; 8462 8463 Term = Q; 8464 } 8465 8466 // Remove all SCEVConstants. 8467 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8468 return isa<SCEVConstant>(E); 8469 }), 8470 Terms.end()); 8471 8472 if (Terms.size() > 0) 8473 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8474 return false; 8475 8476 Sizes.push_back(Step); 8477 return true; 8478 } 8479 8480 namespace { 8481 struct FindParameter { 8482 bool FoundParameter; 8483 FindParameter() : FoundParameter(false) {} 8484 8485 bool follow(const SCEV *S) { 8486 if (isa<SCEVUnknown>(S)) { 8487 FoundParameter = true; 8488 // Stop recursion: we found a parameter. 8489 return false; 8490 } 8491 // Keep looking. 8492 return true; 8493 } 8494 bool isDone() const { 8495 // Stop recursion if we have found a parameter. 8496 return FoundParameter; 8497 } 8498 }; 8499 } 8500 8501 // Returns true when S contains at least a SCEVUnknown parameter. 8502 static inline bool 8503 containsParameters(const SCEV *S) { 8504 FindParameter F; 8505 SCEVTraversal<FindParameter> ST(F); 8506 ST.visitAll(S); 8507 8508 return F.FoundParameter; 8509 } 8510 8511 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8512 static inline bool 8513 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8514 for (const SCEV *T : Terms) 8515 if (containsParameters(T)) 8516 return true; 8517 return false; 8518 } 8519 8520 // Return the number of product terms in S. 8521 static inline int numberOfTerms(const SCEV *S) { 8522 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8523 return Expr->getNumOperands(); 8524 return 1; 8525 } 8526 8527 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8528 if (isa<SCEVConstant>(T)) 8529 return nullptr; 8530 8531 if (isa<SCEVUnknown>(T)) 8532 return T; 8533 8534 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8535 SmallVector<const SCEV *, 2> Factors; 8536 for (const SCEV *Op : M->operands()) 8537 if (!isa<SCEVConstant>(Op)) 8538 Factors.push_back(Op); 8539 8540 return SE.getMulExpr(Factors); 8541 } 8542 8543 return T; 8544 } 8545 8546 /// Return the size of an element read or written by Inst. 8547 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8548 Type *Ty; 8549 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8550 Ty = Store->getValueOperand()->getType(); 8551 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8552 Ty = Load->getType(); 8553 else 8554 return nullptr; 8555 8556 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8557 return getSizeOfExpr(ETy, Ty); 8558 } 8559 8560 /// Second step of delinearization: compute the array dimensions Sizes from the 8561 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8562 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8563 SmallVectorImpl<const SCEV *> &Sizes, 8564 const SCEV *ElementSize) const { 8565 8566 if (Terms.size() < 1 || !ElementSize) 8567 return; 8568 8569 // Early return when Terms do not contain parameters: we do not delinearize 8570 // non parametric SCEVs. 8571 if (!containsParameters(Terms)) 8572 return; 8573 8574 DEBUG({ 8575 dbgs() << "Terms:\n"; 8576 for (const SCEV *T : Terms) 8577 dbgs() << *T << "\n"; 8578 }); 8579 8580 // Remove duplicates. 8581 std::sort(Terms.begin(), Terms.end()); 8582 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8583 8584 // Put larger terms first. 8585 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8586 return numberOfTerms(LHS) > numberOfTerms(RHS); 8587 }); 8588 8589 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8590 8591 // Try to divide all terms by the element size. If term is not divisible by 8592 // element size, proceed with the original term. 8593 for (const SCEV *&Term : Terms) { 8594 const SCEV *Q, *R; 8595 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8596 if (!Q->isZero()) 8597 Term = Q; 8598 } 8599 8600 SmallVector<const SCEV *, 4> NewTerms; 8601 8602 // Remove constant factors. 8603 for (const SCEV *T : Terms) 8604 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8605 NewTerms.push_back(NewT); 8606 8607 DEBUG({ 8608 dbgs() << "Terms after sorting:\n"; 8609 for (const SCEV *T : NewTerms) 8610 dbgs() << *T << "\n"; 8611 }); 8612 8613 if (NewTerms.empty() || 8614 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8615 Sizes.clear(); 8616 return; 8617 } 8618 8619 // The last element to be pushed into Sizes is the size of an element. 8620 Sizes.push_back(ElementSize); 8621 8622 DEBUG({ 8623 dbgs() << "Sizes:\n"; 8624 for (const SCEV *S : Sizes) 8625 dbgs() << *S << "\n"; 8626 }); 8627 } 8628 8629 /// Third step of delinearization: compute the access functions for the 8630 /// Subscripts based on the dimensions in Sizes. 8631 void ScalarEvolution::computeAccessFunctions( 8632 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8633 SmallVectorImpl<const SCEV *> &Sizes) { 8634 8635 // Early exit in case this SCEV is not an affine multivariate function. 8636 if (Sizes.empty()) 8637 return; 8638 8639 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8640 if (!AR->isAffine()) 8641 return; 8642 8643 const SCEV *Res = Expr; 8644 int Last = Sizes.size() - 1; 8645 for (int i = Last; i >= 0; i--) { 8646 const SCEV *Q, *R; 8647 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8648 8649 DEBUG({ 8650 dbgs() << "Res: " << *Res << "\n"; 8651 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8652 dbgs() << "Res divided by Sizes[i]:\n"; 8653 dbgs() << "Quotient: " << *Q << "\n"; 8654 dbgs() << "Remainder: " << *R << "\n"; 8655 }); 8656 8657 Res = Q; 8658 8659 // Do not record the last subscript corresponding to the size of elements in 8660 // the array. 8661 if (i == Last) { 8662 8663 // Bail out if the remainder is too complex. 8664 if (isa<SCEVAddRecExpr>(R)) { 8665 Subscripts.clear(); 8666 Sizes.clear(); 8667 return; 8668 } 8669 8670 continue; 8671 } 8672 8673 // Record the access function for the current subscript. 8674 Subscripts.push_back(R); 8675 } 8676 8677 // Also push in last position the remainder of the last division: it will be 8678 // the access function of the innermost dimension. 8679 Subscripts.push_back(Res); 8680 8681 std::reverse(Subscripts.begin(), Subscripts.end()); 8682 8683 DEBUG({ 8684 dbgs() << "Subscripts:\n"; 8685 for (const SCEV *S : Subscripts) 8686 dbgs() << *S << "\n"; 8687 }); 8688 } 8689 8690 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8691 /// sizes of an array access. Returns the remainder of the delinearization that 8692 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8693 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8694 /// expressions in the stride and base of a SCEV corresponding to the 8695 /// computation of a GCD (greatest common divisor) of base and stride. When 8696 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8697 /// 8698 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8699 /// 8700 /// void foo(long n, long m, long o, double A[n][m][o]) { 8701 /// 8702 /// for (long i = 0; i < n; i++) 8703 /// for (long j = 0; j < m; j++) 8704 /// for (long k = 0; k < o; k++) 8705 /// A[i][j][k] = 1.0; 8706 /// } 8707 /// 8708 /// the delinearization input is the following AddRec SCEV: 8709 /// 8710 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8711 /// 8712 /// From this SCEV, we are able to say that the base offset of the access is %A 8713 /// because it appears as an offset that does not divide any of the strides in 8714 /// the loops: 8715 /// 8716 /// CHECK: Base offset: %A 8717 /// 8718 /// and then SCEV->delinearize determines the size of some of the dimensions of 8719 /// the array as these are the multiples by which the strides are happening: 8720 /// 8721 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8722 /// 8723 /// Note that the outermost dimension remains of UnknownSize because there are 8724 /// no strides that would help identifying the size of the last dimension: when 8725 /// the array has been statically allocated, one could compute the size of that 8726 /// dimension by dividing the overall size of the array by the size of the known 8727 /// dimensions: %m * %o * 8. 8728 /// 8729 /// Finally delinearize provides the access functions for the array reference 8730 /// that does correspond to A[i][j][k] of the above C testcase: 8731 /// 8732 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8733 /// 8734 /// The testcases are checking the output of a function pass: 8735 /// DelinearizationPass that walks through all loads and stores of a function 8736 /// asking for the SCEV of the memory access with respect to all enclosing 8737 /// loops, calling SCEV->delinearize on that and printing the results. 8738 8739 void ScalarEvolution::delinearize(const SCEV *Expr, 8740 SmallVectorImpl<const SCEV *> &Subscripts, 8741 SmallVectorImpl<const SCEV *> &Sizes, 8742 const SCEV *ElementSize) { 8743 // First step: collect parametric terms. 8744 SmallVector<const SCEV *, 4> Terms; 8745 collectParametricTerms(Expr, Terms); 8746 8747 if (Terms.empty()) 8748 return; 8749 8750 // Second step: find subscript sizes. 8751 findArrayDimensions(Terms, Sizes, ElementSize); 8752 8753 if (Sizes.empty()) 8754 return; 8755 8756 // Third step: compute the access functions for each subscript. 8757 computeAccessFunctions(Expr, Subscripts, Sizes); 8758 8759 if (Subscripts.empty()) 8760 return; 8761 8762 DEBUG({ 8763 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8764 dbgs() << "ArrayDecl[UnknownSize]"; 8765 for (const SCEV *S : Sizes) 8766 dbgs() << "[" << *S << "]"; 8767 8768 dbgs() << "\nArrayRef"; 8769 for (const SCEV *S : Subscripts) 8770 dbgs() << "[" << *S << "]"; 8771 dbgs() << "\n"; 8772 }); 8773 } 8774 8775 //===----------------------------------------------------------------------===// 8776 // SCEVCallbackVH Class Implementation 8777 //===----------------------------------------------------------------------===// 8778 8779 void ScalarEvolution::SCEVCallbackVH::deleted() { 8780 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8781 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8782 SE->ConstantEvolutionLoopExitValue.erase(PN); 8783 SE->ValueExprMap.erase(getValPtr()); 8784 // this now dangles! 8785 } 8786 8787 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8788 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8789 8790 // Forget all the expressions associated with users of the old value, 8791 // so that future queries will recompute the expressions using the new 8792 // value. 8793 Value *Old = getValPtr(); 8794 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8795 SmallPtrSet<User *, 8> Visited; 8796 while (!Worklist.empty()) { 8797 User *U = Worklist.pop_back_val(); 8798 // Deleting the Old value will cause this to dangle. Postpone 8799 // that until everything else is done. 8800 if (U == Old) 8801 continue; 8802 if (!Visited.insert(U).second) 8803 continue; 8804 if (PHINode *PN = dyn_cast<PHINode>(U)) 8805 SE->ConstantEvolutionLoopExitValue.erase(PN); 8806 SE->ValueExprMap.erase(U); 8807 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8808 } 8809 // Delete the Old value. 8810 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8811 SE->ConstantEvolutionLoopExitValue.erase(PN); 8812 SE->ValueExprMap.erase(Old); 8813 // this now dangles! 8814 } 8815 8816 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8817 : CallbackVH(V), SE(se) {} 8818 8819 //===----------------------------------------------------------------------===// 8820 // ScalarEvolution Class Implementation 8821 //===----------------------------------------------------------------------===// 8822 8823 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8824 AssumptionCache &AC, DominatorTree &DT, 8825 LoopInfo &LI) 8826 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8827 CouldNotCompute(new SCEVCouldNotCompute()), 8828 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8829 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 8830 FirstUnknown(nullptr) {} 8831 8832 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8833 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8834 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8835 ValueExprMap(std::move(Arg.ValueExprMap)), 8836 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8837 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8838 ConstantEvolutionLoopExitValue( 8839 std::move(Arg.ConstantEvolutionLoopExitValue)), 8840 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8841 LoopDispositions(std::move(Arg.LoopDispositions)), 8842 BlockDispositions(std::move(Arg.BlockDispositions)), 8843 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8844 SignedRanges(std::move(Arg.SignedRanges)), 8845 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8846 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8847 FirstUnknown(Arg.FirstUnknown) { 8848 Arg.FirstUnknown = nullptr; 8849 } 8850 8851 ScalarEvolution::~ScalarEvolution() { 8852 // Iterate through all the SCEVUnknown instances and call their 8853 // destructors, so that they release their references to their values. 8854 for (SCEVUnknown *U = FirstUnknown; U;) { 8855 SCEVUnknown *Tmp = U; 8856 U = U->Next; 8857 Tmp->~SCEVUnknown(); 8858 } 8859 FirstUnknown = nullptr; 8860 8861 ValueExprMap.clear(); 8862 8863 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8864 // that a loop had multiple computable exits. 8865 for (auto &BTCI : BackedgeTakenCounts) 8866 BTCI.second.clear(); 8867 8868 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8869 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8870 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 8871 } 8872 8873 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8874 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8875 } 8876 8877 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8878 const Loop *L) { 8879 // Print all inner loops first 8880 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8881 PrintLoopInfo(OS, SE, *I); 8882 8883 OS << "Loop "; 8884 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8885 OS << ": "; 8886 8887 SmallVector<BasicBlock *, 8> ExitBlocks; 8888 L->getExitBlocks(ExitBlocks); 8889 if (ExitBlocks.size() != 1) 8890 OS << "<multiple exits> "; 8891 8892 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8893 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8894 } else { 8895 OS << "Unpredictable backedge-taken count. "; 8896 } 8897 8898 OS << "\n" 8899 "Loop "; 8900 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8901 OS << ": "; 8902 8903 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8904 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8905 } else { 8906 OS << "Unpredictable max backedge-taken count. "; 8907 } 8908 8909 OS << "\n"; 8910 } 8911 8912 void ScalarEvolution::print(raw_ostream &OS) const { 8913 // ScalarEvolution's implementation of the print method is to print 8914 // out SCEV values of all instructions that are interesting. Doing 8915 // this potentially causes it to create new SCEV objects though, 8916 // which technically conflicts with the const qualifier. This isn't 8917 // observable from outside the class though, so casting away the 8918 // const isn't dangerous. 8919 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8920 8921 OS << "Classifying expressions for: "; 8922 F.printAsOperand(OS, /*PrintType=*/false); 8923 OS << "\n"; 8924 for (Instruction &I : instructions(F)) 8925 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 8926 OS << I << '\n'; 8927 OS << " --> "; 8928 const SCEV *SV = SE.getSCEV(&I); 8929 SV->print(OS); 8930 if (!isa<SCEVCouldNotCompute>(SV)) { 8931 OS << " U: "; 8932 SE.getUnsignedRange(SV).print(OS); 8933 OS << " S: "; 8934 SE.getSignedRange(SV).print(OS); 8935 } 8936 8937 const Loop *L = LI.getLoopFor(I.getParent()); 8938 8939 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8940 if (AtUse != SV) { 8941 OS << " --> "; 8942 AtUse->print(OS); 8943 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8944 OS << " U: "; 8945 SE.getUnsignedRange(AtUse).print(OS); 8946 OS << " S: "; 8947 SE.getSignedRange(AtUse).print(OS); 8948 } 8949 } 8950 8951 if (L) { 8952 OS << "\t\t" "Exits: "; 8953 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8954 if (!SE.isLoopInvariant(ExitValue, L)) { 8955 OS << "<<Unknown>>"; 8956 } else { 8957 OS << *ExitValue; 8958 } 8959 } 8960 8961 OS << "\n"; 8962 } 8963 8964 OS << "Determining loop execution counts for: "; 8965 F.printAsOperand(OS, /*PrintType=*/false); 8966 OS << "\n"; 8967 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 8968 PrintLoopInfo(OS, &SE, *I); 8969 } 8970 8971 ScalarEvolution::LoopDisposition 8972 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8973 auto &Values = LoopDispositions[S]; 8974 for (auto &V : Values) { 8975 if (V.getPointer() == L) 8976 return V.getInt(); 8977 } 8978 Values.emplace_back(L, LoopVariant); 8979 LoopDisposition D = computeLoopDisposition(S, L); 8980 auto &Values2 = LoopDispositions[S]; 8981 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8982 if (V.getPointer() == L) { 8983 V.setInt(D); 8984 break; 8985 } 8986 } 8987 return D; 8988 } 8989 8990 ScalarEvolution::LoopDisposition 8991 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8992 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8993 case scConstant: 8994 return LoopInvariant; 8995 case scTruncate: 8996 case scZeroExtend: 8997 case scSignExtend: 8998 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8999 case scAddRecExpr: { 9000 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9001 9002 // If L is the addrec's loop, it's computable. 9003 if (AR->getLoop() == L) 9004 return LoopComputable; 9005 9006 // Add recurrences are never invariant in the function-body (null loop). 9007 if (!L) 9008 return LoopVariant; 9009 9010 // This recurrence is variant w.r.t. L if L contains AR's loop. 9011 if (L->contains(AR->getLoop())) 9012 return LoopVariant; 9013 9014 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9015 if (AR->getLoop()->contains(L)) 9016 return LoopInvariant; 9017 9018 // This recurrence is variant w.r.t. L if any of its operands 9019 // are variant. 9020 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 9021 I != E; ++I) 9022 if (!isLoopInvariant(*I, L)) 9023 return LoopVariant; 9024 9025 // Otherwise it's loop-invariant. 9026 return LoopInvariant; 9027 } 9028 case scAddExpr: 9029 case scMulExpr: 9030 case scUMaxExpr: 9031 case scSMaxExpr: { 9032 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9033 bool HasVarying = false; 9034 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9035 I != E; ++I) { 9036 LoopDisposition D = getLoopDisposition(*I, L); 9037 if (D == LoopVariant) 9038 return LoopVariant; 9039 if (D == LoopComputable) 9040 HasVarying = true; 9041 } 9042 return HasVarying ? LoopComputable : LoopInvariant; 9043 } 9044 case scUDivExpr: { 9045 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9046 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9047 if (LD == LoopVariant) 9048 return LoopVariant; 9049 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9050 if (RD == LoopVariant) 9051 return LoopVariant; 9052 return (LD == LoopInvariant && RD == LoopInvariant) ? 9053 LoopInvariant : LoopComputable; 9054 } 9055 case scUnknown: 9056 // All non-instruction values are loop invariant. All instructions are loop 9057 // invariant if they are not contained in the specified loop. 9058 // Instructions are never considered invariant in the function body 9059 // (null loop) because they are defined within the "loop". 9060 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9061 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9062 return LoopInvariant; 9063 case scCouldNotCompute: 9064 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9065 } 9066 llvm_unreachable("Unknown SCEV kind!"); 9067 } 9068 9069 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9070 return getLoopDisposition(S, L) == LoopInvariant; 9071 } 9072 9073 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9074 return getLoopDisposition(S, L) == LoopComputable; 9075 } 9076 9077 ScalarEvolution::BlockDisposition 9078 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9079 auto &Values = BlockDispositions[S]; 9080 for (auto &V : Values) { 9081 if (V.getPointer() == BB) 9082 return V.getInt(); 9083 } 9084 Values.emplace_back(BB, DoesNotDominateBlock); 9085 BlockDisposition D = computeBlockDisposition(S, BB); 9086 auto &Values2 = BlockDispositions[S]; 9087 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9088 if (V.getPointer() == BB) { 9089 V.setInt(D); 9090 break; 9091 } 9092 } 9093 return D; 9094 } 9095 9096 ScalarEvolution::BlockDisposition 9097 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9098 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9099 case scConstant: 9100 return ProperlyDominatesBlock; 9101 case scTruncate: 9102 case scZeroExtend: 9103 case scSignExtend: 9104 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9105 case scAddRecExpr: { 9106 // This uses a "dominates" query instead of "properly dominates" query 9107 // to test for proper dominance too, because the instruction which 9108 // produces the addrec's value is a PHI, and a PHI effectively properly 9109 // dominates its entire containing block. 9110 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9111 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9112 return DoesNotDominateBlock; 9113 } 9114 // FALL THROUGH into SCEVNAryExpr handling. 9115 case scAddExpr: 9116 case scMulExpr: 9117 case scUMaxExpr: 9118 case scSMaxExpr: { 9119 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9120 bool Proper = true; 9121 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9122 I != E; ++I) { 9123 BlockDisposition D = getBlockDisposition(*I, BB); 9124 if (D == DoesNotDominateBlock) 9125 return DoesNotDominateBlock; 9126 if (D == DominatesBlock) 9127 Proper = false; 9128 } 9129 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9130 } 9131 case scUDivExpr: { 9132 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9133 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9134 BlockDisposition LD = getBlockDisposition(LHS, BB); 9135 if (LD == DoesNotDominateBlock) 9136 return DoesNotDominateBlock; 9137 BlockDisposition RD = getBlockDisposition(RHS, BB); 9138 if (RD == DoesNotDominateBlock) 9139 return DoesNotDominateBlock; 9140 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9141 ProperlyDominatesBlock : DominatesBlock; 9142 } 9143 case scUnknown: 9144 if (Instruction *I = 9145 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9146 if (I->getParent() == BB) 9147 return DominatesBlock; 9148 if (DT.properlyDominates(I->getParent(), BB)) 9149 return ProperlyDominatesBlock; 9150 return DoesNotDominateBlock; 9151 } 9152 return ProperlyDominatesBlock; 9153 case scCouldNotCompute: 9154 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9155 } 9156 llvm_unreachable("Unknown SCEV kind!"); 9157 } 9158 9159 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9160 return getBlockDisposition(S, BB) >= DominatesBlock; 9161 } 9162 9163 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9164 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9165 } 9166 9167 namespace { 9168 // Search for a SCEV expression node within an expression tree. 9169 // Implements SCEVTraversal::Visitor. 9170 struct SCEVSearch { 9171 const SCEV *Node; 9172 bool IsFound; 9173 9174 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9175 9176 bool follow(const SCEV *S) { 9177 IsFound |= (S == Node); 9178 return !IsFound; 9179 } 9180 bool isDone() const { return IsFound; } 9181 }; 9182 } 9183 9184 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9185 SCEVSearch Search(Op); 9186 visitAll(S, Search); 9187 return Search.IsFound; 9188 } 9189 9190 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9191 ValuesAtScopes.erase(S); 9192 LoopDispositions.erase(S); 9193 BlockDispositions.erase(S); 9194 UnsignedRanges.erase(S); 9195 SignedRanges.erase(S); 9196 9197 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9198 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9199 BackedgeTakenInfo &BEInfo = I->second; 9200 if (BEInfo.hasOperand(S, this)) { 9201 BEInfo.clear(); 9202 BackedgeTakenCounts.erase(I++); 9203 } 9204 else 9205 ++I; 9206 } 9207 } 9208 9209 typedef DenseMap<const Loop *, std::string> VerifyMap; 9210 9211 /// replaceSubString - Replaces all occurrences of From in Str with To. 9212 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9213 size_t Pos = 0; 9214 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9215 Str.replace(Pos, From.size(), To.data(), To.size()); 9216 Pos += To.size(); 9217 } 9218 } 9219 9220 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9221 static void 9222 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9223 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9224 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9225 9226 std::string &S = Map[L]; 9227 if (S.empty()) { 9228 raw_string_ostream OS(S); 9229 SE.getBackedgeTakenCount(L)->print(OS); 9230 9231 // false and 0 are semantically equivalent. This can happen in dead loops. 9232 replaceSubString(OS.str(), "false", "0"); 9233 // Remove wrap flags, their use in SCEV is highly fragile. 9234 // FIXME: Remove this when SCEV gets smarter about them. 9235 replaceSubString(OS.str(), "<nw>", ""); 9236 replaceSubString(OS.str(), "<nsw>", ""); 9237 replaceSubString(OS.str(), "<nuw>", ""); 9238 } 9239 } 9240 } 9241 9242 void ScalarEvolution::verify() const { 9243 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9244 9245 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9246 // FIXME: It would be much better to store actual values instead of strings, 9247 // but SCEV pointers will change if we drop the caches. 9248 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9249 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9250 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9251 9252 // Gather stringified backedge taken counts for all loops using a fresh 9253 // ScalarEvolution object. 9254 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9255 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9256 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9257 9258 // Now compare whether they're the same with and without caches. This allows 9259 // verifying that no pass changed the cache. 9260 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9261 "New loops suddenly appeared!"); 9262 9263 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9264 OldE = BackedgeDumpsOld.end(), 9265 NewI = BackedgeDumpsNew.begin(); 9266 OldI != OldE; ++OldI, ++NewI) { 9267 assert(OldI->first == NewI->first && "Loop order changed!"); 9268 9269 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9270 // changes. 9271 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9272 // means that a pass is buggy or SCEV has to learn a new pattern but is 9273 // usually not harmful. 9274 if (OldI->second != NewI->second && 9275 OldI->second.find("undef") == std::string::npos && 9276 NewI->second.find("undef") == std::string::npos && 9277 OldI->second != "***COULDNOTCOMPUTE***" && 9278 NewI->second != "***COULDNOTCOMPUTE***") { 9279 dbgs() << "SCEVValidator: SCEV for loop '" 9280 << OldI->first->getHeader()->getName() 9281 << "' changed from '" << OldI->second 9282 << "' to '" << NewI->second << "'!\n"; 9283 std::abort(); 9284 } 9285 } 9286 9287 // TODO: Verify more things. 9288 } 9289 9290 char ScalarEvolutionAnalysis::PassID; 9291 9292 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9293 AnalysisManager<Function> *AM) { 9294 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9295 AM->getResult<AssumptionAnalysis>(F), 9296 AM->getResult<DominatorTreeAnalysis>(F), 9297 AM->getResult<LoopAnalysis>(F)); 9298 } 9299 9300 PreservedAnalyses 9301 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9302 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9303 return PreservedAnalyses::all(); 9304 } 9305 9306 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9307 "Scalar Evolution Analysis", false, true) 9308 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9309 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9311 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9312 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9313 "Scalar Evolution Analysis", false, true) 9314 char ScalarEvolutionWrapperPass::ID = 0; 9315 9316 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9317 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9318 } 9319 9320 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9321 SE.reset(new ScalarEvolution( 9322 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9323 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9324 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9325 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9326 return false; 9327 } 9328 9329 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9330 9331 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9332 SE->print(OS); 9333 } 9334 9335 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9336 if (!VerifySCEV) 9337 return; 9338 9339 SE->verify(); 9340 } 9341 9342 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9343 AU.setPreservesAll(); 9344 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9345 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9346 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9347 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9348 } 9349