xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 9cd877a25a5092b1553c693530f1ffc0c6edbdfe)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/ScopeExit.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/Statistic.h"
67 #include "llvm/Analysis/AssumptionCache.h"
68 #include "llvm/Analysis/ConstantFolding.h"
69 #include "llvm/Analysis/InstructionSimplify.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
72 #include "llvm/Analysis/TargetLibraryInfo.h"
73 #include "llvm/Analysis/ValueTracking.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Dominators.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/GlobalAlias.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InstIterator.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/LLVMContext.h"
85 #include "llvm/IR/Metadata.h"
86 #include "llvm/IR/Operator.h"
87 #include "llvm/IR/PatternMatch.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Debug.h"
90 #include "llvm/Support/ErrorHandling.h"
91 #include "llvm/Support/MathExtras.h"
92 #include "llvm/Support/raw_ostream.h"
93 #include "llvm/Support/SaveAndRestore.h"
94 #include <algorithm>
95 using namespace llvm;
96 
97 #define DEBUG_TYPE "scalar-evolution"
98 
99 STATISTIC(NumArrayLenItCounts,
100           "Number of trip counts computed with array length");
101 STATISTIC(NumTripCountsComputed,
102           "Number of loops with predictable loop counts");
103 STATISTIC(NumTripCountsNotComputed,
104           "Number of loops without predictable loop counts");
105 STATISTIC(NumBruteForceTripCountsComputed,
106           "Number of loops with trip counts computed by force");
107 
108 static cl::opt<unsigned>
109 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
110                         cl::desc("Maximum number of iterations SCEV will "
111                                  "symbolically execute a constant "
112                                  "derived loop"),
113                         cl::init(100));
114 
115 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
116 static cl::opt<bool>
117 VerifySCEV("verify-scev",
118            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
119 static cl::opt<bool>
120     VerifySCEVMap("verify-scev-maps",
121                   cl::desc("Verify no dangling value in ScalarEvolution's "
122                            "ExprValueMap (slow)"));
123 
124 //===----------------------------------------------------------------------===//
125 //                           SCEV class definitions
126 //===----------------------------------------------------------------------===//
127 
128 //===----------------------------------------------------------------------===//
129 // Implementation of the SCEV class.
130 //
131 
132 LLVM_DUMP_METHOD
133 void SCEV::dump() const {
134   print(dbgs());
135   dbgs() << '\n';
136 }
137 
138 void SCEV::print(raw_ostream &OS) const {
139   switch (static_cast<SCEVTypes>(getSCEVType())) {
140   case scConstant:
141     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
142     return;
143   case scTruncate: {
144     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145     const SCEV *Op = Trunc->getOperand();
146     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147        << *Trunc->getType() << ")";
148     return;
149   }
150   case scZeroExtend: {
151     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152     const SCEV *Op = ZExt->getOperand();
153     OS << "(zext " << *Op->getType() << " " << *Op << " to "
154        << *ZExt->getType() << ")";
155     return;
156   }
157   case scSignExtend: {
158     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159     const SCEV *Op = SExt->getOperand();
160     OS << "(sext " << *Op->getType() << " " << *Op << " to "
161        << *SExt->getType() << ")";
162     return;
163   }
164   case scAddRecExpr: {
165     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166     OS << "{" << *AR->getOperand(0);
167     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168       OS << ",+," << *AR->getOperand(i);
169     OS << "}<";
170     if (AR->hasNoUnsignedWrap())
171       OS << "nuw><";
172     if (AR->hasNoSignedWrap())
173       OS << "nsw><";
174     if (AR->hasNoSelfWrap() &&
175         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176       OS << "nw><";
177     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
178     OS << ">";
179     return;
180   }
181   case scAddExpr:
182   case scMulExpr:
183   case scUMaxExpr:
184   case scSMaxExpr: {
185     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
186     const char *OpStr = nullptr;
187     switch (NAry->getSCEVType()) {
188     case scAddExpr: OpStr = " + "; break;
189     case scMulExpr: OpStr = " * "; break;
190     case scUMaxExpr: OpStr = " umax "; break;
191     case scSMaxExpr: OpStr = " smax "; break;
192     }
193     OS << "(";
194     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195          I != E; ++I) {
196       OS << **I;
197       if (std::next(I) != E)
198         OS << OpStr;
199     }
200     OS << ")";
201     switch (NAry->getSCEVType()) {
202     case scAddExpr:
203     case scMulExpr:
204       if (NAry->hasNoUnsignedWrap())
205         OS << "<nuw>";
206       if (NAry->hasNoSignedWrap())
207         OS << "<nsw>";
208     }
209     return;
210   }
211   case scUDivExpr: {
212     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214     return;
215   }
216   case scUnknown: {
217     const SCEVUnknown *U = cast<SCEVUnknown>(this);
218     Type *AllocTy;
219     if (U->isSizeOf(AllocTy)) {
220       OS << "sizeof(" << *AllocTy << ")";
221       return;
222     }
223     if (U->isAlignOf(AllocTy)) {
224       OS << "alignof(" << *AllocTy << ")";
225       return;
226     }
227 
228     Type *CTy;
229     Constant *FieldNo;
230     if (U->isOffsetOf(CTy, FieldNo)) {
231       OS << "offsetof(" << *CTy << ", ";
232       FieldNo->printAsOperand(OS, false);
233       OS << ")";
234       return;
235     }
236 
237     // Otherwise just print it normally.
238     U->getValue()->printAsOperand(OS, false);
239     return;
240   }
241   case scCouldNotCompute:
242     OS << "***COULDNOTCOMPUTE***";
243     return;
244   }
245   llvm_unreachable("Unknown SCEV kind!");
246 }
247 
248 Type *SCEV::getType() const {
249   switch (static_cast<SCEVTypes>(getSCEVType())) {
250   case scConstant:
251     return cast<SCEVConstant>(this)->getType();
252   case scTruncate:
253   case scZeroExtend:
254   case scSignExtend:
255     return cast<SCEVCastExpr>(this)->getType();
256   case scAddRecExpr:
257   case scMulExpr:
258   case scUMaxExpr:
259   case scSMaxExpr:
260     return cast<SCEVNAryExpr>(this)->getType();
261   case scAddExpr:
262     return cast<SCEVAddExpr>(this)->getType();
263   case scUDivExpr:
264     return cast<SCEVUDivExpr>(this)->getType();
265   case scUnknown:
266     return cast<SCEVUnknown>(this)->getType();
267   case scCouldNotCompute:
268     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
269   }
270   llvm_unreachable("Unknown SCEV kind!");
271 }
272 
273 bool SCEV::isZero() const {
274   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275     return SC->getValue()->isZero();
276   return false;
277 }
278 
279 bool SCEV::isOne() const {
280   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281     return SC->getValue()->isOne();
282   return false;
283 }
284 
285 bool SCEV::isAllOnesValue() const {
286   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
287     return SC->getValue()->isAllOnesValue();
288   return false;
289 }
290 
291 bool SCEV::isNonConstantNegative() const {
292   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
293   if (!Mul) return false;
294 
295   // If there is a constant factor, it will be first.
296   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
297   if (!SC) return false;
298 
299   // Return true if the value is negative, this matches things like (-42 * V).
300   return SC->getAPInt().isNegative();
301 }
302 
303 SCEVCouldNotCompute::SCEVCouldNotCompute() :
304   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
305 
306 bool SCEVCouldNotCompute::classof(const SCEV *S) {
307   return S->getSCEVType() == scCouldNotCompute;
308 }
309 
310 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
311   FoldingSetNodeID ID;
312   ID.AddInteger(scConstant);
313   ID.AddPointer(V);
314   void *IP = nullptr;
315   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
316   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
317   UniqueSCEVs.InsertNode(S, IP);
318   return S;
319 }
320 
321 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
322   return getConstant(ConstantInt::get(getContext(), Val));
323 }
324 
325 const SCEV *
326 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
327   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
328   return getConstant(ConstantInt::get(ITy, V, isSigned));
329 }
330 
331 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
332                            unsigned SCEVTy, const SCEV *op, Type *ty)
333   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
334 
335 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
336                                    const SCEV *op, Type *ty)
337   : SCEVCastExpr(ID, scTruncate, op, ty) {
338   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
339          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
340          "Cannot truncate non-integer value!");
341 }
342 
343 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
344                                        const SCEV *op, Type *ty)
345   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
346   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
347          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
348          "Cannot zero extend non-integer value!");
349 }
350 
351 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
352                                        const SCEV *op, Type *ty)
353   : SCEVCastExpr(ID, scSignExtend, op, ty) {
354   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
355          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
356          "Cannot sign extend non-integer value!");
357 }
358 
359 void SCEVUnknown::deleted() {
360   // Clear this SCEVUnknown from various maps.
361   SE->forgetMemoizedResults(this);
362 
363   // Remove this SCEVUnknown from the uniquing map.
364   SE->UniqueSCEVs.RemoveNode(this);
365 
366   // Release the value.
367   setValPtr(nullptr);
368 }
369 
370 void SCEVUnknown::allUsesReplacedWith(Value *New) {
371   // Clear this SCEVUnknown from various maps.
372   SE->forgetMemoizedResults(this);
373 
374   // Remove this SCEVUnknown from the uniquing map.
375   SE->UniqueSCEVs.RemoveNode(this);
376 
377   // Update this SCEVUnknown to point to the new value. This is needed
378   // because there may still be outstanding SCEVs which still point to
379   // this SCEVUnknown.
380   setValPtr(New);
381 }
382 
383 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
384   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
385     if (VCE->getOpcode() == Instruction::PtrToInt)
386       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
387         if (CE->getOpcode() == Instruction::GetElementPtr &&
388             CE->getOperand(0)->isNullValue() &&
389             CE->getNumOperands() == 2)
390           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
391             if (CI->isOne()) {
392               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
393                                  ->getElementType();
394               return true;
395             }
396 
397   return false;
398 }
399 
400 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
401   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
402     if (VCE->getOpcode() == Instruction::PtrToInt)
403       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
404         if (CE->getOpcode() == Instruction::GetElementPtr &&
405             CE->getOperand(0)->isNullValue()) {
406           Type *Ty =
407             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
408           if (StructType *STy = dyn_cast<StructType>(Ty))
409             if (!STy->isPacked() &&
410                 CE->getNumOperands() == 3 &&
411                 CE->getOperand(1)->isNullValue()) {
412               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
413                 if (CI->isOne() &&
414                     STy->getNumElements() == 2 &&
415                     STy->getElementType(0)->isIntegerTy(1)) {
416                   AllocTy = STy->getElementType(1);
417                   return true;
418                 }
419             }
420         }
421 
422   return false;
423 }
424 
425 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
426   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
427     if (VCE->getOpcode() == Instruction::PtrToInt)
428       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
429         if (CE->getOpcode() == Instruction::GetElementPtr &&
430             CE->getNumOperands() == 3 &&
431             CE->getOperand(0)->isNullValue() &&
432             CE->getOperand(1)->isNullValue()) {
433           Type *Ty =
434             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
435           // Ignore vector types here so that ScalarEvolutionExpander doesn't
436           // emit getelementptrs that index into vectors.
437           if (Ty->isStructTy() || Ty->isArrayTy()) {
438             CTy = Ty;
439             FieldNo = CE->getOperand(2);
440             return true;
441           }
442         }
443 
444   return false;
445 }
446 
447 //===----------------------------------------------------------------------===//
448 //                               SCEV Utilities
449 //===----------------------------------------------------------------------===//
450 
451 static int CompareValueComplexity(const LoopInfo *const LI, Value *LV,
452                                   Value *RV) {
453   // Order pointer values after integer values. This helps SCEVExpander form
454   // GEPs.
455   bool LIsPointer = LV->getType()->isPointerTy(),
456        RIsPointer = RV->getType()->isPointerTy();
457   if (LIsPointer != RIsPointer)
458     return (int)LIsPointer - (int)RIsPointer;
459 
460   // Compare getValueID values.
461   unsigned LID = LV->getValueID(), RID = RV->getValueID();
462   if (LID != RID)
463     return (int)LID - (int)RID;
464 
465   // Sort arguments by their position.
466   if (const Argument *LA = dyn_cast<Argument>(LV)) {
467     const Argument *RA = cast<Argument>(RV);
468     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
469     return (int)LArgNo - (int)RArgNo;
470   }
471 
472   // For instructions, compare their loop depth, and their operand count.  This
473   // is pretty loose.
474   if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
475     const Instruction *RInst = cast<Instruction>(RV);
476 
477     // Compare loop depths.
478     const BasicBlock *LParent = LInst->getParent(),
479                      *RParent = RInst->getParent();
480     if (LParent != RParent) {
481       unsigned LDepth = LI->getLoopDepth(LParent),
482                RDepth = LI->getLoopDepth(RParent);
483       if (LDepth != RDepth)
484         return (int)LDepth - (int)RDepth;
485     }
486 
487     // Compare the number of operands.
488     unsigned LNumOps = LInst->getNumOperands(),
489              RNumOps = RInst->getNumOperands();
490     return (int)LNumOps - (int)RNumOps;
491   }
492 
493   return 0;
494 }
495 
496 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
497 // than RHS, respectively. A three-way result allows recursive comparisons to be
498 // more efficient.
499 static int CompareSCEVComplexity(const LoopInfo *const LI, const SCEV *LHS,
500                                  const SCEV *RHS) {
501   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
502   if (LHS == RHS)
503     return 0;
504 
505   // Primarily, sort the SCEVs by their getSCEVType().
506   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
507   if (LType != RType)
508     return (int)LType - (int)RType;
509 
510   // Aside from the getSCEVType() ordering, the particular ordering
511   // isn't very important except that it's beneficial to be consistent,
512   // so that (a + b) and (b + a) don't end up as different expressions.
513   switch (static_cast<SCEVTypes>(LType)) {
514   case scUnknown: {
515     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
516     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
517 
518     return CompareValueComplexity(LI, LU->getValue(), RU->getValue());
519   }
520 
521   case scConstant: {
522     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
523     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
524 
525     // Compare constant values.
526     const APInt &LA = LC->getAPInt();
527     const APInt &RA = RC->getAPInt();
528     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
529     if (LBitWidth != RBitWidth)
530       return (int)LBitWidth - (int)RBitWidth;
531     return LA.ult(RA) ? -1 : 1;
532   }
533 
534   case scAddRecExpr: {
535     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
536     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
537 
538     // Compare addrec loop depths.
539     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
540     if (LLoop != RLoop) {
541       unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth();
542       if (LDepth != RDepth)
543         return (int)LDepth - (int)RDepth;
544     }
545 
546     // Addrec complexity grows with operand count.
547     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
548     if (LNumOps != RNumOps)
549       return (int)LNumOps - (int)RNumOps;
550 
551     // Lexicographically compare.
552     for (unsigned i = 0; i != LNumOps; ++i) {
553       long X = CompareSCEVComplexity(LI, LA->getOperand(i), RA->getOperand(i));
554       if (X != 0)
555         return X;
556     }
557 
558     return 0;
559   }
560 
561   case scAddExpr:
562   case scMulExpr:
563   case scSMaxExpr:
564   case scUMaxExpr: {
565     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
566     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
567 
568     // Lexicographically compare n-ary expressions.
569     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
570     if (LNumOps != RNumOps)
571       return (int)LNumOps - (int)RNumOps;
572 
573     for (unsigned i = 0; i != LNumOps; ++i) {
574       if (i >= RNumOps)
575         return 1;
576       long X = CompareSCEVComplexity(LI, LC->getOperand(i), RC->getOperand(i));
577       if (X != 0)
578         return X;
579     }
580     return (int)LNumOps - (int)RNumOps;
581   }
582 
583   case scUDivExpr: {
584     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
585     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
586 
587     // Lexicographically compare udiv expressions.
588     long X = CompareSCEVComplexity(LI, LC->getLHS(), RC->getLHS());
589     if (X != 0)
590       return X;
591     return CompareSCEVComplexity(LI, LC->getRHS(), RC->getRHS());
592   }
593 
594   case scTruncate:
595   case scZeroExtend:
596   case scSignExtend: {
597     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
598     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
599 
600     // Compare cast expressions by operand.
601     return CompareSCEVComplexity(LI, LC->getOperand(), RC->getOperand());
602   }
603 
604   case scCouldNotCompute:
605     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
606   }
607   llvm_unreachable("Unknown SCEV kind!");
608 }
609 
610 /// Given a list of SCEV objects, order them by their complexity, and group
611 /// objects of the same complexity together by value.  When this routine is
612 /// finished, we know that any duplicates in the vector are consecutive and that
613 /// complexity is monotonically increasing.
614 ///
615 /// Note that we go take special precautions to ensure that we get deterministic
616 /// results from this routine.  In other words, we don't want the results of
617 /// this to depend on where the addresses of various SCEV objects happened to
618 /// land in memory.
619 ///
620 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
621                               LoopInfo *LI) {
622   if (Ops.size() < 2) return;  // Noop
623   if (Ops.size() == 2) {
624     // This is the common case, which also happens to be trivially simple.
625     // Special case it.
626     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
627     if (CompareSCEVComplexity(LI, RHS, LHS) < 0)
628       std::swap(LHS, RHS);
629     return;
630   }
631 
632   // Do the rough sort by complexity.
633   std::stable_sort(Ops.begin(), Ops.end(),
634                    [LI](const SCEV *LHS, const SCEV *RHS) {
635                      return CompareSCEVComplexity(LI, LHS, RHS) < 0;
636                    });
637 
638   // Now that we are sorted by complexity, group elements of the same
639   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
640   // be extremely short in practice.  Note that we take this approach because we
641   // do not want to depend on the addresses of the objects we are grouping.
642   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
643     const SCEV *S = Ops[i];
644     unsigned Complexity = S->getSCEVType();
645 
646     // If there are any objects of the same complexity and same value as this
647     // one, group them.
648     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
649       if (Ops[j] == S) { // Found a duplicate.
650         // Move it to immediately after i'th element.
651         std::swap(Ops[i+1], Ops[j]);
652         ++i;   // no need to rescan it.
653         if (i == e-2) return;  // Done!
654       }
655     }
656   }
657 }
658 
659 // Returns the size of the SCEV S.
660 static inline int sizeOfSCEV(const SCEV *S) {
661   struct FindSCEVSize {
662     int Size;
663     FindSCEVSize() : Size(0) {}
664 
665     bool follow(const SCEV *S) {
666       ++Size;
667       // Keep looking at all operands of S.
668       return true;
669     }
670     bool isDone() const {
671       return false;
672     }
673   };
674 
675   FindSCEVSize F;
676   SCEVTraversal<FindSCEVSize> ST(F);
677   ST.visitAll(S);
678   return F.Size;
679 }
680 
681 namespace {
682 
683 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
684 public:
685   // Computes the Quotient and Remainder of the division of Numerator by
686   // Denominator.
687   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
688                      const SCEV *Denominator, const SCEV **Quotient,
689                      const SCEV **Remainder) {
690     assert(Numerator && Denominator && "Uninitialized SCEV");
691 
692     SCEVDivision D(SE, Numerator, Denominator);
693 
694     // Check for the trivial case here to avoid having to check for it in the
695     // rest of the code.
696     if (Numerator == Denominator) {
697       *Quotient = D.One;
698       *Remainder = D.Zero;
699       return;
700     }
701 
702     if (Numerator->isZero()) {
703       *Quotient = D.Zero;
704       *Remainder = D.Zero;
705       return;
706     }
707 
708     // A simple case when N/1. The quotient is N.
709     if (Denominator->isOne()) {
710       *Quotient = Numerator;
711       *Remainder = D.Zero;
712       return;
713     }
714 
715     // Split the Denominator when it is a product.
716     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
717       const SCEV *Q, *R;
718       *Quotient = Numerator;
719       for (const SCEV *Op : T->operands()) {
720         divide(SE, *Quotient, Op, &Q, &R);
721         *Quotient = Q;
722 
723         // Bail out when the Numerator is not divisible by one of the terms of
724         // the Denominator.
725         if (!R->isZero()) {
726           *Quotient = D.Zero;
727           *Remainder = Numerator;
728           return;
729         }
730       }
731       *Remainder = D.Zero;
732       return;
733     }
734 
735     D.visit(Numerator);
736     *Quotient = D.Quotient;
737     *Remainder = D.Remainder;
738   }
739 
740   // Except in the trivial case described above, we do not know how to divide
741   // Expr by Denominator for the following functions with empty implementation.
742   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
743   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
744   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
745   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
746   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
747   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
748   void visitUnknown(const SCEVUnknown *Numerator) {}
749   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
750 
751   void visitConstant(const SCEVConstant *Numerator) {
752     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
753       APInt NumeratorVal = Numerator->getAPInt();
754       APInt DenominatorVal = D->getAPInt();
755       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
756       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
757 
758       if (NumeratorBW > DenominatorBW)
759         DenominatorVal = DenominatorVal.sext(NumeratorBW);
760       else if (NumeratorBW < DenominatorBW)
761         NumeratorVal = NumeratorVal.sext(DenominatorBW);
762 
763       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
764       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
765       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
766       Quotient = SE.getConstant(QuotientVal);
767       Remainder = SE.getConstant(RemainderVal);
768       return;
769     }
770   }
771 
772   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
773     const SCEV *StartQ, *StartR, *StepQ, *StepR;
774     if (!Numerator->isAffine())
775       return cannotDivide(Numerator);
776     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
777     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
778     // Bail out if the types do not match.
779     Type *Ty = Denominator->getType();
780     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
781         Ty != StepQ->getType() || Ty != StepR->getType())
782       return cannotDivide(Numerator);
783     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
784                                 Numerator->getNoWrapFlags());
785     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
786                                  Numerator->getNoWrapFlags());
787   }
788 
789   void visitAddExpr(const SCEVAddExpr *Numerator) {
790     SmallVector<const SCEV *, 2> Qs, Rs;
791     Type *Ty = Denominator->getType();
792 
793     for (const SCEV *Op : Numerator->operands()) {
794       const SCEV *Q, *R;
795       divide(SE, Op, Denominator, &Q, &R);
796 
797       // Bail out if types do not match.
798       if (Ty != Q->getType() || Ty != R->getType())
799         return cannotDivide(Numerator);
800 
801       Qs.push_back(Q);
802       Rs.push_back(R);
803     }
804 
805     if (Qs.size() == 1) {
806       Quotient = Qs[0];
807       Remainder = Rs[0];
808       return;
809     }
810 
811     Quotient = SE.getAddExpr(Qs);
812     Remainder = SE.getAddExpr(Rs);
813   }
814 
815   void visitMulExpr(const SCEVMulExpr *Numerator) {
816     SmallVector<const SCEV *, 2> Qs;
817     Type *Ty = Denominator->getType();
818 
819     bool FoundDenominatorTerm = false;
820     for (const SCEV *Op : Numerator->operands()) {
821       // Bail out if types do not match.
822       if (Ty != Op->getType())
823         return cannotDivide(Numerator);
824 
825       if (FoundDenominatorTerm) {
826         Qs.push_back(Op);
827         continue;
828       }
829 
830       // Check whether Denominator divides one of the product operands.
831       const SCEV *Q, *R;
832       divide(SE, Op, Denominator, &Q, &R);
833       if (!R->isZero()) {
834         Qs.push_back(Op);
835         continue;
836       }
837 
838       // Bail out if types do not match.
839       if (Ty != Q->getType())
840         return cannotDivide(Numerator);
841 
842       FoundDenominatorTerm = true;
843       Qs.push_back(Q);
844     }
845 
846     if (FoundDenominatorTerm) {
847       Remainder = Zero;
848       if (Qs.size() == 1)
849         Quotient = Qs[0];
850       else
851         Quotient = SE.getMulExpr(Qs);
852       return;
853     }
854 
855     if (!isa<SCEVUnknown>(Denominator))
856       return cannotDivide(Numerator);
857 
858     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
859     ValueToValueMap RewriteMap;
860     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
861         cast<SCEVConstant>(Zero)->getValue();
862     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
863 
864     if (Remainder->isZero()) {
865       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
866       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
867           cast<SCEVConstant>(One)->getValue();
868       Quotient =
869           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
870       return;
871     }
872 
873     // Quotient is (Numerator - Remainder) divided by Denominator.
874     const SCEV *Q, *R;
875     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
876     // This SCEV does not seem to simplify: fail the division here.
877     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
878       return cannotDivide(Numerator);
879     divide(SE, Diff, Denominator, &Q, &R);
880     if (R != Zero)
881       return cannotDivide(Numerator);
882     Quotient = Q;
883   }
884 
885 private:
886   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
887                const SCEV *Denominator)
888       : SE(S), Denominator(Denominator) {
889     Zero = SE.getZero(Denominator->getType());
890     One = SE.getOne(Denominator->getType());
891 
892     // We generally do not know how to divide Expr by Denominator. We
893     // initialize the division to a "cannot divide" state to simplify the rest
894     // of the code.
895     cannotDivide(Numerator);
896   }
897 
898   // Convenience function for giving up on the division. We set the quotient to
899   // be equal to zero and the remainder to be equal to the numerator.
900   void cannotDivide(const SCEV *Numerator) {
901     Quotient = Zero;
902     Remainder = Numerator;
903   }
904 
905   ScalarEvolution &SE;
906   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
907 };
908 
909 }
910 
911 //===----------------------------------------------------------------------===//
912 //                      Simple SCEV method implementations
913 //===----------------------------------------------------------------------===//
914 
915 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
916 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
917                                        ScalarEvolution &SE,
918                                        Type *ResultTy) {
919   // Handle the simplest case efficiently.
920   if (K == 1)
921     return SE.getTruncateOrZeroExtend(It, ResultTy);
922 
923   // We are using the following formula for BC(It, K):
924   //
925   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
926   //
927   // Suppose, W is the bitwidth of the return value.  We must be prepared for
928   // overflow.  Hence, we must assure that the result of our computation is
929   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
930   // safe in modular arithmetic.
931   //
932   // However, this code doesn't use exactly that formula; the formula it uses
933   // is something like the following, where T is the number of factors of 2 in
934   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
935   // exponentiation:
936   //
937   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
938   //
939   // This formula is trivially equivalent to the previous formula.  However,
940   // this formula can be implemented much more efficiently.  The trick is that
941   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
942   // arithmetic.  To do exact division in modular arithmetic, all we have
943   // to do is multiply by the inverse.  Therefore, this step can be done at
944   // width W.
945   //
946   // The next issue is how to safely do the division by 2^T.  The way this
947   // is done is by doing the multiplication step at a width of at least W + T
948   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
949   // when we perform the division by 2^T (which is equivalent to a right shift
950   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
951   // truncated out after the division by 2^T.
952   //
953   // In comparison to just directly using the first formula, this technique
954   // is much more efficient; using the first formula requires W * K bits,
955   // but this formula less than W + K bits. Also, the first formula requires
956   // a division step, whereas this formula only requires multiplies and shifts.
957   //
958   // It doesn't matter whether the subtraction step is done in the calculation
959   // width or the input iteration count's width; if the subtraction overflows,
960   // the result must be zero anyway.  We prefer here to do it in the width of
961   // the induction variable because it helps a lot for certain cases; CodeGen
962   // isn't smart enough to ignore the overflow, which leads to much less
963   // efficient code if the width of the subtraction is wider than the native
964   // register width.
965   //
966   // (It's possible to not widen at all by pulling out factors of 2 before
967   // the multiplication; for example, K=2 can be calculated as
968   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
969   // extra arithmetic, so it's not an obvious win, and it gets
970   // much more complicated for K > 3.)
971 
972   // Protection from insane SCEVs; this bound is conservative,
973   // but it probably doesn't matter.
974   if (K > 1000)
975     return SE.getCouldNotCompute();
976 
977   unsigned W = SE.getTypeSizeInBits(ResultTy);
978 
979   // Calculate K! / 2^T and T; we divide out the factors of two before
980   // multiplying for calculating K! / 2^T to avoid overflow.
981   // Other overflow doesn't matter because we only care about the bottom
982   // W bits of the result.
983   APInt OddFactorial(W, 1);
984   unsigned T = 1;
985   for (unsigned i = 3; i <= K; ++i) {
986     APInt Mult(W, i);
987     unsigned TwoFactors = Mult.countTrailingZeros();
988     T += TwoFactors;
989     Mult = Mult.lshr(TwoFactors);
990     OddFactorial *= Mult;
991   }
992 
993   // We need at least W + T bits for the multiplication step
994   unsigned CalculationBits = W + T;
995 
996   // Calculate 2^T, at width T+W.
997   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
998 
999   // Calculate the multiplicative inverse of K! / 2^T;
1000   // this multiplication factor will perform the exact division by
1001   // K! / 2^T.
1002   APInt Mod = APInt::getSignedMinValue(W+1);
1003   APInt MultiplyFactor = OddFactorial.zext(W+1);
1004   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1005   MultiplyFactor = MultiplyFactor.trunc(W);
1006 
1007   // Calculate the product, at width T+W
1008   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1009                                                       CalculationBits);
1010   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1011   for (unsigned i = 1; i != K; ++i) {
1012     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1013     Dividend = SE.getMulExpr(Dividend,
1014                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1015   }
1016 
1017   // Divide by 2^T
1018   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1019 
1020   // Truncate the result, and divide by K! / 2^T.
1021 
1022   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1023                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1024 }
1025 
1026 /// Return the value of this chain of recurrences at the specified iteration
1027 /// number.  We can evaluate this recurrence by multiplying each element in the
1028 /// chain by the binomial coefficient corresponding to it.  In other words, we
1029 /// can evaluate {A,+,B,+,C,+,D} as:
1030 ///
1031 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1032 ///
1033 /// where BC(It, k) stands for binomial coefficient.
1034 ///
1035 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1036                                                 ScalarEvolution &SE) const {
1037   const SCEV *Result = getStart();
1038   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1039     // The computation is correct in the face of overflow provided that the
1040     // multiplication is performed _after_ the evaluation of the binomial
1041     // coefficient.
1042     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1043     if (isa<SCEVCouldNotCompute>(Coeff))
1044       return Coeff;
1045 
1046     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1047   }
1048   return Result;
1049 }
1050 
1051 //===----------------------------------------------------------------------===//
1052 //                    SCEV Expression folder implementations
1053 //===----------------------------------------------------------------------===//
1054 
1055 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1056                                              Type *Ty) {
1057   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1058          "This is not a truncating conversion!");
1059   assert(isSCEVable(Ty) &&
1060          "This is not a conversion to a SCEVable type!");
1061   Ty = getEffectiveSCEVType(Ty);
1062 
1063   FoldingSetNodeID ID;
1064   ID.AddInteger(scTruncate);
1065   ID.AddPointer(Op);
1066   ID.AddPointer(Ty);
1067   void *IP = nullptr;
1068   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1069 
1070   // Fold if the operand is constant.
1071   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1072     return getConstant(
1073       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1074 
1075   // trunc(trunc(x)) --> trunc(x)
1076   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1077     return getTruncateExpr(ST->getOperand(), Ty);
1078 
1079   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1080   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1081     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1082 
1083   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1084   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1085     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1086 
1087   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1088   // eliminate all the truncates, or we replace other casts with truncates.
1089   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1090     SmallVector<const SCEV *, 4> Operands;
1091     bool hasTrunc = false;
1092     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1093       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1094       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1095         hasTrunc = isa<SCEVTruncateExpr>(S);
1096       Operands.push_back(S);
1097     }
1098     if (!hasTrunc)
1099       return getAddExpr(Operands);
1100     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1101   }
1102 
1103   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1104   // eliminate all the truncates, or we replace other casts with truncates.
1105   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1106     SmallVector<const SCEV *, 4> Operands;
1107     bool hasTrunc = false;
1108     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1109       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1110       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1111         hasTrunc = isa<SCEVTruncateExpr>(S);
1112       Operands.push_back(S);
1113     }
1114     if (!hasTrunc)
1115       return getMulExpr(Operands);
1116     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1117   }
1118 
1119   // If the input value is a chrec scev, truncate the chrec's operands.
1120   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1121     SmallVector<const SCEV *, 4> Operands;
1122     for (const SCEV *Op : AddRec->operands())
1123       Operands.push_back(getTruncateExpr(Op, Ty));
1124     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1125   }
1126 
1127   // The cast wasn't folded; create an explicit cast node. We can reuse
1128   // the existing insert position since if we get here, we won't have
1129   // made any changes which would invalidate it.
1130   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1131                                                  Op, Ty);
1132   UniqueSCEVs.InsertNode(S, IP);
1133   return S;
1134 }
1135 
1136 // Get the limit of a recurrence such that incrementing by Step cannot cause
1137 // signed overflow as long as the value of the recurrence within the
1138 // loop does not exceed this limit before incrementing.
1139 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1140                                                  ICmpInst::Predicate *Pred,
1141                                                  ScalarEvolution *SE) {
1142   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1143   if (SE->isKnownPositive(Step)) {
1144     *Pred = ICmpInst::ICMP_SLT;
1145     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1146                            SE->getSignedRange(Step).getSignedMax());
1147   }
1148   if (SE->isKnownNegative(Step)) {
1149     *Pred = ICmpInst::ICMP_SGT;
1150     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1151                            SE->getSignedRange(Step).getSignedMin());
1152   }
1153   return nullptr;
1154 }
1155 
1156 // Get the limit of a recurrence such that incrementing by Step cannot cause
1157 // unsigned overflow as long as the value of the recurrence within the loop does
1158 // not exceed this limit before incrementing.
1159 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1160                                                    ICmpInst::Predicate *Pred,
1161                                                    ScalarEvolution *SE) {
1162   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1163   *Pred = ICmpInst::ICMP_ULT;
1164 
1165   return SE->getConstant(APInt::getMinValue(BitWidth) -
1166                          SE->getUnsignedRange(Step).getUnsignedMax());
1167 }
1168 
1169 namespace {
1170 
1171 struct ExtendOpTraitsBase {
1172   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1173 };
1174 
1175 // Used to make code generic over signed and unsigned overflow.
1176 template <typename ExtendOp> struct ExtendOpTraits {
1177   // Members present:
1178   //
1179   // static const SCEV::NoWrapFlags WrapType;
1180   //
1181   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1182   //
1183   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1184   //                                           ICmpInst::Predicate *Pred,
1185   //                                           ScalarEvolution *SE);
1186 };
1187 
1188 template <>
1189 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1190   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1191 
1192   static const GetExtendExprTy GetExtendExpr;
1193 
1194   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1195                                              ICmpInst::Predicate *Pred,
1196                                              ScalarEvolution *SE) {
1197     return getSignedOverflowLimitForStep(Step, Pred, SE);
1198   }
1199 };
1200 
1201 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1202     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1203 
1204 template <>
1205 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1206   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1207 
1208   static const GetExtendExprTy GetExtendExpr;
1209 
1210   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1211                                              ICmpInst::Predicate *Pred,
1212                                              ScalarEvolution *SE) {
1213     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1214   }
1215 };
1216 
1217 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1218     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1219 }
1220 
1221 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1222 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1223 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1224 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1225 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1226 // expression "Step + sext/zext(PreIncAR)" is congruent with
1227 // "sext/zext(PostIncAR)"
1228 template <typename ExtendOpTy>
1229 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1230                                         ScalarEvolution *SE) {
1231   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1232   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1233 
1234   const Loop *L = AR->getLoop();
1235   const SCEV *Start = AR->getStart();
1236   const SCEV *Step = AR->getStepRecurrence(*SE);
1237 
1238   // Check for a simple looking step prior to loop entry.
1239   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1240   if (!SA)
1241     return nullptr;
1242 
1243   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1244   // subtraction is expensive. For this purpose, perform a quick and dirty
1245   // difference, by checking for Step in the operand list.
1246   SmallVector<const SCEV *, 4> DiffOps;
1247   for (const SCEV *Op : SA->operands())
1248     if (Op != Step)
1249       DiffOps.push_back(Op);
1250 
1251   if (DiffOps.size() == SA->getNumOperands())
1252     return nullptr;
1253 
1254   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1255   // `Step`:
1256 
1257   // 1. NSW/NUW flags on the step increment.
1258   auto PreStartFlags =
1259     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1260   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1261   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1262       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1263 
1264   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1265   // "S+X does not sign/unsign-overflow".
1266   //
1267 
1268   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1269   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1270       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1271     return PreStart;
1272 
1273   // 2. Direct overflow check on the step operation's expression.
1274   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1275   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1276   const SCEV *OperandExtendedStart =
1277       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1278                      (SE->*GetExtendExpr)(Step, WideTy));
1279   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1280     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1281       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1282       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1283       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1284       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1285     }
1286     return PreStart;
1287   }
1288 
1289   // 3. Loop precondition.
1290   ICmpInst::Predicate Pred;
1291   const SCEV *OverflowLimit =
1292       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1293 
1294   if (OverflowLimit &&
1295       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1296     return PreStart;
1297 
1298   return nullptr;
1299 }
1300 
1301 // Get the normalized zero or sign extended expression for this AddRec's Start.
1302 template <typename ExtendOpTy>
1303 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1304                                         ScalarEvolution *SE) {
1305   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1306 
1307   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1308   if (!PreStart)
1309     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1310 
1311   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1312                         (SE->*GetExtendExpr)(PreStart, Ty));
1313 }
1314 
1315 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1316 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1317 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1318 //
1319 // Formally:
1320 //
1321 //     {S,+,X} == {S-T,+,X} + T
1322 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1323 //
1324 // If ({S-T,+,X} + T) does not overflow  ... (1)
1325 //
1326 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1327 //
1328 // If {S-T,+,X} does not overflow  ... (2)
1329 //
1330 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1331 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1332 //
1333 // If (S-T)+T does not overflow  ... (3)
1334 //
1335 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1336 //      == {Ext(S),+,Ext(X)} == LHS
1337 //
1338 // Thus, if (1), (2) and (3) are true for some T, then
1339 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1340 //
1341 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1342 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1343 // to check for (1) and (2).
1344 //
1345 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1346 // is `Delta` (defined below).
1347 //
1348 template <typename ExtendOpTy>
1349 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1350                                                 const SCEV *Step,
1351                                                 const Loop *L) {
1352   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1353 
1354   // We restrict `Start` to a constant to prevent SCEV from spending too much
1355   // time here.  It is correct (but more expensive) to continue with a
1356   // non-constant `Start` and do a general SCEV subtraction to compute
1357   // `PreStart` below.
1358   //
1359   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1360   if (!StartC)
1361     return false;
1362 
1363   APInt StartAI = StartC->getAPInt();
1364 
1365   for (unsigned Delta : {-2, -1, 1, 2}) {
1366     const SCEV *PreStart = getConstant(StartAI - Delta);
1367 
1368     FoldingSetNodeID ID;
1369     ID.AddInteger(scAddRecExpr);
1370     ID.AddPointer(PreStart);
1371     ID.AddPointer(Step);
1372     ID.AddPointer(L);
1373     void *IP = nullptr;
1374     const auto *PreAR =
1375       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1376 
1377     // Give up if we don't already have the add recurrence we need because
1378     // actually constructing an add recurrence is relatively expensive.
1379     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1380       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1381       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1382       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1383           DeltaS, &Pred, this);
1384       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1385         return true;
1386     }
1387   }
1388 
1389   return false;
1390 }
1391 
1392 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1393                                                Type *Ty) {
1394   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1395          "This is not an extending conversion!");
1396   assert(isSCEVable(Ty) &&
1397          "This is not a conversion to a SCEVable type!");
1398   Ty = getEffectiveSCEVType(Ty);
1399 
1400   // Fold if the operand is constant.
1401   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1402     return getConstant(
1403       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1404 
1405   // zext(zext(x)) --> zext(x)
1406   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1407     return getZeroExtendExpr(SZ->getOperand(), Ty);
1408 
1409   // Before doing any expensive analysis, check to see if we've already
1410   // computed a SCEV for this Op and Ty.
1411   FoldingSetNodeID ID;
1412   ID.AddInteger(scZeroExtend);
1413   ID.AddPointer(Op);
1414   ID.AddPointer(Ty);
1415   void *IP = nullptr;
1416   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1417 
1418   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1419   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1420     // It's possible the bits taken off by the truncate were all zero bits. If
1421     // so, we should be able to simplify this further.
1422     const SCEV *X = ST->getOperand();
1423     ConstantRange CR = getUnsignedRange(X);
1424     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1425     unsigned NewBits = getTypeSizeInBits(Ty);
1426     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1427             CR.zextOrTrunc(NewBits)))
1428       return getTruncateOrZeroExtend(X, Ty);
1429   }
1430 
1431   // If the input value is a chrec scev, and we can prove that the value
1432   // did not overflow the old, smaller, value, we can zero extend all of the
1433   // operands (often constants).  This allows analysis of something like
1434   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1435   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1436     if (AR->isAffine()) {
1437       const SCEV *Start = AR->getStart();
1438       const SCEV *Step = AR->getStepRecurrence(*this);
1439       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1440       const Loop *L = AR->getLoop();
1441 
1442       if (!AR->hasNoUnsignedWrap()) {
1443         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1444         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1445       }
1446 
1447       // If we have special knowledge that this addrec won't overflow,
1448       // we don't need to do any further analysis.
1449       if (AR->hasNoUnsignedWrap())
1450         return getAddRecExpr(
1451             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1452             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1453 
1454       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1455       // Note that this serves two purposes: It filters out loops that are
1456       // simply not analyzable, and it covers the case where this code is
1457       // being called from within backedge-taken count analysis, such that
1458       // attempting to ask for the backedge-taken count would likely result
1459       // in infinite recursion. In the later case, the analysis code will
1460       // cope with a conservative value, and it will take care to purge
1461       // that value once it has finished.
1462       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1463       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1464         // Manually compute the final value for AR, checking for
1465         // overflow.
1466 
1467         // Check whether the backedge-taken count can be losslessly casted to
1468         // the addrec's type. The count is always unsigned.
1469         const SCEV *CastedMaxBECount =
1470           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1471         const SCEV *RecastedMaxBECount =
1472           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1473         if (MaxBECount == RecastedMaxBECount) {
1474           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1475           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1476           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1477           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1478           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1479           const SCEV *WideMaxBECount =
1480             getZeroExtendExpr(CastedMaxBECount, WideTy);
1481           const SCEV *OperandExtendedAdd =
1482             getAddExpr(WideStart,
1483                        getMulExpr(WideMaxBECount,
1484                                   getZeroExtendExpr(Step, WideTy)));
1485           if (ZAdd == OperandExtendedAdd) {
1486             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1487             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1488             // Return the expression with the addrec on the outside.
1489             return getAddRecExpr(
1490                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1491                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1492           }
1493           // Similar to above, only this time treat the step value as signed.
1494           // This covers loops that count down.
1495           OperandExtendedAdd =
1496             getAddExpr(WideStart,
1497                        getMulExpr(WideMaxBECount,
1498                                   getSignExtendExpr(Step, WideTy)));
1499           if (ZAdd == OperandExtendedAdd) {
1500             // Cache knowledge of AR NW, which is propagated to this AddRec.
1501             // Negative step causes unsigned wrap, but it still can't self-wrap.
1502             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1503             // Return the expression with the addrec on the outside.
1504             return getAddRecExpr(
1505                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1506                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1507           }
1508         }
1509       }
1510 
1511       // Normally, in the cases we can prove no-overflow via a
1512       // backedge guarding condition, we can also compute a backedge
1513       // taken count for the loop.  The exceptions are assumptions and
1514       // guards present in the loop -- SCEV is not great at exploiting
1515       // these to compute max backedge taken counts, but can still use
1516       // these to prove lack of overflow.  Use this fact to avoid
1517       // doing extra work that may not pay off.
1518       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1519           !AC.assumptions().empty()) {
1520         // If the backedge is guarded by a comparison with the pre-inc
1521         // value the addrec is safe. Also, if the entry is guarded by
1522         // a comparison with the start value and the backedge is
1523         // guarded by a comparison with the post-inc value, the addrec
1524         // is safe.
1525         if (isKnownPositive(Step)) {
1526           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1527                                       getUnsignedRange(Step).getUnsignedMax());
1528           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1529               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1530                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1531                                            AR->getPostIncExpr(*this), N))) {
1532             // Cache knowledge of AR NUW, which is propagated to this
1533             // AddRec.
1534             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1535             // Return the expression with the addrec on the outside.
1536             return getAddRecExpr(
1537                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1538                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1539           }
1540         } else if (isKnownNegative(Step)) {
1541           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1542                                       getSignedRange(Step).getSignedMin());
1543           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1544               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1545                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1546                                            AR->getPostIncExpr(*this), N))) {
1547             // Cache knowledge of AR NW, which is propagated to this
1548             // AddRec.  Negative step causes unsigned wrap, but it
1549             // still can't self-wrap.
1550             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1551             // Return the expression with the addrec on the outside.
1552             return getAddRecExpr(
1553                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1554                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1555           }
1556         }
1557       }
1558 
1559       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1560         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1561         return getAddRecExpr(
1562             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1563             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1564       }
1565     }
1566 
1567   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1568     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1569     if (SA->hasNoUnsignedWrap()) {
1570       // If the addition does not unsign overflow then we can, by definition,
1571       // commute the zero extension with the addition operation.
1572       SmallVector<const SCEV *, 4> Ops;
1573       for (const auto *Op : SA->operands())
1574         Ops.push_back(getZeroExtendExpr(Op, Ty));
1575       return getAddExpr(Ops, SCEV::FlagNUW);
1576     }
1577   }
1578 
1579   // The cast wasn't folded; create an explicit cast node.
1580   // Recompute the insert position, as it may have been invalidated.
1581   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1582   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1583                                                    Op, Ty);
1584   UniqueSCEVs.InsertNode(S, IP);
1585   return S;
1586 }
1587 
1588 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1589                                                Type *Ty) {
1590   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1591          "This is not an extending conversion!");
1592   assert(isSCEVable(Ty) &&
1593          "This is not a conversion to a SCEVable type!");
1594   Ty = getEffectiveSCEVType(Ty);
1595 
1596   // Fold if the operand is constant.
1597   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1598     return getConstant(
1599       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1600 
1601   // sext(sext(x)) --> sext(x)
1602   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1603     return getSignExtendExpr(SS->getOperand(), Ty);
1604 
1605   // sext(zext(x)) --> zext(x)
1606   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1607     return getZeroExtendExpr(SZ->getOperand(), Ty);
1608 
1609   // Before doing any expensive analysis, check to see if we've already
1610   // computed a SCEV for this Op and Ty.
1611   FoldingSetNodeID ID;
1612   ID.AddInteger(scSignExtend);
1613   ID.AddPointer(Op);
1614   ID.AddPointer(Ty);
1615   void *IP = nullptr;
1616   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1617 
1618   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1619   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1620     // It's possible the bits taken off by the truncate were all sign bits. If
1621     // so, we should be able to simplify this further.
1622     const SCEV *X = ST->getOperand();
1623     ConstantRange CR = getSignedRange(X);
1624     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1625     unsigned NewBits = getTypeSizeInBits(Ty);
1626     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1627             CR.sextOrTrunc(NewBits)))
1628       return getTruncateOrSignExtend(X, Ty);
1629   }
1630 
1631   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1632   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1633     if (SA->getNumOperands() == 2) {
1634       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1635       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1636       if (SMul && SC1) {
1637         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1638           const APInt &C1 = SC1->getAPInt();
1639           const APInt &C2 = SC2->getAPInt();
1640           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1641               C2.ugt(C1) && C2.isPowerOf2())
1642             return getAddExpr(getSignExtendExpr(SC1, Ty),
1643                               getSignExtendExpr(SMul, Ty));
1644         }
1645       }
1646     }
1647 
1648     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1649     if (SA->hasNoSignedWrap()) {
1650       // If the addition does not sign overflow then we can, by definition,
1651       // commute the sign extension with the addition operation.
1652       SmallVector<const SCEV *, 4> Ops;
1653       for (const auto *Op : SA->operands())
1654         Ops.push_back(getSignExtendExpr(Op, Ty));
1655       return getAddExpr(Ops, SCEV::FlagNSW);
1656     }
1657   }
1658   // If the input value is a chrec scev, and we can prove that the value
1659   // did not overflow the old, smaller, value, we can sign extend all of the
1660   // operands (often constants).  This allows analysis of something like
1661   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1662   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1663     if (AR->isAffine()) {
1664       const SCEV *Start = AR->getStart();
1665       const SCEV *Step = AR->getStepRecurrence(*this);
1666       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1667       const Loop *L = AR->getLoop();
1668 
1669       if (!AR->hasNoSignedWrap()) {
1670         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1671         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1672       }
1673 
1674       // If we have special knowledge that this addrec won't overflow,
1675       // we don't need to do any further analysis.
1676       if (AR->hasNoSignedWrap())
1677         return getAddRecExpr(
1678             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1679             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1680 
1681       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1682       // Note that this serves two purposes: It filters out loops that are
1683       // simply not analyzable, and it covers the case where this code is
1684       // being called from within backedge-taken count analysis, such that
1685       // attempting to ask for the backedge-taken count would likely result
1686       // in infinite recursion. In the later case, the analysis code will
1687       // cope with a conservative value, and it will take care to purge
1688       // that value once it has finished.
1689       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1690       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1691         // Manually compute the final value for AR, checking for
1692         // overflow.
1693 
1694         // Check whether the backedge-taken count can be losslessly casted to
1695         // the addrec's type. The count is always unsigned.
1696         const SCEV *CastedMaxBECount =
1697           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1698         const SCEV *RecastedMaxBECount =
1699           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1700         if (MaxBECount == RecastedMaxBECount) {
1701           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1702           // Check whether Start+Step*MaxBECount has no signed overflow.
1703           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1704           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1705           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1706           const SCEV *WideMaxBECount =
1707             getZeroExtendExpr(CastedMaxBECount, WideTy);
1708           const SCEV *OperandExtendedAdd =
1709             getAddExpr(WideStart,
1710                        getMulExpr(WideMaxBECount,
1711                                   getSignExtendExpr(Step, WideTy)));
1712           if (SAdd == OperandExtendedAdd) {
1713             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1714             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1715             // Return the expression with the addrec on the outside.
1716             return getAddRecExpr(
1717                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1718                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1719           }
1720           // Similar to above, only this time treat the step value as unsigned.
1721           // This covers loops that count up with an unsigned step.
1722           OperandExtendedAdd =
1723             getAddExpr(WideStart,
1724                        getMulExpr(WideMaxBECount,
1725                                   getZeroExtendExpr(Step, WideTy)));
1726           if (SAdd == OperandExtendedAdd) {
1727             // If AR wraps around then
1728             //
1729             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1730             // => SAdd != OperandExtendedAdd
1731             //
1732             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1733             // (SAdd == OperandExtendedAdd => AR is NW)
1734 
1735             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1736 
1737             // Return the expression with the addrec on the outside.
1738             return getAddRecExpr(
1739                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1740                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1741           }
1742         }
1743       }
1744 
1745       // Normally, in the cases we can prove no-overflow via a
1746       // backedge guarding condition, we can also compute a backedge
1747       // taken count for the loop.  The exceptions are assumptions and
1748       // guards present in the loop -- SCEV is not great at exploiting
1749       // these to compute max backedge taken counts, but can still use
1750       // these to prove lack of overflow.  Use this fact to avoid
1751       // doing extra work that may not pay off.
1752 
1753       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1754           !AC.assumptions().empty()) {
1755         // If the backedge is guarded by a comparison with the pre-inc
1756         // value the addrec is safe. Also, if the entry is guarded by
1757         // a comparison with the start value and the backedge is
1758         // guarded by a comparison with the post-inc value, the addrec
1759         // is safe.
1760         ICmpInst::Predicate Pred;
1761         const SCEV *OverflowLimit =
1762             getSignedOverflowLimitForStep(Step, &Pred, this);
1763         if (OverflowLimit &&
1764             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1765              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1766               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1767                                           OverflowLimit)))) {
1768           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1769           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1770           return getAddRecExpr(
1771               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1772               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1773         }
1774       }
1775 
1776       // If Start and Step are constants, check if we can apply this
1777       // transformation:
1778       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1779       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1780       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1781       if (SC1 && SC2) {
1782         const APInt &C1 = SC1->getAPInt();
1783         const APInt &C2 = SC2->getAPInt();
1784         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1785             C2.isPowerOf2()) {
1786           Start = getSignExtendExpr(Start, Ty);
1787           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1788                                             AR->getNoWrapFlags());
1789           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1790         }
1791       }
1792 
1793       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1794         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1795         return getAddRecExpr(
1796             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1797             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1798       }
1799     }
1800 
1801   // If the input value is provably positive and we could not simplify
1802   // away the sext build a zext instead.
1803   if (isKnownNonNegative(Op))
1804     return getZeroExtendExpr(Op, Ty);
1805 
1806   // The cast wasn't folded; create an explicit cast node.
1807   // Recompute the insert position, as it may have been invalidated.
1808   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1809   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1810                                                    Op, Ty);
1811   UniqueSCEVs.InsertNode(S, IP);
1812   return S;
1813 }
1814 
1815 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1816 /// unspecified bits out to the given type.
1817 ///
1818 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1819                                               Type *Ty) {
1820   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1821          "This is not an extending conversion!");
1822   assert(isSCEVable(Ty) &&
1823          "This is not a conversion to a SCEVable type!");
1824   Ty = getEffectiveSCEVType(Ty);
1825 
1826   // Sign-extend negative constants.
1827   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1828     if (SC->getAPInt().isNegative())
1829       return getSignExtendExpr(Op, Ty);
1830 
1831   // Peel off a truncate cast.
1832   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1833     const SCEV *NewOp = T->getOperand();
1834     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1835       return getAnyExtendExpr(NewOp, Ty);
1836     return getTruncateOrNoop(NewOp, Ty);
1837   }
1838 
1839   // Next try a zext cast. If the cast is folded, use it.
1840   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1841   if (!isa<SCEVZeroExtendExpr>(ZExt))
1842     return ZExt;
1843 
1844   // Next try a sext cast. If the cast is folded, use it.
1845   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1846   if (!isa<SCEVSignExtendExpr>(SExt))
1847     return SExt;
1848 
1849   // Force the cast to be folded into the operands of an addrec.
1850   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1851     SmallVector<const SCEV *, 4> Ops;
1852     for (const SCEV *Op : AR->operands())
1853       Ops.push_back(getAnyExtendExpr(Op, Ty));
1854     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1855   }
1856 
1857   // If the expression is obviously signed, use the sext cast value.
1858   if (isa<SCEVSMaxExpr>(Op))
1859     return SExt;
1860 
1861   // Absent any other information, use the zext cast value.
1862   return ZExt;
1863 }
1864 
1865 /// Process the given Ops list, which is a list of operands to be added under
1866 /// the given scale, update the given map. This is a helper function for
1867 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1868 /// that would form an add expression like this:
1869 ///
1870 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1871 ///
1872 /// where A and B are constants, update the map with these values:
1873 ///
1874 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1875 ///
1876 /// and add 13 + A*B*29 to AccumulatedConstant.
1877 /// This will allow getAddRecExpr to produce this:
1878 ///
1879 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1880 ///
1881 /// This form often exposes folding opportunities that are hidden in
1882 /// the original operand list.
1883 ///
1884 /// Return true iff it appears that any interesting folding opportunities
1885 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1886 /// the common case where no interesting opportunities are present, and
1887 /// is also used as a check to avoid infinite recursion.
1888 ///
1889 static bool
1890 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1891                              SmallVectorImpl<const SCEV *> &NewOps,
1892                              APInt &AccumulatedConstant,
1893                              const SCEV *const *Ops, size_t NumOperands,
1894                              const APInt &Scale,
1895                              ScalarEvolution &SE) {
1896   bool Interesting = false;
1897 
1898   // Iterate over the add operands. They are sorted, with constants first.
1899   unsigned i = 0;
1900   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1901     ++i;
1902     // Pull a buried constant out to the outside.
1903     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1904       Interesting = true;
1905     AccumulatedConstant += Scale * C->getAPInt();
1906   }
1907 
1908   // Next comes everything else. We're especially interested in multiplies
1909   // here, but they're in the middle, so just visit the rest with one loop.
1910   for (; i != NumOperands; ++i) {
1911     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1912     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1913       APInt NewScale =
1914           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1915       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1916         // A multiplication of a constant with another add; recurse.
1917         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1918         Interesting |=
1919           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1920                                        Add->op_begin(), Add->getNumOperands(),
1921                                        NewScale, SE);
1922       } else {
1923         // A multiplication of a constant with some other value. Update
1924         // the map.
1925         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1926         const SCEV *Key = SE.getMulExpr(MulOps);
1927         auto Pair = M.insert({Key, NewScale});
1928         if (Pair.second) {
1929           NewOps.push_back(Pair.first->first);
1930         } else {
1931           Pair.first->second += NewScale;
1932           // The map already had an entry for this value, which may indicate
1933           // a folding opportunity.
1934           Interesting = true;
1935         }
1936       }
1937     } else {
1938       // An ordinary operand. Update the map.
1939       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1940           M.insert({Ops[i], Scale});
1941       if (Pair.second) {
1942         NewOps.push_back(Pair.first->first);
1943       } else {
1944         Pair.first->second += Scale;
1945         // The map already had an entry for this value, which may indicate
1946         // a folding opportunity.
1947         Interesting = true;
1948       }
1949     }
1950   }
1951 
1952   return Interesting;
1953 }
1954 
1955 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1956 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1957 // can't-overflow flags for the operation if possible.
1958 static SCEV::NoWrapFlags
1959 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1960                       const SmallVectorImpl<const SCEV *> &Ops,
1961                       SCEV::NoWrapFlags Flags) {
1962   using namespace std::placeholders;
1963   typedef OverflowingBinaryOperator OBO;
1964 
1965   bool CanAnalyze =
1966       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1967   (void)CanAnalyze;
1968   assert(CanAnalyze && "don't call from other places!");
1969 
1970   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1971   SCEV::NoWrapFlags SignOrUnsignWrap =
1972       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1973 
1974   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1975   auto IsKnownNonNegative = [&](const SCEV *S) {
1976     return SE->isKnownNonNegative(S);
1977   };
1978 
1979   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1980     Flags =
1981         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1982 
1983   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1984 
1985   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1986       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1987 
1988     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1989     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1990 
1991     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
1992     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1993       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1994           Instruction::Add, C, OBO::NoSignedWrap);
1995       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1996         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1997     }
1998     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1999       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2000           Instruction::Add, C, OBO::NoUnsignedWrap);
2001       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2002         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2003     }
2004   }
2005 
2006   return Flags;
2007 }
2008 
2009 /// Get a canonical add expression, or something simpler if possible.
2010 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2011                                         SCEV::NoWrapFlags Flags) {
2012   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2013          "only nuw or nsw allowed");
2014   assert(!Ops.empty() && "Cannot get empty add!");
2015   if (Ops.size() == 1) return Ops[0];
2016 #ifndef NDEBUG
2017   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2018   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2019     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2020            "SCEVAddExpr operand types don't match!");
2021 #endif
2022 
2023   // Sort by complexity, this groups all similar expression types together.
2024   GroupByComplexity(Ops, &LI);
2025 
2026   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2027 
2028   // If there are any constants, fold them together.
2029   unsigned Idx = 0;
2030   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2031     ++Idx;
2032     assert(Idx < Ops.size());
2033     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2034       // We found two constants, fold them together!
2035       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2036       if (Ops.size() == 2) return Ops[0];
2037       Ops.erase(Ops.begin()+1);  // Erase the folded element
2038       LHSC = cast<SCEVConstant>(Ops[0]);
2039     }
2040 
2041     // If we are left with a constant zero being added, strip it off.
2042     if (LHSC->getValue()->isZero()) {
2043       Ops.erase(Ops.begin());
2044       --Idx;
2045     }
2046 
2047     if (Ops.size() == 1) return Ops[0];
2048   }
2049 
2050   // Okay, check to see if the same value occurs in the operand list more than
2051   // once.  If so, merge them together into an multiply expression.  Since we
2052   // sorted the list, these values are required to be adjacent.
2053   Type *Ty = Ops[0]->getType();
2054   bool FoundMatch = false;
2055   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2056     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2057       // Scan ahead to count how many equal operands there are.
2058       unsigned Count = 2;
2059       while (i+Count != e && Ops[i+Count] == Ops[i])
2060         ++Count;
2061       // Merge the values into a multiply.
2062       const SCEV *Scale = getConstant(Ty, Count);
2063       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2064       if (Ops.size() == Count)
2065         return Mul;
2066       Ops[i] = Mul;
2067       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2068       --i; e -= Count - 1;
2069       FoundMatch = true;
2070     }
2071   if (FoundMatch)
2072     return getAddExpr(Ops, Flags);
2073 
2074   // Check for truncates. If all the operands are truncated from the same
2075   // type, see if factoring out the truncate would permit the result to be
2076   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2077   // if the contents of the resulting outer trunc fold to something simple.
2078   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2079     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2080     Type *DstType = Trunc->getType();
2081     Type *SrcType = Trunc->getOperand()->getType();
2082     SmallVector<const SCEV *, 8> LargeOps;
2083     bool Ok = true;
2084     // Check all the operands to see if they can be represented in the
2085     // source type of the truncate.
2086     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2087       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2088         if (T->getOperand()->getType() != SrcType) {
2089           Ok = false;
2090           break;
2091         }
2092         LargeOps.push_back(T->getOperand());
2093       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2094         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2095       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2096         SmallVector<const SCEV *, 8> LargeMulOps;
2097         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2098           if (const SCEVTruncateExpr *T =
2099                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2100             if (T->getOperand()->getType() != SrcType) {
2101               Ok = false;
2102               break;
2103             }
2104             LargeMulOps.push_back(T->getOperand());
2105           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2106             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2107           } else {
2108             Ok = false;
2109             break;
2110           }
2111         }
2112         if (Ok)
2113           LargeOps.push_back(getMulExpr(LargeMulOps));
2114       } else {
2115         Ok = false;
2116         break;
2117       }
2118     }
2119     if (Ok) {
2120       // Evaluate the expression in the larger type.
2121       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2122       // If it folds to something simple, use it. Otherwise, don't.
2123       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2124         return getTruncateExpr(Fold, DstType);
2125     }
2126   }
2127 
2128   // Skip past any other cast SCEVs.
2129   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2130     ++Idx;
2131 
2132   // If there are add operands they would be next.
2133   if (Idx < Ops.size()) {
2134     bool DeletedAdd = false;
2135     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2136       // If we have an add, expand the add operands onto the end of the operands
2137       // list.
2138       Ops.erase(Ops.begin()+Idx);
2139       Ops.append(Add->op_begin(), Add->op_end());
2140       DeletedAdd = true;
2141     }
2142 
2143     // If we deleted at least one add, we added operands to the end of the list,
2144     // and they are not necessarily sorted.  Recurse to resort and resimplify
2145     // any operands we just acquired.
2146     if (DeletedAdd)
2147       return getAddExpr(Ops);
2148   }
2149 
2150   // Skip over the add expression until we get to a multiply.
2151   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2152     ++Idx;
2153 
2154   // Check to see if there are any folding opportunities present with
2155   // operands multiplied by constant values.
2156   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2157     uint64_t BitWidth = getTypeSizeInBits(Ty);
2158     DenseMap<const SCEV *, APInt> M;
2159     SmallVector<const SCEV *, 8> NewOps;
2160     APInt AccumulatedConstant(BitWidth, 0);
2161     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2162                                      Ops.data(), Ops.size(),
2163                                      APInt(BitWidth, 1), *this)) {
2164       struct APIntCompare {
2165         bool operator()(const APInt &LHS, const APInt &RHS) const {
2166           return LHS.ult(RHS);
2167         }
2168       };
2169 
2170       // Some interesting folding opportunity is present, so its worthwhile to
2171       // re-generate the operands list. Group the operands by constant scale,
2172       // to avoid multiplying by the same constant scale multiple times.
2173       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2174       for (const SCEV *NewOp : NewOps)
2175         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2176       // Re-generate the operands list.
2177       Ops.clear();
2178       if (AccumulatedConstant != 0)
2179         Ops.push_back(getConstant(AccumulatedConstant));
2180       for (auto &MulOp : MulOpLists)
2181         if (MulOp.first != 0)
2182           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2183                                    getAddExpr(MulOp.second)));
2184       if (Ops.empty())
2185         return getZero(Ty);
2186       if (Ops.size() == 1)
2187         return Ops[0];
2188       return getAddExpr(Ops);
2189     }
2190   }
2191 
2192   // If we are adding something to a multiply expression, make sure the
2193   // something is not already an operand of the multiply.  If so, merge it into
2194   // the multiply.
2195   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2196     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2197     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2198       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2199       if (isa<SCEVConstant>(MulOpSCEV))
2200         continue;
2201       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2202         if (MulOpSCEV == Ops[AddOp]) {
2203           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2204           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2205           if (Mul->getNumOperands() != 2) {
2206             // If the multiply has more than two operands, we must get the
2207             // Y*Z term.
2208             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2209                                                 Mul->op_begin()+MulOp);
2210             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2211             InnerMul = getMulExpr(MulOps);
2212           }
2213           const SCEV *One = getOne(Ty);
2214           const SCEV *AddOne = getAddExpr(One, InnerMul);
2215           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2216           if (Ops.size() == 2) return OuterMul;
2217           if (AddOp < Idx) {
2218             Ops.erase(Ops.begin()+AddOp);
2219             Ops.erase(Ops.begin()+Idx-1);
2220           } else {
2221             Ops.erase(Ops.begin()+Idx);
2222             Ops.erase(Ops.begin()+AddOp-1);
2223           }
2224           Ops.push_back(OuterMul);
2225           return getAddExpr(Ops);
2226         }
2227 
2228       // Check this multiply against other multiplies being added together.
2229       for (unsigned OtherMulIdx = Idx+1;
2230            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2231            ++OtherMulIdx) {
2232         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2233         // If MulOp occurs in OtherMul, we can fold the two multiplies
2234         // together.
2235         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2236              OMulOp != e; ++OMulOp)
2237           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2238             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2239             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2240             if (Mul->getNumOperands() != 2) {
2241               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2242                                                   Mul->op_begin()+MulOp);
2243               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2244               InnerMul1 = getMulExpr(MulOps);
2245             }
2246             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2247             if (OtherMul->getNumOperands() != 2) {
2248               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2249                                                   OtherMul->op_begin()+OMulOp);
2250               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2251               InnerMul2 = getMulExpr(MulOps);
2252             }
2253             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2254             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2255             if (Ops.size() == 2) return OuterMul;
2256             Ops.erase(Ops.begin()+Idx);
2257             Ops.erase(Ops.begin()+OtherMulIdx-1);
2258             Ops.push_back(OuterMul);
2259             return getAddExpr(Ops);
2260           }
2261       }
2262     }
2263   }
2264 
2265   // If there are any add recurrences in the operands list, see if any other
2266   // added values are loop invariant.  If so, we can fold them into the
2267   // recurrence.
2268   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2269     ++Idx;
2270 
2271   // Scan over all recurrences, trying to fold loop invariants into them.
2272   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2273     // Scan all of the other operands to this add and add them to the vector if
2274     // they are loop invariant w.r.t. the recurrence.
2275     SmallVector<const SCEV *, 8> LIOps;
2276     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2277     const Loop *AddRecLoop = AddRec->getLoop();
2278     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2279       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2280         LIOps.push_back(Ops[i]);
2281         Ops.erase(Ops.begin()+i);
2282         --i; --e;
2283       }
2284 
2285     // If we found some loop invariants, fold them into the recurrence.
2286     if (!LIOps.empty()) {
2287       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2288       LIOps.push_back(AddRec->getStart());
2289 
2290       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2291                                              AddRec->op_end());
2292       // This follows from the fact that the no-wrap flags on the outer add
2293       // expression are applicable on the 0th iteration, when the add recurrence
2294       // will be equal to its start value.
2295       AddRecOps[0] = getAddExpr(LIOps, Flags);
2296 
2297       // Build the new addrec. Propagate the NUW and NSW flags if both the
2298       // outer add and the inner addrec are guaranteed to have no overflow.
2299       // Always propagate NW.
2300       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2301       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2302 
2303       // If all of the other operands were loop invariant, we are done.
2304       if (Ops.size() == 1) return NewRec;
2305 
2306       // Otherwise, add the folded AddRec by the non-invariant parts.
2307       for (unsigned i = 0;; ++i)
2308         if (Ops[i] == AddRec) {
2309           Ops[i] = NewRec;
2310           break;
2311         }
2312       return getAddExpr(Ops);
2313     }
2314 
2315     // Okay, if there weren't any loop invariants to be folded, check to see if
2316     // there are multiple AddRec's with the same loop induction variable being
2317     // added together.  If so, we can fold them.
2318     for (unsigned OtherIdx = Idx+1;
2319          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2320          ++OtherIdx)
2321       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2322         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2323         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2324                                                AddRec->op_end());
2325         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2326              ++OtherIdx)
2327           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2328             if (OtherAddRec->getLoop() == AddRecLoop) {
2329               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2330                    i != e; ++i) {
2331                 if (i >= AddRecOps.size()) {
2332                   AddRecOps.append(OtherAddRec->op_begin()+i,
2333                                    OtherAddRec->op_end());
2334                   break;
2335                 }
2336                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2337                                           OtherAddRec->getOperand(i));
2338               }
2339               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2340             }
2341         // Step size has changed, so we cannot guarantee no self-wraparound.
2342         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2343         return getAddExpr(Ops);
2344       }
2345 
2346     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2347     // next one.
2348   }
2349 
2350   // Okay, it looks like we really DO need an add expr.  Check to see if we
2351   // already have one, otherwise create a new one.
2352   FoldingSetNodeID ID;
2353   ID.AddInteger(scAddExpr);
2354   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2355     ID.AddPointer(Ops[i]);
2356   void *IP = nullptr;
2357   SCEVAddExpr *S =
2358     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2359   if (!S) {
2360     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2361     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2362     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2363                                         O, Ops.size());
2364     UniqueSCEVs.InsertNode(S, IP);
2365   }
2366   S->setNoWrapFlags(Flags);
2367   return S;
2368 }
2369 
2370 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2371   uint64_t k = i*j;
2372   if (j > 1 && k / j != i) Overflow = true;
2373   return k;
2374 }
2375 
2376 /// Compute the result of "n choose k", the binomial coefficient.  If an
2377 /// intermediate computation overflows, Overflow will be set and the return will
2378 /// be garbage. Overflow is not cleared on absence of overflow.
2379 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2380   // We use the multiplicative formula:
2381   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2382   // At each iteration, we take the n-th term of the numeral and divide by the
2383   // (k-n)th term of the denominator.  This division will always produce an
2384   // integral result, and helps reduce the chance of overflow in the
2385   // intermediate computations. However, we can still overflow even when the
2386   // final result would fit.
2387 
2388   if (n == 0 || n == k) return 1;
2389   if (k > n) return 0;
2390 
2391   if (k > n/2)
2392     k = n-k;
2393 
2394   uint64_t r = 1;
2395   for (uint64_t i = 1; i <= k; ++i) {
2396     r = umul_ov(r, n-(i-1), Overflow);
2397     r /= i;
2398   }
2399   return r;
2400 }
2401 
2402 /// Determine if any of the operands in this SCEV are a constant or if
2403 /// any of the add or multiply expressions in this SCEV contain a constant.
2404 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2405   SmallVector<const SCEV *, 4> Ops;
2406   Ops.push_back(StartExpr);
2407   while (!Ops.empty()) {
2408     const SCEV *CurrentExpr = Ops.pop_back_val();
2409     if (isa<SCEVConstant>(*CurrentExpr))
2410       return true;
2411 
2412     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2413       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2414       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2415     }
2416   }
2417   return false;
2418 }
2419 
2420 /// Get a canonical multiply expression, or something simpler if possible.
2421 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2422                                         SCEV::NoWrapFlags Flags) {
2423   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2424          "only nuw or nsw allowed");
2425   assert(!Ops.empty() && "Cannot get empty mul!");
2426   if (Ops.size() == 1) return Ops[0];
2427 #ifndef NDEBUG
2428   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2429   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2430     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2431            "SCEVMulExpr operand types don't match!");
2432 #endif
2433 
2434   // Sort by complexity, this groups all similar expression types together.
2435   GroupByComplexity(Ops, &LI);
2436 
2437   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2438 
2439   // If there are any constants, fold them together.
2440   unsigned Idx = 0;
2441   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2442 
2443     // C1*(C2+V) -> C1*C2 + C1*V
2444     if (Ops.size() == 2)
2445         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2446           // If any of Add's ops are Adds or Muls with a constant,
2447           // apply this transformation as well.
2448           if (Add->getNumOperands() == 2)
2449             if (containsConstantSomewhere(Add))
2450               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2451                                 getMulExpr(LHSC, Add->getOperand(1)));
2452 
2453     ++Idx;
2454     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2455       // We found two constants, fold them together!
2456       ConstantInt *Fold =
2457           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2458       Ops[0] = getConstant(Fold);
2459       Ops.erase(Ops.begin()+1);  // Erase the folded element
2460       if (Ops.size() == 1) return Ops[0];
2461       LHSC = cast<SCEVConstant>(Ops[0]);
2462     }
2463 
2464     // If we are left with a constant one being multiplied, strip it off.
2465     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2466       Ops.erase(Ops.begin());
2467       --Idx;
2468     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2469       // If we have a multiply of zero, it will always be zero.
2470       return Ops[0];
2471     } else if (Ops[0]->isAllOnesValue()) {
2472       // If we have a mul by -1 of an add, try distributing the -1 among the
2473       // add operands.
2474       if (Ops.size() == 2) {
2475         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2476           SmallVector<const SCEV *, 4> NewOps;
2477           bool AnyFolded = false;
2478           for (const SCEV *AddOp : Add->operands()) {
2479             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2480             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2481             NewOps.push_back(Mul);
2482           }
2483           if (AnyFolded)
2484             return getAddExpr(NewOps);
2485         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2486           // Negation preserves a recurrence's no self-wrap property.
2487           SmallVector<const SCEV *, 4> Operands;
2488           for (const SCEV *AddRecOp : AddRec->operands())
2489             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2490 
2491           return getAddRecExpr(Operands, AddRec->getLoop(),
2492                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2493         }
2494       }
2495     }
2496 
2497     if (Ops.size() == 1)
2498       return Ops[0];
2499   }
2500 
2501   // Skip over the add expression until we get to a multiply.
2502   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2503     ++Idx;
2504 
2505   // If there are mul operands inline them all into this expression.
2506   if (Idx < Ops.size()) {
2507     bool DeletedMul = false;
2508     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2509       // If we have an mul, expand the mul operands onto the end of the operands
2510       // list.
2511       Ops.erase(Ops.begin()+Idx);
2512       Ops.append(Mul->op_begin(), Mul->op_end());
2513       DeletedMul = true;
2514     }
2515 
2516     // If we deleted at least one mul, we added operands to the end of the list,
2517     // and they are not necessarily sorted.  Recurse to resort and resimplify
2518     // any operands we just acquired.
2519     if (DeletedMul)
2520       return getMulExpr(Ops);
2521   }
2522 
2523   // If there are any add recurrences in the operands list, see if any other
2524   // added values are loop invariant.  If so, we can fold them into the
2525   // recurrence.
2526   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2527     ++Idx;
2528 
2529   // Scan over all recurrences, trying to fold loop invariants into them.
2530   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2531     // Scan all of the other operands to this mul and add them to the vector if
2532     // they are loop invariant w.r.t. the recurrence.
2533     SmallVector<const SCEV *, 8> LIOps;
2534     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2535     const Loop *AddRecLoop = AddRec->getLoop();
2536     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2537       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2538         LIOps.push_back(Ops[i]);
2539         Ops.erase(Ops.begin()+i);
2540         --i; --e;
2541       }
2542 
2543     // If we found some loop invariants, fold them into the recurrence.
2544     if (!LIOps.empty()) {
2545       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2546       SmallVector<const SCEV *, 4> NewOps;
2547       NewOps.reserve(AddRec->getNumOperands());
2548       const SCEV *Scale = getMulExpr(LIOps);
2549       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2550         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2551 
2552       // Build the new addrec. Propagate the NUW and NSW flags if both the
2553       // outer mul and the inner addrec are guaranteed to have no overflow.
2554       //
2555       // No self-wrap cannot be guaranteed after changing the step size, but
2556       // will be inferred if either NUW or NSW is true.
2557       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2558       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2559 
2560       // If all of the other operands were loop invariant, we are done.
2561       if (Ops.size() == 1) return NewRec;
2562 
2563       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2564       for (unsigned i = 0;; ++i)
2565         if (Ops[i] == AddRec) {
2566           Ops[i] = NewRec;
2567           break;
2568         }
2569       return getMulExpr(Ops);
2570     }
2571 
2572     // Okay, if there weren't any loop invariants to be folded, check to see if
2573     // there are multiple AddRec's with the same loop induction variable being
2574     // multiplied together.  If so, we can fold them.
2575 
2576     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2577     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2578     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2579     //   ]]],+,...up to x=2n}.
2580     // Note that the arguments to choose() are always integers with values
2581     // known at compile time, never SCEV objects.
2582     //
2583     // The implementation avoids pointless extra computations when the two
2584     // addrec's are of different length (mathematically, it's equivalent to
2585     // an infinite stream of zeros on the right).
2586     bool OpsModified = false;
2587     for (unsigned OtherIdx = Idx+1;
2588          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2589          ++OtherIdx) {
2590       const SCEVAddRecExpr *OtherAddRec =
2591         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2592       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2593         continue;
2594 
2595       bool Overflow = false;
2596       Type *Ty = AddRec->getType();
2597       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2598       SmallVector<const SCEV*, 7> AddRecOps;
2599       for (int x = 0, xe = AddRec->getNumOperands() +
2600              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2601         const SCEV *Term = getZero(Ty);
2602         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2603           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2604           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2605                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2606                z < ze && !Overflow; ++z) {
2607             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2608             uint64_t Coeff;
2609             if (LargerThan64Bits)
2610               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2611             else
2612               Coeff = Coeff1*Coeff2;
2613             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2614             const SCEV *Term1 = AddRec->getOperand(y-z);
2615             const SCEV *Term2 = OtherAddRec->getOperand(z);
2616             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2617           }
2618         }
2619         AddRecOps.push_back(Term);
2620       }
2621       if (!Overflow) {
2622         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2623                                               SCEV::FlagAnyWrap);
2624         if (Ops.size() == 2) return NewAddRec;
2625         Ops[Idx] = NewAddRec;
2626         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2627         OpsModified = true;
2628         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2629         if (!AddRec)
2630           break;
2631       }
2632     }
2633     if (OpsModified)
2634       return getMulExpr(Ops);
2635 
2636     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2637     // next one.
2638   }
2639 
2640   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2641   // already have one, otherwise create a new one.
2642   FoldingSetNodeID ID;
2643   ID.AddInteger(scMulExpr);
2644   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2645     ID.AddPointer(Ops[i]);
2646   void *IP = nullptr;
2647   SCEVMulExpr *S =
2648     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2649   if (!S) {
2650     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2651     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2652     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2653                                         O, Ops.size());
2654     UniqueSCEVs.InsertNode(S, IP);
2655   }
2656   S->setNoWrapFlags(Flags);
2657   return S;
2658 }
2659 
2660 /// Get a canonical unsigned division expression, or something simpler if
2661 /// possible.
2662 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2663                                          const SCEV *RHS) {
2664   assert(getEffectiveSCEVType(LHS->getType()) ==
2665          getEffectiveSCEVType(RHS->getType()) &&
2666          "SCEVUDivExpr operand types don't match!");
2667 
2668   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2669     if (RHSC->getValue()->equalsInt(1))
2670       return LHS;                               // X udiv 1 --> x
2671     // If the denominator is zero, the result of the udiv is undefined. Don't
2672     // try to analyze it, because the resolution chosen here may differ from
2673     // the resolution chosen in other parts of the compiler.
2674     if (!RHSC->getValue()->isZero()) {
2675       // Determine if the division can be folded into the operands of
2676       // its operands.
2677       // TODO: Generalize this to non-constants by using known-bits information.
2678       Type *Ty = LHS->getType();
2679       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2680       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2681       // For non-power-of-two values, effectively round the value up to the
2682       // nearest power of two.
2683       if (!RHSC->getAPInt().isPowerOf2())
2684         ++MaxShiftAmt;
2685       IntegerType *ExtTy =
2686         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2687       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2688         if (const SCEVConstant *Step =
2689             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2690           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2691           const APInt &StepInt = Step->getAPInt();
2692           const APInt &DivInt = RHSC->getAPInt();
2693           if (!StepInt.urem(DivInt) &&
2694               getZeroExtendExpr(AR, ExtTy) ==
2695               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2696                             getZeroExtendExpr(Step, ExtTy),
2697                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2698             SmallVector<const SCEV *, 4> Operands;
2699             for (const SCEV *Op : AR->operands())
2700               Operands.push_back(getUDivExpr(Op, RHS));
2701             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2702           }
2703           /// Get a canonical UDivExpr for a recurrence.
2704           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2705           // We can currently only fold X%N if X is constant.
2706           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2707           if (StartC && !DivInt.urem(StepInt) &&
2708               getZeroExtendExpr(AR, ExtTy) ==
2709               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2710                             getZeroExtendExpr(Step, ExtTy),
2711                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2712             const APInt &StartInt = StartC->getAPInt();
2713             const APInt &StartRem = StartInt.urem(StepInt);
2714             if (StartRem != 0)
2715               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2716                                   AR->getLoop(), SCEV::FlagNW);
2717           }
2718         }
2719       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2720       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2721         SmallVector<const SCEV *, 4> Operands;
2722         for (const SCEV *Op : M->operands())
2723           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2724         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2725           // Find an operand that's safely divisible.
2726           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2727             const SCEV *Op = M->getOperand(i);
2728             const SCEV *Div = getUDivExpr(Op, RHSC);
2729             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2730               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2731                                                       M->op_end());
2732               Operands[i] = Div;
2733               return getMulExpr(Operands);
2734             }
2735           }
2736       }
2737       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2738       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2739         SmallVector<const SCEV *, 4> Operands;
2740         for (const SCEV *Op : A->operands())
2741           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2742         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2743           Operands.clear();
2744           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2745             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2746             if (isa<SCEVUDivExpr>(Op) ||
2747                 getMulExpr(Op, RHS) != A->getOperand(i))
2748               break;
2749             Operands.push_back(Op);
2750           }
2751           if (Operands.size() == A->getNumOperands())
2752             return getAddExpr(Operands);
2753         }
2754       }
2755 
2756       // Fold if both operands are constant.
2757       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2758         Constant *LHSCV = LHSC->getValue();
2759         Constant *RHSCV = RHSC->getValue();
2760         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2761                                                                    RHSCV)));
2762       }
2763     }
2764   }
2765 
2766   FoldingSetNodeID ID;
2767   ID.AddInteger(scUDivExpr);
2768   ID.AddPointer(LHS);
2769   ID.AddPointer(RHS);
2770   void *IP = nullptr;
2771   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2772   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2773                                              LHS, RHS);
2774   UniqueSCEVs.InsertNode(S, IP);
2775   return S;
2776 }
2777 
2778 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2779   APInt A = C1->getAPInt().abs();
2780   APInt B = C2->getAPInt().abs();
2781   uint32_t ABW = A.getBitWidth();
2782   uint32_t BBW = B.getBitWidth();
2783 
2784   if (ABW > BBW)
2785     B = B.zext(ABW);
2786   else if (ABW < BBW)
2787     A = A.zext(BBW);
2788 
2789   return APIntOps::GreatestCommonDivisor(A, B);
2790 }
2791 
2792 /// Get a canonical unsigned division expression, or something simpler if
2793 /// possible. There is no representation for an exact udiv in SCEV IR, but we
2794 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
2795 /// it's not exact because the udiv may be clearing bits.
2796 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2797                                               const SCEV *RHS) {
2798   // TODO: we could try to find factors in all sorts of things, but for now we
2799   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2800   // end of this file for inspiration.
2801 
2802   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2803   if (!Mul)
2804     return getUDivExpr(LHS, RHS);
2805 
2806   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2807     // If the mulexpr multiplies by a constant, then that constant must be the
2808     // first element of the mulexpr.
2809     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2810       if (LHSCst == RHSCst) {
2811         SmallVector<const SCEV *, 2> Operands;
2812         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2813         return getMulExpr(Operands);
2814       }
2815 
2816       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2817       // that there's a factor provided by one of the other terms. We need to
2818       // check.
2819       APInt Factor = gcd(LHSCst, RHSCst);
2820       if (!Factor.isIntN(1)) {
2821         LHSCst =
2822             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2823         RHSCst =
2824             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2825         SmallVector<const SCEV *, 2> Operands;
2826         Operands.push_back(LHSCst);
2827         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2828         LHS = getMulExpr(Operands);
2829         RHS = RHSCst;
2830         Mul = dyn_cast<SCEVMulExpr>(LHS);
2831         if (!Mul)
2832           return getUDivExactExpr(LHS, RHS);
2833       }
2834     }
2835   }
2836 
2837   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2838     if (Mul->getOperand(i) == RHS) {
2839       SmallVector<const SCEV *, 2> Operands;
2840       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2841       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2842       return getMulExpr(Operands);
2843     }
2844   }
2845 
2846   return getUDivExpr(LHS, RHS);
2847 }
2848 
2849 /// Get an add recurrence expression for the specified loop.  Simplify the
2850 /// expression as much as possible.
2851 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2852                                            const Loop *L,
2853                                            SCEV::NoWrapFlags Flags) {
2854   SmallVector<const SCEV *, 4> Operands;
2855   Operands.push_back(Start);
2856   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2857     if (StepChrec->getLoop() == L) {
2858       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2859       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2860     }
2861 
2862   Operands.push_back(Step);
2863   return getAddRecExpr(Operands, L, Flags);
2864 }
2865 
2866 /// Get an add recurrence expression for the specified loop.  Simplify the
2867 /// expression as much as possible.
2868 const SCEV *
2869 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2870                                const Loop *L, SCEV::NoWrapFlags Flags) {
2871   if (Operands.size() == 1) return Operands[0];
2872 #ifndef NDEBUG
2873   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2874   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2875     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2876            "SCEVAddRecExpr operand types don't match!");
2877   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2878     assert(isLoopInvariant(Operands[i], L) &&
2879            "SCEVAddRecExpr operand is not loop-invariant!");
2880 #endif
2881 
2882   if (Operands.back()->isZero()) {
2883     Operands.pop_back();
2884     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2885   }
2886 
2887   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2888   // use that information to infer NUW and NSW flags. However, computing a
2889   // BE count requires calling getAddRecExpr, so we may not yet have a
2890   // meaningful BE count at this point (and if we don't, we'd be stuck
2891   // with a SCEVCouldNotCompute as the cached BE count).
2892 
2893   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2894 
2895   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2896   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2897     const Loop *NestedLoop = NestedAR->getLoop();
2898     if (L->contains(NestedLoop)
2899             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2900             : (!NestedLoop->contains(L) &&
2901                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2902       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2903                                                   NestedAR->op_end());
2904       Operands[0] = NestedAR->getStart();
2905       // AddRecs require their operands be loop-invariant with respect to their
2906       // loops. Don't perform this transformation if it would break this
2907       // requirement.
2908       bool AllInvariant = all_of(
2909           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2910 
2911       if (AllInvariant) {
2912         // Create a recurrence for the outer loop with the same step size.
2913         //
2914         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2915         // inner recurrence has the same property.
2916         SCEV::NoWrapFlags OuterFlags =
2917           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2918 
2919         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2920         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2921           return isLoopInvariant(Op, NestedLoop);
2922         });
2923 
2924         if (AllInvariant) {
2925           // Ok, both add recurrences are valid after the transformation.
2926           //
2927           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2928           // the outer recurrence has the same property.
2929           SCEV::NoWrapFlags InnerFlags =
2930             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2931           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2932         }
2933       }
2934       // Reset Operands to its original state.
2935       Operands[0] = NestedAR;
2936     }
2937   }
2938 
2939   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2940   // already have one, otherwise create a new one.
2941   FoldingSetNodeID ID;
2942   ID.AddInteger(scAddRecExpr);
2943   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2944     ID.AddPointer(Operands[i]);
2945   ID.AddPointer(L);
2946   void *IP = nullptr;
2947   SCEVAddRecExpr *S =
2948     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2949   if (!S) {
2950     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2951     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2952     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2953                                            O, Operands.size(), L);
2954     UniqueSCEVs.InsertNode(S, IP);
2955   }
2956   S->setNoWrapFlags(Flags);
2957   return S;
2958 }
2959 
2960 const SCEV *
2961 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2962                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2963                             bool InBounds) {
2964   // getSCEV(Base)->getType() has the same address space as Base->getType()
2965   // because SCEV::getType() preserves the address space.
2966   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2967   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2968   // instruction to its SCEV, because the Instruction may be guarded by control
2969   // flow and the no-overflow bits may not be valid for the expression in any
2970   // context. This can be fixed similarly to how these flags are handled for
2971   // adds.
2972   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2973 
2974   const SCEV *TotalOffset = getZero(IntPtrTy);
2975   // The address space is unimportant. The first thing we do on CurTy is getting
2976   // its element type.
2977   Type *CurTy = PointerType::getUnqual(PointeeType);
2978   for (const SCEV *IndexExpr : IndexExprs) {
2979     // Compute the (potentially symbolic) offset in bytes for this index.
2980     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2981       // For a struct, add the member offset.
2982       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2983       unsigned FieldNo = Index->getZExtValue();
2984       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2985 
2986       // Add the field offset to the running total offset.
2987       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2988 
2989       // Update CurTy to the type of the field at Index.
2990       CurTy = STy->getTypeAtIndex(Index);
2991     } else {
2992       // Update CurTy to its element type.
2993       CurTy = cast<SequentialType>(CurTy)->getElementType();
2994       // For an array, add the element offset, explicitly scaled.
2995       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2996       // Getelementptr indices are signed.
2997       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2998 
2999       // Multiply the index by the element size to compute the element offset.
3000       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3001 
3002       // Add the element offset to the running total offset.
3003       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3004     }
3005   }
3006 
3007   // Add the total offset from all the GEP indices to the base.
3008   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3009 }
3010 
3011 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3012                                          const SCEV *RHS) {
3013   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3014   return getSMaxExpr(Ops);
3015 }
3016 
3017 const SCEV *
3018 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3019   assert(!Ops.empty() && "Cannot get empty smax!");
3020   if (Ops.size() == 1) return Ops[0];
3021 #ifndef NDEBUG
3022   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3023   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3024     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3025            "SCEVSMaxExpr operand types don't match!");
3026 #endif
3027 
3028   // Sort by complexity, this groups all similar expression types together.
3029   GroupByComplexity(Ops, &LI);
3030 
3031   // If there are any constants, fold them together.
3032   unsigned Idx = 0;
3033   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3034     ++Idx;
3035     assert(Idx < Ops.size());
3036     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3037       // We found two constants, fold them together!
3038       ConstantInt *Fold = ConstantInt::get(
3039           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3040       Ops[0] = getConstant(Fold);
3041       Ops.erase(Ops.begin()+1);  // Erase the folded element
3042       if (Ops.size() == 1) return Ops[0];
3043       LHSC = cast<SCEVConstant>(Ops[0]);
3044     }
3045 
3046     // If we are left with a constant minimum-int, strip it off.
3047     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3048       Ops.erase(Ops.begin());
3049       --Idx;
3050     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3051       // If we have an smax with a constant maximum-int, it will always be
3052       // maximum-int.
3053       return Ops[0];
3054     }
3055 
3056     if (Ops.size() == 1) return Ops[0];
3057   }
3058 
3059   // Find the first SMax
3060   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3061     ++Idx;
3062 
3063   // Check to see if one of the operands is an SMax. If so, expand its operands
3064   // onto our operand list, and recurse to simplify.
3065   if (Idx < Ops.size()) {
3066     bool DeletedSMax = false;
3067     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3068       Ops.erase(Ops.begin()+Idx);
3069       Ops.append(SMax->op_begin(), SMax->op_end());
3070       DeletedSMax = true;
3071     }
3072 
3073     if (DeletedSMax)
3074       return getSMaxExpr(Ops);
3075   }
3076 
3077   // Okay, check to see if the same value occurs in the operand list twice.  If
3078   // so, delete one.  Since we sorted the list, these values are required to
3079   // be adjacent.
3080   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3081     //  X smax Y smax Y  -->  X smax Y
3082     //  X smax Y         -->  X, if X is always greater than Y
3083     if (Ops[i] == Ops[i+1] ||
3084         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3085       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3086       --i; --e;
3087     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3088       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3089       --i; --e;
3090     }
3091 
3092   if (Ops.size() == 1) return Ops[0];
3093 
3094   assert(!Ops.empty() && "Reduced smax down to nothing!");
3095 
3096   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3097   // already have one, otherwise create a new one.
3098   FoldingSetNodeID ID;
3099   ID.AddInteger(scSMaxExpr);
3100   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3101     ID.AddPointer(Ops[i]);
3102   void *IP = nullptr;
3103   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3104   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3105   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3106   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3107                                              O, Ops.size());
3108   UniqueSCEVs.InsertNode(S, IP);
3109   return S;
3110 }
3111 
3112 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3113                                          const SCEV *RHS) {
3114   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3115   return getUMaxExpr(Ops);
3116 }
3117 
3118 const SCEV *
3119 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3120   assert(!Ops.empty() && "Cannot get empty umax!");
3121   if (Ops.size() == 1) return Ops[0];
3122 #ifndef NDEBUG
3123   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3124   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3125     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3126            "SCEVUMaxExpr operand types don't match!");
3127 #endif
3128 
3129   // Sort by complexity, this groups all similar expression types together.
3130   GroupByComplexity(Ops, &LI);
3131 
3132   // If there are any constants, fold them together.
3133   unsigned Idx = 0;
3134   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3135     ++Idx;
3136     assert(Idx < Ops.size());
3137     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3138       // We found two constants, fold them together!
3139       ConstantInt *Fold = ConstantInt::get(
3140           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3141       Ops[0] = getConstant(Fold);
3142       Ops.erase(Ops.begin()+1);  // Erase the folded element
3143       if (Ops.size() == 1) return Ops[0];
3144       LHSC = cast<SCEVConstant>(Ops[0]);
3145     }
3146 
3147     // If we are left with a constant minimum-int, strip it off.
3148     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3149       Ops.erase(Ops.begin());
3150       --Idx;
3151     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3152       // If we have an umax with a constant maximum-int, it will always be
3153       // maximum-int.
3154       return Ops[0];
3155     }
3156 
3157     if (Ops.size() == 1) return Ops[0];
3158   }
3159 
3160   // Find the first UMax
3161   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3162     ++Idx;
3163 
3164   // Check to see if one of the operands is a UMax. If so, expand its operands
3165   // onto our operand list, and recurse to simplify.
3166   if (Idx < Ops.size()) {
3167     bool DeletedUMax = false;
3168     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3169       Ops.erase(Ops.begin()+Idx);
3170       Ops.append(UMax->op_begin(), UMax->op_end());
3171       DeletedUMax = true;
3172     }
3173 
3174     if (DeletedUMax)
3175       return getUMaxExpr(Ops);
3176   }
3177 
3178   // Okay, check to see if the same value occurs in the operand list twice.  If
3179   // so, delete one.  Since we sorted the list, these values are required to
3180   // be adjacent.
3181   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3182     //  X umax Y umax Y  -->  X umax Y
3183     //  X umax Y         -->  X, if X is always greater than Y
3184     if (Ops[i] == Ops[i+1] ||
3185         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3186       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3187       --i; --e;
3188     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3189       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3190       --i; --e;
3191     }
3192 
3193   if (Ops.size() == 1) return Ops[0];
3194 
3195   assert(!Ops.empty() && "Reduced umax down to nothing!");
3196 
3197   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3198   // already have one, otherwise create a new one.
3199   FoldingSetNodeID ID;
3200   ID.AddInteger(scUMaxExpr);
3201   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3202     ID.AddPointer(Ops[i]);
3203   void *IP = nullptr;
3204   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3205   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3206   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3207   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3208                                              O, Ops.size());
3209   UniqueSCEVs.InsertNode(S, IP);
3210   return S;
3211 }
3212 
3213 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3214                                          const SCEV *RHS) {
3215   // ~smax(~x, ~y) == smin(x, y).
3216   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3217 }
3218 
3219 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3220                                          const SCEV *RHS) {
3221   // ~umax(~x, ~y) == umin(x, y)
3222   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3223 }
3224 
3225 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3226   // We can bypass creating a target-independent
3227   // constant expression and then folding it back into a ConstantInt.
3228   // This is just a compile-time optimization.
3229   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3230 }
3231 
3232 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3233                                              StructType *STy,
3234                                              unsigned FieldNo) {
3235   // We can bypass creating a target-independent
3236   // constant expression and then folding it back into a ConstantInt.
3237   // This is just a compile-time optimization.
3238   return getConstant(
3239       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3240 }
3241 
3242 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3243   // Don't attempt to do anything other than create a SCEVUnknown object
3244   // here.  createSCEV only calls getUnknown after checking for all other
3245   // interesting possibilities, and any other code that calls getUnknown
3246   // is doing so in order to hide a value from SCEV canonicalization.
3247 
3248   FoldingSetNodeID ID;
3249   ID.AddInteger(scUnknown);
3250   ID.AddPointer(V);
3251   void *IP = nullptr;
3252   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3253     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3254            "Stale SCEVUnknown in uniquing map!");
3255     return S;
3256   }
3257   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3258                                             FirstUnknown);
3259   FirstUnknown = cast<SCEVUnknown>(S);
3260   UniqueSCEVs.InsertNode(S, IP);
3261   return S;
3262 }
3263 
3264 //===----------------------------------------------------------------------===//
3265 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3266 //
3267 
3268 /// Test if values of the given type are analyzable within the SCEV
3269 /// framework. This primarily includes integer types, and it can optionally
3270 /// include pointer types if the ScalarEvolution class has access to
3271 /// target-specific information.
3272 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3273   // Integers and pointers are always SCEVable.
3274   return Ty->isIntegerTy() || Ty->isPointerTy();
3275 }
3276 
3277 /// Return the size in bits of the specified type, for which isSCEVable must
3278 /// return true.
3279 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3280   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3281   return getDataLayout().getTypeSizeInBits(Ty);
3282 }
3283 
3284 /// Return a type with the same bitwidth as the given type and which represents
3285 /// how SCEV will treat the given type, for which isSCEVable must return
3286 /// true. For pointer types, this is the pointer-sized integer type.
3287 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3288   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3289 
3290   if (Ty->isIntegerTy())
3291     return Ty;
3292 
3293   // The only other support type is pointer.
3294   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3295   return getDataLayout().getIntPtrType(Ty);
3296 }
3297 
3298 const SCEV *ScalarEvolution::getCouldNotCompute() {
3299   return CouldNotCompute.get();
3300 }
3301 
3302 
3303 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3304   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3305   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3306   // is set iff if find such SCEVUnknown.
3307   //
3308   struct FindInvalidSCEVUnknown {
3309     bool FindOne;
3310     FindInvalidSCEVUnknown() { FindOne = false; }
3311     bool follow(const SCEV *S) {
3312       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3313       case scConstant:
3314         return false;
3315       case scUnknown:
3316         if (!cast<SCEVUnknown>(S)->getValue())
3317           FindOne = true;
3318         return false;
3319       default:
3320         return true;
3321       }
3322     }
3323     bool isDone() const { return FindOne; }
3324   };
3325 
3326   FindInvalidSCEVUnknown F;
3327   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3328   ST.visitAll(S);
3329 
3330   return !F.FindOne;
3331 }
3332 
3333 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3334   // Helper class working with SCEVTraversal to figure out if a SCEV contains a
3335   // sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set iff
3336   // if such sub scAddRecExpr type SCEV is found.
3337   struct FindAddRecurrence {
3338     bool FoundOne;
3339     FindAddRecurrence() : FoundOne(false) {}
3340 
3341     bool follow(const SCEV *S) {
3342       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3343       case scAddRecExpr:
3344         FoundOne = true;
3345       case scConstant:
3346       case scUnknown:
3347       case scCouldNotCompute:
3348         return false;
3349       default:
3350         return true;
3351       }
3352     }
3353     bool isDone() const { return FoundOne; }
3354   };
3355 
3356   HasRecMapType::iterator I = HasRecMap.find(S);
3357   if (I != HasRecMap.end())
3358     return I->second;
3359 
3360   FindAddRecurrence F;
3361   SCEVTraversal<FindAddRecurrence> ST(F);
3362   ST.visitAll(S);
3363   HasRecMap.insert({S, F.FoundOne});
3364   return F.FoundOne;
3365 }
3366 
3367 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3368 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3369 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3370 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3371   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3372   if (!Add)
3373     return {S, nullptr};
3374 
3375   if (Add->getNumOperands() != 2)
3376     return {S, nullptr};
3377 
3378   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3379   if (!ConstOp)
3380     return {S, nullptr};
3381 
3382   return {Add->getOperand(1), ConstOp->getValue()};
3383 }
3384 
3385 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3386 /// by the value and offset from any ValueOffsetPair in the set.
3387 SetVector<ScalarEvolution::ValueOffsetPair> *
3388 ScalarEvolution::getSCEVValues(const SCEV *S) {
3389   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3390   if (SI == ExprValueMap.end())
3391     return nullptr;
3392 #ifndef NDEBUG
3393   if (VerifySCEVMap) {
3394     // Check there is no dangling Value in the set returned.
3395     for (const auto &VE : SI->second)
3396       assert(ValueExprMap.count(VE.first));
3397   }
3398 #endif
3399   return &SI->second;
3400 }
3401 
3402 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3403 /// cannot be used separately. eraseValueFromMap should be used to remove
3404 /// V from ValueExprMap and ExprValueMap at the same time.
3405 void ScalarEvolution::eraseValueFromMap(Value *V) {
3406   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3407   if (I != ValueExprMap.end()) {
3408     const SCEV *S = I->second;
3409     // Remove {V, 0} from the set of ExprValueMap[S]
3410     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3411       SV->remove({V, nullptr});
3412 
3413     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3414     const SCEV *Stripped;
3415     ConstantInt *Offset;
3416     std::tie(Stripped, Offset) = splitAddExpr(S);
3417     if (Offset != nullptr) {
3418       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3419         SV->remove({V, Offset});
3420     }
3421     ValueExprMap.erase(V);
3422   }
3423 }
3424 
3425 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3426 /// create a new one.
3427 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3428   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3429 
3430   const SCEV *S = getExistingSCEV(V);
3431   if (S == nullptr) {
3432     S = createSCEV(V);
3433     // During PHI resolution, it is possible to create two SCEVs for the same
3434     // V, so it is needed to double check whether V->S is inserted into
3435     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3436     std::pair<ValueExprMapType::iterator, bool> Pair =
3437         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3438     if (Pair.second) {
3439       ExprValueMap[S].insert({V, nullptr});
3440 
3441       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3442       // ExprValueMap.
3443       const SCEV *Stripped = S;
3444       ConstantInt *Offset = nullptr;
3445       std::tie(Stripped, Offset) = splitAddExpr(S);
3446       // If stripped is SCEVUnknown, don't bother to save
3447       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3448       // increase the complexity of the expansion code.
3449       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3450       // because it may generate add/sub instead of GEP in SCEV expansion.
3451       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3452           !isa<GetElementPtrInst>(V))
3453         ExprValueMap[Stripped].insert({V, Offset});
3454     }
3455   }
3456   return S;
3457 }
3458 
3459 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3460   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3461 
3462   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3463   if (I != ValueExprMap.end()) {
3464     const SCEV *S = I->second;
3465     if (checkValidity(S))
3466       return S;
3467     eraseValueFromMap(V);
3468     forgetMemoizedResults(S);
3469   }
3470   return nullptr;
3471 }
3472 
3473 /// Return a SCEV corresponding to -V = -1*V
3474 ///
3475 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3476                                              SCEV::NoWrapFlags Flags) {
3477   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3478     return getConstant(
3479                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3480 
3481   Type *Ty = V->getType();
3482   Ty = getEffectiveSCEVType(Ty);
3483   return getMulExpr(
3484       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3485 }
3486 
3487 /// Return a SCEV corresponding to ~V = -1-V
3488 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3489   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3490     return getConstant(
3491                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3492 
3493   Type *Ty = V->getType();
3494   Ty = getEffectiveSCEVType(Ty);
3495   const SCEV *AllOnes =
3496                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3497   return getMinusSCEV(AllOnes, V);
3498 }
3499 
3500 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3501                                           SCEV::NoWrapFlags Flags) {
3502   // Fast path: X - X --> 0.
3503   if (LHS == RHS)
3504     return getZero(LHS->getType());
3505 
3506   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3507   // makes it so that we cannot make much use of NUW.
3508   auto AddFlags = SCEV::FlagAnyWrap;
3509   const bool RHSIsNotMinSigned =
3510       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3511   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3512     // Let M be the minimum representable signed value. Then (-1)*RHS
3513     // signed-wraps if and only if RHS is M. That can happen even for
3514     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3515     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3516     // (-1)*RHS, we need to prove that RHS != M.
3517     //
3518     // If LHS is non-negative and we know that LHS - RHS does not
3519     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3520     // either by proving that RHS > M or that LHS >= 0.
3521     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3522       AddFlags = SCEV::FlagNSW;
3523     }
3524   }
3525 
3526   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3527   // RHS is NSW and LHS >= 0.
3528   //
3529   // The difficulty here is that the NSW flag may have been proven
3530   // relative to a loop that is to be found in a recurrence in LHS and
3531   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3532   // larger scope than intended.
3533   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3534 
3535   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3536 }
3537 
3538 const SCEV *
3539 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3540   Type *SrcTy = V->getType();
3541   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3542          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3543          "Cannot truncate or zero extend with non-integer arguments!");
3544   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3545     return V;  // No conversion
3546   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3547     return getTruncateExpr(V, Ty);
3548   return getZeroExtendExpr(V, Ty);
3549 }
3550 
3551 const SCEV *
3552 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3553                                          Type *Ty) {
3554   Type *SrcTy = V->getType();
3555   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3556          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3557          "Cannot truncate or zero extend with non-integer arguments!");
3558   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3559     return V;  // No conversion
3560   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3561     return getTruncateExpr(V, Ty);
3562   return getSignExtendExpr(V, Ty);
3563 }
3564 
3565 const SCEV *
3566 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3567   Type *SrcTy = V->getType();
3568   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3569          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3570          "Cannot noop or zero extend with non-integer arguments!");
3571   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3572          "getNoopOrZeroExtend cannot truncate!");
3573   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3574     return V;  // No conversion
3575   return getZeroExtendExpr(V, Ty);
3576 }
3577 
3578 const SCEV *
3579 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3580   Type *SrcTy = V->getType();
3581   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3582          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3583          "Cannot noop or sign extend with non-integer arguments!");
3584   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3585          "getNoopOrSignExtend cannot truncate!");
3586   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3587     return V;  // No conversion
3588   return getSignExtendExpr(V, Ty);
3589 }
3590 
3591 const SCEV *
3592 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3593   Type *SrcTy = V->getType();
3594   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3595          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3596          "Cannot noop or any extend with non-integer arguments!");
3597   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3598          "getNoopOrAnyExtend cannot truncate!");
3599   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3600     return V;  // No conversion
3601   return getAnyExtendExpr(V, Ty);
3602 }
3603 
3604 const SCEV *
3605 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3606   Type *SrcTy = V->getType();
3607   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3608          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3609          "Cannot truncate or noop with non-integer arguments!");
3610   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3611          "getTruncateOrNoop cannot extend!");
3612   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3613     return V;  // No conversion
3614   return getTruncateExpr(V, Ty);
3615 }
3616 
3617 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3618                                                         const SCEV *RHS) {
3619   const SCEV *PromotedLHS = LHS;
3620   const SCEV *PromotedRHS = RHS;
3621 
3622   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3623     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3624   else
3625     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3626 
3627   return getUMaxExpr(PromotedLHS, PromotedRHS);
3628 }
3629 
3630 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3631                                                         const SCEV *RHS) {
3632   const SCEV *PromotedLHS = LHS;
3633   const SCEV *PromotedRHS = RHS;
3634 
3635   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3636     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3637   else
3638     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3639 
3640   return getUMinExpr(PromotedLHS, PromotedRHS);
3641 }
3642 
3643 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3644   // A pointer operand may evaluate to a nonpointer expression, such as null.
3645   if (!V->getType()->isPointerTy())
3646     return V;
3647 
3648   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3649     return getPointerBase(Cast->getOperand());
3650   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3651     const SCEV *PtrOp = nullptr;
3652     for (const SCEV *NAryOp : NAry->operands()) {
3653       if (NAryOp->getType()->isPointerTy()) {
3654         // Cannot find the base of an expression with multiple pointer operands.
3655         if (PtrOp)
3656           return V;
3657         PtrOp = NAryOp;
3658       }
3659     }
3660     if (!PtrOp)
3661       return V;
3662     return getPointerBase(PtrOp);
3663   }
3664   return V;
3665 }
3666 
3667 /// Push users of the given Instruction onto the given Worklist.
3668 static void
3669 PushDefUseChildren(Instruction *I,
3670                    SmallVectorImpl<Instruction *> &Worklist) {
3671   // Push the def-use children onto the Worklist stack.
3672   for (User *U : I->users())
3673     Worklist.push_back(cast<Instruction>(U));
3674 }
3675 
3676 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3677   SmallVector<Instruction *, 16> Worklist;
3678   PushDefUseChildren(PN, Worklist);
3679 
3680   SmallPtrSet<Instruction *, 8> Visited;
3681   Visited.insert(PN);
3682   while (!Worklist.empty()) {
3683     Instruction *I = Worklist.pop_back_val();
3684     if (!Visited.insert(I).second)
3685       continue;
3686 
3687     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3688     if (It != ValueExprMap.end()) {
3689       const SCEV *Old = It->second;
3690 
3691       // Short-circuit the def-use traversal if the symbolic name
3692       // ceases to appear in expressions.
3693       if (Old != SymName && !hasOperand(Old, SymName))
3694         continue;
3695 
3696       // SCEVUnknown for a PHI either means that it has an unrecognized
3697       // structure, it's a PHI that's in the progress of being computed
3698       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3699       // additional loop trip count information isn't going to change anything.
3700       // In the second case, createNodeForPHI will perform the necessary
3701       // updates on its own when it gets to that point. In the third, we do
3702       // want to forget the SCEVUnknown.
3703       if (!isa<PHINode>(I) ||
3704           !isa<SCEVUnknown>(Old) ||
3705           (I != PN && Old == SymName)) {
3706         eraseValueFromMap(It->first);
3707         forgetMemoizedResults(Old);
3708       }
3709     }
3710 
3711     PushDefUseChildren(I, Worklist);
3712   }
3713 }
3714 
3715 namespace {
3716 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3717 public:
3718   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3719                              ScalarEvolution &SE) {
3720     SCEVInitRewriter Rewriter(L, SE);
3721     const SCEV *Result = Rewriter.visit(S);
3722     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3723   }
3724 
3725   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3726       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3727 
3728   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3729     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3730       Valid = false;
3731     return Expr;
3732   }
3733 
3734   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3735     // Only allow AddRecExprs for this loop.
3736     if (Expr->getLoop() == L)
3737       return Expr->getStart();
3738     Valid = false;
3739     return Expr;
3740   }
3741 
3742   bool isValid() { return Valid; }
3743 
3744 private:
3745   const Loop *L;
3746   bool Valid;
3747 };
3748 
3749 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3750 public:
3751   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3752                              ScalarEvolution &SE) {
3753     SCEVShiftRewriter Rewriter(L, SE);
3754     const SCEV *Result = Rewriter.visit(S);
3755     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3756   }
3757 
3758   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3759       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3760 
3761   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3762     // Only allow AddRecExprs for this loop.
3763     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3764       Valid = false;
3765     return Expr;
3766   }
3767 
3768   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3769     if (Expr->getLoop() == L && Expr->isAffine())
3770       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3771     Valid = false;
3772     return Expr;
3773   }
3774   bool isValid() { return Valid; }
3775 
3776 private:
3777   const Loop *L;
3778   bool Valid;
3779 };
3780 } // end anonymous namespace
3781 
3782 SCEV::NoWrapFlags
3783 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3784   if (!AR->isAffine())
3785     return SCEV::FlagAnyWrap;
3786 
3787   typedef OverflowingBinaryOperator OBO;
3788   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3789 
3790   if (!AR->hasNoSignedWrap()) {
3791     ConstantRange AddRecRange = getSignedRange(AR);
3792     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3793 
3794     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3795         Instruction::Add, IncRange, OBO::NoSignedWrap);
3796     if (NSWRegion.contains(AddRecRange))
3797       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3798   }
3799 
3800   if (!AR->hasNoUnsignedWrap()) {
3801     ConstantRange AddRecRange = getUnsignedRange(AR);
3802     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3803 
3804     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3805         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3806     if (NUWRegion.contains(AddRecRange))
3807       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3808   }
3809 
3810   return Result;
3811 }
3812 
3813 namespace {
3814 /// Represents an abstract binary operation.  This may exist as a
3815 /// normal instruction or constant expression, or may have been
3816 /// derived from an expression tree.
3817 struct BinaryOp {
3818   unsigned Opcode;
3819   Value *LHS;
3820   Value *RHS;
3821   bool IsNSW;
3822   bool IsNUW;
3823 
3824   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3825   /// constant expression.
3826   Operator *Op;
3827 
3828   explicit BinaryOp(Operator *Op)
3829       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3830         IsNSW(false), IsNUW(false), Op(Op) {
3831     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3832       IsNSW = OBO->hasNoSignedWrap();
3833       IsNUW = OBO->hasNoUnsignedWrap();
3834     }
3835   }
3836 
3837   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3838                     bool IsNUW = false)
3839       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3840         Op(nullptr) {}
3841 };
3842 }
3843 
3844 
3845 /// Try to map \p V into a BinaryOp, and return \c None on failure.
3846 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
3847   auto *Op = dyn_cast<Operator>(V);
3848   if (!Op)
3849     return None;
3850 
3851   // Implementation detail: all the cleverness here should happen without
3852   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3853   // SCEV expressions when possible, and we should not break that.
3854 
3855   switch (Op->getOpcode()) {
3856   case Instruction::Add:
3857   case Instruction::Sub:
3858   case Instruction::Mul:
3859   case Instruction::UDiv:
3860   case Instruction::And:
3861   case Instruction::Or:
3862   case Instruction::AShr:
3863   case Instruction::Shl:
3864     return BinaryOp(Op);
3865 
3866   case Instruction::Xor:
3867     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3868       // If the RHS of the xor is a signbit, then this is just an add.
3869       // Instcombine turns add of signbit into xor as a strength reduction step.
3870       if (RHSC->getValue().isSignBit())
3871         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3872     return BinaryOp(Op);
3873 
3874   case Instruction::LShr:
3875     // Turn logical shift right of a constant into a unsigned divide.
3876     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3877       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3878 
3879       // If the shift count is not less than the bitwidth, the result of
3880       // the shift is undefined. Don't try to analyze it, because the
3881       // resolution chosen here may differ from the resolution chosen in
3882       // other parts of the compiler.
3883       if (SA->getValue().ult(BitWidth)) {
3884         Constant *X =
3885             ConstantInt::get(SA->getContext(),
3886                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3887         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3888       }
3889     }
3890     return BinaryOp(Op);
3891 
3892   case Instruction::ExtractValue: {
3893     auto *EVI = cast<ExtractValueInst>(Op);
3894     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3895       break;
3896 
3897     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3898     if (!CI)
3899       break;
3900 
3901     if (auto *F = CI->getCalledFunction())
3902       switch (F->getIntrinsicID()) {
3903       case Intrinsic::sadd_with_overflow:
3904       case Intrinsic::uadd_with_overflow: {
3905         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3906           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3907                           CI->getArgOperand(1));
3908 
3909         // Now that we know that all uses of the arithmetic-result component of
3910         // CI are guarded by the overflow check, we can go ahead and pretend
3911         // that the arithmetic is non-overflowing.
3912         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3913           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3914                           CI->getArgOperand(1), /* IsNSW = */ true,
3915                           /* IsNUW = */ false);
3916         else
3917           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3918                           CI->getArgOperand(1), /* IsNSW = */ false,
3919                           /* IsNUW*/ true);
3920       }
3921 
3922       case Intrinsic::ssub_with_overflow:
3923       case Intrinsic::usub_with_overflow:
3924         return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3925                         CI->getArgOperand(1));
3926 
3927       case Intrinsic::smul_with_overflow:
3928       case Intrinsic::umul_with_overflow:
3929         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3930                         CI->getArgOperand(1));
3931       default:
3932         break;
3933       }
3934   }
3935 
3936   default:
3937     break;
3938   }
3939 
3940   return None;
3941 }
3942 
3943 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3944   const Loop *L = LI.getLoopFor(PN->getParent());
3945   if (!L || L->getHeader() != PN->getParent())
3946     return nullptr;
3947 
3948   // The loop may have multiple entrances or multiple exits; we can analyze
3949   // this phi as an addrec if it has a unique entry value and a unique
3950   // backedge value.
3951   Value *BEValueV = nullptr, *StartValueV = nullptr;
3952   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3953     Value *V = PN->getIncomingValue(i);
3954     if (L->contains(PN->getIncomingBlock(i))) {
3955       if (!BEValueV) {
3956         BEValueV = V;
3957       } else if (BEValueV != V) {
3958         BEValueV = nullptr;
3959         break;
3960       }
3961     } else if (!StartValueV) {
3962       StartValueV = V;
3963     } else if (StartValueV != V) {
3964       StartValueV = nullptr;
3965       break;
3966     }
3967   }
3968   if (BEValueV && StartValueV) {
3969     // While we are analyzing this PHI node, handle its value symbolically.
3970     const SCEV *SymbolicName = getUnknown(PN);
3971     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3972            "PHI node already processed?");
3973     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3974 
3975     // Using this symbolic name for the PHI, analyze the value coming around
3976     // the back-edge.
3977     const SCEV *BEValue = getSCEV(BEValueV);
3978 
3979     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3980     // has a special value for the first iteration of the loop.
3981 
3982     // If the value coming around the backedge is an add with the symbolic
3983     // value we just inserted, then we found a simple induction variable!
3984     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3985       // If there is a single occurrence of the symbolic value, replace it
3986       // with a recurrence.
3987       unsigned FoundIndex = Add->getNumOperands();
3988       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3989         if (Add->getOperand(i) == SymbolicName)
3990           if (FoundIndex == e) {
3991             FoundIndex = i;
3992             break;
3993           }
3994 
3995       if (FoundIndex != Add->getNumOperands()) {
3996         // Create an add with everything but the specified operand.
3997         SmallVector<const SCEV *, 8> Ops;
3998         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3999           if (i != FoundIndex)
4000             Ops.push_back(Add->getOperand(i));
4001         const SCEV *Accum = getAddExpr(Ops);
4002 
4003         // This is not a valid addrec if the step amount is varying each
4004         // loop iteration, but is not itself an addrec in this loop.
4005         if (isLoopInvariant(Accum, L) ||
4006             (isa<SCEVAddRecExpr>(Accum) &&
4007              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4008           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4009 
4010           if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4011             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4012               if (BO->IsNUW)
4013                 Flags = setFlags(Flags, SCEV::FlagNUW);
4014               if (BO->IsNSW)
4015                 Flags = setFlags(Flags, SCEV::FlagNSW);
4016             }
4017           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4018             // If the increment is an inbounds GEP, then we know the address
4019             // space cannot be wrapped around. We cannot make any guarantee
4020             // about signed or unsigned overflow because pointers are
4021             // unsigned but we may have a negative index from the base
4022             // pointer. We can guarantee that no unsigned wrap occurs if the
4023             // indices form a positive value.
4024             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4025               Flags = setFlags(Flags, SCEV::FlagNW);
4026 
4027               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4028               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4029                 Flags = setFlags(Flags, SCEV::FlagNUW);
4030             }
4031 
4032             // We cannot transfer nuw and nsw flags from subtraction
4033             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4034             // for instance.
4035           }
4036 
4037           const SCEV *StartVal = getSCEV(StartValueV);
4038           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4039 
4040           // Okay, for the entire analysis of this edge we assumed the PHI
4041           // to be symbolic.  We now need to go back and purge all of the
4042           // entries for the scalars that use the symbolic expression.
4043           forgetSymbolicName(PN, SymbolicName);
4044           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4045 
4046           // We can add Flags to the post-inc expression only if we
4047           // know that it us *undefined behavior* for BEValueV to
4048           // overflow.
4049           if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4050             if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4051               (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4052 
4053           return PHISCEV;
4054         }
4055       }
4056     } else {
4057       // Otherwise, this could be a loop like this:
4058       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4059       // In this case, j = {1,+,1}  and BEValue is j.
4060       // Because the other in-value of i (0) fits the evolution of BEValue
4061       // i really is an addrec evolution.
4062       //
4063       // We can generalize this saying that i is the shifted value of BEValue
4064       // by one iteration:
4065       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4066       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4067       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4068       if (Shifted != getCouldNotCompute() &&
4069           Start != getCouldNotCompute()) {
4070         const SCEV *StartVal = getSCEV(StartValueV);
4071         if (Start == StartVal) {
4072           // Okay, for the entire analysis of this edge we assumed the PHI
4073           // to be symbolic.  We now need to go back and purge all of the
4074           // entries for the scalars that use the symbolic expression.
4075           forgetSymbolicName(PN, SymbolicName);
4076           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4077           return Shifted;
4078         }
4079       }
4080     }
4081 
4082     // Remove the temporary PHI node SCEV that has been inserted while intending
4083     // to create an AddRecExpr for this PHI node. We can not keep this temporary
4084     // as it will prevent later (possibly simpler) SCEV expressions to be added
4085     // to the ValueExprMap.
4086     eraseValueFromMap(PN);
4087   }
4088 
4089   return nullptr;
4090 }
4091 
4092 // Checks if the SCEV S is available at BB.  S is considered available at BB
4093 // if S can be materialized at BB without introducing a fault.
4094 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4095                                BasicBlock *BB) {
4096   struct CheckAvailable {
4097     bool TraversalDone = false;
4098     bool Available = true;
4099 
4100     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4101     BasicBlock *BB = nullptr;
4102     DominatorTree &DT;
4103 
4104     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4105       : L(L), BB(BB), DT(DT) {}
4106 
4107     bool setUnavailable() {
4108       TraversalDone = true;
4109       Available = false;
4110       return false;
4111     }
4112 
4113     bool follow(const SCEV *S) {
4114       switch (S->getSCEVType()) {
4115       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4116       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4117         // These expressions are available if their operand(s) is/are.
4118         return true;
4119 
4120       case scAddRecExpr: {
4121         // We allow add recurrences that are on the loop BB is in, or some
4122         // outer loop.  This guarantees availability because the value of the
4123         // add recurrence at BB is simply the "current" value of the induction
4124         // variable.  We can relax this in the future; for instance an add
4125         // recurrence on a sibling dominating loop is also available at BB.
4126         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4127         if (L && (ARLoop == L || ARLoop->contains(L)))
4128           return true;
4129 
4130         return setUnavailable();
4131       }
4132 
4133       case scUnknown: {
4134         // For SCEVUnknown, we check for simple dominance.
4135         const auto *SU = cast<SCEVUnknown>(S);
4136         Value *V = SU->getValue();
4137 
4138         if (isa<Argument>(V))
4139           return false;
4140 
4141         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4142           return false;
4143 
4144         return setUnavailable();
4145       }
4146 
4147       case scUDivExpr:
4148       case scCouldNotCompute:
4149         // We do not try to smart about these at all.
4150         return setUnavailable();
4151       }
4152       llvm_unreachable("switch should be fully covered!");
4153     }
4154 
4155     bool isDone() { return TraversalDone; }
4156   };
4157 
4158   CheckAvailable CA(L, BB, DT);
4159   SCEVTraversal<CheckAvailable> ST(CA);
4160 
4161   ST.visitAll(S);
4162   return CA.Available;
4163 }
4164 
4165 // Try to match a control flow sequence that branches out at BI and merges back
4166 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4167 // match.
4168 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4169                           Value *&C, Value *&LHS, Value *&RHS) {
4170   C = BI->getCondition();
4171 
4172   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4173   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4174 
4175   if (!LeftEdge.isSingleEdge())
4176     return false;
4177 
4178   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4179 
4180   Use &LeftUse = Merge->getOperandUse(0);
4181   Use &RightUse = Merge->getOperandUse(1);
4182 
4183   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4184     LHS = LeftUse;
4185     RHS = RightUse;
4186     return true;
4187   }
4188 
4189   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4190     LHS = RightUse;
4191     RHS = LeftUse;
4192     return true;
4193   }
4194 
4195   return false;
4196 }
4197 
4198 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4199   auto IsReachable =
4200       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
4201   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
4202     const Loop *L = LI.getLoopFor(PN->getParent());
4203 
4204     // We don't want to break LCSSA, even in a SCEV expression tree.
4205     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4206       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4207         return nullptr;
4208 
4209     // Try to match
4210     //
4211     //  br %cond, label %left, label %right
4212     // left:
4213     //  br label %merge
4214     // right:
4215     //  br label %merge
4216     // merge:
4217     //  V = phi [ %x, %left ], [ %y, %right ]
4218     //
4219     // as "select %cond, %x, %y"
4220 
4221     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4222     assert(IDom && "At least the entry block should dominate PN");
4223 
4224     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4225     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4226 
4227     if (BI && BI->isConditional() &&
4228         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4229         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4230         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4231       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4232   }
4233 
4234   return nullptr;
4235 }
4236 
4237 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4238   if (const SCEV *S = createAddRecFromPHI(PN))
4239     return S;
4240 
4241   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4242     return S;
4243 
4244   // If the PHI has a single incoming value, follow that value, unless the
4245   // PHI's incoming blocks are in a different loop, in which case doing so
4246   // risks breaking LCSSA form. Instcombine would normally zap these, but
4247   // it doesn't have DominatorTree information, so it may miss cases.
4248   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4249     if (LI.replacementPreservesLCSSAForm(PN, V))
4250       return getSCEV(V);
4251 
4252   // If it's not a loop phi, we can't handle it yet.
4253   return getUnknown(PN);
4254 }
4255 
4256 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4257                                                       Value *Cond,
4258                                                       Value *TrueVal,
4259                                                       Value *FalseVal) {
4260   // Handle "constant" branch or select. This can occur for instance when a
4261   // loop pass transforms an inner loop and moves on to process the outer loop.
4262   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4263     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4264 
4265   // Try to match some simple smax or umax patterns.
4266   auto *ICI = dyn_cast<ICmpInst>(Cond);
4267   if (!ICI)
4268     return getUnknown(I);
4269 
4270   Value *LHS = ICI->getOperand(0);
4271   Value *RHS = ICI->getOperand(1);
4272 
4273   switch (ICI->getPredicate()) {
4274   case ICmpInst::ICMP_SLT:
4275   case ICmpInst::ICMP_SLE:
4276     std::swap(LHS, RHS);
4277     LLVM_FALLTHROUGH;
4278   case ICmpInst::ICMP_SGT:
4279   case ICmpInst::ICMP_SGE:
4280     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4281     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4282     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4283       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4284       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4285       const SCEV *LA = getSCEV(TrueVal);
4286       const SCEV *RA = getSCEV(FalseVal);
4287       const SCEV *LDiff = getMinusSCEV(LA, LS);
4288       const SCEV *RDiff = getMinusSCEV(RA, RS);
4289       if (LDiff == RDiff)
4290         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4291       LDiff = getMinusSCEV(LA, RS);
4292       RDiff = getMinusSCEV(RA, LS);
4293       if (LDiff == RDiff)
4294         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4295     }
4296     break;
4297   case ICmpInst::ICMP_ULT:
4298   case ICmpInst::ICMP_ULE:
4299     std::swap(LHS, RHS);
4300     LLVM_FALLTHROUGH;
4301   case ICmpInst::ICMP_UGT:
4302   case ICmpInst::ICMP_UGE:
4303     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4304     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4305     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4306       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4307       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4308       const SCEV *LA = getSCEV(TrueVal);
4309       const SCEV *RA = getSCEV(FalseVal);
4310       const SCEV *LDiff = getMinusSCEV(LA, LS);
4311       const SCEV *RDiff = getMinusSCEV(RA, RS);
4312       if (LDiff == RDiff)
4313         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4314       LDiff = getMinusSCEV(LA, RS);
4315       RDiff = getMinusSCEV(RA, LS);
4316       if (LDiff == RDiff)
4317         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4318     }
4319     break;
4320   case ICmpInst::ICMP_NE:
4321     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4322     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4323         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4324       const SCEV *One = getOne(I->getType());
4325       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4326       const SCEV *LA = getSCEV(TrueVal);
4327       const SCEV *RA = getSCEV(FalseVal);
4328       const SCEV *LDiff = getMinusSCEV(LA, LS);
4329       const SCEV *RDiff = getMinusSCEV(RA, One);
4330       if (LDiff == RDiff)
4331         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4332     }
4333     break;
4334   case ICmpInst::ICMP_EQ:
4335     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4336     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4337         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4338       const SCEV *One = getOne(I->getType());
4339       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4340       const SCEV *LA = getSCEV(TrueVal);
4341       const SCEV *RA = getSCEV(FalseVal);
4342       const SCEV *LDiff = getMinusSCEV(LA, One);
4343       const SCEV *RDiff = getMinusSCEV(RA, LS);
4344       if (LDiff == RDiff)
4345         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4346     }
4347     break;
4348   default:
4349     break;
4350   }
4351 
4352   return getUnknown(I);
4353 }
4354 
4355 /// Expand GEP instructions into add and multiply operations. This allows them
4356 /// to be analyzed by regular SCEV code.
4357 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4358   // Don't attempt to analyze GEPs over unsized objects.
4359   if (!GEP->getSourceElementType()->isSized())
4360     return getUnknown(GEP);
4361 
4362   SmallVector<const SCEV *, 4> IndexExprs;
4363   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4364     IndexExprs.push_back(getSCEV(*Index));
4365   return getGEPExpr(GEP->getSourceElementType(),
4366                     getSCEV(GEP->getPointerOperand()),
4367                     IndexExprs, GEP->isInBounds());
4368 }
4369 
4370 uint32_t
4371 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4372   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4373     return C->getAPInt().countTrailingZeros();
4374 
4375   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4376     return std::min(GetMinTrailingZeros(T->getOperand()),
4377                     (uint32_t)getTypeSizeInBits(T->getType()));
4378 
4379   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4380     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4381     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4382              getTypeSizeInBits(E->getType()) : OpRes;
4383   }
4384 
4385   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4386     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4387     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4388              getTypeSizeInBits(E->getType()) : OpRes;
4389   }
4390 
4391   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4392     // The result is the min of all operands results.
4393     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4394     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4395       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4396     return MinOpRes;
4397   }
4398 
4399   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4400     // The result is the sum of all operands results.
4401     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4402     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4403     for (unsigned i = 1, e = M->getNumOperands();
4404          SumOpRes != BitWidth && i != e; ++i)
4405       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4406                           BitWidth);
4407     return SumOpRes;
4408   }
4409 
4410   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4411     // The result is the min of all operands results.
4412     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4413     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4414       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4415     return MinOpRes;
4416   }
4417 
4418   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4419     // The result is the min of all operands results.
4420     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4421     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4422       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4423     return MinOpRes;
4424   }
4425 
4426   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4427     // The result is the min of all operands results.
4428     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4429     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4430       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4431     return MinOpRes;
4432   }
4433 
4434   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4435     // For a SCEVUnknown, ask ValueTracking.
4436     unsigned BitWidth = getTypeSizeInBits(U->getType());
4437     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4438     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4439                      nullptr, &DT);
4440     return Zeros.countTrailingOnes();
4441   }
4442 
4443   // SCEVUDivExpr
4444   return 0;
4445 }
4446 
4447 /// Helper method to assign a range to V from metadata present in the IR.
4448 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4449   if (Instruction *I = dyn_cast<Instruction>(V))
4450     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4451       return getConstantRangeFromMetadata(*MD);
4452 
4453   return None;
4454 }
4455 
4456 /// Determine the range for a particular SCEV.  If SignHint is
4457 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4458 /// with a "cleaner" unsigned (resp. signed) representation.
4459 ConstantRange
4460 ScalarEvolution::getRange(const SCEV *S,
4461                           ScalarEvolution::RangeSignHint SignHint) {
4462   DenseMap<const SCEV *, ConstantRange> &Cache =
4463       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4464                                                        : SignedRanges;
4465 
4466   // See if we've computed this range already.
4467   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4468   if (I != Cache.end())
4469     return I->second;
4470 
4471   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4472     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4473 
4474   unsigned BitWidth = getTypeSizeInBits(S->getType());
4475   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4476 
4477   // If the value has known zeros, the maximum value will have those known zeros
4478   // as well.
4479   uint32_t TZ = GetMinTrailingZeros(S);
4480   if (TZ != 0) {
4481     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4482       ConservativeResult =
4483           ConstantRange(APInt::getMinValue(BitWidth),
4484                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4485     else
4486       ConservativeResult = ConstantRange(
4487           APInt::getSignedMinValue(BitWidth),
4488           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4489   }
4490 
4491   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4492     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4493     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4494       X = X.add(getRange(Add->getOperand(i), SignHint));
4495     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4496   }
4497 
4498   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4499     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4500     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4501       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4502     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4503   }
4504 
4505   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4506     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4507     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4508       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4509     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4510   }
4511 
4512   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4513     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4514     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4515       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4516     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4517   }
4518 
4519   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4520     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4521     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4522     return setRange(UDiv, SignHint,
4523                     ConservativeResult.intersectWith(X.udiv(Y)));
4524   }
4525 
4526   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4527     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4528     return setRange(ZExt, SignHint,
4529                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4530   }
4531 
4532   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4533     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4534     return setRange(SExt, SignHint,
4535                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4536   }
4537 
4538   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4539     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4540     return setRange(Trunc, SignHint,
4541                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4542   }
4543 
4544   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4545     // If there's no unsigned wrap, the value will never be less than its
4546     // initial value.
4547     if (AddRec->hasNoUnsignedWrap())
4548       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4549         if (!C->getValue()->isZero())
4550           ConservativeResult = ConservativeResult.intersectWith(
4551               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4552 
4553     // If there's no signed wrap, and all the operands have the same sign or
4554     // zero, the value won't ever change sign.
4555     if (AddRec->hasNoSignedWrap()) {
4556       bool AllNonNeg = true;
4557       bool AllNonPos = true;
4558       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4559         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4560         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4561       }
4562       if (AllNonNeg)
4563         ConservativeResult = ConservativeResult.intersectWith(
4564           ConstantRange(APInt(BitWidth, 0),
4565                         APInt::getSignedMinValue(BitWidth)));
4566       else if (AllNonPos)
4567         ConservativeResult = ConservativeResult.intersectWith(
4568           ConstantRange(APInt::getSignedMinValue(BitWidth),
4569                         APInt(BitWidth, 1)));
4570     }
4571 
4572     // TODO: non-affine addrec
4573     if (AddRec->isAffine()) {
4574       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4575       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4576           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4577         auto RangeFromAffine = getRangeForAffineAR(
4578             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4579             BitWidth);
4580         if (!RangeFromAffine.isFullSet())
4581           ConservativeResult =
4582               ConservativeResult.intersectWith(RangeFromAffine);
4583 
4584         auto RangeFromFactoring = getRangeViaFactoring(
4585             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4586             BitWidth);
4587         if (!RangeFromFactoring.isFullSet())
4588           ConservativeResult =
4589               ConservativeResult.intersectWith(RangeFromFactoring);
4590       }
4591     }
4592 
4593     return setRange(AddRec, SignHint, ConservativeResult);
4594   }
4595 
4596   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4597     // Check if the IR explicitly contains !range metadata.
4598     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4599     if (MDRange.hasValue())
4600       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4601 
4602     // Split here to avoid paying the compile-time cost of calling both
4603     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4604     // if needed.
4605     const DataLayout &DL = getDataLayout();
4606     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4607       // For a SCEVUnknown, ask ValueTracking.
4608       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4609       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4610       if (Ones != ~Zeros + 1)
4611         ConservativeResult =
4612             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4613     } else {
4614       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4615              "generalize as needed!");
4616       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4617       if (NS > 1)
4618         ConservativeResult = ConservativeResult.intersectWith(
4619             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4620                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4621     }
4622 
4623     return setRange(U, SignHint, ConservativeResult);
4624   }
4625 
4626   return setRange(S, SignHint, ConservativeResult);
4627 }
4628 
4629 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4630                                                    const SCEV *Step,
4631                                                    const SCEV *MaxBECount,
4632                                                    unsigned BitWidth) {
4633   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4634          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4635          "Precondition!");
4636 
4637   ConstantRange Result(BitWidth, /* isFullSet = */ true);
4638 
4639   // Check for overflow.  This must be done with ConstantRange arithmetic
4640   // because we could be called from within the ScalarEvolution overflow
4641   // checking code.
4642 
4643   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4644   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4645   ConstantRange ZExtMaxBECountRange =
4646       MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4647 
4648   ConstantRange StepSRange = getSignedRange(Step);
4649   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4650 
4651   ConstantRange StartURange = getUnsignedRange(Start);
4652   ConstantRange EndURange =
4653       StartURange.add(MaxBECountRange.multiply(StepSRange));
4654 
4655   // Check for unsigned overflow.
4656   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4657   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4658   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4659       ZExtEndURange) {
4660     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4661                                EndURange.getUnsignedMin());
4662     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4663                                EndURange.getUnsignedMax());
4664     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4665     if (!IsFullRange)
4666       Result =
4667           Result.intersectWith(ConstantRange(Min, Max + 1));
4668   }
4669 
4670   ConstantRange StartSRange = getSignedRange(Start);
4671   ConstantRange EndSRange =
4672       StartSRange.add(MaxBECountRange.multiply(StepSRange));
4673 
4674   // Check for signed overflow. This must be done with ConstantRange
4675   // arithmetic because we could be called from within the ScalarEvolution
4676   // overflow checking code.
4677   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4678   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4679   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4680       SExtEndSRange) {
4681     APInt Min =
4682         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4683     APInt Max =
4684         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4685     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4686     if (!IsFullRange)
4687       Result =
4688           Result.intersectWith(ConstantRange(Min, Max + 1));
4689   }
4690 
4691   return Result;
4692 }
4693 
4694 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4695                                                     const SCEV *Step,
4696                                                     const SCEV *MaxBECount,
4697                                                     unsigned BitWidth) {
4698   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4699   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4700 
4701   struct SelectPattern {
4702     Value *Condition = nullptr;
4703     APInt TrueValue;
4704     APInt FalseValue;
4705 
4706     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4707                            const SCEV *S) {
4708       Optional<unsigned> CastOp;
4709       APInt Offset(BitWidth, 0);
4710 
4711       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4712              "Should be!");
4713 
4714       // Peel off a constant offset:
4715       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4716         // In the future we could consider being smarter here and handle
4717         // {Start+Step,+,Step} too.
4718         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4719           return;
4720 
4721         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4722         S = SA->getOperand(1);
4723       }
4724 
4725       // Peel off a cast operation
4726       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4727         CastOp = SCast->getSCEVType();
4728         S = SCast->getOperand();
4729       }
4730 
4731       using namespace llvm::PatternMatch;
4732 
4733       auto *SU = dyn_cast<SCEVUnknown>(S);
4734       const APInt *TrueVal, *FalseVal;
4735       if (!SU ||
4736           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4737                                           m_APInt(FalseVal)))) {
4738         Condition = nullptr;
4739         return;
4740       }
4741 
4742       TrueValue = *TrueVal;
4743       FalseValue = *FalseVal;
4744 
4745       // Re-apply the cast we peeled off earlier
4746       if (CastOp.hasValue())
4747         switch (*CastOp) {
4748         default:
4749           llvm_unreachable("Unknown SCEV cast type!");
4750 
4751         case scTruncate:
4752           TrueValue = TrueValue.trunc(BitWidth);
4753           FalseValue = FalseValue.trunc(BitWidth);
4754           break;
4755         case scZeroExtend:
4756           TrueValue = TrueValue.zext(BitWidth);
4757           FalseValue = FalseValue.zext(BitWidth);
4758           break;
4759         case scSignExtend:
4760           TrueValue = TrueValue.sext(BitWidth);
4761           FalseValue = FalseValue.sext(BitWidth);
4762           break;
4763         }
4764 
4765       // Re-apply the constant offset we peeled off earlier
4766       TrueValue += Offset;
4767       FalseValue += Offset;
4768     }
4769 
4770     bool isRecognized() { return Condition != nullptr; }
4771   };
4772 
4773   SelectPattern StartPattern(*this, BitWidth, Start);
4774   if (!StartPattern.isRecognized())
4775     return ConstantRange(BitWidth, /* isFullSet = */ true);
4776 
4777   SelectPattern StepPattern(*this, BitWidth, Step);
4778   if (!StepPattern.isRecognized())
4779     return ConstantRange(BitWidth, /* isFullSet = */ true);
4780 
4781   if (StartPattern.Condition != StepPattern.Condition) {
4782     // We don't handle this case today; but we could, by considering four
4783     // possibilities below instead of two. I'm not sure if there are cases where
4784     // that will help over what getRange already does, though.
4785     return ConstantRange(BitWidth, /* isFullSet = */ true);
4786   }
4787 
4788   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4789   // construct arbitrary general SCEV expressions here.  This function is called
4790   // from deep in the call stack, and calling getSCEV (on a sext instruction,
4791   // say) can end up caching a suboptimal value.
4792 
4793   // FIXME: without the explicit `this` receiver below, MSVC errors out with
4794   // C2352 and C2512 (otherwise it isn't needed).
4795 
4796   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4797   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4798   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4799   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4800 
4801   ConstantRange TrueRange =
4802       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4803   ConstantRange FalseRange =
4804       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4805 
4806   return TrueRange.unionWith(FalseRange);
4807 }
4808 
4809 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4810   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4811   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4812 
4813   // Return early if there are no flags to propagate to the SCEV.
4814   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4815   if (BinOp->hasNoUnsignedWrap())
4816     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4817   if (BinOp->hasNoSignedWrap())
4818     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4819   if (Flags == SCEV::FlagAnyWrap)
4820     return SCEV::FlagAnyWrap;
4821 
4822   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4823 }
4824 
4825 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4826   // Here we check that I is in the header of the innermost loop containing I,
4827   // since we only deal with instructions in the loop header. The actual loop we
4828   // need to check later will come from an add recurrence, but getting that
4829   // requires computing the SCEV of the operands, which can be expensive. This
4830   // check we can do cheaply to rule out some cases early.
4831   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4832   if (InnermostContainingLoop == nullptr ||
4833       InnermostContainingLoop->getHeader() != I->getParent())
4834     return false;
4835 
4836   // Only proceed if we can prove that I does not yield poison.
4837   if (!isKnownNotFullPoison(I)) return false;
4838 
4839   // At this point we know that if I is executed, then it does not wrap
4840   // according to at least one of NSW or NUW. If I is not executed, then we do
4841   // not know if the calculation that I represents would wrap. Multiple
4842   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4843   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4844   // derived from other instructions that map to the same SCEV. We cannot make
4845   // that guarantee for cases where I is not executed. So we need to find the
4846   // loop that I is considered in relation to and prove that I is executed for
4847   // every iteration of that loop. That implies that the value that I
4848   // calculates does not wrap anywhere in the loop, so then we can apply the
4849   // flags to the SCEV.
4850   //
4851   // We check isLoopInvariant to disambiguate in case we are adding recurrences
4852   // from different loops, so that we know which loop to prove that I is
4853   // executed in.
4854   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4855     // I could be an extractvalue from a call to an overflow intrinsic.
4856     // TODO: We can do better here in some cases.
4857     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
4858       return false;
4859     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4860     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4861       bool AllOtherOpsLoopInvariant = true;
4862       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4863            ++OtherOpIndex) {
4864         if (OtherOpIndex != OpIndex) {
4865           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4866           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4867             AllOtherOpsLoopInvariant = false;
4868             break;
4869           }
4870         }
4871       }
4872       if (AllOtherOpsLoopInvariant &&
4873           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4874         return true;
4875     }
4876   }
4877   return false;
4878 }
4879 
4880 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4881   // If we know that \c I can never be poison period, then that's enough.
4882   if (isSCEVExprNeverPoison(I))
4883     return true;
4884 
4885   // For an add recurrence specifically, we assume that infinite loops without
4886   // side effects are undefined behavior, and then reason as follows:
4887   //
4888   // If the add recurrence is poison in any iteration, it is poison on all
4889   // future iterations (since incrementing poison yields poison). If the result
4890   // of the add recurrence is fed into the loop latch condition and the loop
4891   // does not contain any throws or exiting blocks other than the latch, we now
4892   // have the ability to "choose" whether the backedge is taken or not (by
4893   // choosing a sufficiently evil value for the poison feeding into the branch)
4894   // for every iteration including and after the one in which \p I first became
4895   // poison.  There are two possibilities (let's call the iteration in which \p
4896   // I first became poison as K):
4897   //
4898   //  1. In the set of iterations including and after K, the loop body executes
4899   //     no side effects.  In this case executing the backege an infinte number
4900   //     of times will yield undefined behavior.
4901   //
4902   //  2. In the set of iterations including and after K, the loop body executes
4903   //     at least one side effect.  In this case, that specific instance of side
4904   //     effect is control dependent on poison, which also yields undefined
4905   //     behavior.
4906 
4907   auto *ExitingBB = L->getExitingBlock();
4908   auto *LatchBB = L->getLoopLatch();
4909   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4910     return false;
4911 
4912   SmallPtrSet<const Instruction *, 16> Pushed;
4913   SmallVector<const Instruction *, 8> PoisonStack;
4914 
4915   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
4916   // things that are known to be fully poison under that assumption go on the
4917   // PoisonStack.
4918   Pushed.insert(I);
4919   PoisonStack.push_back(I);
4920 
4921   bool LatchControlDependentOnPoison = false;
4922   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
4923     const Instruction *Poison = PoisonStack.pop_back_val();
4924 
4925     for (auto *PoisonUser : Poison->users()) {
4926       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
4927         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
4928           PoisonStack.push_back(cast<Instruction>(PoisonUser));
4929       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
4930         assert(BI->isConditional() && "Only possibility!");
4931         if (BI->getParent() == LatchBB) {
4932           LatchControlDependentOnPoison = true;
4933           break;
4934         }
4935       }
4936     }
4937   }
4938 
4939   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
4940 }
4941 
4942 ScalarEvolution::LoopProperties
4943 ScalarEvolution::getLoopProperties(const Loop *L) {
4944   typedef ScalarEvolution::LoopProperties LoopProperties;
4945 
4946   auto Itr = LoopPropertiesCache.find(L);
4947   if (Itr == LoopPropertiesCache.end()) {
4948     auto HasSideEffects = [](Instruction *I) {
4949       if (auto *SI = dyn_cast<StoreInst>(I))
4950         return !SI->isSimple();
4951 
4952       return I->mayHaveSideEffects();
4953     };
4954 
4955     LoopProperties LP = {/* HasNoAbnormalExits */ true,
4956                          /*HasNoSideEffects*/ true};
4957 
4958     for (auto *BB : L->getBlocks())
4959       for (auto &I : *BB) {
4960         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4961           LP.HasNoAbnormalExits = false;
4962         if (HasSideEffects(&I))
4963           LP.HasNoSideEffects = false;
4964         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
4965           break; // We're already as pessimistic as we can get.
4966       }
4967 
4968     auto InsertPair = LoopPropertiesCache.insert({L, LP});
4969     assert(InsertPair.second && "We just checked!");
4970     Itr = InsertPair.first;
4971   }
4972 
4973   return Itr->second;
4974 }
4975 
4976 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4977   if (!isSCEVable(V->getType()))
4978     return getUnknown(V);
4979 
4980   if (Instruction *I = dyn_cast<Instruction>(V)) {
4981     // Don't attempt to analyze instructions in blocks that aren't
4982     // reachable. Such instructions don't matter, and they aren't required
4983     // to obey basic rules for definitions dominating uses which this
4984     // analysis depends on.
4985     if (!DT.isReachableFromEntry(I->getParent()))
4986       return getUnknown(V);
4987   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4988     return getConstant(CI);
4989   else if (isa<ConstantPointerNull>(V))
4990     return getZero(V->getType());
4991   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4992     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
4993   else if (!isa<ConstantExpr>(V))
4994     return getUnknown(V);
4995 
4996   Operator *U = cast<Operator>(V);
4997   if (auto BO = MatchBinaryOp(U, DT)) {
4998     switch (BO->Opcode) {
4999     case Instruction::Add: {
5000       // The simple thing to do would be to just call getSCEV on both operands
5001       // and call getAddExpr with the result. However if we're looking at a
5002       // bunch of things all added together, this can be quite inefficient,
5003       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5004       // Instead, gather up all the operands and make a single getAddExpr call.
5005       // LLVM IR canonical form means we need only traverse the left operands.
5006       SmallVector<const SCEV *, 4> AddOps;
5007       do {
5008         if (BO->Op) {
5009           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5010             AddOps.push_back(OpSCEV);
5011             break;
5012           }
5013 
5014           // If a NUW or NSW flag can be applied to the SCEV for this
5015           // addition, then compute the SCEV for this addition by itself
5016           // with a separate call to getAddExpr. We need to do that
5017           // instead of pushing the operands of the addition onto AddOps,
5018           // since the flags are only known to apply to this particular
5019           // addition - they may not apply to other additions that can be
5020           // formed with operands from AddOps.
5021           const SCEV *RHS = getSCEV(BO->RHS);
5022           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5023           if (Flags != SCEV::FlagAnyWrap) {
5024             const SCEV *LHS = getSCEV(BO->LHS);
5025             if (BO->Opcode == Instruction::Sub)
5026               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5027             else
5028               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5029             break;
5030           }
5031         }
5032 
5033         if (BO->Opcode == Instruction::Sub)
5034           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5035         else
5036           AddOps.push_back(getSCEV(BO->RHS));
5037 
5038         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5039         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5040                        NewBO->Opcode != Instruction::Sub)) {
5041           AddOps.push_back(getSCEV(BO->LHS));
5042           break;
5043         }
5044         BO = NewBO;
5045       } while (true);
5046 
5047       return getAddExpr(AddOps);
5048     }
5049 
5050     case Instruction::Mul: {
5051       SmallVector<const SCEV *, 4> MulOps;
5052       do {
5053         if (BO->Op) {
5054           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5055             MulOps.push_back(OpSCEV);
5056             break;
5057           }
5058 
5059           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5060           if (Flags != SCEV::FlagAnyWrap) {
5061             MulOps.push_back(
5062                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5063             break;
5064           }
5065         }
5066 
5067         MulOps.push_back(getSCEV(BO->RHS));
5068         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5069         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5070           MulOps.push_back(getSCEV(BO->LHS));
5071           break;
5072         }
5073         BO = NewBO;
5074       } while (true);
5075 
5076       return getMulExpr(MulOps);
5077     }
5078     case Instruction::UDiv:
5079       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5080     case Instruction::Sub: {
5081       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5082       if (BO->Op)
5083         Flags = getNoWrapFlagsFromUB(BO->Op);
5084       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5085     }
5086     case Instruction::And:
5087       // For an expression like x&255 that merely masks off the high bits,
5088       // use zext(trunc(x)) as the SCEV expression.
5089       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5090         if (CI->isNullValue())
5091           return getSCEV(BO->RHS);
5092         if (CI->isAllOnesValue())
5093           return getSCEV(BO->LHS);
5094         const APInt &A = CI->getValue();
5095 
5096         // Instcombine's ShrinkDemandedConstant may strip bits out of
5097         // constants, obscuring what would otherwise be a low-bits mask.
5098         // Use computeKnownBits to compute what ShrinkDemandedConstant
5099         // knew about to reconstruct a low-bits mask value.
5100         unsigned LZ = A.countLeadingZeros();
5101         unsigned TZ = A.countTrailingZeros();
5102         unsigned BitWidth = A.getBitWidth();
5103         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5104         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5105                          0, &AC, nullptr, &DT);
5106 
5107         APInt EffectiveMask =
5108             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5109         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5110           const SCEV *MulCount = getConstant(ConstantInt::get(
5111               getContext(), APInt::getOneBitSet(BitWidth, TZ)));
5112           return getMulExpr(
5113               getZeroExtendExpr(
5114                   getTruncateExpr(
5115                       getUDivExactExpr(getSCEV(BO->LHS), MulCount),
5116                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5117                   BO->LHS->getType()),
5118               MulCount);
5119         }
5120       }
5121       break;
5122 
5123     case Instruction::Or:
5124       // If the RHS of the Or is a constant, we may have something like:
5125       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5126       // optimizations will transparently handle this case.
5127       //
5128       // In order for this transformation to be safe, the LHS must be of the
5129       // form X*(2^n) and the Or constant must be less than 2^n.
5130       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5131         const SCEV *LHS = getSCEV(BO->LHS);
5132         const APInt &CIVal = CI->getValue();
5133         if (GetMinTrailingZeros(LHS) >=
5134             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5135           // Build a plain add SCEV.
5136           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5137           // If the LHS of the add was an addrec and it has no-wrap flags,
5138           // transfer the no-wrap flags, since an or won't introduce a wrap.
5139           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5140             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5141             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5142                 OldAR->getNoWrapFlags());
5143           }
5144           return S;
5145         }
5146       }
5147       break;
5148 
5149     case Instruction::Xor:
5150       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5151         // If the RHS of xor is -1, then this is a not operation.
5152         if (CI->isAllOnesValue())
5153           return getNotSCEV(getSCEV(BO->LHS));
5154 
5155         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5156         // This is a variant of the check for xor with -1, and it handles
5157         // the case where instcombine has trimmed non-demanded bits out
5158         // of an xor with -1.
5159         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5160           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5161             if (LBO->getOpcode() == Instruction::And &&
5162                 LCI->getValue() == CI->getValue())
5163               if (const SCEVZeroExtendExpr *Z =
5164                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5165                 Type *UTy = BO->LHS->getType();
5166                 const SCEV *Z0 = Z->getOperand();
5167                 Type *Z0Ty = Z0->getType();
5168                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5169 
5170                 // If C is a low-bits mask, the zero extend is serving to
5171                 // mask off the high bits. Complement the operand and
5172                 // re-apply the zext.
5173                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5174                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5175 
5176                 // If C is a single bit, it may be in the sign-bit position
5177                 // before the zero-extend. In this case, represent the xor
5178                 // using an add, which is equivalent, and re-apply the zext.
5179                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5180                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5181                     Trunc.isSignBit())
5182                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5183                                            UTy);
5184               }
5185       }
5186       break;
5187 
5188   case Instruction::Shl:
5189     // Turn shift left of a constant amount into a multiply.
5190     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5191       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5192 
5193       // If the shift count is not less than the bitwidth, the result of
5194       // the shift is undefined. Don't try to analyze it, because the
5195       // resolution chosen here may differ from the resolution chosen in
5196       // other parts of the compiler.
5197       if (SA->getValue().uge(BitWidth))
5198         break;
5199 
5200       // It is currently not resolved how to interpret NSW for left
5201       // shift by BitWidth - 1, so we avoid applying flags in that
5202       // case. Remove this check (or this comment) once the situation
5203       // is resolved. See
5204       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5205       // and http://reviews.llvm.org/D8890 .
5206       auto Flags = SCEV::FlagAnyWrap;
5207       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5208         Flags = getNoWrapFlagsFromUB(BO->Op);
5209 
5210       Constant *X = ConstantInt::get(getContext(),
5211         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5212       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5213     }
5214     break;
5215 
5216     case Instruction::AShr:
5217       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5218       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5219         if (Operator *L = dyn_cast<Operator>(BO->LHS))
5220           if (L->getOpcode() == Instruction::Shl &&
5221               L->getOperand(1) == BO->RHS) {
5222             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5223 
5224             // If the shift count is not less than the bitwidth, the result of
5225             // the shift is undefined. Don't try to analyze it, because the
5226             // resolution chosen here may differ from the resolution chosen in
5227             // other parts of the compiler.
5228             if (CI->getValue().uge(BitWidth))
5229               break;
5230 
5231             uint64_t Amt = BitWidth - CI->getZExtValue();
5232             if (Amt == BitWidth)
5233               return getSCEV(L->getOperand(0)); // shift by zero --> noop
5234             return getSignExtendExpr(
5235                 getTruncateExpr(getSCEV(L->getOperand(0)),
5236                                 IntegerType::get(getContext(), Amt)),
5237                 BO->LHS->getType());
5238           }
5239       break;
5240     }
5241   }
5242 
5243   switch (U->getOpcode()) {
5244   case Instruction::Trunc:
5245     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5246 
5247   case Instruction::ZExt:
5248     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5249 
5250   case Instruction::SExt:
5251     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5252 
5253   case Instruction::BitCast:
5254     // BitCasts are no-op casts so we just eliminate the cast.
5255     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5256       return getSCEV(U->getOperand(0));
5257     break;
5258 
5259   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5260   // lead to pointer expressions which cannot safely be expanded to GEPs,
5261   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5262   // simplifying integer expressions.
5263 
5264   case Instruction::GetElementPtr:
5265     return createNodeForGEP(cast<GEPOperator>(U));
5266 
5267   case Instruction::PHI:
5268     return createNodeForPHI(cast<PHINode>(U));
5269 
5270   case Instruction::Select:
5271     // U can also be a select constant expr, which let fall through.  Since
5272     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5273     // constant expressions cannot have instructions as operands, we'd have
5274     // returned getUnknown for a select constant expressions anyway.
5275     if (isa<Instruction>(U))
5276       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5277                                       U->getOperand(1), U->getOperand(2));
5278     break;
5279 
5280   case Instruction::Call:
5281   case Instruction::Invoke:
5282     if (Value *RV = CallSite(U).getReturnedArgOperand())
5283       return getSCEV(RV);
5284     break;
5285   }
5286 
5287   return getUnknown(V);
5288 }
5289 
5290 
5291 
5292 //===----------------------------------------------------------------------===//
5293 //                   Iteration Count Computation Code
5294 //
5295 
5296 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
5297   if (!ExitCount)
5298     return 0;
5299 
5300   ConstantInt *ExitConst = ExitCount->getValue();
5301 
5302   // Guard against huge trip counts.
5303   if (ExitConst->getValue().getActiveBits() > 32)
5304     return 0;
5305 
5306   // In case of integer overflow, this returns 0, which is correct.
5307   return ((unsigned)ExitConst->getZExtValue()) + 1;
5308 }
5309 
5310 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5311   if (BasicBlock *ExitingBB = L->getExitingBlock())
5312     return getSmallConstantTripCount(L, ExitingBB);
5313 
5314   // No trip count information for multiple exits.
5315   return 0;
5316 }
5317 
5318 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5319                                                     BasicBlock *ExitingBlock) {
5320   assert(ExitingBlock && "Must pass a non-null exiting block!");
5321   assert(L->isLoopExiting(ExitingBlock) &&
5322          "Exiting block must actually branch out of the loop!");
5323   const SCEVConstant *ExitCount =
5324       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5325   return getConstantTripCount(ExitCount);
5326 }
5327 
5328 unsigned ScalarEvolution::getSmallConstantMaxTripCount(Loop *L) {
5329   const auto *MaxExitCount =
5330       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
5331   return getConstantTripCount(MaxExitCount);
5332 }
5333 
5334 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5335   if (BasicBlock *ExitingBB = L->getExitingBlock())
5336     return getSmallConstantTripMultiple(L, ExitingBB);
5337 
5338   // No trip multiple information for multiple exits.
5339   return 0;
5340 }
5341 
5342 /// Returns the largest constant divisor of the trip count of this loop as a
5343 /// normal unsigned value, if possible. This means that the actual trip count is
5344 /// always a multiple of the returned value (don't forget the trip count could
5345 /// very well be zero as well!).
5346 ///
5347 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5348 /// multiple of a constant (which is also the case if the trip count is simply
5349 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5350 /// if the trip count is very large (>= 2^32).
5351 ///
5352 /// As explained in the comments for getSmallConstantTripCount, this assumes
5353 /// that control exits the loop via ExitingBlock.
5354 unsigned
5355 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5356                                               BasicBlock *ExitingBlock) {
5357   assert(ExitingBlock && "Must pass a non-null exiting block!");
5358   assert(L->isLoopExiting(ExitingBlock) &&
5359          "Exiting block must actually branch out of the loop!");
5360   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5361   if (ExitCount == getCouldNotCompute())
5362     return 1;
5363 
5364   // Get the trip count from the BE count by adding 1.
5365   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5366   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5367   // to factor simple cases.
5368   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5369     TCMul = Mul->getOperand(0);
5370 
5371   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5372   if (!MulC)
5373     return 1;
5374 
5375   ConstantInt *Result = MulC->getValue();
5376 
5377   // Guard against huge trip counts (this requires checking
5378   // for zero to handle the case where the trip count == -1 and the
5379   // addition wraps).
5380   if (!Result || Result->getValue().getActiveBits() > 32 ||
5381       Result->getValue().getActiveBits() == 0)
5382     return 1;
5383 
5384   return (unsigned)Result->getZExtValue();
5385 }
5386 
5387 /// Get the expression for the number of loop iterations for which this loop is
5388 /// guaranteed not to exit via ExitingBlock. Otherwise return
5389 /// SCEVCouldNotCompute.
5390 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5391   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5392 }
5393 
5394 const SCEV *
5395 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5396                                                  SCEVUnionPredicate &Preds) {
5397   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5398 }
5399 
5400 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5401   return getBackedgeTakenInfo(L).getExact(this);
5402 }
5403 
5404 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5405 /// known never to be less than the actual backedge taken count.
5406 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5407   return getBackedgeTakenInfo(L).getMax(this);
5408 }
5409 
5410 /// Push PHI nodes in the header of the given loop onto the given Worklist.
5411 static void
5412 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5413   BasicBlock *Header = L->getHeader();
5414 
5415   // Push all Loop-header PHIs onto the Worklist stack.
5416   for (BasicBlock::iterator I = Header->begin();
5417        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5418     Worklist.push_back(PN);
5419 }
5420 
5421 const ScalarEvolution::BackedgeTakenInfo &
5422 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5423   auto &BTI = getBackedgeTakenInfo(L);
5424   if (BTI.hasFullInfo())
5425     return BTI;
5426 
5427   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5428 
5429   if (!Pair.second)
5430     return Pair.first->second;
5431 
5432   BackedgeTakenInfo Result =
5433       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5434 
5435   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
5436 }
5437 
5438 const ScalarEvolution::BackedgeTakenInfo &
5439 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5440   // Initially insert an invalid entry for this loop. If the insertion
5441   // succeeds, proceed to actually compute a backedge-taken count and
5442   // update the value. The temporary CouldNotCompute value tells SCEV
5443   // code elsewhere that it shouldn't attempt to request a new
5444   // backedge-taken count, which could result in infinite recursion.
5445   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5446       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5447   if (!Pair.second)
5448     return Pair.first->second;
5449 
5450   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5451   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5452   // must be cleared in this scope.
5453   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5454 
5455   if (Result.getExact(this) != getCouldNotCompute()) {
5456     assert(isLoopInvariant(Result.getExact(this), L) &&
5457            isLoopInvariant(Result.getMax(this), L) &&
5458            "Computed backedge-taken count isn't loop invariant for loop!");
5459     ++NumTripCountsComputed;
5460   }
5461   else if (Result.getMax(this) == getCouldNotCompute() &&
5462            isa<PHINode>(L->getHeader()->begin())) {
5463     // Only count loops that have phi nodes as not being computable.
5464     ++NumTripCountsNotComputed;
5465   }
5466 
5467   // Now that we know more about the trip count for this loop, forget any
5468   // existing SCEV values for PHI nodes in this loop since they are only
5469   // conservative estimates made without the benefit of trip count
5470   // information. This is similar to the code in forgetLoop, except that
5471   // it handles SCEVUnknown PHI nodes specially.
5472   if (Result.hasAnyInfo()) {
5473     SmallVector<Instruction *, 16> Worklist;
5474     PushLoopPHIs(L, Worklist);
5475 
5476     SmallPtrSet<Instruction *, 8> Visited;
5477     while (!Worklist.empty()) {
5478       Instruction *I = Worklist.pop_back_val();
5479       if (!Visited.insert(I).second)
5480         continue;
5481 
5482       ValueExprMapType::iterator It =
5483         ValueExprMap.find_as(static_cast<Value *>(I));
5484       if (It != ValueExprMap.end()) {
5485         const SCEV *Old = It->second;
5486 
5487         // SCEVUnknown for a PHI either means that it has an unrecognized
5488         // structure, or it's a PHI that's in the progress of being computed
5489         // by createNodeForPHI.  In the former case, additional loop trip
5490         // count information isn't going to change anything. In the later
5491         // case, createNodeForPHI will perform the necessary updates on its
5492         // own when it gets to that point.
5493         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5494           eraseValueFromMap(It->first);
5495           forgetMemoizedResults(Old);
5496         }
5497         if (PHINode *PN = dyn_cast<PHINode>(I))
5498           ConstantEvolutionLoopExitValue.erase(PN);
5499       }
5500 
5501       PushDefUseChildren(I, Worklist);
5502     }
5503   }
5504 
5505   // Re-lookup the insert position, since the call to
5506   // computeBackedgeTakenCount above could result in a
5507   // recusive call to getBackedgeTakenInfo (on a different
5508   // loop), which would invalidate the iterator computed
5509   // earlier.
5510   return BackedgeTakenCounts.find(L)->second = std::move(Result);
5511 }
5512 
5513 void ScalarEvolution::forgetLoop(const Loop *L) {
5514   // Drop any stored trip count value.
5515   auto RemoveLoopFromBackedgeMap =
5516       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5517         auto BTCPos = Map.find(L);
5518         if (BTCPos != Map.end()) {
5519           BTCPos->second.clear();
5520           Map.erase(BTCPos);
5521         }
5522       };
5523 
5524   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5525   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5526 
5527   // Drop information about expressions based on loop-header PHIs.
5528   SmallVector<Instruction *, 16> Worklist;
5529   PushLoopPHIs(L, Worklist);
5530 
5531   SmallPtrSet<Instruction *, 8> Visited;
5532   while (!Worklist.empty()) {
5533     Instruction *I = Worklist.pop_back_val();
5534     if (!Visited.insert(I).second)
5535       continue;
5536 
5537     ValueExprMapType::iterator It =
5538       ValueExprMap.find_as(static_cast<Value *>(I));
5539     if (It != ValueExprMap.end()) {
5540       eraseValueFromMap(It->first);
5541       forgetMemoizedResults(It->second);
5542       if (PHINode *PN = dyn_cast<PHINode>(I))
5543         ConstantEvolutionLoopExitValue.erase(PN);
5544     }
5545 
5546     PushDefUseChildren(I, Worklist);
5547   }
5548 
5549   // Forget all contained loops too, to avoid dangling entries in the
5550   // ValuesAtScopes map.
5551   for (Loop *I : *L)
5552     forgetLoop(I);
5553 
5554   LoopPropertiesCache.erase(L);
5555 }
5556 
5557 void ScalarEvolution::forgetValue(Value *V) {
5558   Instruction *I = dyn_cast<Instruction>(V);
5559   if (!I) return;
5560 
5561   // Drop information about expressions based on loop-header PHIs.
5562   SmallVector<Instruction *, 16> Worklist;
5563   Worklist.push_back(I);
5564 
5565   SmallPtrSet<Instruction *, 8> Visited;
5566   while (!Worklist.empty()) {
5567     I = Worklist.pop_back_val();
5568     if (!Visited.insert(I).second)
5569       continue;
5570 
5571     ValueExprMapType::iterator It =
5572       ValueExprMap.find_as(static_cast<Value *>(I));
5573     if (It != ValueExprMap.end()) {
5574       eraseValueFromMap(It->first);
5575       forgetMemoizedResults(It->second);
5576       if (PHINode *PN = dyn_cast<PHINode>(I))
5577         ConstantEvolutionLoopExitValue.erase(PN);
5578     }
5579 
5580     PushDefUseChildren(I, Worklist);
5581   }
5582 }
5583 
5584 /// Get the exact loop backedge taken count considering all loop exits. A
5585 /// computable result can only be returned for loops with a single exit.
5586 /// Returning the minimum taken count among all exits is incorrect because one
5587 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5588 /// the limit of each loop test is never skipped. This is a valid assumption as
5589 /// long as the loop exits via that test. For precise results, it is the
5590 /// caller's responsibility to specify the relevant loop exit using
5591 /// getExact(ExitingBlock, SE).
5592 const SCEV *
5593 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE,
5594                                              SCEVUnionPredicate *Preds) const {
5595   // If any exits were not computable, the loop is not computable.
5596   if (!isComplete() || ExitNotTaken.empty())
5597     return SE->getCouldNotCompute();
5598 
5599   const SCEV *BECount = nullptr;
5600   for (auto &ENT : ExitNotTaken) {
5601     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5602 
5603     if (!BECount)
5604       BECount = ENT.ExactNotTaken;
5605     else if (BECount != ENT.ExactNotTaken)
5606       return SE->getCouldNotCompute();
5607     if (Preds && !ENT.hasAlwaysTruePredicate())
5608       Preds->add(ENT.Predicate.get());
5609 
5610     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
5611            "Predicate should be always true!");
5612   }
5613 
5614   assert(BECount && "Invalid not taken count for loop exit");
5615   return BECount;
5616 }
5617 
5618 /// Get the exact not taken count for this loop exit.
5619 const SCEV *
5620 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5621                                              ScalarEvolution *SE) const {
5622   for (auto &ENT : ExitNotTaken)
5623     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
5624       return ENT.ExactNotTaken;
5625 
5626   return SE->getCouldNotCompute();
5627 }
5628 
5629 /// getMax - Get the max backedge taken count for the loop.
5630 const SCEV *
5631 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5632   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
5633     return !ENT.hasAlwaysTruePredicate();
5634   };
5635 
5636   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
5637     return SE->getCouldNotCompute();
5638 
5639   return getMax();
5640 }
5641 
5642 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5643                                                     ScalarEvolution *SE) const {
5644   if (getMax() && getMax() != SE->getCouldNotCompute() &&
5645       SE->hasOperand(getMax(), S))
5646     return true;
5647 
5648   for (auto &ENT : ExitNotTaken)
5649     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5650         SE->hasOperand(ENT.ExactNotTaken, S))
5651       return true;
5652 
5653   return false;
5654 }
5655 
5656 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5657 /// computable exit into a persistent ExitNotTakenInfo array.
5658 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5659     SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
5660         &&ExitCounts,
5661     bool Complete, const SCEV *MaxCount)
5662     : MaxAndComplete(MaxCount, Complete) {
5663   typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
5664   ExitNotTaken.reserve(ExitCounts.size());
5665   std::transform(
5666       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
5667       [&](const EdgeExitInfo &EEI) {
5668         BasicBlock *ExitBB = EEI.first;
5669         const ExitLimit &EL = EEI.second;
5670         if (EL.Predicates.empty())
5671           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
5672 
5673         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
5674         for (auto *Pred : EL.Predicates)
5675           Predicate->add(Pred);
5676 
5677         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
5678       });
5679 }
5680 
5681 /// Invalidate this result and free the ExitNotTakenInfo array.
5682 void ScalarEvolution::BackedgeTakenInfo::clear() {
5683   ExitNotTaken.clear();
5684 }
5685 
5686 /// Compute the number of times the backedge of the specified loop will execute.
5687 ScalarEvolution::BackedgeTakenInfo
5688 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5689                                            bool AllowPredicates) {
5690   SmallVector<BasicBlock *, 8> ExitingBlocks;
5691   L->getExitingBlocks(ExitingBlocks);
5692 
5693   typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
5694 
5695   SmallVector<EdgeExitInfo, 4> ExitCounts;
5696   bool CouldComputeBECount = true;
5697   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5698   const SCEV *MustExitMaxBECount = nullptr;
5699   const SCEV *MayExitMaxBECount = nullptr;
5700 
5701   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5702   // and compute maxBECount.
5703   // Do a union of all the predicates here.
5704   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5705     BasicBlock *ExitBB = ExitingBlocks[i];
5706     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5707 
5708     assert((AllowPredicates || EL.Predicates.empty()) &&
5709            "Predicated exit limit when predicates are not allowed!");
5710 
5711     // 1. For each exit that can be computed, add an entry to ExitCounts.
5712     // CouldComputeBECount is true only if all exits can be computed.
5713     if (EL.ExactNotTaken == getCouldNotCompute())
5714       // We couldn't compute an exact value for this exit, so
5715       // we won't be able to compute an exact value for the loop.
5716       CouldComputeBECount = false;
5717     else
5718       ExitCounts.emplace_back(ExitBB, EL);
5719 
5720     // 2. Derive the loop's MaxBECount from each exit's max number of
5721     // non-exiting iterations. Partition the loop exits into two kinds:
5722     // LoopMustExits and LoopMayExits.
5723     //
5724     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5725     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5726     // MaxBECount is the minimum EL.MaxNotTaken of computable
5727     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
5728     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
5729     // computable EL.MaxNotTaken.
5730     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
5731         DT.dominates(ExitBB, Latch)) {
5732       if (!MustExitMaxBECount)
5733         MustExitMaxBECount = EL.MaxNotTaken;
5734       else {
5735         MustExitMaxBECount =
5736             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
5737       }
5738     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5739       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
5740         MayExitMaxBECount = EL.MaxNotTaken;
5741       else {
5742         MayExitMaxBECount =
5743             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
5744       }
5745     }
5746   }
5747   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5748     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5749   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
5750                            MaxBECount);
5751 }
5752 
5753 ScalarEvolution::ExitLimit
5754 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5755                                   bool AllowPredicates) {
5756 
5757   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5758   // at this block and remember the exit block and whether all other targets
5759   // lead to the loop header.
5760   bool MustExecuteLoopHeader = true;
5761   BasicBlock *Exit = nullptr;
5762   for (auto *SBB : successors(ExitingBlock))
5763     if (!L->contains(SBB)) {
5764       if (Exit) // Multiple exit successors.
5765         return getCouldNotCompute();
5766       Exit = SBB;
5767     } else if (SBB != L->getHeader()) {
5768       MustExecuteLoopHeader = false;
5769     }
5770 
5771   // At this point, we know we have a conditional branch that determines whether
5772   // the loop is exited.  However, we don't know if the branch is executed each
5773   // time through the loop.  If not, then the execution count of the branch will
5774   // not be equal to the trip count of the loop.
5775   //
5776   // Currently we check for this by checking to see if the Exit branch goes to
5777   // the loop header.  If so, we know it will always execute the same number of
5778   // times as the loop.  We also handle the case where the exit block *is* the
5779   // loop header.  This is common for un-rotated loops.
5780   //
5781   // If both of those tests fail, walk up the unique predecessor chain to the
5782   // header, stopping if there is an edge that doesn't exit the loop. If the
5783   // header is reached, the execution count of the branch will be equal to the
5784   // trip count of the loop.
5785   //
5786   //  More extensive analysis could be done to handle more cases here.
5787   //
5788   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5789     // The simple checks failed, try climbing the unique predecessor chain
5790     // up to the header.
5791     bool Ok = false;
5792     for (BasicBlock *BB = ExitingBlock; BB; ) {
5793       BasicBlock *Pred = BB->getUniquePredecessor();
5794       if (!Pred)
5795         return getCouldNotCompute();
5796       TerminatorInst *PredTerm = Pred->getTerminator();
5797       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5798         if (PredSucc == BB)
5799           continue;
5800         // If the predecessor has a successor that isn't BB and isn't
5801         // outside the loop, assume the worst.
5802         if (L->contains(PredSucc))
5803           return getCouldNotCompute();
5804       }
5805       if (Pred == L->getHeader()) {
5806         Ok = true;
5807         break;
5808       }
5809       BB = Pred;
5810     }
5811     if (!Ok)
5812       return getCouldNotCompute();
5813   }
5814 
5815   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5816   TerminatorInst *Term = ExitingBlock->getTerminator();
5817   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5818     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5819     // Proceed to the next level to examine the exit condition expression.
5820     return computeExitLimitFromCond(
5821         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5822         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5823   }
5824 
5825   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5826     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5827                                                 /*ControlsExit=*/IsOnlyExit);
5828 
5829   return getCouldNotCompute();
5830 }
5831 
5832 ScalarEvolution::ExitLimit
5833 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5834                                           Value *ExitCond,
5835                                           BasicBlock *TBB,
5836                                           BasicBlock *FBB,
5837                                           bool ControlsExit,
5838                                           bool AllowPredicates) {
5839   // Check if the controlling expression for this loop is an And or Or.
5840   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5841     if (BO->getOpcode() == Instruction::And) {
5842       // Recurse on the operands of the and.
5843       bool EitherMayExit = L->contains(TBB);
5844       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5845                                                ControlsExit && !EitherMayExit,
5846                                                AllowPredicates);
5847       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5848                                                ControlsExit && !EitherMayExit,
5849                                                AllowPredicates);
5850       const SCEV *BECount = getCouldNotCompute();
5851       const SCEV *MaxBECount = getCouldNotCompute();
5852       if (EitherMayExit) {
5853         // Both conditions must be true for the loop to continue executing.
5854         // Choose the less conservative count.
5855         if (EL0.ExactNotTaken == getCouldNotCompute() ||
5856             EL1.ExactNotTaken == getCouldNotCompute())
5857           BECount = getCouldNotCompute();
5858         else
5859           BECount =
5860               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
5861         if (EL0.MaxNotTaken == getCouldNotCompute())
5862           MaxBECount = EL1.MaxNotTaken;
5863         else if (EL1.MaxNotTaken == getCouldNotCompute())
5864           MaxBECount = EL0.MaxNotTaken;
5865         else
5866           MaxBECount =
5867               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
5868       } else {
5869         // Both conditions must be true at the same time for the loop to exit.
5870         // For now, be conservative.
5871         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5872         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
5873           MaxBECount = EL0.MaxNotTaken;
5874         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
5875           BECount = EL0.ExactNotTaken;
5876       }
5877 
5878       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5879       // to be more aggressive when computing BECount than when computing
5880       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
5881       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
5882       // to not.
5883       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5884           !isa<SCEVCouldNotCompute>(BECount))
5885         MaxBECount = BECount;
5886 
5887       return ExitLimit(BECount, MaxBECount, {&EL0.Predicates, &EL1.Predicates});
5888     }
5889     if (BO->getOpcode() == Instruction::Or) {
5890       // Recurse on the operands of the or.
5891       bool EitherMayExit = L->contains(FBB);
5892       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5893                                                ControlsExit && !EitherMayExit,
5894                                                AllowPredicates);
5895       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5896                                                ControlsExit && !EitherMayExit,
5897                                                AllowPredicates);
5898       const SCEV *BECount = getCouldNotCompute();
5899       const SCEV *MaxBECount = getCouldNotCompute();
5900       if (EitherMayExit) {
5901         // Both conditions must be false for the loop to continue executing.
5902         // Choose the less conservative count.
5903         if (EL0.ExactNotTaken == getCouldNotCompute() ||
5904             EL1.ExactNotTaken == getCouldNotCompute())
5905           BECount = getCouldNotCompute();
5906         else
5907           BECount =
5908               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
5909         if (EL0.MaxNotTaken == getCouldNotCompute())
5910           MaxBECount = EL1.MaxNotTaken;
5911         else if (EL1.MaxNotTaken == getCouldNotCompute())
5912           MaxBECount = EL0.MaxNotTaken;
5913         else
5914           MaxBECount =
5915               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
5916       } else {
5917         // Both conditions must be false at the same time for the loop to exit.
5918         // For now, be conservative.
5919         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5920         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
5921           MaxBECount = EL0.MaxNotTaken;
5922         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
5923           BECount = EL0.ExactNotTaken;
5924       }
5925 
5926       return ExitLimit(BECount, MaxBECount, {&EL0.Predicates, &EL1.Predicates});
5927     }
5928   }
5929 
5930   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5931   // Proceed to the next level to examine the icmp.
5932   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5933     ExitLimit EL =
5934         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5935     if (EL.hasFullInfo() || !AllowPredicates)
5936       return EL;
5937 
5938     // Try again, but use SCEV predicates this time.
5939     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5940                                     /*AllowPredicates=*/true);
5941   }
5942 
5943   // Check for a constant condition. These are normally stripped out by
5944   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5945   // preserve the CFG and is temporarily leaving constant conditions
5946   // in place.
5947   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5948     if (L->contains(FBB) == !CI->getZExtValue())
5949       // The backedge is always taken.
5950       return getCouldNotCompute();
5951     else
5952       // The backedge is never taken.
5953       return getZero(CI->getType());
5954   }
5955 
5956   // If it's not an integer or pointer comparison then compute it the hard way.
5957   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5958 }
5959 
5960 ScalarEvolution::ExitLimit
5961 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5962                                           ICmpInst *ExitCond,
5963                                           BasicBlock *TBB,
5964                                           BasicBlock *FBB,
5965                                           bool ControlsExit,
5966                                           bool AllowPredicates) {
5967 
5968   // If the condition was exit on true, convert the condition to exit on false
5969   ICmpInst::Predicate Cond;
5970   if (!L->contains(FBB))
5971     Cond = ExitCond->getPredicate();
5972   else
5973     Cond = ExitCond->getInversePredicate();
5974 
5975   // Handle common loops like: for (X = "string"; *X; ++X)
5976   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5977     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5978       ExitLimit ItCnt =
5979         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5980       if (ItCnt.hasAnyInfo())
5981         return ItCnt;
5982     }
5983 
5984   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5985   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5986 
5987   // Try to evaluate any dependencies out of the loop.
5988   LHS = getSCEVAtScope(LHS, L);
5989   RHS = getSCEVAtScope(RHS, L);
5990 
5991   // At this point, we would like to compute how many iterations of the
5992   // loop the predicate will return true for these inputs.
5993   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5994     // If there is a loop-invariant, force it into the RHS.
5995     std::swap(LHS, RHS);
5996     Cond = ICmpInst::getSwappedPredicate(Cond);
5997   }
5998 
5999   // Simplify the operands before analyzing them.
6000   (void)SimplifyICmpOperands(Cond, LHS, RHS);
6001 
6002   // If we have a comparison of a chrec against a constant, try to use value
6003   // ranges to answer this query.
6004   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
6005     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
6006       if (AddRec->getLoop() == L) {
6007         // Form the constant range.
6008         ConstantRange CompRange =
6009             ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt());
6010 
6011         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
6012         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
6013       }
6014 
6015   switch (Cond) {
6016   case ICmpInst::ICMP_NE: {                     // while (X != Y)
6017     // Convert to: while (X-Y != 0)
6018     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
6019                                 AllowPredicates);
6020     if (EL.hasAnyInfo()) return EL;
6021     break;
6022   }
6023   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
6024     // Convert to: while (X-Y == 0)
6025     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
6026     if (EL.hasAnyInfo()) return EL;
6027     break;
6028   }
6029   case ICmpInst::ICMP_SLT:
6030   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
6031     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6032     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6033                                     AllowPredicates);
6034     if (EL.hasAnyInfo()) return EL;
6035     break;
6036   }
6037   case ICmpInst::ICMP_SGT:
6038   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
6039     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6040     ExitLimit EL =
6041         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6042                             AllowPredicates);
6043     if (EL.hasAnyInfo()) return EL;
6044     break;
6045   }
6046   default:
6047     break;
6048   }
6049 
6050   auto *ExhaustiveCount =
6051       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6052 
6053   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
6054     return ExhaustiveCount;
6055 
6056   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
6057                                       ExitCond->getOperand(1), L, Cond);
6058 }
6059 
6060 ScalarEvolution::ExitLimit
6061 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6062                                                       SwitchInst *Switch,
6063                                                       BasicBlock *ExitingBlock,
6064                                                       bool ControlsExit) {
6065   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6066 
6067   // Give up if the exit is the default dest of a switch.
6068   if (Switch->getDefaultDest() == ExitingBlock)
6069     return getCouldNotCompute();
6070 
6071   assert(L->contains(Switch->getDefaultDest()) &&
6072          "Default case must not exit the loop!");
6073   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6074   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6075 
6076   // while (X != Y) --> while (X-Y != 0)
6077   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6078   if (EL.hasAnyInfo())
6079     return EL;
6080 
6081   return getCouldNotCompute();
6082 }
6083 
6084 static ConstantInt *
6085 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6086                                 ScalarEvolution &SE) {
6087   const SCEV *InVal = SE.getConstant(C);
6088   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6089   assert(isa<SCEVConstant>(Val) &&
6090          "Evaluation of SCEV at constant didn't fold correctly?");
6091   return cast<SCEVConstant>(Val)->getValue();
6092 }
6093 
6094 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
6095 /// compute the backedge execution count.
6096 ScalarEvolution::ExitLimit
6097 ScalarEvolution::computeLoadConstantCompareExitLimit(
6098   LoadInst *LI,
6099   Constant *RHS,
6100   const Loop *L,
6101   ICmpInst::Predicate predicate) {
6102 
6103   if (LI->isVolatile()) return getCouldNotCompute();
6104 
6105   // Check to see if the loaded pointer is a getelementptr of a global.
6106   // TODO: Use SCEV instead of manually grubbing with GEPs.
6107   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6108   if (!GEP) return getCouldNotCompute();
6109 
6110   // Make sure that it is really a constant global we are gepping, with an
6111   // initializer, and make sure the first IDX is really 0.
6112   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6113   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6114       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6115       !cast<Constant>(GEP->getOperand(1))->isNullValue())
6116     return getCouldNotCompute();
6117 
6118   // Okay, we allow one non-constant index into the GEP instruction.
6119   Value *VarIdx = nullptr;
6120   std::vector<Constant*> Indexes;
6121   unsigned VarIdxNum = 0;
6122   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6123     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6124       Indexes.push_back(CI);
6125     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6126       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
6127       VarIdx = GEP->getOperand(i);
6128       VarIdxNum = i-2;
6129       Indexes.push_back(nullptr);
6130     }
6131 
6132   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6133   if (!VarIdx)
6134     return getCouldNotCompute();
6135 
6136   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6137   // Check to see if X is a loop variant variable value now.
6138   const SCEV *Idx = getSCEV(VarIdx);
6139   Idx = getSCEVAtScope(Idx, L);
6140 
6141   // We can only recognize very limited forms of loop index expressions, in
6142   // particular, only affine AddRec's like {C1,+,C2}.
6143   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6144   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6145       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6146       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6147     return getCouldNotCompute();
6148 
6149   unsigned MaxSteps = MaxBruteForceIterations;
6150   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6151     ConstantInt *ItCst = ConstantInt::get(
6152                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
6153     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6154 
6155     // Form the GEP offset.
6156     Indexes[VarIdxNum] = Val;
6157 
6158     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6159                                                          Indexes);
6160     if (!Result) break;  // Cannot compute!
6161 
6162     // Evaluate the condition for this iteration.
6163     Result = ConstantExpr::getICmp(predicate, Result, RHS);
6164     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
6165     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6166       ++NumArrayLenItCounts;
6167       return getConstant(ItCst);   // Found terminating iteration!
6168     }
6169   }
6170   return getCouldNotCompute();
6171 }
6172 
6173 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6174     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6175   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6176   if (!RHS)
6177     return getCouldNotCompute();
6178 
6179   const BasicBlock *Latch = L->getLoopLatch();
6180   if (!Latch)
6181     return getCouldNotCompute();
6182 
6183   const BasicBlock *Predecessor = L->getLoopPredecessor();
6184   if (!Predecessor)
6185     return getCouldNotCompute();
6186 
6187   // Return true if V is of the form "LHS `shift_op` <positive constant>".
6188   // Return LHS in OutLHS and shift_opt in OutOpCode.
6189   auto MatchPositiveShift =
6190       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6191 
6192     using namespace PatternMatch;
6193 
6194     ConstantInt *ShiftAmt;
6195     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6196       OutOpCode = Instruction::LShr;
6197     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6198       OutOpCode = Instruction::AShr;
6199     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6200       OutOpCode = Instruction::Shl;
6201     else
6202       return false;
6203 
6204     return ShiftAmt->getValue().isStrictlyPositive();
6205   };
6206 
6207   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6208   //
6209   // loop:
6210   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6211   //   %iv.shifted = lshr i32 %iv, <positive constant>
6212   //
6213   // Return true on a succesful match.  Return the corresponding PHI node (%iv
6214   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6215   auto MatchShiftRecurrence =
6216       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6217     Optional<Instruction::BinaryOps> PostShiftOpCode;
6218 
6219     {
6220       Instruction::BinaryOps OpC;
6221       Value *V;
6222 
6223       // If we encounter a shift instruction, "peel off" the shift operation,
6224       // and remember that we did so.  Later when we inspect %iv's backedge
6225       // value, we will make sure that the backedge value uses the same
6226       // operation.
6227       //
6228       // Note: the peeled shift operation does not have to be the same
6229       // instruction as the one feeding into the PHI's backedge value.  We only
6230       // really care about it being the same *kind* of shift instruction --
6231       // that's all that is required for our later inferences to hold.
6232       if (MatchPositiveShift(LHS, V, OpC)) {
6233         PostShiftOpCode = OpC;
6234         LHS = V;
6235       }
6236     }
6237 
6238     PNOut = dyn_cast<PHINode>(LHS);
6239     if (!PNOut || PNOut->getParent() != L->getHeader())
6240       return false;
6241 
6242     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6243     Value *OpLHS;
6244 
6245     return
6246         // The backedge value for the PHI node must be a shift by a positive
6247         // amount
6248         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6249 
6250         // of the PHI node itself
6251         OpLHS == PNOut &&
6252 
6253         // and the kind of shift should be match the kind of shift we peeled
6254         // off, if any.
6255         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6256   };
6257 
6258   PHINode *PN;
6259   Instruction::BinaryOps OpCode;
6260   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6261     return getCouldNotCompute();
6262 
6263   const DataLayout &DL = getDataLayout();
6264 
6265   // The key rationale for this optimization is that for some kinds of shift
6266   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6267   // within a finite number of iterations.  If the condition guarding the
6268   // backedge (in the sense that the backedge is taken if the condition is true)
6269   // is false for the value the shift recurrence stabilizes to, then we know
6270   // that the backedge is taken only a finite number of times.
6271 
6272   ConstantInt *StableValue = nullptr;
6273   switch (OpCode) {
6274   default:
6275     llvm_unreachable("Impossible case!");
6276 
6277   case Instruction::AShr: {
6278     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6279     // bitwidth(K) iterations.
6280     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6281     bool KnownZero, KnownOne;
6282     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6283                    Predecessor->getTerminator(), &DT);
6284     auto *Ty = cast<IntegerType>(RHS->getType());
6285     if (KnownZero)
6286       StableValue = ConstantInt::get(Ty, 0);
6287     else if (KnownOne)
6288       StableValue = ConstantInt::get(Ty, -1, true);
6289     else
6290       return getCouldNotCompute();
6291 
6292     break;
6293   }
6294   case Instruction::LShr:
6295   case Instruction::Shl:
6296     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6297     // stabilize to 0 in at most bitwidth(K) iterations.
6298     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6299     break;
6300   }
6301 
6302   auto *Result =
6303       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6304   assert(Result->getType()->isIntegerTy(1) &&
6305          "Otherwise cannot be an operand to a branch instruction");
6306 
6307   if (Result->isZeroValue()) {
6308     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6309     const SCEV *UpperBound =
6310         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6311     return ExitLimit(getCouldNotCompute(), UpperBound);
6312   }
6313 
6314   return getCouldNotCompute();
6315 }
6316 
6317 /// Return true if we can constant fold an instruction of the specified type,
6318 /// assuming that all operands were constants.
6319 static bool CanConstantFold(const Instruction *I) {
6320   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6321       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6322       isa<LoadInst>(I))
6323     return true;
6324 
6325   if (const CallInst *CI = dyn_cast<CallInst>(I))
6326     if (const Function *F = CI->getCalledFunction())
6327       return canConstantFoldCallTo(F);
6328   return false;
6329 }
6330 
6331 /// Determine whether this instruction can constant evolve within this loop
6332 /// assuming its operands can all constant evolve.
6333 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6334   // An instruction outside of the loop can't be derived from a loop PHI.
6335   if (!L->contains(I)) return false;
6336 
6337   if (isa<PHINode>(I)) {
6338     // We don't currently keep track of the control flow needed to evaluate
6339     // PHIs, so we cannot handle PHIs inside of loops.
6340     return L->getHeader() == I->getParent();
6341   }
6342 
6343   // If we won't be able to constant fold this expression even if the operands
6344   // are constants, bail early.
6345   return CanConstantFold(I);
6346 }
6347 
6348 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6349 /// recursing through each instruction operand until reaching a loop header phi.
6350 static PHINode *
6351 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6352                                DenseMap<Instruction *, PHINode *> &PHIMap) {
6353 
6354   // Otherwise, we can evaluate this instruction if all of its operands are
6355   // constant or derived from a PHI node themselves.
6356   PHINode *PHI = nullptr;
6357   for (Value *Op : UseInst->operands()) {
6358     if (isa<Constant>(Op)) continue;
6359 
6360     Instruction *OpInst = dyn_cast<Instruction>(Op);
6361     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6362 
6363     PHINode *P = dyn_cast<PHINode>(OpInst);
6364     if (!P)
6365       // If this operand is already visited, reuse the prior result.
6366       // We may have P != PHI if this is the deepest point at which the
6367       // inconsistent paths meet.
6368       P = PHIMap.lookup(OpInst);
6369     if (!P) {
6370       // Recurse and memoize the results, whether a phi is found or not.
6371       // This recursive call invalidates pointers into PHIMap.
6372       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6373       PHIMap[OpInst] = P;
6374     }
6375     if (!P)
6376       return nullptr;  // Not evolving from PHI
6377     if (PHI && PHI != P)
6378       return nullptr;  // Evolving from multiple different PHIs.
6379     PHI = P;
6380   }
6381   // This is a expression evolving from a constant PHI!
6382   return PHI;
6383 }
6384 
6385 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6386 /// in the loop that V is derived from.  We allow arbitrary operations along the
6387 /// way, but the operands of an operation must either be constants or a value
6388 /// derived from a constant PHI.  If this expression does not fit with these
6389 /// constraints, return null.
6390 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6391   Instruction *I = dyn_cast<Instruction>(V);
6392   if (!I || !canConstantEvolve(I, L)) return nullptr;
6393 
6394   if (PHINode *PN = dyn_cast<PHINode>(I))
6395     return PN;
6396 
6397   // Record non-constant instructions contained by the loop.
6398   DenseMap<Instruction *, PHINode *> PHIMap;
6399   return getConstantEvolvingPHIOperands(I, L, PHIMap);
6400 }
6401 
6402 /// EvaluateExpression - Given an expression that passes the
6403 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6404 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6405 /// reason, return null.
6406 static Constant *EvaluateExpression(Value *V, const Loop *L,
6407                                     DenseMap<Instruction *, Constant *> &Vals,
6408                                     const DataLayout &DL,
6409                                     const TargetLibraryInfo *TLI) {
6410   // Convenient constant check, but redundant for recursive calls.
6411   if (Constant *C = dyn_cast<Constant>(V)) return C;
6412   Instruction *I = dyn_cast<Instruction>(V);
6413   if (!I) return nullptr;
6414 
6415   if (Constant *C = Vals.lookup(I)) return C;
6416 
6417   // An instruction inside the loop depends on a value outside the loop that we
6418   // weren't given a mapping for, or a value such as a call inside the loop.
6419   if (!canConstantEvolve(I, L)) return nullptr;
6420 
6421   // An unmapped PHI can be due to a branch or another loop inside this loop,
6422   // or due to this not being the initial iteration through a loop where we
6423   // couldn't compute the evolution of this particular PHI last time.
6424   if (isa<PHINode>(I)) return nullptr;
6425 
6426   std::vector<Constant*> Operands(I->getNumOperands());
6427 
6428   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6429     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6430     if (!Operand) {
6431       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6432       if (!Operands[i]) return nullptr;
6433       continue;
6434     }
6435     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6436     Vals[Operand] = C;
6437     if (!C) return nullptr;
6438     Operands[i] = C;
6439   }
6440 
6441   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6442     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6443                                            Operands[1], DL, TLI);
6444   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6445     if (!LI->isVolatile())
6446       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6447   }
6448   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6449 }
6450 
6451 
6452 // If every incoming value to PN except the one for BB is a specific Constant,
6453 // return that, else return nullptr.
6454 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6455   Constant *IncomingVal = nullptr;
6456 
6457   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6458     if (PN->getIncomingBlock(i) == BB)
6459       continue;
6460 
6461     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6462     if (!CurrentVal)
6463       return nullptr;
6464 
6465     if (IncomingVal != CurrentVal) {
6466       if (IncomingVal)
6467         return nullptr;
6468       IncomingVal = CurrentVal;
6469     }
6470   }
6471 
6472   return IncomingVal;
6473 }
6474 
6475 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6476 /// in the header of its containing loop, we know the loop executes a
6477 /// constant number of times, and the PHI node is just a recurrence
6478 /// involving constants, fold it.
6479 Constant *
6480 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6481                                                    const APInt &BEs,
6482                                                    const Loop *L) {
6483   auto I = ConstantEvolutionLoopExitValue.find(PN);
6484   if (I != ConstantEvolutionLoopExitValue.end())
6485     return I->second;
6486 
6487   if (BEs.ugt(MaxBruteForceIterations))
6488     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6489 
6490   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6491 
6492   DenseMap<Instruction *, Constant *> CurrentIterVals;
6493   BasicBlock *Header = L->getHeader();
6494   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6495 
6496   BasicBlock *Latch = L->getLoopLatch();
6497   if (!Latch)
6498     return nullptr;
6499 
6500   for (auto &I : *Header) {
6501     PHINode *PHI = dyn_cast<PHINode>(&I);
6502     if (!PHI) break;
6503     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6504     if (!StartCST) continue;
6505     CurrentIterVals[PHI] = StartCST;
6506   }
6507   if (!CurrentIterVals.count(PN))
6508     return RetVal = nullptr;
6509 
6510   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6511 
6512   // Execute the loop symbolically to determine the exit value.
6513   if (BEs.getActiveBits() >= 32)
6514     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6515 
6516   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6517   unsigned IterationNum = 0;
6518   const DataLayout &DL = getDataLayout();
6519   for (; ; ++IterationNum) {
6520     if (IterationNum == NumIterations)
6521       return RetVal = CurrentIterVals[PN];  // Got exit value!
6522 
6523     // Compute the value of the PHIs for the next iteration.
6524     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6525     DenseMap<Instruction *, Constant *> NextIterVals;
6526     Constant *NextPHI =
6527         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6528     if (!NextPHI)
6529       return nullptr;        // Couldn't evaluate!
6530     NextIterVals[PN] = NextPHI;
6531 
6532     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6533 
6534     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6535     // cease to be able to evaluate one of them or if they stop evolving,
6536     // because that doesn't necessarily prevent us from computing PN.
6537     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6538     for (const auto &I : CurrentIterVals) {
6539       PHINode *PHI = dyn_cast<PHINode>(I.first);
6540       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6541       PHIsToCompute.emplace_back(PHI, I.second);
6542     }
6543     // We use two distinct loops because EvaluateExpression may invalidate any
6544     // iterators into CurrentIterVals.
6545     for (const auto &I : PHIsToCompute) {
6546       PHINode *PHI = I.first;
6547       Constant *&NextPHI = NextIterVals[PHI];
6548       if (!NextPHI) {   // Not already computed.
6549         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6550         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6551       }
6552       if (NextPHI != I.second)
6553         StoppedEvolving = false;
6554     }
6555 
6556     // If all entries in CurrentIterVals == NextIterVals then we can stop
6557     // iterating, the loop can't continue to change.
6558     if (StoppedEvolving)
6559       return RetVal = CurrentIterVals[PN];
6560 
6561     CurrentIterVals.swap(NextIterVals);
6562   }
6563 }
6564 
6565 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6566                                                           Value *Cond,
6567                                                           bool ExitWhen) {
6568   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6569   if (!PN) return getCouldNotCompute();
6570 
6571   // If the loop is canonicalized, the PHI will have exactly two entries.
6572   // That's the only form we support here.
6573   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6574 
6575   DenseMap<Instruction *, Constant *> CurrentIterVals;
6576   BasicBlock *Header = L->getHeader();
6577   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6578 
6579   BasicBlock *Latch = L->getLoopLatch();
6580   assert(Latch && "Should follow from NumIncomingValues == 2!");
6581 
6582   for (auto &I : *Header) {
6583     PHINode *PHI = dyn_cast<PHINode>(&I);
6584     if (!PHI)
6585       break;
6586     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6587     if (!StartCST) continue;
6588     CurrentIterVals[PHI] = StartCST;
6589   }
6590   if (!CurrentIterVals.count(PN))
6591     return getCouldNotCompute();
6592 
6593   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6594   // the loop symbolically to determine when the condition gets a value of
6595   // "ExitWhen".
6596   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6597   const DataLayout &DL = getDataLayout();
6598   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6599     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6600         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6601 
6602     // Couldn't symbolically evaluate.
6603     if (!CondVal) return getCouldNotCompute();
6604 
6605     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6606       ++NumBruteForceTripCountsComputed;
6607       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6608     }
6609 
6610     // Update all the PHI nodes for the next iteration.
6611     DenseMap<Instruction *, Constant *> NextIterVals;
6612 
6613     // Create a list of which PHIs we need to compute. We want to do this before
6614     // calling EvaluateExpression on them because that may invalidate iterators
6615     // into CurrentIterVals.
6616     SmallVector<PHINode *, 8> PHIsToCompute;
6617     for (const auto &I : CurrentIterVals) {
6618       PHINode *PHI = dyn_cast<PHINode>(I.first);
6619       if (!PHI || PHI->getParent() != Header) continue;
6620       PHIsToCompute.push_back(PHI);
6621     }
6622     for (PHINode *PHI : PHIsToCompute) {
6623       Constant *&NextPHI = NextIterVals[PHI];
6624       if (NextPHI) continue;    // Already computed!
6625 
6626       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6627       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6628     }
6629     CurrentIterVals.swap(NextIterVals);
6630   }
6631 
6632   // Too many iterations were needed to evaluate.
6633   return getCouldNotCompute();
6634 }
6635 
6636 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6637   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6638       ValuesAtScopes[V];
6639   // Check to see if we've folded this expression at this loop before.
6640   for (auto &LS : Values)
6641     if (LS.first == L)
6642       return LS.second ? LS.second : V;
6643 
6644   Values.emplace_back(L, nullptr);
6645 
6646   // Otherwise compute it.
6647   const SCEV *C = computeSCEVAtScope(V, L);
6648   for (auto &LS : reverse(ValuesAtScopes[V]))
6649     if (LS.first == L) {
6650       LS.second = C;
6651       break;
6652     }
6653   return C;
6654 }
6655 
6656 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6657 /// will return Constants for objects which aren't represented by a
6658 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6659 /// Returns NULL if the SCEV isn't representable as a Constant.
6660 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6661   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6662     case scCouldNotCompute:
6663     case scAddRecExpr:
6664       break;
6665     case scConstant:
6666       return cast<SCEVConstant>(V)->getValue();
6667     case scUnknown:
6668       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6669     case scSignExtend: {
6670       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6671       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6672         return ConstantExpr::getSExt(CastOp, SS->getType());
6673       break;
6674     }
6675     case scZeroExtend: {
6676       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6677       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6678         return ConstantExpr::getZExt(CastOp, SZ->getType());
6679       break;
6680     }
6681     case scTruncate: {
6682       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6683       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6684         return ConstantExpr::getTrunc(CastOp, ST->getType());
6685       break;
6686     }
6687     case scAddExpr: {
6688       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6689       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6690         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6691           unsigned AS = PTy->getAddressSpace();
6692           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6693           C = ConstantExpr::getBitCast(C, DestPtrTy);
6694         }
6695         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6696           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6697           if (!C2) return nullptr;
6698 
6699           // First pointer!
6700           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6701             unsigned AS = C2->getType()->getPointerAddressSpace();
6702             std::swap(C, C2);
6703             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6704             // The offsets have been converted to bytes.  We can add bytes to an
6705             // i8* by GEP with the byte count in the first index.
6706             C = ConstantExpr::getBitCast(C, DestPtrTy);
6707           }
6708 
6709           // Don't bother trying to sum two pointers. We probably can't
6710           // statically compute a load that results from it anyway.
6711           if (C2->getType()->isPointerTy())
6712             return nullptr;
6713 
6714           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6715             if (PTy->getElementType()->isStructTy())
6716               C2 = ConstantExpr::getIntegerCast(
6717                   C2, Type::getInt32Ty(C->getContext()), true);
6718             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6719           } else
6720             C = ConstantExpr::getAdd(C, C2);
6721         }
6722         return C;
6723       }
6724       break;
6725     }
6726     case scMulExpr: {
6727       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6728       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6729         // Don't bother with pointers at all.
6730         if (C->getType()->isPointerTy()) return nullptr;
6731         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6732           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6733           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6734           C = ConstantExpr::getMul(C, C2);
6735         }
6736         return C;
6737       }
6738       break;
6739     }
6740     case scUDivExpr: {
6741       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6742       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6743         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6744           if (LHS->getType() == RHS->getType())
6745             return ConstantExpr::getUDiv(LHS, RHS);
6746       break;
6747     }
6748     case scSMaxExpr:
6749     case scUMaxExpr:
6750       break; // TODO: smax, umax.
6751   }
6752   return nullptr;
6753 }
6754 
6755 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6756   if (isa<SCEVConstant>(V)) return V;
6757 
6758   // If this instruction is evolved from a constant-evolving PHI, compute the
6759   // exit value from the loop without using SCEVs.
6760   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6761     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6762       const Loop *LI = this->LI[I->getParent()];
6763       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6764         if (PHINode *PN = dyn_cast<PHINode>(I))
6765           if (PN->getParent() == LI->getHeader()) {
6766             // Okay, there is no closed form solution for the PHI node.  Check
6767             // to see if the loop that contains it has a known backedge-taken
6768             // count.  If so, we may be able to force computation of the exit
6769             // value.
6770             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6771             if (const SCEVConstant *BTCC =
6772                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6773               // Okay, we know how many times the containing loop executes.  If
6774               // this is a constant evolving PHI node, get the final value at
6775               // the specified iteration number.
6776               Constant *RV =
6777                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6778               if (RV) return getSCEV(RV);
6779             }
6780           }
6781 
6782       // Okay, this is an expression that we cannot symbolically evaluate
6783       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6784       // the arguments into constants, and if so, try to constant propagate the
6785       // result.  This is particularly useful for computing loop exit values.
6786       if (CanConstantFold(I)) {
6787         SmallVector<Constant *, 4> Operands;
6788         bool MadeImprovement = false;
6789         for (Value *Op : I->operands()) {
6790           if (Constant *C = dyn_cast<Constant>(Op)) {
6791             Operands.push_back(C);
6792             continue;
6793           }
6794 
6795           // If any of the operands is non-constant and if they are
6796           // non-integer and non-pointer, don't even try to analyze them
6797           // with scev techniques.
6798           if (!isSCEVable(Op->getType()))
6799             return V;
6800 
6801           const SCEV *OrigV = getSCEV(Op);
6802           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6803           MadeImprovement |= OrigV != OpV;
6804 
6805           Constant *C = BuildConstantFromSCEV(OpV);
6806           if (!C) return V;
6807           if (C->getType() != Op->getType())
6808             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6809                                                               Op->getType(),
6810                                                               false),
6811                                       C, Op->getType());
6812           Operands.push_back(C);
6813         }
6814 
6815         // Check to see if getSCEVAtScope actually made an improvement.
6816         if (MadeImprovement) {
6817           Constant *C = nullptr;
6818           const DataLayout &DL = getDataLayout();
6819           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6820             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6821                                                 Operands[1], DL, &TLI);
6822           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6823             if (!LI->isVolatile())
6824               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6825           } else
6826             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6827           if (!C) return V;
6828           return getSCEV(C);
6829         }
6830       }
6831     }
6832 
6833     // This is some other type of SCEVUnknown, just return it.
6834     return V;
6835   }
6836 
6837   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6838     // Avoid performing the look-up in the common case where the specified
6839     // expression has no loop-variant portions.
6840     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6841       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6842       if (OpAtScope != Comm->getOperand(i)) {
6843         // Okay, at least one of these operands is loop variant but might be
6844         // foldable.  Build a new instance of the folded commutative expression.
6845         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6846                                             Comm->op_begin()+i);
6847         NewOps.push_back(OpAtScope);
6848 
6849         for (++i; i != e; ++i) {
6850           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6851           NewOps.push_back(OpAtScope);
6852         }
6853         if (isa<SCEVAddExpr>(Comm))
6854           return getAddExpr(NewOps);
6855         if (isa<SCEVMulExpr>(Comm))
6856           return getMulExpr(NewOps);
6857         if (isa<SCEVSMaxExpr>(Comm))
6858           return getSMaxExpr(NewOps);
6859         if (isa<SCEVUMaxExpr>(Comm))
6860           return getUMaxExpr(NewOps);
6861         llvm_unreachable("Unknown commutative SCEV type!");
6862       }
6863     }
6864     // If we got here, all operands are loop invariant.
6865     return Comm;
6866   }
6867 
6868   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6869     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6870     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6871     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6872       return Div;   // must be loop invariant
6873     return getUDivExpr(LHS, RHS);
6874   }
6875 
6876   // If this is a loop recurrence for a loop that does not contain L, then we
6877   // are dealing with the final value computed by the loop.
6878   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6879     // First, attempt to evaluate each operand.
6880     // Avoid performing the look-up in the common case where the specified
6881     // expression has no loop-variant portions.
6882     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6883       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6884       if (OpAtScope == AddRec->getOperand(i))
6885         continue;
6886 
6887       // Okay, at least one of these operands is loop variant but might be
6888       // foldable.  Build a new instance of the folded commutative expression.
6889       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6890                                           AddRec->op_begin()+i);
6891       NewOps.push_back(OpAtScope);
6892       for (++i; i != e; ++i)
6893         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6894 
6895       const SCEV *FoldedRec =
6896         getAddRecExpr(NewOps, AddRec->getLoop(),
6897                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6898       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6899       // The addrec may be folded to a nonrecurrence, for example, if the
6900       // induction variable is multiplied by zero after constant folding. Go
6901       // ahead and return the folded value.
6902       if (!AddRec)
6903         return FoldedRec;
6904       break;
6905     }
6906 
6907     // If the scope is outside the addrec's loop, evaluate it by using the
6908     // loop exit value of the addrec.
6909     if (!AddRec->getLoop()->contains(L)) {
6910       // To evaluate this recurrence, we need to know how many times the AddRec
6911       // loop iterates.  Compute this now.
6912       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6913       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6914 
6915       // Then, evaluate the AddRec.
6916       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6917     }
6918 
6919     return AddRec;
6920   }
6921 
6922   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6923     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6924     if (Op == Cast->getOperand())
6925       return Cast;  // must be loop invariant
6926     return getZeroExtendExpr(Op, Cast->getType());
6927   }
6928 
6929   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6930     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6931     if (Op == Cast->getOperand())
6932       return Cast;  // must be loop invariant
6933     return getSignExtendExpr(Op, Cast->getType());
6934   }
6935 
6936   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6937     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6938     if (Op == Cast->getOperand())
6939       return Cast;  // must be loop invariant
6940     return getTruncateExpr(Op, Cast->getType());
6941   }
6942 
6943   llvm_unreachable("Unknown SCEV type!");
6944 }
6945 
6946 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6947   return getSCEVAtScope(getSCEV(V), L);
6948 }
6949 
6950 /// Finds the minimum unsigned root of the following equation:
6951 ///
6952 ///     A * X = B (mod N)
6953 ///
6954 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6955 /// A and B isn't important.
6956 ///
6957 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6958 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6959                                                ScalarEvolution &SE) {
6960   uint32_t BW = A.getBitWidth();
6961   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6962   assert(A != 0 && "A must be non-zero.");
6963 
6964   // 1. D = gcd(A, N)
6965   //
6966   // The gcd of A and N may have only one prime factor: 2. The number of
6967   // trailing zeros in A is its multiplicity
6968   uint32_t Mult2 = A.countTrailingZeros();
6969   // D = 2^Mult2
6970 
6971   // 2. Check if B is divisible by D.
6972   //
6973   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6974   // is not less than multiplicity of this prime factor for D.
6975   if (B.countTrailingZeros() < Mult2)
6976     return SE.getCouldNotCompute();
6977 
6978   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6979   // modulo (N / D).
6980   //
6981   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6982   // bit width during computations.
6983   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6984   APInt Mod(BW + 1, 0);
6985   Mod.setBit(BW - Mult2);  // Mod = N / D
6986   APInt I = AD.multiplicativeInverse(Mod);
6987 
6988   // 4. Compute the minimum unsigned root of the equation:
6989   // I * (B / D) mod (N / D)
6990   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6991 
6992   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6993   // bits.
6994   return SE.getConstant(Result.trunc(BW));
6995 }
6996 
6997 /// Find the roots of the quadratic equation for the given quadratic chrec
6998 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
6999 /// two SCEVCouldNotCompute objects.
7000 ///
7001 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
7002 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
7003   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
7004   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
7005   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
7006   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
7007 
7008   // We currently can only solve this if the coefficients are constants.
7009   if (!LC || !MC || !NC)
7010     return None;
7011 
7012   uint32_t BitWidth = LC->getAPInt().getBitWidth();
7013   const APInt &L = LC->getAPInt();
7014   const APInt &M = MC->getAPInt();
7015   const APInt &N = NC->getAPInt();
7016   APInt Two(BitWidth, 2);
7017   APInt Four(BitWidth, 4);
7018 
7019   {
7020     using namespace APIntOps;
7021     const APInt& C = L;
7022     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
7023     // The B coefficient is M-N/2
7024     APInt B(M);
7025     B -= sdiv(N,Two);
7026 
7027     // The A coefficient is N/2
7028     APInt A(N.sdiv(Two));
7029 
7030     // Compute the B^2-4ac term.
7031     APInt SqrtTerm(B);
7032     SqrtTerm *= B;
7033     SqrtTerm -= Four * (A * C);
7034 
7035     if (SqrtTerm.isNegative()) {
7036       // The loop is provably infinite.
7037       return None;
7038     }
7039 
7040     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7041     // integer value or else APInt::sqrt() will assert.
7042     APInt SqrtVal(SqrtTerm.sqrt());
7043 
7044     // Compute the two solutions for the quadratic formula.
7045     // The divisions must be performed as signed divisions.
7046     APInt NegB(-B);
7047     APInt TwoA(A << 1);
7048     if (TwoA.isMinValue())
7049       return None;
7050 
7051     LLVMContext &Context = SE.getContext();
7052 
7053     ConstantInt *Solution1 =
7054       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7055     ConstantInt *Solution2 =
7056       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7057 
7058     return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7059                           cast<SCEVConstant>(SE.getConstant(Solution2)));
7060   } // end APIntOps namespace
7061 }
7062 
7063 ScalarEvolution::ExitLimit
7064 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7065                               bool AllowPredicates) {
7066 
7067   // This is only used for loops with a "x != y" exit test. The exit condition
7068   // is now expressed as a single expression, V = x-y. So the exit test is
7069   // effectively V != 0.  We know and take advantage of the fact that this
7070   // expression only being used in a comparison by zero context.
7071 
7072   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
7073   // If the value is a constant
7074   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7075     // If the value is already zero, the branch will execute zero times.
7076     if (C->getValue()->isZero()) return C;
7077     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7078   }
7079 
7080   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7081   if (!AddRec && AllowPredicates)
7082     // Try to make this an AddRec using runtime tests, in the first X
7083     // iterations of this loop, where X is the SCEV expression found by the
7084     // algorithm below.
7085     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
7086 
7087   if (!AddRec || AddRec->getLoop() != L)
7088     return getCouldNotCompute();
7089 
7090   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7091   // the quadratic equation to solve it.
7092   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7093     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
7094       const SCEVConstant *R1 = Roots->first;
7095       const SCEVConstant *R2 = Roots->second;
7096       // Pick the smallest positive root value.
7097       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
7098               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
7099         if (!CB->getZExtValue())
7100           std::swap(R1, R2); // R1 is the minimum root now.
7101 
7102         // We can only use this value if the chrec ends up with an exact zero
7103         // value at this index.  When solving for "X*X != 5", for example, we
7104         // should not accept a root of 2.
7105         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7106         if (Val->isZero())
7107           return ExitLimit(R1, R1, Predicates); // We found a quadratic root!
7108       }
7109     }
7110     return getCouldNotCompute();
7111   }
7112 
7113   // Otherwise we can only handle this if it is affine.
7114   if (!AddRec->isAffine())
7115     return getCouldNotCompute();
7116 
7117   // If this is an affine expression, the execution count of this branch is
7118   // the minimum unsigned root of the following equation:
7119   //
7120   //     Start + Step*N = 0 (mod 2^BW)
7121   //
7122   // equivalent to:
7123   //
7124   //             Step*N = -Start (mod 2^BW)
7125   //
7126   // where BW is the common bit width of Start and Step.
7127 
7128   // Get the initial value for the loop.
7129   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7130   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7131 
7132   // For now we handle only constant steps.
7133   //
7134   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7135   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7136   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7137   // We have not yet seen any such cases.
7138   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7139   if (!StepC || StepC->getValue()->equalsInt(0))
7140     return getCouldNotCompute();
7141 
7142   // For positive steps (counting up until unsigned overflow):
7143   //   N = -Start/Step (as unsigned)
7144   // For negative steps (counting down to zero):
7145   //   N = Start/-Step
7146   // First compute the unsigned distance from zero in the direction of Step.
7147   bool CountDown = StepC->getAPInt().isNegative();
7148   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7149 
7150   // Handle unitary steps, which cannot wraparound.
7151   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7152   //   N = Distance (as unsigned)
7153   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7154     ConstantRange CR = getUnsignedRange(Start);
7155     const SCEV *MaxBECount;
7156     if (!CountDown && CR.getUnsignedMin().isMinValue())
7157       // When counting up, the worst starting value is 1, not 0.
7158       MaxBECount = CR.getUnsignedMax().isMinValue()
7159         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7160         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7161     else
7162       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7163                                          : -CR.getUnsignedMin());
7164     return ExitLimit(Distance, MaxBECount, Predicates);
7165   }
7166 
7167   // As a special case, handle the instance where Step is a positive power of
7168   // two. In this case, determining whether Step divides Distance evenly can be
7169   // done by counting and comparing the number of trailing zeros of Step and
7170   // Distance.
7171   if (!CountDown) {
7172     const APInt &StepV = StepC->getAPInt();
7173     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
7174     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7175     // case is not handled as this code is guarded by !CountDown.
7176     if (StepV.isPowerOf2() &&
7177         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7178       // Here we've constrained the equation to be of the form
7179       //
7180       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
7181       //
7182       // where we're operating on a W bit wide integer domain and k is
7183       // non-negative.  The smallest unsigned solution for X is the trip count.
7184       //
7185       // (0) is equivalent to:
7186       //
7187       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
7188       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7189       // <=>  2^k * Distance' - X = L * 2^(W - N)
7190       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
7191       //
7192       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7193       // by 2^(W - N).
7194       //
7195       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
7196       //
7197       // E.g. say we're solving
7198       //
7199       //   2 * Val = 2 * X  (in i8)   ... (3)
7200       //
7201       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7202       //
7203       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7204       // necessarily the smallest unsigned value of X that satisfies (3).
7205       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7206       // is i8 1, not i8 -127
7207 
7208       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7209 
7210       // Since SCEV does not have a URem node, we construct one using a truncate
7211       // and a zero extend.
7212 
7213       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7214       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7215       auto *WideTy = Distance->getType();
7216 
7217       const SCEV *Limit =
7218           getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7219       return ExitLimit(Limit, Limit, Predicates);
7220     }
7221   }
7222 
7223   // If the condition controls loop exit (the loop exits only if the expression
7224   // is true) and the addition is no-wrap we can use unsigned divide to
7225   // compute the backedge count.  In this case, the step may not divide the
7226   // distance, but we don't care because if the condition is "missed" the loop
7227   // will have undefined behavior due to wrapping.
7228   if (ControlsExit && AddRec->hasNoSelfWrap() &&
7229       loopHasNoAbnormalExits(AddRec->getLoop())) {
7230     const SCEV *Exact =
7231         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7232     return ExitLimit(Exact, Exact, Predicates);
7233   }
7234 
7235   // Then, try to solve the above equation provided that Start is constant.
7236   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7237     const SCEV *E = SolveLinEquationWithOverflow(
7238         StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7239     return ExitLimit(E, E, Predicates);
7240   }
7241   return getCouldNotCompute();
7242 }
7243 
7244 ScalarEvolution::ExitLimit
7245 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
7246   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7247   // handle them yet except for the trivial case.  This could be expanded in the
7248   // future as needed.
7249 
7250   // If the value is a constant, check to see if it is known to be non-zero
7251   // already.  If so, the backedge will execute zero times.
7252   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7253     if (!C->getValue()->isNullValue())
7254       return getZero(C->getType());
7255     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7256   }
7257 
7258   // We could implement others, but I really doubt anyone writes loops like
7259   // this, and if they did, they would already be constant folded.
7260   return getCouldNotCompute();
7261 }
7262 
7263 std::pair<BasicBlock *, BasicBlock *>
7264 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7265   // If the block has a unique predecessor, then there is no path from the
7266   // predecessor to the block that does not go through the direct edge
7267   // from the predecessor to the block.
7268   if (BasicBlock *Pred = BB->getSinglePredecessor())
7269     return {Pred, BB};
7270 
7271   // A loop's header is defined to be a block that dominates the loop.
7272   // If the header has a unique predecessor outside the loop, it must be
7273   // a block that has exactly one successor that can reach the loop.
7274   if (Loop *L = LI.getLoopFor(BB))
7275     return {L->getLoopPredecessor(), L->getHeader()};
7276 
7277   return {nullptr, nullptr};
7278 }
7279 
7280 /// SCEV structural equivalence is usually sufficient for testing whether two
7281 /// expressions are equal, however for the purposes of looking for a condition
7282 /// guarding a loop, it can be useful to be a little more general, since a
7283 /// front-end may have replicated the controlling expression.
7284 ///
7285 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7286   // Quick check to see if they are the same SCEV.
7287   if (A == B) return true;
7288 
7289   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7290     // Not all instructions that are "identical" compute the same value.  For
7291     // instance, two distinct alloca instructions allocating the same type are
7292     // identical and do not read memory; but compute distinct values.
7293     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7294   };
7295 
7296   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7297   // two different instructions with the same value. Check for this case.
7298   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7299     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7300       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7301         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7302           if (ComputesEqualValues(AI, BI))
7303             return true;
7304 
7305   // Otherwise assume they may have a different value.
7306   return false;
7307 }
7308 
7309 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7310                                            const SCEV *&LHS, const SCEV *&RHS,
7311                                            unsigned Depth) {
7312   bool Changed = false;
7313 
7314   // If we hit the max recursion limit bail out.
7315   if (Depth >= 3)
7316     return false;
7317 
7318   // Canonicalize a constant to the right side.
7319   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7320     // Check for both operands constant.
7321     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7322       if (ConstantExpr::getICmp(Pred,
7323                                 LHSC->getValue(),
7324                                 RHSC->getValue())->isNullValue())
7325         goto trivially_false;
7326       else
7327         goto trivially_true;
7328     }
7329     // Otherwise swap the operands to put the constant on the right.
7330     std::swap(LHS, RHS);
7331     Pred = ICmpInst::getSwappedPredicate(Pred);
7332     Changed = true;
7333   }
7334 
7335   // If we're comparing an addrec with a value which is loop-invariant in the
7336   // addrec's loop, put the addrec on the left. Also make a dominance check,
7337   // as both operands could be addrecs loop-invariant in each other's loop.
7338   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7339     const Loop *L = AR->getLoop();
7340     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7341       std::swap(LHS, RHS);
7342       Pred = ICmpInst::getSwappedPredicate(Pred);
7343       Changed = true;
7344     }
7345   }
7346 
7347   // If there's a constant operand, canonicalize comparisons with boundary
7348   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7349   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7350     const APInt &RA = RC->getAPInt();
7351 
7352     bool SimplifiedByConstantRange = false;
7353 
7354     if (!ICmpInst::isEquality(Pred)) {
7355       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
7356       if (ExactCR.isFullSet())
7357         goto trivially_true;
7358       else if (ExactCR.isEmptySet())
7359         goto trivially_false;
7360 
7361       APInt NewRHS;
7362       CmpInst::Predicate NewPred;
7363       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
7364           ICmpInst::isEquality(NewPred)) {
7365         // We were able to convert an inequality to an equality.
7366         Pred = NewPred;
7367         RHS = getConstant(NewRHS);
7368         Changed = SimplifiedByConstantRange = true;
7369       }
7370     }
7371 
7372     if (!SimplifiedByConstantRange) {
7373       switch (Pred) {
7374       default:
7375         break;
7376       case ICmpInst::ICMP_EQ:
7377       case ICmpInst::ICMP_NE:
7378         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7379         if (!RA)
7380           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7381             if (const SCEVMulExpr *ME =
7382                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7383               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7384                   ME->getOperand(0)->isAllOnesValue()) {
7385                 RHS = AE->getOperand(1);
7386                 LHS = ME->getOperand(1);
7387                 Changed = true;
7388               }
7389         break;
7390 
7391 
7392         // The "Should have been caught earlier!" messages refer to the fact
7393         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
7394         // should have fired on the corresponding cases, and canonicalized the
7395         // check to trivially_true or trivially_false.
7396 
7397       case ICmpInst::ICMP_UGE:
7398         assert(!RA.isMinValue() && "Should have been caught earlier!");
7399         Pred = ICmpInst::ICMP_UGT;
7400         RHS = getConstant(RA - 1);
7401         Changed = true;
7402         break;
7403       case ICmpInst::ICMP_ULE:
7404         assert(!RA.isMaxValue() && "Should have been caught earlier!");
7405         Pred = ICmpInst::ICMP_ULT;
7406         RHS = getConstant(RA + 1);
7407         Changed = true;
7408         break;
7409       case ICmpInst::ICMP_SGE:
7410         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
7411         Pred = ICmpInst::ICMP_SGT;
7412         RHS = getConstant(RA - 1);
7413         Changed = true;
7414         break;
7415       case ICmpInst::ICMP_SLE:
7416         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
7417         Pred = ICmpInst::ICMP_SLT;
7418         RHS = getConstant(RA + 1);
7419         Changed = true;
7420         break;
7421       }
7422     }
7423   }
7424 
7425   // Check for obvious equality.
7426   if (HasSameValue(LHS, RHS)) {
7427     if (ICmpInst::isTrueWhenEqual(Pred))
7428       goto trivially_true;
7429     if (ICmpInst::isFalseWhenEqual(Pred))
7430       goto trivially_false;
7431   }
7432 
7433   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7434   // adding or subtracting 1 from one of the operands.
7435   switch (Pred) {
7436   case ICmpInst::ICMP_SLE:
7437     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7438       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7439                        SCEV::FlagNSW);
7440       Pred = ICmpInst::ICMP_SLT;
7441       Changed = true;
7442     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7443       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7444                        SCEV::FlagNSW);
7445       Pred = ICmpInst::ICMP_SLT;
7446       Changed = true;
7447     }
7448     break;
7449   case ICmpInst::ICMP_SGE:
7450     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7451       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7452                        SCEV::FlagNSW);
7453       Pred = ICmpInst::ICMP_SGT;
7454       Changed = true;
7455     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7456       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7457                        SCEV::FlagNSW);
7458       Pred = ICmpInst::ICMP_SGT;
7459       Changed = true;
7460     }
7461     break;
7462   case ICmpInst::ICMP_ULE:
7463     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7464       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7465                        SCEV::FlagNUW);
7466       Pred = ICmpInst::ICMP_ULT;
7467       Changed = true;
7468     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7469       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7470       Pred = ICmpInst::ICMP_ULT;
7471       Changed = true;
7472     }
7473     break;
7474   case ICmpInst::ICMP_UGE:
7475     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7476       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7477       Pred = ICmpInst::ICMP_UGT;
7478       Changed = true;
7479     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7480       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7481                        SCEV::FlagNUW);
7482       Pred = ICmpInst::ICMP_UGT;
7483       Changed = true;
7484     }
7485     break;
7486   default:
7487     break;
7488   }
7489 
7490   // TODO: More simplifications are possible here.
7491 
7492   // Recursively simplify until we either hit a recursion limit or nothing
7493   // changes.
7494   if (Changed)
7495     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7496 
7497   return Changed;
7498 
7499 trivially_true:
7500   // Return 0 == 0.
7501   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7502   Pred = ICmpInst::ICMP_EQ;
7503   return true;
7504 
7505 trivially_false:
7506   // Return 0 != 0.
7507   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7508   Pred = ICmpInst::ICMP_NE;
7509   return true;
7510 }
7511 
7512 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7513   return getSignedRange(S).getSignedMax().isNegative();
7514 }
7515 
7516 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7517   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7518 }
7519 
7520 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7521   return !getSignedRange(S).getSignedMin().isNegative();
7522 }
7523 
7524 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7525   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7526 }
7527 
7528 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7529   return isKnownNegative(S) || isKnownPositive(S);
7530 }
7531 
7532 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7533                                        const SCEV *LHS, const SCEV *RHS) {
7534   // Canonicalize the inputs first.
7535   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7536 
7537   // If LHS or RHS is an addrec, check to see if the condition is true in
7538   // every iteration of the loop.
7539   // If LHS and RHS are both addrec, both conditions must be true in
7540   // every iteration of the loop.
7541   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7542   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7543   bool LeftGuarded = false;
7544   bool RightGuarded = false;
7545   if (LAR) {
7546     const Loop *L = LAR->getLoop();
7547     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7548         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7549       if (!RAR) return true;
7550       LeftGuarded = true;
7551     }
7552   }
7553   if (RAR) {
7554     const Loop *L = RAR->getLoop();
7555     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7556         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7557       if (!LAR) return true;
7558       RightGuarded = true;
7559     }
7560   }
7561   if (LeftGuarded && RightGuarded)
7562     return true;
7563 
7564   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7565     return true;
7566 
7567   // Otherwise see what can be done with known constant ranges.
7568   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7569 }
7570 
7571 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7572                                            ICmpInst::Predicate Pred,
7573                                            bool &Increasing) {
7574   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7575 
7576 #ifndef NDEBUG
7577   // Verify an invariant: inverting the predicate should turn a monotonically
7578   // increasing change to a monotonically decreasing one, and vice versa.
7579   bool IncreasingSwapped;
7580   bool ResultSwapped = isMonotonicPredicateImpl(
7581       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7582 
7583   assert(Result == ResultSwapped && "should be able to analyze both!");
7584   if (ResultSwapped)
7585     assert(Increasing == !IncreasingSwapped &&
7586            "monotonicity should flip as we flip the predicate");
7587 #endif
7588 
7589   return Result;
7590 }
7591 
7592 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7593                                                ICmpInst::Predicate Pred,
7594                                                bool &Increasing) {
7595 
7596   // A zero step value for LHS means the induction variable is essentially a
7597   // loop invariant value. We don't really depend on the predicate actually
7598   // flipping from false to true (for increasing predicates, and the other way
7599   // around for decreasing predicates), all we care about is that *if* the
7600   // predicate changes then it only changes from false to true.
7601   //
7602   // A zero step value in itself is not very useful, but there may be places
7603   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7604   // as general as possible.
7605 
7606   switch (Pred) {
7607   default:
7608     return false; // Conservative answer
7609 
7610   case ICmpInst::ICMP_UGT:
7611   case ICmpInst::ICMP_UGE:
7612   case ICmpInst::ICMP_ULT:
7613   case ICmpInst::ICMP_ULE:
7614     if (!LHS->hasNoUnsignedWrap())
7615       return false;
7616 
7617     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7618     return true;
7619 
7620   case ICmpInst::ICMP_SGT:
7621   case ICmpInst::ICMP_SGE:
7622   case ICmpInst::ICMP_SLT:
7623   case ICmpInst::ICMP_SLE: {
7624     if (!LHS->hasNoSignedWrap())
7625       return false;
7626 
7627     const SCEV *Step = LHS->getStepRecurrence(*this);
7628 
7629     if (isKnownNonNegative(Step)) {
7630       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7631       return true;
7632     }
7633 
7634     if (isKnownNonPositive(Step)) {
7635       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7636       return true;
7637     }
7638 
7639     return false;
7640   }
7641 
7642   }
7643 
7644   llvm_unreachable("switch has default clause!");
7645 }
7646 
7647 bool ScalarEvolution::isLoopInvariantPredicate(
7648     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7649     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7650     const SCEV *&InvariantRHS) {
7651 
7652   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7653   if (!isLoopInvariant(RHS, L)) {
7654     if (!isLoopInvariant(LHS, L))
7655       return false;
7656 
7657     std::swap(LHS, RHS);
7658     Pred = ICmpInst::getSwappedPredicate(Pred);
7659   }
7660 
7661   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7662   if (!ArLHS || ArLHS->getLoop() != L)
7663     return false;
7664 
7665   bool Increasing;
7666   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7667     return false;
7668 
7669   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7670   // true as the loop iterates, and the backedge is control dependent on
7671   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7672   //
7673   //   * if the predicate was false in the first iteration then the predicate
7674   //     is never evaluated again, since the loop exits without taking the
7675   //     backedge.
7676   //   * if the predicate was true in the first iteration then it will
7677   //     continue to be true for all future iterations since it is
7678   //     monotonically increasing.
7679   //
7680   // For both the above possibilities, we can replace the loop varying
7681   // predicate with its value on the first iteration of the loop (which is
7682   // loop invariant).
7683   //
7684   // A similar reasoning applies for a monotonically decreasing predicate, by
7685   // replacing true with false and false with true in the above two bullets.
7686 
7687   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7688 
7689   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7690     return false;
7691 
7692   InvariantPred = Pred;
7693   InvariantLHS = ArLHS->getStart();
7694   InvariantRHS = RHS;
7695   return true;
7696 }
7697 
7698 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7699     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7700   if (HasSameValue(LHS, RHS))
7701     return ICmpInst::isTrueWhenEqual(Pred);
7702 
7703   // This code is split out from isKnownPredicate because it is called from
7704   // within isLoopEntryGuardedByCond.
7705 
7706   auto CheckRanges =
7707       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7708     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7709         .contains(RangeLHS);
7710   };
7711 
7712   // The check at the top of the function catches the case where the values are
7713   // known to be equal.
7714   if (Pred == CmpInst::ICMP_EQ)
7715     return false;
7716 
7717   if (Pred == CmpInst::ICMP_NE)
7718     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7719            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7720            isKnownNonZero(getMinusSCEV(LHS, RHS));
7721 
7722   if (CmpInst::isSigned(Pred))
7723     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7724 
7725   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7726 }
7727 
7728 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7729                                                     const SCEV *LHS,
7730                                                     const SCEV *RHS) {
7731 
7732   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7733   // Return Y via OutY.
7734   auto MatchBinaryAddToConst =
7735       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7736              SCEV::NoWrapFlags ExpectedFlags) {
7737     const SCEV *NonConstOp, *ConstOp;
7738     SCEV::NoWrapFlags FlagsPresent;
7739 
7740     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7741         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7742       return false;
7743 
7744     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7745     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7746   };
7747 
7748   APInt C;
7749 
7750   switch (Pred) {
7751   default:
7752     break;
7753 
7754   case ICmpInst::ICMP_SGE:
7755     std::swap(LHS, RHS);
7756   case ICmpInst::ICMP_SLE:
7757     // X s<= (X + C)<nsw> if C >= 0
7758     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7759       return true;
7760 
7761     // (X + C)<nsw> s<= X if C <= 0
7762     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7763         !C.isStrictlyPositive())
7764       return true;
7765     break;
7766 
7767   case ICmpInst::ICMP_SGT:
7768     std::swap(LHS, RHS);
7769   case ICmpInst::ICMP_SLT:
7770     // X s< (X + C)<nsw> if C > 0
7771     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7772         C.isStrictlyPositive())
7773       return true;
7774 
7775     // (X + C)<nsw> s< X if C < 0
7776     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7777       return true;
7778     break;
7779   }
7780 
7781   return false;
7782 }
7783 
7784 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7785                                                    const SCEV *LHS,
7786                                                    const SCEV *RHS) {
7787   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7788     return false;
7789 
7790   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7791   // the stack can result in exponential time complexity.
7792   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7793 
7794   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7795   //
7796   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7797   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7798   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7799   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7800   // use isKnownPredicate later if needed.
7801   return isKnownNonNegative(RHS) &&
7802          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7803          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7804 }
7805 
7806 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7807                                         ICmpInst::Predicate Pred,
7808                                         const SCEV *LHS, const SCEV *RHS) {
7809   // No need to even try if we know the module has no guards.
7810   if (!HasGuards)
7811     return false;
7812 
7813   return any_of(*BB, [&](Instruction &I) {
7814     using namespace llvm::PatternMatch;
7815 
7816     Value *Condition;
7817     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7818                          m_Value(Condition))) &&
7819            isImpliedCond(Pred, LHS, RHS, Condition, false);
7820   });
7821 }
7822 
7823 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7824 /// protected by a conditional between LHS and RHS.  This is used to
7825 /// to eliminate casts.
7826 bool
7827 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7828                                              ICmpInst::Predicate Pred,
7829                                              const SCEV *LHS, const SCEV *RHS) {
7830   // Interpret a null as meaning no loop, where there is obviously no guard
7831   // (interprocedural conditions notwithstanding).
7832   if (!L) return true;
7833 
7834   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7835     return true;
7836 
7837   BasicBlock *Latch = L->getLoopLatch();
7838   if (!Latch)
7839     return false;
7840 
7841   BranchInst *LoopContinuePredicate =
7842     dyn_cast<BranchInst>(Latch->getTerminator());
7843   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7844       isImpliedCond(Pred, LHS, RHS,
7845                     LoopContinuePredicate->getCondition(),
7846                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7847     return true;
7848 
7849   // We don't want more than one activation of the following loops on the stack
7850   // -- that can lead to O(n!) time complexity.
7851   if (WalkingBEDominatingConds)
7852     return false;
7853 
7854   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7855 
7856   // See if we can exploit a trip count to prove the predicate.
7857   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7858   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7859   if (LatchBECount != getCouldNotCompute()) {
7860     // We know that Latch branches back to the loop header exactly
7861     // LatchBECount times.  This means the backdege condition at Latch is
7862     // equivalent to  "{0,+,1} u< LatchBECount".
7863     Type *Ty = LatchBECount->getType();
7864     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7865     const SCEV *LoopCounter =
7866       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7867     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7868                       LatchBECount))
7869       return true;
7870   }
7871 
7872   // Check conditions due to any @llvm.assume intrinsics.
7873   for (auto &AssumeVH : AC.assumptions()) {
7874     if (!AssumeVH)
7875       continue;
7876     auto *CI = cast<CallInst>(AssumeVH);
7877     if (!DT.dominates(CI, Latch->getTerminator()))
7878       continue;
7879 
7880     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7881       return true;
7882   }
7883 
7884   // If the loop is not reachable from the entry block, we risk running into an
7885   // infinite loop as we walk up into the dom tree.  These loops do not matter
7886   // anyway, so we just return a conservative answer when we see them.
7887   if (!DT.isReachableFromEntry(L->getHeader()))
7888     return false;
7889 
7890   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7891     return true;
7892 
7893   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7894        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7895 
7896     assert(DTN && "should reach the loop header before reaching the root!");
7897 
7898     BasicBlock *BB = DTN->getBlock();
7899     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7900       return true;
7901 
7902     BasicBlock *PBB = BB->getSinglePredecessor();
7903     if (!PBB)
7904       continue;
7905 
7906     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7907     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7908       continue;
7909 
7910     Value *Condition = ContinuePredicate->getCondition();
7911 
7912     // If we have an edge `E` within the loop body that dominates the only
7913     // latch, the condition guarding `E` also guards the backedge.  This
7914     // reasoning works only for loops with a single latch.
7915 
7916     BasicBlockEdge DominatingEdge(PBB, BB);
7917     if (DominatingEdge.isSingleEdge()) {
7918       // We're constructively (and conservatively) enumerating edges within the
7919       // loop body that dominate the latch.  The dominator tree better agree
7920       // with us on this:
7921       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7922 
7923       if (isImpliedCond(Pred, LHS, RHS, Condition,
7924                         BB != ContinuePredicate->getSuccessor(0)))
7925         return true;
7926     }
7927   }
7928 
7929   return false;
7930 }
7931 
7932 bool
7933 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7934                                           ICmpInst::Predicate Pred,
7935                                           const SCEV *LHS, const SCEV *RHS) {
7936   // Interpret a null as meaning no loop, where there is obviously no guard
7937   // (interprocedural conditions notwithstanding).
7938   if (!L) return false;
7939 
7940   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7941     return true;
7942 
7943   // Starting at the loop predecessor, climb up the predecessor chain, as long
7944   // as there are predecessors that can be found that have unique successors
7945   // leading to the original header.
7946   for (std::pair<BasicBlock *, BasicBlock *>
7947          Pair(L->getLoopPredecessor(), L->getHeader());
7948        Pair.first;
7949        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7950 
7951     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
7952       return true;
7953 
7954     BranchInst *LoopEntryPredicate =
7955       dyn_cast<BranchInst>(Pair.first->getTerminator());
7956     if (!LoopEntryPredicate ||
7957         LoopEntryPredicate->isUnconditional())
7958       continue;
7959 
7960     if (isImpliedCond(Pred, LHS, RHS,
7961                       LoopEntryPredicate->getCondition(),
7962                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
7963       return true;
7964   }
7965 
7966   // Check conditions due to any @llvm.assume intrinsics.
7967   for (auto &AssumeVH : AC.assumptions()) {
7968     if (!AssumeVH)
7969       continue;
7970     auto *CI = cast<CallInst>(AssumeVH);
7971     if (!DT.dominates(CI, L->getHeader()))
7972       continue;
7973 
7974     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7975       return true;
7976   }
7977 
7978   return false;
7979 }
7980 
7981 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
7982                                     const SCEV *LHS, const SCEV *RHS,
7983                                     Value *FoundCondValue,
7984                                     bool Inverse) {
7985   if (!PendingLoopPredicates.insert(FoundCondValue).second)
7986     return false;
7987 
7988   auto ClearOnExit =
7989       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
7990 
7991   // Recursively handle And and Or conditions.
7992   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
7993     if (BO->getOpcode() == Instruction::And) {
7994       if (!Inverse)
7995         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7996                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7997     } else if (BO->getOpcode() == Instruction::Or) {
7998       if (Inverse)
7999         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8000                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8001     }
8002   }
8003 
8004   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8005   if (!ICI) return false;
8006 
8007   // Now that we found a conditional branch that dominates the loop or controls
8008   // the loop latch. Check to see if it is the comparison we are looking for.
8009   ICmpInst::Predicate FoundPred;
8010   if (Inverse)
8011     FoundPred = ICI->getInversePredicate();
8012   else
8013     FoundPred = ICI->getPredicate();
8014 
8015   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8016   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8017 
8018   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8019 }
8020 
8021 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8022                                     const SCEV *RHS,
8023                                     ICmpInst::Predicate FoundPred,
8024                                     const SCEV *FoundLHS,
8025                                     const SCEV *FoundRHS) {
8026   // Balance the types.
8027   if (getTypeSizeInBits(LHS->getType()) <
8028       getTypeSizeInBits(FoundLHS->getType())) {
8029     if (CmpInst::isSigned(Pred)) {
8030       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8031       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8032     } else {
8033       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8034       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8035     }
8036   } else if (getTypeSizeInBits(LHS->getType()) >
8037       getTypeSizeInBits(FoundLHS->getType())) {
8038     if (CmpInst::isSigned(FoundPred)) {
8039       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8040       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8041     } else {
8042       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8043       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8044     }
8045   }
8046 
8047   // Canonicalize the query to match the way instcombine will have
8048   // canonicalized the comparison.
8049   if (SimplifyICmpOperands(Pred, LHS, RHS))
8050     if (LHS == RHS)
8051       return CmpInst::isTrueWhenEqual(Pred);
8052   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8053     if (FoundLHS == FoundRHS)
8054       return CmpInst::isFalseWhenEqual(FoundPred);
8055 
8056   // Check to see if we can make the LHS or RHS match.
8057   if (LHS == FoundRHS || RHS == FoundLHS) {
8058     if (isa<SCEVConstant>(RHS)) {
8059       std::swap(FoundLHS, FoundRHS);
8060       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8061     } else {
8062       std::swap(LHS, RHS);
8063       Pred = ICmpInst::getSwappedPredicate(Pred);
8064     }
8065   }
8066 
8067   // Check whether the found predicate is the same as the desired predicate.
8068   if (FoundPred == Pred)
8069     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8070 
8071   // Check whether swapping the found predicate makes it the same as the
8072   // desired predicate.
8073   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8074     if (isa<SCEVConstant>(RHS))
8075       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8076     else
8077       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8078                                    RHS, LHS, FoundLHS, FoundRHS);
8079   }
8080 
8081   // Unsigned comparison is the same as signed comparison when both the operands
8082   // are non-negative.
8083   if (CmpInst::isUnsigned(FoundPred) &&
8084       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8085       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8086     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8087 
8088   // Check if we can make progress by sharpening ranges.
8089   if (FoundPred == ICmpInst::ICMP_NE &&
8090       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8091 
8092     const SCEVConstant *C = nullptr;
8093     const SCEV *V = nullptr;
8094 
8095     if (isa<SCEVConstant>(FoundLHS)) {
8096       C = cast<SCEVConstant>(FoundLHS);
8097       V = FoundRHS;
8098     } else {
8099       C = cast<SCEVConstant>(FoundRHS);
8100       V = FoundLHS;
8101     }
8102 
8103     // The guarding predicate tells us that C != V. If the known range
8104     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8105     // range we consider has to correspond to same signedness as the
8106     // predicate we're interested in folding.
8107 
8108     APInt Min = ICmpInst::isSigned(Pred) ?
8109         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8110 
8111     if (Min == C->getAPInt()) {
8112       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8113       // This is true even if (Min + 1) wraps around -- in case of
8114       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8115 
8116       APInt SharperMin = Min + 1;
8117 
8118       switch (Pred) {
8119         case ICmpInst::ICMP_SGE:
8120         case ICmpInst::ICMP_UGE:
8121           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8122           // RHS, we're done.
8123           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8124                                     getConstant(SharperMin)))
8125             return true;
8126 
8127         case ICmpInst::ICMP_SGT:
8128         case ICmpInst::ICMP_UGT:
8129           // We know from the range information that (V `Pred` Min ||
8130           // V == Min).  We know from the guarding condition that !(V
8131           // == Min).  This gives us
8132           //
8133           //       V `Pred` Min || V == Min && !(V == Min)
8134           //   =>  V `Pred` Min
8135           //
8136           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8137 
8138           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8139             return true;
8140 
8141         default:
8142           // No change
8143           break;
8144       }
8145     }
8146   }
8147 
8148   // Check whether the actual condition is beyond sufficient.
8149   if (FoundPred == ICmpInst::ICMP_EQ)
8150     if (ICmpInst::isTrueWhenEqual(Pred))
8151       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8152         return true;
8153   if (Pred == ICmpInst::ICMP_NE)
8154     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8155       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8156         return true;
8157 
8158   // Otherwise assume the worst.
8159   return false;
8160 }
8161 
8162 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8163                                      const SCEV *&L, const SCEV *&R,
8164                                      SCEV::NoWrapFlags &Flags) {
8165   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8166   if (!AE || AE->getNumOperands() != 2)
8167     return false;
8168 
8169   L = AE->getOperand(0);
8170   R = AE->getOperand(1);
8171   Flags = AE->getNoWrapFlags();
8172   return true;
8173 }
8174 
8175 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
8176                                                            const SCEV *Less) {
8177   // We avoid subtracting expressions here because this function is usually
8178   // fairly deep in the call stack (i.e. is called many times).
8179 
8180   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8181     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8182     const auto *MAR = cast<SCEVAddRecExpr>(More);
8183 
8184     if (LAR->getLoop() != MAR->getLoop())
8185       return None;
8186 
8187     // We look at affine expressions only; not for correctness but to keep
8188     // getStepRecurrence cheap.
8189     if (!LAR->isAffine() || !MAR->isAffine())
8190       return None;
8191 
8192     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8193       return None;
8194 
8195     Less = LAR->getStart();
8196     More = MAR->getStart();
8197 
8198     // fall through
8199   }
8200 
8201   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8202     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8203     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8204     return M - L;
8205   }
8206 
8207   const SCEV *L, *R;
8208   SCEV::NoWrapFlags Flags;
8209   if (splitBinaryAdd(Less, L, R, Flags))
8210     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8211       if (R == More)
8212         return -(LC->getAPInt());
8213 
8214   if (splitBinaryAdd(More, L, R, Flags))
8215     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8216       if (R == Less)
8217         return LC->getAPInt();
8218 
8219   return None;
8220 }
8221 
8222 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8223     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8224     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8225   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8226     return false;
8227 
8228   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8229   if (!AddRecLHS)
8230     return false;
8231 
8232   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8233   if (!AddRecFoundLHS)
8234     return false;
8235 
8236   // We'd like to let SCEV reason about control dependencies, so we constrain
8237   // both the inequalities to be about add recurrences on the same loop.  This
8238   // way we can use isLoopEntryGuardedByCond later.
8239 
8240   const Loop *L = AddRecFoundLHS->getLoop();
8241   if (L != AddRecLHS->getLoop())
8242     return false;
8243 
8244   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8245   //
8246   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8247   //                                                                  ... (2)
8248   //
8249   // Informal proof for (2), assuming (1) [*]:
8250   //
8251   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8252   //
8253   // Then
8254   //
8255   //       FoundLHS s< FoundRHS s< INT_MIN - C
8256   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8257   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8258   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8259   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8260   // <=>  FoundLHS + C s< FoundRHS + C
8261   //
8262   // [*]: (1) can be proved by ruling out overflow.
8263   //
8264   // [**]: This can be proved by analyzing all the four possibilities:
8265   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8266   //    (A s>= 0, B s>= 0).
8267   //
8268   // Note:
8269   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8270   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8271   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8272   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8273   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8274   // C)".
8275 
8276   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
8277   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
8278   if (!LDiff || !RDiff || *LDiff != *RDiff)
8279     return false;
8280 
8281   if (LDiff->isMinValue())
8282     return true;
8283 
8284   APInt FoundRHSLimit;
8285 
8286   if (Pred == CmpInst::ICMP_ULT) {
8287     FoundRHSLimit = -(*RDiff);
8288   } else {
8289     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8290     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
8291   }
8292 
8293   // Try to prove (1) or (2), as needed.
8294   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8295                                   getConstant(FoundRHSLimit));
8296 }
8297 
8298 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8299                                             const SCEV *LHS, const SCEV *RHS,
8300                                             const SCEV *FoundLHS,
8301                                             const SCEV *FoundRHS) {
8302   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8303     return true;
8304 
8305   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8306     return true;
8307 
8308   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8309                                      FoundLHS, FoundRHS) ||
8310          // ~x < ~y --> x > y
8311          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8312                                      getNotSCEV(FoundRHS),
8313                                      getNotSCEV(FoundLHS));
8314 }
8315 
8316 
8317 /// If Expr computes ~A, return A else return nullptr
8318 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8319   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8320   if (!Add || Add->getNumOperands() != 2 ||
8321       !Add->getOperand(0)->isAllOnesValue())
8322     return nullptr;
8323 
8324   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8325   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8326       !AddRHS->getOperand(0)->isAllOnesValue())
8327     return nullptr;
8328 
8329   return AddRHS->getOperand(1);
8330 }
8331 
8332 
8333 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8334 template<typename MaxExprType>
8335 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8336                               const SCEV *Candidate) {
8337   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8338   if (!MaxExpr) return false;
8339 
8340   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8341 }
8342 
8343 
8344 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8345 template<typename MaxExprType>
8346 static bool IsMinConsistingOf(ScalarEvolution &SE,
8347                               const SCEV *MaybeMinExpr,
8348                               const SCEV *Candidate) {
8349   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8350   if (!MaybeMaxExpr)
8351     return false;
8352 
8353   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8354 }
8355 
8356 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8357                                            ICmpInst::Predicate Pred,
8358                                            const SCEV *LHS, const SCEV *RHS) {
8359 
8360   // If both sides are affine addrecs for the same loop, with equal
8361   // steps, and we know the recurrences don't wrap, then we only
8362   // need to check the predicate on the starting values.
8363 
8364   if (!ICmpInst::isRelational(Pred))
8365     return false;
8366 
8367   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8368   if (!LAR)
8369     return false;
8370   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8371   if (!RAR)
8372     return false;
8373   if (LAR->getLoop() != RAR->getLoop())
8374     return false;
8375   if (!LAR->isAffine() || !RAR->isAffine())
8376     return false;
8377 
8378   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8379     return false;
8380 
8381   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8382                          SCEV::FlagNSW : SCEV::FlagNUW;
8383   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8384     return false;
8385 
8386   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8387 }
8388 
8389 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8390 /// expression?
8391 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8392                                         ICmpInst::Predicate Pred,
8393                                         const SCEV *LHS, const SCEV *RHS) {
8394   switch (Pred) {
8395   default:
8396     return false;
8397 
8398   case ICmpInst::ICMP_SGE:
8399     std::swap(LHS, RHS);
8400     LLVM_FALLTHROUGH;
8401   case ICmpInst::ICMP_SLE:
8402     return
8403       // min(A, ...) <= A
8404       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8405       // A <= max(A, ...)
8406       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8407 
8408   case ICmpInst::ICMP_UGE:
8409     std::swap(LHS, RHS);
8410     LLVM_FALLTHROUGH;
8411   case ICmpInst::ICMP_ULE:
8412     return
8413       // min(A, ...) <= A
8414       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8415       // A <= max(A, ...)
8416       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8417   }
8418 
8419   llvm_unreachable("covered switch fell through?!");
8420 }
8421 
8422 bool
8423 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8424                                              const SCEV *LHS, const SCEV *RHS,
8425                                              const SCEV *FoundLHS,
8426                                              const SCEV *FoundRHS) {
8427   auto IsKnownPredicateFull =
8428       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8429     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8430            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8431            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8432            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8433   };
8434 
8435   switch (Pred) {
8436   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8437   case ICmpInst::ICMP_EQ:
8438   case ICmpInst::ICMP_NE:
8439     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8440       return true;
8441     break;
8442   case ICmpInst::ICMP_SLT:
8443   case ICmpInst::ICMP_SLE:
8444     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8445         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8446       return true;
8447     break;
8448   case ICmpInst::ICMP_SGT:
8449   case ICmpInst::ICMP_SGE:
8450     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8451         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8452       return true;
8453     break;
8454   case ICmpInst::ICMP_ULT:
8455   case ICmpInst::ICMP_ULE:
8456     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8457         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8458       return true;
8459     break;
8460   case ICmpInst::ICMP_UGT:
8461   case ICmpInst::ICMP_UGE:
8462     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8463         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8464       return true;
8465     break;
8466   }
8467 
8468   return false;
8469 }
8470 
8471 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8472                                                      const SCEV *LHS,
8473                                                      const SCEV *RHS,
8474                                                      const SCEV *FoundLHS,
8475                                                      const SCEV *FoundRHS) {
8476   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8477     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8478     // reduce the compile time impact of this optimization.
8479     return false;
8480 
8481   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
8482   if (!Addend)
8483     return false;
8484 
8485   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8486 
8487   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8488   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8489   ConstantRange FoundLHSRange =
8490       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8491 
8492   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
8493   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
8494 
8495   // We can also compute the range of values for `LHS` that satisfy the
8496   // consequent, "`LHS` `Pred` `RHS`":
8497   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8498   ConstantRange SatisfyingLHSRange =
8499       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8500 
8501   // The antecedent implies the consequent if every value of `LHS` that
8502   // satisfies the antecedent also satisfies the consequent.
8503   return SatisfyingLHSRange.contains(LHSRange);
8504 }
8505 
8506 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8507                                          bool IsSigned, bool NoWrap) {
8508   assert(isKnownPositive(Stride) && "Positive stride expected!");
8509 
8510   if (NoWrap) return false;
8511 
8512   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8513   const SCEV *One = getOne(Stride->getType());
8514 
8515   if (IsSigned) {
8516     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8517     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8518     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8519                                 .getSignedMax();
8520 
8521     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8522     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8523   }
8524 
8525   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8526   APInt MaxValue = APInt::getMaxValue(BitWidth);
8527   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8528                               .getUnsignedMax();
8529 
8530   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8531   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8532 }
8533 
8534 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8535                                          bool IsSigned, bool NoWrap) {
8536   if (NoWrap) return false;
8537 
8538   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8539   const SCEV *One = getOne(Stride->getType());
8540 
8541   if (IsSigned) {
8542     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8543     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8544     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8545                                .getSignedMax();
8546 
8547     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8548     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8549   }
8550 
8551   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8552   APInt MinValue = APInt::getMinValue(BitWidth);
8553   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8554                             .getUnsignedMax();
8555 
8556   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8557   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8558 }
8559 
8560 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8561                                             bool Equality) {
8562   const SCEV *One = getOne(Step->getType());
8563   Delta = Equality ? getAddExpr(Delta, Step)
8564                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8565   return getUDivExpr(Delta, Step);
8566 }
8567 
8568 ScalarEvolution::ExitLimit
8569 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
8570                                   const Loop *L, bool IsSigned,
8571                                   bool ControlsExit, bool AllowPredicates) {
8572   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8573   // We handle only IV < Invariant
8574   if (!isLoopInvariant(RHS, L))
8575     return getCouldNotCompute();
8576 
8577   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8578   bool PredicatedIV = false;
8579 
8580   if (!IV && AllowPredicates) {
8581     // Try to make this an AddRec using runtime tests, in the first X
8582     // iterations of this loop, where X is the SCEV expression found by the
8583     // algorithm below.
8584     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
8585     PredicatedIV = true;
8586   }
8587 
8588   // Avoid weird loops
8589   if (!IV || IV->getLoop() != L || !IV->isAffine())
8590     return getCouldNotCompute();
8591 
8592   bool NoWrap = ControlsExit &&
8593                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8594 
8595   const SCEV *Stride = IV->getStepRecurrence(*this);
8596 
8597   bool PositiveStride = isKnownPositive(Stride);
8598 
8599   // Avoid negative or zero stride values.
8600   if (!PositiveStride) {
8601     // We can compute the correct backedge taken count for loops with unknown
8602     // strides if we can prove that the loop is not an infinite loop with side
8603     // effects. Here's the loop structure we are trying to handle -
8604     //
8605     // i = start
8606     // do {
8607     //   A[i] = i;
8608     //   i += s;
8609     // } while (i < end);
8610     //
8611     // The backedge taken count for such loops is evaluated as -
8612     // (max(end, start + stride) - start - 1) /u stride
8613     //
8614     // The additional preconditions that we need to check to prove correctness
8615     // of the above formula is as follows -
8616     //
8617     // a) IV is either nuw or nsw depending upon signedness (indicated by the
8618     //    NoWrap flag).
8619     // b) loop is single exit with no side effects.
8620     //
8621     //
8622     // Precondition a) implies that if the stride is negative, this is a single
8623     // trip loop. The backedge taken count formula reduces to zero in this case.
8624     //
8625     // Precondition b) implies that the unknown stride cannot be zero otherwise
8626     // we have UB.
8627     //
8628     // The positive stride case is the same as isKnownPositive(Stride) returning
8629     // true (original behavior of the function).
8630     //
8631     // We want to make sure that the stride is truly unknown as there are edge
8632     // cases where ScalarEvolution propagates no wrap flags to the
8633     // post-increment/decrement IV even though the increment/decrement operation
8634     // itself is wrapping. The computed backedge taken count may be wrong in
8635     // such cases. This is prevented by checking that the stride is not known to
8636     // be either positive or non-positive. For example, no wrap flags are
8637     // propagated to the post-increment IV of this loop with a trip count of 2 -
8638     //
8639     // unsigned char i;
8640     // for(i=127; i<128; i+=129)
8641     //   A[i] = i;
8642     //
8643     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
8644         !loopHasNoSideEffects(L))
8645       return getCouldNotCompute();
8646 
8647   } else if (!Stride->isOne() &&
8648              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8649     // Avoid proven overflow cases: this will ensure that the backedge taken
8650     // count will not generate any unsigned overflow. Relaxed no-overflow
8651     // conditions exploit NoWrapFlags, allowing to optimize in presence of
8652     // undefined behaviors like the case of C language.
8653     return getCouldNotCompute();
8654 
8655   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8656                                       : ICmpInst::ICMP_ULT;
8657   const SCEV *Start = IV->getStart();
8658   const SCEV *End = RHS;
8659   // If the backedge is taken at least once, then it will be taken
8660   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
8661   // is the LHS value of the less-than comparison the first time it is evaluated
8662   // and End is the RHS.
8663   const SCEV *BECountIfBackedgeTaken =
8664     computeBECount(getMinusSCEV(End, Start), Stride, false);
8665   // If the loop entry is guarded by the result of the backedge test of the
8666   // first loop iteration, then we know the backedge will be taken at least
8667   // once and so the backedge taken count is as above. If not then we use the
8668   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
8669   // as if the backedge is taken at least once max(End,Start) is End and so the
8670   // result is as above, and if not max(End,Start) is Start so we get a backedge
8671   // count of zero.
8672   const SCEV *BECount;
8673   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
8674     BECount = BECountIfBackedgeTaken;
8675   else {
8676     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
8677     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8678   }
8679 
8680   const SCEV *MaxBECount;
8681   if (isa<SCEVConstant>(BECount))
8682     MaxBECount = BECount;
8683   else if (isa<SCEVConstant>(BECountIfBackedgeTaken))
8684     // If we know exactly how many times the backedge will be taken if it's
8685     // taken at least once, then the backedge count will either be that or
8686     // zero.
8687     MaxBECount = BECountIfBackedgeTaken;
8688   else {
8689     // Calculate the maximum backedge count based on the range of values
8690     // permitted by Start, End, and Stride.
8691     APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8692                               : getUnsignedRange(Start).getUnsignedMin();
8693 
8694     unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8695 
8696     APInt StrideForMaxBECount;
8697 
8698     if (PositiveStride)
8699       StrideForMaxBECount =
8700         IsSigned ? getSignedRange(Stride).getSignedMin()
8701                  : getUnsignedRange(Stride).getUnsignedMin();
8702     else
8703       // Using a stride of 1 is safe when computing max backedge taken count for
8704       // a loop with unknown stride.
8705       StrideForMaxBECount = APInt(BitWidth, 1, IsSigned);
8706 
8707     APInt Limit =
8708       IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1)
8709                : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1);
8710 
8711     // Although End can be a MAX expression we estimate MaxEnd considering only
8712     // the case End = RHS. This is safe because in the other case (End - Start)
8713     // is zero, leading to a zero maximum backedge taken count.
8714     APInt MaxEnd =
8715       IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8716                : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8717 
8718     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8719                                 getConstant(StrideForMaxBECount), false);
8720   }
8721 
8722   if (isa<SCEVCouldNotCompute>(MaxBECount))
8723     MaxBECount = BECount;
8724 
8725   return ExitLimit(BECount, MaxBECount, Predicates);
8726 }
8727 
8728 ScalarEvolution::ExitLimit
8729 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8730                                      const Loop *L, bool IsSigned,
8731                                      bool ControlsExit, bool AllowPredicates) {
8732   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8733   // We handle only IV > Invariant
8734   if (!isLoopInvariant(RHS, L))
8735     return getCouldNotCompute();
8736 
8737   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8738   if (!IV && AllowPredicates)
8739     // Try to make this an AddRec using runtime tests, in the first X
8740     // iterations of this loop, where X is the SCEV expression found by the
8741     // algorithm below.
8742     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
8743 
8744   // Avoid weird loops
8745   if (!IV || IV->getLoop() != L || !IV->isAffine())
8746     return getCouldNotCompute();
8747 
8748   bool NoWrap = ControlsExit &&
8749                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8750 
8751   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8752 
8753   // Avoid negative or zero stride values
8754   if (!isKnownPositive(Stride))
8755     return getCouldNotCompute();
8756 
8757   // Avoid proven overflow cases: this will ensure that the backedge taken count
8758   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8759   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8760   // behaviors like the case of C language.
8761   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8762     return getCouldNotCompute();
8763 
8764   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8765                                       : ICmpInst::ICMP_UGT;
8766 
8767   const SCEV *Start = IV->getStart();
8768   const SCEV *End = RHS;
8769   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
8770     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
8771 
8772   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8773 
8774   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8775                             : getUnsignedRange(Start).getUnsignedMax();
8776 
8777   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8778                              : getUnsignedRange(Stride).getUnsignedMin();
8779 
8780   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8781   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8782                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8783 
8784   // Although End can be a MIN expression we estimate MinEnd considering only
8785   // the case End = RHS. This is safe because in the other case (Start - End)
8786   // is zero, leading to a zero maximum backedge taken count.
8787   APInt MinEnd =
8788     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8789              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8790 
8791 
8792   const SCEV *MaxBECount = getCouldNotCompute();
8793   if (isa<SCEVConstant>(BECount))
8794     MaxBECount = BECount;
8795   else
8796     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8797                                 getConstant(MinStride), false);
8798 
8799   if (isa<SCEVCouldNotCompute>(MaxBECount))
8800     MaxBECount = BECount;
8801 
8802   return ExitLimit(BECount, MaxBECount, Predicates);
8803 }
8804 
8805 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
8806                                                     ScalarEvolution &SE) const {
8807   if (Range.isFullSet())  // Infinite loop.
8808     return SE.getCouldNotCompute();
8809 
8810   // If the start is a non-zero constant, shift the range to simplify things.
8811   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8812     if (!SC->getValue()->isZero()) {
8813       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8814       Operands[0] = SE.getZero(SC->getType());
8815       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8816                                              getNoWrapFlags(FlagNW));
8817       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8818         return ShiftedAddRec->getNumIterationsInRange(
8819             Range.subtract(SC->getAPInt()), SE);
8820       // This is strange and shouldn't happen.
8821       return SE.getCouldNotCompute();
8822     }
8823 
8824   // The only time we can solve this is when we have all constant indices.
8825   // Otherwise, we cannot determine the overflow conditions.
8826   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8827     return SE.getCouldNotCompute();
8828 
8829   // Okay at this point we know that all elements of the chrec are constants and
8830   // that the start element is zero.
8831 
8832   // First check to see if the range contains zero.  If not, the first
8833   // iteration exits.
8834   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8835   if (!Range.contains(APInt(BitWidth, 0)))
8836     return SE.getZero(getType());
8837 
8838   if (isAffine()) {
8839     // If this is an affine expression then we have this situation:
8840     //   Solve {0,+,A} in Range  ===  Ax in Range
8841 
8842     // We know that zero is in the range.  If A is positive then we know that
8843     // the upper value of the range must be the first possible exit value.
8844     // If A is negative then the lower of the range is the last possible loop
8845     // value.  Also note that we already checked for a full range.
8846     APInt One(BitWidth,1);
8847     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8848     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8849 
8850     // The exit value should be (End+A)/A.
8851     APInt ExitVal = (End + A).udiv(A);
8852     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8853 
8854     // Evaluate at the exit value.  If we really did fall out of the valid
8855     // range, then we computed our trip count, otherwise wrap around or other
8856     // things must have happened.
8857     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8858     if (Range.contains(Val->getValue()))
8859       return SE.getCouldNotCompute();  // Something strange happened
8860 
8861     // Ensure that the previous value is in the range.  This is a sanity check.
8862     assert(Range.contains(
8863            EvaluateConstantChrecAtConstant(this,
8864            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8865            "Linear scev computation is off in a bad way!");
8866     return SE.getConstant(ExitValue);
8867   } else if (isQuadratic()) {
8868     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8869     // quadratic equation to solve it.  To do this, we must frame our problem in
8870     // terms of figuring out when zero is crossed, instead of when
8871     // Range.getUpper() is crossed.
8872     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8873     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8874     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
8875 
8876     // Next, solve the constructed addrec
8877     if (auto Roots =
8878             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
8879       const SCEVConstant *R1 = Roots->first;
8880       const SCEVConstant *R2 = Roots->second;
8881       // Pick the smallest positive root value.
8882       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8883               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8884         if (!CB->getZExtValue())
8885           std::swap(R1, R2); // R1 is the minimum root now.
8886 
8887         // Make sure the root is not off by one.  The returned iteration should
8888         // not be in the range, but the previous one should be.  When solving
8889         // for "X*X < 5", for example, we should not return a root of 2.
8890         ConstantInt *R1Val =
8891             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
8892         if (Range.contains(R1Val->getValue())) {
8893           // The next iteration must be out of the range...
8894           ConstantInt *NextVal =
8895               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8896 
8897           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8898           if (!Range.contains(R1Val->getValue()))
8899             return SE.getConstant(NextVal);
8900           return SE.getCouldNotCompute(); // Something strange happened
8901         }
8902 
8903         // If R1 was not in the range, then it is a good return value.  Make
8904         // sure that R1-1 WAS in the range though, just in case.
8905         ConstantInt *NextVal =
8906             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8907         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8908         if (Range.contains(R1Val->getValue()))
8909           return R1;
8910         return SE.getCouldNotCompute(); // Something strange happened
8911       }
8912     }
8913   }
8914 
8915   return SE.getCouldNotCompute();
8916 }
8917 
8918 namespace {
8919 struct FindUndefs {
8920   bool Found;
8921   FindUndefs() : Found(false) {}
8922 
8923   bool follow(const SCEV *S) {
8924     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8925       if (isa<UndefValue>(C->getValue()))
8926         Found = true;
8927     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8928       if (isa<UndefValue>(C->getValue()))
8929         Found = true;
8930     }
8931 
8932     // Keep looking if we haven't found it yet.
8933     return !Found;
8934   }
8935   bool isDone() const {
8936     // Stop recursion if we have found an undef.
8937     return Found;
8938   }
8939 };
8940 }
8941 
8942 // Return true when S contains at least an undef value.
8943 static inline bool
8944 containsUndefs(const SCEV *S) {
8945   FindUndefs F;
8946   SCEVTraversal<FindUndefs> ST(F);
8947   ST.visitAll(S);
8948 
8949   return F.Found;
8950 }
8951 
8952 namespace {
8953 // Collect all steps of SCEV expressions.
8954 struct SCEVCollectStrides {
8955   ScalarEvolution &SE;
8956   SmallVectorImpl<const SCEV *> &Strides;
8957 
8958   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8959       : SE(SE), Strides(S) {}
8960 
8961   bool follow(const SCEV *S) {
8962     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8963       Strides.push_back(AR->getStepRecurrence(SE));
8964     return true;
8965   }
8966   bool isDone() const { return false; }
8967 };
8968 
8969 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8970 struct SCEVCollectTerms {
8971   SmallVectorImpl<const SCEV *> &Terms;
8972 
8973   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8974       : Terms(T) {}
8975 
8976   bool follow(const SCEV *S) {
8977     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
8978         isa<SCEVSignExtendExpr>(S)) {
8979       if (!containsUndefs(S))
8980         Terms.push_back(S);
8981 
8982       // Stop recursion: once we collected a term, do not walk its operands.
8983       return false;
8984     }
8985 
8986     // Keep looking.
8987     return true;
8988   }
8989   bool isDone() const { return false; }
8990 };
8991 
8992 // Check if a SCEV contains an AddRecExpr.
8993 struct SCEVHasAddRec {
8994   bool &ContainsAddRec;
8995 
8996   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8997    ContainsAddRec = false;
8998   }
8999 
9000   bool follow(const SCEV *S) {
9001     if (isa<SCEVAddRecExpr>(S)) {
9002       ContainsAddRec = true;
9003 
9004       // Stop recursion: once we collected a term, do not walk its operands.
9005       return false;
9006     }
9007 
9008     // Keep looking.
9009     return true;
9010   }
9011   bool isDone() const { return false; }
9012 };
9013 
9014 // Find factors that are multiplied with an expression that (possibly as a
9015 // subexpression) contains an AddRecExpr. In the expression:
9016 //
9017 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
9018 //
9019 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9020 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9021 // parameters as they form a product with an induction variable.
9022 //
9023 // This collector expects all array size parameters to be in the same MulExpr.
9024 // It might be necessary to later add support for collecting parameters that are
9025 // spread over different nested MulExpr.
9026 struct SCEVCollectAddRecMultiplies {
9027   SmallVectorImpl<const SCEV *> &Terms;
9028   ScalarEvolution &SE;
9029 
9030   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9031       : Terms(T), SE(SE) {}
9032 
9033   bool follow(const SCEV *S) {
9034     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9035       bool HasAddRec = false;
9036       SmallVector<const SCEV *, 0> Operands;
9037       for (auto Op : Mul->operands()) {
9038         if (isa<SCEVUnknown>(Op)) {
9039           Operands.push_back(Op);
9040         } else {
9041           bool ContainsAddRec;
9042           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9043           visitAll(Op, ContiansAddRec);
9044           HasAddRec |= ContainsAddRec;
9045         }
9046       }
9047       if (Operands.size() == 0)
9048         return true;
9049 
9050       if (!HasAddRec)
9051         return false;
9052 
9053       Terms.push_back(SE.getMulExpr(Operands));
9054       // Stop recursion: once we collected a term, do not walk its operands.
9055       return false;
9056     }
9057 
9058     // Keep looking.
9059     return true;
9060   }
9061   bool isDone() const { return false; }
9062 };
9063 }
9064 
9065 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9066 /// two places:
9067 ///   1) The strides of AddRec expressions.
9068 ///   2) Unknowns that are multiplied with AddRec expressions.
9069 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9070     SmallVectorImpl<const SCEV *> &Terms) {
9071   SmallVector<const SCEV *, 4> Strides;
9072   SCEVCollectStrides StrideCollector(*this, Strides);
9073   visitAll(Expr, StrideCollector);
9074 
9075   DEBUG({
9076       dbgs() << "Strides:\n";
9077       for (const SCEV *S : Strides)
9078         dbgs() << *S << "\n";
9079     });
9080 
9081   for (const SCEV *S : Strides) {
9082     SCEVCollectTerms TermCollector(Terms);
9083     visitAll(S, TermCollector);
9084   }
9085 
9086   DEBUG({
9087       dbgs() << "Terms:\n";
9088       for (const SCEV *T : Terms)
9089         dbgs() << *T << "\n";
9090     });
9091 
9092   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9093   visitAll(Expr, MulCollector);
9094 }
9095 
9096 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9097                                    SmallVectorImpl<const SCEV *> &Terms,
9098                                    SmallVectorImpl<const SCEV *> &Sizes) {
9099   int Last = Terms.size() - 1;
9100   const SCEV *Step = Terms[Last];
9101 
9102   // End of recursion.
9103   if (Last == 0) {
9104     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9105       SmallVector<const SCEV *, 2> Qs;
9106       for (const SCEV *Op : M->operands())
9107         if (!isa<SCEVConstant>(Op))
9108           Qs.push_back(Op);
9109 
9110       Step = SE.getMulExpr(Qs);
9111     }
9112 
9113     Sizes.push_back(Step);
9114     return true;
9115   }
9116 
9117   for (const SCEV *&Term : Terms) {
9118     // Normalize the terms before the next call to findArrayDimensionsRec.
9119     const SCEV *Q, *R;
9120     SCEVDivision::divide(SE, Term, Step, &Q, &R);
9121 
9122     // Bail out when GCD does not evenly divide one of the terms.
9123     if (!R->isZero())
9124       return false;
9125 
9126     Term = Q;
9127   }
9128 
9129   // Remove all SCEVConstants.
9130   Terms.erase(
9131       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
9132       Terms.end());
9133 
9134   if (Terms.size() > 0)
9135     if (!findArrayDimensionsRec(SE, Terms, Sizes))
9136       return false;
9137 
9138   Sizes.push_back(Step);
9139   return true;
9140 }
9141 
9142 // Returns true when S contains at least a SCEVUnknown parameter.
9143 static inline bool
9144 containsParameters(const SCEV *S) {
9145   struct FindParameter {
9146     bool FoundParameter;
9147     FindParameter() : FoundParameter(false) {}
9148 
9149     bool follow(const SCEV *S) {
9150       if (isa<SCEVUnknown>(S)) {
9151         FoundParameter = true;
9152         // Stop recursion: we found a parameter.
9153         return false;
9154       }
9155       // Keep looking.
9156       return true;
9157     }
9158     bool isDone() const {
9159       // Stop recursion if we have found a parameter.
9160       return FoundParameter;
9161     }
9162   };
9163 
9164   FindParameter F;
9165   SCEVTraversal<FindParameter> ST(F);
9166   ST.visitAll(S);
9167 
9168   return F.FoundParameter;
9169 }
9170 
9171 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9172 static inline bool
9173 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9174   for (const SCEV *T : Terms)
9175     if (containsParameters(T))
9176       return true;
9177   return false;
9178 }
9179 
9180 // Return the number of product terms in S.
9181 static inline int numberOfTerms(const SCEV *S) {
9182   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9183     return Expr->getNumOperands();
9184   return 1;
9185 }
9186 
9187 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9188   if (isa<SCEVConstant>(T))
9189     return nullptr;
9190 
9191   if (isa<SCEVUnknown>(T))
9192     return T;
9193 
9194   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9195     SmallVector<const SCEV *, 2> Factors;
9196     for (const SCEV *Op : M->operands())
9197       if (!isa<SCEVConstant>(Op))
9198         Factors.push_back(Op);
9199 
9200     return SE.getMulExpr(Factors);
9201   }
9202 
9203   return T;
9204 }
9205 
9206 /// Return the size of an element read or written by Inst.
9207 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9208   Type *Ty;
9209   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9210     Ty = Store->getValueOperand()->getType();
9211   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9212     Ty = Load->getType();
9213   else
9214     return nullptr;
9215 
9216   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9217   return getSizeOfExpr(ETy, Ty);
9218 }
9219 
9220 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9221                                           SmallVectorImpl<const SCEV *> &Sizes,
9222                                           const SCEV *ElementSize) const {
9223   if (Terms.size() < 1 || !ElementSize)
9224     return;
9225 
9226   // Early return when Terms do not contain parameters: we do not delinearize
9227   // non parametric SCEVs.
9228   if (!containsParameters(Terms))
9229     return;
9230 
9231   DEBUG({
9232       dbgs() << "Terms:\n";
9233       for (const SCEV *T : Terms)
9234         dbgs() << *T << "\n";
9235     });
9236 
9237   // Remove duplicates.
9238   std::sort(Terms.begin(), Terms.end());
9239   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9240 
9241   // Put larger terms first.
9242   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9243     return numberOfTerms(LHS) > numberOfTerms(RHS);
9244   });
9245 
9246   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9247 
9248   // Try to divide all terms by the element size. If term is not divisible by
9249   // element size, proceed with the original term.
9250   for (const SCEV *&Term : Terms) {
9251     const SCEV *Q, *R;
9252     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9253     if (!Q->isZero())
9254       Term = Q;
9255   }
9256 
9257   SmallVector<const SCEV *, 4> NewTerms;
9258 
9259   // Remove constant factors.
9260   for (const SCEV *T : Terms)
9261     if (const SCEV *NewT = removeConstantFactors(SE, T))
9262       NewTerms.push_back(NewT);
9263 
9264   DEBUG({
9265       dbgs() << "Terms after sorting:\n";
9266       for (const SCEV *T : NewTerms)
9267         dbgs() << *T << "\n";
9268     });
9269 
9270   if (NewTerms.empty() ||
9271       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9272     Sizes.clear();
9273     return;
9274   }
9275 
9276   // The last element to be pushed into Sizes is the size of an element.
9277   Sizes.push_back(ElementSize);
9278 
9279   DEBUG({
9280       dbgs() << "Sizes:\n";
9281       for (const SCEV *S : Sizes)
9282         dbgs() << *S << "\n";
9283     });
9284 }
9285 
9286 void ScalarEvolution::computeAccessFunctions(
9287     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9288     SmallVectorImpl<const SCEV *> &Sizes) {
9289 
9290   // Early exit in case this SCEV is not an affine multivariate function.
9291   if (Sizes.empty())
9292     return;
9293 
9294   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9295     if (!AR->isAffine())
9296       return;
9297 
9298   const SCEV *Res = Expr;
9299   int Last = Sizes.size() - 1;
9300   for (int i = Last; i >= 0; i--) {
9301     const SCEV *Q, *R;
9302     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9303 
9304     DEBUG({
9305         dbgs() << "Res: " << *Res << "\n";
9306         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9307         dbgs() << "Res divided by Sizes[i]:\n";
9308         dbgs() << "Quotient: " << *Q << "\n";
9309         dbgs() << "Remainder: " << *R << "\n";
9310       });
9311 
9312     Res = Q;
9313 
9314     // Do not record the last subscript corresponding to the size of elements in
9315     // the array.
9316     if (i == Last) {
9317 
9318       // Bail out if the remainder is too complex.
9319       if (isa<SCEVAddRecExpr>(R)) {
9320         Subscripts.clear();
9321         Sizes.clear();
9322         return;
9323       }
9324 
9325       continue;
9326     }
9327 
9328     // Record the access function for the current subscript.
9329     Subscripts.push_back(R);
9330   }
9331 
9332   // Also push in last position the remainder of the last division: it will be
9333   // the access function of the innermost dimension.
9334   Subscripts.push_back(Res);
9335 
9336   std::reverse(Subscripts.begin(), Subscripts.end());
9337 
9338   DEBUG({
9339       dbgs() << "Subscripts:\n";
9340       for (const SCEV *S : Subscripts)
9341         dbgs() << *S << "\n";
9342     });
9343 }
9344 
9345 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9346 /// sizes of an array access. Returns the remainder of the delinearization that
9347 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9348 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9349 /// expressions in the stride and base of a SCEV corresponding to the
9350 /// computation of a GCD (greatest common divisor) of base and stride.  When
9351 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9352 ///
9353 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9354 ///
9355 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9356 ///
9357 ///    for (long i = 0; i < n; i++)
9358 ///      for (long j = 0; j < m; j++)
9359 ///        for (long k = 0; k < o; k++)
9360 ///          A[i][j][k] = 1.0;
9361 ///  }
9362 ///
9363 /// the delinearization input is the following AddRec SCEV:
9364 ///
9365 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9366 ///
9367 /// From this SCEV, we are able to say that the base offset of the access is %A
9368 /// because it appears as an offset that does not divide any of the strides in
9369 /// the loops:
9370 ///
9371 ///  CHECK: Base offset: %A
9372 ///
9373 /// and then SCEV->delinearize determines the size of some of the dimensions of
9374 /// the array as these are the multiples by which the strides are happening:
9375 ///
9376 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9377 ///
9378 /// Note that the outermost dimension remains of UnknownSize because there are
9379 /// no strides that would help identifying the size of the last dimension: when
9380 /// the array has been statically allocated, one could compute the size of that
9381 /// dimension by dividing the overall size of the array by the size of the known
9382 /// dimensions: %m * %o * 8.
9383 ///
9384 /// Finally delinearize provides the access functions for the array reference
9385 /// that does correspond to A[i][j][k] of the above C testcase:
9386 ///
9387 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9388 ///
9389 /// The testcases are checking the output of a function pass:
9390 /// DelinearizationPass that walks through all loads and stores of a function
9391 /// asking for the SCEV of the memory access with respect to all enclosing
9392 /// loops, calling SCEV->delinearize on that and printing the results.
9393 
9394 void ScalarEvolution::delinearize(const SCEV *Expr,
9395                                  SmallVectorImpl<const SCEV *> &Subscripts,
9396                                  SmallVectorImpl<const SCEV *> &Sizes,
9397                                  const SCEV *ElementSize) {
9398   // First step: collect parametric terms.
9399   SmallVector<const SCEV *, 4> Terms;
9400   collectParametricTerms(Expr, Terms);
9401 
9402   if (Terms.empty())
9403     return;
9404 
9405   // Second step: find subscript sizes.
9406   findArrayDimensions(Terms, Sizes, ElementSize);
9407 
9408   if (Sizes.empty())
9409     return;
9410 
9411   // Third step: compute the access functions for each subscript.
9412   computeAccessFunctions(Expr, Subscripts, Sizes);
9413 
9414   if (Subscripts.empty())
9415     return;
9416 
9417   DEBUG({
9418       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9419       dbgs() << "ArrayDecl[UnknownSize]";
9420       for (const SCEV *S : Sizes)
9421         dbgs() << "[" << *S << "]";
9422 
9423       dbgs() << "\nArrayRef";
9424       for (const SCEV *S : Subscripts)
9425         dbgs() << "[" << *S << "]";
9426       dbgs() << "\n";
9427     });
9428 }
9429 
9430 //===----------------------------------------------------------------------===//
9431 //                   SCEVCallbackVH Class Implementation
9432 //===----------------------------------------------------------------------===//
9433 
9434 void ScalarEvolution::SCEVCallbackVH::deleted() {
9435   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9436   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9437     SE->ConstantEvolutionLoopExitValue.erase(PN);
9438   SE->eraseValueFromMap(getValPtr());
9439   // this now dangles!
9440 }
9441 
9442 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9443   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9444 
9445   // Forget all the expressions associated with users of the old value,
9446   // so that future queries will recompute the expressions using the new
9447   // value.
9448   Value *Old = getValPtr();
9449   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9450   SmallPtrSet<User *, 8> Visited;
9451   while (!Worklist.empty()) {
9452     User *U = Worklist.pop_back_val();
9453     // Deleting the Old value will cause this to dangle. Postpone
9454     // that until everything else is done.
9455     if (U == Old)
9456       continue;
9457     if (!Visited.insert(U).second)
9458       continue;
9459     if (PHINode *PN = dyn_cast<PHINode>(U))
9460       SE->ConstantEvolutionLoopExitValue.erase(PN);
9461     SE->eraseValueFromMap(U);
9462     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9463   }
9464   // Delete the Old value.
9465   if (PHINode *PN = dyn_cast<PHINode>(Old))
9466     SE->ConstantEvolutionLoopExitValue.erase(PN);
9467   SE->eraseValueFromMap(Old);
9468   // this now dangles!
9469 }
9470 
9471 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9472   : CallbackVH(V), SE(se) {}
9473 
9474 //===----------------------------------------------------------------------===//
9475 //                   ScalarEvolution Class Implementation
9476 //===----------------------------------------------------------------------===//
9477 
9478 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9479                                  AssumptionCache &AC, DominatorTree &DT,
9480                                  LoopInfo &LI)
9481     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9482       CouldNotCompute(new SCEVCouldNotCompute()),
9483       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9484       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9485       FirstUnknown(nullptr) {
9486 
9487   // To use guards for proving predicates, we need to scan every instruction in
9488   // relevant basic blocks, and not just terminators.  Doing this is a waste of
9489   // time if the IR does not actually contain any calls to
9490   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9491   //
9492   // This pessimizes the case where a pass that preserves ScalarEvolution wants
9493   // to _add_ guards to the module when there weren't any before, and wants
9494   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
9495   // efficient in lieu of being smart in that rather obscure case.
9496 
9497   auto *GuardDecl = F.getParent()->getFunction(
9498       Intrinsic::getName(Intrinsic::experimental_guard));
9499   HasGuards = GuardDecl && !GuardDecl->use_empty();
9500 }
9501 
9502 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9503     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9504       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9505       ValueExprMap(std::move(Arg.ValueExprMap)),
9506       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
9507       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9508       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9509       PredicatedBackedgeTakenCounts(
9510           std::move(Arg.PredicatedBackedgeTakenCounts)),
9511       ConstantEvolutionLoopExitValue(
9512           std::move(Arg.ConstantEvolutionLoopExitValue)),
9513       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9514       LoopDispositions(std::move(Arg.LoopDispositions)),
9515       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
9516       BlockDispositions(std::move(Arg.BlockDispositions)),
9517       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9518       SignedRanges(std::move(Arg.SignedRanges)),
9519       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9520       UniquePreds(std::move(Arg.UniquePreds)),
9521       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9522       FirstUnknown(Arg.FirstUnknown) {
9523   Arg.FirstUnknown = nullptr;
9524 }
9525 
9526 ScalarEvolution::~ScalarEvolution() {
9527   // Iterate through all the SCEVUnknown instances and call their
9528   // destructors, so that they release their references to their values.
9529   for (SCEVUnknown *U = FirstUnknown; U;) {
9530     SCEVUnknown *Tmp = U;
9531     U = U->Next;
9532     Tmp->~SCEVUnknown();
9533   }
9534   FirstUnknown = nullptr;
9535 
9536   ExprValueMap.clear();
9537   ValueExprMap.clear();
9538   HasRecMap.clear();
9539 
9540   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9541   // that a loop had multiple computable exits.
9542   for (auto &BTCI : BackedgeTakenCounts)
9543     BTCI.second.clear();
9544   for (auto &BTCI : PredicatedBackedgeTakenCounts)
9545     BTCI.second.clear();
9546 
9547   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9548   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9549   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9550 }
9551 
9552 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9553   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9554 }
9555 
9556 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9557                           const Loop *L) {
9558   // Print all inner loops first
9559   for (Loop *I : *L)
9560     PrintLoopInfo(OS, SE, I);
9561 
9562   OS << "Loop ";
9563   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9564   OS << ": ";
9565 
9566   SmallVector<BasicBlock *, 8> ExitBlocks;
9567   L->getExitBlocks(ExitBlocks);
9568   if (ExitBlocks.size() != 1)
9569     OS << "<multiple exits> ";
9570 
9571   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9572     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9573   } else {
9574     OS << "Unpredictable backedge-taken count. ";
9575   }
9576 
9577   OS << "\n"
9578         "Loop ";
9579   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9580   OS << ": ";
9581 
9582   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9583     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9584   } else {
9585     OS << "Unpredictable max backedge-taken count. ";
9586   }
9587 
9588   OS << "\n"
9589         "Loop ";
9590   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9591   OS << ": ";
9592 
9593   SCEVUnionPredicate Pred;
9594   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9595   if (!isa<SCEVCouldNotCompute>(PBT)) {
9596     OS << "Predicated backedge-taken count is " << *PBT << "\n";
9597     OS << " Predicates:\n";
9598     Pred.print(OS, 4);
9599   } else {
9600     OS << "Unpredictable predicated backedge-taken count. ";
9601   }
9602   OS << "\n";
9603 }
9604 
9605 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9606   switch (LD) {
9607   case ScalarEvolution::LoopVariant:
9608     return "Variant";
9609   case ScalarEvolution::LoopInvariant:
9610     return "Invariant";
9611   case ScalarEvolution::LoopComputable:
9612     return "Computable";
9613   }
9614   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
9615 }
9616 
9617 void ScalarEvolution::print(raw_ostream &OS) const {
9618   // ScalarEvolution's implementation of the print method is to print
9619   // out SCEV values of all instructions that are interesting. Doing
9620   // this potentially causes it to create new SCEV objects though,
9621   // which technically conflicts with the const qualifier. This isn't
9622   // observable from outside the class though, so casting away the
9623   // const isn't dangerous.
9624   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9625 
9626   OS << "Classifying expressions for: ";
9627   F.printAsOperand(OS, /*PrintType=*/false);
9628   OS << "\n";
9629   for (Instruction &I : instructions(F))
9630     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9631       OS << I << '\n';
9632       OS << "  -->  ";
9633       const SCEV *SV = SE.getSCEV(&I);
9634       SV->print(OS);
9635       if (!isa<SCEVCouldNotCompute>(SV)) {
9636         OS << " U: ";
9637         SE.getUnsignedRange(SV).print(OS);
9638         OS << " S: ";
9639         SE.getSignedRange(SV).print(OS);
9640       }
9641 
9642       const Loop *L = LI.getLoopFor(I.getParent());
9643 
9644       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9645       if (AtUse != SV) {
9646         OS << "  -->  ";
9647         AtUse->print(OS);
9648         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9649           OS << " U: ";
9650           SE.getUnsignedRange(AtUse).print(OS);
9651           OS << " S: ";
9652           SE.getSignedRange(AtUse).print(OS);
9653         }
9654       }
9655 
9656       if (L) {
9657         OS << "\t\t" "Exits: ";
9658         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9659         if (!SE.isLoopInvariant(ExitValue, L)) {
9660           OS << "<<Unknown>>";
9661         } else {
9662           OS << *ExitValue;
9663         }
9664 
9665         bool First = true;
9666         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9667           if (First) {
9668             OS << "\t\t" "LoopDispositions: { ";
9669             First = false;
9670           } else {
9671             OS << ", ";
9672           }
9673 
9674           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9675           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9676         }
9677 
9678         for (auto *InnerL : depth_first(L)) {
9679           if (InnerL == L)
9680             continue;
9681           if (First) {
9682             OS << "\t\t" "LoopDispositions: { ";
9683             First = false;
9684           } else {
9685             OS << ", ";
9686           }
9687 
9688           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9689           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9690         }
9691 
9692         OS << " }";
9693       }
9694 
9695       OS << "\n";
9696     }
9697 
9698   OS << "Determining loop execution counts for: ";
9699   F.printAsOperand(OS, /*PrintType=*/false);
9700   OS << "\n";
9701   for (Loop *I : LI)
9702     PrintLoopInfo(OS, &SE, I);
9703 }
9704 
9705 ScalarEvolution::LoopDisposition
9706 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9707   auto &Values = LoopDispositions[S];
9708   for (auto &V : Values) {
9709     if (V.getPointer() == L)
9710       return V.getInt();
9711   }
9712   Values.emplace_back(L, LoopVariant);
9713   LoopDisposition D = computeLoopDisposition(S, L);
9714   auto &Values2 = LoopDispositions[S];
9715   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9716     if (V.getPointer() == L) {
9717       V.setInt(D);
9718       break;
9719     }
9720   }
9721   return D;
9722 }
9723 
9724 ScalarEvolution::LoopDisposition
9725 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9726   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9727   case scConstant:
9728     return LoopInvariant;
9729   case scTruncate:
9730   case scZeroExtend:
9731   case scSignExtend:
9732     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9733   case scAddRecExpr: {
9734     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9735 
9736     // If L is the addrec's loop, it's computable.
9737     if (AR->getLoop() == L)
9738       return LoopComputable;
9739 
9740     // Add recurrences are never invariant in the function-body (null loop).
9741     if (!L)
9742       return LoopVariant;
9743 
9744     // This recurrence is variant w.r.t. L if L contains AR's loop.
9745     if (L->contains(AR->getLoop()))
9746       return LoopVariant;
9747 
9748     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9749     if (AR->getLoop()->contains(L))
9750       return LoopInvariant;
9751 
9752     // This recurrence is variant w.r.t. L if any of its operands
9753     // are variant.
9754     for (auto *Op : AR->operands())
9755       if (!isLoopInvariant(Op, L))
9756         return LoopVariant;
9757 
9758     // Otherwise it's loop-invariant.
9759     return LoopInvariant;
9760   }
9761   case scAddExpr:
9762   case scMulExpr:
9763   case scUMaxExpr:
9764   case scSMaxExpr: {
9765     bool HasVarying = false;
9766     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9767       LoopDisposition D = getLoopDisposition(Op, L);
9768       if (D == LoopVariant)
9769         return LoopVariant;
9770       if (D == LoopComputable)
9771         HasVarying = true;
9772     }
9773     return HasVarying ? LoopComputable : LoopInvariant;
9774   }
9775   case scUDivExpr: {
9776     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9777     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9778     if (LD == LoopVariant)
9779       return LoopVariant;
9780     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9781     if (RD == LoopVariant)
9782       return LoopVariant;
9783     return (LD == LoopInvariant && RD == LoopInvariant) ?
9784            LoopInvariant : LoopComputable;
9785   }
9786   case scUnknown:
9787     // All non-instruction values are loop invariant.  All instructions are loop
9788     // invariant if they are not contained in the specified loop.
9789     // Instructions are never considered invariant in the function body
9790     // (null loop) because they are defined within the "loop".
9791     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9792       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9793     return LoopInvariant;
9794   case scCouldNotCompute:
9795     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9796   }
9797   llvm_unreachable("Unknown SCEV kind!");
9798 }
9799 
9800 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9801   return getLoopDisposition(S, L) == LoopInvariant;
9802 }
9803 
9804 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9805   return getLoopDisposition(S, L) == LoopComputable;
9806 }
9807 
9808 ScalarEvolution::BlockDisposition
9809 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9810   auto &Values = BlockDispositions[S];
9811   for (auto &V : Values) {
9812     if (V.getPointer() == BB)
9813       return V.getInt();
9814   }
9815   Values.emplace_back(BB, DoesNotDominateBlock);
9816   BlockDisposition D = computeBlockDisposition(S, BB);
9817   auto &Values2 = BlockDispositions[S];
9818   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9819     if (V.getPointer() == BB) {
9820       V.setInt(D);
9821       break;
9822     }
9823   }
9824   return D;
9825 }
9826 
9827 ScalarEvolution::BlockDisposition
9828 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9829   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9830   case scConstant:
9831     return ProperlyDominatesBlock;
9832   case scTruncate:
9833   case scZeroExtend:
9834   case scSignExtend:
9835     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9836   case scAddRecExpr: {
9837     // This uses a "dominates" query instead of "properly dominates" query
9838     // to test for proper dominance too, because the instruction which
9839     // produces the addrec's value is a PHI, and a PHI effectively properly
9840     // dominates its entire containing block.
9841     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9842     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9843       return DoesNotDominateBlock;
9844 
9845     // Fall through into SCEVNAryExpr handling.
9846     LLVM_FALLTHROUGH;
9847   }
9848   case scAddExpr:
9849   case scMulExpr:
9850   case scUMaxExpr:
9851   case scSMaxExpr: {
9852     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9853     bool Proper = true;
9854     for (const SCEV *NAryOp : NAry->operands()) {
9855       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9856       if (D == DoesNotDominateBlock)
9857         return DoesNotDominateBlock;
9858       if (D == DominatesBlock)
9859         Proper = false;
9860     }
9861     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9862   }
9863   case scUDivExpr: {
9864     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9865     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9866     BlockDisposition LD = getBlockDisposition(LHS, BB);
9867     if (LD == DoesNotDominateBlock)
9868       return DoesNotDominateBlock;
9869     BlockDisposition RD = getBlockDisposition(RHS, BB);
9870     if (RD == DoesNotDominateBlock)
9871       return DoesNotDominateBlock;
9872     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9873       ProperlyDominatesBlock : DominatesBlock;
9874   }
9875   case scUnknown:
9876     if (Instruction *I =
9877           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9878       if (I->getParent() == BB)
9879         return DominatesBlock;
9880       if (DT.properlyDominates(I->getParent(), BB))
9881         return ProperlyDominatesBlock;
9882       return DoesNotDominateBlock;
9883     }
9884     return ProperlyDominatesBlock;
9885   case scCouldNotCompute:
9886     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9887   }
9888   llvm_unreachable("Unknown SCEV kind!");
9889 }
9890 
9891 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9892   return getBlockDisposition(S, BB) >= DominatesBlock;
9893 }
9894 
9895 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9896   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9897 }
9898 
9899 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9900   // Search for a SCEV expression node within an expression tree.
9901   // Implements SCEVTraversal::Visitor.
9902   struct SCEVSearch {
9903     const SCEV *Node;
9904     bool IsFound;
9905 
9906     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9907 
9908     bool follow(const SCEV *S) {
9909       IsFound |= (S == Node);
9910       return !IsFound;
9911     }
9912     bool isDone() const { return IsFound; }
9913   };
9914 
9915   SCEVSearch Search(Op);
9916   visitAll(S, Search);
9917   return Search.IsFound;
9918 }
9919 
9920 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9921   ValuesAtScopes.erase(S);
9922   LoopDispositions.erase(S);
9923   BlockDispositions.erase(S);
9924   UnsignedRanges.erase(S);
9925   SignedRanges.erase(S);
9926   ExprValueMap.erase(S);
9927   HasRecMap.erase(S);
9928 
9929   auto RemoveSCEVFromBackedgeMap =
9930       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9931         for (auto I = Map.begin(), E = Map.end(); I != E;) {
9932           BackedgeTakenInfo &BEInfo = I->second;
9933           if (BEInfo.hasOperand(S, this)) {
9934             BEInfo.clear();
9935             Map.erase(I++);
9936           } else
9937             ++I;
9938         }
9939       };
9940 
9941   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9942   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
9943 }
9944 
9945 typedef DenseMap<const Loop *, std::string> VerifyMap;
9946 
9947 /// replaceSubString - Replaces all occurrences of From in Str with To.
9948 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9949   size_t Pos = 0;
9950   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9951     Str.replace(Pos, From.size(), To.data(), To.size());
9952     Pos += To.size();
9953   }
9954 }
9955 
9956 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9957 static void
9958 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9959   std::string &S = Map[L];
9960   if (S.empty()) {
9961     raw_string_ostream OS(S);
9962     SE.getBackedgeTakenCount(L)->print(OS);
9963 
9964     // false and 0 are semantically equivalent. This can happen in dead loops.
9965     replaceSubString(OS.str(), "false", "0");
9966     // Remove wrap flags, their use in SCEV is highly fragile.
9967     // FIXME: Remove this when SCEV gets smarter about them.
9968     replaceSubString(OS.str(), "<nw>", "");
9969     replaceSubString(OS.str(), "<nsw>", "");
9970     replaceSubString(OS.str(), "<nuw>", "");
9971   }
9972 
9973   for (auto *R : reverse(*L))
9974     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9975 }
9976 
9977 void ScalarEvolution::verify() const {
9978   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9979 
9980   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9981   // FIXME: It would be much better to store actual values instead of strings,
9982   //        but SCEV pointers will change if we drop the caches.
9983   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9984   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9985     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9986 
9987   // Gather stringified backedge taken counts for all loops using a fresh
9988   // ScalarEvolution object.
9989   ScalarEvolution SE2(F, TLI, AC, DT, LI);
9990   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9991     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9992 
9993   // Now compare whether they're the same with and without caches. This allows
9994   // verifying that no pass changed the cache.
9995   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9996          "New loops suddenly appeared!");
9997 
9998   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9999                            OldE = BackedgeDumpsOld.end(),
10000                            NewI = BackedgeDumpsNew.begin();
10001        OldI != OldE; ++OldI, ++NewI) {
10002     assert(OldI->first == NewI->first && "Loop order changed!");
10003 
10004     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10005     // changes.
10006     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
10007     // means that a pass is buggy or SCEV has to learn a new pattern but is
10008     // usually not harmful.
10009     if (OldI->second != NewI->second &&
10010         OldI->second.find("undef") == std::string::npos &&
10011         NewI->second.find("undef") == std::string::npos &&
10012         OldI->second != "***COULDNOTCOMPUTE***" &&
10013         NewI->second != "***COULDNOTCOMPUTE***") {
10014       dbgs() << "SCEVValidator: SCEV for loop '"
10015              << OldI->first->getHeader()->getName()
10016              << "' changed from '" << OldI->second
10017              << "' to '" << NewI->second << "'!\n";
10018       std::abort();
10019     }
10020   }
10021 
10022   // TODO: Verify more things.
10023 }
10024 
10025 char ScalarEvolutionAnalysis::PassID;
10026 
10027 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10028                                              FunctionAnalysisManager &AM) {
10029   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10030                          AM.getResult<AssumptionAnalysis>(F),
10031                          AM.getResult<DominatorTreeAnalysis>(F),
10032                          AM.getResult<LoopAnalysis>(F));
10033 }
10034 
10035 PreservedAnalyses
10036 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
10037   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10038   return PreservedAnalyses::all();
10039 }
10040 
10041 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10042                       "Scalar Evolution Analysis", false, true)
10043 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10044 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10045 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10046 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10047 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10048                     "Scalar Evolution Analysis", false, true)
10049 char ScalarEvolutionWrapperPass::ID = 0;
10050 
10051 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10052   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10053 }
10054 
10055 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10056   SE.reset(new ScalarEvolution(
10057       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10058       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10059       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10060       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10061   return false;
10062 }
10063 
10064 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10065 
10066 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10067   SE->print(OS);
10068 }
10069 
10070 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10071   if (!VerifySCEV)
10072     return;
10073 
10074   SE->verify();
10075 }
10076 
10077 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10078   AU.setPreservesAll();
10079   AU.addRequiredTransitive<AssumptionCacheTracker>();
10080   AU.addRequiredTransitive<LoopInfoWrapperPass>();
10081   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10082   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10083 }
10084 
10085 const SCEVPredicate *
10086 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10087                                    const SCEVConstant *RHS) {
10088   FoldingSetNodeID ID;
10089   // Unique this node based on the arguments
10090   ID.AddInteger(SCEVPredicate::P_Equal);
10091   ID.AddPointer(LHS);
10092   ID.AddPointer(RHS);
10093   void *IP = nullptr;
10094   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10095     return S;
10096   SCEVEqualPredicate *Eq = new (SCEVAllocator)
10097       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10098   UniquePreds.InsertNode(Eq, IP);
10099   return Eq;
10100 }
10101 
10102 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10103     const SCEVAddRecExpr *AR,
10104     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10105   FoldingSetNodeID ID;
10106   // Unique this node based on the arguments
10107   ID.AddInteger(SCEVPredicate::P_Wrap);
10108   ID.AddPointer(AR);
10109   ID.AddInteger(AddedFlags);
10110   void *IP = nullptr;
10111   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10112     return S;
10113   auto *OF = new (SCEVAllocator)
10114       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10115   UniquePreds.InsertNode(OF, IP);
10116   return OF;
10117 }
10118 
10119 namespace {
10120 
10121 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10122 public:
10123   /// Rewrites \p S in the context of a loop L and the SCEV predication
10124   /// infrastructure.
10125   ///
10126   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
10127   /// equivalences present in \p Pred.
10128   ///
10129   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
10130   /// \p NewPreds such that the result will be an AddRecExpr.
10131   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10132                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10133                              SCEVUnionPredicate *Pred) {
10134     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
10135     return Rewriter.visit(S);
10136   }
10137 
10138   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10139                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10140                         SCEVUnionPredicate *Pred)
10141       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
10142 
10143   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10144     if (Pred) {
10145       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
10146       for (auto *Pred : ExprPreds)
10147         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
10148           if (IPred->getLHS() == Expr)
10149             return IPred->getRHS();
10150     }
10151 
10152     return Expr;
10153   }
10154 
10155   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10156     const SCEV *Operand = visit(Expr->getOperand());
10157     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10158     if (AR && AR->getLoop() == L && AR->isAffine()) {
10159       // This couldn't be folded because the operand didn't have the nuw
10160       // flag. Add the nusw flag as an assumption that we could make.
10161       const SCEV *Step = AR->getStepRecurrence(SE);
10162       Type *Ty = Expr->getType();
10163       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10164         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10165                                 SE.getSignExtendExpr(Step, Ty), L,
10166                                 AR->getNoWrapFlags());
10167     }
10168     return SE.getZeroExtendExpr(Operand, Expr->getType());
10169   }
10170 
10171   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10172     const SCEV *Operand = visit(Expr->getOperand());
10173     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10174     if (AR && AR->getLoop() == L && AR->isAffine()) {
10175       // This couldn't be folded because the operand didn't have the nsw
10176       // flag. Add the nssw flag as an assumption that we could make.
10177       const SCEV *Step = AR->getStepRecurrence(SE);
10178       Type *Ty = Expr->getType();
10179       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10180         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10181                                 SE.getSignExtendExpr(Step, Ty), L,
10182                                 AR->getNoWrapFlags());
10183     }
10184     return SE.getSignExtendExpr(Operand, Expr->getType());
10185   }
10186 
10187 private:
10188   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10189                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10190     auto *A = SE.getWrapPredicate(AR, AddedFlags);
10191     if (!NewPreds) {
10192       // Check if we've already made this assumption.
10193       return Pred && Pred->implies(A);
10194     }
10195     NewPreds->insert(A);
10196     return true;
10197   }
10198 
10199   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
10200   SCEVUnionPredicate *Pred;
10201   const Loop *L;
10202 };
10203 } // end anonymous namespace
10204 
10205 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10206                                                    SCEVUnionPredicate &Preds) {
10207   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
10208 }
10209 
10210 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
10211     const SCEV *S, const Loop *L,
10212     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
10213 
10214   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
10215   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
10216   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10217 
10218   if (!AddRec)
10219     return nullptr;
10220 
10221   // Since the transformation was successful, we can now transfer the SCEV
10222   // predicates.
10223   for (auto *P : TransformPreds)
10224     Preds.insert(P);
10225 
10226   return AddRec;
10227 }
10228 
10229 /// SCEV predicates
10230 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10231                              SCEVPredicateKind Kind)
10232     : FastID(ID), Kind(Kind) {}
10233 
10234 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10235                                        const SCEVUnknown *LHS,
10236                                        const SCEVConstant *RHS)
10237     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10238 
10239 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10240   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
10241 
10242   if (!Op)
10243     return false;
10244 
10245   return Op->LHS == LHS && Op->RHS == RHS;
10246 }
10247 
10248 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10249 
10250 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10251 
10252 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10253   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10254 }
10255 
10256 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10257                                      const SCEVAddRecExpr *AR,
10258                                      IncrementWrapFlags Flags)
10259     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10260 
10261 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10262 
10263 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10264   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10265 
10266   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10267 }
10268 
10269 bool SCEVWrapPredicate::isAlwaysTrue() const {
10270   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10271   IncrementWrapFlags IFlags = Flags;
10272 
10273   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10274     IFlags = clearFlags(IFlags, IncrementNSSW);
10275 
10276   return IFlags == IncrementAnyWrap;
10277 }
10278 
10279 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10280   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10281   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10282     OS << "<nusw>";
10283   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10284     OS << "<nssw>";
10285   OS << "\n";
10286 }
10287 
10288 SCEVWrapPredicate::IncrementWrapFlags
10289 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10290                                    ScalarEvolution &SE) {
10291   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10292   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10293 
10294   // We can safely transfer the NSW flag as NSSW.
10295   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10296     ImpliedFlags = IncrementNSSW;
10297 
10298   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10299     // If the increment is positive, the SCEV NUW flag will also imply the
10300     // WrapPredicate NUSW flag.
10301     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10302       if (Step->getValue()->getValue().isNonNegative())
10303         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10304   }
10305 
10306   return ImpliedFlags;
10307 }
10308 
10309 /// Union predicates don't get cached so create a dummy set ID for it.
10310 SCEVUnionPredicate::SCEVUnionPredicate()
10311     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10312 
10313 bool SCEVUnionPredicate::isAlwaysTrue() const {
10314   return all_of(Preds,
10315                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10316 }
10317 
10318 ArrayRef<const SCEVPredicate *>
10319 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10320   auto I = SCEVToPreds.find(Expr);
10321   if (I == SCEVToPreds.end())
10322     return ArrayRef<const SCEVPredicate *>();
10323   return I->second;
10324 }
10325 
10326 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10327   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
10328     return all_of(Set->Preds,
10329                   [this](const SCEVPredicate *I) { return this->implies(I); });
10330 
10331   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10332   if (ScevPredsIt == SCEVToPreds.end())
10333     return false;
10334   auto &SCEVPreds = ScevPredsIt->second;
10335 
10336   return any_of(SCEVPreds,
10337                 [N](const SCEVPredicate *I) { return I->implies(N); });
10338 }
10339 
10340 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10341 
10342 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10343   for (auto Pred : Preds)
10344     Pred->print(OS, Depth);
10345 }
10346 
10347 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10348   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
10349     for (auto Pred : Set->Preds)
10350       add(Pred);
10351     return;
10352   }
10353 
10354   if (implies(N))
10355     return;
10356 
10357   const SCEV *Key = N->getExpr();
10358   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10359                 " associated expression!");
10360 
10361   SCEVToPreds[Key].push_back(N);
10362   Preds.push_back(N);
10363 }
10364 
10365 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10366                                                      Loop &L)
10367     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10368 
10369 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10370   const SCEV *Expr = SE.getSCEV(V);
10371   RewriteEntry &Entry = RewriteMap[Expr];
10372 
10373   // If we already have an entry and the version matches, return it.
10374   if (Entry.second && Generation == Entry.first)
10375     return Entry.second;
10376 
10377   // We found an entry but it's stale. Rewrite the stale entry
10378   // acording to the current predicate.
10379   if (Entry.second)
10380     Expr = Entry.second;
10381 
10382   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10383   Entry = {Generation, NewSCEV};
10384 
10385   return NewSCEV;
10386 }
10387 
10388 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10389   if (!BackedgeCount) {
10390     SCEVUnionPredicate BackedgePred;
10391     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10392     addPredicate(BackedgePred);
10393   }
10394   return BackedgeCount;
10395 }
10396 
10397 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10398   if (Preds.implies(&Pred))
10399     return;
10400   Preds.add(&Pred);
10401   updateGeneration();
10402 }
10403 
10404 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10405   return Preds;
10406 }
10407 
10408 void PredicatedScalarEvolution::updateGeneration() {
10409   // If the generation number wrapped recompute everything.
10410   if (++Generation == 0) {
10411     for (auto &II : RewriteMap) {
10412       const SCEV *Rewritten = II.second.second;
10413       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10414     }
10415   }
10416 }
10417 
10418 void PredicatedScalarEvolution::setNoOverflow(
10419     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10420   const SCEV *Expr = getSCEV(V);
10421   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10422 
10423   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10424 
10425   // Clear the statically implied flags.
10426   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10427   addPredicate(*SE.getWrapPredicate(AR, Flags));
10428 
10429   auto II = FlagsMap.insert({V, Flags});
10430   if (!II.second)
10431     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10432 }
10433 
10434 bool PredicatedScalarEvolution::hasNoOverflow(
10435     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10436   const SCEV *Expr = getSCEV(V);
10437   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10438 
10439   Flags = SCEVWrapPredicate::clearFlags(
10440       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10441 
10442   auto II = FlagsMap.find(V);
10443 
10444   if (II != FlagsMap.end())
10445     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10446 
10447   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10448 }
10449 
10450 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10451   const SCEV *Expr = this->getSCEV(V);
10452   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
10453   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
10454 
10455   if (!New)
10456     return nullptr;
10457 
10458   for (auto *P : NewPreds)
10459     Preds.add(P);
10460 
10461   updateGeneration();
10462   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10463   return New;
10464 }
10465 
10466 PredicatedScalarEvolution::PredicatedScalarEvolution(
10467     const PredicatedScalarEvolution &Init)
10468     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10469       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10470   for (const auto &I : Init.FlagsMap)
10471     FlagsMap.insert(I);
10472 }
10473 
10474 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10475   // For each block.
10476   for (auto *BB : L.getBlocks())
10477     for (auto &I : *BB) {
10478       if (!SE.isSCEVable(I.getType()))
10479         continue;
10480 
10481       auto *Expr = SE.getSCEV(&I);
10482       auto II = RewriteMap.find(Expr);
10483 
10484       if (II == RewriteMap.end())
10485         continue;
10486 
10487       // Don't print things that are not interesting.
10488       if (II->second.second == Expr)
10489         continue;
10490 
10491       OS.indent(Depth) << "[PSE]" << I << ":\n";
10492       OS.indent(Depth + 2) << *Expr << "\n";
10493       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10494     }
10495 }
10496